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Abstract

Investigation of ternary fission in the reaction '2C + 232Th at projectile energies of
Eiop = 193 and 264 MeV has revealed two components, only one of which can be
understood within a standard statistical emission framework. Comparison of the rel-
ative emission probabilities for intermediate mass fragments (IMFs), fragments with
atomic number 3 < Z < 20, as a function of the initial excitation of the composite
system has provided evidence that two different mechanisms exist for IMF emission.
IMFs emitted early, prior to significant deformation of the system, exhibit behav-
ior consistent with statistical emission. IMFs emitted later, near-scission, manifest
significantly different behavior. The characteristics of early stage and near-scission
emission are explored. Comparisons are also made to recent work in spontaneous

and thermal neutron induced ternary fission.
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Chapter 1

Introduction

Nuclei are observed to decay wia statistical emission of particles in a process analo-
gous to evaporation in macroscopic liquids [1, 2|. Nuclear collisions, used to prepare
excited nuclear matter, may, however, lead to deformed nuclear shapes that are sub-
ject to dynamical (time-dependent) instabilities [3]. Dynamical effects in nuclear
reactions have been recognized in the pre-equilibrium emission of nucleons and frag-
ments [4] and in the multifragmentation of the mid-rapidity zone in near-symmetric
heavy-ion collisions [5]. All of these processes proceed on a rather fast time-scale
(<1072 5). The manifestation of dynamics on fragment emission on a longer time-
scale, e.g. the fission time-scale (~10717-1072Y s), has only recently been reported
[6]. The purpose of this thesis is to further explore dynamical (non-statistical) frag-
ment decay which occurs on the fission time-scale.

To study systems where the dynamical evolution of the shape of the nuclear
system is important, yet keep the statistically thermalized energy modest, we have
focused on ternary fission in the reaction 2C + 232Th at Ej,, = 16 and 22 MeV/A.
In this energy domain, incomplete fusion of the projectile and target nucleus occurs,
followed by the fission of the heavy, excited composite system into two similar-
sized fission fragments [7]. As the heavy composite nucleus undergoes the large
scale deformation necessary for fission, it can decay wia emission of neutrons, light

charged particles (LCP: 1 < Z < 2) and/or intermediate mass fragments (IMF:
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3 < Z < 20). Such decay has been described with reasonable success within the
framework of statistical emission theories [8, 9]. Recently, it has also been found
that IMFs are emitted from the region between the two fission fragments near the
moment of scission (near scission emission), with characteristic energy and angular
distributions [10, 11]. The mechanism responsible for the production of these near-
scission particles is presently unclear. Proposed mechanisms for similarly emitted
alpha particles range from barrier modifications due to the proximity of the two
fission fragments [12] to dynamical, double-neck rupture scenarios |13, 14]. While
the former scenario is still statistical - driven by phase space considerations - the
latter scenario is largely, if not completely, dynamical.

Several terms that will be used throughout this work are schematically depicted
in Fig. 1.1. For the case of particle-induced fission, the energy of the parent nucleus
may initially be well above the fission barrier. The saddle point is defined as the top
of the fission barrier, and the scission point is the point at which the extended heavy
system separates into two (or more) distinct fragments. The separated fragments
are then accelerated by their mutual Coulomb repulsion. Within model descriptions
the scission point is defined as the point at which the neck radius goes to zero or,
within the description of random neck rupture (discussed below), the point at which
the rupture actually occurs.

The purpose of the present work is to study the dynamics of fission, utilizing the
experimentally measured properties of IMFs observed in coincidence with two corre-
lated fission fragments. In particular, the yields of ternary fragments emitted near
the moment of scission (near scission emission) are compared to those for emission
prior to significant deformation of the parent composite nucleus. Additionally, trends
in the near scission emission yields are investigated by comparing results from the

current work with those from spontaneous and low energy induced ternary fission.
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O O OO

Esad Essc
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¢

Figure 1.1: Simple schematic of a one dimensional fission barrier as a function of an
arbitrary deformation parameter ¢ along the fission coordinate. The three labeled
stages in the fission process are defined in the text. The height of the barrier relative
to the ground state of the parent nucleus is labeled Eg,q, and the saddle to scission
energy is labeled Fg.. Three commonly referenced times in discussions of fission are
the pre-saddle time, 7,4, the saddle-to-scission time, T4 and the pre-scission time,

Tpre = Tsad T Tssc-

1.1 Statistical vs. Dynamical Decay of Excited Nuclei

Since its discovery, radioactivity has been viewed as a statistical process. The spon-
taneous decay of unstable nuclei is well described within the language of statistical
mechanics. However, with the advent of induced nuclear decays, using accelerated
particles or high energy photons for example, the situation has become less clear.
Under these circumstances it is necessary to consider the dynamics of the initial
interaction (entrance channel dynamics), and possibly the subsequent decay as well
(exit channel or decay dynamics). Of particular interest in this regard is nuclear fis-

sion, as the large scale collective motion inherent even in spontaneous fission implies
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the need for a dynamical description of the decay process.

Purely statistical models start with a fully equilibrated parent nucleus with a
certain amount of internal excitation energy, which is then allowed to decay. The
probability of decaying to a particular final state is dominated by the available ex-
citation energy and its partitioning among the various single-particle and collective
degrees of freedom. Such models provide no information concerning the time evolu-
tion of the system, i.e. how the equilibrated system was formed, including possible
particle emission prior to achieving full equilibrium. Once the equilibrated source
is formed its subsequent decay is considered to be primarily a function of the total
available excitation energy, independent of the details of its formation. This decou-
pling of the entrance and exit channels is considered indicative of a mechanism that
is consistent with statistical decay. Dynamical models attempt to describe the time
evolution of the initial interaction and the subsequent decay. For example, during
the pre-equilibrium stage of the interaction one or more locally thermalized regions
may be formed with sufficient energy to lead to evaporation of a neutron or possibly
a proton.

The picture becomes more complicated for the case of nuclear fission. Although
it is true that increasing excitation facilitates surmounting the fission barrier, i.e.
the fission cross-section is an increasing function of the excitation energy, this is
only a small piece of the total picture. Nuclear fission is known to be a strongly
over-damped process, with energy flowing from the collective to the intrinsic modes
(nuclear dissipation) right up to the point of scission. Additionally, as energy ac-
cumulates in the intrinsic degrees of freedom, i.e. as the system heats up, there is
an increasing probability that some of the energy will be released through particle
emission. Thus the system may never reach full thermal equilibrium prior to scission.
With these features in mind it seems unlikely that a model requiring a fully equili-
brated source would be able to adequately describe all of the important features of

the process.
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1.2 Probes of Nuclear Fission Dynamics

Aside from its intrinsic interest as a specific decay mode, nuclear fission is an ideal
means to study the dynamics of large-scale collective motion of nuclear matter over
a wide range of excitation. There are three commonly employed probes of the dy-

namical nature of nuclear fission:

- The kinetic energies of the fission fragments
- The multiplicity of neutrons emitted prior to scission

- The probability and characteristics of ternary fission.

While the first two will be discussed briefly to provide perspective, the third probe

of fission dynamics, ternary fission, is the primary focus of this work.

1.2.1 Total Kinetic Energy of the Fission Fragments

Immediately after scission, the two primary fission fragments are accelerated under
the influence of their mutual Coulomb repulsion. A large fraction of the final kinetic
energies of the two fragments is a result of this initial Coulomb repulsion. Only
about 5-10 MeV can be attributed to kinetic energy along the scission coordinate
(the motion of the two nascent fragments just prior to scission). Immediately after
scission, the Coulomb potential, V., between the two fission fragments is related to
their atomic numbers, Z; and Zs, and the distance between their charge centers, R,

by Coulomb’s law
ZhZy

A
*7R

(1.1)

An empirical correlation, similar in form to Eq. 1.1, between the total kinetic energy
of the two fission fragments and the liquid-drop-model Coulomb parameter ZZ/AI/3
of the parent nucleus has been developed and refined over the years [15, 16, 17, 18].
Figure 1.2 is a plot of the most probable kinetic energy release, (Ex), in the center-
of-mass of the fission nucleus vs. the Coulomb parameter for a large number of

fissioning systems over a range of excitation energies. The energies are averaged
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Figure 1.2: Dependence of the mean fission fragment kinetic energy release, (Fx)
as a function of the liquid-drop-model Coulomb parameter, (Z2/A1/3)CN, of the
fissioning nucleus. The solid line represents the most recent fit to the experimental

data. [15].

over all mass asymmetries of the fission fragments. The solid line is the result of a
least squares fit to the data, which leads to the relation:

2

Z
(Ei) = 0.1189 —z +7.3 MeV

where Z and A refer to the fissioning nucleus. This seemingly simple expression,
commonly referred to as the Viola systematics, can be used to deduce the separa-
tion of the two heavy fragments at scission by performing a transformation of the

dependent variable giving:

YAVA:

———— 4+ 7.3 MeV.
AYP 4 Al?

(Ex) = 0.755
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where the quantities Az/g and A]13/3 can be related to the spherical radii of the two
fragments by the relation R; o Az-l/?’. Comparison of the extracted values of R;
with measured nuclear radii can then provide information on the shape at scission.
The observed variance of the fragment kinetic energies, as indicated by the error
bars in Fig. 1.2, reflects the variation in both the mass asymmetry, ZaZg, and the
nuclear elongation, Ry + Rp « Ai/g + A]13/3, at the scission point. Thus, it is pos-
sible to extract at least qualitative information about the scission configuration, i.e.
how stretched the system is at scission, and from this gain some insight concerning
the nature of the nuclear dissipation [13], directly from the fission fragment energy

spectra.

1.2.2 Pre-Scission Neutron Emission

Prior to scission, an excited heavy nucleus can decay by statistical emission of neu-
trons. Pre-scission neutrons can be distinguished from neutrons emitted post-scission
by examination of their angular distribution relative to the direction of motion of
the accelerated fission fragments. The multiplicity of pre-scission neutrons, M5,
depends on the lifetime of the system prior to scission, 7,... The mean evaporation
time for one neutron, defined as 7, = /T, where '), is the neutron decay width, is
an exponentially decreasing function of the instantaneous excitation energy of the
emitting system as shown in Fig. 1.3. The neutrons are assumed to be emitted se-
quentially from the excited nucleus, with an increasing mean time between emissions

as the available excitation energy decreases. In theory, the pre-scission lifetime can

then be determined by summing the emission times of the pre-scission neutrons in

the event
Mg’l‘e M',};TE h
T, = E Tni = E .
pre n,i ..
i=1 i=1 =™

In practice this requires fitting the measured neutron energy spectra, usually using
statistical evaporation model calculations. In the early development of this “neu-
tron clock” technique the model calculations used a static approach in which the

partial decay widths, I';, ;(E*), were calculated assuming an evaporation cascade be-
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Figure 1.3: Dependence of the neutron evaporation time on excitation energy of the
emitting system. The time interval of the neutron clock is the mean evaporation
time for one neutron, 7, = h/T',, which is an exponentially decreasing function of

the excitation energy, £*, of the emitting system.

ginning with a fully thermalized system |19, 20]. More recent work in this area has
shown that the deduced time scales depend strongly on the assumed initial condi-
tions used in the evaporation calculations. Efforts have been made to account for
entrance channel dynamics by incorporating dynamic models to describe the non-
instantaneous transfer of energy to the intrinsic modes [21, 8]. This approach allows
for the possibility of statistical decay during the formation time of the composite
system, i.e. the system may never achieve the maximum possible excitation energy.
These efforts have lead to fission time-scales that can differ by as much as an order
of magnitude from those obtained assuming strictly statistical evaporation from a
fully thermalized source [22].

The pre-scission time determined from ME"® is actually the time from the moment

when the system has achieved sufficient excitation to make neutron evaporation
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energetically possible until shortly after the moment of scission. At least in theory
the pre-scission time can be further broken down to a pre-saddle time, 75,4, and a
saddle-to-scission time, Ty (see Fig. 1.1), the latter of which depends sensitively on
the nature (one-body wvs. two-body) and magnitude of the nuclear dissipation. To
date there is no reliable experimental method to differentiate pre-saddle neutrons
from those emitted during the decent from saddle to scission.

Experimentally measured pre-scission neutron multiplicities as high as 6-8 per
fission event have been observed. In light of the results presented in Fig. 1.3 this
observation would indicate that fission lifetimes are long compared to that for a
typical single particle transition. This is not surprising when one considers the
substantial nucleon rearrangement necessary to achieve the deformations realized in
fission. The fission lifetime is also influenced by dissipative forces that impede the
collective motion toward scission. More recent dynamical model calculations have
been used to extract viscosity coefficients by reproducing experimental pre-scission
neutron multiplicities. The values for the viscosity coefficient determined from these
calculations cover the range of 0.03-0.06 Tp (terapoise) for systems of mass 150-200
[23]. For comparison, the viscosity of water is 1.002 cp (centipoise) at 20° C, which

is less than the calculated nuclear viscosity by a factor of ~ (3 6) x 10'2.

1.2.3 Ternary Fission

Ternary fission presents a good choice for studying the interplay of dynamical and
statistical effects in nuclear decay. The low excitation energies usually involved
in ternary fission studies limit the number of available exit channels, which can
simplify interpretation of the data. At low excitation energies the observed relative
probability for ternary fission compared to binary fission is of the order 1072-1073.
At higher excitation, as more decay channels become available, the ternary fission
channel becomes buried beneath the higher probability for binary and fast non-fission
processes, making it increasingly more difficult to isolate true ternary fission events.

A cartoon of particle-induced ternary fission is presented in Fig. 1.4. In this picture
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Figure 1.4: Cartoon depicting the ternary fission process. Partial cancellation of the

components of the Coulomb forces, Fa and Fp, parallel to the scission axis results

in a reduced net force acting on the neck emitted IMF. Parallel and perpendicular

components of Fa and F are indicated by the light gray arrows. The partial can-

cellation of the Coulomb forces also gives rise to the observed angular focusing with

respect to the scission axis.
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the final energies and angular distributions of fragments emitted near scission from
the neck region are expected to be sensitive to the initial separation and velocities

of the two heavy fission fragments at the moment of scission.

1.3 Experimental Signatures of Ternary Fission

Figure 1.5 shows the laboratory kinetic energy spectra for '°Be fragments observed
in coincidence with two heavy fission fragments in the reaction *He + 232Th at
270 MeV [10]. Each panel represents the energy spectrum obtained at a different
laboratory angle with respect to the beam axis, as labeled in the upper right of
each panel. The numbers in parenthesis in each panel are the approximate angles
with respect to the scission axis of the coincident fission fragments as defined by
two position-sensitive fission fragment detectors centered at laboratory angles of
+96° and -64° with respect to the beam axis. The spectrum in panel (a) is for
10Be fragments observed approximately orthogonal (~ 90°) to the scission axis. At
this angle the energy spectrum appears to be bimodal, with a significant yield of
low energy fragments ((Epr) ~ 18 MeV indicated by the arrow marked Low) in
addition to a higher energy component ((Enyr) ~ 35 MeV indicated by the arrow
marked High). In contrast, for the energy spectra in panels (b) — (d), observed at
angles non-orthogonal to the scission axis, the low energy component is strongly
suppressed, while the high energy component is almost identical in terms of both
the total number of counts and the location of the peak. The location of the peaks
in the latter spectra, and the high energy peak in panel (a) is consistent with the
Coulomb barrier for emission from a compact source similar in atomic number to the
target nucleus. The low energy peak in panel (a) is more consistent with emission
from an extended source, similar to the cartoon for ternary fission in Fig. 1.4.
Panel (a) of Fig. 1.6 shows the laboratory angular distribution of 19Be fragments
observed in coincidence with two heavy fission fragments [10]. In this plot, the high
energy '9Be fragments (open circles) appear to be emitted more or less isotropically,

independent of the orientation of the scission axis, while the distribution for the low



Chapter 1: Introduction

40

30

20

10

30

d’N/dQ dE (arb. units)
(@)

20

10

_||||||||||||||||||||||||||||__|||||||||||||| ||||||||||||||_
- (a) -160° T (b) +160° -
- } o)+ (o)
TR S
:I 111l | | II_IIIOYII 111l |I_|ITg|l|1| Y FI & hl::l | |A |=|I| | III III | | |¥ Iil *| . |=|:
:IIII|IIII|IIII|IIII|III1|IYI'I::IIII|‘rIII|IIII|IIII|IIII|ITII:
- (¢) -1000 T (d) +130° 7
- oy ()
- g £ o
S S 1) b 7 } .
_IIII|!III$LII!II|IIII|III¥|I?H__IIIItlilihilillllllllll¥lll;|§:
0 10 20 30 40 50 O 10 20 30 40 50 60

EIMF

(MeV)

40

30

20

10

30

20

10

0

12

Figure 1.5: Laboratory kinetic energy spectra of 19Be fragments observed in coinci-

dence with two heavy fission fragments in the reaction *He + 232Th at FEj,, = 270

MeV [10]. Fragments were observed at backward angles, listed in each panel, with

respect to the beam direction. The spectrum in panel (a) corresponds to angles

orthogonal to the scission axis, which was defined by two position sensitive fission

fragment detectors centered at +96° and -64°.
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energy fragments (closed circles) is peaked near an angle of 97° relative to the scission
axis, which corresponds to an angle of ~90° in the center-of-mass of the fissioning
system. To further clarify the angular peaking we constructed a plot of the ratio of
the laboratory angular distribution data of the low energy '°Be fragments to that for
the high energy fragments, using the data plotted in panel (a). The result is presented
in panel (b) of Fig. 1.6. The ratio more clearly demonstrates the enhancement of
the yield of low energy fragments near angles orthogonal to the scission axis.

The peaking in the angular distribution of the low energy fragments can be un-
derstood by assuming that emission occurs very close to the moment of scission,
when the combined Coulomb field of the two heavy fission fragments would have a
strong focusing effect on the trajectory of the ternary fragment. Furthermore, that
the angular distribution of the low energy fragments is peaked orthogonal to the
scission axis indicates that these fragments must originate from the neck region, be-
tween the two nascent heavy fragments, and are not evaporated from the accelerated

heavy fragments.

1.4 Models of Nuclear Fission

Numerous attempts have been made to model the nuclear fission process, both binary
and ternary, with varying degrees of success (see [24] and references therein for a more
complete overview). The degree of success for any model is determined by the ability
of the model to reproduce the important experimentally measured quantities for the
process under investigation. For the case of nuclear fission we can immediately list
several experimentally measured quantities that should be reproduced by a model.
Among these quantities are the kinetic energies, mass yields and angular distributions
of the fission fragments and, for the case of ternary fission, the kinetic energies, mass
yields and angular distributions of the ternary fragments. The remainder of this
section provides a brief introduction to several of the more important models that

attempt to describe ternary fission.
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laboratory angular distribution relative to the scission axis

for 19Be fragments observed in coincidence with two heavy fission fragments in the

reaction 3He + 232Th at Ej,, = 270 MeV [10]. Closed circles represent data for low

energy fragments and open circles represent data high energy fragments. Panel (b):

ratio of the angular distribution data of the low energy “Be fragments to that for

the high energy fragments.
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1.4.1 Explaining Ternary Fission Yields with Energetics Consider-

ations

A common theme in physical processes is that the probability for moving from an
initial state to a particular final state is inversely proportional to the energy required
to make the transition. This base probability can be modified by increasing the
energy available to the system, thus increasing the probability for the transition. In
the “Halpern model” of ternary fission the energy cost E. for emission of the third
particle is determined by starting with a binary scission configuration as shown in
the top of Fig. 1.7 [25]. The energy cost is then calculated as the energy needed to
remove a particular third particle from one of the two fission fragments and place
it midway between the two heavy fragments. The expression used to calculate the

energy cost is,

E.=B+AV+K (1.2)

where B is the average binding energy of the third particle to its mother fragment,
AV is the average difference in Coulomb potential energy between the corresponding
binary and ternary configurations and K is the average kinetic energy with which the
third particle is released. The binding energy B is computed from mass tables. The
last two terms on the right side of Eq. 1.2 can be varied to reproduce experimental
results. In particular, the change in Coulomb potential depends on the separation
parameter d as defined in Fig. 1.7 - an increase in the separation parameter will
result in a decrease in the energy cost. The dependence of the Coulomb potential
on the separation d leads to an important, although perhaps only qualitative insight
into the ternary fission process: heavier ternary fragments will preferentially result
from more stretched scission configurations, where the energy cost is lower and,
additionally, more of the available energy is stored in the deformation of the system.
Typical values for the calculated energy cost are ~21 MeV for *He and ~ 43 MeV
for 19Be [25], which is a significant fraction of the total available energy.

The energy cost described by Eq. 1.2 is an increasing function of the mass of the

ternary particle. This would indicate that the yields for the various ternary particles
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Figure 1.7: Geometry used in the Halpern model of ternary fission. The third particle
(Z3) is removed from one of the binary fragments (Z5) and placed at a point midway
between Z; and Zs while the residual fragment (Z;— Z3) is displaced slightly in order

to keep the same center of mass in both configurations.

should be a decreasing function of the energy cost, i.e.
Y o exp(—const - E,).

In order for the energy required for the release of the ternary particle to be readily
available, it must be stored in a very few degrees of freedom. The initial storage
is generally considered to be in the deformation of the system. This idea implies
two important relations between the ternary particle yields and the shape of the
parent nucleus at scission. First, if we assume that the decision to breakup into
three instead of two fragments, not counting neutrons, is based primarily on the
energetics at scission, then events in which more energy is stored in deformation,
i.e. more stretched scission shapes, should in general have a higher probability for

ternary breakup than events with a more compact scission shape. Second, since
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the energy cost is an increasing function of the size of the ternary fragment, we
would again expect that larger ternary particles should be preferentially associated
with more stretched scission shapes compared to those for smaller ternary particles.
Furthermore, the transfer of energy from deformation to create the ternary particle
most probably occurs on a very short time scale. A slow transfer of energy would
tend to heat the system as a whole as energy is lost to internal degrees of freedom.
Requiring that the energy transfer occur on a very short time scale implies that
ternary fission is a non-adiabatic process. Results of calculated yields based on
the Halpern model are compared to experimental results in Fig. 1.8. The Halpern
model results were calculated using a scission configuration with a tip distance D =
d— Ry — Ry = 8.7 fm, where d is the center-to-center distance as defined in Fig.
1.7 and R; and Ry are the effective radii of adjacent fragments 1 and 2. As can be
seen the Halpern model is successful in reproducing the gross features of the relative

yields of ternary particles.

