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ABSTRACT

ACCESSING THE SPACE-TIME DEVELOPMENT OF HEAVY-ION
COLLISIONS WITH THEORY AND EXPERIMENT

By

David Alan Brown

In this thesis we discuss ways to access the space-time development of heavy-ion
reactions using both theory and experiment. From the theoretical side, we discuss
modeling ultra-relativistic, parton-dominated, heavy-ion reactions. This discussion
is broken into a discussion of transport-like models for massless particles and a dis-
cussion of the parton model in phase-space. From the experimental side, we discuss
using intensity interferometry to image the relative distribution of emission points.

Transport models may offer a way to understand the space-time development of
ultra-relativistic, parton-dominated, heavy-ion reactions at RHIC and the LHC. Two
key approximations needed to derive semi-classical transport equations, the Quasi-
Particle and Quasi-Classical approximations, may not be valid for partons. Using
QED, we outline a derivation of a transport-like theory which does not rely on these
two approximations. This theory rests on the phase-space Generalized Fluctuation-
Dissipation Theorem. This theorem and the phase-space particle self-energies give
a set of coupled phase-space evolution equations. We illustrate how these evolution
equations can be used perturbatively or to derive semi-classical transport equations.

To connect the parton phase-space densities to the experimentally measured
Parton Distribution Functions, the parton model must be translated into phase-

space. Within QED, we study whether two key components of the parton model,



factorization and evolution, can be formulated in phase-space. We rewrite the QED
analog of the parton model, the Weizsicker-Williams Approximation, in terms of
phase-space quantities, demonstrating factorization in phase-space. Evolution of the
parton densities is equivalent to summing a class of ladder diagrams. We study a
simplified QED version of these ladders while studying the phase-space photon and
electron densities surrounding a classical point charge. We find that the densities take
the form given in the phase-space Generalized Fluctuation-Dissipation Theorem. We
use the tools developed here to discuss the shape of a nucleon’s parton cloud.

We can access the space-time development of a heavy-ion reaction directly by
imaging the source function from particle correlation functions. We discuss several
methods to perform this inversion. We concentrate on one such method, the Op-
timized Discretization method, where the source resolution depends on the relative
particle separation and is adjusted to available data and their errors. This method
can be supplemented using known constraints on the source. We test the inversion
methods by restoring simulated pp sources. From the restored sources, one can ex-
tract the average freeze-out phase-space density, entropy at freeze-out and the amount
of the source that lie outside of the imaged region. We apply the imaging techniques
to pion, kaon, proton and Intermediate Mass Fragment (IMF) correlation functions.
Significant portions of the pion, proton and IMF sources extend to large distances
(r > 20 fm). The results of the imaging show the inadequacy of common Gaussian

parameterizations of the source.
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CHAPTER 1

INTRODUCTION

1.1 Heavy-Ion Collisions

How does a colliding heavy-ion system evolve in space-time? This is an interesting
question which we will discuss in this introduction. In the rest of this thesis, we
will present work demonstrating how to access this space-time development using
both theoretical and experimental techniques. This work falls into two categories:
understanding transport-like models, with special emphasis on understanding their
application to events at the Relativistic Heavy Ion Collider (RHIC) [BD98b]|, and
understanding the use of Hanbury-Brown/Twiss (HBT) intensity interferometry as
a way of working backwards from the data to the end of a heavy-ion collision [BD97,
BD98a]. So, why should we be interested in heavy-ion collisions and why should we
care how such a system evolves in space-time?

In a heavy-ion collision, the two colliding nuclei create an excited, dense and
possibly thermalized, zone of nuclear matter in their wake. We see a much larger
version of this in the effectively infinite thermalized nuclear matter of neutron stars,
accretion disks and supernovas. We also expect that such matter existed moments af-

ter the Big Bang [Miil85, HM96]. In all of these cases, a reasonable description can be



built up using single nucleon-nucleon collisions. Indeed, the systems created in heavy
ion reactions are intermediate in size between single nucleon collisions and infinite
thermalized nuclear matter and have features of both. Both single nucleon-nucleon
collisions and heavy-ion collisions are easily accessible with current technology. Cre-
ating and manipulating infinite thermalized nuclear matter in a controlled way is
far beyond anything possible today — we can not smash neutron stars together at
will. In the absence of black hole/neutron star collider experiments, we must rely on
extrapolation from finite nuclear systems.

Because the systems created in heavy-ion collisions are on the border of few
particle systems and infinite thermalized nuclear matter, we expect that many of
the features of both will show up in heavy-ion reactions. In particular, the thermal
features of infinite matter should reveal themselves in some form in heavy-ion col-
lisions. As an example, consider the liquid-gas phase-transition of nuclear matter
— it is predicted to reveal itself through the processes of fragmentation and multi-
fragmentation [Lyn98]. Another phase-transition, the Quark-Gluon Plasma (QGP)
phase-transition is predicted to reveal itself by “fragmenting” into disordered Chi-
ral Condensates or quark droplets [Raj95, HM96, McL86, Miil85]. The QGP phase
transition is predicted by lattice QCD [DeT95, McL86, Miil85] and is implied by
the hadronic model of Hagedorn [Hag65, Hag68, Hag71] and by Chiral Perturbation
Theory [Raj95]. This phase transition is currently generating great interest as it may
already be happening at CERN-SPS energies [RNC98| and should happen at both
RHIC and the Large Hadron Collider (LHC) at CERN [HM96, McL86, Miil85]. A

phase diagram of nuclear matter is shown in Figure 1. In this diagram, we see the



two important phase transitions — the liquid gas phase transition and the transition
to the QGP.

Given that colliding heavy-ion systems are interesting, why study the space-
time evolution of a heavy-ion collision? Well, the existence of a phase transition
dramatically affects the space-time development of the system which in turn modifies
the final state particle characteristics. Compare the two scenarios for a typical RHIC
collision shown in Figure 2: on the left, the collision proceeds through a purely
hadronic phase and, on the right, the system undergoes a phase-transition to the
Quark-Gluon Plasma. Now, the existence of the phase-transition would lead to a
drop in the pressure of the system at the phase-transition, softening the equation of
state and leading to a disappearance of flow at the “softest point” [RPM*95, Ris96,
RG96b, RG96a, R*96, Ris97]. Additionally, a phase-transition may lead to a long-
lived system which would, in turn, lead to a larger relative emission point distribution
for identical particle pairs [PCZ90]. This could be detected using HBT interferometry
and nuclear imaging. The existence of a temporarily deconfined region would lead to
other observable effects such as the color screening of the quarks in a J/v¢ particle.
This then allows them to disassociate, leading to so-called J/1 suppression [MS86].
So, now it is clear that different physics leads to different space-time evolution of a
collision. What we need now are ways to get at this space-time evolution.

We can access the space-time evolution of a heavy-ion collision in several different
ways. Two ways in particular are quite fruitful and are the subject of this thesis:
1) modeling the reaction using transport-like models and 2) accessing the final state

directly using nuclear imaging. A large class of event generators are designed in order
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To- The coexistence phase begins at proper time 7, and hadronization begins at 7y,.
The collision ends at the freeze-out proper time 7; when the final state nucleons and
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Figure 3. Sample UrQMD event: Au+Au at E/A = 200 GeV and b = 5 fm. In
this picture, the small green spheres represent pions, the larger white and red spheres
represent neutrons and protons, the larger blue spheres represent nucleon resonances
and the yellow lines represent string excitations of the hadrons. In this picture, one
can clearly see the spectator matter leaving the central collision zone. The large
number of strings in the central region shows that there is a high energy density.



to study the phase-space! densities of the particles as they evolve in time. Models
that provide the time evolution of the phase-space particle densities are generally
called transport models. In part, these models are useful because they provide a
direct visualization of the collision (see for example the output from an UrQMD
Au+Au event at b = 5 fm and E/A = 200 GeV in Figure 3 from [Web98]). More
importantly however, such models can easily incorporate the data from single nucleon-
nucleon collisions in vacuum, allowing us to build up a transport theory consistent
with the underlying, elementary physics. A different and complementary approach
is to directly image the reaction. By imaging the reaction, we directly get at the
configuration space distribution of the system at freeze-out. Of course there are
problems resulting from such an inversion of the experimental data resulting from
the mixing of temporal evolution into the source in a nontrivial manner and the
inherently difficulty of imaging resulting in rather crude images. Both the subjects

of transport theory and nuclear imaging are discussed at length in this thesis.

1.2 Working Forwards — Theory

Modeling heavy-ion collisions has a long history, going back into the 1940’s. It has
progressed to its current state by a series of improvements in our transport mod-
els and through theoretical insights into transport theory as a whole. However, the
basic idea behind many of the models has remained more or less the same over the

years: nucleons travel along their classical paths in configuration space and collide

!That is in both coordinate and momentum representations simultaneously.



when particles are within W of one another.? The total collision cross sec-
tion, oroT, is often tuned to reproduce single particle spectra. In other words, the
nucleons are treated as an ensemble of “billiard balls” with radius \/oror/m as they
evolve in phase-space. This picture works well for nucleons at intermediate to high
energies because they can be localized and interact on time scales much smaller than
their mean free path. Should we expect this picture to work for the highest energy
collisions? In these collisions, the criteria for closest approach breaks down [KBH*95]
and the dynamics are dominated by massless (or nearly massless) particles which are
both difficult to localize and may interact over large length and time scales. In other
words, can the series of approximations used to arrive at this picture be justified for a
RHIC collision where the majority of the interacting particles are quarks and gluons
(i.e. partons)? Indeed, can we even define the initial conditions for a RHIC collision,
a job tantamount to rewriting the parton model in phase-space?

The first models of heavy-ion collisions were based on the Internucleon Cascade
(INC) concept developed by Serber in 1947 [Ser47]. His idea is simply to repre-
sent nucleons as “billiard balls” that travel along classical (relativistic) trajectories
through configuration space. The nucleons interact strictly through binary collisions
between nucleons at the point of closest approach in configuration space. This point
of closest approach is defined through the total cross section to be \/W; this
model is the origin of the closest approach criteria. Collisions are the only way, in

this model, to modify the momentum portion of the phase-space distribution. The

2We refer to the use of the cross section in this manner as the closest approach
criteria.



INC concept has been extended into its modern-day incarnation by including reso-
nances [CMV81, Cug82]. Because the particles do not interact through mean-fields,
or any other higher order mechanisms, this model can only reproduce single particle
observables such as spectra. Thus, it works best at energies where mean-field effects
are small (i.e. 2 1 GeV). The concepts first laid out in this model form a blueprint
for all the successful heavy-ion transport models to follow.

There are several models that build upon the basic ideas laid out in the INC
and we will only discuss two classes of them: Quantum Molecular Dynamics and
Boltzmann equation simulations. There are many other types of models, such as
Time Dependent Hartree-Fock models, hydrodynamical models and thermal models,
just to name a few. These models have varying degrees of success however none are
as successful at reproducing single and many particle observables at intermediate to
high energies (2 100 MeV) as the classes of models that we discuss below.

Quantum Molecular Dynamics (QMD) models follow along much like the INC.
In QMD, as in the INC, each nucleon is treated as a “billiard ball.” The particles are
on-shell and all follow their classical equations of motion through configuration space.
However, instead of using the cross sections to determine how a collision proceeds,
QMD uses nucleon-nucleon potentials. QMD’s higher-energy incarnations, RQMD
and UrQMD, supplement the nucleon-nucleon potentials with hard scattering through
the cross sections using the closest approach criteria as in the INC [SBH191, B*97]
and with strings and resonances. RQMD and UrQMD also sport two other features,
not present in INC: a nucleon mean field and Pauli blocking. With the inclusion

of the mean field, both RQMD and UrQMD can reproduce flow observables, which



are sensitive to mean field effects. The Pauli blocking only really helps at the lower
energies, and the lack of Pauli blocking in the INC partially explains why the INC
can not work well below 150-200 MeV/A. Both RQMD and UrQMD are significant
advances over INC and are quite successful at reproducing single and multiple particle
observables.

In Boltzmann-Uehling-Uhlenbeck (BUU) based approaches, such as in the MSU-

BUU or the BEM models, one sets out to solve the BUU equation:

> = - d
a—{ + ’17 Vrf — VTU . fo = _(23-(-)6 /d3p2 d3p21 de—;’UIQ
X {[ff2(1 = fi)(L = for) = furfo (1 = fL)(1 = fo)]
X (21)°6%(F + o — Pv — D) } -

(1)

In this equation, f is the phase-space density. The particles are all taken to be on-shell
and primes denote quantities to be taken after a collision between particles 1 and 2.
This equation incorporates all of the important innovations included in the QMD and
INC models, namely Pauli blocking, a mean field and the ability to fit results to known
particle spectra. The factor do/df2 is the experimentally determined nucleon-nucleon
cross sections, although in practice, it may be altered to account for in-medium effects
such as screening. The (1 — f) terms account for Pauli blocking in the final state; if a
cell in phase-space is occupied by a Fermion, then in that region f =1s01— f =0
making that collision term 0. Finally we have the mean-field, U, which produces

a driving force through the term V.U - ﬁp f. Now, the actual solving of the BUU
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equation varies with the model in question, but most models use the test-particle
method. In this method, one replaces the phase-space distribution of particles with
an ensemble of test-particles (essentially “billiard balls”). The test-particles follow
classical trajectories that are modified by the mean-field driving force and interact
using known cross sections in the same manner as the INC. Most BUU-type models
are capable of reproducing both single particle spectra and flow observables.
Clearly, there are several features common to all of these models: classical rel-
ativistic kinetics, use of cross sections to constrain inter-particle interactions and
full phase-space evolution of on-shell particle densities. How can we justify these
features? For the INC and QMD based approaches, the justification is purely phe-
nomenological. However, in BUU based approaches many features can be justified
using known procedures and time-ordered non-equilibrium field theory [KB62, RS86,
Dan84, BD72, KOH97, MD90, MH94]. So, we can study these works and understand
how to justify the various features of transport models. In the standard derivations of
the BUU equation the particles follow their classical trajectories only after applying
the gradient approximation, an approximation also know as the Quasi-Classical Ap-
proximation (QCA). In this approximation, one throws away short scale structure in
favor of large-scale structure in the densities and collision integrals. This washes out
the quantum wanderings of particles from their classical paths. To justify this ap-
proximation, one needs the collision length scale to be much smaller than the length
scale of variation of particle densities. Now the Lorentz dilation effects in an ultra-
relativistic nuclear collision can ruin this scale separation by simultaneously shrinking

the mean free path (the nucleon density increases by a factor of ) and increasing the
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interaction time. A complementary approximation that one typically makes is the
so-called Quasi-Particle Approximation (QPA). In this approximation, one replaces
the full phase-space densities (i.e. in F,p,t, and Z) with distributions of on-mass
shell particles (so E = /2 +m?2). This is equivalent to making all particles free
particles with infinite lifetimes. Most theorists recognize this as a problem because
even in intermediate energy collisions many off-shell and unstable particles exist (the
resonances in particular). The persistence of off-shell and unstable particles means
that subsequent interactions are not independent, making the interactions effectively
many-body interactions. An example of this is the Landau-Pomeranchuk effect in
a QED plasma. Suppose an electron is knocked off-mass-shell in a collision. In
the vacuum, it would radiate a bremsstrahlung photon after some “formation-time.”
In a dense plasma, it is possible for that electron to be struck again, before the
“formation-time” has elapsed, both resetting “formation-time” clock and ensuring
that that photon is not radiated. Thus, the subsequent electron interactions depend
on the previous history of that electron. In both QMD and BUU type models, off
shell evolution of unstable particles is included in some form by introducing a life-time
parameter — when particles live too long, they are decayed. In the vacuum, particles
are all on-shell and in momentum eigenstates so are spread over all configuration
space. So, the QPA and QCA together act to scatter the particles as though they
are in the vacuum, at least on the length scale of the interactions.

