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ABSTRACT

NEUTRON-RICH CHROMIUM AND MANGANESE ISOTOPES AND THE
ROLE OF THE NEUTRON 0g9/2 and 1d5/2 ORBITALS IN THE REGION

BELOW 68Ni

By

Travis Baugher

Intermediate-energy Coulomb excitation measurements were performed on the neutron-rich

isotopes 58,60,62Cr and the electric quadrupole transition probabilities, or B(E2; 0+
1 → 2+

1 )

values, of 60,62Cr were determined for the first time. The results quantify the trend of

increasing collectivity in the chromium isotopic chain approaching the neutron sub-shell gap

N = 40. For 60,62Cr, the ratios of neutron to proton transition matrix elements, |Mn/Mp|,

were determined by combining the Coulomb excitation data with results from inelastic proton

scattering measurements. γ-ray spectroscopy was performed on 63Mn and a new transition

was added to the level scheme. Excited-state lifetimes were determined for levels in 62Cr

and 63Mn using simulations of the γ-ray detection systems. The results are compared with

state-of-the-art large-scale shell-model calculations using the LNPS effective interaction,

which was developed for this region. Different formulations of the E2 effective charge were

used to calculate the theoretical B(E2) and |Mn/Mp| values, which are compared to the

experimental values. The results emphasize the importance of the 0g9/2 and 1d5/2 neutron

orbitals, which lie beyond the N = 40 sub-shell gap, for describing nuclear structure in this

region.
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Chapter 1

Introduction

The atomic nucleus is a quantum many-body system, consisting of two types of nucleons:

positively charged protons and electrically neutral neutrons. The number of protons and

neutrons making up a nucleus will be referred to as Z and N , respectively, and the total

number of nucleons is A = N + Z. Nuclei are also referred to in the notation AX(Z), where

X(Z) is the chemical symbol for the element with Z protons. Nucleons are bound together to

form a nucleus by the strong force. The range of the strong force is on the order of the nucleon

size (∼ 10−15 m = 1 fm) and is attractive on those lengthscales [1]. The binding energy,

BE(N,Z), of a nucleus is the difference between the sum of the masses of the constituent

nucleons and the mass of the bound nucleus itself:

BE(N,Z) = (Zmp +Nmn −mN,Z)c2. (1.1)

In Equation 1.1, mp = 938.272046(21) MeV/c2 is the proton mass, mn = 939.565379(21)

MeV/c2 is the neutron mass [2], mN,Z is the mass of the nucleus with N neutrons and Z

protons, and c = 299, 792, 458 m/s is the speed of light [3].

By taking the difference in binding energies of neighboring nuclei, we can define the
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neutron and proton separation energies, Sn(N,Z) and Sp(N,Z):

Sn(N,Z) = BE(N,Z)−BE(N − 1, Z), (1.2)

Sp(N,Z) = BE(N,Z)−BE(N,Z − 1). (1.3)

The differences in one-nucleon separation energies, ∆Sn and ∆Sp are

∆Sn(N,Z) = Sn(N,Z)− Sn(N + 1, Z),

∆Sp(N,Z) = Sp(N,Z)− Sp(N,Z + 1). (1.4)

By examining Sn and ∆Sn as functions of neutron number, features can be observed. The

top panel of Figure 1.1 shows one-neutron separation energies as a function of neutron number

for even-even nuclei near stability with N > Z. The lines connect nuclei with the same

number of protons. At neutron numbers 20, 28, 50, 82 and 126 there is a sudden decrease in

neutron separation energy for the next neutron. This can be seen more dramatically in the

bottom panel of Figure 1.1, which shows ∆Sn(N,Z) for the same set of nuclei. The peaks

highlight the so called magic numbers, and they arise from gaps in the energy levels occupied

by the nucleons. Similar plots can be made for Sp and ∆Sp which reveal the same set of

magic numbers for protons.

A useful way of visualizing the nuclear landscape is the chart of the nuclides, shown in

Figure 1.2. The nuclear chart gives the proton number on the vertical axis and the neutron

number on the horizontal axis, so each square represents a different nuclide. The black

squares represent the stable nuclides, the blue squares represent unstable nuclides that have

been produced or studied, and the red region marks nuclides that may exist but have never
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Figure 1.1: Top panel: One-neutron separation energies as a function of neutron number
for even-even N > Z nuclei near stability. The solid lines connect nuclei with the same Z.
Bottom panel: ∆Sn for the same set of nuclei. Figure taken from [4].
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been observed. The dashed lines at proton and neutron numbers 2, 8, 20, 28, 50, 82 and

126 indicate the magic numbers of protons and neutrons near stability. Nuclei with a magic

number of either protons or neutrons are said to be magic nuclei and a nuclei with a magic

number of both protons and neutrons is said to be doubly magic. Magic and doubly-magic

nuclei tend to be more strongly bound than nearby nuclei, as evidenced by the abrupt changes

in neutron-separation energies shown in Figure 1.1. Even-N , even-Z magic nuclei have

enhanced 2+
1 excitation energy and B(E2 : 0+

gs → 2+
1 ) transition probability relative to their

even-even neighbors.

Nuclear shell structure arises from gaps in the energy levels occupied by the nucleons.

Due to the Pauli principle, no two like nucleons are allowed to have the same set of quantum

numbers. Nucleons have intrinsic spin angular momentum quantum number s = 1/2 and

orbital angular momentum quantum number ` = 0, 1, 2, 3, . . . , which couple to the total

angular momentum j = `± s. A nucleon in a single-particle state is labeled by its quantum

numbers using the notation n`j , where n = 0, 1, 2, . . . is the principle quantum number.

The orbital angular momentum, `, is usually referred to in spectroscopic notation, where

` = 0, 1, 2, 3, 4, . . . is equivalent to ` = s, p, d, f, g, . . . , respectively. Each state has 2j + 1

magnetic substates, labeled m, which run from j to −j in integer steps. States are also

defined by their parity, π, which can take the values ±1 and is determined by π = (−1)`.

The discovery of the magic numbers led to the development of the nuclear shell model

[5, 6]. Nucleons tend to fill the lowest energy orbits preferentially. In this model, the nucleons

in orbits below the last shell gap form an inert core, while the remaining nucleons outside

the core are the valence nucleons. In the extreme single-particle shell model of a nucleus with

one particle more or less than the inert core, the core contributes 0 angular momentum, and

only the unpaired particle or hole determines the total spin, J , of the ground state [1]. In
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Figure 1.3: Calculated single-particle energy levels for 208Pb using harmonic oscillator,
Woods-Saxon, and Woods-Saxon plus spin-orbit potentials. Figure modified from [4].
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more realistic shell models, multiple nucleons outside the core and mixing between nucleon

configurations are taken into account [7]. For very light nuclei (A < 12), the no-core shell

model can include all of the nucleons in the calculation [8].

A theoretical description of a nucleus is given by a solution to the Schrödinger equation,

but the exact form of the nuclear Hamiltonian is not known, so assumptions must be made.

In first order, one assumes that a nucleon moves in a central potential created by the other

nucleons in the nucleus, thus a convenient starting point is the harmonic oscillator potential.

Part (a) of Figure 1.3 shows calculated single-particle energy levels for 208Pb using a harmonic

oscillator potential. This simple potential is able to reproduce the first three magic numbers

at 2, 8 and 20, but further predictions disagree with observation. A more realistic form is the

Woods-Saxon potential:

VWS(r) =
−V0

1 + exp[(r −R)/a]
, (1.5)

where V0 is the depth of the potential, r is the radial distance from the center of the potential,

and R and a are the radius and diffuseness parameters, respectively. Part (b) of Figure

1.3 shows calculated single-particle energies for 208Pb with a Woods-Saxon potential. The

Woods-Saxon potential breaks the degeneracy associated with the harmonic oscillator energy

levels, but still fails to reproduce the observed magic numbers. As shown in Part (c) of Figure

1.3, the correct magic numbers are reproduced by adding a strong and attractive spin-orbit

term to VWS(r):

Vso(r) = −V (r)~̀ · ~s. (1.6)
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γ-decay

Ji

Jf

Figure 1.4: An illustration of electromagnetic decay. A bound excited state with spin Ji
decays via γ-ray emission to the state Jf . The energy of the γ ray is equal to the energy
difference between the states.

1.1 Electromagnetic Transitions

Most bound excited states, |i〉, will decay via γ-ray emission to a state, |f〉, that has lower

energy. The energy of the γ ray is equal to the energy difference between the initial and

final states (neglecting the nuclear recoil, which is usually vanishing when compared to the

transition energy). The transitions can be classified according to the spin, J , and parity, π,

of the initial and final states, Jπi and Jπf , respectively. This is schematically illustrated in

Figure 1.4.

The multipolarity, λ, of the transition is determined by the amount of angular momentum
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carried away by the photon. λ = 1 (dipole), λ = 2 (quadrupole), λ = 3 (octupole), etc. λ = 0

is not allowed because photons are spin-1 bosons and must carry away at least one unit of

angular momentum. The allowed multipolarities are restricted by the conditions

|Ji − Jf | ≤ λ ≤ Ji + Jf ,

λ 6= 0. (1.7)

The transition is further classified as electric or magnetic based on the parities of the

initial and final states, πi and πf , respectively, which can be either ±1. The classification is

based on the conditions:

πiπf (−1)λ =


+1 electric

−1 magnetic.

(1.8)

The notation σ = E or M is used to refer to electric and magnetic transitions, respectively.

The transition rate, T , depends on σ, λ and its projection, µ:

T
σλµ
fi =

2

ε0h̄

λ+ 1

λ[(2λ+ 1)!!]2

(
Eγ
h̄c

)2λ+1

|〈f |Mσλµ|i〉|2. (1.9)

Mσλµ is the electromagnetic operator for the σλµ radiation. In many experiments, the M

states are not observed individually, so it is useful to average over the projections of the

initial state and sum over the projections of the final state and multipolarity:

Tσλfi =
1

2Ji + 1

∑
Mi

∑
µMf

T
σλµ
fi (1.10)

=
2

ε0h̄

λ+ 1

λ[(2λ+ 1)!!]2

(
Eγ
h̄c

)2λ+1

B(σλ; i→ f). (1.11)
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The quantity B(σλ; i→ f) is the reduced transition probability and is defined as:

B(σλ; i→ f) ≡ 1

2Ji + 1
|〈f ||Mσλ||i〉|2. (1.12)

The double bar notation indicates that Mi, Mf and µ have been summed over. The B(σλ)

value depends on the direction of the transition. For a transition from state a to state b, the

relationship between B(σλ; a→ b) and B(σλ; b→ a) is

B(σλ; b→ a) =
2Ja + 1

2Jb + 1
B(σλ; a→ b). (1.13)

If state b is higher in energy than a, we define the shorthand B(σλ; ↑) ≡ B(σλ; a→ b) for an

excitation and B(σλ; ↓) ≡ B(σλ; b→ a) for a decay.

For electric transitions, the operators Mσλ are

MEλ =
A∑
j

rλj Yλµ(θj , φj)ej , (1.14)

where the sum runs over all nucleons in the nucleus, ej is the electric charge of the jth

nucleon, and Yλµ is the spherical harmonic. For magnetic transitions,

MMλ =
µN
h̄c

A∑
j

[
2

λ+ 1
g`j
~̀
j + gsj~sj

]
∇[rλj Yλµ(θj , φj)], (1.15)

where gsj and g`j are the spin and orbital angular momentum g-factors, respectively, ~s and ~̀

are the spin and orbital angular momentum vectors, respectively. The values of the g-factors
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are gsp = 5.586, gsn = −3.826, g`p = 1, g`n = 0 for free protons and neutrons, and

µN =
eh̄

2mpc
(1.16)

is the nuclear magneton and its value is 0.105 efm.

The lowest allowed electric or magnetic component with multipolarity λ usually dominates

over the component with λ + 2 by several orders of magnitude. If a transition is allowed

to proceed by electric and magnetic components, the component with λ + 1 will compete

with the λ component. In this case it is important to consider the multipole mixing of the

transition. The multipole mixing ratio, δ(E2/M1), for mixed E2−M1 transitions is

δ2
(
E2

M1

)
=

T (E2)

T (M1)
. (1.17)

For E2 and M1 transitions, Equation 1.11 gives

T (E2) = 1.223× 109E5
γB(E2) s−1e−2fm−4MeV−5 (1.18)

and

T (M1) = 1.779× 1013E3
γB(M1) s−1µ−2

N MeV−3, (1.19)

so for mixed E2/M1 transitions, the mixing ratio is

δ2
(
E2

M1

)
= E2

γ
B(E2)

B(M1)
6.87× 10−5 µ2

N

e2fm4MeV2
. (1.20)

The sign of δ(E2/M1) is defined as the opposite of the sign of the ratio of the reduced matrix

elements: sign[δ(E2/M1)] = −sign[〈f ||M(E2)||i〉/〈f ||M(M1)||i〉] [4]. δ(E2/M1) can be
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determined experimentally by measuring the angular distribution of γ rays from the transition

[9] or by determining the B(E2) value from Coulomb excitation, the lifetime of the excited

state, and using Equation 1.24, for example.

The lifetime, τ , of an excited state is the inverse of the transition rate:

τ =
1

Tfi
, (1.21)

so the lifetime can be deduced from the transition rates and vice versa. For E2 transitions

specifically,

τ =
816

E5
γB(E2 :↓)

e2fm4MeV5ps. (1.22)

For mixed multipolarity transitions, the total rate is the sum of the rate for each multipo-

larity:

Tfi =
∑
λ

(Tfi(Eλ) + Tfi(Mλ)), (1.23)

so for mixed E2/M1 transitions, the lifetime is

τ =
δ2

1 + δ2

816

E5
γB(E2 :↓)

e2fm4MeV5ps. (1.24)

E2 and mixed E2/M1 transitions are the most important in the discussions in this thesis.

1.2 Nuclear Collectivity and Deformation

In the single-particle model, nuclear properties are determined by the individual nucleons.

This can be a good approximation near shell closures. In contrast, nuclei, in particular those

away from shell closures, also exhibit collective behavior, where many nucleons contribute
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to the behavior of the nucleus. In the vibrational model, the nucleus is treated as an

incompressible fluid which oscillates about an average spherical shape.

In the rotational model, for the most common case of quadrupole deformation, the nucleus

is treated as a statically deformed rotor, which rotates about an axis perpendicular to the

symmetry axis. The deformation is characterized by the quadrupole deformation parameter,

β, with the radius, R(θ, φ), described by

R(θ, φ) = R0(1 + βY2,0(θ, φ)), (1.25)

where R0 = 1.25A1/3 is the average radius and Y2,0(θ, φ) is the spherical harmonic. In this

model, β > 0 gives a prolate (elongated) shape, and β < 0 describes an oblate (flattened)

shape. The deformation parameter is related to the B(E2; ↑) value by

|β| = 4π

3

√
B(E2; ↑)
ZeR2

. (1.26)

Note that the sign of the deformation parameter cannot be determined from the B(E2) value

alone and therefore the prolate or oblate nature of the deformation cannot be determined

from this relationship. Experimental signatures of nuclear collectivity in even-N , even-Z

nuclei include a large B(E2; 0+
gs → 2+

1 ) value and a small excited-state energy, E(2+
1 ).

1.3 Inelastic Scattering

Inelastic scattering is a type of a direct reaction [10, 11] in which the target and/or projectile

are excited by the interaction with one another, while leaving each nucleus intact. Inelastic

scattering experiments are sensitive to the collective structure of the nucleus. The specific
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probe used to cause the excitation must be understood, as different probes have different

sensitivities. An electromagnetic probe is ideal since the electromagnetic interaction is well

understood and the electromagnetic force is relatively weak, so the excitation can be treated

perturbatively as outlined in [12]. If the probe couples via the strong force, the interaction

must be modeled, for example using the optical model and coupled channels calculations

[10, 11].

To study stable isotopes, scattering experiments traditionally use a target made of the

isotope of interest and a beam of particles acting as the probe are impinged on the target,

causing excitations. To study radioactive isotopes, scattering experiments must be performed

in inverse kinematics where the particle being studied is the projectile and the probe is the

target. This is due to the simple constraint that it is impractical, if not impossible, to make

a target of radioactive isotopes that may live only for milliseconds, for example. The advent

of rare-isotope research facilities and advances in production techniques of radioactive ion

beams has made it possible to study very short-lived isotopes [13].

1.3.1 Intermediate-energy Coulomb Excitation

Intermediate-energy Coulomb excitation is a well-developed and robust technique used to

determine B(E2) values from excitation cross sections [14, 15, 13]. Intermediate-energy

Coulomb excitation is discussed in detail in Chapter .

1.3.2 Inelastic Proton Scattering in Inverse Kinematics

Proton inelastic scattering, denoted (p, p′), probes the proton-neutron degrees of freedom of a

nucleus and strongly excites collective states in even-even nuclei. Combined with Intermediate-

14



energy Coulomb excitation, inelastic proton scattering can be used to determine the ratio of

neutron to proton matrix elements, denoted |Mn/Mp|, which can provide information about

the relative contributions of the neutrons and protons to a collective excitation mode. In the

simplest picture of a collective nucleus, protons and neutrons contribute equally and the ratio

of the matrix elements should follow N/Z. For nuclei with singly closed shells, |Mn/Mp|

can deviate from N/Z as the transition will be dominated by the valence nucleons. The

neutron/proton matrix elements are defined as [16]

Mn/p =

∫
ρ
n/p
fi (r)rλ+2dr, (1.27)

where ρ
n/p
if is the neutron/proton transition density from state |i〉 to |f〉 and λ is the multipo-

latity of the transition.