1.4.2 Nuclear Dynamics: Surface Instabilities and Random Neck

Rupture

Since its discovery, nuclear fission has been described in terms of hydrodynamics, i.e.
the division of a uniformly charged drop of nuclear ‘fluid’ into two smaller droplets
[28, 29]|. In this picture an initially spherical parent nucleus becomes deformed
into a series of rotationally invariant shapes. As the parent nucleus becomes more
deformed, there is an increasing probability that a neck will develop somewhere
along the length of the extended shape. Once formed, the diameter of the neck
rapidly decreases until the nuclear drop breaks into two smaller droplets. Theories
developed from this rather simple picture generally vary in the parameterization
used to describe the non spherical nuclear shapes, but the hydrodynamic description
remains a powerful, and popular tool in attempts to model various aspects of nuclear
fission.

In his seminal paper in 1878 Lord Rayleigh consolidated and expanded on the
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Figure 1.8: Comparison of Halpern-model predictions with experimental yields from
thermal-neutron-induced ternary fission. The yields are plotted relative to the yield
of ternary a-particles, which was arbitrarily normalized to 10*. Arrows indicate

upper limits. From Ref. [27].

earlier work of Joseph Plateau. Rayleigh demonstrated that long, homogeneous,
uncharged liquid jets confined by surface tension are unstable with respect to breakup
into droplets [30] (see Fig. 1.9). The driving force behind this capillarity instability
is a net gain in surface energy, that is the separate droplets have less total surface
area than the original cylindrical jet. A necessary pre-condition for this process is
the existence of small random fluctuations of the surface shape, which Rayleigh and
others modeled as small, azimuthally symmetric sinusoidal distortions of the surface
(assuming the z-axis to be defined by the symmetry axis of the cylindrical jet). The
small fluctuations are precursors of the eventual breakup, their location at the time
of onset of the instability determining the breakup geometry. The condition for

onset of the capillary instability was determined by Rayleigh to be that in which an
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Figure 1.9: Plateau-Rayleigh instability of a long liquid jet.

increase in the amplitude of the small surface distortions results in a reduction in
the total surface area per unit length of the jet. This condition is satisfied by the
expression

A> Ao = 277, (1.3)

Thus, long liquid jets become unstable with respect to breakup into several droplets
if the wavelength of the initial surface distortion, A, exceeds the mean circumference
of the jet, 27r,.

The capillarity, or Rayleigh instability, should be equally applicable to short
liquid jets, such as an extended heavy nucleus. As with any macroscopic liquid,
the nuclear fluid can be ascribed a surface tension, resulting from the nuclear mean
field, which prevents individual nucleons from easily escaping the boundaries of the
nucleus. In macroscopic systems an extended body of liquid, finite or infinite, is
subject to Rayleigh type instabilities that will lead to breakup into two or more
smaller fragments. In this case, however, the condition for onset, Eq. 1.3, needs to
be modified to account for the finite size of the system, as well as the fact that the
nucleus has a non-zero charge. Taking these factors into account, the condition for
onset becomes [31]

(1.4)
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Figure 1.10: Influence of the fissility parameter of the fissioning system, Z2/A, on
the relative probability of ternary fission. Triangles represent experimental data for
spontaneous fission, open circles are for particle-induced fission and closed circles are

theoretical values. From Ref. [14].

where r is the minimum radius of the neck, [ is the total length of the system and
x ~ 0.02Z%/A is the fissility of the parent nucleus. The relation expressed in Eq. 1.4
provides only the most general description of the shape of the extended nucleus for
which the capillarity instability comes into play. The “random neck rupture” model
utilizes the criterion expressed in Eq. 1.4, together with a second, shift instability, and
describes the mechanism of nuclear fission as the dynamical development of Rayleigh
surface instabilities on a roughly cylindrical nucleus |32, 33, 13|. The addition of
the shift instability in the random neck rupture model provides a mathematical
description of the variation in the location along the extended nucleus at which the
capillarity instability occurs.

For the case of ternary fission the random neck rupture model has been extended
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Figure 1.11: Yields of ternary particles in the double-neck-rupture model for thermal
neutron induced ternary fission of 236U. Az is the mass and Y3 the yield of the
ternary fragments. Solid lines indicate experimental data while dashed lines indicate

calculated yields [14].

to the so-called “double-neck-rupture” model [14]. In this view, ternary fission is the
result of two statistically independent random neck ruptures, occurring during a time
interval on the order of one single-particle period, At ~ 74 =~ single particle period.
A comparison of the experimentally measured relative probability for ternary fis-
sion, P;, with values calculated within this physical picture is shown in Fig. 1.10
as a function of the fissility parameter of the fissioning system, Z?/A. The model
clearly reproduces the observed overall increase in the ternary fission probability
with increasing fissility. The double-neck-rupture model has also proven successful
at reproducing the experimental isotopic yields of ternary particles, as shown in Fig.

1.11, where Ag is the mass and Y3 the yield of the ternary fragment.

1.4.3 Nuclear Dynamics: Dissipation

An important question that has received much attention over the years is the nature

and magnitude of nuclear dissipation. There is also a question as to the temperature
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dependence of the nuclear dissipation. The details of the temperature dependence
may provide a means to determine the nature (one-body ws. two-body) of the nuclear
dissipation. Recent dynamical models, many based on classical Hamiltonian equa-
tions of motion and focusing on a limited number of collective coordinates, have been
used to investigate these questions. One such model, the Macroscopic Dynamical

Model [34, 35], will be covered in some detail in Ch. 5.

1.5 New Insights

To date the vast majority of the experimental work has been limited to the study of
low energy (spontaneous, thermal neutron and light-ion induced) ternary fission. In
the current work we investigate the important features, ternary fragment energies,
angular distributions, and yields, for heavy-ion-induced ternary fission. The higher
excitation energies and angular momenta obtainable in heavy-ion induced reactions
may provide further insight into the importance of both entrance channel dynamics
(incident orbital angular momentum) and the temperature dependence of nuclear

dissipation.
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Chapter 2

Detectors

Accurate reconstruction of the reaction kinematics on an event-by-event basis re-
quired coincident detection of the two correlated fission fragments along with any
low energy intermediate mass fragments (IMFs: 3 < Z < 20) emitted at backward
angles with respect to the beam axis. In this experiment several quantities were
measured simultaneously for both the fission fragments and the IMFs. For the two
fission fragments it was important to measure the emission angle and velocity of each
fragment. For the IMFs the quantities of interest were the atomic number, emission
angle, velocity and kinetic energy. Since the IMFs of interest were to be detected
at backward angles, it was also necessary to use a detector with a very low energy
threshold to account for the center-of-mass motion of the system. These require-
ments were satisfied by two types of detectors: a large area, hybrid parallel-plate
avalanche counter - multi-wire proportional counter (PPAC-MWPC) for the detec-
tion of the fission fragments and a low threshold ionization-chamber/Si(IP)/CsI(TI)
telescope (IC telescope) for the detection of IMFs.

2.1 Introduction to Gas-Ionization Detectors

Both the PPAC-MWPC and IC telescopes used in the current work are gas detectors

in which incident radiation ionizes the gas thus providing detection capability. The

25
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Figure 2.1: Schematic of a simple, pulse mode gas ionization chamber.

simplest form of such a detector is essentially a parallel-plate capacitor in which the
region between the plates is occupied by the gas able to be ionized. A schematic
diagram for a simple, pulse-mode gas-ionization chamber is shown in Fig. 2.1, where
each ionizing event results in an independent signal. As ionizing radiation passes
through the gas volume, it dissipates some or all of its energy in collisions with the
gas molecules, creating electron-ion pairs. In the absence of an electric field between
the parallel plates, the motion of the electrons and positive ions would be random,
and the electrons and ions would eventually recombine to form neutral molecules. In
this scenario there would be no net flow of charge carriers (electrons or positive ions)
and thus no signal could be extracted from the detector. However, when a voltage is
applied between the plates the electrons are accelerated and acquire a net velocity v,
in the direction of the anode plate. Likewise, the positive ions acquire a net velocity
in the direction of the cathode plate. The space-charge resulting from the creation
of the electron-ion pairs, as well as their subsequent motion within the electric field,
causes an induced current at the electrode plates. This induced current continues to
flow until all of the charge has been collected. Measurement of the induced current
provides the detector signal.

The electron drift velocity varies as a function of the reduced electric field
strength, X/p, where X is the electric field strength between the two plates in V/cm

and p is the gas pressure [1|. It can be approximately calculated by the classical
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kinetic theory expression
eAX

mup’

v= (2.1)

where, in addition to the electric field strength and pressure described above, e is
the electron charge, A is the mean free path of the electrons in the gas, m is the
electron mass, and wu is their RMS agitation velocity. Thus, it is clear that one can
improve the time resolution of a gas detector by either decreasing the gas pressure
and/or increasing the potential difference across the gap between the plates. Indeed,
it has been demonstrated that low pressure gas-ionization detectors offer superior
time resolution compared to the same detector type operated at higher pressures [2].
Time resolution as good as 175 ps has been reported for very low pressures (2 Torr
isobutane) [3].

The drift velocity of the positive ions can be described by an expression similar
to that used to describe the motion of the electrons:

vt =put <£> : (2.2)

p
where pT is the mobility of the ion in the gas. With X in units of V/cm and p in
atm, the ion mobility generally has a value near unity. This means that the collection
time for the more massive positive ions is about 1000 times greater than that for
the electrons. Because of this, gas detector designs that require fast timing use the

electron collection to provide the time signal.

2.2 General Principles of Gas Amplification

The behavior of a gas-ionization detector varies as a function of the magnitude of
the applied electric field. With all other parameters being fixed (detector geometry,
gas pressure and type, etc.), it is possible to identify several distinct regions of
amplification which depend on the applied voltage as shown in Fig. 2.2.

Region I. At very low voltage the electrons and ions produced by the ionizing
radiation move with relatively slow speeds, and the rate of recombination is high. As

the voltage increases, the electric field strength increases, the charge carriers move
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Figure 2.2: Relationship between collected charge and applied voltage in a gas-

ionization detector. The different regions are defined in the text.

faster, and the rate of recombination decreases toward zero. This region is referred
to as the recombination region. The voltage V1 is the point at which the rate of
recombination is zero, and all of the charge created by the ionizing radiation is being
collected at the electrodes.

Region II. As the applied voltage is increased, the rate of recombination de-
creases to zero, and the collected charge increases to and saturates. All electrons
collected at the anode are the result of primary ionizing events, those that resulted
directly from interactions between the radiation and the gas molecules. This region
is referred to as the zonization region, where the amount of charge collected is di-
rectly proportional to the amount of energy deposited in the gas, with no internal
amplification.

Region III. In this region, the rate of charge collection, as well as the total
amount of charge collected, begins to increase. The electric field has become so
strong that, in a certain region of the gas volume, electrons formed through primary

ionization acquire sufficient kinetic energy between collisions to produce additional
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ionization of the gas. The ratio of the total ionization produced to the primary
ionization, the gas multiplication factor, is, for a fixed voltage, independent of the
amount of primary ionization. Thus the total amount of charge collected remains
proportional to the amount of primary ionization, and therefore the amount of energy
deposited in the gas. This region is called the proportional region.

Region IV. The electric field in this region is so strong that the creation of a
single electron-ion pair will initiate an avalanche effect, resulting in a strong signal
that is independent of the amount of primary ionization. Because the final signal
is not proportional to the amount of primary ionization, particle identification and
energy measurement are no longer possible. A detector operating in this region,
referred to as the Geiger-Miiller (GM) region, is only useful for counting the number
of events, while providing no information as to the nature of the ionizing radiation.

Region V. If the applied voltage is increased beyond Viv in Fig. 2.2, a single
ionizing event will initiate a continuous discharge in the gas. At this point the device
is no longer useful as a radiation detector without the addition of a means to quench
the discharge between detection events.

Of the two detector designs used in the present work, the PPAC-MWPC operates
in the proportional region, where the signal is amplified through secondary ionization,
but is still proportional to the energy deposited in the gas by the fission fragments.
The ion chamber portion of the IC telescope operates in the tonization region, where
the signal is proportional to the deposited energy, but there is no internal signal

amplification.

2.3 Construction and Operating Characteristics of the
Parallel-Plate Avalanche Counter - Multi-wire Pro-

portional Counter

The parallel-plate avalanche counter - multi-wire proportional counter (PPAC-MWPC)

is a low pressure, transmission-mode gas ionization counter. The good timing and
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position resolution obtainable with this detector type makes it ideal for kinematic
studies involving detection of fission fragments and other heavy ions [2, 3, 4, 5|. In
the current work these detectors were used to measure the velocity and position of
fission fragments resulting from intermediate energy heavy ion reactions. The de-
tectors were designed, built and tested by the Nuclear Chemistry group at Indiana
University [6]. An exploded transverse view of a PPAC-MWPC is shown in Fig.
2.3. These detectors were designed to be low mass, to allow the possibility of co-
incident neutron detection, and easy to disassemble for cleaning and repair. Each
PPAC-MWPC is composed of two distinct regions. The first region operates as a
multi-wire proportional counter, and the second region operates as a parallel-plate
avalanche counter with additional sense wires for position measurement. The active
area for this detector design is approximately 9cm x 17c¢m, and the normal operating
conditions are a pressure of 4-5 Torr of isobutane and a cathode voltage of —650 V
to =700 V.

The multi-wire proportional counter region (MWPC) consists of a plane grid
of 68 equally spaced copper-beryllium wires located between, and parallel to, two
aluminized mylar cathode foils (see Fig. 2.4). Each wire has a diameter of 50 ym
with a spacing of 0.1 inches (2.54 mm) between adjacent wires. This wire plane is
referenced as the x-wire plane in Fig. 2.3. The wires are stretched taut and soldered
directly onto the printed circuit board (PCB) containing the discrete components of
the read-out electronics. Each wire is connected at one end to a tap on a delay line
composed of a series of passive LC delay chips (Rhombus Industries model TZB12-5)
providing a tap-to-tap delay of 2.0 4+ 0.5 ns. The opposite end of each wire is left
floating. Both ends of the delay line are connected to ground through a 3k{2 resistor
to dissipate the collected charge slowly. The signals are extracted at either end of
the delay line through a 10-20 nF capacitor connected in parallel to the grounding
resistor (see Fig. 2.3).

The mylar cathode foils (nominal thickness %0.176mg/cm2) are manually stretched

and glued across precision machined G10 frames. The framed cathode foil closest
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Figure 2.3: Exploded schematic of a PPAC-MWPC used in the ternary fission stud-
ies. The delay lines for the wires are shown, as well as the signal readout locations

for, yu, yp, x1, and xR, used to determine position.

to the z-wires in Fig. 2.4 is aluminized only on the side facing the z-wires and
is mounted on the same PCB as the x-wires. The second framed cathode foil is
mounted on an adjacent PCB, described later. This cathode foil also serves as the
cathode for the PPAC region, and therefore is aluminized on both sides. In addition
to contact by compression, where necessary silver paint was used to ensure good
electrical contact between the aluminized surfaces of the mylar foils and the high
voltage trace on the PCB.

As described in Sec. 2.1, ionizing radiation passing through the gas volume creates
electron-ion pairs. Due to the strength of the electric field in the vicinity of the wires
(as shown in Fig. 2.5) the majority of the charge is collected by the wire nearest

to the trajectory of the ionizing particle. Close to the anode wires the potential
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Figure 2.4: Cross-sectional diagram detailing the MWPC region of a PPAC-MWPC

used in the ternary fission studies.

gradient increases rapidly, allowing the electrons to achieve sufficient kinetic energy
to cause secondary ionization of the gas molecules. This “internal amplification” is
characteristic of a gas detector operating in the proportional region. Since the total
signal resulting from the passage of an ionizing particle will be dominated by the
contribution from the wire closest to the ionization track, the position resolution is
directly related to the wire spacing. It has further been shown that the absolute
position resolution obtainable with a MWPC of this type is on the order of one half
the distance between adjacent wires [3, 7]. This position resolution corresponds to
an angular resolution of &~ 0.5° and exceeds the experimental requirements (6 < 2°)
of the present work.

Once the signal reaches the LC delay line, it is split, with part of the signal
traveling through the delay line in either direction. The difference between the time
of arrival of the signal at the two ends of the delay line is directly related to the
position of the wire where the signal originated. There is, however, a limit on the
coverage that can be obtained with a single detector of this type. The relative
amplitudes of the signals extracted at either end of the delay line depends on the
impedance as viewed in either direction from the initiating anode wire. For a signal
originating from the center wire, the impedance would be roughly equal in either

direction. In this case the two extracted signals would be roughly equal in amplitude.
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Figure 2.5: Diagram of the electric field lines in the MWPC region. Charged particles
move along the electric field lines (lines running from the foils to the wires) to be
collected at either the anode wires (electrons) or the cathode foils (positive ions).
Close to the anode wires the potential gradient increases rapidly, resulting in a

corresponding increase in the acceleration of the electrons (see Eq. 2.1 in Sec. 2.1).

For a signal originating from one of the peripheral wires, the ratio of amplitudes is
found to be about 2:1 for this detector design. Thus, for a fixed wire spacing, the
delay line will eventually grow to a point where, for a signal originating from a
peripheral wire, no signal is seen at the opposite end of the delay line because of
the increasing impedance. One possible way to overcome this limitation would be
to divide the delay line into multiple sections, with each section covering a limited
number of position-sensing wires. However, such a solution would require additional
signal processing electronics.

After being read out from either end of the delay line, the signals are passed
through a charge-sensitive fast amplifier before being processed through the data-
acquisition electronics. The two signals are recorded separately with a time-to-digital
converter (TDC), using the anode foil signal from the parallel-plate region (discussed
below) or a logic signal as the TDC start. The two times recorded with the TDC

are referred to as Trer, and TRigny to indicate the side of the detector from which
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Figure 2.6: Cross-sectional diagram detailing the PPAC region of a PPAC-MWPC
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used in the ternary fission studies.

the signal originated. These two times are used to construct the time difference
dr = Treft — TRight- Panel (a) of Fig. 2.7 is a plot of the time difference spectrum for
the MWPC, demonstrating the single-wire resolution that can be obtained with this
method. The time difference dz is used to determine the horizontal position of the
incident particle within the active volume of the detector. The current design allows
for position measurements in the x coordinate of the detector with a resolution of
~1.5mm (< 0.5° when the detector is positioned 30 cm from the target).

The parallel-plate avalanche counter region (PPAC) is similar to the MWPC
region, consisting of a plane grid of 37 equally spaced copper-beryllium wires, referred
to as the y-wire plane in Fig. 2.3, oriented orthogonal to the wires in the MWPC
region. Each wire has a diameter of 50 ym with a spacing of 0.1 inches (2.54 mm)
between adjacent wires. The y-wires are soldered onto a second PCB, separated
from the first PCB by an 8.0 cm precision machined lexan spacer. The second PCB
also contains the discrete components, including the LC delay chips and decoupling
capacitors, of the read-out electronics for the PPAC region. Asin the MWPC region,
each wire is connected at one end to a tap on a delay line and the other end is left
floating. Components of the delay line and position signal readout are the same as
for the x-wire plane. As mentioned previously, the cathode foil separating the two

detector regions also acts as the cathode for the PPAC region. A second, singly
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from the reaction 2C +232Th at 193 MeV/A. Panel a) is a plot of the constructed
quantity do = Trer, — TRight as described in the text. Panel b) is an analogous plot

for the quantity dy = yup — YDown-

aluminized mylar foil, opposite the y-wire plane, acts as the anode (see Fig. 2.6).
The general operating principles of the PPAC are also similar to the operating
principles of the MWPC. Electrons created in the gas volume by ionizing radiation
are accelerated in the electric field toward the anode foil where they are collected.
As the electrons pass by the y-wires, they induce a current in the wires closest to
the particle trajectory [8]. This induced current results in a positive pulse that is
transmitted through the delay line, and is read out at either end. Very few of the
electric field lines emanating from the cathode foil terminate at the position-sensing
wires; most pass by the wires and terminate at the anode foil. Since, in this case,
the electric field does not focus the moving cloud of electrons created by the ionizing

particle, it tends to experience a greater degree of dispersion compared to the electron
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cloud formed in the MWPC region.

Other than the process of inverting the signals with 100 MHz pulse transformers,
the position wire signals for the PPAC region are treated identically to the x-wire
signals of the MWPC region. The processed timing signals, yyp, and ypown, are used
to construct the time difference dy = yup — Ypown. As can be seen in panel (b)
of Fig. 2.7, the y-wires do not provide the same level of resolution as the x-wires.
We hypothesis that this reduced position resolution afforded by the y-wires is a
consequence of the signal arising from an induced current on the wires as opposed
to the direct collection of electrons, as is the case for the x-wire signals. Because
of the azimuthal symmetry inherent in the reactions of interest, the resolution in
the x direction is more imortant than the resolution in the y direction. Thus the
inferior resolution of the y-wires did not have a significant impact on the quality of
the physically extracted quantities.

The signal resulting from the electrons collected at the anode foil is read out
through a decoupling capacitor. The signal is then amplified using a timing filter
amplifier (TFA) with both a fast and a linear output. The fast signal from the
TFA is passed through a constant fraction discriminator with four fast outputs. One
output signal is used as a start (MSU experiment) or stop (ANL experiment) for a
time-to-digital converter to be used in the time-of-flight analysis, while a second is
used to increment the event scalers. The remaining two output signals are used to
generate the event type selection trigger. The linear signal from the TFA is digitized
with an analog-to-digital converter (ADC) for anode pulse-height analysis.

Figure 2.8 shows an example anode pulse-height spectrum. The large peak above
AFE ~ 250 channels is the result of fission fragments passing through the PPAC
region of the detector. The narrower peak at low channel numbers is from a-particles.
Since these experiments involved the use of targets composed of elements that are
spontaneous « emitters, the detectors are subject to a steady flux of isotropically-
emitted a particles in addition to those resulting from induced « radioactivity. The

clean separation of the a’s from the fission fragments in the anode pulse-height
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Figure 2.8: Example anode signal pulse-height distribution from the PPAC detec-
tors. Data were obtained from the reaction 2C +232Th at 264 MeV/A. The arrow
labeled “Cut” marks the ADC channel above which particles are identified as fission
fragments (FFs). This allowed for rejection of events involving reaction and target

decay «’s detected in the PPACs.

distribution provides a simple means to reject non-fission events.

As mentioned earlier, the TDC information from the anode signal is used for fis-
sion fragment time-of-flight (TOF) analysis. This information, coupled with the kine-
matical relations developed in Sec. B.2 allowing a measure of the fragment masses.
Panel (a) of Fig. 2.9 shows an example TOF spectrum for fission fragments detected
in triple coincidence (ternary) events. The measured TOF was used to deduce the

mass of the fission fragment as shown in panel (b) of Fig. 2.9.
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Figure 2.9: Example fission fragment time-of-flight (TOF) distribution: (a) TOF
spectra for fission fragments detected in triple coincidence (ternary) events, (b) re-

lation between fragment mass and the measured TOF from (a). Data are for the

reaction 2C + 232Th at 16 MeV /A.