There is one feature that can not be justified on the basis of non-equilibrium
field theory under any circumstances: the closest approach criteria. In practice, col-
liding particles when they are within the closest approach radius (i.e. \/oror/T)
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of one another is a purely phenomenological and conceptually simple way to imple-
ment the collision integrals in the BUU equations. At lower energies, use of this
criteria causes no problems. However, at higher energies the closest approach radius
acquires a frame dependence leading to the causality violations noted by Kortemeyer,
et al. [KBH'95]. These violations grow more severe as the closest approach radius
approaches the mean-free path of the particles in the simulation. Kortemeyer, et
al. suggest several ways to avoid the causality violations but their solutions require
a brute force suppression of the collisions that result in the violations rather than
addressing the validity of the closest approach criteria. In the end, it is not clear
whether the use of the closest approach criteria is a valid way to determine if two
particles can collide.

Can these approximations be applied at RHIC energies to make a RHIC BUU
model? Well, primary hadronic collisions in a typical nuclear reaction at RHIC will
occur at /s ~ 2004 GeV. Such collisions are so violent that the partons, i.e. the
quarks and gluons, comprising the hadrons will become deconfined. If the energy
density is too low, the partons will immediately hadronize and the collision will
presumably proceed as lower energy collisions do. However, if the energy density
is high enough, the partons will remain deconfined and should form a quark-gluon
plasma (QGP) [EW93, HM96, NR86|. In either case, we will need a transport model
that can handle the partons. There have been several attempts to build a pure parton

transport theory [Gei96, Hen95, HBFZ96, BI94|, but each has their problems. Chief
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among these problems is that one either treats the soft long-range phenomena?® or one
treats the hard short-distance phenomena,* but never both in the same framework.
Perhaps, by relaxing the need for a scale separation (and hence the QCA), we may
be able to treat both hard and soft modes on equal footing. Additionally, we must
relax the Quasi-Particle Approximation to allow for many-particle effects, such as the
Landau-Pomeranchuk effect, which depend on particles being off-shell. Although the
parton model is usually formulated with on-shell partons (i.e. in the Quasi-Particle
Approximation), it has been known for some time that a proper covariant treatment
of partons requires that the partons be allowed to be off-mass-shell [Lan77, SV93].
In fact, by allowing the partons to be off-shell, one can account for the apparent
violation of the Gottfried sum rule and the relative depletion of Drell-Yan pairs at
high zr in nuclear targets [SV93].

We do not have a phase-space treatment for QCD, but we have made several
steps toward developing one for QED. In particular, we discuss how to create a
transport theory for massless particles in Chapter 2 and we discuss issues related to
constructing the parton model in phase-space in Chapter 3. The main result of both
chapters is that the phase-space densities are convolutions of a phase-space source
and a phase-space propagator. This “source-propagator” picture should lead to an
improved transport theory for the massless partons at RHIC as it can handle both
soft and hard modes simultaneously. The “source-propagator” picture is covariant,

so does not suffer from the causality violations of standard transport approaches. So,

3In the case of [BI94], the long-range modes are collective thermal modes.
In the case of [Gei96] the short-range modes are large-Q? partons.
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in the end we may not have all the answers for what a transport model at RHIC

would be, but we have made several steps in the right direction.

1.3 Working Backward — Experiment

Being able to watch a system evolve on the computer definitely helps to visualize the
events during a collision, but it pales in comparison to directly imaging the reaction.
The technique of intensity interferometry allows us to take a large step toward this
goal. Astronomers have long recognized the value of intensity interferometry.® In
fact, it was a pair of astronomers who developed the technique: Robert Hanbury-
Brown and Richard Twiss [HBJDG52, HBT54, HBT56b, HBT56a, HBT56¢, HBT57a,
HBT57b]. The application of intensity interferometry to nuclear collisions followed a
few years after Hanbury-Brown and Twiss’s initial discovery [G759, GGLP60]. Until
recently the goal of nuclear interferometry did not differ greatly from Hanbury-Brown
and Twiss’s original goal; they measured the radius of Sirius while we typically mea-
sure the radius of the relative emission profile of particle pairs (the source function)
in heavy-ion reactions. We have recently demonstrated how to move beyond simply
extracting source radii to extracting the entire source function from the experimental
data [BD97, BD98a).

Intensity interferometry is based on a fairly simple observation. If we have two
possible events, say detection of one pion in detector 1 and detection of a second pion

in detector 2, the probabilities of each occurring are uncorrelated if the probability

Sand of interferometry in general

15



;@ 0

%@ Dz

} L {

Figure 4. A simple example illustrating the HBT effect.

of both happening is the product of the probability of each happening individually:

P12:P1P2.

On the other hand, if they are correlated then this is not true. In this case, we can

define the correlation function as the ratio

P12

Cia = .
12 PP,

Then C;5 = 1 if the two events are totally uncorrelated.

It is useful to illustrate this point with an example. This example is given in
[Bay98] and pictured in Figure 4. In this figure, we have two sources of photons
labeled A and B and two photon detectors labeled 1 and 2. Now, suppose A and
B emit the photons in spherical waves and bunched in time.®* The amplitude for

receiving a photon from A in detector 1 is

explirark + i 4]
TA1

Ca

6We bunch the photons in order to ensure that there is a short time scale on which
the photons are correlated.
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so the total amplitude at detector 1 is (assuming L > d, R)
1 . . . .
A = i (Caexplirartk +iga] + Cpexplirpik + igp))

and similarly for detector 2. Here, the phase ¢ is random and changes with each

bunch. So, detector 1 receives photon hits with a probability (or intensity) of

1 .
L = |A]* =7 (ICa]” + |CB[* + C4Crexpli((rp1 — ra)k + ¢5 — $a)]
L2

+ CuCpexp[—i((rp1 — Ta1)k + ¢ — d4)))

and similarly for detector 2. Now averaging over many sets of bunches, each with

different phases, we find the average intensity in any one detector to be

(1) = (1) = 75 ((ICAP) +(IC5[)) .

Now, if instead of averaging the intensities, we were to average the quantity I, I, we
would find that ([1I) # (I,) (I5) as we would expect for uncorrelated sources. In

fact, we would find

II C4|H) {(|Cp|?
(L 1) =142 (Ca) {IC 5 cos[k(ra1 — Ta2 — TB1 + TH2))-

(L) (I2) ([Cal?) +(IC5*)

This second term is the interesting one as it is purely quantum in origin and because it
is sensitive to the separation of the two sources. In practice, the ratio (I11s) / (I1) (Is)

is defined as the correlation function Cjs.
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This example illustrates a simplified form of what Hanbury-Brown and Twiss
observed in their series of pioneering experiments into intensity interferometry
[HBJDG52, HBT54, HBT56b, HBT56a, HBT56¢c, HBT57a, HBT57b]. The culmi-
nation of their experiments was the determination of the angular diameter of the star
Sirius using a pair of World War II surplus searchlight mirrors and some electronics
[HBT56b]. The radius they found to be 0.0068” + 0.0005” or 3.1 x 107 radians. At
a distance of 2.7 pc = 8.5 lyrs, Sirius is a mere 3.7 times the radius of our sun. As a
result of their work, the technique of intensity interferometry became known as the
HBT effect.

The HBT effect was first noted in subatomic physics in a study of the Bose-
Einstein symmetrization effects on pion emission in proton-antiproton annihilation
[G159]. To explain the data Goldhaber, Goldhaber, Lee and Pais [GGLP60] used
a static source model for pion emission and determined the effect on the angular
distribution of pions due to symmetrization. For a time, the effect was known as the
GGLP effect. While Kopylev and Podgoretski first described how interferometry is
sensitive to the size of the emission region of a heavy-ion collision [KP71, GKPT71,
Kop72, KP72, KP73, Kop74], the GGLP effect first was explained in terms of intensity
interferometry by Shuryak [Shu73a, Shu73b] and Cocconi [Coc74]. In the late 70’s and
early 80’s the ranks of particles where the HBT effect was observed grew to include
protons, intermediate mass fragments (IMF’s) and neutrons. Today interferometry
is carried out with a wide array of particles, including (but not limited to) kaons,
leptons, photons, and even pairs of unlike particles.

While the experimental community advanced dramatically in its ability to
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measure correlation functions, the amount of information gleaned from an individual
correlation function has not advanced much at all; until recently, people still used the
correlation function only to get the radius (or mean life-time) and r = 0 intercepts
of the source function. This is of course the obvious thing to do because most corre-
lation functions (at least for pions) look like Gaussians after a Coulomb correction.
One can get a lot of information from a radius, especially when the data is cut on the
right kinematic variables. Nevertheless, in many cases, one is replacing 50 points of
a well defined function with one radius — a great waste of information. There are of
course exceptions to this rule: Pratt [PCZ90] developed a series of codes to convert
output from transport models to correlation functions which can then be directly
compared to data. Beyond this, it is only lately that people have tried to go beyond
simply fitting a radius: Nickerson, Csorgé and Kiang have attempted fitting corre-
lation functions to a Gaussian plus an exponential halo [NCK98] and Wiedermann
and Heinz have proposed performing a moment expansion of the correlation functions
[WH96]. While both of these are valuable exercises, neither make full use of the data.
This is why my advisor, Pawel Danielewicz, and I proposed doing nuclear imaging.
Nuclear imaging amounts to reconstructing the relative emission distribution” for
the pairs used to construct the correlation function. Imaging relies on the observation
that the source function and the correlation function are related through a simple
integral equation which can be inverted. We discuss the methods for doing this

inversion and the results we get from the inversion in Chapter 4.

"a.k.a. the source function
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1.4 Overview of Thesis

This thesis is about the tools we use to investigate the space-time developments of
heavy-ion reactions. Specifically, we discuss the application of transport theory to
parton dominated collisions at RHIC and the LHC and we discuss the application of
imaging techniques to HBT intensity interferometry. Both lines of research are aimed
at deducing the features of the phase-space particle densities and how they evolve as
a heavy-ion collision proceeds.

In the second chapter, we describe some of the things needed to derive a QCD
transport theory. We begin by defining the phase-space particle densities as under-
standing their time-evolution is the ultimate goal when building transport models.
We then describe the contour Green’s functions and the other Green’s functions that
we need to perform actual calculations of the densities. We will then spend the rest of
the chapter deriving a QED transport theory valid for massless photons and electrons
but without applying either the Quasi-Particle or the Quasi-Classical (or gradient)
approximations. In doing so, we derive the Generalized Fluctuation-Dissipation the-
orem — proving that a phase-space density is the convolution of a phase-space source
density with a phase-space propagator. This is a general result, applicable to QCD
as well as to particles with mass. We use this theorem to create QED phase space
evolution equations and to illustrate the perturbative solution for the photon and
electron densities that we discuss in Chapter 3. Finally, we describe how one might
make a transport model based on these results.

We will need phase-space parton densities for input in a parton transport model
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so in the third chapter we begin the process of recasting the parton model in phase-
space. The parton model has two key components: factorization of the cross sections
and evolution of the parton densities. The first component has a QED analogy in the
Weizsicker-Williams approximation: in the Weizsicker-Williams approximation, the
cross section for a photon mediated process is the convolution of a photon density and
the cross section for the photon induced sub-process. We rederive the Weizsacker-
Williams approximation in phase-space, applying it to both the photon cloud and
electron clouds of a point charge. In the process, we not only illustrate how to
rewrite things in phase-space, but we investigate the roles of phase-space sources
and propagators. The second component, evolution of the parton densities, can
also be investigated in QED. The renormalization group evolution of the parton
densities is equivalent to the summation of a class of ladder diagrams in the Leading
Logarithm Approximation. We can study a simplified version of the ladder diagrams
in QED by calculating the photon and electron phase-space densities around a point
charge. Indeed, the electron and photons surrounding a point charge are point-like
“constituents” of the point charge, so they earn the right to be called QED partons.
Finally, with all of this QED experience, we discuss the main features of the phase-
space parton distribution of a nucleon in the Leading Logarithm Approximation.

In the fourth chapter, we describe how nuclear imaging can be used to extract the
source function from correlation data. We list the methods we have used to perform
this inversion, describing what works and how and why they work. In particular, we
will discuss the role of constraints in the stabilization of the inversion and the method

Pawel Danielewicz developed which works well even without constraints. Next, we
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discuss what other quantities can be extracted from the images. Finally, we apply
our inversion techniques to various data sets and discuss what the images mean.

We will conclude the thesis with a brief summary and a description of what work
needs to be done to follow up the lines of investigation opened here.

There are also several appendices exploring various side and technical issues.
Among these are discussion and derivations of the phase-space propagators, the mea-
surables in a heavy-ion collision, the cross section in terms of phase-space densities,
the Coulomb field of a static point charge in phase-space, the gauge dependence of
the photon distributions from Chapter 3 and both wavepackets in phase-space and
current densities in phase-space.