By using a pair of probes that differ in their sensitivity to protons and neutrons, the ratio

of the matrix elements can be deduced. Coulomb excitation is an electromagnetic probe, and

so it is sensitive to Mp, while inelastic proton scattering at 30-50 MeV proton energy is mainly

sensitive to Mn, as determined by nucleon-nucleon scattering [16]. Using the description of

Bernstein et al., [17], the ratio is

Mn

Mp
=
bp
bn

[
δ(p,p′)
δp

(
1 +

bn
bp

N

Z

)
− 1

]
. (1.28)

In Equation 1.28, bn/bp is the relative sensitivity of the probes to the protons and neutrons.

bn/bp depends on the energy at which the reaction takes place, and ranges from bn/bp = 3

at 50 MeV to bn/bp = 1 at 1 GeV [16]. δ(p,p′) and δp in Equation 1.28 are the deformation

lengths deduced from inelastic proton scattering and Coulomb excitation, respectively. δ
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is related to the quadrupole deformation parameter, β, by δ = βR, where R is the nuclear

radius. δ(p,p′) can be determined from inelastic proton scattering experiments by fitting the

proton angular distribution or the inelastic cross sections with DWBA or coupled-channels

calculations, while δp can be determined from Coulomb excitation via the relationship

δp =
4π

3

√
B(E2 :↑)
ZeR

. (1.29)

The optical model is often used to model the nuclear potential in inelastic proton scattering

experiments in order to extract cross sections and δ(p,p′), for example. In the optical model,

the nuclear potential is modeled as

U(r) = V (r) + iW (r), (1.30)

where the real component accounts for elastic scattering and the imaginary part accounts for

all other scattering processes. V (r) typically includes a central term such as a Woods-Saxon

potential, V0(r), a surface-peaked, spin-orbit term proportional to dV0(r)/dr` · s, and a

Coulomb term, while W (r) typically includes only central and surface-peaked terms. A

detailed description of the optical-model potential can be found in, for example, [18, 19]. The

parameters in the optical model potential can be determined by fitting to elastic scattering

angular distributions, using a global parameter set, for example, [18, 19], or by performing

folding model calculations [11].

To account for deformation, the potentials become functions of R(θ) = R0[1 + βY2,0(θ)]

instead of the usual spherical radius R = 1.25A1/3. The Schrödinger equation can then

be solved with the deformed potential using the coupled channels method [10, 11]. The
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quadrupole deformation parameter can then be adjusted so that the calculations agree with

the experimental cross sections.

1.4 Shell Model and Effective Charge

All but the lightest nuclei are too complex for the Schrödinger equation to be solved for every

particle in the A-body system. To simplify the problem, an inert core of Acore nucleons is

chosen, thereby reducing the problem to one of A − Acore particles. The core is typically

chosen to be a nearby doubly-magic nucleus. The remaining nucleons outside the core are

then the valence nucleons. Due to computational constraints, a model space must be chosen

to limit the single-particle levels available to the valence nucleons. The valence space must be

large enough to reproduce the low-lying excitations but small enough to be computationally

tractable. A typical choice is to include the orbitals in the major harmonic oscillator shell

of the valence nucleons. An effective interaction, consisting of a mean-field potential and a

residual interaction, must be derived within the chosen model space. The residual interaction

accounts for the two-body interaction, which is not included in the mean field potential.

Examples of effective interactions include Cohen and Kurath for the p shell [20], USDA and

USDB interactions for the sd shell [21], and GXPF1A for the pf shell [22, 23].

The Hamiltonian, H, for a system of A nucleons is

H = T + V (1.31)

=
A∑
i

ti +
A∑
i<j

vij , (1.32)

where ti is the kinetic energy operator for the ith nucleon and vij is the interaction between
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the ith and jth nucleons. The single-particle potential, U , which is the sum contribution of

the potentials from all the nucleons which create the mean field, is

U =
A∑
i

vi, (1.33)

and can be the harmonic oscillator or Woods-Saxon potential plus spin-orbit. U can be added

and subtracted from the Hamiltonian to give:

H = (T + U) + (V − U) ≡ H0 +H1. (1.34)

H0 is the mean-field Hamiltonian and H1 is the residual interaction, which is treated as a

perturbation to H0.

Transition rates between nuclear states depend on the transition operators, Mσλµ. For

example, the E2 transition operator is

ME2 =
∑
i

er2
i Y

2ei, (1.35)

where i sums over all nucleons, e is the charge unit, ei is the charge of the ith nucleon, Y 2 is

the spherical harmonic, and r is the radius. In the reduced model space of the shell model,

effects outside the model space must be taken into account. For the E2 operator, this is

done by introducing effective charges, en and ep, for protons and neutrons, respectively, that

enter into the sum in the definition 1.35. As demonstrated in [8], introducing an effective

charge is a way of taking into account interactions between the valence nucleons and the

core that are left out of the shell model description due to the model space restraint, for

example. As valence nucleons move in their orbits, they disturb the core nucleons and induce
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a quadrupole moment of the core. The E2 effective charge takes into account coupling of the

single-particle motion of the valence nucleons with the quadrupole vibrational modes of the

core [24]. Effective charge is usually parameterized as

ep/e = 1 + δep (1.36)

en/e = δen, (1.37)

where the δep/n are the proton and neutron polarization charges. A standard value of the

polarization charge is taken as 0.5 for both δep and δen. In more detailed phenomenological

approaches, different sets of effective charge are used in different model spaces. For example,

δep = 0.2 and δen = 0.5 in the sd shell [25] and δep = 0.15, δen = 0.8 [26] or δep = 0.31,

δen = 0.46 [27] in the fp shell. These effective charges are assumed to be constant, although

it is not clear that this assumption is correct throughout the model space at increasing

neutron-richness, for example. The polarization charges have an isoscaler component and

an isovector component which arise from the excitation of the isoscaler and isovector giant

quadrupole resonances of the core coupling to the valence nucleons. To account for this,

the effective charges also have isoscaler (IS) and isovector (IV ) components such that

δep = δeISp − δeIVp and δen = δeISn + δeIVn [26]. Bohr and Mottleson proposed N - and

Z-dependent E2 polarization charges that take into account the neutron excess (N − Z) and

approximates the coupling to in-phase (isoscaler) and out-of-phase (isovector) vibrations of

the protons and neutrons in the core [24].
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The effective charges enter into the shell-model transition probabilities via

B(E2; 0+ → 2+) =(enAn + epAp)
2

=|Mp|2, (1.38)

as well as the proton and neutron transition matrix elements:

Mp = enAn + epAp

Mn = epAn + enAp, (1.39)

where An and Ap are the shell-model transition amplitudes for neutrons and protons, respec-

tively. It is clear from Equations 1.38 and 1.39 that an accurate theoretical description of the

transition rate and transition matrix elements depends on the understanding of the effective

charges in a given shell model space.

1.5 Evolution of Nuclear Structure Away from Stabil-

ity

Changes in nuclear shell structure have been observed in nuclei as a function of the isospin

projection Tz = 1
2(N − Z). For example, the erosion of the N = 20 magic number has been

observed in nuclei in the island of inversion region around 32Na. Ground state (sd)−2−(fp)+2

neutron configurations that involve particle-hole excitations across N = 20 are energetically

favored over configurations one would expect in normal level ordering [28, 29]. In the neutron-

rich calcium, titanium and chromium isotopes, a new magic number at N = 32 was observed
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[30, 31, 32, 33, 34]. Among the isotopes with N = 40, many changes in structure have been

observed: the N = Z = 40 nucleus 80Zr is highly deformed with a quadrupole deformation

parameter of β ≈ 0.4 [35], while 68Ni has a high first 2+ state and a small B(E2; 0+ → 2+)

transition probability [36]. Only two and four protons away from 68Ni, 66Fe and 64Cr are

among the most collective nuclei in the region [37].

One cause of this evolution is the shifting of the effective single-particle energies, driven

by the spin-isospin part of the nucleon-nucleon interaction [38], for example. This monopole

part of the tensor force acts in addition to the spin-orbit force and affects the effective

single-particle energies as a function of the isospin. A nucleon in a single-particle orbit j

has a single-particle energy that is determined by the mean effect of all the other nucleons

in the nucleus. When a nucleon is added to the orbit j′, it changes the mean field, thus

changing the effective single-particle energy of the nucleon in orbit j. The nucleons in j

and j′ couple to total angular momentum J . By averaging over the possible J values, the

monopole component of an interaction V is [39]

V T
jj′ =

∑
J (2J + 1)〈jj′|V |jj′〉JT∑

J (2J + 1)
, (1.40)

where 〈jj′|T |jj′〉JT is the matrix element for j and j′ coupled to spin J and isospin T . The

T = 0 (proton-neutron) component of the tensor interaction is stronger than the T = 1

(neutron-neutron or proton-proton) component [38].

The shift in single-particle energy, ∆εp(j), of a proton in orbital j due to a neutron in

orbital j′ is [38]

∆εp(j) =
1

2

[
V T=0
j,j′ + V T=1

j,j′
]
nn(j′), (1.41)

where nn(j′) is the number of neutrons in the orbital j′. So the strength of the single-particle
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energy shift of j depends on the number of particles in j′. Swapping n and p gives the similar

expression for the neutron single-particle energy shift.

For protons, with orbital angular momentum `, and neutrons, with orbital angular

momentum `′, the tensor force between the orbitals j< = ` − 1/2 and j′> = `′ + 1/2 and

j> = `+ 1/2 and j′< = `′ − 1/2 force is attractive. For protons and neutrons in j< and j′<

or j> and j′>, the tensor force is repulsive. The tensor force is maximized for ` = `′, so the

strongest coupling is expected for protons and neutrons in spin-orbit partner orbitals [39, 38].

In the region below 68Ni, the proton-neutron tensor force plays a key role in reducing

the N = 40 gap between the positive-parity fp shell and the negative-parity 0g9/2 and 1d5/2

neutron orbitals. Neutron excitations into these orbitals are enhanced by this reduced energy

gap, generating quadrupole collectivity [40]. The gap is reduced going from 68Ni to 64Cr by

the combination of the repulsion between the 0f5/2 neutron orbital and the 0f7/2 proton

holes and the attraction between the 0f7/2 proton holes and the 0g9/2 and 1d5/2 neutron

orbitals. By measuring the B(E2) values of 60,62Cr, the quadrupole collectivity in this region

can be further quantified.
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Chapter 2

Intermediate-energy Coulomb

Excitation

2.1 The Theory of Intermediate-energy Coulomb Exci-

tation

The experimental technique used to determine the B(E2) values of 58,60,62Cr was intermediate-

energy Coulomb excitation. In general, in Coulomb excitation, the projectile and/or target

nuclei are excited from the initial state |i〉 to the final state |f〉 in the Coulomb field of

one another. “Safe” (low-energy) Coulomb excitation can be accomplished by keeping the

beam energy below the Coulomb barrier for the given target-projectile combination, thus

ensuring that the charge distributions of the projectile and target never overlap; i.e., the

nuclei never come close enough for the short-range nuclear force to contribute to the excitation

process. For some radioactive beams, such low energies are impractical because they are most

effectively produced by in-flight fragmentation and available for experiments with more than

50 MeV/nucleon; whereas, energies no greater than 3 MeV/nucleon would be needed to keep

a 62Cr + 197Au collision safely below the Coulomb barrier. To prevent nuclear contributions

in the case of beam energies above the Coulomb barrier, events with large scattering angles,

which correspond to small impact parameters (see Figure 2.1), must be excluded from the
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Figure 2.1: A cartoon illustrating the scattering of a projectile from a target nucleus with and
impact parameter b and corresponding scattering angle θ. Inset is a diagram of the Coulomb-
excitation process in which a nucleus is excited from the ground state and subsequently
decays be γ-ray emission. The energy of the emitted γ ray equals the energy difference
between the nuclear levels.

analysis.

The equations in this section involving Zp or Zt assume that the Coulomb excitation of

the projectile is taking place. For equations describing the Coulomb excitation of the target,

simply replace Zp with Zt and vice versa. The calculations of the Coulomb-excitation cross

sections and γ-ray angular distribution coefficients used in this work were performed with a

Mathematica program described in [41].

In their semi-classical theory of relativistic Coulomb excitation [12], Alder and Winther

assume that the scattering takes place along a classical trajectory and that the Coulomb
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excitation cross section can be described as the product of the Rutherford cross section [11]

for inelastic scattering and the (small) Coulomb excitation probability Pi→f :

(
dσ

dΩ

)
i→f

=

(
dσ

dΩ

)
Rutherford

Pi→f , (2.1)

where the probability to undergo Coulomb excitation, Pi→f , is defined as the square of the

excitation amplitude ai→f

Pi→f =
∣∣ai→f ∣∣2 . (2.2)

By treating the Coulomb potential as time-dependent perturbation, the excitation ampli-

tude is

ai→f =
1

ih̄

∫ ∞
−∞

dt e
iωfit 〈f |V (r(t))|i〉 . (2.3)

Here, ωfi =
(
Ef − Ei

)
/h̄ = ∆E/h̄ and V (r (t)) is the Coulomb potential. For large impact

parameters or high projectile velocities, Alder and Winther assume straight-line trajectories.

After expanding the potential into its multipole components, Vλµ (r), and expressing it in

terms of the electric multipole matrix elements,M (πλµ), where π = E for electric transitions,

π = M for magnetic transitions, λ is the multipolarity of the excitation, and µ is its projection,

the excitation amplitude can be expressed as

ai→f = i
∑
λ

χ
(λ)
i→ffλ (ξ) . (2.4)

The factor χ is a measure of the interaction strength,

χ
(πλ)
i→f ≈

Zte 〈f |M (πλµ)|i〉
h̄cbλ

, (2.5)
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where b is the distance of closest approach in the collision. fλ (ξ) describes how the cross

section depends on the adiabaticity of the collision. ξ is equal to the amount of time the

projectile spends in the vicinity of the target, the collision time, τcoll, divided by the timescale

of the internal motion of the nucleus undergoing excitation τnuc:

ξ =
τcoll

τnuc
. (2.6)

τcoll depends on the particle’s velocity and impact parameter,

τcoll =
b

γv
, (2.7)

where γ is the relativistic factor and β is the projectile speed as a fraction of the speed of

light, c:

γ =
1√

1− β2
, (2.8)

β =
v

c
(2.9)

τnuc depends on the energy of the excitation

τnuc =
1

ωfi
=

h̄

∆E
. (2.10)

If the adiabatic parameter is large, due to a large impact parameter, low velocity or

large excitation energy, the collision will be adiabatic. In this case, the nucleus moves gently

through the field, following the slowly changing, time-dependent potential and is less likely to

be excited. In this case, fλ (ξ) should fall off as e−πξ for large ξ. If ξ is small, the interaction
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will be more violent and the excitation is more likely to occur. This implies that in the limit

of ξ → 0, fλ (ξ) should approach 1.

Alder and Winther show that Coulomb distortion causes the trajectory to deviate from a

straight line and that this deviation is most important in the calculation of the adiabaticity

parameter ξ. They introduce a rescaling of the impact parameter to account for the increased

distance of closest approach due to Coulomb repulsion between the projectile and target [12]:

b→ b+
π

2

a0

γ
, (2.11)

where

a0 =
ZtZpe

2

m0c2β2
(2.12)

is the half-distance of closest approach in a head-on collision, and m0 is the reduced mass of

the projectile and target. With the re-scaled impact parameter, ξ is:

ξ =
∆E

h̄γv

(
b+

π

2

a0

γ

)
, (2.13)

The adiabatic cutoff sets in when ξ = 1, and the corresponding impact parameter ba is

ba =
vγh̄

∆E
, (2.14)

above which excitations of energy greater than ∆E are not possible.

The approximate cross section is found by integrating |χ|2 over impact parameters from

bmin to bmax:

σλ = 2π

∫ ba

bmin

b dbPi→f ≈ 2π

∫ ba

bmin

b db
∣∣∣χ(πλ) (b)

∣∣∣2 , (2.15)

27



resulting in

σπλ ≈
(
Zte

2

h̄c

)2
πB (πλ; 0→ λ)

e2b2λ−2
min


(λ− 1)−1 for λ ≥ 2

2 ln (ba/bmin) for λ = 1

, (2.16)

which is summed over all possible values of π and λ to obtain the total cross section:

σi→f =
∑
πλ

σπλ. (2.17)

Equation 2.16 shows the proportionality of the B(E2) value and the Coulomb-excitation cross

section. Also of note is the dependence of the cross section on Zt, the atomic number of the

target. This can be exploited by using high-Z targets for Coulomb excitation experiments.

The full result is derived in [12, 41]. The resulting excitation amplitude is:

ai→f = −iZte
2

h̄vγ

∑
πλµ

Gπλµ

( c
v

)
(−1)µKµ (ξ (b)) kλ

√
2λ+ 1

×
〈
JfMf

∣∣M (πλ− µ)
∣∣JiMi

〉
e

, (2.18)

where k = ∆E/h̄c and Kµ are modified Bessel functions. The function Gπλµ is defined for

electric transitions (π = E) as

GEλµ

( c
v

)
= iλ+µ

√
16π

λ (2λ+ 1)!!

(
(λ− µ)!

(λ+ µ)!