2.4 Ion Chamber Telescopes

A number of low threshold, large dynamic range ionization-chamber/Si(IP)/CsI(T1)
detector telescopes were used for IMF detection in the current work. These detector
telescopes were designed, built and tested by the Nuclear Chemistry group at Indi-
ana University [9]. The detector elements were housed inside trapezoidal steel cans
with a front flange to attach the thin mylar entrance window (nominal thickness
~0.176 mg/cm2) and a rear flange that contained vacuum feed-throughs for detector
bias, extracted signals and gas inlet and outlet.

The first active element of this telescope design is an axial-field, pulse-type gas-
ionization chamber with an active path length of ~ 6cm [10]. The electric field is
shaped at the edges by seven 2 mm thick copper rings spaced 4 mm apart by nylon

spacers. The anode is composed of a doubly aluminized mylar foil stretched across
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Figure 2.10: Schematic diagram of an ionization-chamber/Si(IP)/CsI(T1) detector

telescope.

the central field-shaping ring. This placement of the anode foil has the effect of
minimizing the electron collection time by reducing the electron drift path length.
Charged particles passing through the gas volume lose all or part of their energy in
collisions with the gas molecules. A certain fraction of the energy lost to collisions
results in ionization of the gas molecules into electron-ion pairs. The resulting free
electrons are then accelerated under the influence of the applied electric field toward
the anode foil where they are collected. Both sides of the anode foil are electrically
shorted to the central ring, allowing collection of charge from the entire gas volume.
Brass collimators were added at the front of the telescopes to suppress particles that
might pass too close to the field-shaping rings, where fringe effects of the electric
field were discovered to lead to non-linearities in the charge collection. The addition
of the collimator resulted in an active area of 3.7cm x 3.7cm at the front face of the

telescope. The normal operating conditions for this detector is 18-20 Torr of CFy
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Figure 2.11: Schematic cross-sectional diagram of the ion-chamber region of an IC
telescope. A schematic representation of the field-shaping electronics and signal read

out is also shown at the bottom of the diagram.

and an anode voltage of ~450 V.

A positive bias voltage is applied to the central field-shaping ring as shown in
Fig. 2.11. A series of resistors that connect the rings is used create the potential
gradient within the active volume of the detector. Charge collected at the anode foil
causes a voltage drop at point A in Fig. 2.11. The signal produced by this voltage
drop is processed by an external preamplifier located near the detector.

The second element of the telescope is an ion-implanted passivated Si detector
(Micron Semiconductor model MSQ25-300) placed directly behind the ion chamber
region. Each Si crystal measured Hcm x bem and was segmented into four quadrants.
The nominal thickness of the crystals is 300 pm. FEach quadrant is read out sepa-

rately by a charge-coupled preamplifier. Due to our particular interest in low energy
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Figure 2.12: Example a-particle energy spectrum from one of the Si(IP) detectors
used in the IC telescopes. The spectrum was acquired using a collimated 232Th
source positioned ~ 5cm from the front window of the telescope. The corresponding

energies of the various a peaks are also shown.

particles, the front dead layer was carefully measured for each crystal to increase the
accuracy of particle energy reconstruction. Fig. 2.12 shows a typical energy spec-
trum obtained during our calibrations using a ?*>Th « source. The energy spectrum
was acquired with no gas in the telescope, so the only additional factors to influence
the energy resolution was introduced by the front window and the anode foil. In this
example, the energy resolution was found to be ~1.4% or 95 keV for the 6.778 MeV
a peak.

The final element of the telescope is a set of four thallium-doped cesium iodide
scintillator crystals, CsI(T1), one behind each quadrant of the silicon crystal. Each
crystal measures 2.5cm x 2.5¢cm x 3.0cm. Each CsI(T1) crystal is wrapped around the

sides with Teflon tape to improve diffuse reflectivity and to optically isolate adjacent
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crystals to prevent cross-talk. The front face of each crystal is covered with 1.5 pum
aluminized Mylar to reflect light back into the crystal. The rear face of each crystal
is optically coupled to a 0.50 inch thick Plexiglas light guide which is in turn optically
coupled to a 2cm x 2cm photodiode (Hamamatsu Photonics model S3204-03). The
signal from each photodiode is processed by a charge-sensitive preamplifier, located
in the rear of the steel can that houses the detector elements. As the preamplifier is
within the gas volume, it is potted in silicon elastomer (Dow Corning Sylgard 184)
in order to reduce the sensitivity of the field-effect-transistor to electrical discharges
within the gas volume.

Two independent gas-handling systems were used to maintain a stable operating
pressure for both the PPAC-MWPCs and the ionization chamber portion of the 1C
telescopes. The gas-handling systems were also designed to provide a steady flow
of the filling gas through the detectors. This is necessary to prevent a build up of
the slow moving positive ions, which would eventual begin to reduce the detector
efficiency by recombining with the ionization electrons used to generate the detector

signals.
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Chapter 3

Experimental Setup and Detector

Calibrations

The reaction 2C + 232Th was studied at incident energies of E/A = 16 and 22
MeV in order to probe the effects of excitation energy and angular momentum on
the ternary fission process. Since the incident energy requirements could not both
be achieved at a single accelerator laboratory, it was necessary to use both the
Michigan State University Superconducting Cyclotron Facility (MSU: E/A = 22
MeV) and the ATLAS Accelerator Facility at Argonne National Laboratory (ANL:
E/A =16 MeV). Table 3.1 lists the maximum and observed excitation energies for

the two experiments, along with data from an earlier ternary fission study [1].

3.1 Experimental Setup

The first experiment was conducted at the Michigan State University National Su-
perconducting Cyclotron Facility (MSU-NSCL) using the 92" scattering chamber.
The K1200 cyclotron was used to deliver a 2C beam with an energy of E/A = 22
MeV (Ejp, = 264 MeV) and an average intensity of ~10'% particles per second. The
beam was directed at a self-supporting 232Th target foil with an areal density of

700 pug/cm?. The target foil was mounted on a metal frame with a 7/8" diameter

44
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Reaction 12¢ 4 2327h ‘He + 232Th
Incident energy 22 MeV/A 16 MeV/A 50 MeV /A
Er. MeV/A (MeV) | 0.91 (222.0) 0.64 (156.2) 0.77 (181.7)
FLMT ys 83% 100% 100%
B, MeV/A (MeV) | 0.70 (169.4) 0.64 (156.2) 0.77 (181.7)

Table 3.1: E*

ax indicates the maximum initial excitation energy that could be

achieved assuming complete fusion of projectile and target, calculated using the
massive transfer model (see Appendix B for details of calculating the initial excita-
tion energy). E7.. indicates the maximum excitation energy the could be obtained
based on the maximum experimentally observed linear momentum transfer from the
projectile to the composite nucleus, FLMT1 g, for ternary events in which Zpyr = 2.
For reference, the last column contains information about an earlier study of ternary
fission which focused on the reaction “He + 2*2Th at an incident energy of E/A = 50
MeV [1].

hole, that was rotated 45° with respect to the beam axis. A set of six large area,
position-sensitive, hybrid parallel-plate avalanche counter/multi-wire proportional
counters (PPACs) was used for detection of correlated fission fragments, three on
either side of the beam axis (details of the operation of the PPACs are provided
in Sec. 2.3). Light charged particles (LCP: 1 < Zpcp < 2) and intermediate mass
fragments (IMF: 3 < Zpyr < 13), observed in coincidence with two correlated fission
fragments, were measured at mid and backward angles relative to the beam axis by
five low threshold ion chamber/Si(IP)/CsI(T1) telescopes (details of the operation
of the IC telescopes are provided in Sec. 2.4). A schematic diagram of the general
layout for both experiments is given in Fig. 3.1.

The second experiment was performed at the ATLAS Accelerator Facility at

Argonne National Laboratory. A 2C beam was accelerated to an energy E/A = 16
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Figure 3.1: Schematic view of detector placement relative to the incident beam.
Details of the detector designs can be found in Ch. 2. The out-of-plane PPACs have

been left out for clarity.

MeV (Eiap, = 193 MeV) by the ATLAS Tandem Linac Accelerator and directed on to
a self-supporting 232Th target foil with an areal density of 700 pg/cm?. The target
foil was mounted in a metal frame with the same characteristics as in the MSU-NSCL
experiment. The average beam current was ~ 4 x 10'% particles per second. The
target in this experiment was also rotated 45° with respect to the beam axis. The
same detectors were used for identifying fission fragments, LCPs and IMFs. The
PPACs were again grouped in pairs, one on either side of the beam axis with one
pair centered in the (y, z)-plane, and a second pair rotated out of the (y, z)-plane by

27.5° (space limitations in the scattering chamber prevented using all three pairs).
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At periodic intervals during both experiments the 2*>Th target foil was replaced by
an identical, empty target frame to assess the extent of beam scattering off the target
frame. Negligible scattering from the target frame was observed.

As stated above, the target was rotated to 45° with respect to the beam axis in
both experiments. This orientation was chosen for two reasons. First, to minimize
the effects of target shadowing of the PPACs, illustrated as the gray wedge in Fig.
3.1. Second, to minimize the target foil thickness, as viewed in the direction of the
IC telescopes, to limit the amount of energy lost by the IMFs while escaping from
the target foil. This orientation of the target foil resulted in a loss of ~25% of the
active area for the left side in-plane PPAC (LC in Fig. 3.1), and ~30% for the two
left side out-of-plane PPACs due to target shadow.

3.1.1 Detection of Fission Fragments: PPACs

The PPACs were grouped in pairs, one on either side of the beam axis, as shown in
Fig. 3.2, with one pair centered in the (y, z)-plane and one or two additional pairs
rotated out of the (y, z)-plane by an angle ¢ = +27.5° directly above or below the
center PPAC. The front window of each PPAC was positioned 30 cm from the target.
The two in-plane PPACs, labeled LC and RC in Figs. 3.1 and 3.2, were centered
at angles (9,p), as described in Table 3.2, to account for the reaction kinematics
(see Appendix A for the details of converting the detector position angles (9,¢) to
polar spherical coordinate angles (6,¢) in the laboratory system). Each PPAC had
an active area of 8cm x l4cm, which provided an angular coverage of ~ 32° in 6
when positioned 30 ¢cm from the target. The PPAC placement described in Table
3.2 allowed measurement of laboratory fission fragment folding angles, taking into
account target shadow, over the range of 128° < fap < 178° in the MSU experiment
and 128° < fxp < 180° in the ANL experiment. The PPACs were operated in
transmission mode, with a differential gas pressure of ~ 4 Torr of isobutane, as

described in Sec. 2.3.
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Figure 3.2: Schematic of the PPAC positions as viewed along the beam axis.

PPAC # LC RC LU RD LD RU
¥ | +51.3° —95.2° +51.3° —95.2° +51.2° —95.2°
22 MeV /A
@ 0.0° 0.0°  427.5° —27.5°  —27.5°  427.5°
¥ | +55.0° —95.0° +55.0° —95.0° n/a n/a
16 MeV /A
@ 0.0° 0.0° +27.5° —27.5° n/a n/a

Table 3.2: Angular positions (1,¢) of the PPACs during the two experiments. See
Fig. 3.2 for definitions of the PPAC labels.
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Telescope # 1 2 3 4 5

¥ | +167.6° +167.6° +149.9° +149.9° +100.6°
22 MeV/A

® +8.8° —8.8° —8.8° +8.8° 0.0°

¥ | +160.8° +160.8° +143.2° +143.2° +100.0°
16 MeV /A

© —8.8° +8.8° +8.8° —8.8° 0.0°

Table 3.3: Angular positions (,p) of the IC telescopes during the two experiments.

See Fig. 3.3 for definitions of the telescope labels.

3.1.2 Detection of Intermediate Mass Fragments: IC Telescopes

Four of the low threshold ion-chamber/Si(IP)/CsI(T1) telescopes, referred to as the
4-pack in Figs. 3.1 and 3.3, were placed at backward angles in the laboratory and
~90° with respect to the scission axis, as defined by the PPAC positions. Locating
these detectors at backward angles effectively suppressed the detection of particles
resulting from pre-equilibrium emission, as well as elastic and inelastic scattering of
the projectiles. This suppression aided the detection of the low energy neck IMFs
which were the principal interest in these experiments. These four telescopes were
arranged in a box shape as depicted in Fig. 3.3. The fifth IC telescope was positioned
at a smaller angle with respect to the scission axis (~50°) to provide a measure of
isotropically emitted charged particles. The angular positions of the IC telescopes

in both experiments are listed in Table 3.3.

3.2 Detector Calibrations

The detectors were calibrated by utilizing both radioactive sources and precision
pulse generators. Electronic pulsers were used to test linearity of the analog and dig-
ital electronics (pre-amplifier, shaper, digitizers, etc.) while the radioactive sources

were used to provide an absolute reference. Calibrations were performed at the
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Figure 3.3: Schematic of the IC telescope positions as viewed from the target posi-
tion. ¢ is the angle with respect to the beam axis in the forward direction. ¢ is a
rotation out of the horizontal plane containing the beam axis (see Appendix A for a
more detailed description). The individual telescopes are indicated by the numbers
1 5, and the quadrants within a telescope are indicated by the letters A D. The
block of four telescopes on the left side is collectively referred to as the 4-pack (see
Fig. 3.1). The telescope number order and angular values given in the figure are for

the MSU experiment.

end of each experiment, using the same detector and electronic configurations used

during the experiments.

3.2.1 IC Telescope Energy Calibrations

The energy calibration of the IC telescopes was performed using a 2?8Th a-source
placed at the target position (see Fig. 3.1). The energies of the source a’s were
insufficient to pass through to the CsI(T1) crystals, but since the CsI(T1) signal was
only used to reject high energy LCPs and not to determine particle energies, there
was no need for a calibration. The target ladder was rotated to illuminate each
telescope in turn, and three spectra were recorded for each telescope: one with no

filling gas in the telescopes, a second with the filling gas at the same pressure as was
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used during the experiment, and a third with twice the gas pressure used during the
experiment. The first set of spectra, acquired with no filling gas in the telescopes,
was used as an absolute calibration for the energy deposited in the Si(IP) detector
element. A typical spectrum for one quadrant of a Si(IP) detector is shown in panel
(a) of Fig. 3.4. Although an independent energy calibration based on the source o’s
was performed for the ionization-chamber data, its only purpose was to be able to
sum spectra over several telescopes (specifically the AE-FE spectra discussed in Sec.
3.2.3).

Each quadrant of a segmented silicon detector was calibrated separately by fitting
each peak in the a spectra with a Gaussian and extracting the centroid. The resulting
centroids, in ADC channel number, were then plotted against the corresponding, well
known a-particle energies for the 228Th decay chain (displayed in Fig. 3.5), after
correcting for all “dead layers”. The “dead layers” included all intervening material,
between the source of the radiation and the active detector element, that degrades the
energy of incident radiation but does not contribute to the detector signal extracted
from that element. For determination of the energies of the a-particles entering the
signal generating region of the Si(IP) detector elements, the dead layers considered
were the mylar window and anode foils, the gas of the ionization chamber (if present)
and the aluminum layer on the surface of the Si crystal. The « calibration of the
Si(IP) detector element was performed using the energy spectrum acquired with no
filling gas. This choice was made to avoid uncertainties associated with the dead
layer correction for the filling gas (variation of gas pressure with temperature and
variation of path length through the gas introduced by bowing of the mylar window).
The source a-particle data were fit with a linear function as shown in panel (b) of
Fig. 3.4. This linear fit was used as an initial calibration curve to relate ADC channel
number to energy, in MeV, deposited in the Si(IP) detector, Fg;.

The linearity of the Si(IP) detectors and the associated electronics was checked
over the full dynamic range of the ADCs by injecting precise amounts of charge

from a research pulser coupled to a charge terminator into the input of the charge-
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Figure 3.4: Si(IP) detector energy calibration for one Si quadrant. Panel (a) shows
the uncalibrated energy spectrum, in ADC channels, obtained from a 2?8 Th a-source.
The spectrum was acquired with no filling gas in the IC telescope. Panel (b) shows
the relationship between ADC channel number and energy deposited in the Si(IP)
detector (after accounting for intervening dead layers: window foil, anode foil, etc.)
for the a-source calibration. The solid line is the result of a linear fit to the «
calibration points. The dashed line is the calibration curve from the pulser data.
Panel (c) shows the uncalibrated spectrum obtained by injecting precise amounts of
charge from an Ortec model 448 research pulser through a charge terminator and
into the preamplifier input. The picket-fence spectrum was generated by varying
the attenuation setting for the pulser signal output. Panel (d) shows the energy
calibration based on the data from the precision pulser. The solid line is the pulser

energy calibration curve. The dashed line is the « energy calibration curve.
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Figure 3.5: 228Th decay chain used in the IC telescope energy calibrations. The

average energy for each decay « is listed next to the a decay arrows.

sensitive pre-amplifier of each Si(IP) quadrant. While performing this calibration,
the Si(IP) detectors, connected to the pre-amplifiers, were biased to their operating
voltage to maintain the same detector capacitance as during the experiment. For
the 193 MeV 2C + 232Th reaction, an Ortec model 448 research pulser was used,
and for the 264 MeV '2C + 232Th reaction, a BNC model PB-4 pulser was used.
The pulser was initially set, with no attenuation, so as to simulate the largest pulses
observable within the dynamic range ADCs. The amount of injected charge was
then reduced by known amounts, using the precision attenuation switches on the
pulser. A “picket-fence” spectrum, shown in panel (c) of Fig. 3.4, was generated in
this manner for each Si(IP) quadrant.

In the pulser spectrum the ith peak is associated with a specific pulser atten-
uation setting, f;, with the first peak (lowest channel number) having the highest
attenuation factor. However, it is more convenient to associate each peak with the
relative attenuation, fi/f;, where fj is the attenuation factor for the first peak. Thus
the extracted centroids, x;, were associated with the corresponding relative atten-

uation, and the resulting data were fit with a linear function. The fit provided a
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calibration curve of the form

% =mx; +b (3.1)

where m is the slope and b the intercept. At this point, the pulser calibration
expresses a relation between ADC channel number and relative attenuation factor.
To convert this expression to a calibration for the energy deposited in the Si(IP)
detector, Eg;, we introduce the quantity Fy/f1, where Ey is the equivalent Si(IP)
energy in MeV for no attenuation of the pulser signal, and f; is the maximum
attenuation factor used in the calibrations. The quantity Ey/f; is thus the energy
per unit of attenuation over the full range of the pulser calibration. Multiplying both

sides of Eq. 3.1 by Ey/f1 gives

B f_B B,
fi fi AT
which reduces to
E(] <mE0> <bE0>
fi ‘ J1 ‘ J1 (3:2)

where Ej; is the energy of the ith pulser calibration point in MeV. Equation 3.2 pro-
vides the desired linear relation between ADC channel number and energy deposited
in the Si(IP) detector element, in which the slope, m/, and intercept, i, are given by

,_ mEo _ bEy
1 fi’

where m and b are the slope and intercept from Eq. 3.1.

and b

The unknown quantity Ey was determined by inserting the centroid channel
number and deposited energy for one of the « calibration points, x, and E,, into Eq.
3.2 and solving for Fy. This calculation was performed for each of the « calibration
points, but the best agreement between the « calibration curve and the resulting
pulser calibration curve was obtained when using the values for the 8.785 MeV «.
Inserting the degraded energy and centroid channel for this a point, and the relative
attenuation fit parameters extracted from the pulser spectrum in panel (c¢) of Fig.

3.4, we get

By = E <@x +£>_1
’ NATY A
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0.02325 0.20350
(382.3) + ——

-1
= (8.660 MeV) < > = 80.009 MeV.

The slope and intercept for the pulser energy calibration curve are then calculated

to be
02325) (80.009 MeV
= (0023%9) (SZ 009 M) _ ,0222 MeV/ADC channel
y (020350 (22.009 M) o on vev

as shown in panel (d) of Fig. 3.4.

The quality of the two energy calibration curves was examined by plotting the
percent difference between each calibration curve and the corresponding calibration
points. Panel (a) of Fig. 3.6 shows the percent difference for the a energy calibration.
The maximum deviation, of only 0.2%, occurs for the lowest energy point. Panel (b)
of Fig. 3.6 is a plot of the percent difference for the pulser energy calibration. The
deviation is consistently small at high Si(IP) energies, < 1%, indicating negligible
non-linearities over this portion of the dynamic range. However, focusing on the
low energy region in panel (c¢) shows that, although the pulser calibration curve
deviates little from the pulser calibration points even over the range covered by the
a calibration, it diverges rapidly below a Si(IP) energy of ~2 3 MeV. This range
in Eg; corresponds to a range in the total IMF energy of ~ 4-5 MeV for Z = 3
and ~ 9 10 MeV for Z = 6. The observed deviations indicate that the detector
response becomes non-linear at low energies. This was not a concern, however,
since this energy range is at or below the detection threshold for all light fragments
investigated (detection threshold is ~ 0.8 MeV/A). Finally, panel (d) shows the

percent difference between the pulser and « calibration curves.

3.2.2 Determination of IMF Energies

From the measured energy, Es;, deposited in the Si(IP) detector element, the total
energy of a particle can be deduced by calculating the energy loss incurred by its

passage through the gas in the ionization chamber and the intervening dead layers.
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Figure 3.6: Comparison of a and pulser energy calibrations for one Si quadrant.
Panel (a) shows the variation between the « calibration points and the energy

calculated from the linear calibration curve. The variation is plotted as the per-

cent difference AE

(Eo — Egt)/Ea as a function of E,, where E, is the

source a energy and Eft is the corresponding energy calculated from the o cal-
Panel (b) shows the same for the pulser calibration points, i.e.

= (Epulser _Eﬁ

t
pulser

ibration curve.

A Eﬁt

Dulser )/ Epuiser as a function of Epyser. Panel (¢) is an expanded

view of the low energy portion of the variation of the pulser calibration in panel (b).

The energy range corresponds to that used in panel (a). Panel (d) shows the varia-

tion between the a and pulser calibration curves, AEL® |\ = (Bt — ER ) /ER

as a function of Efit,
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ZIMF 23 4 5 6 7 8 9 10 11 12 13
Avr 4 7 10 11 14 16 18 20 22 24 26 29

Table 3.4: IMF mass, Apvr, as a function of the atomic number, Znp, used to

deduce total particle energies.

The energy loss, dF, incurred by a particle of incident energy F;, atomic number Z
and mass number A, in traversing an infinitesimal amount of matter, dx, is given by

the Bethe-Bloch formula |2, 3, 4]:

dE > \* 4nZ2NoZp 2mc* 3 2 2
dz <47T€0> mc232A [ln< I > —h (1_5 ) —F (3:3)

where v = (c is the velocity of the incident particle, Z; is its atomic number, Z, A,
and p are the atomic number, atomic weight, and density of the material through
which the particle is moving. Total particle energies were obtained from lookup
tables generated using the FORTRAN energy loss code published by Ziegler et.al.
[5], which utilizes Eq. 3.3. These lookup tables expressed the total particle energy,
FEliotal, as a function of the mass number, A, and atomic number, Z, of the particle,
and the energy deposited in the Si(IP), Eg;. Since the IC telescopes did not provide
mass resolution, a most probable mass had to be assumed for each element. Table
3.4 lists the mass numbers used in the energy loss calculations as a function of the
atomic number of the incident particle. These values were chosen based on results
from earlier investigations of spontaneous, thermal-neutron induced, and light-ion
induced ternary fission |6, 1.