Throughout this thesis, we use natural units (A = ¢ = 1) when convenient, but
we insert factors of fic when we need an energy or length in conventional units. The

signature of the metric tensor is (+, —, —, —).
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CHAPTER 2

EVOLUTION OF PHASE-SPACE PARTICLE DENSITIES

How can we go beyond standard transport methods to produce a transport-like theory
for massless (or nearly massless) particles in ultra-relativistic heavy-ion collisions?
However we do it, this theory must allow for off-shell evolution of the particle densities
so we must relax the Quasi-Particle Approximation. This theory must also deal with
all hard and soft modes on equal footing. Since the modes act on different length and
time scales, the theory must not require scale separation or use the Quasi-Classical
Approximation. The way we produce our transport-like theory is to go back to
the original work on transport, identify where the QCA and QPA approximations
are made, and replace them with more suitable approximations. We use QED for
this study because it is not as complicated as QCD but still contains many of the
relevant features of QCD. By not making the standard approximations in our study
of QED transport, we will find that the densities take a “source-propagator” form
— meaning a phase-space density is the convolution of a phase-space source density
and a phase-space propagator. As the reader will see, the phase-space source gives

the quasi-probability! density for creating a particle with a particular momentum.

IStrictly speaking, neither the phase-space sources nor propagators are true
probabilities as they can be negative. As with any other Wigner-transformed
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The propagator then sends this particle from its creation point across a space-time
displacement to the observation point. This “source-propagator” form is a general
result, not specific to QED, and it is encoded in the key result of this chapter: the
phase-space Generalized Fluctuation-Dissipation Theorem.

To begin, we define the initial state through the density matrix and the particle
phase-space densities as expectation values with the density matrix. Because of the
general nature of the density matrix we can simultaneously investigate anything from
single states to ensembles of states. The densities themselves are Wigner transforms
of two-point functions such as GZ(z,z,). We will discuss these densities, how they
relate to other possible definitions of the particle densities, and how one normally
implements the Quasi-Particle Approximation.

To perform practical calculations of the GZ, we introduce the contour Green’s
functions. These Green’s functions are defined on a contour in the complex time
plane. By restricting the arguments of the contour Green’s function to various
branches of the contour, we can define other auxiliary Green’s functions such as
Feynman’s Green’s functions. At this point, we also introduce the retarded Green’s
functions as they will play a dominant role in later discussions. The introduction of
the complex time contour also leads to a simple scheme for perturbatively calculating
the contour Green’s functions. This in turn leads to the Dyson-Schwinger equations
which are the starting point for the derivation of the semi-classical transport equa-

tions.

quantities, they must be smoothed over small phase-space volumes to render them
positive definite.
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After these preliminaries, we begin examining QED transport theory for mass-
less particles. In Section 2, we follow essentially the standard semi-classical transport
equation derivation: we derive the Kadanoff-Baym equations and formally solve them
to get the Generalized Fluctuation-Dissipation Theorem. Unlike conventional deriva-
tions of transport theory, at this point we do not make the Quasi-Classical Approxi-
mation. This approximation amounts to ignoring small-scale structure of the particle
phase-space densities, resulting in much simpler collision integrals [Dan84, MH94]. By
not making this approximation, we arrive at the Generalized Fluctuation-Dissipation
Theorem which codifies the “source-propagator” picture of the particle densities.
Crucial inputs to the theorem are the phase-space sources; we will discuss how to
calculate them.

With the sources and the Generalized Fluctuation-Dissipation Theorem, we de-
rive a set of phase-space QED evolution equations. These evolution equations de-
scribe the evolution of the system in phase-space from the distant past to the present,
including all splittings, recombinations and scatterings. Furthermore, we can expand
these evolution equations to get the lowest order contributions to the particle den-
sities or we can differentiate the evolution equations to get transport equations. All
of these results are manifestly Lorentz covariant so do not suffer from the causality
violation of a more traditional approach. However, our investigation is not as mature
as conventional transport approaches and we are not at the stage where we can make
quantitative predictions.

For those familiar with the common steps in deriving semi-classical transport

equations from the Kadanoff-Baym equations, we suggest skipping past Section 2.4
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to Section 2.5.

2.1 The Density Matrix

The systems that we study range from the very simple, i.e. binary collisions, to the
very complex, i.e. interacting heavy-ion systems. We could deal with the potential
complexity right up front by specifying the incoming states, or we could cleverly lump
the complexity into a density matrix. We choose the latter because it is both more
general and simpler to do.

First we write the density matrix p as

p= 3 m) (nl prn 2)

all states

Here, the states |m) and |n) can correspond to single particle or many particle states,
depending on the system of interest.

Because the density matrix is so general, we can treat many different situations
at the same time, all within one general framework. For example, we can easily
incorporate a thermal population of states for work with infinite thermalized nuclear
matter. As a second example, we can account for correlated initial and final states
as well as bound states using an appropriate choice of density matrix. As a final
example, we can choose suitable density matrices to give us localized wavepackets of
single particles in the initial state. It is this last reason that we will take advantage
of in this thesis. In every subsequent chapter, the particles we consider will be

localized in space and or momentum (or both!). In fact, we demonstrate how to
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make a wavepacket localized in phase-space in Appendix G. In this chapter and the
following chapter we create particle phase-space densities that are localized both in
momentum and coordinates and in Chapter 4 we will measure the localized sources
of particles created in heavy-ion reactions.

For now, we leave the density matrix in this general form. The only condition
that we place on it is that we can perform a Wick decomposition on general expec-
tation values. This requirement is important for creating a perturbation expansion
of the expectation values [Dan84]. The discussion of what density matrices allow a
Wick decomposition is carried out elsewhere [Dan84, CSHY85, Sch94).

Now, in terms of this density matrix, we can define an arbitrary expectation

value of an Heisenberg picture operator:

(’)H> =———" (3)
< Tr(p)
As a simple example of both a density matrix and an expectation value, consider the

density matrix containing only the vacuum state, |0): p = |0) (0]. The trace over this

density matrix gives the vacuum expectation value of the operator

Tr(p)  (0]0)

(6n) = T (90n) _ (0)0, 0)

2.2 Particle Phase-Space Densities

Since our ultimate goal is to follow the phase-space densities, we would like to define

them precisely. We will define them as the Wigner transforms of certain two-point
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functions. These two-point functions, also known as the > and < Green’s functions

are for scalar bosons:

iD,(z,y) = (Au@)A,W) - (4.@) (A.0)) (40)

iD5(,y) = (A1) Au(@)) - (4.@) (A.6)), (4d)

The field operators in these expressions are taken in the Heisenberg picture. Note
that, because of the equal time commutation relations for the interaction picture
operators, if we write the above in the interaction picture, we find G” (z,y) = G<(y, z)
for both fermions and bosons.

These Green’s functions are hermitian and they contain the complete single-
particle information of the system. For example, setting x = y gives us the single

particle density matrix. Furthermore, Wigner transforming in the relative coordinate,
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we find the off-mass shell generalization of the Wigner function for the particles — in

other words, the phase-space density. Let us demonstrate for scalar fields:

f(z,p) = iG=(z,p)
= / di(z — y) €CVPIG< (2, y) (5)

_ /d4(:v — y) eileu)e <¢§* (y)q@(z)> :

We identify f(z,p) with the number density of particle (or antiparticles) per

unit volume in phase-space per unit invariant mass squared at time zg:

o= il
In particular, for py > 0, iG<(z,p) is associated with the particle densities and
iG” (z,p) is associated with the hole density. For py < 0, iG<(z,p) is the anti-
hole density and G~ (z,p) is the anti-particle density. The photon and electron
densities are defined in the same way, however because of their more complicated
spin structure, their Wigner functions carry indices.

Other, gauge invariant, definitions of the particle densities exist in the literature
[ZH96, VGE87, EGV86a, EGV86b]. However, while these distributions are gauge
invariant, they do not obey simple Dyson-Schwinger equations and so it is difficult
to derive transport theory from them. Since all of the observables in which we are
interested are gauge invariant and all of the equations involving the densities that

we derive are gauge covariant, we do not need to resort to exotic definitions of the
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densities.
The off-shell Wigner function is related to the conventional Wigner function,

fo(z,P), through the invariant mass integration:

oo

S
o) = L - [ 2 g(a), )

—0C

In the Quasi-Particle Approximation we assume that

fo(z, P)o(p* — m2) for py > 0
flz,p) = (7)

—(1 = fol(z,9))d(p* —mZ) for py <O0.

In this approximation (which is quite a common approximation in transport-like
models), f(z,p) and fo(z,p) are interchangeable. Here m, is the effective mass of
the particle and it may be either the mass in free space or it may contain in-medium
modifications.

Now, finding the particle densities are the ultimate goal of our work. We will
describe several ways to calculate them in the following chapters. To this end, we
will need several of the Green’s functions in the next subsection. Also, given that we
measure the densities in any experiment, we discuss particle spectra (basically the

momentum space density of particles) in great detail in the Appendix B.
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2.3 Other Green’s Functions

In order to calculate the densities, we will need to introduce several other Green’s
functions. The first of these, the contour Green’s functions, are the most exotic as
they are defined on a contour on the complex time plane. To see why such a contour is
useful, we will first discuss the expectation value of an arbitrary Heisenberg operator
Oy (). With an understanding of why this contour is used, we will define the contour
Green’s functions and all of the auxiliary Green’s functions that the contour Green’s

functions encapsulate.

2.3.1 Operator Expectation Values

Consider the expectation value of an Heisenberg picture operator with one time

argument:

<@H(t)> — M (8)

This operator could be anything from the energy density of the system to the number
operator of a specific field provided that is a function of one time variable only.

The simplest way to evaluate this operator is to rewrite the operator in the inter-
action representation. Once in the interaction picture, we can perform a perturbative
expansion of the time evolution operator and develop successive approximations to

the expectation value. The relation between an operator in the Heisenberg and
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interaction pictures is

~

On(t) = Ulty, ) Or(8)U (8, 1) (9)

where U(t, o) is the interaction picture time evolution operator and #, is the time at
which the two pictures coincide. For ¢ > %y, the evolution operator is given in terms

of the interaction part of the Hamiltonian in the interaction representation by

Ult, to) = T¢ [exp (—i/t dt’ﬁ{(t’))] : (10)

to

The operator T¢% simply orders the operators in the expectation value in a chrono-

logical (or anti-chronological) fashion. In other words:

T (A(t)B()) = 0(ts — b)AR)B(6) + 0t — 1) B(B)A(L)  (11a)

T (A(0)B(t2)) = 0(ts — 1) Bt2)A(t) + 6(ts — t)A(t)B(t2)  (11b)

So, we can write the expectation value of O (t) in the interaction picture as follows:

(ot0)

(B(t0, )0 ()T (1, 1))

- <T“ [eXp (—i /t ° i (t’))] Or(t)T [eXp (—z’ /t : dt il (t’)>]>

Notice that the time ordering goes as follows from right to left: the rightmost time

evolution operator takes things from £y forward in time to ¢ where the operator is
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I |
- %Re
-

—
to t

\

Figure 5. Contour in the complex time plane for evaluating operator expectation
values. The upper branch corresponds to causal ordering and the lower branch to
anti-causal ordering. The arrows denote the contour ordering enforced by the T
operator.

evaluated then the second time evolution operator takes things from £, backwards in

time again to t;. We can simplify notation by introducing a contour in the complex

time plane which runs from ¢, up to ¢ and back again to ¢y as shown in Figure 5.
We can define ordering along this contour using the contour time-ordering oper-

ator, T, defined via
T (A(tl)B(t2)) = O(t1, t2) A1) B(t2) + 0(t2, 1) B(t2) A(t1) (13)

where the contour theta function is given by

1 if 2y is later on the contour than
9(150, yo) =
0 otherwise

Using this notation, Equation (12) simplifies to

(0(t)) = <T [exp (—z’ /C dt i (t’)) @I(t)]> (14)
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This idea of a contour that zig zags back and forth along the real time axis, encap-
sulating the various time orderings needed in an expectation value was first noticed
by Schwinger [Sch61]. The idea was generalized by Danielewicz [Dan90] to account
for operators with multiple time arguments.

Now we will not actually demonstrate how to solve for <@H(t)>, although it is
discussed in several places, notably [Sch61] and [FW71]. However, our discussion is
a useful motivation for the introduction of the contour ordering that we use to define

the contour Green’s functions in the next section.

2.3.2 Contour Green’s Functions

Introducing the time ordering along a contour in the complex time plane is a clever
way to express expectation values and what makes the ordering so clever is the way
the two branches encode causal or anti-causal time orderings. Let us take advantage
of this feature and define the contour Green’s functions as Green’s functions that are

ordered along the time contour:

~

iG(z,y) = (T9()¢" (1)) (15)

for scalar particles,

~

iDyu(@,9) = (TAu@)A,0)) - (Au(2)) (A(@)) (15b)
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for photons and

iSas (@) = (T0a(@)b5(1)) (15¢)

for fermions. For practical purposes, we must take the lower limit of the contour as
to — —oo, where we specify the initial conditions in the density matrix. Furthermore,
we must take the upper limit of the contour as ¢ — oo to ensure that all of the time
arguments of the contour Green’s functions are between the limits ¢, and ¢ and thus
are on the contour.

All of the above Green’s functions can be written in the interaction picture in a
manner analogous to Equation (14). From this, Danielewicz [Dan84] has derived the
set of Feynman rules for evaluating the contour Green’s functions. These rules differ
slightly from the Feynman rules for the S-matrices found in most field theory books,
so we tabulate the QED rules in the next section.

The contour Green’s function can be written in terms of the 2 Green’s functions

as

G(z,y) = 0(z0,90)G” (2, y) + 0y, 20) G<(z,y) (16)

for both fermions and bosons. By virtue of this, we have the relation G(z,y) =

G(y, x).
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2.3.3 Contour Feynman Rules for Quantum Electrodynamics

In order to evaluate the contour Green’s functions in the interaction picture, we need
a set of Feynman rules for these Green’s functions. These rules have been derived
previously [Dan84) so we may just state them here. The Feynman rules we state are
the QED Feynman rules. A similar set may be written down for QCD or any other
field theory. We use the field normalization conventions of [AB65].

The Feynman rules for the evaluation of the QED contour Green’s functions in

the interaction picture are:

1. The vertex Feynman rules are summarized in Table 1.

2. The contour propagators are summarized in Table 2.

3. Every closed fermion loop yields a factor of (—1).

4. Every single particle line that forms a closed loop or is linked by the same

interaction line yields a factor of iG<.

Notice that the second scalar coupling is second order in the coupling constant while

the rest of the couplings are of first order.