)1
2
(( c

v

)2
− 1

)−1
2

×
(

(λ+ 1) (λ+ µ)

2λ+ 1
P
µ
λ−1

( c
v

)
− λ (λ− µ+ 1)

2λ+ 1
P
µ
λ+1

( c
v

))
(2.19)
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and for magnetic transitions (π = M) as

GMλµ

( c
v

)
= iλ+µ+1

√
16π

λ (2λ+ 1)!!

(
(λ− µ)!

(λ+ µ)!

)1
2
(( c

v

)2
− 1

)−1
2
µP

µ
λ

( c
v

)
, (2.20)

where P
µ
λ are the associated Legendre polynomials.

For the full cross section, Alder and Winther obtain

σi→f = 2π

∫ ∞
bmin

b db

2Ji + 1

∑
MiMf

∣∣ai→ f

∣∣2
=

(
Zte

2

h̄c

)2∑
πλµ

k2(λ−1)B
(
πλ; Ji → Jf

)
e2

∣∣∣Gπλµ ( cv)∣∣∣2 gµ (ξ (bmin)) , (2.21)

where gµ (ξ (bmin)) is defined as

gµ (ξ (bmin)) = 2π

(
ω

vγ

)2 ∫ ∞
bmin

b db
∣∣Kµ (ξ (b))

∣∣2
= 2π

∫ ∞
ξ

∣∣Kµ (x)
∣∣2 x dx, (2.22)

which can be evaluated using modified Bessel functions:

gµ (ξ (bmin)) = g−µ (ξ (bmin)) = πξ2
[∣∣Kµ+1 (ξ)

∣∣2 − ∣∣Kµ (ξ)
∣∣2 − 2µ

ξ
Kµ+1 (ξ)Kµ (ξ)

]
.

(2.23)
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2.2 Experimental Considerations

In this work, the minimum impact parameter bmin was taken as

bmin = r0

(
A

1/3
t + A

1/3
p

)
+ 2 fm, (2.24)

where r0 = 1.25 fm. The choice of adding 2 fm to the “touching-spheres” radius is based on

work done in [42, 13]. The relationship between b and θ is [43]:

b =
a0

γ
cot

(
θcm

2

)
, (2.25)

where a0 is defined in Equation 2.12.

The experimentally determined Coulomb-excitation cross section σ is calculated as

σ =
Nγ

NbeamNtargetε
, (2.26)

where Nγ is the intensity of the γ-ray peak resulting from the de-excitation of the Coulomb-

excited nucleus. Figure 2.1 shows a schematic of the excitation and de-excitation process.

Ntarget is the number of target atoms, Nbeam is the number of beam particles, and ε is the

detection efficiency of all detection systems.

2.3 Angular Distribution of γ rays

Because the magnetic substates are not populated equally in Coulomb excitation1, the γ-ray

emission is anisotropic. This is important in determining the efficiency of the γ-ray detection

1see, for example [44, 45]

30



system to γ rays emitted following Coulomb excitation if less than 4π are covered. The

angular distribution can be parametrized as

W (θ) =
∑
k even

akPk (cos θ) , (2.27)

where the index k runs from 0 to the smaller of 2λ or 2Ji, and Pk are the Legendre polynomials.

The coefficients ak are given by [41, 46]:

ak =
∑
µLL′

∣∣∣Gλµ ( cv)∣∣∣2 gµ (ξ) (−1)µ


λ λ k

µ −µ 0



×



Jf Jf k

λ λ Ji


Fk
(
L,L′, Jff , Jf

)√
2k + 1 δLδL′ . (2.28)

The γ − γ correlation function Fk
(
L,L′, Jf , Ji

)
is

Fk
(
L,L′, Jf , Ji

)
= (−1)

Jf+Ji−1√
(2k + 1) (2Ji + 1) (2L+ 1) (2L′ + 1)

×


L L′ k

1 −1 0





L L′ k

Jf Ji Jf


. (2.29)
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Chapter 3

Experimental Devices

3.1 Beam Production

The experimental measurements were performed at the National Superconducting Cyclotron

Laboratory (NSCL) at Michigan State University. A diagram of the NSCL Coupled Cyclotron

Facility (CCF) is shown in Figure 3.1. The process of producing a radioactive beam at the

NSCL [47] begins with stable atoms which must be ionized before they can be accelerated.

The ions are accelerated in the K500 cyclotron to ∼0.15c before being transferred to the

K1200 cyclotron where they are further stripped of electrons and accelerated to ∼0.5c. After

extraction from the K1200, the primary beam is then impinged on a production target which

fragments the primary beam into many isotopes, most of which need to be discarded while

keeping the isotopes of interest. This is accomplished by the A1900 fragment separator [48].

Finally, the desired beam of typically short-lived isotopes is sent to the experimental area.

Ionization is accomplished with one of three ion sources. The Superconducting ECR (SC-

ECR) [49], Advanced Room TEMperature Ion Source (ARTEMIS) [50] and Superconducting

Source for Ions (SuSI) [51, 52]. All use the electron cyclotron resonance (ECR) method of

ionizing the atoms. If the desired primary beam is a solid, it can be heated in an oven until

it vaporizes and is then injected into the ion source where it is confined to a magnetic trap.
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Figure 3.1: Layout of the NSCL Coupled Cyclotron Facility. Figure is modified from [48].

Electrons are accelerated by microwaves tuned to the electron cyclotron frequency ωc:

ωc =
eB

me
, (3.1)

where e and me are the electron charge and mass, respectively, and B is the magnetic field

inside the cavity. The accelerated electrons collide with the atoms, stripping them of electrons.

Once ionized, the ions are extracted by an applied voltage. The primary beam for this

experiment was 76Ge ionized in ARTEMIS to a charge state of 76Ge+12.

Due to the Lorentz force law, charged particles moving perpendicular to a magnetic field

will move in a circle of radius ρ:

ρ =
p

Bq
=
γmv

Bq
, (3.2)

where p is the momentum, γ is the relativistic factor, m is the mass of the particle, B is the

magnetic field strength, and q is the charge of the particle. Cyclotrons take advantage of this
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fact by using a strong magnetic field and three pairs of blade shaped “dees”, which produce a

radio-frequency electric field that accelerates the ions in the gaps between the dees, while the

trajectory is confined by the magnetic field. Ions are injected into the center of the cyclotron,

and each time an ion passes a gap, it is accelerated. As it gains energy, the magnetic field is

no longer strong enough to confine the ion to a circle and it spirals outward toward the edge

of the cyclotron. Once the ion reaches its maximum energy in the K500, it is extracted by

a port on the outer edge of the cyclotron and transported via a coupling beamline to the

K1200 cyclotron where the process is started again. There is a thin carbon foil, known as a

stripper foil, at the entrance port of the K1200 that strips more, if not all, electrons off the

ions. At extraction from the K500, the primary beam was 11.59 MeV/nucleon 76Ge+12 and

at extraction of the K1200 it was 130 MeV/nucleon 76Ge30+.

The production of the radioactive beam from a stable one is accomplished via projectile

fragmentation, in which the stable beam is collided with a stationary target, usually beryllium.

The fragmentation can be described as a two step process, where first some number of

nucleons are violently removed from the nucleus, creating a highly excited prefragment. The

prefragment then decays by statistical nucleon emission, resulting in a wide range of stable

and radioactive nuclei [53]. For the Coulomb excitation of 58,60,62Cr, a 423-mg/cm2 Be

production target was used. Most of the nuclei produced are not the desired nuclei and need

to be filtered out before an experiment can be done, this is accomplished with the A1900

fragment separator.

The A1900 [48, 54] analyzes and separates the reaction products and delivers them to

the experimental area. The A1900 achieves isotopic separation via a three-step Bρ-∆E-Bρ
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technique. The key quantity, Bρ, or magnetic rigidity is found by rearranging Eqution 3.2:

Bρ =
γmv

q
. (3.3)

According to Equation 3.3, a dipole magnet with a given radius and magnetic field will only

allow particles with a certain range of momentum-to-charge ratio to pass through. Other

particles will either be deflected too much or two little and run into either side of the magnet

exit bore. Particles with similar p/q ratios will all make it through selection, necessitating

further purification. The remaining reaction products will be dispersed in space, according to

their p/q ratio. Several pairs of slits located at the image points and focal plane of the A1900

can be partially closed on the beam, eliminating some of the contaminants and allowing a

certain percentage of the momentum distribution of the beam through. The slits are partially

opened or closed, depending on the needs of the experiment. The beam is then passed

through an achromatic wedge, (which is not actually a wedge, but a curved aluminium foil

[55]), where the particles lose energy according to the Bethe formula [56]:

−dE

dx
=

4πe4Z2
p

m0v2
NZt

[
ln

2m0v
2

I
− ln

(
1− v2

c2

)
− v2

c2

]
. (3.4)

dE/dx is the energy loss per differential path length, e is the charge unit, Zp and Zt are

the atomic number of the projectile and the degrader, respectively, v is the velocity of the

projectile, m0 is the electron rest mass, N is the number density of atoms in the degrader,

and I is the average excitation energy of the stopping material, which is usually determined

experimentally. As can be seen from Equation 3.4, the energy loss will be proportional to Z2
p,

so different elements in the beam will lose different amounts of energy in the wedge. After
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the wedge, the particles are Bρ selected again and delivered to the experimental setup. For

the Coulomb excitation of 58,60,62Cr, the wedge was 300-mg/cm2 Al, and the momentum

acceptance of the separator was set to 0.5% for 58Cr and 3%for 60,62Cr. Three different

settings of the A1900 were used to deliver cocktail beams containing 58,60,62Cr to the target

position of the S800 at mid-target energies of 81.1, 81.7, and 79.0 MeV/nucleon for 58,60,62Cr,

respectively. The targets used to induce Coulomb excitation were placed at the target position

of the S800 and were 252-mg/cm2 197Au for 58,60Cr and 238.4-mg/cm2 209Bi for 62Cr.

3.2 The S800 Spectrograph

After passing through the A1900 and transfer hall, the secondary beam enters the S800

spectrograph beam line [57, 58]. The S800 is a high-resolution, large-acceptance device

designed for analyzing projectile-like residues from reactions induced at the target position

of the spectrograph. The S800 consists of two sections (Figure 3.2), the analysis line and

the spectrograph itself. The analysis line transports the beam from the A1900 focal plane,

through the object scintillator and to the S800 target position via a series of magnets - four

dipoles, five sets of quadrupole triplets, one quadrupole doublet and four sextupoles [59]. At

the S800 entrance, a quadrupole focuses the beam before being directed to the focal plane

using two large dipole magnets.

The analysis line has two complementary modes of operation, focused mode and dispersion

matched mode. When operated in dispersion matched mode, a momentum resolution of 0.02%

(for a 1 mm beamspot) can be achieved, albeit at the expense of a maximum momentum

acceptance of only ±0.25% for a typically sized target. Dispersion matching is achieved by

tuning the analysis line achromatically so that the momentum spread in the beam at the object
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Figure 3.2: The S800 spectrograph. The location of the object scintillator, the target position,
and the focal plane are identified. The target was surrounded by the γ-ray detection system
SeGA.

is cancelled at the focal plane. This means, however, that the beam is momentum-dispersed

at the target position (11 cm/%).

In focus mode, the beam is focused on the target and dispersed in the focal plane. The

maximum momentum acceptance in focus mode is increased to ±2% at the expense of the

momentum resolution being limited to the intrinsic momentum spread of the beam. The

Coulomb-excitation measurements of 58,60,62Cr were performed in focused mode.

3.2.1 Particle Detection Systems in the S800

The object scintillator (OBJ) is a thin plastic scintillator at the start of the analysis line. The

125 µm thick plastic scintillator is coupled to a photomultiplier tube to detect the florescence

light generated by the beam particles passing through the film. The OBJ scintillator provides

a timing signal used to determine the time-of-flight of each particle passing through the S800.
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The S800 focal plane contains a suite of detectors used to characterize incoming particles

[60, 58]. As shown in Figure 3.3, the first detectors encountered by a particle entering the

focal plane are a pair of position-sensitive cathode-readout drift counters (CRDCs) spaced 1

m apart. These are used to determine the xy-position of each particle as it enters the focal

plane. This information is used to reconstruct the trajectory of each particle through the

spectrograph. Next, the particle passes through an ionization chamber (ic) to determine their

energy loss, ∆E, which is used for particle Z identification. Finally there is a 1 mm thick

plastic scintillator, called the E1 scintillator, used for timing information and triggering of

the data acquisition. The difference between the E1 scintillator and the object scintillator

times is the time of flight of the particle through the S800 beamlines (a measure of their

velocity), which is used in conjunction with the ionization chamber energy loss for complete

A and Z information.

The CRDCs have an active area of 59 cm in the dispersive direction and 26 cm in

the non-dispersive direction and are 1.5 cm deep filled with 50 Torr of 80% CF4 and 20%

isobutane (C4H10) [58]. A voltage is applied to the CRDC in the dispersive direction. As

particles pass through the CRDCs, molecules in the gas are ionized and the electrons drift

toward the Frisch grid and anode wire where they are multiplied and collected on the anode.

Bordering the anode wire are 224 cathode pads where the induced signal from the anode

wire is measured. The center of gravity of the induced charge distribution on the pads is

taken as the interaction point of the particle in the non-dispersive direction (x direction) in

the CRDC. The position in the dispersive direction is determined by the drift time of the

electrons via the time difference between the electron collection on the anode wire and the

signal from the E1 scintillator. The x− y coordinates in each CRDC are then combined to

calculate the angle of the reaction residue as it entered the focal plane (Equation 4.4).
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Figure 3.3: Diagram of the S800 focal plane with the CRDCs, ionization chamber, and E1
scintillator highlighted.
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Figure 3.4: A typical CRDC mask calibration run of the x − y positions of CRDC1. The
areas of high intensity correspond to where holes and slits are drilled in the mask, allowing
particles to pass through the CRDC and trigger the data acquisition.

The drift time of the electrons in the CRDCs depends on the position of the interaction,

the specific properties of the fill gas, and the drift voltage applied and therefore needs to be

calibrated. For the purpose of this calibration, a mask can be inserted in front of each CRDC.

The mask has holes drilled at known locations, allowing the drift times to be converted to

positions via a linear calibration. A typical CRDC mask run is shown in Figure 3.4.

Tracking of the particle’s trajectory through the spectrograph is done by an inverse

map of the spectrograph’s magnetic field. The ion optics code COSY infinity [61] is used

to calculate the inverse map based on the measured field profile [57]. The dispersive and

non-dispersive positions and angles of the particles entering the focal plane are transformed

into the dispersive and non-dispersive angles, position in the non-dispersive direction, and
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fractional difference between the energy of the tracked particle and the energy of a particle on

the central path through the spectrograph. The tracking can be summarized as follows [57]:

(ata, yta, bta, dta) = S−1 (xfp, afp, yfp, bfp
)

, (3.5)

where S−1 is the inverse map, x, y, a, b and d stand for dispersive position, non-dispersive

position, dispersive angle, non-dispersive angle, and fractional energy deviation from the

central ray, respectively (dta = (E − E0)/E0), where E is the energy of the tracked particle,

and E0 is the energy of a particle following the central path through the spectrograph). The

subscripts fp and ta stand for focal plane and target, respectively. The scattering angle, θ,

of the particle as it leaves the target, which is needed to ensure a safe scattering angle for

Coulomb excitation, can be calculated from ata and bta using Equation 4.5.

The ionization chamber (ic) is filled with P10 gas and has 16 1-inch anode segments for

measuring the energy loss of each particle. As the particles traverse the chamber, the fill gas

is ionized and the electrons drift toward the anode. The energy lost by the particle in the

gas goes as Z2, according to Equation 3.4, making the energy loss ∆E useful for element

identification in the absence of charge states where Q 6= Z (not present in this work).

The E1 scintillator is a plastic scintillator behind the ionization chamber and is used for

timing measurements. The time difference between the object scintillator and E1 times is the

time-of-flight through the S800 and is used as part of the particle identification. The time

difference between E1 and the anode wire in the CRDCs is taken as the drift time of the

electrons in the CRDC and is used to determine the x (dispersive) position in the CRDCs.

The projectile passes through the CRDC, ionizing the fill gas. The electrons drift toward

the anode due to the drift voltage while the projectile continues through the E1 scintillator,

41



Time-of-flight (arb. units)

E
n

e
rg

y 
lo

ss
 (

a
rb

.u
n

it
s)

1

10

102

103

Z=24

Z=25

Z=26

Z=27

N-Z=13N-Z=14

Figure 3.5: Example energy loss versus time-of-flight spectrum. The spectrograph was
set to transmit the incoming beam after energy loss in the target (Coulomb-excitation
setting). Energy loss is proportional to the square of the proton number and time-of-flight is
proportional to the mass-to-charge ratio of the particles. Lines of constant Z and constant
neutron excess (N − Z) are drawn to guide the eye.

producing scintillation light. The time difference between the signals is the drift time of the

electrons. The E1 signal also served as the common start and trigger for the data acquisition

electronics.

Figure 3.5 shows an example particle identification spectrum. The vertical axis shows

energy loss in the ionization chamber, which is proportional to the square of the nuclear

charge (Z2), and the horizontal axis shows the flight time of the particle between the OBJ

and E1 scintillators, which is proportional to the mass-to-charge ratio of the projectile (m/q).
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Figure 3.6: Angle, front and side views of a SeGA crystal, showing the segmentation. The
dotted line in the side view shows the position of the central contact. Figure is from [62].