The energy-loss calculations took into account all known active and dead layers
in the telescopes, including the mylar window and anode foils, pressure of the filling
gas, and the silicon oxide dead layer. To minimize digitization effects, a granularity
of 100 keV in Si(IP) energy was used in constructing the lookup tables. As men-
tioned previously, the calculated energy loss in the ionization chamber was subject

to uncertainties associated with the variation of gas pressure with temperature as
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well as variations in path length through the gas caused by bowing of the entrance
window. The uncertainties in the energy deposited in the gas lead to an uncertainty
of ~1 3% in the deduced particle energy, depending on the mass of the incident

particle.

3.2.3 Particle Identification

Particle identification was performed using the AFE-FE technique. This technique
relies upon the stopping power of ionizing radiation in matter. The Bethe equation,

Eqg. 3.3, may be approximated for non-relativistic particles by the expression

AE = kZ};A = f(Z, A, E) (3.4)

where Z is the charge of the incident particle, A is its mass number, and k is a
constant that depends on the stopping material. One can utilize this energy-loss
relation to identify particles by allowing them to penetrate a stack composed of at
least two detector elements. The first element operates in transmission mode, that
is, the incident particle with initial energy E is not stopped within the detector
medium but passes completely through it. Since the incident particle is not stopped,
it deposits only a portion of its initial energy, AF, within the detector, and exits the
back of the detector with a reduced energy E' = E — AE. The remaining energy
of the incident particle, E’, is then deposited in the second detector element, which
must be thick enough to stop the particle. Thus, for particles that are stopped in
the second detector element, Eq. 3.4 indicates that a plot of AE vs. E would result
in a set of hyperbole, each corresponding to a different value of Z2A. If AFE is small
compared to FE, it is also possible to achieve the same result by plotting AE vs. E’,
since now E’ is approximately equal to E.

Two dimensional (2D) histograms of ion-chamber energy, AEic (AE), vs. Si(IP)
energy, Fg; (E'), were generated for each IC telescope. Panel (a) of Fig. 3.7 is an
example of the 2-D spectrum for Si singles events (only one Si quadrant recorded a

particle with nothing in any of the PPACs). In this spectrum particle identification
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Figure 3.7: AFEic FEs; map used for particle identification in the IC telescopes. Pan-
els (a) and (b) show the same 2D spectrum, panel (b) includes the particle identifi-

cation gates used in the analysis.
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was possible by visual inspection for 2 < Z < 6. Particle Z identification was
achieved over this range by hand-drawn selection gates as shown in panel (b) of
Fig. 3.7. For Z > 7 the experimental statistics were insufficient to allow for reliable
hand-drawn gates. Particle-identification gates for higher values of Z were calculated
using the Ziegler energy loss code [5] described previously. Particle-identification
gates were also calculated for 2 < Z < 6, for comparison with the hand drawn gates.
The differences between the hand-drawn and calculated particle-identification gates
for 2 < Z < 6 were found to be negligible except for the low edge of the Z = 2 gate
(the line separating Z = 1 and Z = 2 in panel (b)). This agreement provided a high
level of confidence in the accuracy of the calculated particle-identification gates for

higher Z.

3.2.4 PPAC Position Calibrations

The position signal provided by the PPAC detectors was calibrated by exposing them
to a 2°2Cf fission source mounted at the target position. The source was rotated to
illuminate each set of PPACs on either side of the beam axis. The PPACs were
exposed to the source for a sufficiently long time so that all of the position sensing
wires were visible, as can be seen in Fig. 3.8. In this plot, each peak corresponds
to one of the position sensing wires. While the discrete wire resolution provides an
excellent relative reference frame, it is necessary to ensure the absolute position of
each PPAC by determining the absolute position of at least one wire. To provide
such absolute position information, a second calibration run was performed with the
252Cf source, this time with an aluminum mask placed over the PPAC face. The
mask was sufficiently thick to stop all fission fragments as well as the 2°2Cf decay
a’s. Each mask was pierced in the center with a cross pattern that left the center
wires in both the x and y planes exposed. Examples of the mask spectra are shown
in panels (c) and (d) of Fig. 3.8, along with a schematic of the masks used to create

them. Transiting of the detector positions at the end of the experiment provided the

absolute position of the two center wires.
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Figure 3.8: TDC time difference spectra, dz and dy, used for position calibrations of
one in-plane PPAC. A ?%2Cf fission source was used to illuminate each of the PPAC
detectors. Panel (a) is the position spectrum of the x coordinate, dx = Tpef — TRight-
Panel (b) is the position spectrum of the y coordinate, dy = yup — ypown. Panel (c)
is the position spectrum of the x coordinate when the mask has been placed over
the front face of the PPAC. Panel (d) is the position spectrum of the y coordinate

with the mask. A schematic of the mask is included in panels (c¢) and (d).
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Figure 3.9: Relation between the absolute wire positions in the detector coordinate
system, in c¢m, and the peaks of the time difference spectra. Panel (a) shows the

relation for the xz-wire plane, and panel (b) shows the same for the y-wire plane.

Once the absolute position of the center wires was established, a relation was
made between the peaks in the time difference spectra, panels (a) and (b) of Fig.
3.8, and the position in cm of each wire relative to the center wires, based on the
known wire spacing of the detectors. The centroids of the peaks in the time-difference
spectra were extracted and plotted against the position of the corresponding wires.
The center wire was always assigned the position value of 0.0 cm in the detector
coordinate system. Figure 3.9 is a plot of the position, in cm, in the detector coor-
dinate system ws. the centroids extracted from the time difference spectra for one
PPAC. Panel (a) is for the PPAC z coordinate, and panel (b) is for the PPAC y
coordinate. Calibration curves for both planes in each PPAC were generated by
applying a linear fit to these points. Finally, an Euler transformation was used, on
an event-by-event basis, to convert the absolute position in the detector coordinate

system to an absolute position in the laboratory coordinate system.
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3.2.5 PPAC Time Calibrations

The TDCs used with the PPACs were calibrated in time by using a Ortec 462 Time
Calibrator. The Time Calibrator was set to generate signals that differed in time
by 8 ns. The resulting spectra were a “picket fence” in TDC channels for which the
peak-to-peak time was 8 ns. Panels (a) and (b) of Fig. 3.10 are plots of the picket
fence spectra for the anode (time-of-flight) and accelerator RF TDCs respectively
for one PPAC. A linear fit was then applied to a plot of TDC time in ns ws. the
extracted centroids from the picket fence spectra for each TDC signal. Panels (c)
and (d) of Fig. 3.10 show the plots and fits used to generate the calibration curves

for the spectra shown in panels (a) and (b) respectively.
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Figure 3.10: TDC time calibrations for anode (time-of-flight) and accelerator RF for
one of the in-plane PPACs. Panels (a) and (b) are the recorded spectra from the Time
Calibrator for the anode and RF TDCs respectively for one PPAC. The distance
between adjacent peaks is 8 ns. Panels (c¢) and (d) are the points (time,channel) and

corresponding fits for the spectra in panels (a) and (b) respectively.
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Chapter 4

Experimental Results

In order to examine the general characteristics of ternary fission in comparison to
binary fission, as well as the characteristics specific to ternary fission, we present
the in-plane and out-of-plane angular correlations between coincident fission frag-
ments. For ternary fission the dependence of the in-plane angular correlation, and
thus the deduced linear momentum transfer, on Zpyr of the ternary fragment can
provide information on possible entrance channel effects (central vs. peripheral col-
lisions). Examination of the Zpyp dependence of the fractional linear momentum
transfer (FLMT) will then be used to investigate the possible influence of angular
momentum on the three body breakup of the composite system. Next, the energy
spectra for ternary fragments will be discussed, including the energy cuts used to
separate fragments emitted isotropically and near-scission. The Z dependence of
the center-of-mass energy of ternary fragments will also be considered. The yields
of ternary fragments emitted isotropically and near-scission are then examined and
compared to previous data for both statistical (isotropic) and near-scission emis-
sion. Particular insight is provided by examining the dependence of relative yields
of ternary fragments (both isotropic and near-scission) on the deduced excitation
of the composite system. Finally, the absolute cross-sections for ternary fragments
emitted near-scission will be presented.

To facilitate understanding of the scattering process, the azimuthal symmetry of

66
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the scattering with respect to the beam direction was utilized. Detector placement
was defined in terms of a Cartesian coordinate system in which the z-axis was ori-
ented along the beam direction, and the horizontal or (y, z)-plane was defined by the
beam and the centers of the two “in-plane” PPACs as shown in Fig. 3.1 in Chapter 3.
The origin was defined by the intersection of the beam and the target foil. Angular
quantities were calculated in terms of a spherical coordinate system corresponding
to the chosen Cartesian coordinate system. Unless specifically stated otherwise, all
data have been corrected for geometric efficiency of the detectors. Details of the

geometric efficiency corrections are described in Appendix C.

4.1 Fission Fragment Angular Correlations

The azimuthal (out-of-plane) angular correlation distributions for coincident fission
fragments is shown in Fig. 4.1. The data plotted in panel (a) are for the case of binary
fission at the two incident energies, while the data in panel (b) are for the case of
ternary fission including both the isotropic and near-scission components. The data
for ternary fission are summed over 3 < Zpgr < 13 of the ternary fragment for
the 22 MeV/A data and 3 < Zpyrp < 12 for the 16 MeV /A data. The ternary
cases include both isotropic and near-scission emission. In both cases, the azimuthal
correlation angle is defined as the difference between the azimuthal coordinates of the
two coincident fission fragments, i.e. ¢ap = |¢a — ¢p|. For the case of binary fission,
conservation of linear momentum requires that the angle ¢pap be 180° in the center-
of-mass of the fissioning nucleus. Because this angle is measured perpendicular to the
direction of motion of the composite system, it is invariant under a transformation to
the laboratory reference frame. Therefore, it is expected that the average azimuthal
correlation angle, as measured in the laboratory, be 180° for binary events. Table
4.1 lists the mean values, (¢ag), and second moments, ps = 02, obtained by fitting

a Gaussian to each of the distributions in Fig. 4.1. Second moments were corrected
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Figure 4.1: Azimuthal correlation angle distributions for coincident fission fragments
in the reaction 12C + 232Th at 16 and 22 MeV/A. Measured values for the case of
(a) binary and (b) ternary fission. The ternary cases include both isotropic and

near-scission emission.

for finite detector resolution using a value of oyesolution = 0.8° for each PPAC, i.e.

H2 = 02 = (O-H’wasured)2 -2 (O-resolution)2 .

The factor 2 in the last term arises from the fact that we must consider the finite
resolution of both PPACs used in the measurement.

The mean values for binary events are effectively equal to 180° for both incident
energies, indicating that the events in question were indeed composed of correlated
fission fragments. Detection of correlated fission fragments was a requirement for
the kinematic reconstruction used later to deduce other quantities of interest. The
mean values for ternary events are also near to 180°, with widths comparable to
those observed for binary events. Two factors contribute to the width of the out-of-
plane angular distributions. The dominant factor is emission of neutrons or charged

particles following scission (post-scission), which can perturb the angular correlation



Chapter 4: Experimental Results 69

Incident Energy <¢AB>Binary <¢AB>Tornary
22 MeV /A 180.1° (j1 = 16.0°)  180.3° (112 = 17.9°)
16 MeV/A 180.6° (112 = 14.0°)  180.7° (1o = 15.8°)

Table 4.1: First and second moments, (¢ap) and pg = o2, of the azimuthal correla-
tion angle distributions for coincident fission fragments. Second moments have been

corrected for finite detector resolution as described in the text.

between the two fission fragments. These post-scission particles are emitted isotropi-
cally in the rest frames of the two accelerated fission fragments, causing the emitting
fission fragment to recoil. The random orientation of the recoil momentum leads
to a broadening the angular correlation distribution. The width of the out-of-plane
angular correlation can be used as an indicator of the excitation energy of the fission
fragments following scission [1]| (i.e. higher excitation would allow emission of more
particles which would lead to a broader distribution of the angular correlation). The
smaller values of the second moments observed for ternary events may be an indica-
tion that the fission fragments emerge with less excitation energy in ternary fission
than in binary fission. This view is consistent with the large energy cost expected
for emission of a third fragment from the neck region (see Sec. 1.4.1). However,
in the current work the azimuthal correlation angle was used simply to verify the
correlation of coincident fission fragments. The second factor that can influence the
azimuthal angular correlation is scattering of the fission fragments in the target foil.
Although of relatively minor importance compared to post-scission particle emission,
scattering of the fission fragments can be a measurable affect the final width of the
distribution.

The fission-fragment folding angle, O = 0o + 6 for two correlated fission
fragments A and B, (see Fig. 4.2) can be related to the longitudinal component

of the linear momentum transferred from the incident projectile to the composite
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Figure 4.2: Vector diagram defining the fission fragment folding angle, 65, for parti-
cle induced binary fission. In the center-of-mass of the fissioning nucleus the relative
angle of emission between the two fission fragments is constrained by conservation of
linear momentum. The forward motion of the composite nucleus leads to a smaller
angle (< 180°) between the two fission fragments as measured in the laboratory

system.

system [2]. Knowledge of the linear momentum transfer (LMT) for a given event
provides a means to extract information about the collision, such as its centrality
or the initial excitation of the composite system [2, 3, 4]. At low to intermediate
incident energies, where complete and incomplete fusion are the dominant interaction
mechanisms [5], a central, or head-on collision will transfer an appreciable portion
of the momentum of the incident particle to the composite nucleus. Conversely,
a more peripheral interaction will result in the transfer of considerably less linear
momentum, but will lead to composite states of higher angular momentum.

The relationship between the fission-fragment folding angle and LMT has been
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Figure 4.3: Effect of incident energy on the binary folding-angle distributions for
coincident fission fragments in the reactions (a) N + 233U, and (b) '2C + 232Th
at the listed incident energies. The deduced fractional linear momentum transfer

(FLMT) scale, p||/Pbeam, is shown above each distribution. Data for N + 2380 are
from Ref. [5].
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well documented for numerous cases of light and heavy-ion-induced binary fission
[1,2,5,6,7,8,9]. Figure 4.3 provides a comparison of the measured binary folding-
angle distributions from the present work with those for the system YN + 238U
at a number of incident energies |[5]. Looking first at the data for the 238U(!N,f)
reactions in panel (a), there are several important features to note: (1) At low
incident energies, near the Coulomb barrier, the distribution of folding angles shows
a high probability for events involving full LMT (p||/ppeam = 1.0). Events resulting
from peripheral interactions are strongly suppressed, even for the highly fissile 238U
nucleus. (2) As the incident energy increases, the probability for fission arising from
more peripheral interactions (p||/pbcam << 1.0, incomplete fusion) increases. At the
highest incident energies indicated in the figure, the probability for fission arising
from less than full LMT is comparable or greater than for complete fusion. (3) As
the incident energy increases the entire distribution becomes broader.

Looking now at the 232Th('2C, f) binary fission data (panel (b) in Fig. 4.3), the
following observations can be made: (1) The peripheral component of the folding-
angle distribution is more prominent for the higher incident energy, in agreement with
the trends observed in the 238U(1N, f) data. The probability for fission following
incomplete fusion increases with increasing incident energy. (2) For both incident
energies, the peripheral component is less pronounced than for 223U (14N, f) at similar
energies. This difference can be understood by considering the lower fissility of 232Th
compared to 228U. (3) The most probable folding angle, 0% (denoted by arrows in
Fig. 4.4), is higher for the 22 MeV /A data than for the 16 MeV /A data, indicating a
decreased probability for complete fusion at the higher incident energy. This trend is
also consistent with the results from [5]. At higher energies incomplete fusion begins
to dominate the total reaction cross section, either through projectile breakup and
subsequent capture or the onset of pre-equilibrium emission.

Figure 4.4 presents the measured fission fragment folding angle distributions for
both binary and ternary events in the 2C + 232Th reaction at (a) 22 MeV/A and (b)

16 MeV/A. Again, the results for ternary events are integrated over 3 < Zpyr < 13
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Figure 4.4: Folding angle distributions for coincident fission fragments in the reaction
12C + 282Th at (a) 22 MeV/A and (b) 16 MeV/A. Measured values for the case
of binary fission (open circles), ternary fission without correcting for recoil of the

fissioning nucleus (up triangles) and ternary fission after correcting for recoil (down

triangles). The ternary cases include both isotropic and near-scission emission.

for the 22 MeV /A data and 3 < Zpyp < 12 for the 16 MeV /A data. To compare
with the results for binary fission the data for ternary fission are presented before
(up triangles) and after (down triangles) correcting for the recoil of the fissioning
nucleus due to emission of the ternary particle at backward angles (necessary for
deducing the FLMT, see App. B). At both incident energies the uncorrected ternary
folding angle distribution is peaked near 145° (indicated by the arrows in the figure),
~ 10° less that the most probable values for binary fission. Most of this difference
is the result of the recoil, as can be seen by comparing the binary and corrected
ternary distributions. For the 22 MeV /A data the difference between the binary and

corrected ternary values is now only 3.9°, and there is no difference in the 16 MeV /A
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data. Based on the observations from Fig. 4.3 we can conclude that ternary fission
is preferentially associated with larger LMT. At both incident energies the corrected
distributions are peaked near 100% LMT and seem to lack the low LMT shoulder

observed for binary fission.

4.2 IMF Energies

Center-of-mass kinetic energy distributions for beryllium and carbon fragments de-
tected in coincidence with two correlated fission fragments are displayed in Fig.
4.5. Panels (a) and (b) show the center-of-mass energy spectra, for beryllium
and carbon fragments respectively, as measured ~ 50° with respect to the scission
axis. Gaussian fits to the energy spectra yielded mean center-of-mass energies of
(Eem) = 43.8 (0 = 10.5) MeV for beryllium and (Eepy) = 54.5 (0 = 8.0) MeV for
carbon. The horizontal bars in Fig. 4.5 indicate the ranges used for the fits. The
energy spectra and the extracted mean energies are consistent with the Coulomb
barrier for emission from a nearly spherical source the size of the emitting composite
system.

Panels (c) and (d) of Fig. 4.5 depict the center-of-mass energy spectra for beryl-
lium and carbon fragments, respectively, measured ~90° with respect to the scission
axis. Both spectra exhibit a bimodal distribution, in agreement with earlier in-
vestigations of ternary fission |10|. Vertical dotted lines indicate the energy cuts
used to separate the low energy component, associated with near-scission emission,
from the high energy, isotropic component. Gaussian fits to the low energy com-
ponents yielded mean center-of-mass energies of (Eey) = 21.9 (0 = 10.6) MeV for
beryllium and (F.,) = 26.1 (0 = 12.0) MeV for carbon. These values are well
below the Coulomb barrier for emission from a compact source. Fits to the high
energy components yielded values of (Ecp) = 42.5 (o = 7.0) MeV for beryllium and
(Eem) = 53.3 (6 = 10.9) MeV for carbon. These values are in good agreement with
those determined over a similar energy range in panels (a) and (b). Also, the over-

all yield of the high energy component, after accounting for variations in detector
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Figure 4.5: Center-of-mass energy spectra for Be and C fragments measured in
coincidence with two correlated fission fragments. Panels (a) and (b) show energy
spectra for Be and C respectively, measured ~ 50° with respect to the scission axis.
Panels (c¢) and (d) show energy spectra for Be and C respectively, measured ~ 90°
with respect to the scission axis. The dotted lines indicate the energy cut used to
separate the low energy, near-scission component from the high energy, isotropic
component. The curves represent Gaussian fits to the high energy (solid blue) and
low energy (dashed red) components. Mean energies and standard deviations from
the fits are listed. The capped horizontal lines indicate the ranges used for the

corresponding fits.
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Figure 4.6: Mean center-of-mass kinetic energy of ternary fragments as a function
of Zmyr for near-scission (open and closed circles and open triangles) and isotropic

(open squares) emission.

solid angle, is comparable between the two angular regions, indicative of an isotropic
emission mechanism, for which there is no correlation with the orientation of the
scission axis.

The dependence of the average center-of-mass kinetic energy on Z of the emitted
fragment is depicted in Fig. 4.6. Both the isotropic and near-scission components
exhibit a roughly linear dependence of the average energy on Zpyr. The solid line

indicates the Coulomb barrier for a touching-spheres scenario given by,

144ZIMF (Zsourcc - ZIMF)

EC:14[A1/3 +(A A 1/3]
. IMF source IMF) +2

MeV (4.1)

where Zgource and Agource have been approximated by 90 and 232, respectively, to

account for incomplete fusion and pre-scission emission of nucleons. The kinetic
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energies for isotropically emitted fragments are roughly consistent with this simple
formula, indicating that these fragments are emitted while the excited composite
system is still relatively compact. Fragments emitted near scission have average
kinetic energies significantly lower than those associated with statistical emission
from a spherical source. This result is consistent with emission of the near scission
IMFs from an extended source as depicted by the cartoon in the lower right corner of
the figure. Data are also included for near-scission emission observed in the reaction
“He + 232Th at 50 MeV /A (open triangles) [11]. The agreement between the data
for near-scission emission in the three reactions would indicate that the extent of the

emitting system is not greatly affected by the initial excitation energy.

4.3 Kinematic Correlations Between Fission Fragments

and IMFs

In order to understand the conditions under which fragments are emitted, we have
examined the correlations between the fission-fragment folding angle and IMF emis-
sion. The folding-angle technique has been well established as a means of deducing
the linear momentum imparted to the fissile target nucleus [5], from which the result-
ing excitation of the composite system can be inferred. For reference, binary fission
following complete fusion (full linear momentum transfer) should yield an average
folding angle of (fap) = 152° for the 22 MeV /A case. In contrast, the most prob-
able folding angle observed for binary fission events associated with non-peripheral
collisions is 45 = 156.9° (as indicated in panel (a) of Fig. 4.4), which is consistent
with the incomplete fusion of projectile and target nucleus in the formation of the
composite system.