2.3.4 Auxiliary Green’s Functions

We define several auxiliary Green’s functions in terms of the > and < Green’s func-
tions: the retarded and advanced Green’s functions and the Feynman and anti-

Feynman propagators, and the spectral function. For the scalar particle retarded
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Table 1. The vertex Feynman rules for scalar and spinor QED.

photon-scalar

3 point e

photon-scalar o - N
vertex eZ Oy=eZ(0y — Op)
4 point s .

vertex A 2ie*Z* Guv

fermion-photon
vertex

—iey,

Table 2. The contour scalar, photon, and electron propagators.

scalar line

G(IEI, IEQ)

photon line

Dy (21, T2) = 479, G (21, T2)

fermion line

Sas(@1,T2) = —(=i @+ m)apG (21, T2)
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and advanced propagators, we have

GH(z,y) = £0(£ (w0 — %0))(G” (2,9) — G<(,y))- (17)

For the Feynman and anti-Feynman propagators, we have:

G(z,y) =0(zo — v0) G~ (z,y) + 0(yo — 20)G~(z,y), (18a)

G?(z,y) =8(yo — 20)G” (z,y) + 8(zo — 10)G<(z,y) . (18b)

One can also obtain these Feynman and anti-Feynman propagators by restricting the
arguments of the contour propagators to be on one side of the contour in Figure 5.
Finally, the Feynman and anti-Feynman propagators can also be written down as
time ordered (or anti-time ordered) expectation values of the fields. We state only

those for the Feynman propagators:

iG%(z,y) = (T°p(x) 9" (y)) (19a)
DS, (z,y) = (T°Au () A, () — (Au(2)) (AL () (19b)
iSgs(x,y) = (T %a(x)s(y)) (19¢)

Finally, we have the spectral function:

G*(z,y) =i (G (z,y) — G<(z,v))
(20)

= (53(f— g) if To = Yo
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Notice that the retarded and advanced Green’s functions are actually the spectral

function multiplied by a theta function:

G (2, y) = £0(x(z0 — %0))(G* (, ). (21)

The spectral function can also be written as the expectation value of the (anti-
Jcommutators of the (fermion)boson fields.

The Wigner transform of the spectral function plays an interesting role in trans-
port. By virtue of Equation (21), the spectral function determines how particles
propagate. Furthermore, given the interpretation of GZ(z,p) in terms of particle and
hole densities, the spectral density is the hole density minus the particle density. In
the Quasi-Particle Approximation the spectral function also determines how far off
shell particles can get. For example, in the most common implementation of the

Quasi-Particle Approximation,

G*(z,p) = sgn (po) §(p* — my). (22)

Given that particles are rarely truly on shell in a nuclear reaction (except in the
final state), various schemes have been developed to accommodate the broadening
of the spectral function. Rather than go into them, we will keep away from the
Quasi-Particle Approximation when possible.

All of these auxiliary Green’s functions will get used one way or another in

the following chapters. The Feynman propagators will get used in the perturbative
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expansion of the S-matrix in Chapter 3 and are discussed in Appendix A. On the
other hand, the retarded functions are used extensively in this chapter as they are
most convenient for deriving the Generalized Fluctuation-Dissipation Theorem and
transport theory. The spectral function, however, is rarely used in this work since it

is used most often in the justification of the Quasi-particle Approximation.

2.4 Conventional Transport Theory

In this subsection, we follow the standard derivation of the transport equations up to
the point where we find the Generalized Fluctuation-Dissipation Theorem. The pro-
cedure is as follows: 1) find the Dyson-Schwinger equations for the contour Green’s
functions, 2) apply the free field equations of motion to get the Kadanoff-Baym equa-
tions and 3) solve the Kadanoff-Baym equations to get the Generalized Fluctuation-

Dissipation Theorem.

2.4.1 Dyson-Schwinger Equations

The Dyson-Schwinger equations encapsulate all of the nonperturbative effects in the
field theory that that can be described at the level of two-point functions.? Using the
Feynman rules for the QED contour Green’s functions in Section 2.3.3, we can write

the Dyson-Schwinger equations for the photon, electron and scalar contour Green’s

2In other words, the nonperturbative effects that that can be described without
resorting to three-point functions or higher order correlations.

40



Figure 6. The Dyson-Schwinger equations for the propagators. Double lines rep-
resent the dressed Green’s functions and single lines represent the non-interacting
Green’s functions. The particle self-energies are the large square vertices.

functions:
G(1,1') = G°(1,1) + / d2 d3 G°(1,2) Q(2,3)G(3,1) (23a)
C
D,(1,1") = D%, (1,1') + /C d2d3 DY, (1,2) ¥V (2,3)D,,(3,1) (23b)
Sap(1,1') = Sos(1,1') + /C d2d3 S°,(1,2) =% (2,3)S44(3,1') (23¢)

In these equations, we represent the coordinates by their index, i.e. £y — 1 and the
time integrals are taken along the contour in Figure 5. We present the corresponding
diagrams in Figures 6(a-c). In Equations (23a)-(23c), the non-interacting contour
Green’s functions have a 0 superscript.

The self-energies describe all of the branchings and recombinations possible for
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the photons, electrons and scalars. The self-energies are:

Q(1,1) =i(eZ 3 ) / d2 d3 G(1,3)T%44(2,3,1) D, (1,3)
C

+ §(Qirem Z2gH) / d2 d3 d4 G(1,2) T (2,3,4,1) Dy (1,3) Dyur (1, 4)
C

+ Qur(1)8*(1,1)

(24a)
M0(1,1) = = i(=ie(as) [ 205 Suee (LD TS (2,3,1)S5(3, 1)
¢

+i(eZ 3,) /d2 d3 G(1,2) Trgon(2,3,1)G(3, 1)
C

+ i(2i0em Z2 ) / d2d3d4 G(1,2) G(3,1)T% 4,(2,3,4,1) Dy (1, 4)
C
+ yr (1) 9,0 (1, 1)

(24b)

Yas(1, 1) =i(—ie(v")aur) / d2d3 Swp(1,2) 5 (2,3,1)D,.(1,3)
¢ (24c)

+ Ymr(1)6a50"(1, 1)

In Figures 7(a-c), we show the diagrams corresponding to the non-mean-field terms

in Equations (24a)-(24c). We define the contour delta function §*(z,y) by

(

§'(z —y)  for z¢, yo on the upper branch

54(557 y) =19 0 for xg, yo on different branches

—6%z —y) for zg, Yo on the lower branch
\

Finally, there is another set of Dyson-Schwinger equations for the vertex functions.
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Since we will truncate the vertices at tree level, we do not state the Dyson-Schwinger

equations here.

2.4.2 Kadanoff-Baym Equations

The free-field contour Green’s functions satisfy the equations of motion:

(0% + M*)G (z,y) = & (,y) (25a)
aiDgu (:E7 y) = 47Tg;w(54 (IE, y) (25b)
(i @o — 1) Sas(,y) = dapd* (2, y) (25¢)

Combining these with the Dyson-Schwinger equations, we have

(@ + MY)G(1,1) = 6'(1,1') + / 2 Q(1,2)G(2,1') (26a)

2Dy (1,1) = g8 (1,1) + 4 / 217 (1,2) D (2,1)  (26b)
C

(i 9= m)Sop(1,1) = 80ab'(1,1) + [ @280 (1,25 (2,1). (26¢)

There is a conjugate set of equations for (25a)—(25c) and (26a)—(26¢) with the differ-
ential operators acting on 1.

Restricting #; and Z,/ to lie on different sides of the time contour in Figure 5, we
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0 Y =w Fey + [
b)) YME

(c) V/A = ====z F7¢¢ —+ ,/// F77¢¢ + D

Q {L"V"Jf Qur

Figure 7. The scalar and electron self energies and the photon polarization tensor.
Bare vertices are represented by dots and dressed vertices by blobs. The self-energies
and the polarization tensor are all represented by large square vertices.
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arrive at the Kadanoff-Baym equations.

(@2 + M?)GR(1,1)) = / B35 Ore(F1, B, 1) G2 (T, 11, 1)

- " (@ 0,2) - @°(1,2) 62, 1) (272)

to

+ " 02,2 (@7 (2,1) - 650, 1))

0

1 — — —
Ea%DEV(l, 1’) =/d3$2 HMF(:El,:EQ,tl)DEV(IEQ,tl, 1’)

t1
+/ d2 (H>M”'(1,2)—H<M”'(1,2)) D3,(2,1)  (27h)

to

) )
+ [ 1, ,2) (03,0,1) - D5, (2.1)
to
(’L al — me)Sfﬂ(l, 1’) :/d?’IEQ EMF(fl,fg,tl)Ssﬂ(fQ,tl, 1I)

t1
+/ d2 (355(1,2) — 255(1,2)) 555(2,1’) (27¢)

to

t)
+/t d2335(1,2) (S54(2,1') — S54(2,1')
0

Here the > and < self-energies have the same relation to the contour self-energy that
the > and < Green’s functions have to the contour Green’s functions. Again, there

is a set of conjugate equations with the differential operators acting on 1.

2.4.3 Generalized Fluctuation-Dissipation Theorem

Now we define the retarded and advanced self-energies for scalars:

QF(1,2) = Qurd(ty, t2) £ 0 (£(t — 1)) (Q”(1,2) — Q<(1,2)) (28)
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The photon polarization tensor and electron self-energy are defined in a similar man-
ner.

Using these, the Kadanoff-Baym equations simplify:

(82 + M*)GR(1,1') = /oo d2 Q*(1,2)GZ(2,1)
fo (28a)

+ /oo d2 Q(1,2)G~(2,1)

to
1 o0 ,
Eafoy(l, 1) :/ d211*,” (1,2) D3, (2,1')
fo y (28b)
+/ d2T1R,"(1,2)D;,,(2,1)
to
(i P — m)SZ(1,1') = /t 1255 (1,2)535(2,1')
0 - (28c)
> —
+/ 2535 (1,2)S5,(2,1)

to

If we subtract the > equations from the < equations and multiply the resulting

equations by +60(+(t; — t1/)), we get a second set of differential equations:

(02 + MA)G*E(1,1') = 6*(1 - 1') +/ d2 Q*(1,2)G*(2,1) (29a)
to
1 0 y
Eaij;,,(L 1) =46'1-1)+ /to d211%,” (1,2) D5, (2,1 (29b)
(i @1 —me)Sos(1,1") = 6*(1 - 1') +/t 42354 (1,2)S54(2,1) (29¢)
0

Solving the initial value problem posed by Equations (28a)—(28¢) using Equations
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(29a)—(29c¢), we find:

GX(1,1) = /too d2 /too d3 GT(1,2) Q3(2,3)G~(3,1')

(30a)
+ /d3IE2 d3IE3 G+(1, fQ, to) G2 (fg, to, f3, to) G_(fg,, to, 1I)
(1,1 / d2/ d3 D}, (1,2)T1R #¥(2,3)D,,(3,1)
(30b)
/d?’IEQ d*z3 D (1 Ty, tp) DRHY ($2,t07f37t0) D, (Z5,1,1")
S3(1,1) =/ d2/ d3 S}, (1,2)£24(2,3)55,(3, 1)
o o (30c)

/d3IE2 d3IE3 S (1 IEQ, to) 555’ (fQ, to, f3, to) S/g,ﬂ(f& to, 1’)

These equations are the Generalized Fluctuation-Dissipation Theorem. They de-
scribe the evolution of a density fluctuation (given by the > and < Green’s functions)

from t() to 4.

2.5 Phase-Space Generalized Fluctuation-Dissipation Theorem

We now translate the Fluctuation-Dissipation Equations (30a)-(30c) into phase-
space. We will only illustrate this for the scalar equation because the photon and
electron equations follow similarly. First we extend the integration region to cover

all time:

GZ(z1,2v) = /d4x2 d*zs Gt (z1,12) Q2 (2, 23)G (23, 21/)
-+ lim d4IE2 d4IE3 (S(to — IEQO) (S(to - IE30)

to——oc0

xGT (IEl, IEQ) G2 (IEQ, IE3) G~ (IE3, IEll) .
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Next, we Wigner transform in the relative variable z; — x:

d4l N
GR(z,p) = /d4x'ﬁw(%p;x’,p’)@z(x’,p’)
4.1
+ lim a3z d_p4
xH——00 (271-)

(31)
G (z,p; o', p)GR (2, )

We recognize the Wigner transforms of the self-energy and initial particle density:
Q(z,p) = / d'3 ePPQR (3 + 52,1 — §/2) (32)

and

(S(t() — IE()) CTY2 (Ib,ﬁ) = (33)

/ 445 €76 (ty — (20 + Fo/2)) 3 (ks — (20 — G0/2)) G2(x + 5/2, — /2).
The delta functions render the initial density independent of py. We have also defined

the retarded propagator in phase-space:

Gt (z,p;y,q) = /d4fv’ dly PTGt (@ + o' /2,y + ' /2) G (x — 2'/2,y — ' /2)

(34)

At this point, one usually applies the Quasi-Classical Approximation to Equation
(31) by expanding the propagators in gradients and throwing away higher terms in
the expansion and eliminating the d*z’ integral. We do not do this.

Next, we assume the translational invariance of the advanced and retarded

propagators. This is reasonable at lowest order in the coupling since the free field
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advanced and retarded propagators are translationally invariant. However, this ap-
proximation neglects interference effects and it is likely that these terms are needed
to accurately describe many-particle effects such as the Landau-Pomeranchuk effect
[KV96, KIV98]. Making this approximation, the retarded propagator in phase-space

becomes

G*(z,p;y,9) = (21)'6"(p—q) / d'z " Gtz —y+2/2) (GT (& —y - 2/2))

(2m)*6'(p— q) G*(z — y,p) -

(35)

We use G (z — y,p) in all subsequent calculations and in practice we only use the
lowest order contribution to G*(z — y,p). This means that we dresses the 2 prop-
agators but not the + propagators when we iterate Equation (30a)-(30c). Thus,
particles propagate as though they are in the vacuum. In Appendix A we calculate
the lowest order contribution to G*(z — y, p).