3.3 The Segmented Germanium Array SeGA

Surrounding the Coulomb-excitation target at the target position of the S800 was the

Segmented Germanium Array SeGA [62]. SeGA is a γ-ray detection system comprised of up

to 18 n-type, coaxial, high-purity germanium detectors which have been electrically segmented

into quarters radially and eight slices perpendicular to the central axis. This segmentation

geometry is shown in Figure 3.6. The crystals are 80 mm long and have a radius of 70 mm.

The configuration of SeGA used in this work is shown from the side in Figure 3.7. Seven

of the detectors were arranged in a forward ring at an angle of 37◦ relative to the beam axis

and the remaining ten formed the backward ring at 90◦.

γ rays emitted from nuclei moving at a large fraction of the speed of light will be

significantly Doppler shifted in energy when measured in the laboratory frame. The energy of

the γ ray detected in the laboratory, Elab
γ , is related to the energy emitted in the rest frame

of the nucleus Ecm
γ by

Elab
γ =

Ecm
γ

√
1− β2

(1− β cos θ)
=

Ecm
γ

γ (1− β cos θ)
, (3.6)
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Figure 3.7: Diagram of a side view of SeGA showing the location of the target and the
position of the rings surrounding it.
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where β = v/c is the velocity of the emitting nucleus, γ is the relativistic γ factor, and θ is

the angle of emission of the γ ray with respect to the direction of travel of the nucleus. If the

quantities β and θ are known, Elab
γ can be Doppler corrected to obtain Ecm

γ :

Ecm
γ = Elab

γ γ(1− β cos θlab). (3.7)

The energy resolution after Doppler-correction, ∆Eγ/Eγ , is affected by three main factors:

The uncertainty in the velocity, ∆β, of the nucleus at the time of γ-ray emission due to its

losing energy as it passes through the target, the uncertainty in θ due to the finite opening

angle of the γ-ray detector, and uncertainty in the direction of travel of the scattered nucleus

which emits the γ ray, ∆θ, and the intrinsic energy resolution of the detector ∆Eintr
γ , which

is negligible for SeGA. The total energy resolution due to these factors can be written as [62]:

(
∆Ecm

γ

Ecm
γ

)2

=

(
β sin θ

1− β cos θ

)2

(∆θ)2 +

(
β − cos θ(

1− β2
)

(1− β cos θ)

)2

(∆β)2 +

(
∆Eintr

γ

Eγ

)2

,

(3.8)

where all quantities on the right are in the lab frame. Figure 3.8 shows the contributions to

the energy resolution due to the individual terms in Equation 3.8.

The segmentation of SeGA limits the uncertainty in the γ-ray emission angle and allows

for event-by-event Doppler reconstruction of the γ-ray energy. The angle used in Doppler

reconstruction is the angle of the segment, relative to the beam axis, which registers the highest

energy deposit for each event. SeGA also takes advantage of the excellent intrinsic energy

resolution of germanium, measured to be less than 0.2% FWHM at 1332 keV, rendering this

contribution negligible [62]. This is especially good when compared to scintillator materials

such as CsI(Na), where an intrinsic resolution of 6% FWHM is typical at 1332 keV [63].
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Figure 3.8: Contributions to the γ-ray energy resolution as a function of laboratory angle.
For 62Cr, β = 0.377, ∆θ = 2.5, ∆β = 0.23, and ∆Eintr

γ /Eγ = 0.002. The contribution due to
uncertainty in angle is labeled ∆θ, the contribution due to uncertainty in particle velocity
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γ .
The curve labeled total is the three terms added in quadrature.

46



Energy

s
in

g
le

-e
s
c
a

p
e

 p
e

a
k

d
o

u
b

le
-e

s
c
a

p
e

 p
e

a
k

Compton continuum
C

o
m

p
to

n
 e

d
g

e

fu
ll-

e
n

e
rg

y
 p

e
a

k

C
o

u
n

ts

E
γ

E
CE

E
γ  - 511 keV

E
γ  - 2x511 keV

Figure 3.9: Example of a γ-ray detector response to many monoenergetic γ rays. The
components of the spectrum are explained in the text

There are three primary ways γ rays interact with matter that are of interest in a γ-ray

detector. These are the photoelectric absorption, Compton scattering, and pair production. In

each case, the γ ray is converted into one or more energetic electrons which can be measured.

In the case of semiconductor detectors, such as germanium, the electrons excite electron-hole

pairs that are collected due to an applied drift voltage, producing a signal. Each process

contributes to the shape of a γ-ray spectrum in a different way. An example of a detector

response to monoenergetic γ rays interacting with the detector is shown in Figure 3.9. The

various labeled components will be explained below.
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Eγ

Ee- = Eγ - Ebinding 

Figure 3.10: Schematic illustration of the photoelectric absorption process.

In photoelectric absorption, illustrated in Figure 3.10, the incoming γ ray is absorbed by

an atom of the detector material and an electron is emitted. The energy of the electron is

equal to the energy of the absorbed photon minus the binding energy of the electron, which

is usually small compared to the photon energy. As long as the electron does not leave the

detector volume, the full energy will be detected and this will contribute to the full-energy

peak. This makes photoelectric absorption an ideal process for γ-ray detection because all the

energy is transferred to a single electron. Because the probability for photoelectric absorption

goes roughly as Zn/E3.5
γ , with n varying between 4 and 5, depending on the γ ray energy,

it is desirable to use high-Z materials for γ-ray detection. Photoelectric absorption is the

dominant process for γ-ray energies of a few-hundred keV and below [56].

In Compton scattering, illustrated in Figure 3.11, a γ ray of energy Eγ is scattered off of

an electron of an absorber atom. Some of the γ-ray energy is transferred to the electron, and

the γ ray is scattered by an angle, θ. The energy transferred to the electron depends on the

scattering angle and is given by the Compton formula:

1

E′γ
− 1

Eγ
=

(1− cos θ)

m0c2
, (3.9)

where m0 is the electron mass. The angular distribution of Compton scattered γ rays is
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governed by the Klein-Nishina formula for the the differential scattering cross section [56]:

dσ

dΩ
= r2

0Z

(
1

1 + α (1− cos θ)

)2(1 + cos2 θ

2

)(
1 +

α2 (1− cos θ)2(
1 + cos2 θ

)
[1 + α (1− cos θ)]

)
,

(3.10)

where α ≡ Eγ/m0c
2 and r0 is the classical electron radius. The scattered γ ray can either

leave the detector or continue to interact through multiple Compton scatterings until it

undergoes photoelectric absorption. Since the γ ray can scatter through any angle from

0-180◦, the electron can be imparted with any energy on a continuum from 0 to the maximum

allowed. The maximum allowed energy transfer occurs when the γ ray scatters by 180◦. This

is the maximum energy transferable in a single Compton scattering event and is given by:

ECE =
2E2

γ

m0c2 + 2Eγ
, (3.11)

where ECE is the energy of the Compton edge. The energy between 0 and ECE is known as the

Compton continuum or Compton plateau. γ rays leaving the detector after Compton scattering

will contribute to the Compton plateau, while γ rays undergoing photoelectric absorption after

one or more Compton scatters will contribute to the full-energy peak. Compton scattering is

the most probable interaction for a γ ray with an energy between hundreds of kev and a few

MeV, the most common region of interest for nuclear physics, and the probability increases

linearly with Z and decreases gradually with γ-ray energy [56].

For γ rays with energy greater than twice the rest mass of the electron, (2m0c
2=1.022

MeV), pair production can occur in the presence of a nucleus. In pair production, illustrated

in Figure 3.12, a γ ray is converted into an electron-positron pair, and the remaining γ-ray

energy (above 1.022 MeV) becomes kinetic energy shared by the electron-positron pair; i.e.,
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Figure 3.11: Schematic illustration of the Compton-scattering process.

Figure 3.12: Schematic illustration of the pair production process.

Ee− + Ee+ = Eγ − 2m0c
2. Following pair production, the electron is detected, and the

positron will eventually encounter an electron and annihilate, producing two annihilation

photons of energy m0c
2 = 511 keV each. The annihilation photons can then undergo

photoelectric absorption, leave the detector, or Compton scatter. In the case where both

annihilation photons are absorbed, the full energy of the γ ray is detected. If one of the

annihilation photons leave the detector, while the other is absorbed, the energy detected

will be Eγ − m0c
2 = Eγ − 511 keV. This will lead to a single-escape peak in the γ-ray

spectrum. If both annihilation photons leave the detector, the result will be an energy of

Eγ − 2m0c
2 = Eγ − 1.022 MeV recorded. This will result in a double-escape peak in the γ-ray

spectrum. Pair production is only possible for γ-ray energies above 1.022 MeV, and is not

the dominant interaction until the γ-ray energy approaches several MeV. The probability of

pair production increases approximately as Z2 of the absorber and increases strongly with

γ-ray energy [56].
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Chapter 4

Intermediate-energy Coulomb

Excitation of 58,60,62Cr

Nuclear shell structure is well-established for stable nuclei. Beyond the valley of β stability,

some of the canonical magic numbers disappear and new ones emerge [13, 65]. Spin-isospin

parts of the NN interaction, in particular the monopole components of the proton-neutron

tensor force, have been identified as robust driving forces for shell evolution in exotic systems

[39, 38, 66]. The chain of nuclei with neutron number N = 40, a harmonic-oscillator magic

number and possibly sub-shell gap, is particularly interesting. Along this isotonic line, the

N = Z = 40 nucleus 80Zr is highly deformed with a quadrupole deformation parameter of

β2 ≈ 0.4 [35]. On the neutron-rich end of this line, 68Ni has its first 2+ state near 2 MeV and

a small B(E2; 0+ → 2+) transition probability [36], with a highly deformed proton intruder

0+ state predicted at about 2.2 MeV [67].

Only two and four protons away from 68Ni, the first 2+ states of 66Fe and 64Cr are

low-lying in energy with evidence for collectivity [68, 69]. A variety of complementary

experimental studies have elucidated the influence of the N = 40 energy gap on the structure

of 68Ni [36, 70, 71, 72, 73], with theoretical models suggesting that below Z = 28 the

decreased occupation of the π0f7/2 orbital leads to an onset of collectivity and deformation

Excerpts and figures reprinted from [64].
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[36, 74, 75, 40].

These structural changes are strongly influenced by the ν0g9/2 and ν1d5/2 neutron orbitals

[40, 74]. The proton-neutron tensor force between the π0f7/2 and ν0f5/2 orbitals is attractive

and strongest when both are fully occupied [38], as is the case for 68Ni. This attraction

draws the ν0f5/2 orbital down in energy, creating an N = 40 gap of about 3 MeV [40].

Moving to Fe (Z = 26) and Cr (Z = 24) progressively weakens the monopole parts of the

proton-neutron tensor interaction and shrinks the N = 40 gap by about 1 MeV, while the

quadrupole-correlated (∆` = 2) 0g9/2 and 1d5/2 orbitals become nearly degenerate, enhancing

the probability of their occupation by neutrons [40].

Recent excited-state lifetime measurements on neutron-rich Fe isotopes have quantified

the increased collectivity in 64,66Fe [76, 77] through the extracted B(E2; 0+ → 2+) values.

The chain of Cr isotopes displays a particularly rich picture of shell evolution: Stable 52Cr

exhibits the expected signatures of the N = 28 neutron shell closure, while four neutrons

heavier, 56Cr reveals the presence of a new sub-shell gap at N = 32 [33], generated by the

same robust driving force that is behind the onset of collectivity toward N = 40 [39]. Adding

more neutrons leads to strongly increasing collectivity, with experimental evidence coming

from decreasing 2+
1 energies out to N = 40 [69], increasing B(E2) values out to N = 34

[78], and increasing deformation parameters out to N = 38 [79] as well as the presence of

rotational bands at higher spin in 55−59Cr [80, 81, 82]. The intermediate-energy Coulomb

excitation measurements of 58,60,62Cr reported here quantify the onset of collectivity with N

in neutron-rich Cr nuclei with extracted B(E2; 0+ → 2+) values. They also benchmark the

latest nuclear models in this region of rapid structural change. The experimental setup is

described in Chapter and the Coulomb-excitation technique is described in Chapter .
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Figure 4.1: Particle-identification matrix for the 62Cr setting before any corrections were
performed.

4.1 Data Analysis

The data analysis utilized several software programs, NewSpecTcl [83, 84] was used for the

main data sorting. Tv [85] was used for the energy and efficiency calibrations, and GEANT4

[86] and ROOT [87] were used for the simulations and final γ-ray analysis.

4.1.1 Particle Identification

Particle identification is achieved by plotting time-of-flight through the S800 beam line and

spectrograph versus the energy lost in the S800 ionization chamber for each particle detected.

Figure 4.1 shows this plot for the 62Cr setting, before any trajectory corrections have been

applied.

The time-of-flight (tof) through the S800 is the time difference between the object
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scintillator (obj) and the E1 scintillator. The tof depends on the path taken by the particle,

which depends on the particle’s velocity and angle. Since the beam is not monoenergetic,

different particles of the same species (A/Z) will take slightly different paths, resulting in

different x positions and dispersive angles in the focal plane. This creates a correlation

between both afp and obj and xfp and obj. The corrected tof is denoted obje1 and is

calculated as

obje1 = obj + axxfp + aθafp, (4.1)

where ax and aθ are the correction coefficients for the dispersive position (xfp) and dispersive

angle (afp), respectively.

The ion-chamber data also needs several corrections. The 16 ion-chamber segments are

gain matched with a linear calibration. A position correction is also needed to account

for correlations between the energy loss in the ion chamber, icsum, and xfp and yfp. The

corrected energy loss, icde, is

icde = icsum
(
1 + ayyfp

)


e
ax

(
x0−xfp

)
xfp < x0

1 xfp ≥ x0

(4.2)

where ay, ax and x0 are the correction constants. Figure 4.2 shows the resulting particle

identification after all corrections have been applied. The result is a drastic improvement in

the ability to identify and separate the constituents of the beam.

4.1.2 Scattering Angle Reconstruction

An important aspect of intermediate-energy Coulomb excitation experiments is the measure-

ment of the scattering angle of the scattered projectiles. The scattering angle measured in the
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Figure 4.2: Particle-identification matrix for 62Cr after corrections to the time-of-flight and
ionization chamber have been applied. The strongest components are identified.

Setting Purity (%) ∆p/p (%) Rate (pps) Total Particles Major Contaminants

58Cr 80 0.5 3400 1× 108 59Mn, 57V, 55Ti

60Cr 50 2.5 1400 7× 107 62Mn, 61Mn, 63Fe

62Cr 10 2.5 66 3× 107 65Fe, 63Mn, 64Mn

Table 4.1: Approximate purities, average rates, total particles of interest after the running
time, and major contaminants for each of the three settings used.
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lab is the connection to the impact parameter of the collision, as shown in Figure 2.1, and is

required to restrict the analysis to safe impact parameters. The dispersive and non-dispersive

parts of the scattering angle, afp and bfp, respectively, of each particle are calculated from

the CRDC positions. The focal-plane angles are calculated as

tan afp =

(
CRDC2x − CRDC1x

d

)
(4.3)

tan bfp =

(
CRDC2y − CRDC1y

d

)
(4.4)

where d is the distance between the CRDCs, 1.073 m. With the aid of the inverse map, the

dispersive and non-dispersive scattering angles at the target, ata and bta are reconstructed.

Figure 4.3 shows the distribution of non-dispersive angle (bta) versus dispersive angle (ata)

for 62Cr particles. The uncertainty in the scattering angle due to the position resolution of

the CRDCs was assumed to be 2 mrad.

From ata and bta the scattering angle, θ, of each particle is calculated as

sin θ =

√
sin2 ata + sin2 bta. (4.5)

Figure 4.4 shows the distribution of scattering angles for 62Cr particles measured in this

experiment. The azimuthal angle of the scattered particle is calculated from ata and bta as

shown in Table 4.2, and the distribution for 62Cr is shown in Figure 4.5.

The asymmetry seen in 4.5 is due to different angular emittances in the incoming beam

in the dispersive and non-dispersive directions. The finite angular emittance smears out the

scattering angle distribution. On average this will not lead to a significant net bias in the

centroid of the scattering angle distribution but to a broadening around θmax. Since we
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Figure 4.3: Non-dispersive (bta) versus dispersive (ata) angles of 62Cr particles as they exit
the target.

sin ata sin bta φ

> 0 > 0 arctan
(

sin bta
sin ata

)
< 0 > 0 π − arctan

(
sin bta
|sin ata|

)
< 0 < 0 π + arctan

(
|sin bta|
|sin ata|

)
> 0 < 0 2π − arctan

(
|sin bta|
sin ata

)
Table 4.2: The azimuthal angle φ is calculated as shown in the table.
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Figure 4.4: Distribution of scattering angles of 62Cr particles, event-by-event reconstructed
from the positions in the focal plane and the inverse map.
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Figure 4.5: Distribution of azimuthal angles of scattered 62Cr particles. The structure is due
to different emittances of the beam in the dispersive and non-dispersive directions.
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do not measure the details and shape of the angular distribution and only set a maximum

scattering angle condition, the position of the centroid matters the most. Locally, the

Coulomb-excitation cross section is essentially linear for the small range of angles being

discussed (Figure 4.33), and only a small net bias might be introduced in the translation

from angle-integrated cross section to B(E2) value. The test cases used in this measurement

- the Coulomb excitation of the gold target and the confirmation of the known 58Cr B(E2)

value - confirm that the effect is not detectable within the experimental uncertainties. This

experiment was the first where such large emittance effects were observed [88]. Subsequent

experiments measure the effects of the angular emittance by comparing data measured with

and without a target and the effects were determined to be small. Test cases are always used

as a check on the setup and analysis, here the Coulomb excitation of the gold target and 58Cr

were the test cases that validated the analysis procedure. Tweaks of the optics introduced to

optimize transmission are suspected to lead to the asymmetric beam emittance and future

Coulomb excitation results will not use the modifications to the beam line tune and cope

with reduced transmission.