In Fig. 4.7 the dependence of the average folding angle on Zpp in ternary fission
events is presented. In panel (a) we compare the results for isotropic and near-
scission emission in the 22 MeV /A reaction, and in panel (b) the results for near-

scission emission at the two incident energies are compared. For the isotropically
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emitted fragments (open squares) the mean folding angle decreases monotonically
with increasing Znyr due to the recoil imparted to the fissioning system by the back-
ward emitted IMF. Since the angle, kinetic energy, and Z of the IMF are measured,
the magnitude of this recoil can be calculated by assuming a Z /A ratio for the IMF
that is consistent with previous measurements [10, 11]. The solid line in panel (a)
represents the mean folding angle predicted by the assumption of 87% linear mo-
mentum transfer from the projectile to the composite system (incomplete fusion),
including corrections for recoil of the fissioning system due to the IMF emission
prior to significant deformation and subsequent fission of the residual nucleus. The
folding angle associated with isotropically emitted ternary fragments can be under-
stood reasonably well within such a scenario. In contrast, IMFs emitted near-scission
(open and closed circles) exhibit a more complex behavior. While the mean folding
angle for near-scission IMFs with Z < 7 also decreases monotonically, for Z > 8 the
trend is reversed, and the mean folding angle begins to increase (decreasing LMT)
with increasing Z. This trend would indicate that the latter fragments are emitted
in events in which less linear momentum was initially transferred to the composite
system, i.e. near-scission emission of IMFs with Z > 8 are associated with more
peripheral collisions.

The dashed line in both panels of Fig. 4.7 represents the mean folding angle
associated with the assumption of 83% linear momentum transfer from the projectile
to the composite system, including corrections for recoil of the fissioning system due
to the IMF emission and subsequent fission. However, as with the solid line in
panel (a), it is assumed that IMF emission occurs prior to significant deformation
of the composite system. Since this is not the case for near-scission emission (the
net Coulomb repulsion immediately after IMF emission is significantly lower for
near-scission emission), it is expected that the linear momentum transfer is actually
greater than 83% for the near-scission events. This expectation is confirmed in the
event-by-event analysis, where the recoil is determined by conservation of linear

momentum using the assumed mass of the IMF and its energy as measured in the



Chapter 4: Experimental Results 79

1550 : | T | T T T | T | %l :: | T | T T T | T | % :
150° F 5. R E . %{ =
RS %% S Y %ﬁ :
145° 3 EIA T S SR
) - T N 1
2 1400 | " F } R
2 - (@) . T (b N ]
135° | o Tsotropic (22 MeV/A) S o NSE (22 MeviA) o
[ — Calc. for FLMT =0.87 T ___ Calc. for FLMT =0.83 ]
130° | o NSE (22 MeV/A) —+ o NSE (16 MeV/A) .
[ --- Calc. for FLMT =0.83 I ]
1250 c Loy | I T i AT AN RN RN T

2 4 6 8 10 12 2 4 6 8 10 12 14

ZIMF

Figure 4.7: Dependence of the mean fission-fragment folding angle on Zpyr for near-
scission (open and closed circles) and isotropic (open squares) emission. The points

for NSE are offset 0.1 units in Zpr for clarity.

IC telescopes. In comparing the results for near-scission emission at the two incident
energies, panel (b) of Fig. 4.7, we find that there are no significant differences aside
from the points for Zpgr = 10. Since there is good agreement for all other values
of Zmr, the disagreement for Zpyr = 10 is most likely due to a systematic error in
the analysis that has so far eluded identification.

We have determined the average fraction of the linear momentum transferred
((FLMT)) by the projectile to the composite system by iteratively correcting on
an event-by-event basis for the recoil of the backward emitted IMF (for details see
Appendix B). The dependence of (FLMT) on Zpyr is shown in Fig. 4.8. The
“isotropically emitted” fragments are associated with a nearly constant (FLMT') of
90% within the measurement uncertainties. The (FLMT') associated with NSE IMFs
decreases monotonically from 83% to 25% with increasing Zpyp. Decreasing linear
momentum transfer is presumably associated with decreasing energy deposition into

the composite system. Hence, the observed decrease in (FLMT') with the Z of the
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Figure 4.8: Dependence of the mean fractional linear momentum transfer (FLMT)
on Zpyr for near-scission (open and closed circles) and isotropic (closed squares)

emission. The points for NSE are offset +0.1 units in Zpyp for clarity.

near-scission IMFs qualitatively suggests that NSE of heavy fragments is not driven

solely by excitation energy considerations.

4.4 IMF Yields

The yield distributions of the isotropic and the near-scission components are shown in
Fig. 4.9 for the 22 MeV /A reaction. Both components are reasonably well described
by a power-law type behavior o(Z) oc Z~7. For the isotropic component the power-
law parameter is 7 = 2.94 4+ 0.14. Near-scission emission has a much flatter Z
distribution (7 = 1.17 4+ 0.10), consistent with previous measurements [10, 11|, and
for heavy IMFs (Z > 8) the yield distribution is essentially constant. The power
law parameter, 7, is believed to be indicative of the details of the fragmentation
process [12]. For multifragmentation reactions induced by light and heavy ions, 7 is

observed to be a monotonically decreasing function of the projectile energy, down to
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Figure 4.10: Comparison of the experimental 7 parameters for NSE from the current
work with values deduced from experimental statistical emission data and statistical
model calculations. The dashed line is a power-law fit to the data for statistical

emission.

a minimum of 7 ~ 2.0, which occurs at Ej,, ~ 2 GeV [13]. The systematic behavior
of the power law parameter for multifragmentation reactions has been frequently
cited as evidence that these reactions proceed by a common decay mechanism. In a
statistical emission framework, a flatter yield distribution (smaller 7) is associated
with higher excitation of the emitting system. Due to prior neutron emission from
the composite system, as well as transfer of energy into deformation, one would
expect near-scission emission to be associated with lower excitation energy than the
isotropic component. Consequently, the flatter yield distribution for near-scission
emission suggests a decay mode not solely dependent on excitation energy. This
view is supported by the apparent dependence of the NSE fragment mass on the

angular momentum of the entrance channel discussed in Sec. 4.3.
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The 7 parameters extracted from the IMF yield distributions in the present work
are compared to values obtained from experimental and theoretical statistical emis-
sion data in Fig. 4.10. The data are plotted as a function of the initial excitation
energy per nucleon of the composite system. Open circles are the result of power-law
fits to the elemental yields for 3 < Zir < 11, observed in the reaction 3He + nat A o
at incident energies of 45 130 MeV [14]. Open squares are from power-law fits to the
yield of fragments with 3 < Zpyr < 6 obtained using the statistical decay code SI-
MON [15]. The model calculations were for the reaction 12C + 232Th at 264 MeV as-
suming fractional linear momentum transfer values of FLMT = 1.00, 0.83, and 0.75.
For these data the power-law parameter 7 decreases monotonically with increasing
excitation, in agreement with the systematics described in Ref. [13]. This trend ex-
presses the increasing probability for the emission of larger fragments as the necessary
energy becomes available [16]. The dashed line is a power-law fit to the statistical
emission data made primarily to guide the eye.

The closed points in Fig. 4.10 represent the results for NSE in the two 2C-
induced reactions of the current work. The initial excitation energy was calculated
on an event-by-event basis within the framework of the massive transfer model as
described in Sec. B.4. The mean value was integrated over 3 < Zpyr < 12 in the
16 MeV /A reaction and 3 < Zpyp < 13 in the 22 MeV /A reaction and plotted
against the corresponding power-law parameter. It should be further noted that the
deduced excitation energy for the NSE case corresponds to an upper limit based on
the deduced FLMT in the entrance channel. At scission much of the initial excitation
will have been converted into deformation energy or lost to pre-equilibrium particle
emission. This fact is indicated in the figure by the arrows on the two NSE points.
However, even if we consider just the initial excitation energy, we see a marked
difference for NSE when compared to the points for statistical evaporation. The
value of the 7 parameter is significantly lower, by a factor of three or more, for the
case of NSE at similar initial excitation. This difference further supports the idea

of a substantially different emission mechanism than that believed to be responsible
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for strictly statistical emission.

Figure 4.11 shows a comparison of NSE yields for heavy-ion-induced ternary fis-
sion from the current work with yields for spontaneous and thermal-neutron-induced
(ngp-induced) ternary fission. The spontaneous and ny,-induced data show a strong
odd-even effect indicating that the near-scission IMFs are being emitted from a sys-
tem at low temperature, where shell effects are still important. As the interaction
becomes more violent, the features in the yield curve arising from shell structure
begin to disappear, indicating emission from a hotter source, i.e. there is more
excitation energy available at scission which washes out the shell structure seen at
lower energies. Also, in heavy-ion-induced ternary fission the yields extend to heavier
Zmr- This extension to heavier neck fragments could be another indication that the
angular momentum of the fissioning system plays an important role in the dynamics

of the three-body breakup.

4.5 Relative IMF Yields

To explore the role of excitation energy on fragment emission further, we have con-
structed the yield ratios between different IMFs as a function of excitation energy.
For statistically emitted fragments these ratios should be sensitive to the IMF emis-
sion barriers. The average initial excitation of the composite system, (E*), was
calculated in the framework of an incomplete fusion model using the deduced FLMT,

)= o gry1- (2) + @ (4.2

where F), is the projectile energy, p is the fractional linear momentum transfer from
the projectile to the composite system (FLMT'), A; and A, are the mass numbers of
the target and projectile, respectively, v, is the velocity of the projectile and (Q) is
the average @ value of reaction channels consistent with the given p (see Sec. B.4 for
a detailed description of how the initial excitation energy was determined). Deduced
values for the linear momentum transfer covered a range of 0.25 < p < 1.0 as shown

in Fig. 4.8.
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Figure 4.11: Relative IMF yields for near scission emission. Comparison of results
from the current work with data from spontaneous ternary fission of 252Cf [17], ny,-
induced ternary fission of 2#2Am [18] and 2Th [19] and a-particle induced ternary
fission [11]. Yields are plotted relative to the near-scission « yield for each system.
Lines are to guide the eye with the dashed line representing the average for the

spontaneous and ny,-induced data.
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Figure 4.12: Relative yields of various IMFs as a function of the initial excitation
of the composite system. Data are for (a) isotropically emitted IMFs, and (b) IMFs
emitted from the neck region (NSE). Renormalized predictions of the statistical
model SIMON are shown as solid lines in (a). Yields are plotted relative to the Li

yield.
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The dependence of the isotropic IMF yield relative to lithium on excitation en-
ergy is shown in panel (a) of Fig. 4.12. The experimental data exhibit an exponential
increase with increasing excitation energy. This behavior can be qualitatively under-
stood in terms of the Z dependence of the IMF emission barriers. Since the emission
barrier increases with increasing Zpyr, for a given excitation energy one observes
a reduced emission probability for IMFs with larger Z. With increasing excitation
energy this suppression in emission probability decreases.

We also compared the experimental data with the predictions of the statistical
model SIMON [15]. The solid lines in panel (a) of Fig. 4.12 depict the predicted yields
of Be, B and C relative to Li fragments as a function of E*/A. As SIMON tends to
seriously under-predict fragment yields it was necessary to renormalize the results
of the calculations for comparison with the data. The model semi-quantitatively
reproduces the main trend observed in the experimental data, showing a 3-4 fold
increase in the relative yield over the measured excitation energy window. Thus, the
behavior of isotropically emitted IMFs is consistent with statistical emission from a
compact source.

The dependence of the relative yields of NSE on the initial excitation of the
system is shown in panel (b) of Fig. 4.12. The yields of near-scission fragments with
Z=4—-7,7Z=8-9, and Z = 10 — 13 have been normalized by the yield of near-
scission Z = 3 fragments. In marked contrast to the trends observed in panel (a)
of Fig. 4.12, the relative yields in panel (b) do not show an exponentially increasing
behavior with increasing excitation energy. For neck-emitted Z = 4 — 7 fragments
the relative yield is approximately constant with increasing excitation energy. Such
behavior could be understood if the emission barriers were essentially the same or
if no emission barriers existed  consistent with emission of neck fragments from
extended configurations. For Z = 8 — 9, however, the relative yield decreases with
increasing excitation energy. A factor of 5 decrease is observed between the cases
involving the lowest excitation (peripheral collisions) and cases involving the highest

excitation (more central collisions). In the case of Z = 10 — 13, a suppression by a
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Figure 4.13: Relative yields of various IMFs emitted from the neck region (NSE) as
a function of the initial excitation of the composite system. Data are for the 2C +
232Th reaction at (a) 22 MeV /A and (b) 16 MeV/A. Yields are plotted relative to
the Li yield.

factor of approximately 20 is observed between E*/A = 0.2 and E*/A = 0.6. This
behavior is inconsistent even with a zero emission barrier scenario and, we believe, is
a strong indication of a non-statistical, dynamical origin of NSE of heavy fragments.

In understanding the association of significant heavy fragment neck yield with
low linear momentum transfer, two points are noteworthy. First, for heavy fragments
(Z > 10) the mass of the fragment approaches the mass of the neck. Thus, statistical
emission from the neck would require evaporation of almost the entire “source” and
is suppressed on the basis of source size effects. Suppression of statistical emission
is important if one is to isolate a co-existing/competing decay mechanism clearly.
Second, for collisions involving modest linear momentum transfer (25%), the de-

formation (stretching) introduced into the target nucleus may be significant. In
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Figure 4.14: Relative yields of isotropic (left panel) and neck (right panel) emitted
IMFs as a function of y/a/E* for the reaction 2C + 232Th at 22 MeV/A. Extracted
values for the relative emission barrier, AB, are given for each fit. The level density

parameter was calculated as a = A/9 where A is the mass of the composite system.

contrast, central collisions should yield less deformation and greater heating of the
system. Qualitative expectations dictate that survival of any initial stretching of
the excited composite system into the fission channel results in a more elongated
scission configuration and consequently a larger middle fragment. The survival of
such an initial stretching should depend sensitively on the nature of nuclear dissipa-
tion. Preliminary calculations with a dynamical model of fission [20] bear out these
qualitative expectations |21].

It has recently been suggested by Moretto et.al. that the results obtained in

this work ARE consistent with statistical emission [22]. We present their argument
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(based on our data) and our counter-argument. In terms of statistical theory, the
emission probability for a fragment with a Z dependent emission barrier By can be

written as

Py o Ay e_BZ/T

where Py is the probability for emission, 7" is the temperature of the emitting system
and Az is a proportionality constant that depends on Z. The emission probability for

a fragment with atomic number Z relative to that for Z = 3 can then be constructed:
Pz/Pg =Ky e_(BZ_B3)/T =Ky E_AB/T

where Ky = Az /A3 and AB = (B — Bs) represents the relative emission barrier.

Taking the natural logarithm of both sides of this expression gives
ln(Pz/Pg) = ln(Kz) — AB/T = ln(Kz) — vV a/E* AB. (4.3)

Here we have made the substitution 1/7 = \/W where a is the level density
parameter, calculated as a = A/9 MeV~! where A is the average deduced mass of
the composite system. A transformation of the data in Fig. 4.12 results in a plot
that is consistent with Eq. 4.3 as is shown in Fig. 4.14. Linear fits to the data allow
the extraction of the relative emission barrier, AB, with respect to the emission
barrier for Li fragments (cf. Eq. 4.3). For the case of isotropic emission the slopes
are positive, indicating an increasing barrier which is qualitatively consistent with
the results from liquid drop model calculations |22|. For neck emission however, the
relative emission barriers are nearly zero for Z =4 7 and decrease for Z =8 9 and
Z =10 13. The interpretation for these trends is consistent with that of the present
work but based strictly on statistical model arguments [22]. These trends suggest
that the neck is thick for Z = 3 7, the barrier being the energy necessary to create
the extra surface in the two cuts required to break the fragment loose, while for
Z = 8-13 the neck is long and thin and the two cuts are less expensive in terms of
the required energy. However, an attempt to explain the results of the current work

in terms of purely statistical decay ignores several important points [23].
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The entire question of statistical emission depends critically upon which modes
constitute the “bath”. The substantial excitation of collective modes in spontaneous
fission suggests that the evolution from saddle to scission is non-adiabatic. For
example, the excitation of angular momentum bearing modes is somewhat more
than would be expected if the saddle to scission energy were distributed amongst all
degrees of freedom [24, 25]. Within this context one could ask, “Should the energy for
neck fragment formation (i.e. pinching off of the neck) be taken from the collective
or the intrinsic bath?” While a non-adiabatic evolution is thus very possible, let us
assume for the sake of argument that the evolution is adiabatic.

The process of ternary fission can then be considered as a slow evolution of
the shape, during which statistical decay could produce neck fragments. Here to
rephrase Moretto et al.’s argument, the events which survive to make the longer,
thinner necks are more likely to generate the larger middle fragments (Z>7) while
those which are less long lived and have shorter thicker necks, are more likely to
produce the smaller middle fragments (Z<6). The simple energy considerations
proposed by Moretto make this scenario plausible and in fact it is supported by the
results of more complete dynamical calculations [26]. However, one must question
if the conditions which led to the formation of the configurations with short, thick
necks and long, thin necks are the same. In this regard, it is important to recall that
in spontaneous ternary fission large (Z>7) neck fragments are not observed with any
significant probability. Why is the present case different? Is it just a hotter heat
bath?

It is critical to remember that the excitation energy deduced from the measured
linear momentum transfer is at best the initial excitation of the composite system.
For the isotropically emitted fragments, which are emitted when the system is rela-
tively spherical and before any significant deformation occurs, this initial excitation
energy should correspond closely to the excitation at the time of emission of the
IMF. In fact, the observed excitation functions are consistent with the fractional

linear momentum transfer being closely related to excitation at the time of emission
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and shows a clearly Z dependent emission barrier, as seen in Fig. 4.12, by the agree-
ment between the results of the SIMON statistical simulation code (Z dependent
emission barriers) and the data for isotropic emission. For these emissions, it seems
the hotter bath explains the increased yield as compared to SF.

On the other hand, for fragments emitted later, near scission, the emission prob-
ability is more weakly related to the initial excitation. However, the fractional linear
momentum transfer is also related to the impact parameter, b, or the angular mo-
mentum, ¢, of the collision. A smaller linear momentum transfer (lower deduced
initial excitation) is associated with a more peripheral collision, and a larger linear
momentum transfer (higher deduced initial excitation) is associated with a more
central collision. The results of the current work suggest that the larger neck emit-
ted fragments (Z > 7) are preferentially associated with more peripheral collisions.
Thus, larger neck fragments arise from different initial angular momentum states
than do the smaller neck fragments, and the parent distributions for the two types
are different. This fractionation of angular momentum into different parent distribu-
tions which subsequently decay statistically is analogous to the situation in strongly
damped/deep inelastic heavy-ion collisions. As in that case, the question of interest
concerns the dynamical formation of the parent distributions.

Nuclear dissipation of course couples the collective modes to intrinsic ones lead-
ing to excitation of the system at scission. Thus, the interplay of dynamics and
statistics depends sensitively on the nature of nuclear dissipation. Detailed studies
of neck/ternary fission may provide new insight into the dynamical and statistical
factors influencing fragment formation and ultimately lead to a better understanding

of nuclear dissipation.

4.6 Ternary Fission Cross-section

In order to determine the ternary fission cross-section, it was first necessary to cal-
culate the binary fission cross-section from the measured binary fission data. Table

4.2 summarizes the measured binary fission rates for the reaction '2C + 232Th at 193
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MeV for four runs. Cross-sections for the 264 MeV experiment were not determined
because these data were not available. In Table 4.2, ¢ is the duration of each run
in seconds, N indicates the uncorrected total number of binary events measured in
each run, N’ takes into account corrections due to the geometric efficiency of the
detector coverage as well as down-scaling in the data acquisition electronics and
detector/data acquisition dead-time, and R’ is the corrected binary fission rate in
events per second. The dead-time reflects the time necessary for the data acquisition
system to process an event. While an event is being processed, any additional events
must be discarded. Since the ternary fission cross-section was expected to be sev-
eral orders of magnitude less than the cross-section for binary fission, a down-scaler
unit was used to limit the possibility that the data acquisition system would be in
a busy state due to a binary event and be unavailable to record a ternary event.
Binary events were down-scaled by a factor of 32 in both experiments; that is, only
every 32nd binary event was processed by the data acquisition system and written to
tape. The time-to-live factor, f; = tiive/treal, 18 a ratio of the time during which the
data acquisition system was able to accept new events to the actual time of the run.
This factor quantifies the dead-time allowing the data to be corrected to account
for events that occurred during the time the data acquisition system was busy. The

binary fission rate was calculated as

N  Ns
= =" 4.4
i t Eftt ( )

where s is the down-scaling factor, € is the geometric efficiency correction (see Ap-
pendix C), and the remaining variables are as described above.

In order to extract the fission cross-section it is necessary to know the incident
beam current, Iyeam. 10 determine the beam current an Ortec 439 Digital Current
Integrator was connected to the data acquisition system during the last four data
runs (46,47,51 and 52). The module was set to provide one logic pulse for every 10~
Coulombs of charge collected at the beam dump Faraday cup (F.C.). This amount
of charge is equal to 6.242 x 10° units of elementary charge, e, or 1.040 x 10° (e/6)

1206= nuclei. To ensure its accuracy, this F.C. was calibrated by comparison with
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Run # 1 (s) N I N’ R (s71)
46 12420 7961400 0.719909 635436708 5.116 x 10%
47 13020 8573100 0.667081 738533588 5.672 x 10%
51 4920 3094845 0.643116 276336275 5.617 x 10*
52 780 389820 0.617089 36262630 4.649 x 104

Table 4.2: Experimental rates for binary fission in the reaction '2C + 232Th at 193

MeV. See text for a description of the headings.

Run # R (s7h) (Ibeam) (proj/s) oy (b)
46 5.116 x 10* 8.560 x 10 2.326
47 5.672 x 10* 8.857 x 10 2.493
o1 5.617 x 10* 8.340 x 10 2.621
52 4.649 x 10* 6.938 x 10° 2.608

Table 4.3: Deduced experimental cross-sections for binary fission for the reaction

12C + 22Th at 16 MeV/A.

an electron suppressed F.C. (incident electrons are deflected away from the F.C. and
thus the integrated charge is due only to 2C5~ nuclei) located upstream from the
scattering chamber. The comparison was made for two beam currents differing by a
factor of 10, and it was found that a factor of 0.502 was needed to convert the beam
current measured at the beam dump to the true beam current as measured at the
electron suppressed F.C.

The output from the current integrator was recorded as a scalar for each run
representing the total charge collected at the beam dump. The calibrated beam
current obtained from the current integrator was then used to determine the binary
fission cross section for these four runs by the standard expression

R/
o=

Ibeamnx
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where nz = 2.569(+0.130) x 10'® target nuclei/cm? for the 700 ug/cm? 232Th target
foil rotated to 45° with respect to the beam axis. In Table 4.3 R’ represents the cor-
rected binary fission reaction rate, (Ipeam) is the average beam current in projectiles
per second as determined from the current integrator and duration of each run, and
oy is the resulting binary fission cross section. The mean value for o; weighted by

the uncorrected number of binary fission events in each of the four runs was
o =245+0.11b.