Repeating this for the photons and electrons, we arrive at the phase-space Gen-

eralized Fluctuation-Dissipation Theorem:

GZ(z,p) =/d4y G*(z —y,p) Q3(y,p)

(36a)
+ lim [ d* G*(z - y,p) GZ(y,P)
Yo——00
D3, (z,p) = / d'y Dy, ... (x — y,p) IR*Y (3, p)
(36b)

+ lm [ dyDr , (z—yp) DY (y,5)

Yo—r—00 pvp'v!
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SZs(z,p) = / d'y S e (@ = 1,0) 234 (4, p)
(36¢)

+ lim d3y S:ﬂa’,@’ (:E - y:p) SS’,@’ (y7m '

Yo——00

These equations have a clear meaning. In the source terms, particles are created at
point y with momentum p and they propagate with momentum p out to point z.
In the terms with the initial conditions, particles are initialized at point § at time
Yo — —oo with on-shell momentum p and they propagate with momentum p out
to point . Thus, these equations describe the evolution of the particle phase-space
densities from 3y — —oo to the time xy, including particle creation and absorption
through the particle self-energies. They also have “source-propagator” form, namely
each term is a convolution of a phase-space source (or the initial conditions) and
a phase-space propagator. The derivation of these equations does not rely on the
form of the self-energies and so these results should be immediately applicable to any
system.

The general form of the Generalized Fluctuation-Dissipation Theorem is shown
in the cut diagrams in Figure 8. Since these diagrams are slightly different from the
contour diagrams and from traditional cut diagrams,® we will describe what they
mean. Here, the cut line is the dashed line down the center. The subdiagram on the
left encodes the initial conditions via the cutting of the propagators at the top of
the subdiagram. The two propagators going down the the x’ed vertices are the two

retarded propagators that we Wigner transformed together in Equation (35). The

3Meaning, the cut diagrams used to calculate exclusive reaction probabilities in
Feynman’s formulation of perturbation theory
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Figure 8. Cut diagram for the particle densities in the Generalized Fluctuation-
Dissipation Theorem.

x’ed vertices represent the two space-time arguments of the two-point function for
the density. The space-time coordinates are Wigner transformed together. On the
right, the diagram has much the same meaning except that now the initial conditions
are replaced with the cut self-energy. In both subdiagrams, time flows downward

toward the future.

2.5.1 Sources

The first step toward getting the phase-space evolution equations from the Gen-
eralized Fluctuation-Dissipation Theorem is calculating the self-energies (i.e. the
sources). To do this, we insert Equations (28) and (16) into the self-energy equations
and keep only the lowest order approximation to the vertex functions. Thus, we

assume that the vertices are not dressed and are point-like. So, we arrive at the
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creation and absorption rates:

Q2(1,1) =itenZ? 81, GZ(1,1) 81 D2 (1, 1) + QZp(1)8*(1 — 1') (37a)
ny(l, 1) =itier, Tr {'yuSz(l, 1) v,55(1, 1)}
(37b)
FienZ? 91 GZ(1,1) 1y GS(1,1') + (1) gwd®(1 — 1)

> ) > y >
Zéﬂ(lv 1) =~ Zaem('?’u)aa’scf'ﬂ'(la 1) ('YV)ﬂ’ﬂDzu (1,1) + Ef/IF(l)‘Saﬂ(54(1 —1')

(37¢)

Here we neglect the second scalar term in the polarization tensor and the second
photon term in the scalar self-energy because they enter with a factor o2, which is
higher order than the other terms.

The self-energies in (37a)-(37c) can be Wigner transformed. Taking care to

integrate the derivative scalar couplings by parts, we arrive at

dq d* e
o)1 (o)t (@210 /06w a)
AT (38a)

X (g1 + @ — i 8 /2),DZ (z,¢) (21)"8" (0 — (g1 + ®)) + QZp(2)

622 (:E: p) :iaemZ2 /

13, (z,p) :iaem/ (d;Tq)14 g:])i Tr {fyMSz(:v,ql) 7,,5’2(:5,@)} 2m)*6*(p — (¢ + a2))
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2.6 QED Evolution Equations

We now insert the phase-space self-energies into the phase-space Generalized Fluctua-
tion-Dissipation theorem and rewrite these equations directly in terms of the particle

and antiparticle densities.

7 ) = [ dy B S8 6= ) (26— (0 0)

2 g uw,.z g 7 >
><CVemZ (QI+Q2_Z 3/2) g= (y7QI) (QI+q2_Z 3/2) dﬁy (y7Q2)
+ [ 6@ - 4,) 105w

+ lim | Py Gtz —vy,p)g2(y,D)

Yo——00

(39a)

diq, d!
dz, (z,p) :/d4y L e Dz — y,0) 27) "6 (0 — (@1 + @2))

(2m)? (2m)* THE
X {aemTr |:’YM’S2 (y7 QI) 71/32 (y7 Q2):|
2 9 oW 2 9 19} 2
+ e Z (1 +92+10 /2)* 92 (y,q1) (@1 + g2+ 0 0 [2)" g% (%%)}
> 1y
+ /d4y D;—l—uu’u’ (:E - y7p) ZHf/IF(y)gM
+ lim [ @y Dt . (z—y,p)d2*" (y,9)

Yo——00 pvpv!

(39b)
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2 4 d4Ql d4Q2 + 454
s5s (2, ) =/d y —— 1 Sapap (@ —y,0) (21)'6 (p — (1 + ¢2))

(2m)" (2n)"

X aem(’Y“)a’a”sslﬂH (y7 QI) (’Yy)ﬂ”ﬂ’dfy (y7 Q2)
R
+ /d4y S:{ﬂa,ﬂ, (z —y,p) (:l:sz,[F (y)) S

. >
+ lim d3y S:ﬂalﬂl (:E - y7p) S;’ﬂ’ (y7m '

Yo——00

These equations simultaneously describe all “partonic” splittings, recombinations and
scatterings from the distant past to the present. Note that an implementation of these
equations would be very different from the conventional transport approach. First,
these splittings and recombinations occur in all cells of coordinate space. This is a
very different from the conventional approach where particles interact only when they
are within y/oror /7 of each other [KBH+95, KLW87, Gei92a, Gei92b, Geid4, Gei95,
Gei96, KOH97]. Because the approach in this thesis is both non-local and Lorentz
covariant, implementing it would avoid the causality violating problems implicit in
conventional approaches. Second, the particles in our approach do not follow straight-
like trajectories. Instead, they have a “probability” distribution for propagating to a
certain point. This idea is elaborated on somewhat in the next chapter and discussed
in detail in Appendix A.

Equations (39a)—(39c) are the phase-space QED analog of Mahklin’s evolution
equations [Mak95a, Mak95b, MS98]. A QCD version of the phase-space evolution
equations should reduce to Makhlin’s equations when integrating out the coordinate
dependence. Geiger [Gei96] has derived a set of QCD transport equations based

on Makhlin’s work. While his derivation is very similar to our derivation of the
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phase-space evolution equation, he uses a variant of the Quasi-Classical Approxima-
tion tailored toward the DGLAP partons in order to simplify his collision integrals.
The QCD version of the transport equations we derive in Section 2.8 would reduce
to his semi-classical equations if one applies this approximation.

There are several ways to solve Equation (39a)—(39c) but we propose only two
methods in the following subsections. The first method is a perturbative scheme
which we use to derive the time-ordered version of the results of Sections 3.1-3.2 in
the next chapter. The second method is to derive transport equations from Equations

(39a)—(39c).

2.7 Perturbative Solutions

We can perform a coupling constant expansion on Equations (39a)—(39c) and get
the leading contributions to the particle densities. We show this for the photons and
electrons surrounding a classical point charge. The discussion here is mainly technical
and is designed to show how to perform a perturbative calculation in phase-space.
There is an expanded discussion of these densities in the next chapter; there we
describe the sources and propagators for the photon and electron densities around a
point charge.

We begin by stating the initial densities* and listing our assumptions. In the
initial state, we assume there is one massive scalar particle serving as the photon

source. If we view only photons with a wavelength much larger than the spread of

4Unlike Feynman’s perturbation theory for exclusive amplitudes, we can only spec-
ify the initial particle densities here.
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the scalar wavepacket then the scalar particle density is

9< (yo = —00, 7, 0) = N0(po)&° (5 — p;) 6(p* — M?)6° (zoP/po — T)

This form is only needed to make the correspondence between the results here and
the results in Chapter 3 and the form is discussed in Appendix G.3. The initial

electron and photon particle densities are all zero:

S;ﬂ (yO = _Oo7g7m = d;y (yO = _Oo7g7m =0
Finally, the other assumptions that we make are that we neglect all mean fields and

drop the gradients in the scalar-photon coupling.

2.7.1 A Photon Distribution

Since the scalar field only couples to the photons, the lowest order contribution to
the photon density comes from the photons directly coupling to the initial scalar
density. The cut diagram for this process has the form of the left subdiagram in the
Generalized Fluctuation-Dissipation theorem of Figure 8 and is shown in Figure 9.
In Figure 9, the photon self-energy is the triangular source current loop.

For positive energy photons, we can write down the density directly from Equa-

tion (39b):

< _ 4 d4Q1 d4(]2 + 4 ¢4
d;u/ (:E7p) - d y D;u/p/y’ (:E - y7p) (27T) 5 (p - (QI + Q2))

(2m)" (2m)"

XaemZ2(QI + CI2)”’9< (v, q1) (@ + CI2)V’9< (v, ga) -
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Figure 9. Cut diagram for the time-ordered non-equilibrium photon density.

Now, G”(z,p) = G<(z,—p) because Z propagators obey the relation G>(z,y) =
G<(y,x) at lowest order in the coupling. Thus, we can switch one of the g< (y, ¢) to
g~ (y, —q), changing it from an initial state antiscalar to a final state scalar (or an

initial state hole). Doing so, we have

4 d4Q1 d4Q2 + 454
< Z, = d 1 1 po' v Tr—1Y, ™ 5 - 1 — 42
&5, (z,p) / Y oyt gyt D2 = :2) 205"~ (01~ ) 0

XemZ2(q1 — ¢2)" 9< (v, q1) (1 — )" 9” (¥, q2) -

Comparing Equation (40) and Figure 9 we can further understand the corre-
spondence between the cut diagrams and the perturbative solution. The factor of
9= (y,q1) for the initial scalar density is the cut upper double line in Figure 9. The
other factor of ¢~ (y,¢2) then is the final scalar density and is represented by the
lower cut double line.

The entire photon source can be associated with the Wigner transform of the
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scalar current density after a sum over the final scalar momenta. This is discussed in
Appendix H. Because of this correspondence, Equation (40) is the non-equilibrium,
time-ordered, analog of the Wigner transform of the photon vector potential in Sec-

tion 3.1.

2.7.2 An Electron Distribution

Since the electrons only couple to the photons, the lowest order contribution to the
electron density comes from a photon splitting into an electron-positron pair. The
cut diagram for this is shown in Figure 10. As one can see, the electron self-energy
is everything above the two electron propagators. From Equations (39a)—(39c) we

have:

Sop (z,p) = /d4y Yo 4 g (z —y,p) (2m)'6 (p — (01 + @)
af ) (27T)4 (27T)4 afa’B ’

X Qem (’Yu)a’a”szﬂ,@" (y7 QI) (’Yy)ﬂ”ﬂ’d;y (y7 Q2) .

Using s34 (2, q) = 85, (%, —q), we find

< 4 d4Q1 d4Q2 + 44
Sap (z,p) = dy o Paparp (z —y,p) (27)°0°(p — (—q1 + ¢2))

(27r)4 (27T)4 (41)

X Qem (’Yu)a’a”sgﬂa” (y7 QI) (’Yy)ﬂ”ﬂ’d;y (y7 Q2) .

As with the photon density, this equation maps directly to its analog in Chap-
ter 3, specifically (65). Together the electron density here and the photon density in

(40) show that a we can solve the phase-space evolution equations perturbatively.
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Figure 10. Cut diagram for the time-ordered non-equilibrium electron density.

2.8 The QED Semi-classical Transport Equations

While we can solve the evolution equations perturbatively, this does not lend itself
towards the more complex calculations needed to model a nuclear collision. In this
section, we find a set of transport equations from the integral equations in (39a)—
(39¢). The QCD version of this section might be what is needed to construct a parton
transport model. We will find the transport equations by writing two equations of
motion for the phase-space retarded propagator. Applying these equations to the
phase-space evolution equations, we derive two sets of coupled integro-differential
equations. The first set of equations are the transport equations and the second
set are the “constraint” equations of Mréwczynski and Heinz [MH94, ZH96]. The
transport equations are what is normally solved in a transport approach. The sec-

ond “constraint” equations, supplement the first by describing the mass shift of the

99



particles in medium.
The equation of motion for the non-interacting retarded massless scalar propa-

gator is
O*G*(z) = 6*(z).
The conjugate equation is
O*(GT(z))* = 6*(x).

Multiplying both sides of the first equation by (G*(y))*, both sides of the second
equation G*(y) and Wigner transforming in the relative space-time coordinate, we

find two equations:

(k +i0/2)2G* (3, k) = / &' &F (G (o — o' 2))" 8 (c + ')2) (42a)

(k — i0/2)2G* (z, k) = / d'a’ F (GH(a + '/2)) 6 (z — o' /2) (42b)

Inserting the retarded propagator in the energy-momentum representation (with
me = 0) and adding and subtracting Equations (42a) and (42b), we find the equations

of motion for the retarded propagator:

k- 8G+(z, k) =%0($0)5(:E2) sin (22 - ) (43a)

(8%/4 — k3G (x, k) =%0($0)5(:E2) cos (22 - k). (43b)

60



Taylor series expanding the sine or cosine and keeping only the lowest order is equiv-
alent to performing the gradient expansion in the Quasi-Classical Approximation.
Now, we apply the k- 9 and (8%/4 — k?) operators to the particle densities in
Equation (39a)—(39¢). On the right hand side, these differential operators act on the
retarded propagators, so we can use their equations of motion to simplify the results.