4.1.3 SeGA Calibrations

γ-ray spectroscopy experiments rely on γ rays to identify and quantify the inelastic process. In

order to correctly extract energies and cross sections from γ-ray spectra, the SeGA detectors

must be calibrated. Energy calibrations assure that the peaks in the γ-ray spectrum are

aligned and in the proper position, and efficiency calibrations are needed to determine the

number of γ rays that will be detected for a given number of emitted γ rays.
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Figure 4.6: A portion of the response of three different SeGA detectors and electronics
channels to a 226Ra source. The detectors have not been calibrated and the full-energy peaks
do not line up, demonstrating the need for an energy calibration. In the calibration process,
the ADC channels are mapped to energies with the known 226Ra calibration peaks.

4.1.3.1 Energy Calibration

Each SeGA detector and its signal processing chain will have a different response to a γ-ray

of a given energy. The full-energy peak will be in a different ADC channel for each detector;

therefore, each detector needs to be calibrated individually. A 226Ra source was used to

perform the energy calibration. 226Ra has a half life of 1600 years and decays by a chain of

α and β decays ending in stable 208Pb, resulting in γ rays ranging in energy from 200 keV to

3 MeV. Figure 4.6 shows a portion of the response of three different SeGA detectors to a

226Ra γ-ray source. The full-energy peaks are not aligned and are in ADC channels which

must be associated with energies. The need for a calibration is apparent.
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To perform the energy calibration, the peak positions of several prominent full-energy

peaks were determined from the measured, uncalibrated spectrum from each detector. A fit

was performed against the known energies of the γ-ray peaks from the 226Ra source in order

to determine the quadratic calibration for each detector. The calibration coefficients were

chosen as to minimize the χ2

χ2 =
∑
i

(
Emeas
γ − Eknown

γ

)2

σ2
, (4.6)

where Emeas
γ is the measured centroid of the γ-ray peak, Eknown

γ is the known energy of the

γ-ray transition, σ is the uncertainty in the measured peak position, and the sum runs over

all peaks included in the fit.

Each segment of a SeGA detector gives its own energy signal in addition to the core. Since

the angle of the segment registering the largest energy deposit is taken as the angle used for

Doppler reconstruction, the segments need to be calibrated as well, although not as precisely

as the core. Once the core calibration has been completed, the segment calibration can be

done. To calibrate the segments, an algorithm selects events in which the entire energy of the

interaction is recorded in a single segment. Since the core is calibrated, the energy recorded

in the core is known and can be used to calibrate the segment that registered the event.

This algorithm continues until enough calibration points are recorded to have an individual

calibration for each segment [83].

4.1.3.2 Efficiency Calibration

In order to determine a cross section from an experiment, the efficiency of the detector system

must be known. For SeGA, this is accomplished by using a γ-ray source of known activity
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Figure 4.7: The same three detectors from Figure 4.6 after the energy calibration. The peaks
now are aligned and have the correct ADC-channel to energy attribution.
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to perform an efficiency calibration. In separate runs, 152Eu and 226Ra γ-ray sources were

placed in the same position as the Coulomb-excitation target would be placed, in order to

ensure the same detector solid angle for both the source and in-beam measurements. If the

activity of the source and the emission probability of each γ-ray transition is known, the

number of counts in the measured γ-ray spectrum, divided by the number of emitted γ rays

and the live time of the data acquisition system, gives the detection efficiency of SeGA for

that energy. The γ-ray efficiency curve, ε
(
Eγ
)
, is obtained by fitting the measured efficiencies

over a range of energies. The function used to describe the efficiency curve in this work was

ε
(
Eγ
)

=
a(

Eγ − c+ e−0.269Eγ
)b , (4.7)

where a, b and c are the parameters of the fit. Figure 4.8 shows the efficiency curves for

each ring of SeGA. Two γ-ray sources were used in the calibration. The 152Eu data, shown

as blue points in Figure 4.8, was taken using a 152Eu source of known activity, while the

226Ra data, red points in Figure 4.8, were taken with a source for which the activity is not

precisely known. For this reason, the 226Ra data was fit with an additional parameter to

scale the overall curve to match the 152Eu data. The total efficiency of SeGA is the sum of

the efficiency of each ring. Due to the angular dependence of the Lorentz boost, the 90◦ and

37◦ rings of SeGA must be treated separately in order to determine the in-beam efficiency.

4.1.4 Doppler-shift Reconstruction

The beam particles are traveling at a large fraction of the speed of light (v/c > 0.3) when

they emit γ rays, so the energy of the γ rays is significantly Doppler shifted in the laboratory

frame, according to Equation 3.6. At the beam velocities used in this experiment, the Doppler
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Figure 4.8: γ-ray detection efficiency curves for the two rings of SeGA.
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shift is clearly evident. Figure 4.9 shows the γ-ray spectrum detected in coincidence with

58Cr for each of the two rings of SeGA. In Figure 4.9, no Doppler correction has been applied.

Visible are several γ-ray lines originating from the room background. Common sources of

background radiation include 40K and the natural 238U and 232Th decay chains. The most

prominent lines have been labeled. Figure 4.10 explores the cluster of lines around 500 keV.

Here, the 547-keV peak corresponds to the deexcitation of the 7/2+
1 level to the 3/2+

gs ground

state from the Coulomb excitation of the 197Au target. Also apparent is the large low-energy

background in both rings below approximately 400 keV. This is beam-correlated background

caused by bremsstrahlung: radiation produced by electrons of target nuclei gaining energy

from collisions with beam particles as the beam passes through the target. Also visible are

two broad structures, one in each ring. These are the Doppler-shifted 2+ → 0+ deexcitation γ

rays from the Coulomb excitation of 58Cr. The opening angle of the SeGA detectors spreads

out the peak due to the Doppler shift. The positions of the Doppler-shifted peaks are given

by Equation 3.6.

To transform the γ-ray spectra into the rest frame of the projectile, an event-by-event

Doppler correction is performed. The γ-ray energy in the rest frame, Erest
γ , is given in terms

of the lab energy, Elab
γ , by

Erest
γ = Elab

γ γ (1− β cos θ) , (4.8)

where β = v/c and θ is the emission angle of the γ ray relative to the direction of travel

of the projectile. In SeGA experiments, this angle is taken to be the angle of the detector

segment which registered the highest energy deposit.

Figure 4.11 shows the γ-ray spectrum measured in coincidence with 58Cr particles after

Doppler correction. The sharp background lines evident in Figures 4.9 and 4.10 are no longer
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visible, they have been distributed among the background in Figure 4.11 in the Doppler

reconstruction. The main feature in Figure 4.11 is the peak at 881(6) keV corresponding to

the deexcitation of the 2+
1 state in 58Cr to the 0+

gs ground state.

4.1.5 Scattering-angle Cuts and γ-ray Spectra

In order to constrain the impact parameter in the Coulomb excitation reaction, cuts must be

made on the scattering angle, θ, restricting the minimum impact parameter. The effect of

the scattering-angle cut on the γ-ray spectrum is illustrated in Figure 4.12 and quantified in

Table 4.3 for 58Cr.

Angle Cut (mrad) Peak Area Percentage of Total (%)

All angles 952(53) 100

<40 666(49) 70

<30 462(47) 48

<20 263(45) 28

Table 4.3: Effect on peak area of the scattering angle cuts shown in Figure 4.12.

The safe scattering angle, θmax, is the scattering angle corresponding to the minimum

impact parameter, bmin. bmin is defined in Equation 2.24 as the sum of the radii of the target

and projectile nuclei plus 2 fm. According to Equation 2.25, θmax is given by

bmin =
a0

γ
cot

(
θmax
cm

2

)
. (4.9)

The minimum impact parameters, maximum scattering angles in the lab and center of mass

frames are summarized in Table 4.4.
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Beam/target bmin (fm) θmax
cm (mrad) θmax

lab (mrad)

58Cr/197Au 14.1 55.4 42.2

60Cr/197Au 14.2 53.8 40.6

62Cr/209Bi 14.4 54.9 41.7

Table 4.4: bmin, θmax
cm , θmax

lab for 58,60,62Cr used in this experiment.

The Doppler-corrected γ-ray spectra with the θmax gates applied for 58,60,62Cr are shown

in Figures 4.13, 4.14, and 4.15. In each case the de-excitation γ ray from Coulomb excitation

is clearly seen. One notable feature is the asymmetric shape of the 62Cr peak, which exhibits

a pronounced low-energy tail. This is indicative of an excited-state lifetime on the order of

∼100 ps. As will be discussed in Section 4.3, the shape of the peak can be used to extract

the lifetime of the excited state and provides an independent measure of the B(E2) value.

4.2 GEANT Simulations

Monte-Carlo Simulations were used to extract the γ-ray yields from the measured spectra.

The simulations were performed using GEANT4 [86] and incorporated the geometry and

response of SeGA, energy loss of the beam particles as they passed through the target, the

γ-ray angular distribution, and the excited-state lifetimes, as well as γ-ray attenuation in

the target, beam pipe, and detector materials. A rendering of the simulated SeGA array

is shown in Figure 4.16. The simulated peaks were fit to the measured spectra using a χ2

minimization to determine the number of γ rays emitted following Coulomb excitation. The

target dimensions were 5 cm × 5 cm × 130 µm for the gold target used for the Coulomb

excitation of 58,60Cr and 5 cm × 5 cm × 250 µm for the bismuth target used for the Coulomb
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Figure 4.13: γ rays detected in coincidence with 58Cr projectiles which were scattered at an
angle less than θmax. The dexcitation of the 881(6)-keV 2+

1 state to the 0+
gs ground state is

observed in both rings.
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Figure 4.16: A three-dimensional rendering of the simulated SeGA array used in the analysis.
For clarity, only the positions of the SeGA germanium crystal housing are shown. The
detector cryostats and SeGA frame are not shown, but were included in the simulation.

excitation of 62Cr. The thickness of the aluminium beam pipe was 2.54 mm with an outer

diameter of 7.62 cm.

4.2.1 Simulation of Sources

To benchmark the simulated detector efficiency with respect to the measured efficiency for

SeGA, a simulation of an 152Eu source was performed and compared to the measured γ-ray

spectrum. The peaks of the 152Eu spectrum were simulated individually and summed into a
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Figure 4.17: Comparison of simulated and measured absolute efficiencies of SeGA in the
experimental situation.

single spectrum, taking into account the known branching ratios. The peaks were then fit

in the same way as the measured spectra. The resulting efficiencies are compared in Figure

4.17. The average percent difference between the simulated and measured efficiency was

δ37◦
GEANT = 0.9% for the 37◦ ring and δ90◦

GEANT = 1.9% for the 90◦ ring.

4.2.2 Simulations of SeGA’s in-beam Response

To simulate the in-beam response of the setup, a beam particle of the desired A and Z

is generated and fired into the target. The beam particle loses energy as it traverses the

target and the excitation occurs at a random point in the target. This is appropriate as the

Coulomb-excitation cross-section does not change significantly at the present level of energy

loss. The excited particle then decays by γ-ray emission with a time distribution determined
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by the excited-state lifetime. The γ ray is emitted taking into account the Lorentz boost and

γ-ray angular distribution in Coulomb excitation. The simulation then records the energy

deposited in SeGA by the γ ray, as well as the detector and segment the energy was deposited

in. The simulated γ-ray data were then sorted into spectra using the same algorithm as the

actual data. The angle of the segment registering the highest energy deposit was taken to

calculate the angle used for Doppler reconstruction.

The simulations were tuned so that the outgoing beam parameters of the simulation

reproduced those measured in the experiment, as shown in Figure 4.18.

For each case of 58,60,62Cr, several scattering angle cuts were made and different simulations

were performed to take into account the different angular distributions calculated for the

different impact parameter ranges. The angular distributions for 58Cr + 197Au Coulomb

excitation for different scattering angle cuts are shown in Figures 4.19 and 4.20 with an

isotropic distribution for comparison. Figure 4.19 shows the angular distributions for the

547-keV 7/2+ → 3/2+ deexcitation originating from the Coulomb excited 197Au target.

Figure 4.20 shows the Lorentz-boosted Coulomb-excitation angular distribution of the

881-keV 2+ → 0+ transition resulting from Coulomb excitation of 58Cr nuclei by 197Au

target.

4.2.2.1 Fits of Lab-frame Spectra

In addition to simulating the in-beam peak shapes of γ-ray transitions from the chromium,

the 197Au 547-keV 7/2+ →3/2+ transition from Coulomb excitation of the target was

simulated, as well as the 511-, 583-, 609-, 1173-, 1332-, and 1460-keV background peaks.

To take into account the background present in the spectrum and fit the 197Au peak, the

78



ata (rad) bta (rad)

θlab (mrad) β (%)

pparallel (GeV/c) ptotal (GeV/c)

0 40 80

C
o

u
n

ts
/b

in

-0.8

10

50

90

0

10

20

0 0.8

22.25 22.35 22.25 22.35

-0.4 0 0.4

38.1 38.2 38.3

0

10

20

0

10

20

0

40

80

0

40

80

simulation

measured

Figure 4.18: Comparison of simulated and measured parallel and total momentum distribu-
tions, ata, bta, and θlab, and the distribution of β = v/c values for beam particles exiting the
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Figure 4.19: Coulomb-excitation angular distributions calculated for the 547-keV 7/2+ →
3/2+ transition resulting from Coulomb excitation of 197Au target nuclei by 58Cr projectiles,
with a β value of 0.392 for various maximum laboratory scattering angles. An isotropic
distribution is shown for comparison.
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Figure 4.20: Lorentz-boosted Coulomb-excitation angular distributions calculated for the
881-keV 2+ → 0+ transition resulting from Coulomb excitation of 58Cr projectiles by a
197Au target, with a β value of 0.392 for various maximum laboratory scattering angles.
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non-Doppler-corrected spectrum was fitted with a function of the form:

f(Eγ) =
∑
i

pisimi + pAusimAu + pCrsim
β
Cr + a+ bEγ + cE2

γ , (4.10)

where the px are fit scaling parameters, simx are simulated peaks, a, b, and c are parameters.

The subscripts i refer to the specific background peak being simulated in the fit, Au and

Cr are the simulated gold and chromium peaks, respectively, and the β superscript signifies

that the simulation is Doppler-boosted in the laboratory frame. The particular simulations

included in the fit depends on the particular case and the range of the spectrum being fit.

Figure 4.21 shows a fit of γ rays measured in coincidence with 58Cr particles over a range of

Eγ from 500 to 700 keV.

Figure 4.22 shows a different portion of the same spectrum shown in Figure 4.21. In this

case the 58Cr peak is Doppler shifted underneath of the 1173-keV line, complicating the fit.

After Doppler correcting the 58Cr peak, the background lines will be spread out beneath

the Coulomb-excitation peak, contaminating the measurement. To attempt to correct for

this, the background lines which overlap the Doppler-shifted 58Cr peak are fitted and were

included in the fits of the 58Cr peak.

Figure 4.23 shows fits of γ rays measured in coincidence with 60Cr nuclei with scattering

angle less than θmax. Again, the location of the Doppler-shifted 60Cr peak and background

lines overlap.

Figure 4.24 shows γ rays measured in coincidence with 62Cr particles scattered at angles

less than θmax. There is no 547-keV line in the spectrum because a 209Bi target was used

instead of the 197Au target. In this case the 62Cr peak is Doppler shifted under the 583- and

609-keV peaks.
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Figure 4.21: Fits of the γ-ray spectra measured in coincidence with 58Cr particles with
scattering angle less than θmax. Data is shown in black and the fit is the blue curve. A
quadratic background is shown as a dashed line. The 511-, 583-, and 609-keV background
lines discussed in Section 4.1.4 and Figure 4.10 are included in the fit along with the 547-keV
γ ray from Coulomb excitation of the gold target.
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background is shown as a dashed line. The 1173-, 1332-, 1460-keV background lines discussed
in Section 4.1.4 and Figure 4.9 are included in the fit along with the Doppler shifted 58Cr

peak, labeled sim
β
Cr, is visible as the broad structure under the 1173-keV background peak in

the 37◦ ring.