This result is in agreement with the asymptotic value for binary fission excitation
functions for the same and similar systems as shown in Fig. 4.15. The binary fission
cross section deduced from the last four runs was then used to calculate the aver-
age beam current (Ipeam) for all earlier runs (those for which the current integrator
was not present). In Table 4.4 R/ is the binary fission reaction rate corrected for
geometric efficiency, down-scaling and detector/DAQ dead time, (Iheam) is the aver-
age beam current calculated for each run, and IVp;; is the corresponding number of
projectiles incident on the target during the run.

To simplify the determination of the ternary fission cross section, a weighted
average over all runs of interest was calculated for both the average beam current
and the time-to-live correction factor. The weighting factors used for both averages

was the corrected numbers of binary events, N’, for each run.

o Z N/ <Iboam>

(L) = s = 8.811(+1.102) x 10° proj. /s

> N'fi
>N

Total time for the runs used was ¢ = 1.213(£0.011) x 10° s, assuming an uncertainty

(fr) = = 0.716 4 0.078

of £60 s for each run. In Table 4.5, Zyr represents the atomic number of the ternary
fragment, N represents the uncorrected total number of such fragments detected,
N' represents the total number of fragments after correction for geometric efficiency
effects and detector/DAQ dead-time, R’ is the corresponding corrected reaction rate,

and onsg is the resulting ternary fission cross section in pb. The deduced ternary
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Figure 4.15: Excitation functions for binary fission in the reactions: 2C + 238U [27],
160 4 238U |27, 28], 160 + 232Th [29], and *2C + 232Th [30, 31, 32, 33|. The arrow
indicates the point for the binary fission cross-section determined in the current work

(07 =2.45£0.11 b for incident energy Ej,, = 193 MeV).

fission cross-sections for fragments with 3 < Zpyp < 12 are presented in Table 4.5
for the reaction '2C +232Th at 16 MeV/A. A plot of the deduced ternary fission

cross-sections as a function of Zpyr of the NSE fragment is provided in Fig. 4.16.
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Run #  R'(s7")  (Iveam) (proj/s) Nproj
23 5.265 x 104 8.370 x 107 4.520 x 1013
24 5.298 x 10* 8.421 x 107 4.042 x 10'2
26 4.298 x 10* 6.831 x 10° 5.656 x 1013
29 6.756 x 10*  1.074 x 100 2.384 x 103
31 6.317 x 10*  1.004 x 10'°  1.416 x 10
32 5.871 x 10* 9.332 x 10° 2.368 x 1014
33 5.581 x 103 8.871 x 108 1.224 x 10'2
36 4.407 x 10* 7.005 x 10° 1.345 x 10'3
37 6.227 x 10* 9.898 x 10° 7.424 % 10'3
39 4.660 x 10* 7.407 x 10° 3.600 x 10'3
41 4.454 x 10* 7.079 x 10° 1.317 x 103
42 5.030 x 10* 7.994 x 10° 3.502 x 1013
43 4.924 x 10* 7.828 x 10° 4.180 x 10'3
44 4.869 x 10* 7.740 x 10° 4.226 x 103
45 9.044 x 10° 1.438 x 10° 2.329 x 1012

Table 4.4: Calculated beam currents based on the deduced binary fission rate.
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Chapter 5

Comparison with Model

Calculations

Three models were employed in an attempt to gain additional insight into the salient

features of ternary fission:

1. SIMON statistical decay code: Used to calculate elemental yields of ternary
fragments assuming sequential decay, i.e. IMF emission followed by fission,

within a statistical model framework [1].

2. Fission energetics code: Used to investigate the potential energy for various
ternary scission configurations relative to a spherical parent, assuming a par-
ticular size of ternary fragment. The calculations included contributions from
the nuclear binding energies, the Coulomb energy, and the proximity energy
(details of the proximity energy calculation are provided in Appendix D). Nu-
clear binding energies were calculated using the Droplet Model of Myers and

Swiatecki [2, 3, 4] (details of the model are provided in Appendix E).

3. Los Alamos Dynamical Fission Model: Used to explore the effects of angular
momentum, isospin (N/Z), and kinetic energy along the deformation coordi-

nate in ternary fission.

101
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Ternary
Fragment

Fission Fragments

Figure 5.1: (a) A prolate spheroid of rotation (& = b < ¢) with semi-major axis,
¢, and semi-minor axes, a and b, labeled. The spheroid depicted has an axis ratio
of ¢/a = 2/1 (¢ = 0.866). (b) Diagram of the initial state (parent) and final state
(ternary fragment plus two identical fission fragments) configurations used in the
fission barrier calculations. In this diagram the parent and fission fragments each

have an axis ratio of 2/1, while the ternary fragment is spherical.

The IMF yields calculated with SIMON were compared directly to the experimentally
measured yields of IMFs emitted isotropically and near-scission. The results of these
statistical calculations were previously described in Secs. 4.4 and 4.5. The energetics
calculations and dynamical model simulations are the focus of the remainder of this

chapter.

5.1 Energetics of Ternary Fission

Calculations were performed in an attempt to estimate the magnitude of various
contributions to the energetics of ternary fission, and how those contributions varied
with the deformation of one or more of the fragments. The procedure calculated
the change in energy between an initial state consisting of a heavy parent nucleus
and a collinear three-body final state consisting of two identical fission fragments

(FF) separated by a smaller ternary fragment (TF). Deformation of any fragment
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was parametrized by its eccentricity, €, defined as

= [1 - (%)1 v (5.1)

where the quantity a/c is the ratio of the semi-minor to semi-major axes, a and ¢
respectively, of a prolate spheroid as shown in panel (a) of Fig. 5.1. Only spheres
(a = b = ¢) and prolate spheroids (a = b < ¢) were considered, allowing a range in
eccentricity of 0.0 < e < 1.0. The dependence of the axis ratio, ¢/a, on ¢ is shown in
Fig. 5.2. The three collinear fragments of the final state were assumed to be aligned
along their semi-major axes as shown in panel (b) of Fig. 5.1.

In all of the calculations, the mass and charge, App and Zpp, respectively, of
each fission fragment was calculated as:

1
Arr = = (Aparent — ATF) and Zpp =

9 (ZParent - ZTF) .

N

Half-integer values were allowed for both App and Zpp. Furthermore, the assumption
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of incompressibility was applied by forcing the volume of a spheroidal fragment to

be equal to that of a spherical fragment with identical A:

V= %717”3 for a sphere (5.2)

V=3m/1-¢2¢3 for a prolate spheroid. (5.3)

The radius used to calculate the volume in Eq. 5.2 is defined as r = rgAY3, with
ro = 1.18 fm. Setting the right side of Eq. 5.3 equal to the volume calculated for the
case of a spherical nucleus and solving for ¢ gives

c:[ 3 Vipn ]1/3 (5.4)

4dry/1 — 2 .

where ¢ is the semi-major axis of the prolate spheroid with volume equal to that of
the equivalent sphere, Vi, Of course, for the case € = 0.0 (a sphere) Eq. 5.4 gives
the result ¢ = r as expected.

The total energy of a particular state (either initial or final) was calculated as the
sum of three contributing energies: fragment-fragment Coulomb repulsion, surface
proximity energy, and individual fragment binding energies. Since the initial state
consists of just the parent nucleus, the initial Coulomb and proximity energies are
both zero and the total energy is determined by the binding energy of the parent
nucleus. Figure 5.3 shows a simple schematic of a one-dimensional fission barrier
as a function of an arbitrary parameter ¢ along the deformation coordinate. The
energy change AFE between the initial and final states is indicated in this figure. The
following calculations assume an initial state consisting of a spherical parent nucleus
in its ground state. These calculations provide no information about the saddle-
point shape or the energy associated with it. If the decision to proceed to fission
were determined exclusively at the saddle point, these calculations would provide no
insight into the process. In reality, however, fission is a dynamical process with at
least some degrees of freedom determined between saddle and scission. From this

perspective, the following calculations can be instructive.
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Figure 5.3: Simple schematic of a one dimensional fission barrier as a function of
an arbitrary parameter ¢ along the deformation coordinate. The initial state in the
barrier calculations corresponds to a spherical parent nucleus in the ground state.
The height of the barrier relative to the ground state is labelled Fg,q and the saddle
to scission energy is labelled Eg.. The quantity calculated in the current work is

labelled AE.

5.1.1 Final State Coulomb Energy

The Coulomb repulsion energy was treated by approximating each of the three frag-
ments in the final state as a point charge. The distance between charge centers was
chosen to be equal to the sum of the lengths of the semi-major axes between adjacent
charge pairs, i.e. the fragments were assumed to be touching prolate spheroids. This

lead to the following expression for the total Coulomb repulsion energy,

glinal _ <2 L4 - ZreZpp | 144 Z3p

- MéV, 5.5
Coul I'TF—FF TFF—FF ) (5:5)

where Ztrp and Zpp are the atomic numbers of the ternary fragment and fission

fragments, respectively, rrp_pp is the distance between the charge centers of the
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ternary fragment and one fission fragment, and rpp_gp is the distance between the

charge centers of the two fission fragments.

5.1.2 Final State Proximity Energy and Droplet Model Binding

Energies

The final state in the current calculations consists of three fragments in close prox-
imity. The attractive force between two adjacent nuclear surfaces gives rise to a
proximity energy that is dependent on the size of the gap between the surfaces.
Blocki et. al. |5] developed a method of determining the proximity energy between
two spheres as a product of a geometrical factor and a universal function describ-
ing the separation between the two surfaces, both of which are characteristic of the
material composing the objects and related to the surface energy coefficient. The
method was later extended by Malhotra and Gupta to include non-spherical shapes
[6]. Details of the proximity energy calculation are provided in Appendix D. The
binding energy of each fragment was calculated using the Droplet Model (DM) ex-
pressions derived by Myers and Swiatecki |2, 3, 4]. Details of these calculations are

provided in Appendix E.

5.1.3 Calculating the Fission Energetics

The energy change between the initial and final states was calculated as follows:

AE — pfinal _ pinitial _ Egg/}ll + Egﬂ + Eﬁnal _ ]i)nﬁial’ (5.6)

Prox

where AFE is the calculated energy change, Epy is the total Droplet model binding
energy for the indicated state, Eggﬁi is the total Coulomb repulsion energy of the
final state and Eﬁfg)ﬁ is the total surface proximity energy of the final state. The
three final state quantities are summed over all three fragments of the final state;
ie. Egrli/(fl is the sum of the Droplet model binding energies of the three fragments
in the final state.

Figure 5.4 contains plots resulting from the energetics calculations for four dif-

ferent ternary fragments, "Li (solid lines), 14C (dotted lines), 2°F (dashed lines) and
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Mg (dot-dashed lines). In each case 2#*Cm was used as the parent nucleus with
no deformation (¢parent = 0.0). Panels (a) (d) show the dependence of the energy
change and its components as a function of the eccentricity of the ternary fragment
assuming spherical fission fragments. Panels (e)—(h) are plots of the same quantities
as a function of the eccentricity of the two fission fragments assuming a spherical
ternary fragment. Panels (a) and (e) show the energy change, AF, as a function of
the deformation of the ternary fragment (TF) and fission fragments (FF), respec-
tively. The remaining panels show plots of the three energy components appearing
on the right side of Eq. 5.6, with AEpy = Eg{/‘fl — Egﬁml being the change in the
total Droplet model binding energy.

We look first at the case epp = epp = 0.0, i.e. three collinear spheres. The
change in the Droplet model binding energy, shown in panels (d) and (h), decreases
with increasing size of the ternary fragment. This result is expected from simple
energetics arguments - the magnitude of the nuclear binding energy is a maximum
for fragments near 5°Fe, and decreases for lighter and heavier fragments. Therefore,
the final state should become more bound (decreasing AFEpyr) as the size of the
ternary fragment is increased. Because the parent nucleus is the same for all cases,
as the size of the ternary fragment is increased, the size of the two fission fragments
is decreased, also leading to an increase in the final state binding energy.

Panels (c) and (g) show the total Coulomb repulsion energy for the final state
configuration. For the case of three collinear spheres the total Coulomb repulsion
increases with the atomic number of the ternary fragment. This result can be under-
stood by looking at how the Coulomb energy is calculated in Eq. 5.5. An increase
in Zpr will have a much larger effect on E&njl than the corresponding decrease in
Zrr. For increasing Zrr the ternary fragment fission fragment Coulomb repulsion
increases more rapidly than the fission fragment — fission fragment Coulomb repul-
sion decreases. This trend can be seen in Fig. 5.5, which shows the two terms of Eq.
5.5 plotted separately. A linear fit was made to each set in Fig. 5.5 to provide an

estimate of the relative effect of the two terms. The resulting slopes, m, are listed in
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along with plots of the three energy components. All energies are in MeV.
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repulsion between the two fission fragments, Frp_rr, indicated by the open circles.
A linear fit was applied to each set, and the resulting slopes, m, are listed in the

legend.

the figure legend. As expected, the variation in the first term dominates the overall
variation in the total Coulomb repulsion energy.

In panels (b) and (f) of Fig/ /reffig:DM-comp we note that the magnitude of the
(attractive) proximity energy Epyox increases with increasing mass of the ternary
fragment. Since the proximity energy is in part a function of the surface area of the
two adjacent fragments, we expect that the increased surface area associated with a
larger ternary fragment will lead to a larger (more negative) proximity energy. Also,

2

since the surface area goes roughly as r* = r%Az/ 3 for spherical nuclei, we expect

that the increase in surface area of the smaller, ternary fragment will have a larger
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relation r
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applied to each set, and the resulting slopes, m, are listed in the legend.

effect on the proximity energy than the corresponding decrease in surface area of
the two fission fragments, each of which loses half the number of nucleons added to
the ternary fragment. The effect on 72 is shown in Fig. 5.6 for both the ternary and
fission fragments. Again, a linear fit was applied to both sets to estimate the relative
effect, with the resulting slopes, m, listed in the legend. Clearly the variation of the
proximity energy is dominated by the variation in the mass of the ternary fragment,
with heavier ternary fragments leading to larger (negative) proximity energies.

The net effect of the three components of the energetics calculation can be
seen in panels (a) and (e) of Fig. 5.4. For the case of three collinear spheres
(erp = epp = 0.0) the energy change increases with increasing mass of the ternary
fragment. This trend continues when we consider deformations of either the ternary

fragment in panel (a), and the two fission fragments in panel (e). A notable difference
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between the two plots only occurs for the most deformed fragments (TF or FF). For
the case of extremely deformed ternary fragments, the energy change is a continu-
ously decreasing function of the deformation errp. However, in the case of extremely
deformed fission fragments a minimum occurs at epp =~ 0.85, after which the barrier
begins to increase. This increase for extreme deformations of the fission fragments
can be seen as a result of the rapid increase in the net Droplet Model binding energy
shown in panel (h) (extremely deformed fragments are less tightly bound), which
begins to outweigh the contribution from the decreasing Coulomb component shown
in panel (g). Although the increase in the binding energy also occurs for deformation
of the ternary fragment, shown in panel (d), it is much more gradual, and does not
out-pace the decrease in the Coulomb repulsion shown in panel (c).

The Coulomb energy of the final state as a function of the deformation of the
ternary and fission fragments is shown in panels (c) and (g) respectively. We see that
the Coulomb energy is a decreasing function of the eccentricity of either the ternary
or fission fragments. This trend is the result of the increasing separation between
charge centers for more deformed shapes (remember that in our rather simplistic
picture of the final state the fragment separation is the sum of the semi-major axes
of the two adjacent fragments). The effect is greater for deformations of the fission
fragments as they lead to larger changes in the inter-fragment separation.

The above observations for the effects of deformations imposed on the ternary
and fission fragments can be summed up by considering the relative sizes of the two
fragment types. For the Coulomb repulsion, a fixed deformation of the ternary frag-
ment cannot cause the same degree of separation of the charge centers as an identical
deformation of the fission fragments. Size can also be used to explain the greater
effect on the net binding energy for the case of deformed fission fragments compared
to a deformed ternary fragment. Each shape-dependent term in the Droplet Model
binding energy expression is a function of A and/or Z for the fragment in ques-
tion (see Appendix E). Thus it would be expected that a larger fragment would

experience comparably larger effects from a variation in the deformation.
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Figure 5.7: Energy change, AE, for '4C and Mg, as a function of the eccentricities

of the ternary (TF) and fission (FF) fragments.
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Next we consider simultaneous variations in the deformations of the ternary and
fission fragments. Figure 5.7 contains surface and contour plots of the energy change,
AE, as calculated for the the two cases in which the ternary fragment is either 4C
or 26Mg. In each case AE is plotted as a function of both erp and epp. In our
definition of AF, a negative result indicates an exoergic process, while a positive
result would indicate an endoergic process. Since we know that fission of heavy
nuclei is an exoergic process, we will focus on those regions of the energy surface
where AE < 0. An examination of the two energy surfaces presented in Fig. 5.7
reveals that they are remarkably similar in overall shape. The only real difference is
that the surface for 26Mg is shifted up in energy relative to the surface for '4C. This
is a general trend observed for all cases investigated with ternary fragments ranging
from *He to 2Al. For both cases it is clear that more extended final states (larger
values of the eccentricity) are favored. If we make the assumption that ternary fission
will only occur for final state configurations in which AFE < 0 the follow conclusions

can be made:

1. In general, ternary fission will only occur for more extended scission configu-

rations.

2. Larger ternary fragments will be limited to more extended scission configura-

tions than smaller ternary fragments.

Item 2 is consistent with conclusions drawn from an examination of the relative
experimental yields as discussed in Sec. 4.5.

Due to the rather crude nature of these calculations, the results should be con-
sidered qualitative at best. Suggestions have recently been made to improve these
calculations [7], such as the use of a more realistic interaction energy in the fi-
nal state, e.g. to use the real Coulomb energy of diffuse shapes plus an attractive
Yukawa-plus-exponential energy instead of the point charge Coulomb energy plus

proximity energy approximations.
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5.2 Dynamical Model Simulations

In order to investigate our expectations of the influence of angular momentum,
isospin (N/Z), and kinetic deformation (stretching) on the ternary fission proba-
bility, we utilized the Los Alamos dynamical model of fission [8, 9]. This model was
used to simulate the dynamical evolution of the system in the multi-dimensional de-
formation space as the fissioning system proceeded from saddle to scission. Special
emphasis was put on the onset of ternary fission.

Calculations were performed for two dissipation mechanisms: two-body viscos-
ity (responsible for dissipation in ordinary fluids) and one-body surface dissipation
(arising from collision of nucleons with the moving nuclear surface, and when there
is a neck between the binary reaction partners, also transfer of nucleons through
it). These two dissipation mechanisms represent not only opposite extremes of small
and large magnitude, respectively, but also dissipations with very different tensorial
properties. In order to estimate the impact of neutron emission prior to the system
236U.

reaching the saddle, the fission of 26U was calculated in addition to

Three different situations were investigated:

1. Compound nuclei at their saddle point with angular momenta from ¢ = 0 to
0 = lpae; the value of the fission barrier vanishes at about 704 for 236U and

60h for 216U,

2. Nearly spherical systems with angular momenta greater than £,,,,., represent-

ing fast fission events.

3. Deformed non-rotating systems with large kinetic energies in the fission degree-
of-freedom, imitating the incomplete transfer of orbital angular momentum into
rigid rotation, the difference going into deformation of the composite system

along the direction of the projectile impact.

In reality, of course, effects 2 and 3 above co-exist. The initial angular momentum in

the deformation space was chosen to correspond to the most probable trajectory. The
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results are therefore only suitable for comparison with data that represent the most
probable decay channel. Nevertheless, these calculations are useful for qualitatively
illustrating dependencies on angular momentum, N/Z, and stretching.

Figs. 5.8 and 5.9 depict the effect of angular momentum on the time evolution of
nuclear shapes from saddle to scission for 236U and 26U respectively. The numbers
in the upper right corner of each panel indicate the time in units of 1 x 10722 sec.
Two-body dissipation with a viscosity coefficient 4 = 0.02 TP was used. One can
clearly see that in all cases a third light fragment forms between the two heavy
fragments. The size (mass) of this fragment increases with angular momentum and
is larger for 2'6U than for?3%U reflecting an increase in fissility (0.697 vs. 0.684).

One can likewise notice that the saddle-to-scission time also varies with angular
momentum attaining a maximum at £ = £,,,,, and that it is slightly shorter for 2167y,
The elongation at scission turns out to be the same for the two nuclei but the saddle
to scission descent for 216U is steeper than for 236U. This difference leads to higher
pre-scission dissipation and kinetic energy and consequently a shorter time scale.

The corresponding time evolution of nuclear shapes obtained with one-body sur-
face dissipation is presented in Figs. 5.10 and 5.11. Although the time scale is now
longer, the configurations are more compact and therefore no longer lead to ternary
divisions. Based upon our calculations, with this type of dissipation only the highly
rotating (120R), extremely neutron-deficient 1"°U would result in ternary fission as
the average behavior.

Finally, the consequence of having a large amount of initial kinetic energy along
the fission eigenvector was explored. Such a situation may occur when a significant
fraction of the incident energy is neither immediately dissipated nor converted into
rigid rotation but instead deforms the system along the direction of the projectile
motion. This motion will be largely converted into motion along the scission axis.
Shown in Fig. 5.12 are the results for two-body dissipation and ¢ = 0. The ability
of the system to attain even larger middle fragments than previously calculated is

remarkable. For the case of two-body dissipation a large kinetic energy along the
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fission direction is indeed an efficient means to produce ternary fragmentations. In
contrast for the case of one-body dissipation the initial kinetic energy is quickly
damped into intrinsic excitation. For this case therefore, initial stretching does not
result in an increased ternary probability.