For scalars we find

dq; dq, 2
p- 0g= (z,p) =/d4y I 2P 205y — yo)d((z —1)2)

x sin (2(z — y) - p)(2m) 6" (0 — (@1 + ¢2))
X CemZ2(q1 + 6 —1 9 /202 (0, q1) (0 + 42— 0 /2, (y,q0)  (448)
- / d'y %9(% — 10)6((z — y)*) sin (2(z — v) - P)iQFr (v)

+ tim [ @y 200w — )d((z — ) sin 2z ~ 1) - P)o? (3 7)

Yo——00
d4Q1 d4€]2
(2m)" (2m)’

@ /1= K)o @) = [ dy ~6(a0 — w)d(( — )"
x cos (2(z — y) - p)(2m) 8" (0 ~ (01 + @)
X CenZ2(q1+ @ =i 8 /293 (1:01) (0 + & — i 0 /2)"d3, (y,5)  (44D)

+ / d'y %0(150 — 50)3((z — )?) cos (2(z — ) - P)iQFF(¥)

+ tim [ @y 2000 — w)((z — 9)?) cos (2w — 1) - D)o (4, 7)

Yo——00

Now because of the delta functions, the boundary conditions at y; — —oc only
contribute when |Z — 7| goes to oo, implying that we need g2 (z,p) as ¥ — oo. The

densities are zero there, so they drop out from these equations.
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The transport equations for the photons and electrons are

p- 03, (a5) = - [ d'y 8(zo — w)6((w — )" sin (25— 1) )

g {/ (c;‘;Q)14 é‘;q; (27)"6"(p — (a1 + g2)) {@em T [v*52 (y,41) 7”52 (v, ¢2)]

g g
+ aemZ2(QI +@+i0 /2)“92 (vy,q1) (1 +q2+1 0 /2)'/92 (%%)}

+g;wiH1%/[F (y) }

(44c)
P05 (5.0) = ~(B+i Daw(F—i Do
x / d'y 0(z0 — 10)5((z — ¥)?) sin (2(z — y) - p)

d4Q1 d4Q2 454
X {/ (27r)4 (27r)4 (2m)°6% (0 — (a1 + ¢2)) (44d)

X aem('?’“)a’a”ss”ﬂ” (¥, q1) ('Yy)ﬂ”ﬂ’dfv (¥, g2)

+ Oargy (:H’ZI%/IF(:U))} :

These equations almost have the form of the Boltzmann equation: the left side clearly
is the Boltzmann transport operator and the right side is almost the collision integrals.
If we were to expand the sines in the collision integrals and keep only the lowest
term, we would recover the collision integrals. Furthermore, if we were to do this
same approximation to the QCD version of (44c) we would arrive at Geiger’s semi-

classical QCD transport equations [Gei96].
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We also state the constraint equations:

@ 1= 183, 5) =2 [ @ 0 = 900w — ) cos (2 = 1) 1)

d4(]1 d4(]2 4 ¢4 M 2 v 2
X 7 —7 (2m)'0 (0 — (g1 + ¢2)) {CemTr [¥*s2 (y, 1) V5% (¥, @2)]
(2m)" (2m)
2 . « > . = v =
+ @emZ (1 +q2+10 [2)9% (v, 1) (1 + g2 +1% 0 /2)"g< (%%)}

+g;wiH1%/[F (y) }

(44e)
/4~ K)535 (@.0) = ~ (5 +i Dowr (F— i Do
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d4Q1 d4Q2 4 ¢4
9 { / G G )5~ (0 + ) (44f)

X aem('?’“)a’a”ss”ﬂ” (¥, q1) ('Yy)ﬂ”ﬂ’dfu (¥, g2)

+ Oargy (:H’ZI%/IF(:U))} :

If we were we to derive the constraint equation for massive particles, we would find

that (0%/4 — k?) — (0?/4 — k* + m?). Therefore, the constraint equations give rise to

the in-medium mass shift for the photons and electrons and thus the RHS of the con-

straint equations for massless particles can be interpreted as an “in-medium” mass.

Note that despite the presence of this “in-medium” mass, particles still propagate

on the light-cone. Finally, we have not written the various constants in terms of

their renormalized values. Dressing the particle densities by solving the evolution

equations (which are nonperturbative) should, to some extent, be equivalent to using
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renormalized couplings.

2.9 Summary and Implications for QCD Parton Transport Theory

The “source-propagator” picture must apply to QCD partons since the derivation
of the phase-space Generalized Fluctuation-Dissipation Theorem does not depend on
the form of the self-energies but rather on the form of the Dyson-Schwinger equations
for the contour propagators in (23a)—(23c). It would then seem that if we find the
QCD self-energies and define the parton distributions appropriately, we may construct
QCD phase-space parton evolution equations. However, before we could do this we
must assess whether we need to dress the phase-space propagators and vertices and
we must implement renormalization.

In the present work, we would dress the particle densities by iterating the phase-
space evolution equations but we would not dress the phase-space propagators or
vertices. Hopefully, dressing the particle densities is sufficient to incorporate any
needed higher order or many particle effects. One simple form of dressing mentioned
above is the in-medium mass shift. Given this, it may prove necessary to give particles
an effective mass and in this event, we would need the phase-space propagator for
non-zero mass. However, we do not know the analytic form of the retarded phase-
space propagators for particles with non-zero mass. We are currently investigating
propagation in this case and a summary of what we have so far is in Appendix A.

The issue of implementing renormalization will require some work as there is not
a well-developed understanding of renormalization in non-equilibrium quantum me-
chanics. In momentum-space perturbation theory, renormalization is used to correct
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some parameters (e.g. a particle’s mass) to make them correspond to their observed
values. Some of these corrections can be ascribed to many-particle effects that are
effectively dealt with by dressing the densities, propagators and/or vertices. Nev-
ertheless, there may be divergencies that need to be removed in our formulation of
non-equilibrium perturbation theory but, at the present, we have not yet encountered
any. The issue of renormalization brings up one other question. Usually momentum-
space renormalization is interpreted as removing physics at one momentum scale
in favor of another scale. It is not clear what this means in phase-space. When
renormalizing in phase-space, are we removing physics at a certain length scale, a
certain momentum scale, both, or neither? Is renormalization a form of smoothing
in phase-space, akin to the gradient approximation?

In any event, these two issues are intricately intertwined and their investigation
is beyond the scope of the present work. Nevertheless, in the absence of a phase-space
evolution equation, we can still use the Generalized Fluctuation-Dissipation Theorem

as insight to build models.
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CHAPTER 3

PARTONS IN PHASE-SPACE

How can we rewrite the QCD Parton Model in phase-space? This is a necessary step
if one is to connect the quark and gluon phase-space densities in a transport approach
to the Parton Distribution Functions (PDF’s) measured experimentally. Two of the
key components of the parton model are factorization of QCD cross sections and
evolution of the parton densities. Both of these components can be studied within
the Weizsicker-Williams approximation, the QED analog of the parton model.
Factorization in the QCD Parton Model is the idea that the cross section for
a reaction involving a hadron can be written as the convolution of an elementary
parton/target cross section and the Parton Distribution Function of the partons in the
hadron [AP77, Qui83]. The QED Weizsécker-Williams approximation follows exactly
along this track: a cross section in the Weizsicker-Williams approximation is the
convolution of the Effective Photon Distribution with the elementary photon/target
cross section [vW34, Wil34, Jac75, BB88|. We will extend the Weizsicker-Williams
approximation to include electrons. The analogy between the factorization in the
parton model and the Weizsicker-Williams approximation makes even more sense
when one realizes that both photons and electrons are the point-like constituents

of a dressed QED point charge; in this sense, photons and electrons are the QED
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partons of the point charge. Thus, by learning how to write the Weizsacker-Williams
Approximation in phase-space, we will be showing factorization in parton model cross
sections in phase-space. Now, factorization does fail when there are interference terms
in the S-matrix squared and in Appendix F we discuss an example the failure of
factorization in phase-space. My advisor, Pawel Danielewicz, and I were not the first
to consider writing cross sections in phase-space; Remler [Rem90] rewrites transition
probabilities in phase-space in his discussion of simulating many-particle systems in
phase-space. Remler’s work is not immediately applicable to partons because his
work only applies to particles with a large mass.

In the parton model, evolution describes how the the parton densities change via
parton splitting and radiation. Evolution is modeled by using evolution equations,
which are a set of coupled integro-differential equations for the quark and gluon
densities, or by summing over a class of ladder diagrams in the Leading Logarithm
Approximation. One such ladder is shown in Figure 17. We can study these ladder
diagrams by building up a simplified QED parton ladder. The photon “parton dis-
tribution” is the boosted Coulomb field of the point charge and constitutes the first
leg in the QED ladder. The electron “parton distribution” is the virtual electron dis-
tribution from photons virtually splitting into an electron and a final state positron.
The electron is the second leg of the ladder and the positron is the first rung. Since
the QED coupling constant, c,,, is small, only one rung is needed to describe the
electron densities and no rungs are needed for the photons. The QCD coupling, «,
is much larger implying that a large number of rungs will be needed to reasonably

approximate the parton distributions. Thus we can only expect the QED ladder to
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give some of the qualitative features of the full QCD problem.

Let us outline this chapter. The first two sections, Sections 3.1 and 3.2, outline
the calculation of the QED phase-space “parton distributions” of a point charge. We
begin Section 3.1 by writing the Weizsicker-Williams Approximation in phase-space.
We do this in several steps. First, we write the reaction rate density for the “par-
tonic subprocess,” namely the reaction rate for absorbing a free photon. By writing
this rate in phase-space, we illustrate how we convert a momentum-space reaction
rate to one in phase-space. Next, we write the reaction probability for photon ex-
change in phase-space. Comparing the full reaction probability to the reaction rate
density for absorbing a photon, we can identify the phase-space Effective Photon
Distribution. This photon distribution is the effective photon number density in
phase-space and it has the form of a phase-space source folded with a phase-space
propagator. Following this, we calculate the photon number density surrounding
a classical point charge and explain how the photon’s phase-space propagator and
phase-space source work. Finally, we comment on the implications of this section for
the QCD parton model. We will find that we understand how partons propagate,
but since our photon source is point-like we do not learn anything about QCD parton
sources. In Section 3.2, we continue the study of the QED parton distributions of a
point charge by studying the first link in a parton ladder: a virtual photon splitting
into a virtual electron and on-shell positron. We start our analysis by generalizing
the phase-space Weizsdcker-Williams Approximation to include electrons and writ-
ing down the “Effective Electron Distribution.” This Effective Electron Distribution

takes the “source-propagator” form. While this “partonic” splitting leads to a com-
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plicated form of the electron source, the shape of the source is mostly determined
by the underlying photon (the “parent parton”) distribution. We calculate the elec-
tron distribution explicitly for a classical point charge and discuss how the electron
propagates from the source to the observation point.

As a practical application of this study, in Section 3.3 we examine the config-
uration space structure of the parton cloud of a nucleon. In principle, one should
Wigner transform the quark or gluon wavefunctions of a nucleon. Since we do not
know the quark or gluon wavefunctions of a nucleon, such a specification is not possi-
ble and we must result to model building. One might envision constructing a model
phase-space parton density of a nucleon by multiplying the momentum space density
(the Parton Distribution Function) and the coordinate space density of the partons
[Gei92a, Gei92b, Gei94, GK93, Gei95). This approximation neglects correlations be-
tween the momentum and position in the parton density which are present in the
phase-space density [Tat83, Lee95, CZ83|. One might insert these correlations using
uncertainty principle based arguments [Mue89, Gei92a, Gei92b, Gei94, GK93, Gei95).
This has intuitive appeal, but such a prescription is ad-hoc at best. We can ap-
proach this problem in a more systematic manner using some physical insight from
the momentum-space renormalization-group improved parton model and our under-
standing of how particles propagate in phase-space. In the renormalization-group
improved parton model, one calculates the parton densities by evolving the densities
in momentum scale, @? (which we take to be the parton virtuality), and in longitudi-
nal momentum fraction, zr. This evolution is equivalent to evaluating a certain class

of ladder diagrams and these diagrams can be re-cast in the form of the phase-space
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Generalized Fluctuation-Dissipation Theorem. Thus, we can discuss the shape of the
parton phase-space densities of an hadron in the large-Q? limit or in the small-zx
limit using a simple model for the nucleon and the phase-space propagators. We
argue that neither large-Q? partons nor small-zy partons extend beyond the nucleon
bag in the transverse direction. We also argue that the large-Q? partons extend out
an additional' hic/z Py, from the bag surface in the longitudinal direction. This is in
line with what others have estimated [Mue89, Gei92a, Gei92b, Gei94, GK93, Gei95).
Furthermore, we estimate that the small-zr partons extend at least an additional
thTqQ from the bag so the small-z parton cloud is substantially larger than the
large-Q? cloud.

The reaction probabilities that we calculate in this section are for exclusive
reactions. The interaction picture Feynman rules for the S-matrix needed for such
calculations are found in many field theory books [AB65, BS79, IZ80, Ste93]. The
densities we find are directly related to the densities we calculated in the previous
chapter by the summation over all final states. This is elaborated on somewhat in
Appendix B where we discuss measurables of a heavy-ion reaction. Furthermore, we

can map our results directly to cross sections in the way outlined in Appendix C.

3.1 Photons as QED Partons

If we are to interpret photons as QED partons, we must write the photon exchange

process reaction rate in a factorized, parton model-like, form. In other words, we want

'The nucleon has 4-momentum P, = (P, Py, 0r).
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Figure 11. Cut diagrams for photon exchange and free photon absorption. (a) Cut
diagram for current A to exchange a photon with current B. (b) Cut diagram for
current B to absorb a free photon. In both figures, the photon/current B interaction
is unspecified and is represented with a blob.

to write the cross section of the process of photon exchange (pictured in Figure 11(b))
as a convolution of the cross section for free photon absorption (pictured in Figure
11(a)) with an Effective Photon Distribution, and in phase-space. We can then go on
to study the properties of the QED version of a phase-space parton distribution with
the example of the photon distribution of a point charge. Not only will we rewrite
the Weizsicker-Williams Approximation in phase-space in this work, but we will
also show that the phase-space photon density has the form of a phase-space source
convoluted with a phase-space propagator. This formal structure of the phase-space
densities is a general property as we saw in Chapter 2, so it is not a real surprise to

find it here.
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3.1.1 Photon Absorption

We begin this section by finding the photon/current B reaction rate, W,p_,p; this
reaction rate is our “partonic” subprocess reaction rate. Our derivation demonstrates
how to rewrite the reaction probability in terms of phase-space quantities. The
high point in this calculation occurs in Equation (45) when we identify the Wigner
transforms of B’s current and of the photon field. This type of identification lets us
rewrite the reaction probabilities in phase-space.

To find W,p_,p we write the S-matrix for the process in Figure 11(b):

Sipow = [ d'e (0 4()3.3) (B ua) |B)

[t s e 0 0 B30 |3

Here (0| A*(z)|q, A) = \/%e“()\) €%? is the free photon wave function (with ¢% =
0) and j, is the current operator for the probe particle B. We leave both the initial
and final states of B unspecified so the final state may be a single particle or several
particles (as pictured in Figure 11(b)).