84



Energy (keV)
450 550 650

C
o

u
n

ts
/4

 k
e

V

40

60

20

10

30

50 37° ring

90° ring

750

sim
v/c=0

v/c=0

β
Cr

Figure 4.23: Fits of the γ-ray spectra measured in coincidence with 60Cr particles with
scattering angles less than θmax. Data is shown in black and the fit is in blue. A quadratic
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Figure 4.24: Fits of the γ-ray spectra measured in coincidence with 62Cr particles with
scattering angles less than θmax. Data is shown in black and the fit is in blue. A quadratic
background is shown as a dashed line. The 511-, 583-, and 609-keV background lines discussed
in Section 4.1.4 and Figure 4.10 are included in the fit along with the Doppler shifted 62Cr
peak is visible as the broad structure under the 583- and 609-keV peaks.
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4.2.2.2 Fits of Projectile-frame Spectra

Once the non-Doppler-corrected spectra were fit, the Doppler-corrected spectra could be fit

using the function

f(Eγ) =
∑
i

pisim
0
i + pCrsimCr + ae−b(Eγ−c) + de−e(Eγ−f), (4.11)

where the px are fit scaling parameters, simx are simulated peaks, a, b, c, d, e, and f are

parameters used to fit a double exponential for the background. The subscripts i refer to the

specific background peak being simulated in the fit, Cr is the simulated chromium peak, and

the 0 superscript signifies that the simulation of background lines that were at rest in the

lab frame, but have been Doppler corrected. The particular simulations included in the fit

depends on the particular case and the range of the spectrum being fit. The scale factors of

the background peaks that were fit in the rest frame were fixed to the same values for the

fits in the projectile frame.

Figures 4.25, 4.26, and 4.27 show Doppler-corrected γ-ray spectra detected in coincidence

with 58,60,62Cr particles with scattering angles less than θmax, along with the fit of the

simulations to the data.

Results from the fits will be presented in Section 4.3 below.
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Figure 4.25: Doppler-corrected γ-ray spectra detected in coincidence with 58Cr particles with
scattering angles less than θmax. The measured spectrum is shown in black and the fit is
drawn in blue. Also visible are the Doppler-corrected background lines from the lab frame.
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Figure 4.26: Doppler-corrected γ-ray spectra detected in coincidence with 60Cr particles with
scattering angles less than θmax. The measured spectrum is shown in black and the fit is
drawn in blue. Also visible are the Doppler-corrected background lines from the lab frame.
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Figure 4.27: Doppler-corrected γ-ray spectra detected in coincidence with 62Cr particles with
scattering angles less than θmax. The measured spectrum is shown in black and the fit is
drawn in blue. Also visible are the Doppler-corrected background lines from the lab frame.
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4.3 Results and Discussion

4.3.1 Cross Sections

The measured Coulomb-excitation cross section is

σCoulex =
Nγ

NbeamNtargetε
. (4.12)

where Nγ is the number of γ rays in the Coulomb-excitation peak, Nbeam is the number

of beam particles, Ntarget is the number of target atoms per unit area, and ε is the γ-ray

detection efficiency. Ntarget is

Ntarget =
ρNA

A
, (4.13)

where ρ is the density of the target in g/cm2, NA is Avagadro’s number (NA = 6.022× 1023

particles/mole) and A is the atomic mass of the target in g/mole.

Nbeam is the number of beam particles of the desired species passing through the target.

This number is taken from the S800 trigger register, which counts the number of times the

data acquisition is triggered, Ntrigger. This number needs to be corrected for the livetime of

the data acquisition system for detecting singles, LTsingles, efficiency of the particle detectors,

and downscaler, DS. When a particle triggers the system, it takes some time for the detector

and data acquisition process the signal and recover. This creates a deadtime in the system

during which another particle will not be detected. The singles livetime is found by dividing

the number of total S800 triggers for all particles by the S800 scaler, which is not affected by

the deadtime. The downscaler is applied to the data acquisition to reduce the number of

S800 singles events recorded by the factor DS, while all coincidences are taken. The data

acquisition was triggered whenever a downscaled S800 single or a particle-γ coincidence
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occurred. The efficiency of the object scintillator and CRDCs were >99.9% relative to the

ion chamber, which is assumed to be 100% efficient. With these considerations, Nbeam is

Nbeam =
NtriggerDS

LTsingles
. (4.14)

Nγ is the number of γ rays in the Coulomb-excitation peak. This number needs to be

corrected for the efficiency of the γ-ray detection and the livetime for detecting a particle and

a γ ray in coincidence, LTcoinc. The coincidence livetime is calculated in a similar manner to

the singles livetime: the S800 coincidence trigger is divided by the coincidence scaler. Taking

in these factors, the number of Coulomb-excitation γ rays, NCoulex is

NCoulex =
Nγ

εLTcoinc
, (4.15)

where ε is the efficiency of SeGA at the γ-ray energy of interest and is discussed in Section

4.1.3.2.

NCoulex can also be determined from the scale factors from the fits of simulations to data.

The scale factors pCr and pAu from the fits presented in Section 4.2 were used to extract

NCoulex:

NCoulex =
pxNsim

LTcoinc
, (4.16)

where x is either ‘Cr’ or ‘Au’, Nsim is the number of simulated events.

There were several advantages to using the simulation approach including the ability to

account for the excited-state lifetime, γ-ray angular distribution, and γ-ray attenuation in

the target and surrounding infrastructure. The effects of the excited-state lifetime on the

γ-ray spectrum are discussed in Section 4.3.2.2.
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Projectile Target LTsingles/coinc DS px Ntarget Nbeam

58Cr 197Au 0.998/0.972 100 0.0158(15) 7.7× 1020 1.2× 108

60Cr 197Au 0.998/0.972 100 0.0113(77) 7.7× 1020 7.0× 107

62Cr 209Bi 0.999/0.983 100 0.00613(48) 7.0× 1020 2.6× 107

Table 4.5: Quantities used to calculate experimental cross-sections. px are the scale factors
for simulations with 1000000 events fit to spectra with safe-angle cuts applied.

The Coulomb-excitation cross sections as a function of θmax are presented in Figures

4.28, 4.29, 4.30, 4.31 and 4.32 below. The uncertainties in the cross sections are statistical

uncertainties involved in counting the beam particles, dimensions of the targets, simulation

efficiency, uncertainty in the source activity, and uncertainty in the scaling parameter from

the fit.

As a function of θmax, the cross section increases essentially linearly, as shown in Figure

4.33, and should be independent of the SeGA ring; however, in each case, one of the rings

was not able to be used. This will be discussed further in Section 4.3.2.

4.3.2 B(E2) Values and |Mn/Mp| Values

4.3.2.1 B(E2) values from Coulomb excitation

B(E2) values were calculated from the cross sections presented in Section 4.3.1 using Equation

2.21, which is implemented in the Mathematica program described in [41]. The B(E2) values

calculated as a function of θmax are presented in Figures 4.34, 4.35, 4.36, 4.37, and 4.38.

The B(E2) values should be independent of the SeGA ring and θmax, until θmax = θsafe
max.

However, it was observed that, except for the case of the gold target excited by 58Cr, one ring

in each case could not be used. This was due to background contamination from either the
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Figure 4.28: Cross sections versus θlab
max for Coulomb excitation of the 7/2+ state of the 197Au

target by the 58Cr beam. θlab
max for safe Coulomb excitation was 42.15 mrad in this case.
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Figure 4.29: Cross sections versus θlab
max for Coulomb excitation of the 7/2+ state of the 197Au

target by the 60Cr beam. θlab
max for safe Coulomb excitation was 40.59 mrad in this case.
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Figure 4.30: Cross sections versus θlab
max for Coulomb excitation of the 2+ state of the 58Cr

beam by the 197Au target. θlab
max for safe Coulomb excitation was 42.15 mrad in this case.
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Figure 4.31: Cross sections versus θlab
max for Coulomb excitation of the 2+ state of the 60Cr

beam by the 197Au target. θlab
max for safe Coulomb excitation was 40.59 mrad in this case.
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Figure 4.32: Cross sections versus θlab
max for Coulomb excitation of the 2+ state of the 62Cr

beam by the 209Bi target. θlab
max for safe Coulomb excitation was 41.74 mrad in this case.
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Figure 4.33: Integrated Coulomb-excitation cross section per unit B(E2) versus θmax calcu-
lated for 58Cr. Between 20 and 50 mrad the behavior is essentially linear.

Doppler-shifted Coulomb excitation peak or the Doppler-corrected room or beam-induced

background. This contamination can be seen in Figures 4.25, 4.26 4.22, 4.23, and 4.24. In

an attempt to account for these background lines, they were simulated and included in the

fits of the in-beam spectra, using the scale factors obtained from the fits of the lab-frame

spectra; however, this was unsuccessful. For the case of 62Cr, the effect of the background on

the spectra was minimized because the target offset for Doppler reconstruction needed to be

taken to be further downstream due to the longer lifetime of the excited state. This caused

the corrected background lines to form smoother bumps that are more manageable to the fits

instead of the jagged ones corresponding to each SeGA slice that are present in the 58,60Cr

cases. In the case of 62Cr, the low level of statistics in the peak of the 90◦ ring prevented

reliable fits of the data. Figure 4.39 shows the poor statistics at small scattering-angle cuts.
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Figure 4.34: B(E2; 3/2+ → 7/2+) values versus θlab
max for Coulomb excitation of the 197Au

target by the 58Cr beam. θlab
max for safe Coulomb excitation was 42.15 mrad in this case.
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Figure 4.35: B(E2; 3/2+ → 7/2+) values versus θlab
max for Coulomb excitation of the 197Au

target by the 60Cr beam. θlab
max for safe Coulomb excitation was 40.59 mrad in this case.
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Figure 4.36: B(E2; 0+ → 2+) values versus θlab
max for Coulomb excitation of the 58Cr beam

by the 197Au target. θlab
max for safe Coulomb excitation was 42.15 mrad in this case.
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Figure 4.37: B(E2; 0+ → 2+) values versus θlab
max for Coulomb excitation of the 60Cr beam

by the 197Au target. θlab
max for safe Coulomb excitation was 40.59 mrad in this case.
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Figure 4.38: B(E2; 0+ → 2+) values versus θlab
max for Coulomb excitation of the 62Cr beam

by the 209Bi target. θlab
max for safe Coulomb excitation was 41.74 mrad in this case.
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Figure 4.39: The 90◦ ring in the 62Cr measurement suffered from poor statistics at small
scattering-angle cuts. Data from this ring was not used.
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Beam B(E2; 0+
1 → 2+

1 ) B(E2; 3/2+
1 → 7/2+

1 ) |Mn/Mp|

(e2fm4) (e2fm4) (N/Z)

Cr 197Au

58Cr 860(125) 4002(610)

990(280) [78] 4494(410) [89]

60Cr 1105(145) 3678(910) 0.87(19)

4494(410) [89]

62Cr 1625(220) 0.89(17)

1605+302
−246

a

aFrom the lifetime deduced from the lineshape analysis and with the adopted value of
E(2+)=446(1) keV [90] (see Section 4.3.2.2).

Table 4.6: Measured B(E2) values for projectile and target excitations and |Mn/Mp| ratios
relative to N/Z.

For the reasons described above, only the 37◦ ring was used for 58,62Cr and only the 90◦

ring was used for 60Cr. The results of the Coulomb excitation are presented in Table 4.6.

4.3.2.2 62Cr Lineshape Analysis

The shape of the 62Cr peak exhibits a pronounced tail on the low-energy side. The tail is

caused by the long lifetime, τ , of the excited state. The excited beam particle will decay at

some point downstream of where it became excited. If the lifetime is long enough, the particle

will travel far enough downstream before it decays to affect the Doppler reconstruction of

the γ-ray peak. For example, a particle with velocity 0.3c will travel ∼ 1 cm in 100 ps.

The Doppler reconstruction calculates the angle of emission of the γ ray from the center of

the target and segment that registered the largest energy deposit. If the γ ray is emitted

106



downstream of the target, the actual angle of emission is larger. As a result, the γ-ray energy

is underestimated in the Doppler reconstruction, which is visible as a low energy tail like

the one seen in Figure 4.15. To exploit this effect and determine the excited-state lifetime, a

series of simulations were performed with excited-state lifetimes varying from 70 to 250 ps.

The resulting peakshapes were then fit to the measured spectrum using a χ2 minimization.

The resulting best-fit lifetime is shown in Figure 4.40, along with the χ2 as a function of the

simulated level lifetime. The lifetime was determined to be 144+27
−22ps. The lifetime of the

excited state is related to the B(E2) value by

B(E2; ↓) =
816

E5
γτ
e2fm4MeV5ps, (4.17)

resulting in a B(E2; ↑) value of 1605+302
−246 e

2fm4, in agreement with the cross section method

(See Table 4.6). This lifetime result lends confidence to the cross section result since consistent

B(E2) values were obtained using different methods.

4.3.3 Comparison with Theory and Conclusions

The B(E2) values determined in this work are plotted versus neutron number in Figure 4.41

along with B(E2) and E(2+
1 ) values for even-even Ni, Fe and Cr isotopes. At N = 28, all

isotopes display the large E(2+
1 ) energy and the small transition probability characteristics of

a shell closure in even-even nuclei. However, only Ni, with a full π0f7/2 orbital, shows these

indicators at N = 40. The decreasing energy values and increasing transition probabilities in

the Fe and Cr chains are taken as direct experimental evidence for the onset of collectivity in

the region below 68Ni.

Shell-model calculations were performed using the LNPS shell model effective interaction
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Figure 4.40: Event-by-event Doppler corrected γ-ray spectrum measured in coincidence with
62Cr particles. The low-energy tail is apparent. Overlaid in blue is a fit of the simulated
γ-ray response of SeGA for an excited-state lifetime of 144 ps. The background used in the
fit is shown as a dashed line. The inset shows the reduced χ2 of the fit as a function of
simulated excited-state lifetime (see text for details).
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in a model-space consisting of the full fp shell for protons and the 1p3/2, 1p1/2, 0f5/2, 0g9/2,

and 1d5/2 orbitals for neutrons [40]. For comparison, two additional sets of calculations

were carried out using the well-established GXPF1A effective interaction [22, 23] and LNPS

restricted to the fp shell for both protons and neutrons. The results with the GXPF1A and

restricted LNPS, hereafter denoted LNPS-fp, calculations were found to be nearly identical.

In order to provide a consistent comparison between the fp and fpg9/2d5/2 valence spaces,

we will refer to the LNPS-fp and LNPS interactions in the following.

The calculations are confronted with the experimental B(E2; 0+ → 2+) values in Figure

4.42. The B(E2) probabilities for 58,60,62Cr in Figure 4.42(a) originate from this work and

those quoted for 62,64,66Fe (Figure 4.42(b)) were taken from Reference [76]. The trend of the

theoretical B(E2) values calculated using the LNPS amplitudes with the standard effective

charges, ep = 1.5, en = 0.5, correspond to the dashed line with open circles in Figure 4.42(a).

They agree with the trend exhibited by the Cr data, but the magnitude is over-predicted by

40-50%. For the iron data, the LNPS calculations with standard effective charges (dashed line

with open circles in Figure 4.42(b)) agree at N = 38, but again over-predict the B(E2) values

at N = 36 and N = 40. Using slightly reduced effective charges of ep = 1.4 and en = 0.4

improves the overall agreement for both isotopic chains, although the calculations fail to

describe the enhancement at N = 38 in the evolution of the B(E2) values in the Fe chain. At

the time of this experiment and data analysis, the B(E2) value of the key nucleus 64Cr was

not known, but with these modified effective charges, the B(E2) value of 64Cr was predicted

to be B(E2; 0+ → 2+)=1770 e2fm4. This prediction was recently confirmed by Crawford et

al. via intermediate-energy Coulomb excitation [37]. As expected, a clear difference can be

seen between the LNPS-fp and LNPS results. With increasing neutron number, excitations

across the N = 40 gap become increasingly important. These excitations account for the
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onset of collectivity observed above N = 36 in the Cr isotopes, with large, nearly identical

B(E2) values predicted for 62Cr and 64Cr. In contrast, the LNPS-fp calculations follow the

opposite trend, with B(E2) values declining with increasing neutron number, reflecting the

absence of the crucial ν0g9/2 and ν1d5/2 orbitals from the model space.

In the cases of 60,62Cr, where data on (p, p′) scattering were available from experiments

at RIKEN [79], |Mn/Mp|/(N/Z) ratios were calculated following the method of Riley et al.

[93], which is described in Section 1.3.2. The resulting |Mn/Mp| ratios are presented in Table

4.6 The |Mn/Mp|/(N/Z) values for 60,62Cr are also compared with the calculations in Figure

4.42(c).

The measured |Mn/Mp| values for both are around 0.9 (N/Z), indicating that the low-lying

excitations follow the simple picture of protons and neutrons having the same deformation

lengths with only a slight proton dominance relative to the simple hydrodynamical limit of

N/Z. The LNPS calculations in the fpgd space are consistent with these extracted ratios.

In contrast, the LNPS-fp calculations predict a decreasing ratio towards N = 40, reflecting

the occurrence of an N = 40 shell gap and highlighting again the inadequacy of the limited

neutron model space in this Hamiltonian. All these observations are consistent with previous

work that has demonstrated that the fp model-space alone is inadequate to fully describe

the low-lying structure in Cr isotopes heavier than 58Cr because of the ever increasing role of

the 0g9/2 and 1d5/2 neutron orbitals [69, 77, 74, 81, 94]. In the LNPS effective interaction,

the probability of neutron excitations to the ν0g9/2 and ν1d5/2 orbitals increases, going from

2p− 2h excitations in 60Cr to configurations dominated by 4p− 4h excitations in 64Cr, with

sizable contributions of 6p− 6h [40].

Effective charges enter sensitively in the calculation of the theoretical transition strengths

since B(E2) = (epAp + enAn)2/(2Ji + 1), where Ap and An are the proton and neutron
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Figure 4.42: Comparison of measured B(E2) transition strengths for Cr (a) and Fe isotopes
(b), and ratios of |Mn/Mp| relative to N/Z (c) with shell-model calculations. Shell-model
calculations were performed using the LNPS [40] effective interaction in both the full model-
space, which included the 0g9/2 and 1d5/2 orbitals for neutrons, (labeled LNPS), and a

model-space limited to the pf shell only (labeled LNPS-fp). The different choices of effective
charges are indicated (see text for details). The experimental B(E2) value for 64Cr is from
[37].