A summary of our calculations is provided in Fig. 5.13. In this figure, the in-
fluence of angular momentum or initial kinetic energy on the size of the middle
fragment, the distance between the two fission fragments, and the total kinetic en-
ergy is depicted for the case of two-body dissipation. As the angular momentum
increases (panels a c), all three quantities increase. For ¢ < £,,,, the increase is
gradual in contrast to the increase for angular momenta above the rotating-liquid-
drop limit. The neutron-deficient nucleus 2!U exhibits a slight increase in the mass
of the middle fragment as compared to 236U. The behavior of the size of the middle
fragment, the fission fragment separation distance, and the total kinetic energy on
the initial kinetic energy is relatively linear. The magnitude of the two-body coef-
ficient has a modest effect on the size of the middle fragment while providing little

change in the fission-fragment separation distance.
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Figure 5.8: Saddle-to-scission shapes calculated with the Los Alamos dynamical
fission model for 235U with £, = 0, 60, and 120 A assuming two-body dissipation
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Figure 5.11: Saddle-to-scission shapes calculated with the Los Alamos dynamical
fission model for 216U with ¢, = 0, 60, and 120 h assuming one-body dissipation.
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Figure 5.13: Summary of the Los Alamos dynamical fission model calculations as-
suming two-body dissipation. Panels (a) and (d) show the mass of the ternary
fragment, Ag, as a function of the initial angular momentum of the system, #i,;¢, and
initial kinetic energy along the scission direction, Ej,j¢, respectively. Panels (b) and
(e) show the separation distance d between the two fission fragments at scission as a
function of the two initial conditions fpi; and Fipj respectively. Panels (¢) and (f)
are plots of the total kinetic energy (TKFE) of the two fission fragments at infinity

for the initial conditions fjn;; and Fine respectively.
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Chapter 6

Conclusions

The characteristics of intermediate-mass-fragment (IMF) emission in coincidence
with two correlated fission fragments have been studied for the reaction 12C + 232Th
at incident energies of E//A = 16 and 22 MeV. We focused our investigation on the
yields of ternary fragments, their kinetic energies, and their angular distributions
with respect the the scission axis. Based upon the measured IMF kinetic energies
and angular distributions, we have isolated IMFs emitted near the moment of scission
(near-scission emission) from those emitted at an earlier stage, while the composite
system is still in a compact state. Ternary events were compared to binary events
on the basis of the folding angle measured between the two correlated fission frag-
ments. From the measured folding angle, the fractional linear momentum transfer
(FLMT) to the composite system was deduced. The initial excitation energy of the
composite system was determined from the deduced FLMT, assuming an incomplete
fusion scenario by utilizing a massive-transfer model. The dependence of the relative
IMF yields on the excitation energy for near-scission emission exhibits considerably
different behavior as compared to the early stage/isotropic emission component
The measured fission-fragment folding-angle distributions for binary events have
been compared with previous measurements for similar systems. Both the general
shape and the trends with increasing excitation energy are in good agreement with

previously published results. The measured binary fission cross-section was also
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found to be in agreement with previously published results for the same and similar
systems. For ternary events, a comparison of the dependence of the mean fission-
fragment folding angle on Zpyr for both isotropic and near-scission IMF emission
has revealed a striking dissimilarity for heavier fragments. For isotropic emission
the mean fission-fragment folding angle is observed to be a monotonically decreasing
function of Zpyr, consistent with linear momentum conservation. For fragments
emitted near scission with Zpyrp < 6 the same general trend is observed. However,
for heavier near-scission fragments, with Zpyp > 7, the mean fission-fragment folding
angle increases with increasing Zygr, indicating that heavier IMFs emitted from the
neck region between the two nascent fission fragments are associated with more
peripheral collisions. This behavior suggests a dependence on the orbital angular
momentum of the entrance channel.

Examination of the excitation energy dependence of the relative yields of ternary
fragments has provided additional evidence for non-standard statistical emission of
heavier fragments near-scission. For isotropically emitted IMFs, the relative yields
as a function of the excitation energy of the composite system are consistent with
statistical emission from a compact source, with Z-dependent emission barriers. In
contrast, for near-scission emission the relative yields do not show the same Z de-
pendence of the emission probability, thus indicating an emission mechanism that is
not solely dependent on the excitation of the composite system. Our interpretation
of the apparent link between the centrality of the initial interaction and the size of
the ternary fragment in near-scission emission suggests that perhaps more periph-
eral collisions lead to more stretched initial configurations of the composite system,
which then affects the subsequent decay. General considerations indicate that the
survival of any dynamical stretching should depend sensitively on the magnitude
and tensorial properties of nuclear dissipation. Dynamical production of fragments
in ternary fission might thus serve as a sensitive probe of nuclear dissipation.

One of the presently debated issues in the field is the density dependence of

the asymmetry term in the nuclear equation of state (EOS). Nuclear matter is a
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binary fluid of protons and neutrons. The N/Z composition of the fluid influences
the phase diagram for nuclear matter. How the N/Z composition depends on the
density is presently a topic of considerable interest. The degree of neutron enrich-
ment in the neck region, as evidenced by the isotopic composition of ternary IMFs,
could provide a tool to gain insights into N/Z composition at low density. Ternary
fission allows for clean selection of a process in which a portion of the nuclear mat-
ter, the neck region, is low density at some point during the decent from saddle to
scission. Fragments emitted near scission could be used as probes of N/Z in this
low density region. Measurements for spontaneous and low-energy-induced ternary
fission have shown a pronounced enhancement of neutron-rich isotopes for fragments
emitted near scission, consistent with the commonly held idea that the neck region
between the two nascent fission fragments is itself neutron rich. The tendency to
favor neutron-rich isotopes has also been observed in light-ion (« and *He) induced
ternary fission. However, to date there has been no conclusive evidence that this
observation holds for heavy-ion-induced ternary fission, where both the initial ex-
citation energy and the angular momentum of the composite system can be much
higher. A heavy-ion-induced ternary fission study that provides isotopic identifica-
tion of the neck fragments may thus provide valuable information neutron content
of the neck and perhaps even provide insight into the density dependence of the
asymmetry term in the nuclear EOS.

The relative velocities of the fission fragments is a sensitive probe of nuclear
dissipation. Any dynamical stretching prior to scission should be evident in the
fission fragment velocities. To date all ternary fission studies have assumed that
Viola systematics are followed in the case of ternary fission. The Viola systematics,
derived for binary fission, were used to deduce several important quantities in the
present analysis. Although it has been determined that the relative velocities of the
fission fragments do not depend sensitively on the excitation of the fissioning system
in binary fission, it remains to be proven whether ternary fission can be adequately

described by the same or similar systematics.



Chapter 6: Conclusions 127

While ternary fission is an extremely interesting process, the yield for ternary
fission is small in comparison to binary fission, which remains the dominant process.
Therefore, direct comparison of experimental data with theoretical models requires
the models to predict not just the average behavior but the entire distribution of
possibilities sampled by the fissioning system. For example, inclusion of fluctuations
in a physically meaningful way into the Los Alamos dynamical model of fission would
allow a more direct comparison to experimental results. This requirement remains
a significant theoretical challenge, which ultimately limits our ability to fully utilize

the information provided by ternary fission studies.



Appendix A

FEuler Transformations

A method was developed to simplify the transformation from the coordinate system
defined within the position sensitive detectors, x”, to the laboratory coordinate

system, x, where

T T

!
x" = y” and X = Y
2" z

The intersection of the incident beam with the target foil defines the origin for both
coordinate systems. The laboratory z-axis is defined by the beam, with positive z
being downstream, and the horizontal plane containing the beam is the (y,z)-plane.
The detector z”-axis passes through the center of the active area of the detector.
We start by mentally placing each detector at a well defined location within the
laboratory coordinate system. A convenient choice would be to center the detector
on the z-axis at the appropriate distance from the target position. In this position
the - and y-axes of the detector coordinate system are parallel to those for the
laboratory coordinate system, and the z-axes of the two overlap. Furthermore, since
the detectors are not position sensitive in the z coordinate of the detector system we
can set the detector z coordinate to whatever value we please. The simplest choice
would of course be to set it equal to the distance from the target to the center of the

detector, which we will call d.
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Figure A.1: Counterclockwise rotation by an angle ¢ about the z axis. The coordi-

nate transformation is described by the rotational matrix Ay.

We now treat the angular position of the detector as two rotational transforma-
tions that will take the detector from its (imaginary) starting position on the z-axis
to the position it occupied during the experiment. A rotation by an angle ¢ about

the laboratory x-axis is described by the matrix

1 0 0
Ay = 0 Cosv Sind
0 —Sind Cos?

where the angle 1 is positive for a counterclockwise rotation in a right handed co-
ordinate system. At his point the (y,z)- and (y’,2’)-planes are coincident (see Fig.
A.1). For the in-plane detectors the above rotational matrix is all that is necessary
to transform from the detector to the laboratory coordinate systems. For detectors
located out of the horizontal plane a second rotation is necessary described by the
angle o with respect to the (y/,2’)-plane. Note, although the rotation angle 9 has a
direct correspondence with the spherical coordinate 6 in the laboratory system the
rotation angle ¢ does not have such a correspondence with the spherical coordinate

¢. A rotation by an angle ¢ about the y’-axis is described by the matrix
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Figure A.2: Counterclockwise rotation by an angle ¢ about the 3y’ axis. The coordi-

nate transformation is described by the rotational matrix A,.

Cosep 0 —Sing
Ap = 0 1 0
Sinp 0 Cosp

where the angle ¢ is positive for a counterclockwise rotation (see Fig. A.2). For
in-plane detectors ¢ = 0, and A, becomes the unit matrix (A, = 1) Combining
both rotations we have the following transformation that moves the detector, and

its internal coordinate system, from its starting position to its final position
x = A Apx”. (A1)
Solving Eq. A.1 for the laboratory coordinates x provides the required equations,

x = 2" Cosp +19y" Sind Sin g — 2" Cos¥ Sinp
y = y" Cos¥ + 2" Sind
2z = 2" Sinp —y” SinY Cos ¢ + 2" Cos® Cos .
Although the above equations were derived only for the center of the detector,

(z"y".2") = (0,0,d), the transformation is valid for mapping any set of coordinates

(2" " .d) to the corresponding laboratory coordinates (x,y,2).
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Kinematic Reconstruction

An iterative, self-consistent method was developed for the kinematic reconstruction
of binary and ternary fission events. The fission fragment folding angle technique
was used for both event types to deduce several quantities of interest, including the
fractional linear momentum transfer (FLMT) from the projectile to the resulting
composite system [1, 2|. The deduced FLMT was then used in the framework of the
Massive Transfer model to calculate the initial excitation energy of the composite
system [3]. A flow diagram for the reconstruction procedure is provided in Fig. B.1. A
limit was placed on the number of allowed iterations in each step to avoid a runaway
loop in the analysis program. Events which could not be reconstructed within this
limit were discarded. This method was successful in reconstructing almost 100% of
binary and over 95% of ternary events in the current data.

At the beginning of the procedure, initial values are chosen for the mass and
charge numbers as well as the velocity, von, of the composite system, consistent
with pre-equilibrium neutron emission following complete fusion of the projectile
and target. The first iteration loop performs a binary search over possible values
of the velocity of the composite nucleus. The loop exits when a value for vey is
found such that, when it is used in the reconstruction equations, reproduces the
experimentally measured fission fragment folding angle to within £0.5°. The second

loop uses the results from the first to calculate the mass of the composite nucleus,

131



Appendix B: Kinematic Reconstruction

Assume inital values for
A%y Zon and vy,
consistent with pre-equilibrium

neutron emission.

Y

Calculate 053¢,
accounting for IMF recoil,
and compare with 637

058 — 053] < 0.5°7

Calculate FLMT from vey.
Recalculate Aoy using FLMT,
and compare with Agy.

Yes

DONE

No

A

A

Modify ven.

Set A%N = Acn.
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Figure B.1: Flow diagram for the kinematic reconstruction of binary and ternary

events.
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Acn, and compares this result with the initial value. If the two do not agree, then the
newly calculated mass is substituted for the initial mass and the process is repeated
from the beginning. The reconstruction was designed so that a minimum of two
cycles through the iteration loops were performed. Thus, the reconstruction was not
considered complete until the calculated masses from two consecutive cycles were in
agreement.

The remainder of this Appendix will focus on deriving the equations used in the
reconstruction, as well as those used to calculate other important quantities. The

following conventions will be used in describing the derivation:
e Vector quantities will be denoted by bold symbols, e.g. va.

e The magnitude of a vector quantity will be denoted by the script version of

the vector symbol, e.g. |[va| = va.
e Unprimed variables refer to quantities viewed in the laboratory reference frame.

e Single primed variables refer to quantities viewed in the center-of-mass frame

of the composite nucleus (CN).

e Double primed variables refer to quantities viewed in the center-of-mass frame
of the fissioning system (FS), i.e. after accounting for the recoil from the

ternary particle.

B.1 Vector Relations

A vector diagram for binary fission showing the fission fragment velocities in the
laboratory and the center-of-mass of the composite nucleus is presented in Fig. B.2.
For binary and ternary fission, the fission fragment emission angles measured in
the laboratory were directly observed quantities. The laboratory folding angle was
defined as the sum of the two emission angles, 0o = 0o + 0p, as measured in
the plane containing the target and both fission fragments (the fission plane). The

magnitudes of the laboratory velocities of the two fission fragments, va and vp,



Appendix B: Kinematic Reconstruction 134
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Figure B.2: Vector diagram of the fission fragment velocities for binary fission. The
emission angles o and fp for fragments A and B, respectively, were directly mea-
sured quantities. The velocity of the composite nucleus formed by the fusion of

projectile and target is labelled vy in the diagram.

were calculated from their respective times-of-flight with respect to the recorded
accelerator RF signal or were calculated from Viola systematics as described in Sec.
B.3.

The emission of the third, or ternary particle in ternary fission reduces the mass of
the residual fissioning nucleus, and introduces an additional momentum component
from the recoil as shown in Fig. B.3. The recoil momentum had to be included in the
calculations to provide an accurate reconstruction of each event. A vector diagram
of the velocities for a ternary event is given in Fig. B.4, where the velocity of the
composite nucleus, vcy, has been replaced by the velocity of the fissioning system,

vrg. From this diagram it was possible to write out the following trigonometric

relations:
sin « sin fap
= 1 1 (B 1)
UB Vp T Up
sind  sinfap (B.2)

VA v +vf



Appendix B: Kinematic Reconstruction 135
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Figure B.3: For ternary events the recoil velocity from the emission of the ternary
particle was added to the composite nucleus velocity to construct the velocity vector
for the residual fissioning system, vpg. For binary events the recoil velocity was zero,

which left vpg equal to voy.

sin o« _ sin 3 (B.3)
UB VA
sin a sin 0a-rg
= 77 (B4)
UFS VA
sin 3 sin Op-rs
g 7 (B5)
VRS ]
and
Ug2 = U%‘S + ’U% — 2vpgvR cos Op-Fs. (B.6)

where a5 = 0a-ps + 0p-rs. The angles 05-pg and Op-ps were not directly observed
quantities but their sum fap was required to be equal to the sum of the observed
angles 65 and 0p.

These relations will be used in the derivations detailed in the following sections.
In binary fission the center-of-mass frame of the fissioning system is equivalent to
that for the composite nucleus (vgecoii = 0 in Fig. B.3). Because of this, these

relations are valid for both binary and ternary events.
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” Beam
VA Direction
«

Figure B.4: Vector diagram of the fission fragment velocities for ternary fission. The
angles Ox-rg and Op-pg for fragments A and B, respectively, were calculated following
the derivation in Sec. B.4. For binary fission vpg = vcn, and the problem reduces

to that described in Fig. B.2.

B.2 Fission Fragment Mass Ratio

The first step in the reconstruction was to determine the mass ratio of the two fission
fragments. A ratio of the velocities of the two fission fragments in the center-of-mass

of the fissioning system was constructed using Eqs. B.4 and B.5:

I sin 0a-Fs
Up = VUFS — . ‘ .
s v  sinfa-pg sinf B.7)
. = o ,
" sin 0p_fg v sinfp-ps sina
Ug =VFS ——
sin 3

The dependence on the unknown angles o and (3 was then eliminated by substitution

of a rearranged form of Eq. B.3
sinf3  wa

sin «v B

which leads to
VA _ VA sin fa-fFs (B.8)
vy, vpsinfpps ’

This left the ratio of the center-of-mass velocities as a function of the determinable

quantities va, vp, Oa-rs, and Op-ps. The fission fragment velocities were deduced
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from their respective times-of-flight.
Invoking conservation of linear momentum in the center-of-mass frame of the
fissioning system provided a relation between the fission fragment velocities in that

frame and their respective masses, Ax and Ag,

" A
AVA BB v Aa
Substitution of this result into Eq. B.8 lead to
A in G-
B _ VASHUARS _ p (B.9)

Axr  vpsinfps
which provided the required relation between the ratio of the fission fragment masses,
R, and the angles and velocities as measured in the laboratory. With this relation it
was possible to deduce the individual masses and charges of the fragments once the

mass and charge of the fissioning system were known:

AFS RAFS
= d Ap = = Apqg — A B.10
A=prg B= 2oy Fs — Aa (B.10)
ZFS RZFS
A = d g = = Jpg — ZA. B.11
A Rl an B Rl FS A ( )

The actual values of Apg and Zgrg were determined by application of the massive
transfer model as described in Sec. B.4. Since the angles 0a-ps and Op-rg were not
observed quantities, it was necessary to make a first approximation by substituting
the measured values of 0 and g for the first pass through the iterative reconstruc-
tion described in Sec. B.4. Once the velocity vector of the fissioning system, vrg, had
been determined, it was possible to recalculate the mass ratio R using the calculated
values of 0a_pg and Op_fs.

For cases where the time-of-flight information was not available, the fission frag-
ment mass ratio was determined from a modified ratio of the anode pulse heights from
the PPACs. It was determined that the following relation produced good agreement
with the mass ratio calculated from the time-of-flight:

arf+as
aB

R = 1.0.
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In the above equation as and ap are the anode pulse heights for fragments A and
B respectively. The quantity f is a pseudo-normalization factor chosen to force
the centroids of the two anode pulse height distributions, as and agp, to be equal
(assumes that the most probable mass split is symmetric). This value for the mass
ratio was then used to determine the mass and charge numbers for the two fission

fragments.

B.3 Fission Systematics

For cases where the time-of-flight information was not available, the fission fragment
velocities in the center-of-mass of the fissioning system were calculated using Viola
systematics |2, 4]. The most probable total kinetic energy (TKFE) available to the
fission fragments in the center-of-mass of the fissioning system was calculated as

—_— AN

TKE = 0.755 — -2 + 7.3 MeV (B.12)

AL 4 ay?
A B

which expresses the total kinetic energy as a function of the mass and charge numbers

of the two fission fragments. Equation B.12 can also be written as

A AUXQ Agvg2
2 2

TKE =

in which the total energy is expressed in terms of the mass numbers and velocities of
the two fission fragments. The two velocities were separated by invoking conservation

of linear momentum, which allowed the expression of v/{ in terms of v}, and vice versa

Ap An
v = A—Avg and vg = A—Bvx.

Substitution of each of these in turn into Eq. B.3 made it possible to solve for v/y

and vy independently

. 2TKE
= B.13
A \/AA (1+ Aa/Ap) (B.13)

, 2 TKE
= : B.14
B \/AB (1+ Ap/As)’ (B.14)
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each of which could be transformed back to the laboratory reference frame. Thus,
using the results from Sec. B.2, it was possible to calculate the total kinetic energy
available to the two fission fragments in the center-of-mass of the fissioning system
using Eq. B.12. Once the total kinetic energy was determined, it was then possible

to calculate the velocities of the two fission fragments using Egs. B.13 and B.14.

B.4 Linear Momentum Transfer

As mentioned previously, the angle fp-ps (see Fig. B.4) was not a measured quantity.
While the direction of the velocity vector for fission fragment B was measured, that
for the velocity of the fissioning system had to be calculated taking into account
both the velocity of the composite nucleus, von, and the recoil from the ternary
IMF. The laboratory velocity vector of the ternary IMF was calculated from the
measured kinetic energy using an assumed mass as a function of Zpyp, and the

known detector position:

UVIMF = ]/ ——— and VIMF = UIMFTIMF

where T\ is the unit position vector directed from the target toward the center of
the Si detector quadrant that detected the ternary IMF, and mpr is the assumed
mass. Next, the velocity of the ternary particle was transformed into the center-of-
mass of the composite nucleus, and then converted into the corresponding momentum

vector
/
VIMF = VIMF — VCN (B.15)
! _ /
PiMrp = TMIMFVIMF

where vy denotes the laboratory velocity of the composite nucleus. By conservation
of linear momentum, the recoil momentum of the residual nucleus in the CN center-

of-mass is equal and opposite to the momentum of the ternary particle

/ / o /
Prs Precoil = ~PIMF
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vhs = ——Ph
S AFS S
Finally, the velocity vector of the fissioning system is transformed back to the labo-

ratory system, and the angle between it and the measured unit position vector for
fission fragment B is calculated:
VFS = Vpg + VeN (B.16)
Op-ps = cos ! [w] ) (B.17)
UFS
These steps provide the velocity of the fissioning system, vpg, as well as one of the
two angular quantities required to complete the reconstruction, fp-gg, using simple
vector algebra.

In order to determine the fractional linear momentum transfer from projectile
to target, FLMT, it was necessary to deduce the velocity of the composite nucleus,
VCN, prior to the emission of the ternary particle. Utilizing Egs. B.1, B.4 and B.9,
it was possible to construct the following expression:

v = (vX%—vg) sina

sinfap

v + v\ sinfa-ps
= OVUFS

x sinfap

v\ sin G-
- (1 n _B> sinfa-rs

vy ) sinfap

1\ sinfa_fs
= 14— —. B.18
VS ( + R) sin fap ( )

where Oxp = 0Oa-rs + 0p-rs. This expression can be simplified by defining the

intermediate variables

1 sin 0 A_rs
= — _ B.1
K (1 + R> and ¢ S 0an (B.19)

which, when substituted into Eq. B.18, provide the more compact result

VB = URSKE.
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Substituting this into Eq. B.6 gives

n o_ 2 2 242 2
VR~ = Vpg + Vpgk E” — 2upgkE cos Op_Fg

or

2 0_ 1 "2
52_M§+_ _Y —0

K K ’1)2

FS

which is a quadratic equation of the variable £. Finally, solving for £ we have

1 ,Ul/2
&=~ |cosOp-ps & {/cos? Op-rs + TB -1 1. (B.20)
K Vhg
Using Eq. B.20 as the definition of £, a modified form of the original definition in

Eq. B.19 was used to solve for 0a_pg in terms of £ and Op-ps:

_sin OA-Fs - sin 0 A-fs

&=

sin A ~ sin Oa-rs cos Op-ps + cos Oa-pg sin Op-pg

Esinfa-pg cos Op-ps + £ cos Oa-ps sin Op-ps — sinfp-pg = 0

Etan Op-ps cos Op-ps + £ sinfp-ps — tan Oa-ps = 0

tan Op-ps (§ cosfp-ps — 1) + £sinfp-ps = 0

tan 0 ~ &sinfprs
ATAES = 1 — £ cosOp-rs
_ §sin HB—FS
Opps =tan t | ————2 B.21
A-FS = tan <1 e — (B.21)

where the value of ¢ was determined using Eq. B.20. This provided a means to
calculate 0-pg using previously determined quantities, i.e. an assumed value for
veN, the fission fragment mass ratio from Eq. B.9, the center-of-mass velocity of
fission fragment B from Eq. B.14, the velocity of the fissioning system from Eq.
B.16, and finally the angle between the position vector of fission fragment B and the
velocity vector of the fissioning system from Eq. B.17.

It was now possible to construct a calculated value for the fission fragment folding

angle as a function of the assumed value for the velocity of the composite nucleus and
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the geometry of the reaction. The constructed folding angle was then compared with
the measured folding angle. The criteria for agreement between the experimentally
measured folding angle, 65 = 64 + 0, and the calculated folding angle, foéc =
Oa-rs + Op-psg, was that the absolute difference between the two must be less than
0.5°, i.e.