If we now square the S-matrix and average over photon polarizations, we find:

On writing the coordinates and momenta in terms of the relative and average quan-

tities (ie. k =k — Kk and K = s(k + k), and taking advantage of the momentum
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. . . . 2
conserving delta functions in the current matrix elements, |S,s_p’|” becomes

K d'k g
Spm|? = / 41X d' e~ KX Z 5™ (0] AR(X 4 3/2) [, A
A==+

X (G, \| A™(X — £/2) 0) (B'| ju(K + k/2)|B) (Bl j}(K — k/2) |B').

(45)

There are two Wigner transforms in this equation: the Wigner transform of the
photon field (the & integral) and the Wigner transform of B’s current (the k integral).
Now we rewrite the S-matrix in terms of the phase-space quantities and define

the reaction rate density:

2 gy TE 7SS e ) @)t (g — k) S
Sl = [ @' o g W G0 @5 =B “

/d4IE nyB—)B’ (:E7 Q) .

Here the Wigner transform of the current is

) = [ 012 B) (Bl - 012 ). a0

Since B’s Wigner current is proportional to the reaction rate, it seems natural to
give them both the same physical interpretation: as a “probability” density,? for
absorbing a free photon with momentum ¢ at space-time point z. Now, it may

not be clear where the spatial structure of the reaction rate comes from, especially

2Because the Wigner current is the Wigner transform of a quantum object, it may
not be positive definite [Tat83, Lee95, CZ83] so it can not be strictly interpreted as
a probability.
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since the incident photon is completely delocalized in space (it is in a momentum
eigenstate). To give the reaction rate spatial structure, we must localize either the

initial or final states of B with a wavepacket.?

3.1.2 Photon Exchange

We have the probability density,W,s_,5 (z, ¢), for free photon absorption in phase-
space. We now need the reaction rate for one-photon exchange (see Figure 11(a)) in
phase-space in order to extract the Effective Photon Density. We do it two different
ways: in terms of the Wigner transforms of the currents A and B and the photon
propagator and in terms of the Wigner transform of the photon vector potential. The
first form of the reaction rate has a clear physical interpretation in terms of photon
emission, propagation, and absorption. However, it is the second form which can be
brought into a factorized form.

The S-matrix for Figure 11(a) is
Sanoam = / d'wd'y (A'] () |A) Dy, (2, y) (B'] ;™ (4) |B) - (48)
Taking the absolute square of this S-matrix and rewriting it in terms of Wigner

transformed currents and propagators, we find

4

d q v 1yl
|SAB—>A’B’ |2 = /d4y d4IE (27’(’)4 JK (y7 q) wau’u’ (y -, Q) J]g (:E7 Q) . (49)

3In other words, choose the appropriate density matrix.
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Here, the Wigner transform of the photon propagator is

DS, (z,q) = / d'z D¢, (z + £/2) D5, (x — £/2) 0

= (47)° g9y G°(2, q)
and G(z,q) is the Wigner transform of the scalar Feynman propagator. We outline
the derivation and properties of G¢(z, q) in Appendix A.

Equation (49) has an obvious physical meaning: 1) current A makes a photon
with momentum ¢ at space-time point y, 2) the photon propagates from y to z with
momentum ¢ and 3) current B absorbs the photon at space-time point z. The spatial
structure of the integrand of (49) can come from localizing either A or B.

Now we take a detour and calculate the Wigner transform of the vector potential
of the current A. This detour will lead us to a form of the reaction probability
amenable to a parton model-like interpretation. In terms of the current density and

propagator, the vector potential with causal boundary conditions is* [Jac75]:

4@ = [ d'y Diufo - ) I4(w) 1)
The Wigner transform of this is:

Aw(z,q) = / '3 F 1A, (x + 3/2) Ayl — §/2)
(52)

= /d4y I (4,9) Dy (= y,9) -

4Jackson uses the retarded boundary conditions for the vector potential because
he discusses classical fields.
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The Wigner transform of the vector potential has a “source-propagator” form. Cur-
rent A (the photon source) creates the photon with momentum g at space-time point

y and the propagator takes the photon from y to z. Let us put this in Equation (49),

d* v
Supcsn = [ ot Ao, T5 w0, (53)

Stated this way, the spatial structure of the integrand of this equation comes from
either localizing B or from the spatial structure in the Wigner transform of the photon
vector potential.

Equation (53) is nearly factorized because current B is proportional to the pho-
ton/current B reaction rate and, as we see in the next section, the vector potential

is proportional to the phase-space Effective Photon Distribution.

3.1.3 The Weizsacker-Williams Approximation

We have the reaction rate for photon exchange, Wap_, 45 (, ¢), and the reaction rate
for absorption of a free photon, Wyp_,p (2, ¢). Let us compare them and extract the
phase-space Effective Photon Distribution. First, we decompose B’s Wigner current
into photon polarization vectors, allowing us to rewrite Wyp_m (z,q) in terms of

JE" (z,q). Knowing this, we can identify the Effective Photon Distribution.

Current Decomposition

If the photon probing J§"(z,q) is sufficiently delocalized in space (in other words,

O0r Ay (z,q) < grAuw(z,q)), the momentum-space cutting rules tell us that we can
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expand J§"(z,q) in terms of the photon polarization vectors [BGMS75]:®

Jg (z,q) = Z e (A) €% (A) Jtrans (2, q)

A==
+ 6“(0) G*V(O) Jscalar (:E7 Q)

¢“q”
+ q—2Jlong(x7 Q)

(54)

Here, €,(0) is the scalar (i.e. time-like) polarization vector: €,(0) = pp, — quq- P8/,
where pp is the momentum of B. The transverse polarization vectors, €,(+), span the
hyperplane perpendicular to €,(0) and ¢,. Now, if A, (z,q) is not delocalized, then
Equation (54) should be modified to include gradients® in z. However, if we were to
include those gradients here, we may not be able to map J§”(z,q) to W,p_,p.
Since €”(A) €, (\') = dxx, it is simple to find the separate currents in (54) in

terms of J§"(z, q):
Jscalar (IE, Q) = GM(O) 6;(0) J]l3w (:E7 Q)

and

1 . v
Jians (1,0) = 5 Y eu(N) € (N) JE" (2, 9)
A==

The longitudinal piece, Jiong(2,q), vanishes due to current conservation.

5This particular decomposition of the current is specific to scalar current densities.
Budnev et al. [BGMS75] write down the polarization vectors for other cases.

®These gradients come from Wigner transforming terms proportional to the rela-
tive photon momentum.
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The Effective Photon Distribution

If we insert (54) into Equation (49), the reaction probability is a sum of two terms:

4 AIW (:E7 Q) Z 6#()\) e*y()‘) Jtrans (IE, Q)
A== (55)

dq
Sapoan|? = /d4 o4
| AB—)AB| z (27r)
4 d4q m *V
+ /d fEWA;w(xacDe (0)6 (0) Jscalar(£7£])-

The two terms in (55) describe transverse and scalar photon exchange between cur-
rents A and B, respectively.

Noting that if Jians(Z, g) has a weak ¢? dependence, then

Jtrans (:E7 Q) X nyB—)B’ (:E7 Q) .

In other words, Jiuns(,q) is proportional to the reaction rate for the “partonic”

subprocess. Therefore, the transverse term of (55) can be written as

nyB—)B’ (:Ey Q) ’ (56)

s 1 . Vdqdg* dny(z,q)
|SaBoam|” =

A (27)3 21 dBx d3q dg?

provided we identify the transverse Effective Photon Distribution as’

dn’Y(:E7Q) _ n *U
Frdqap ~ 22NN Aul@). 7

So, Equation (56) generalizes the Weizsdcker-Williams method to phase-space. The

Effective Photon Distribution in (57) is the spin summed photon Wigner function. In

"We can make a similar identification for the scalar term.
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other words, it is the phase-space number density of photons at time z, per unit ¢2.
Now, when we assume that Ji.qns(x,q) has a weak ¢® dependence we are in essence
assuming that the photons are good quasi-particles. We say this for the following
reason: since Jyqns(7, ) is nearly independent of ¢, we can perform the ¢? integral
in Equation (56) by pulling it past the reaction rate to act solely on the Effective

Photon Distribution. In that case, we have

dny(z,q) d¢* dn,(z,q)

Brddq | 27 Bz d3qdg?

which is the photon quasi-particle density (see Equation (6)). This should not be
a surprise since we wanted a photon distribution that we could fold with a reaction
rate for on-shell particles. We comment that conventional formulations of the parton
model factorization give a similar result for the full parton model cross section: the full
parton model cross section is a folding of the Parton Distribution Function (essentially
the momentum-space quasi-particle density of partons) with a hard parton cross
section (with on-shell parton). While making partons quasi-particles is a questionable
goal for transport applications (as partons must be allowed to evolve in ¢* to properly
include many-particle effects), a definition in terms of quasi-particles gives us the
connection to the experimentally determined Parton Distribution Functions. Finally,
we state that the factorization we have achieved here is possible because their are
no interference terms in our expression for the S-matrix squared. In Appendix F, we
explore the case of lepton pair production in the strong electromagnetic field of two

passing ions. In that case, there is interference between the photon fields of the two
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ions and factorization is not possible.

Now, while classical derivations of the Weizsicker-Williams method begin with
finding the photon power spectra from the Poynting flux [Jac75, vW34, Wil34], a
quantum mechanical derivation follows along the lines of what we do here [BGMST75,
BB88]. Were we to perform the spatial integrals in (55), we would find that the
exponentials in the Wigner transforms conspire to make several delta functions. The
resulting delta function integrations are trivial and we would quickly recover the
momentum-space result.

Finally, we comment that multiplying the photon phase-space density by the
projector »_,_, €*(A) €”(A) in (57) does not render the photon distribution gauge
invariant. Were we in momentum space, the projection would render the distribution
gauge invariant [BGMS75]. However because we are in phase-space, when we gauge
transform A,,(z,q) and apply the projector, terms proportional to ¢, are removed
but terms proportional to d/0x* are not. If the distribution is sufficiently delocalized
than the gradients in z become negligible and we might find an “approximately”
gauge invariant distribution. Of course we could always find a pathological gauge
that still makes the result gauge dependent. A truly gauge invariant virtual photon
distribution is introduced in Appendix E. This gauge invariant distribution reduces

to (57) when A, (z, q) is sufficiently delocalized.

3.1.4 The Photon Cloud of a Point Charge

We know we can calculate the QED analog of a phase-space Parton Distribution

Function — the phase-space Effective Photon Distribution. The phase-space Effective
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Photon Distribution is a quasi-particle distribution and the important part of this
distribution is the Wigner transform of the vector potential, A,,(z, ¢). In this section,
we calculate A, (z, ¢) for the simple case of a classical point charge radiating photons.
If we localize the source’s wavepacket and view it on a length scale larger than its
localization scale, we can treat its density as a delta function. In this case, the
shape of the photon distribution is determined the photon propagation and we can
use this calculation to illustrate how partons propagate in phase-space. Now field
theory books tell us we should use the Feynman propagator to propagate the photons,
however we will describe photon propagation via the Wigner transform of the retarded
(time-ordered) propagator. We will argue that this is a valid procedure and we will
summarize the behavior of the propagator. A complete discussion and derivation of
the analytic form of the propagator is contained in Appendix A. As a result of the
discussion in the appendix, the photon propagates a distance of roughly R ~ 1/|qq|
in the direction parallel to its 3-momentum and R, ~ 1/4/]¢?| in the direction
perpendicular to its 3-momentum. We demonstrate this behavior by plotting the
coordinate-space distribution of photons with ¢? < g2 (making the photons collinear
with the source) and with ¢® ~ ¢5. In Appendix D we examine the additional case
of a static point charge (i.e. ¥ = 0). This case is not relevant for QCD partons since

a QCD parton source must be taken in the limit |7] — c.

The Photon Source

For our source current, we assume the source particle’s wavepacket is localized on the

length scales that the photons can resolve so we can replace the source current with
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the current of a point particle.® The source particle follows a classical trajectory
z, = zou, with four-velocity v, = (1,vz,0r), v;, = c and v = 1/(1 — v) > 1.
Ignoring the recoil caused by photon emission, the current of the point charge is
[Jac75)

—

Ju(z) = ev, 6*(Z — zyD)

The Wigner transform of this is the classical Wigner current:

e (5 = / 4\ €07, (x + 7/2)j}(z — 5/2)

—

= 2T Qe Uy 0(q - ©)83(Z — 207)

Here e? = q,, is the QED coupling constant.

The current has several easy to interpret features. The first delta function sets
q - v = 0. This ensures that the emitted photons are space-like and that current is
conserved. It also insures that, when ¢ — 0, the photons become collinear with the
emitting particle (g = vrqr, ~ ¢, making ¢®> ~ ¢7> ~ 0). This delta function arises
because we neglect the recoil of the point charge as it emits a photon. The second
delta function insures that the source is point-like and follows its classical trajectory.

This source has one other feature of note: it allows for emission of both positive
and negative energy photons. In the following work, we consider creating only positive
energy photons so we insert a factor of 26(go) in (58). This amounts to constraining

the source’s initial energy to be greater its final energy.

8We discuss when this replacement is valid in Appendix H.
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The Photon Propagator

For the photon propagator, we take the result in Equation (52) and replace the
scalar Feynman propagator with the retarded propagator. We have several very
good reasons why we can do this. The first is that, in the momentum representation,
the retarded propagator and the Feynman propagator are identical for particles with
positive energy (normally they differ in their +ie prescription). The second is that
the Feynman rules for the S-matrix can be formulated equivalently in terms of either
propagator [Leh59]. The final reason why we may make this replacement is that
one can view Equation (52) as an approximation of Equation (40) where only one
exit channel dominates. In Equation (40), the propagator must be retarded by the
time-ordering requirements implicit in our discussion in Chapter 2.

Given that the switch is allowed, the scalar part® of the retarded phase-space

propagator is given in Appendix A:

GHe.p) = %9(%)0@2)9(,\2)%

Here G*(z,p) is the scalar part of the photon propagator, z is the space-time dis-
placement the photon with momentum g traverses and the Lorentz invariant \? is
A2 = (z - q)? — z%¢%. Looking at the equation for GT(z, p), there are some obvious
features: the photons must propagate inside the light-cone and forward in time. How-

ever the rest of the features of the propagator are tied up in the dependence on A2. In

9The vector part (gu,gu. in the Lorentz gauge) of the propagator has been re-
moved for clarity.
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Appendix A (especially Section A.3.1), we go into great detail understanding what
this A? dependence means and we will summarize the results here.