112



shell-model amplitudes. The choices for ep and en assumed for the discussion above are

isoscalar and taken as constant across the isotopic chain. Effective charges compensate for

missing excitations outside of the restricted shell model space and it is not clear that the

assumption of constant effective charges is valid throughout the entire model space. Bohr and

Mottelson proposed N - and Z-dependent (isovector) effective E2 polarization charges that

approximate the coupling to quadrupole modes outside of the model spaces of the effective

interactions [24, 95]. In the following, we use the Bohr-Mottelson (BM) formulation of the

effective charges for the B(E2) ∼M2
p values as well as for the ratio of the proton and neutron

transition matrix elements: Mp = Ap(1 + δep) + Anδen and Mn = An(1 + δe′n) + Apδe
′
p,

δep/n and δe′
p/n

are the polarization charges following Bohr and Mottelson (a = 1, b = −0.32,

c = 0.32 and d = −0.65) :

δen/p = a
Z

A
± c+ αI [b

N − Z
A

± dZ
A

N − Z
A

] (4.18)

δe′p/n = a
N

A
± c− αI [b

N − Z
A

± dN
A

N − Z
A

]. (4.19)

These expressions use an additional parameter, αI , that scales the (N − Z)-dependent

part so that αI = 1 gives the full BM values and αI = 0, c = 0 reduces it to the isoscalar

part. Figure 4.42 shows the B(E2) values and |Mn/Mp| ratios calculated from the shell

model using the BM effective charges for αI = 1 and αI = 0, c = 0. The calculations

with the isovector BMαI=1 polarization charges reproduce the Cr B(E2) values within the

experimental uncertainties with only small differences at N = 34 and 36 with respect to the

isoscalar, αI = 0, c = 0, case. For the Fe isotopes, the differences between αI = 0, c = 0 and

αI = 1 are even smaller and the results closely follow the calculations with constant effective

charges (ep, en) = (1.4, 0.4). Significant differences become apparent for the |Mn/Mp| ratios

113



where the isoscalar and isovector BM polarization charges lead to differences of 15% for

58Cr, where proton scattering data are unfortunately not available to deduce this quantity

from experiment. While the differences between (ep, en) = (1.4, 0.4), BMαI=1 and BMαI=0

are very small for the B(E2) values, |Mn/Mp| reveals significant potential to discriminate

between the three different choices, with 58Cr being most sensitive to the isovector part of the

BM formulation and (ep, en) = (1.4, 0.4) values resulting consistently in significantly lower

ratios across the isotopic chain.

As a next step we try to constrain the effective charges more microscopically and start

with the δep/n values proposed from dedicated shell-model studies [27, 96] and evolve them

as a function of (N − Z) using the BM presctiption. Dufour and Zuker (DZ) [27] obtain

(ep, en) = (1.31, 0.46) in agreement with (1.36(5),0.45(5)) deduced for the USD Hamiltonians

[96]. Assuming that these values are good starting points at N ∼ Z, we replace aZ/A± c

and aN/A± c by constants so that δep = δe′n = 0.31 and δen = δe′p = 0.46 at N = Z. With

this strategy and αI = 0.8 in Eq.(1) and (2) and b and d from BM, the Cr and Fe B(E2)

values as well as the available |Mn/Mp| ratios are described well. They are labeled LNPS

(DZ-BM) in Figure 4.42. The same calculation performed using the USD effective charges as

N = Z starting points, instead of DZ gives results that agree within 5% or less with DZ (not

shown). Again, although the B(E2) values differ very little within the different scenarios

discussed here for the effective charges, the |Mn/Mp| ratios emerge as a quantity that can

discriminate between the various approaches. In any event, the LNPS shell-model calculations

of the B(E2) values are very robust and rather consistently predict B(E2; 0+ → 2+) ∼ 1600

e2fm4 for the N = 40 key nucleus 64Cr within 10%. Since the publication of [64], the B(E2)

value for 64Cr has been measured [37] and the B(E2; 0+ → 2+) value of 1561(396) e2fm4 is

consistent with the calculations presented here.

114



In summary, intermediate-energy Coulomb excitation of 58,60,62Cr was performed and

B(E2; 0+ → 2+) values were deduced from the measured cross sections. For 62Cr, the B(E2)

excitation probability was also determined independently from a lifetime measurement that

used a γ-ray line-shape analysis. Large-scale shell-model calculations with the LNPS effective

interaction in a model space that includes the 0g9/2 and 1d5/2 orbitals for neutrons describe

the trend of the data, but overestimate the magnitude of the quadrupole transition strengths

when using the standard effective charges. Different choices of modified effective charges have

been used to describe the onset of collectivity in the chromium isotopes approaching N = 40,

with the robust prediction emerging for the B(E2; 0+ → 2+) value for the important nucleus

64Cr having been confirmed in [37]. Non-standard sets of effective charges were shown to

provide an improved description of the known B(E2) values in the Fe nuclei. The ratio of the

neutron and proton transition matrix elements |Mn/Mp|, that can be deduced from combined

proton scattering and Coulomb excitation data, reveals the potential to discriminate between

different sets of effective charges in this model space.
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Chapter 5

γ-ray Spectroscopy of 63Mn

The magic numbers for protons and neutrons - well-known near stability - have been observed

to change in the exotic regime [13, 65]. One driving force behind this evolution is the

proton-neutron tensor interaction [38]. In the region below 68Ni, the N=40 subshell gap

has been of particular interest. An N=40 gap was suggested based on the large 2+ energy

and small B(E2) value of 68Ni [36]; however, removing protons from 68Ni quickly reveals

collectivity in the iron and chromium isotopes [37, 64, 76].

Between iron and chromium lie the (Z = 25) manganese isotopes. The neutron-rich,

odd-even isotopes 59,61,63Mn were studied via multi-nucleon transfer by Valiente-Dobón et al.

[97] and 61Mn via β decay by Crawford et al. [98]. Aside from the 7/2− → 5/2− transition

to the ground state, relatively little is known about the structure of 63Mn. A handful of

unplaced transitions were seen in β decay by Gaudefroy et al. [99], but poor statistics and

a large branching ratio directly to the ground state prevented the construction of a level

scheme. Various shell-model calculations using the GXPF1A [22, 23] and fpg [36] effective

interactions reproduce the energy of the 7/2− state in 63Mn to a reasonable degree, for

example, in [97, 98]. Beyond this, there are larger differences in the level densities below 1

MeV, particularly in [98]. Experimental information on the transition probabilities in 63Mn

has not been available to this point. The results on the in-beam γ-ray spectroscopy of 63Mn

reported on here, combined with state-of-the-art shell-model calculations [40], provide further
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evidence for the influence of the 0g9/2 and 1d5/2 neutron orbitals in this region.

5.1 Experiment

The beam production and experimental setup for the spectroscopy of 63Mn was identical

to the setup for the Coulomb excitation of 58,60,62Cr described in Chapters and , so only a

brief description will be given here. A primary beam of 76Ge was accelerated at the NSCL

Coupled Cyclotron Facility [47] to induce projectile fragmentation at 130 MeV/nucleon on

a 493-mg/cm2Be target. The resulting cocktail beam was purified in the A1900 fragment

separator [48] with a 240-mg/cm2 Al wedge to produce a secondary beam containing 63Mn.

The secondary beam was delivered to a 370-mg/cm2 9Be target located at the target position

of the S800 magnetic spectrograph [57] with an energy of 84 MeV/nucleon and a momentum

acceptance of 2.5%.

Surrounding the target was the Segmented Germanium Array (SeGA) [62] in the “classic”

configuration of 17 32-fold segmented high-purity germanium detectors for detecting γ rays.

10 detectors were mounted in a ring at 90◦ relative to the beam axis and in the plane of

the target. The remaining 7 detectors were mounted in a ring at 37◦ relative to the beam

axis as shown in Figure 3.7. After passing through the target, the projectile-like reaction

residues continued into the S800 focal plane [60] where they were identified and tracked on

an event-by-event basis. The S800 was set to accept inelastically scattered reaction residues,

but contributions to 63Mn due to knockout from other components of the cocktail beam

could not be excluded. This was due to lack of an incoming particle identification and strong

contamination from 65Fe that could produce 63Mn within the acceptance of the spectrograph.

More detailed descriptions of the beam production and experimental equipment can be found
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Figure 5.1: Particle identification matrix for the setting used for the γ-ray spectroscopy of
63Mn.

in Chapter .

5.2 Data Analysis

Since the setup of this experiment was the same as the Coulomb-excitation of 58,60,62Cr, the

calibration and correction procedures for this experiment was also the same as described in

Chapter . The particle-identification matrix for 63Mn is shown in Figure 5.1. The time-of-

flight is taken between the object and E1 scintillators and the energy loss is measured with

the S800 ionization chamber.

An event-by-event Doppler correction was performed on the γ-ray data. The Doppler-

corrected γ-ray spectrum is shown in Figure 5.2. Prominent in the spectrum are two γ-ray

transitions, one at 248 keV and another at 635 keV, and a weaker transition at 375(5) keV.
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Figure 5.2: Event-by-event Doppler-reconstructed γ-ray spectrum detected by SeGA in
coincidence with 63Mn particles.

The 248-keV transition was previously attributed to the 7/2− → 5/2−g.s. transition [97]. The

spin and parity assignments for the 5/2− ground state and 7/2− state are based on the

systematics of the lighter Mn isotopes [98, 100, 101] and reinforced by shell-model calculations

(see Figure 5.8). The 635- and 375-keV transitions have not been reported in 63Mn before.

γ rays detected within a certain time interval (in this case 600 ns) are said to be in

coincidence with one another. Coincident γ rays were stored in a two-dimensional coincidence

matrix. Software gates were then placed around peaks in the projection of the coincidence

matrix as shown in Figure 5.3. Background gates were placed in a peak-free region of the

spectrum on the high-energy side of each peak to avoid the Compton background of the

peaks.
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Figure 5.3: Projection of the two-dimensional γ − γ coincidence matrix used to identify
coincidences in the 63Mn spectrum. The software gates are indicated.
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Figure 5.4: γ − γ coincidence spectra detected in SeGA in coincidence with 63Mn particles
in the S800 focal plane. The top panel is gated on the 635-keV transition, and the bottom
panel is gated on the 248-keV transition.
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Figure 5.5: γ rays detected in GRETINA in coincidence with 63Mn particles in the S800 focal
plane (a), the projection of the coincidence matrix (b), with gate on the 635- and 248-keV
transitions (c) and (d), respectively.

The spectra resulting from the γ − γ coincidence gating are shown in Figure 5.4. In the

spectrum resulting from the gate on the 248-keV transition, the 635-keV transition is evident

and vice versa. This is evidence that the transitions are in coincidence. Since the 248-keV

transition is known to proceed to the ground state, the 635-keV transition is placed on top

of the 248-keV level and given a tentative spin-parity assignment of 9/2−. The spin-parity

assignment is made based on analogy to the level schemes of the lighter Mn isotopes from

[97], which are reproduced in Figure 5.8. Also visible in each of the gated spectra is the

375-keV transition, suggesting that this transition feeds the 635-keV transition.

As further confirmation of the coincidence, 63Mn was also produced in a separate ex-
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periment via one-neutron knockout from 64Mn. De-excitation γ rays were detected in the

GRETINA array [102], and the same two transitions were observed and found to be in

coincidence (see Figure 5.5).

5.2.1 Excited-state Lifetime Effects

Figure 5.6 shows the effect of the excited-state lifetimes of the 9/2− and 7/2− states on

the γ-ray spectrum. Both the top and bottom panel in Figure 5.6 show event-by-event

Doppler-corrected γ-ray spectra measured in coincidence with 63Mn for the 90◦ and 37◦ rings

of SeGA. In the top panel β=0.340 was used for the event-by-event Doppler reconstruction

and in the bottom panel β = 0.364 was used. Two lifetime effects are apparent: the 248- and

635-keV peaks are aligned for different β values, and the resolution of the 635-keV peak is

broad.

The projectile nucleus loses energy continuously as it traverses the target, as described by

the Bethe equation (Equation 3.4). If an excited-state lifetime is short enough for the decay

to predominantly occur within the target, the γ-ray peak resolution will be dominated by

the ∆β term of Equation 3.8. With a thick target, the uncertainty in β is large because the

range in β is anything from the β value it had when entering the target to the β value it has

upon exiting the target after maximum energy loss. The result is a broader γ-ray line shape

like the one seen for the 635-keV transition in Figure 5.6.

In the case where an excited-state lifetime exceeds the time it takes the projectile to

traverse the target, the uncertainty in β will be less than the short-lifetime case, as the

nucleus decays predominantly behind the target, and will be limited to the incoming energy

distribution convoluted with the velocity straggling in the target. This results in a sharper

peak as seen at 248 keV in Figure 5.6.
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Figure 5.6: 63Mn γ-ray spectra for the two rings of SeGA. In the top panel, β=0.340 was used
for the event-by-event Doppler reconstruction of the γ rays emitted in flight with v/c = 0.340,
while in the bottom panel β = 0.364 was used. The positions of the peaks in each ring relative
to the other is different in each case, illustrating an effect of the excited-state lifetime.
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Jπi → Jπf Eγ (keV) τ37◦ (ps) τ90◦ (ps) τ (ps)

7/2− → 5/2− 248 9.7+0.7
−0.7 10.9+1.7

−1.4 10(2)

9/2− → 7/2− 635 < 3 < 3 < 3

Table 5.1: Results from the simulations of excited-state lifetimes for the two transitions in
the 63Mn spectrum.

Another lifetime-related effect is the position of the peaks in the spectrum. The short-lived

states will decay on average when the projectile is moving faster, so a larger β value is needed

to align the two rings of SeGA, while the longer-lived state will decay after the projectile has

lost more energy in the target. This is demonstrated in Figure 5.6. The β value required to

align the 635-keV peaks is larger than the β value needed to align the 248-keV peaks.

These effects can be exploited to determine the excited-state lifetimes for the two states in

the spectrum. The simulation described in Section 4.2 was used to simulate the peak shapes

of the two transitions. The excited-state lifetimes for both states were varied independently

and fit to the data in a χ2-minimization procedure separately for each ring. The χ2 as a

function of simulated lifetime was then fit to determine the lifetime that minimized the χ2.

The best-fit simulations and χ2 versus lifetime are shown in Figure 5.7, and the results are

summarized in Table 5.1.

5.3 Results and Discussion

The observation of a coincidence between the 635-keV and 248-keV transitions leads to

the level scheme proposed in Figure 5.8. For comparison, the level schemes proposed for

59,61Mn by Valiente-Dobón et al. in [97] are reproduced in Figure 5.8 as well. All spin-parity

assignments in Figure 5.8 are tentative and based on systematics of the lighter Mn isotopes,
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Figure 5.7: Fits of simulated γ-ray transitions to measured γ-ray spectra used to determine
the excited state lifetimes of the 248- and 635-keV transitions in 63Mn. Inset are the fits of
χ2 versus simulated lifetime used to find the best-fit lifetime.
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Figure 5.8: Comparison of proposed level schemes for 59,61,63Mn for levels below 1.5 MeV.
The level schemes for 59,61Mn are taken from [97]. Spin-parity assignments are tentative,
based on systematics and shell-model calculations.
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as well as shell-model calculations. The similarities in structure between the isotopes are

obvious. In each case there is a 7/2− state at low energy, then a larger gap to a 9/2− state,

and in the cases of 59,61Mn an 11/2− state above that. In 59Mn a 15/2− state is suggested

at nearly 3 MeV in [97] but is not shown in Figure 5.8.

The 375-keV transition is not placed in the level scheme. Based on the γ − γ coincidence

analysis, the 375-keV transition could be placed on top of the 635-keV transition, and

comparison with the lighter odd-even Mn isotopes would tentatively suggest an 11/2−

assignment. However, the β value needed to align the 375-keV peak in the rings of SeGA

in Doppler reconstruction implies that the lifetime of this state is short - similar to the

lifetime of the 9/2− state that decays via the 635-keV transition. Given the low energy of

the transition, if the spin of this state were 11/2, one would expect a longer lifetime due to

the energy denominator in Equation 1.24. An E1 multipolarity could be suggested due to

the short lifetime, but this would require the 375-keV transition depopulate a positive parity

state, 11/2+, 9/2+ or 7/2+. The shell-model calculations discussed here are of limited use in

this case, as they are limited to negative-parity states with J ≤ 9/2. Given the similarity

of the (fast) lifetimes and the fact that the 375-keV transition feeds the 635-keV transition

weakly, with an intensity of 37% relative to the 635-keV transition, the feeding has negligible

effect on the determination of the lifetime of the 9/2− state.

The proposed level scheme for 63Mn is compared to shell-model calculations in Figure 5.9.