052 — 053] < 0.5°.

If this condition were true, then additional quantities were calculated, as described
later in this section. If this criterion was not met, then the assumed value for von was
modified and the process repeated. Thus it was possible to calculate 6’5\“]%0 iteratively
from trial values of vcn until it agreed with the observed value of 02%’. Because of
the placement and geometry of the detector telescopes, the direction of vRecoi and
thus vpg was known to within £2.4°.

The the final steps in the kinematic reconstruction were to calculate the fractional
linear momentum transfer (FLMT) from the incomplete fusion of the projectile and
target and the initial excitation energy consistent with the calculated FLMT. In the
massive transfer model the fraction of the projectile nucleus that does not fuse with
the target nucleus is assumed to continue along the projectile trajectory with its

original velocity, vp, such that

p= LN [1+ﬁ (1— UCN>] (B.22)
Vo AT Vo

where p is the FLMT, vy is the velocity of the composite nucleus (i.e. the composite

system formed by the incomplete fusion of projectile and target nuclei), v, is the CN
velocity for the case of complete fusion, and Ap and Ap are the mass numbers of
the projectile and target respectively [3]. Once the FLMT had been determined, the

mass and charge of the CN were recalculated as

Aon = Ar+pAp  and  Zox = Zr + pZp.

The integer value of the newly calculated CN mass was then compared to the value

used in the earlier calculations. If the masses did not agree, then the entire process
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was repeated using the new mass value.
Finally, for each event successfully reconstructed the deduced FLMT was used to
calculate the initial excitation energy of the composite system within the framework

of the massive transfer model. For this model the initial excitation is defined as
AT vp 2
E*) = Epp— "L 1—(—) n B.23
(B) = Erpp—ir L)+ @ (B.23)

where Fp is the incident projectile energy, p is the FLMT, Ap and Ap are the
mass numbers of the target and projectile, respectively, vp is the velocity of the
projectile, and (Q) is the average @ value of reaction channels consistent with the
given p. It should be stressed that Eq. B.23 provides only the initial excitation
energy, that is the excitation energy of the composite nucleus immediately following
the projectile/target interaction. Much of this initial excitation may be removed,

through neutron emission etc., by the time the system reaches scission.
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Appendix C

Geometric Efficiency Corrections

In order to correct for limitations in the experimental detector geometry, a Monte
Carlo simulation was written based on the kinematic equations derived in Appendix
B. The simulation allowed for quantitative determination of the detector efficiencies,
e, for observing coincident fission fragments for the case of binary fission as well
as fission accompanied by intermediate mass fragment (IMF) emission. The plots
presented in this appendix all resulted from simulation of the reaction 2C + 232Th
at 16 MeV/A.

The geometric efficiency correction factor, 1/e, was determined separately for
each of the five I1C telescopes, as well as for the case of binary fission, where none of
the IC telescopes recorded a hit. Each case used a distinct unit vector defining the
direction of the velocity of the fissioning system, vpg, as measured in the laboratory.
This was required for the case of ternary fission because the direction of vpg is
determined in part by the recoil of the fissioning system resulting from the emission
of an IMF. For binary fission vpg was assumed to be along the beam direction.
The components of the unit vector for each ternary case were determined from the
experimental data by plotting the components of vgg, integrated over Zpyr, and
extracting the mean values. Justification for integrating over Zpyr is provided in
Sec. C.3. The geometric efficiency correction was determined as a function of both

the velocity of the fissioning system, vpg, and the fission fragment folding angle, 03,
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for each of the six cases.

The resulting detector efficiency curves as a function of vpg were used in the
analysis of the experimental data by correcting the counts on an event-by-event
basis, i.e. each real event recorded during the experiment was treated as 1/e(vpg)
events in the subsequent analysis. This of course had to be done after the value of
vrs had been determined for the event. The detector efficiency curves as a function
of 64 were used only for the creation of efficiency corrected fission fragment folding

angle distributions.

C.1 PPAC Masks

A mask array was generated in 6, ¢ space for each pair of PPACs to simulate the
active area of the detectors as they were positioned during the experiment. The
granularity of each mask arrays was 0.1° in both 6 and ¢. The arrays were used as
an event filter to determine the number of simulated events for which both fission
fragments would have been detected. For each simulated event, if the final position
vector of a simulated fission fragment corresponded with an “active” array element
in a detector mask, then the fragment was considered to have been detected.

Plots of the detector masks for the in-plane and out-of-plane PPAC pairs are
shown in Fig.C.1. Panels (a) and (c) represent the PPACs located left of the beam
axis as viewed from upstream, while panels (b) and (d) represent the PPACs located
right of the beam axis. Target shadow was accounted for by imposing a cut-off in the
mask arrays for the PPACs located left of the beam axis. The cut-off was imposed
based on the relative angle between the array element (6;,¢;) of the detector mask
and the plane defined by the target frame, with the vertex located at the center of
the target. Array elements for which this angle was less than or equal to 3.5° were
cut. Any array elements that were located behind the plane of the target frame as

viewed from upstream were also cut.
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Figure C.1: Detector masks used in the geometric efficiency simulations. Masks in

0, ¢ space simulating the positions of the two in-plane, (a) and (b), and two out-of-

plane, (c¢) and (d), PPACs for the reaction '2C + 232Th at 16 MeV/A. The darker

regions in panels (a) and (b) are discussed in Sec. C.5.
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Figure C.2: Geometric efficiency curves for the detection of coincident fission frag-
ments as a function of the deduced velocity of the fissioning system, vgg, for the

in-plane (a) and out-of-plane (b) PPAC pairs.

C.2 Geometric Efficiency as a Function of vpg

The general approach used in the simulation was to loop over values of the veloc-
ity of the fissioning system, vpg, simulate a fixed number of events for each value,
and calculate the fraction of simulated events for which both fission fragments were
“detected” in the PPAC mask. The loop covered values 0 < vpg < 0.025¢ in steps
of 0.0005¢ where c is the speed of light in a vacuum. During the analysis the effect
of the step size was compensated for by interpolating between the two points in vpg
adjacent to the experimentally determined value for the event.

Each simulated event began by generating a random unit vector in the center-
of-mass frame of the fissioning system. This unit vector was used to define the
direction of motion for one of the two fission fragments. Conservation of linear

momentum then required that the direction of motion of the second fission fragment

be along a unit vector opposite that of the first. The mass and charge of each fission
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fragment was randomly determined from a Gaussian distribution resulting from a fit
to the experimental data. The kinetic energies and velocities of the simulated fission
fragments were calculate from Viola systematics as described in Sec. B.3 [1, 2|. The
velocities were then boosted to the laboratory frame, using the current value of the
vrg index, and the resulting vectors were compared to the PPAC mask arrays. The
detector efficiencies were defined as the number of simulated events in which both
fission fragments were “detected” divided by the total number of simulated events.

Plots of the detector efficiencies, €, as a function of vgrg, are shown in Fig.C.2.

C.3 Dependence of € on Zpp

As stated previously, the direction of vpg for ternary events was determined by the
IC telescope position only, with no consideration for the type of ternary particle
emitted. To test the validity of this simplification three simulations were run, each
using a value of vyg based on a different value of Zpyp. Figure C.3 shows the resulting
detector efficiency curves for Zpyr = 3, 8 and 13 as determined for telescope 2, which
was located orthogonal to the scission axis, using the in-plane PPAC masks. In each
case the direction of vpg was taken from the experimental data for the specific
ternary particle. It is clear from the results that the detector efficiency varies little
with Zpr over the range of experimentally observed values of vpg for ternary events,
denoted by the vertical lines in Fig. C.3. Quantitatively, the maximum variation in
the geometric efficiency correction factor, 1/e, which occurs for the most peripheral

collisions - i.e. the lowest observed values of vpg - is less than 6%.

C.4 Geometric Efficiency as a Function of 0,

In each simulated event the fission fragment folding angle, Oap, was calculated. The
number of occurrences of a particular value of the folding angle was summed in two
arrays, the indices of which were the values of the folding angle with a granularity of

1.0°. The first array, m, was incremented for each occurrence of a particular value
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Figure C.3: Geometric efficiency, €, for the detection of coincident fission fragments
in ternary events. The curves represent the results of simulations using a ternary par-
ticle with charge Zpyr = 3, 8 or 13. The simulations were run using IMF telescope

2 to define the direction of vpg for each value of Zpyr.

of the folding angle. The second array, n was only incremented when the simulated
event resulted in both fission fragments being detected. In this way it was possible
to determine the detection efficiency as a function of the calculated folding angle by
dividing the contents of array n by the corresponding contents of array m

1
g = —,
my;

where 7 spans the allowed values of 5. Plots of the detector efficiencies as a function

of Oap are presented in Fig.C.4.

C.5 Validation of the Efficiency Corrections

A general validation of the geometric efficiency corrections was made by comparing
the binary fission cross-section, oy, as calculated in Sec. 4.6, to binary fission exci-

tation functions for the same and similar systems. The result is presented in Fig.
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Figure C.4: Geometric efficiency curves for the detection of coincident fission frag-

ments as a function of the measured folding angle, #ap, for the in-plane (a) and

out-of-plane (b) PPACs.

4.15. The binary fission cross-section calculated in the current work, which includes
the geometric efficiency corrections, is in good agreement with the asymptotic value
of the binary fission excitation functions for all four systems.

To understand the shape of the geometric efficiency curves a simulation was run
in which the PPAC masks centered on the horizontal plane were reduced to a fraction
of their normal coverage (indicated by the dark regions of panels (a) and (b) in Fig.
C.1) The right side PPAC mask was reduced to a 1 cm x 1 cm square centered in the
horizontal plane at 95° with respect to the beam axis, while the left side mask was
reduced to a horizontal strip 1 cm high centered along its length in the horizontal
plane. In this configuration the “detectable” range was limited to 143° < 0ap < 168°.
The efficiency curve as a function of #ap for this detector geometry is presented in
Fig. C.5.

The results of the restricted simulation shows an enhancement in detection effi-

ciency at smaller values of fap. This trend is also observed in the efficiency curves
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Figure C.5: Geometric efficiency for a restricted event filter.

used in the data analysis as shown in Fig. C.4. This enhancement can be easily
understood by considering how the detector masks map into 6, ¢ space. The for-
ward edge of the strip mask (0 = 48.5°) covers a larger fraction of ¢ than does the
backward edge (# = 70.0°). This explanation can be verified by looking at the ratio
of the extent in the ¢ coordinate at the two ends of the strip in the left side PPAC
mask. At 0 = 48.5° we have 268.73° < ¢ < 271.27°, which corresponds to an extent
of A¢p =2.54°, and at 6 = 70.0° we have 269.02° < ¢ < 270.98°, which corresponds
to an extent of A¢ = 1.96°. The ratio of these two values is

Agugso  2.54°
Adrooe  1.96°

= 1.30.

This result was then compared to the ratio of the geometric efficiencies at the two
edges in Fig. C.5. For the points labeled €; and 2 we get

.000231

o Q000231 g
o 0.000173

These two ratios are in agreement to within 3%. This small difference can be ac-
counted for by uncertainties introduced by the finite bin size (1° resolution) used to

accumulate and record the results.



Appendix C: Geometric Efficiency Corrections 153

References

[1] V. Viola, Jr. and T. Sikkeland, Phys. Rev. 130, 2044 (1963).

[2] V. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31, 1550 (1985).



Appendix D

The Proximity Potential

The attractive force between two adjacent nuclear surfaces gives rise to a proximity
energy that is dependent on the size of the gap between the surfaces. Blocki et.
al. |1] have developed a method of determining the proximity energy between two
spheres as a product of a geometrical factor describing their shapes and a universal
function describing the separation between the two curved surfaces, both of which
are characteristic of the material composing the objects, and related to the surface
energy coefficient. The derivation of the expressions for the proximity energy rely
on the leptodermous, or thin skin approximation, in which the surface thickness is
assumed to be much less than the overall dimensions of the system (i.e. the surface
thickness is much less than the diameter of the fragment). The method was later
extended by Baltz and Bayman [2] and Malhotra and Gupta [3]| to include non-
spherical shapes. A schematic describing the orientational parameters is provided in
Fig. D.1.

The proximity energy between two adjacent fragments was calculated as
Eprox = 47T7Eb : q)(s)

where v is the surface energy coefficient, R is the geometric mean of the two prin-
cipal radii of curvature, b is the Siissman width of a Woods-Saxon surface profile

[4], and ®(s) is a dimensionless proximity moment as a function of the minimum

154
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QN

Figure D.1: A schematic configuration of two prolate deformed nuclei lying in the
same plane. The semi-major and semi-minor axes are labeled ¢; and a;, 1 = 1, 2,
respectively. The radius vectors R; point to the locations on the nuclear surfaces that
correspond to the minimum separation distance s. In the present work the nuclei
are always aligned along their semi-major axes (¢;), thus the four angles «; and 6;
are fixed at a1 = ag = #; = 0° and 0, = 180°. Two additional angles, ¢;, represent
rotations out of the common plane of the figure. These two angles are fixed at 0° in

the present work.

separation distance between the two surfaces, s. The surface energy coefficient, ~,

was determined from the Lysekil mass formula [5]
v =0.957 (1 — 1.78261%) MeV /fn*

where I = (N — Z)/A is the relative neutron excess of the entire system, i.e. A =
Ay 4+ Ay, Z = Z1 + Zy, and N = Ny + N», for adjacent fragments 1 and 2. The
Siissman width b was determined assuming a “10 90 fall-off distance”; t1¢g-gg, of 2.4

fm [4]. This resulted in a value of b = 0.99 fm using the following expression

b= — 1 4
T 239 U

The mean curvature radius, R, is a kind of “reduced radius” of the two adjacent

fragments. For the case of two prolate spheroids the mean curvature radius is given
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by

1 1 1 1 1 1 1

— = + + + Sin? J{ + Cos?o,
R’ RuRiz RaRx [R11R21 312322] ¢ Ri1R22  Ro1Ri2 ¢

where ¢ is the azimuthal angle between the principal planes of curvature of the two
nuclei (a measure of the skewness between the two adjacent fragments, see Fig. D.1)

and the four principal radii of curvature are given by

o (R2(c) + [R}(c)]2)*/?
B = | o Rulan) — 2[Ri(aa)? — R2{o) || (D)
Ri(og)Sin oy [R2 () + (Bl(0)?]
iz = Rl(a;)Cos a; — Ri(;)Sin ay; (D-2)

for fragments ¢ = 1, 2 respectively. The radius vector for a prolate spheroid as a

function of the angle o with respect to the semi-major axis is given by

Sin%c;  Cosqy -1/2
Ri(as) = | 255 y (D.3)

where a; and ¢; are the semi-minor and semi-major axes respectively for fragment i.
The quantities R; appearing in Eqgs. D.1 and D.2 are actually the effective central
radii of two sharp spheres, each generating a diffuse potential. Mathematically, each
is a mean between the central radii of the density and potential distributions for

each fragment,
b

R; = R_ﬁ

i=1,2 (D.4)

where b is again the Siissman width, and R7 is the effective sharp radius of fragment

i given by Eq. D.3. The first and second derivatives of Eq. D.3 are given by

2 2 2 2
a; G a; i

Sin?q; N CosQai] —3/2 ( 1

Ri(o) = — [ ) Sin ; Cos o

R;’(ai):(a —c?) (4 (a? 4 ¢F) Cos 2a;; — (a? — ¢F) (— 5+Cos4a,)).

2 1/2
[Smg% + Cos’ al] (a?Cos2ai + c?Sinzozi)2

7,
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In the present work the fragments are always aligned along their semi-major axes,
meaning that the angles «; are always zero and thus the first derivatives, R}, are
always zero.

Finally, the proximity moment ®(s) is defined as

—%(8—80)2—16‘(8—80)3 (s < s1)
P(s) = (D.5)
—3.437 exp [—s/0.75] (s > s1)
where s is the minimum gap width between adjacent nuclear surfaces, s; = 1.2511
represents a discontinuity in the underlying universal proximity function ¢, and
so = 2.54 (see reference [1] for details). The minimum gap width used in Eq. D.5

was determined by applying corrections for the surface diffuseness to the sum of the

semi-major axes of the adjacent fragments

S =

(R—Ri—Ry).

| =

Here the quantity R = c¢1 + ¢» is the sum of the semi-major axes of the two adjacent
prolate spheroids calculated as

3 ysph v

4y /1 —e2

where prh is the volume of the equivalent sphere and ¢; is the eccentricity of frag-

C; =

ment i. The quantities Ry and Ra, for adjacent fragments 1 and 2, are the semi-major

axis of the two fragments corrected for surface diffuseness using Eq. D.4, i.e.
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Appendix E

Droplet Model Binding Energy

The Droplet Model of nuclei is an extension of the Liquid Drop Model, used to

describe the average behavior of the nuclear binding energy. The refinements take

into account effects associated with deviations of the neutron and proton densities

from their respective bulk values, as well as certain shell effects. The Droplet Model

(DM) expressions were originally derived by Myers and Swiatecki [1, 2, 3] and re-

evaluated by Hasse [4]. The total DM binding energy of a nucleus of atomic number

Z and mass number A is calculated as
5 1 1
Etotal = |:—CL1+J(52— §KE2+§M54:| <A
2
+ |:CL2 + £32:| . Az/ngurf + agAl/churV
40Q)
+ Clz2A_1/3BCoul — 6222A1/3Bmd

— 3 2P AN — ey 2B AT — 05 72 Bypo,

where

5 — 3¢, 4-2/3 g1/ LEEE
5 = [I+16QZA Bl 1+ g A Bas

1

¢ = E{—QagA_l/ngurf+61Z2A_4/3Bcou1+L32}.
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(E.1)

(E.2)

(E.3)
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Note that the first terms in each of the first three lines of Eq. E.1 together form the
standard Liquid Drop Model (LDM) binding energy

EDM - — g1 A (volume energy)
+ ay A?/3 By (surface energy)
+ 1 Z2A7 3 Boow (Coulomb energy).

The additional terms in Eq. E.1 represent the corrections to the LDM expression
incorporated into the Droplet Model.

In Egs. E.1 — E.3 the quantities A, N, Z, and I = (N — Z)/A are specific to the
nucleus under consideration, identifying the mass, neutron number, proton (atomic)
number and relative neutron excess respectively. The total energy also depends on
two additional sets of quantities, constants and shape dependencies. The constants,
using the notation of Myers and Swiatecki, along with the values used in the present

calculations are as follows:

a1 = 15.986 MeV volume energy coefficient.

as = 20.76 MeV surface energy coefficient.

a3z = 0.0 MeV curvature energy coefficient.

c1 = 0.73531 MeV Coulomb energy coefficient.

¢y = 1.6477 x 107* MeV  Coulomb redistribution coefficient.
c3 = 1.30501 MeV Coulomb diffuseness coefficient.

c4 = 0.56149 MeV Coulomb exchange coefficient.

c5 = 4.9695 x 10~* MeV  surface redistribution coefficient of second kind.
J =36.6 MeV symmetry energy coefficient.

K =240.0 MeV compressibility coefficient.

L =100.0 MeV density-symmetry coefficient.

M = 0.0 MeV symmetry anharmonicity coefficient.
Q = 17.0 MeV effective surface stiffness coefficient.

The shape dependencies are defined such that they assume a value of unity for

spherical shapes. The shape dependencies appearing in Egs. E.1 — E.3 are as follows:



Appendix E: Droplet Model Binding Energy 161

5.0 _I T 17T | L | T T 17T T T 17 ||||_

40 F -
£ |
2 .. 3.0 _— ]
Qq C ]
™~ - .
m$ 2.0 — ]
1.0 F -

C1 1 1 1 | | I I | | | I I | | | I I | | 1 1 17

0.0 0.2 0.4 0.6 0.8 1.0

3

Figure E.1: Shape dependencies in the Droplet Model. The variation in the DM
binding energy for deformed nuclei, relative to the spherical result, is dominated by
the change in the surface energy. The variations in the Coulomb, curvature and

Coulomb redistribution energies are much less by comparison.

Bouwt  surface energy shape dependence.

Bcou  Coulomb energy shape dependence.

By curvature energy shape dependence.

Bred Coulomb redistribution shape dependence.

By shape dependence of the surface redistribution of the first kind.

Bgo shape dependence of the surface redistribution of the second kind.

The first four shape dependencies lend themselves to rather straightforward in-
terpretation. These four quantities are plotted in Fig. E.1. The surface energy
shape dependence accounts for the increase in the surface area for any non-spherical
shape. For prolate deformations parametrized by the eccentricity, €, the surface
energy shape dependence is calculated as

B B 1 1 Sin~le
surf = 21 —¢e2 +5 V1 — &2
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which is an increasing function of the eccentricity describing the increase in surface
area of the nucleus. The Coulomb energy shape dependence considers the change
in the mean charge separation for non-spherical shapes. For the present case the

Coulomb energy shape dependence is calculated as

Vi—e2 1+4c¢

B = 1 .
Coul 2: 1-¢

Bcou 18 a decreasing function of the eccentricity. The curvature energy shape de-
pendence is a correction to the surface energy to account for the finite curvature of

the nuclear surface:

1 1—¢2). 1
1 1+( €)ln + e
291 —¢2 2e l—¢

It is an increasing function of the eccentricity. Finally, the Coulomb redistribution

B curv —

energy shape dependence introduces a correction to the Coulomb energy to account
for the redistribution of the protons due to compression of the nucleus as it is de-

formed

3 n2/3 | 3 14+¢e)?
Bieda = 4(1 e%) [4€2<ln1_6>

5 1+4e/1 1+¢ 15 /1. 1+e 2
— —1n —In —1)4+—=1(=In -1 .
e 1—e\2 1—¢ et \e 1—¢

From Fig. E.1 it is clear that the greatest variation from the spherical result occurs

in the surface energy. The effects from the remaining three shape dependencies are
minor in comparison.
The last two shape dependencies are not as intuitive as those plotted in Fig. E.1.

These are the surface redistribution energy of the first kind

Bsrl = 2517% - 60p1BC0u1Bsurf + 363(2]0u132

surf

and the surface redistribution energy of the second kind

Bsr2 = 25]92 - 6OplBCoul + 363(2]0ulBsurf-
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The above two shape dependencies are corrections to the surface energy arising from
the redistribution of neutrons and protons due to compression of the nucleus as it
is deformed. The quantities p; and ps appearing in the expressions for the surface

redistribution dependencies are defined as

pr=0.0938 [1 — 2] | 8¢ B

3 Sin~! /
)

and
po = 02813 [1 — 2] | 26, By
£QSin_1€ & 211/3 2.5, 84
where
1 1+¢
= —1
o 2¢e . 1—¢

& = bt (1)

e2
3
& = 50+€—2(§0—1)-

Aside from the volume term, the two remaining terms in the DM binding energy
that do not have an associated shape dependence are the diffuseness and exchange

energies respectively appearing in the last line of Eq. E.1.
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