The spins given are 2J and all states are of negative parity. Only yrast levels up to 9/2− are

shown. Several calculations were performed using different interactions and model /spaces:

The LNPS effective interaction [40] used the full fp shell for protons and the 1p3/2, 1p1/2,

0f5/2, 0g9/2, and 1d5/2 orbitals for neutrons. Hereafter, this model space will be referred to

as the fpgd model space. LNPS-fp is LNPS restricted to the full fp shell for both protons

128



63Mn
0

400

800

1200

E
n

e
rg

y
 (

k
e

V
)

(9)

7

5

LNPS

9

7

5

3

fpg

5

7

3

9

LNPS-fp

9

3

7
5

GXPF1A

5

7

3

9

Figure 5.9: Comparison of the proposed level scheme with shell-model calculations, see
text for details. Only yrast levels up to Jπ = 9/2− are shown. Experimental spin-parity
assignments are tentative and based on systematics of the lighter Mn isotopes and the
shell-model calculations. Spins are given as 2J and all levels shown are of negative parity.
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and neutrons. The fpg model space [36] is the fpgd modelspace without the 1d5/2 neutron

orbital active. Calculations using the well-known GXPF1A effective interaction [22, 23] using

the fp shell for both protons and neutrons were also included for comparison.

It has been shown that the fp model space is not sufficient to describe neutron-rich

fp-shell nuclei in the vicinity of N = 40 [74]. In light of this, the LNPS-fp and GXPF1A

results reproduce the general low-energy structure of 63Mn surprisingly well, while inclusion

of the 0g9/2 orbital, as is done in the fpg effective interaction, brings the 9/2− level down in

energy and closer to the experimental result. Particularly curious is the behavior of the 3/2−

level in the calculations. In the calculations using only the fp model space (i.e. LNPS-fp

and GXPF1A), the 3/2− state sits around 1 MeV. The inclusion of the 1g9/2 neutron orbital

brings the 3/2− state down to 300 keV. The state-of-the-art LNPS interaction, which includes

both the 0g9/2 and 1d5/2 neutron orbitals, brings the 3/2− state back above 1 MeV. A 3/2−

state has not been identified in 63Mn, so no experimental guidance can be given, but in 61Mn,

two states with possible 3/2− assignment were seen above 1 MeV [98]. The structure of the

3/2− state is at present being investigated by one of out theory collaborators (S. M. Lenzi).

In order to compare the data to the calculations in more depth, the transition probabil-

ities were investigated. The 7/2− → 5/2− and 9/2− → 7/2− transitions are both mixed

E2/M1 transitions. Using the experimental energies, shell-model transition probabilities,

and Equations 1.20 and 1.24 from Section 1.1, we can calculate the multipole mixing ratios

and excited-state lifetimes to compare to the lifetimes determined in Section 5.2.1. The

calculated B(E2) values used effective charges of ep = 1.31 and en = 0.46 of [27], and the

B(M1) strengths were calculated using effective g-factors, gsp = 4.189, gsn = −2.869, g`p = 1.1,

g`n = −0.1.

The calculated lifetimes are compared to the experimentally determined ones in Table
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Interaction Jπi → Jπf Exp. Energy B(E2)sm B(M1)sm δ τsm τexp.

(MeV) (e2fm4) (µ2
N ) (ps) (ps)

LNPS [40] 7/2− → 5/2− 0.248(5) 467 0.12 0.13 30 10(2)

9/2− → 7/2− 0.635(5) 321 0.26 0.19 0.8 < 3

fpg [36] 7/2− → 5/2− 0.248(5) 386 0.01 0.34 228 10(2)

9/2− → 7/2− 0.635(5) 54 0.01 0.37 18 < 3

LNPS-fp 7/2− → 5/2− 0.248(5) 22 0.05 0.04 67 10(2)

9/2− → 7/2− 0.635(5) 10 0.02 0.13 13 < 3

Table 5.2: Calculated transition probabilities and excited-state lifetimes using LNPS, fpg, and
LNPS-fp effective interactions. Experimentally determined lifetimes are listed for comparison.

5.2. The LNPS lifetimes give the best agreement with the experiment. For the 7/2− → 5/2−

transition, the LNPS lifetime of 30 ps is not in agreement with the experimental value of

10(2) ps, but is only over-predicted by a factor of 3, rather than the factors of 20 and 7

seen with the fpg and LNPS-fp predictions. For the 7/2− → 5/2− transition, the LNPS

prediction of 0.8 ps is consistent with the upper limit of 3 ps determined experimentally. In

contrast, the fpg and LNPS-fp lifetimes are at least one order of magnitude longer at 18

and 13 ps and are clearly incompatible with the experimental limit.

γ-ray spectroscopy was performed on 63Mn and new transitions at 635 and 375 keV were

observed. The 635-keV transition was placed in the level scheme based on a γ−γ coincidence

analysis. The transition was observed in coincidence with the 248-keV, 7/2− → 5/2−

transition to the ground state and was therefore placed on top of the 7/2− state (see Figure

5.8). The 375-keV transition was not placed in the level scheme. There is, however, evidence

that this transition is fast and in coincidence with both the 248- and 635-keV transitions. The
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tentative spin-parity assignment of 9/2− was made based on analogy to the lighter 59,61Mn

isotopes and shell-model calculations. Simulations were used to determine the lifetimes of

the 7/2− and 9/2− states. Shell-model calculations were performed in the fpgd, fpg, and

fp model spaces, and the shell-model transition probabilities and E2/M1 mixing ratios were

used to calculate theoretical lifetimes for the excited states. Table 5.2 demonstrates the

importance of the ν0g9/2 and ν1d5/2 orbitals in the model space, as the full fpgd calculation

give the best agreement with the experimental lifetimes, as well as good agreement with the

excitation energies (Figure 5.9).
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Chapter 6

Summary and Conclusion

In the preceding chapters several results were presented. Coulomb excitation measurements

aimed at quantifying the collectivity of the neutron-rich chromium isotopes 58,60,62Cr were

performed. These measurements resulted in the first determination of the B(E2; 0+
1 → 2+

1 )

values for 60,62Cr and quantified the trend of increasing quadrupole collectivity in the region

below 68Ni. For 62Cr, a distinct γ-ray lineshape was observed resulting from an excited-state

lifetime of several ten to hundreds of picoseconds. The level lifetime was determined based on

fits of the simulated response of the γ-ray detection system under the experimental conditions.

The B(E2; 0+
1 → 2+

1 ) value deduced from the lifetime was found to be in agreement with

the B(E2; 0+
1 → 2+

1 ) value determined via intermediate-energy Coulomb excitation, lending

further confidence to the result. For 60,62Cr, the ratios of neutron to proton transition matrix

elements, |Mn/Mp|, were determined by combining the B(E2) values from this work with

quadrupole deformation lengths determined via inelastic proton scattering [79].

The experimental results were compared to state-of-the-art shell-model calculations using

the LNPS effective interaction [40]. The LNPS interaction uses the fp model space for

protons and the fpgd model space (1p3/2, 0f5/2, 1p1/2, 0g9/2, and 1d5/2) for neutrons. The

importance of the 0g9/2 and 1d5/2 neutron orbitals in the model space is emphasized by

comparison to calculations in model spaces which do not include these orbitals, such as the

fp model space. As the N = 40 sub-shell gap is weakened in chromium by the removal of
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protons from 68Ni, excitations across the N = 40 sub-shell gap become increasingly important

to the low-lying nuclear structure [40, 74]. Calculations restricted to the fp model space do

not allow any of these excitations, and thus cannot reproduce the experimental data.

Different formulations of the E2 effective charge were explored in the calculations of the

B(E2) and |Mn/Mp| values. The standard values of en = 0.5 and ep = 1.5 over-predicted

the B(E2) values, while the slightly reduced values of en = 0.4 and ep = 1.4 produced better

agreement. Slight variations on the N - and Z-dependent effective charge formulation of Bohr

and Mottleson [24, 95] were also explored. While the particular choice of effective charge had

little impact on the theoretical B(E2) values, the theoretical |Mn/Mp| values showed more

variation, suggesting the possibility of |Mn/Mp| as a way to discriminate among the different

approaches. Independent of the choice of effective charges, the B(E2) values of 62,64Cr were

predicted to be equal by LNPS [64]. The B(E2) value of the key N = 40 nucleus 64Cr was

measured in a later experiment and found to be within 10% of the LNPS prediction [37].

In the γ-ray spectroscopy of 63Mn, two new transitions were observed, along with a known

transition. One of the new transitions was able to be placed in the level scheme, feeding the

first excited state. The data gathered on 63Mn was compared with shell-model calculations

using the LNPS effective interaction in the full fpgd model space as well as in the reduced

fpg and fp model spaces. The lifetimes of the observed transitions were determined using a

simulation of the γ-ray detector array. The experimental transition energies were combined

with the shell model transition probabilities to determine the theoretical lifetimes of the

observed transitions. It was shown that the calculations in the full fpgd model space best

reproduced the experimental lifetimes, again underscoring the importance of the 0g9/2 and

1d5/2 neutron orbitals.

The influence that the 0g9/2 and 1d5/2 neutron orbitals have on these isotopes is interesting
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because they are separated from the pf shell by a harmonic oscillator shell closure, and

therefore are of opposite parity to the pf shell. Excitations across the N = 40 gap become

energetically favorable when the size of the gap is reduced due to the influence of the monopole

component of the proton-neutron tensor force, which simultaneously lowers the 0g9/2 and

1d5/2 neutron orbitals while raising the 0f5/2 neutron orbitals through interactions with

the 0f7/2 proton holes. The 0g9/2 and 1d5/2 orbitals are ∆j = 2 partners belonging to a

quasi-SU(3) symmetry group, which is known to be deformation-driving [103]. For years, the

parallels between the region below 68Ni and the ‘island of inversion’ observed around 31Na

[28] led to predictions that another island of inversion exists around 64Cr [40, 74], and as

rare isotope facilities improve, experimental studies are contributing to our knowledge of this

region.

Interesting information on the nuclear structure in this region will continue to be provided

by experiments probing the single-particle structure of N ≈ 40 nuclei, an example being a

recent experiment conducted at NSCL in which single neutrons were removed from 64,66Fe

and 68Ni in order to quantify the occupancy of the 0g9/2 and 1d5/2 neutron orbitals in these

isotopes [104]. In the future, the limits of the island will be explored as more intense beams

of neutron-rich isotopes will be provided by new facilities such as FRIB [105] and ever more

sensitive detectors such as GRETINA [102].
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APPENDIX
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CAESAR Simulations

The CAESium-iodide ARray (CAESAR) was recently commissioned at NSCL [63]. CAESAR

consists of 192 CsI(Na) scintillating crystals for γ-ray detection and is being used at NSCL

to perform in-beam γ-ray spectroscopy of fast, exotic beams provided by the NSCL’s coupled

cyclotron facility [47]. CAESAR was designed to provide high γ-ray detection efficiency with

moderate energy resolution while utilizing a nearest-neighbor addback routine. Because the

geometry of CAESAR lacks symmetry, a simulation is needed to determine the efficiency of

CAESAR in response to Lorentz-boosted γ rays emitted from nuclei traveling at ∼ 0.4c. A

simulation was developed and tested against the performance of CAESAR using efficiency

and spectral response to radioactive sources as benchmarks before employing the simulation

in analysis of in-beam data [106].

Publications using the simulation to date are [37, 107].
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User’s Guide for CAESAR Simulations

Installation

To use the simulation and sorting code, you will need GEANT41 and ROOT2 installed. The

simulation tarball is available from

https://groups.nscl.msu.edu/gamma/wiki/doku.php?id=computers:computers

extract it in the directory you want to work and compile using the commands

make clean

make

GEANT4 provides a configuration script to set the environment variables.

Running the Simulation

UCCAESAR run.mac

will start UCCAESAR and execute the commands in run.mac. See examples below.

Sorting

The program caesarsort is used to sort the output file into histograms. To compile,

make clean

make

Do caesarsort -h for usage instructions.

Spectrum naming: The naming convention used by caesarsort is as follows.

1http://geant4.web.cern.ch/geant4/
2http://root.cern.ch/drupal/
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• n0 means that each event in that spectrum did not have any neighboring detectors fire.

• n1 means that exactly one of the neighboring detectors fired and add-back was done

into the detector that registered the higher energy of the two.

• n0n1 is n0 and n1 added together.

• ng means that more than two neighboring detectors fired so we don’t know what to do

(g for garbage).

• cal means not doppler corrected

• dop means doppler corrected.

Detector numbering: The most upstream ring is called ring A, most downstream is J.

Within each ring, detectors are numbered starting from 1 with the upper left corner going

clockwise if facing downstream.

Important text files: caesarsort reads these files at runtime. They must be in the

same directory as the executable.

• neighbors.txt has the neighbor relationships between the detectors for addback. Don’t

edit this unless you really want to.

• detectorPositions.txt contains the positions of the detectors in space relative to

the center of the array. This is another file you probably don’t want to edit. This file is

also read by the simulation program to set up the geometry.

• omitDets.txt list in here numbers of the detectors you want left out of your sort. You

might want to do this if you have a flaky channel or two, for example. Use the command

-x to activate.
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• threshParams.txt Model the energy threshold of the CFD for each individual detector.

First column is the mean of a gaussian, second column is FWHM

• widthParams.txt Parametrizes the energy resolution of each CAESAR detector as

aEb

• Doppler.txt Contains the β parameter for the doppler reconstruction.

Example Input Files

The following sections contain example macro files typically used to analyze an experiment.

There are separate inputs for simulation of sources, in-beam experiments, target excitations,

and ion tracking modes.

Source Simulations

Run source simulations to compare simulated and measured efficiency, determine resolution

and threshold parameters.

# set up a simulation of a source

/Experiment/RunSource

/Experiment/Source/Set simple

# gamma-ray energy to simulate

/Experiment/Source/setEnergy 662. keV

# target material and thickness: ’G4_Galactic’ is vacuum, i.e., no target

/Target/Material G4_Galactic

/Target/Thickness 0.1 mm
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# position of target and source emission point

/Target/SetPosition_Z 2.55 cm

/Experiment/Source/setZ 2.55 cm

# filename to save the output and number of gammas to simulate

/Output/Filename Cs137.out

/run/beamOn 1000000

In-beam Simulations

To simulate a γ-ray spectroscopy run, use:

# set up a simulation of an in-beam experiment

/Experiment/Reaction/On

# target material

/Target/Material Au

# thickness of target

/Target/Thickness 332.5 um

# size of target

/Target/X_length 5.0 cm

/Target/Y_length 5.0 cm

# position of target relative to the center of caesar

# positive values are downstream of center

/Target/SetPosition_Z 2.55 cm

# define the beam, this example is 74Ni

/BeamIn/A 74
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/BeamIn/Z 28

# energy (per nucleon) of the incoming beam

/BeamIn/KEu 94.5 MeV

# fractional momentum spread of the incoming beam

/BeamIn/Dpp 0.005

# nucleons removed in the reaction, this is inelastic scattering

/BeamOut/DA 0

/BeamOut/DZ 0

# excited state energy to simulate

/BeamOut/ProjectileExcitation 1024. keV

#excited state lifetime

/BeamOut/tau 0 ps

# angular distribution coefficients for Coulomb excitation

/BeamOut/seta0 1.0

/BeamOut/seta2 0.0

/BeamOut/seta4 0.0

# outgoing beam angular distribution in the dispersive and non-dispersive

/BeamOut/AngDistSigmaA 0.012 rad

/BeamOut/AngDistSigmaB 0.012 rad

# print information about the simulation parameters

/BeamIn/Report

/BeamOut/Report

/Target/Report

/ExpHall/Report
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/CAESAR_Array/Report

# file to save the output

/Output/Filename 74Ni.out

# number of events to simulate

/run/beamOn 1000000

Ion Tracking

Ion tracking mode is useful for checking the beam parameters, such as kinetic energy, transverse

and parallel momentum distributions, velocity, position and angles at several points during

the simulation. To set up the simulations are correct you have to do the following stpdf:

• Make one simulation with the command /IonPrint/Track Set active in the .mac file

(usually commented out) and 2000 particles.

• When you start the simulation make sure to have the output written into a .log file

like this: UCCAESAR test.mac > test.log

• Do a second simulation with the print command commented out: #/IonPrint/Track Set

and use at least 100000 particles

• Sort the last simulation with caesarsort to create a root file

• Start root and Load ions2.C with .L ions2.C.

• Type in the command Do("test.log","real sim.root",A). The first input is the

.log file you created with only 2000 particles, the second input is the sorted root file

you created with at least 100000 particles And the third input is the mass number A of

the simulated beam.
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This creates a ROOT file out of the .log file and also plots some overview spectra to check

the simulations. You only have to run this once, if the .log.root file already exits and you just

want to plot the overview spectra then you can use Plot("test.log","real sim.root").

Target Excitations

To simulate excitations of the target, 197Au, for example, use:

# set up a simulation of an in-beam experiment

/Experiment/Reaction/On

# target material

/Target/Material Au

# thickness of target

/Target/Thickness 332.5 um

# size of target

/Target/X_length 5.0 cm

/Target/Y_length 5.0 cm

# position of target relative to the center of caesar

# positive values are downstream of center

/Target/SetPosition_Z 2.55 cm

# Produce only target excitations

/BeamOut/TargetExcitationFraction 1

# excited state energy to simulate

/BeamOut/TargetExcitation 547.5 keV

# angular distribution coefficients for Coulomb excitation
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# of the target

/BeamOut/setTargeta0 1.0

/BeamOut/setTargeta2 0.0

/BeamOut/setTargeta4 0.0

# print information about the simulation parameters

/BeamIn/Report

/BeamOut/Report

/Target/Report

/ExpHall/Report

/CAESAR_Array/Report

# file to save the output

/Output/Filename target_excitation.out

# number of events to simulate

/run/beamOn 1000000
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