Given that our source can only make photons with ¢> < 0, we only describe
space-like and on-shell propagation. The case of time-like propagation is discussed in
the appendix. Now, what we found was that massless particles in phase-space do not
follow their classical trajectory. In fact, if we were to characterize their trajectory
by the start and end points of the trajectory, then what we found is not a fixed end
point at ¥ + ¥At, but rather an entire end zone. The size of the zone depends on
the virtuality and energy of the photon. This is sketched for photons with space-like
momentum in Figure 12. As one can see, the photon can end up anywhere in the
end zone; the transverse size of the zone is set by the off-shellness of the photon
and the longitudinal size is set by the energy of the photon. For on-shell photons
the situation is similar except both the transverse and longitudinal size is set by the
energy of the photon. In actual fact, the propagator is a bit more complicated then
what we lay out here, but these estimates of the propagation distance will serve us

well in understanding the photon density to follow.

The Photon Density

Now we put the photon source and propagator together into the photon density.
We concentrate our efforts on A,,(z,q) because all of the spatial dependence of
the photon distribution is tied up in the Wigner transform of the vector potential.

Inserting the classical current and the retarded photon propagator in the Lorentz
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Figure 12. A schematic of phase-space propagation for off-shell particles.

gauge into (52), we find
A (z,q) = dmoem v,0,0(q0)d (g - v) / d'y Gtz —y,q) *(H—yo?).  (59)

The delta function integrals in Equation (59) are trivial, however the remaining

proper time integral can not be done analytically. We find

(87T)204em79(%)5(q ) U)

\/_7(12 m (60)

< A(2lz - ql, 20/~ (@0 = 22) = (&) ,

A,W(IE, Q) =

where the dimensionless function .A(a, b) is given by

Ala,b) = [ dr—2f

By =t (61)
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There are two interesting cases that are easy to explore: that of photons nearly
collinear to the source particle (i.e. g =~ ¢z > |@r|), and that of photons with a large
transverse momentum (i.e. |§r| ~ qo,qz). Since there is a 1/4/—¢? singularity in the
photon density and nearly on-shell photons (i.e. ¢ — 0) are collinear, there will be
many more collinear photons than any other kind.

Two plots, representative of collinear photons and high ¢r photons, are shown
in Figure 13. The left is a plot of the dimensionless function .A(a,b) for collinear
photons with g, = (me, me Jvr,,0r). On the right is a plot of A(a,b) for photons
with transverse momentum comparable to their transverse momentum and energy,
qu = (me, me/vr,0.56MeV/c,0). The characteristic energy scale of QED is m,, so
we choose this scale for the momenta to plot. In both plots, we chose v;, = 0.9¢
to illustrate the Lorentz contraction of the distribution. The oscillations exhibited
by both photon distributions are expected for a Wigner transformed density [Tat83,
Lee95, CZ83|. To obtain an equivalent classical distribution, one should smear this
distribution over a unit volume of phase-space.

Both cuts through the photon distribution show Lorentz contraction. For the
collinear photons, this contraction occurs in the longitudinal direction. We can ac-
count for the contraction with the behavior of the retarded propagator. We expect
that the width will be ~ R}, = fic/|qo| parallel to ¢ and ~ R, = hic/+/]q?| perpendic-
ular to ¢. For the collinear photons, ¢'is in the longitudinal direction and ¢o = v+/|¢?|
so the longitudinal width is ~ Ry, = hc/ 'ym . In other words, the collinear photon
distribution is a “Lorentz contracted onion” centered on the moving point source.

The inner layers of this “onion” correspond to higher |¢?| photons. However, we
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Figure 13. Plots of the photon phase-space density. Both figures are plots of the
dimensionless function A corresponding to the photon number density of a point
charge with 3-velocity #@ = (v, 0r) where v, = 0.9¢c. These slices of the phase-space
density have g, = (e, me/vr, 0r) (left) and g, = (me, me/vr,, 0.56 MeV/c,0) (right).
In both plots, only the negative and zero contours are labeled. The positive contours

increase in increments of 0.25.
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must emphasize that the contraction is not due to the movement of the source, but
rather due to kinematics of the photon’s creation and the propagation of the photon.
To illustrate this point, one only needs to look at the high transverse momentum
photons: their distribution is tilted. In the case plotted on the right in Figure 13,
the photon momentum points 45° to the longitudinal direction, coinciding with the
tilt of the distribution. Furthermore, the width of the distribution is ~ R)| = fic/|qo|

along this tilted axis and ~ R, = fic/+/|q?| perpendicular to this tilted axis.

3.1.5 What the Photons Tell Us about QCD Partons

QCD parton model cross sections can be written in phase-space as a folding of the
phase-space Parton Distribution Function with the reaction rate for the partonic
sub-process. A phase-space Parton Distribution Functions is the number of quasi-
particle partons per unit volume in phase-space. The phase-space Parton Distribution
Functions is simply related to the underlying quark and gluon phase-space densities
through integration over the off-shellness of the particles. The phase-space Parton
Distribution Functions have a “source-propagator” form and possibly may be defined
in a gauge invariant manner as discussed in Appendix E. It may not be necessary to
resort to gauge invariant parton distributions however, provided the parton evolution
equations are gauge covariant. If the phase-space parton source produces only positive
energy partons or if we use time-ordered field theory then the partons propagate from
their source using the Wigner transform of the retarded propagator. This retarded
propagator propagates off-shell partons up to roughly R = hc/min(|go|, |q]) parallel

to the parton three-momentum and R, = hc/4/|¢?| perpendicular to the parton
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3-momentum. Both of these estimates are valid only in frames with ¢g, ¢ # 0. When
either g = 0 or § = 0, propagation is cut off at ~ R, = hc/m On-shell (i.e.
¢®> = 0) partons tend to follow their classical trajectory, with deviations from that
trajectory of order 1/|gy|.

Despite what we have learned, we know next to nothing about QCD parton
sources in phase-space. We use a point source here while, because of the finite size of
the valence quark bag, a nucleon has spatial structure on the length scales of interest.
Furthermore, QCD partons radiate other partons making Figure 11a an entire ladder
diagram and this alters the source. We gain more insight into the phase-space sources

in the next few sections.

3.2 Electrons as QED Partons

In the QCD parton model, the Parton Distribution Functions can be found by sum-
ming a class of ladder diagrams and the simplest of these has only one rung, corre-
sponding to a single partonic splitting. The QED analog of the first rung of such
a ladder is shown in Figure 14(a) where we see a virtual photon splitting into an
electron-positron pair. Probing the electron distribution spawned by this process oc-
curs in three steps: 1) a virtual photon splits into an electron-positron pair with the
positron on-shell, 2) the virtual electron propagates from the splitting point toward
the probe particle and 3) the electron interacts with the probe. In step 1, we assume
that the leading contribution to the virtual electron distribution comes from photon
splitting. We put the positron on-shell in order to sum over its states — thus encap-
sulating all possible emission contributions to the electon density. We can give the
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rate for Figure 14(a) a parton-model like form by associating steps 1 and 2 with the
“Effective Electron Distribution” and step 3 with the electron/probe reaction rate
(see Figure 14(b)).

Let us outline this section. In Subsection 3.2.1, we demonstrate that the reaction
rate for the virtual electron exchange process in Figure 14(b) factorizes in phase-space.
In the process, the electron phase-space density acquires the “source-propagator”
form. In Subsection 3.2.2, we calculate the electron distribution of a point charge.
The electron source shape is determined mostly by the shape of the parent photon
distribution. As with the photon distribution, we use the retarded propagator here
instead of the Feynman propagator. We assume the electrons are massless throughout
this section because quarks in QCD are effectively massless (Agcp ~ my < po, |7])-

Finally, in Subsection 3.2.3 we discuss the implications of this section.

3.2.1 Factorization

First we want to show that the process in Figure 14 can be factorized in phase-space,
as needed for a parton model-like form. The S-matrix for the process in Figure 14(a)

is:
S Bsenr = /d4x d'y A, (z)e(z, 8)ev"S¢(z — y) Veeosn (). (62)

The spatial structure of the electron source comes from localizing the photon vec-
tor potential, A,(z). The spatial structure of the “partonic” subprocess comes

from Vge_n/(y), the electron/probe interaction in Figure 14(b). In Equation (62),
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Figure 14. Cut diagrams for a photon splitting into a positron-virtual electron pair
and for a free electron interacting with a probe. (a) Cut diagram for creating an
electron-positron pair by photon splitting. The virtual electron interacts with the
probe particle, B. The square vertex represents the photon source. (b) Cut diagram
for a free electron interacting with the probe particle.

Ve(z, 8) = [ Lk y(k, s)eits L)L g the final state positron wavepacket and S¢(z —
(271') V2koV

y)=/[ % e‘i”'(w_y)% is the electron’s Feynman propagator.
We square S,p_sp and write it in terms of phase-space quantities:

dp d'q d'%
1 7 7 A
(2m)" (27)" (27)

|SfyB—>éB’|2 =y, / d4IE d4y (:E7 Q) f(IE, k)

x (2m)*6*(k+p—¢) Tr {%(% — m)v*S*(y — 7, p) Ve (y,p)'y”}

(63)

Here, S¢(y — z,p) is the Wigner transform of the two electron Feynman propaga-

tors and it can be written in terms of the Wigner transform of the scalar Feynman
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propagator, G°(z, q):

d4~ —ipx Qe ~ qQc ~
S;a,ﬂﬂ/(x,p) :/(27‘_1))46 P Saﬂ(p+p/2)5a/ﬂ/(p—p/2)

= (ﬁ‘i"b a"—me)aﬂ(ﬁ_i a"—me)a’ﬂ’Gc(x?p) .

Also in Equation (63), Vge_n/(y,p) is the Wigner transform of the electron/probe
interaction and f(z, k) is the phase-space density of final state positrons.

Now we want to sum over the full set of positron final states. The positron is
on-shell and in a momentum eigenstate!’ so we sum over the positron momentum and
spin. Furthermore, we can separate off the spinor structure of the electron propagator
and shift the derivatives to act on Vge_p. In the end we find

d'p d'q ks
(2r)* (27)* 2 |kgo| (27)°

|S’7B—>éB’|2 =lem / d'z d4y

x Au(z,q) G(y — z,p) (27)*6* (ks + p — q)
Tv {%Uéf )Y+ i D)2+ me)Viesw (yp) (F— i 92+ ""6””} '

(64)

Since Vpe_n' (Y, p) is separated from the electron propagator, the reaction proba-
bility is factorized. We could explicitly calculate the rate for the partonic subprocess
eB — B, but we are only interested in the shape of the distribution as a function of
electron momentum. We can guess the form of the electron density just by looking at

Equation (64), without performing the explicit rate density calculation. The electron

9This makes the positron momentum weight-function f*(k) o< 6*(k — k), with
k% = m?, and the positron phase-space density f(z, k) = (2V |kso|) = (2m)*8* (k — k).
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density is

dne-(y,p) / ’ / &’k
— " X Qe | A Gy — x, —— Az, k+p
d*y d*p dp? v ==p) 2 |ko| (27)° ( ) (65)

/d4f6 G(y — z,p) 2(z,p).

Here, G°(z,p) is the Wigner transform of the scalar propagator. Equation (65) has
the “source-propagator” form: X, the integral of A, (z,k + p) over the positron
momentum, plays the role of the partonic source. Because the emitted positron’s
wavepacket has no configuration space structure (it is in a momentum eigenstate),
the spatial structure of the source comes solely from the parent photon’s phase-space
distribution.

At this stage, we see several important features of the source. First, we note the
d®k/|kg| in the positron momentum integral. This factor weights positron emission
toward small ky and is the origin of the small-z singularity used in BFKL evolution
[Fie89, D91, SCC95, TW94, LL94]. Second, we note that the entire spatial depen-
dence of the electron source comes from the parent photon distribution. These two
points are especially important for the partons in Section 3.3 so they are elaborated

on in the next subsection.

3.2.2 The Electron Cloud of a Point Charge

Our main interest is with how the “parton ladder” (in our case, the source is only
one rung of the ladder) shapes the electron distribution. First, we discuss the elec-

tron’s source and how both the parent photon distribution and the cut positron rung
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effect it. Second, we discuss the interplay of the electron creation and propagation.
Because the electron has positive energy, we can use either the retarded or Feynman
phase-space propagator. We choose to use the retarded propagator. We describe the

Feynman propagator in Appendix A.

The Electron Source

In our electron source, we use the photon distribution of Equation (60). This is
not a QCD parton-like distribution as the photon source is point-like. Nevertheless,
because the electron source is a short parton ladder, it contains many of the general
features that one expects from a QCD parton source. In particular it contains the
1/|ko| singularity from the integration over final state positrons (in other words, the
cut positron rung). We discuss the effects of this integration and we detail both the
shape of the source and how this shape depends on the photon distribution.

Up to irrelevant factors, the electron source is

Ala,b)

(2, p) X Qe / d'k O(—ko)B(po + ko)d (k* — m2) 6 (q - v) NarrL

(66)

where a = 2|z - (k+p)| and b = 24/—(k + p)2v%((z - v)2 — 22v%) — (2 - (k + p))?. The
longitudinal and temporal positron momentum integrals can be done with the aid of

the delta functions, leaving the transverse momentum integrals:

kr
Y(z,p) X Qeb(p - v) /ﬂ ——
|k |<kTmax kTmax - kT (67)
O(po + kos)A(ay,by)  O(po + ko_)A(a_,b_) }
—(k+ +p)? — (k- +p)?
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Here, k2. .. = v*(p-v)? — m?2 and

kor = —v(yp- v F vp\/kax — k2)

ke = —y(yup-vF V k%max - E%)-

Now, in a parton ladder we expect to find a factor of d®k/|ky| for each cut rung.

(68)

Here is no exception, one can see that d'k6(—kq)d(k? — m?) gives us this factor.

However, because we neglect the recoil of the source, we have an additional §(q - v),

2

2 wax — k¥ Because of this factor, the positron’s tend

turning this factor into d*k/
to have |kr| < |kz|, making the positron momentum collinear (or anti-collinear) to
the point charge’s velocity. The small photon momentum forces the electron to be
emitted with momentum opposite the positrons. Incidentally, one finds this same
behavior of the momenta of the leg and rung partons of a real QCD parton ladder.
There, the collinearity of the momenta of the partons with the hadron momentum
gives rise to the so-called collinear or infra-red singularities.

Now, the shape of ¥ comes from the parent photon distribution. In our simple
case, we can actually estimate the (g,) that gives the dominant contribution to X.
For vy, ~ 1, we estimate that the average (k+,) is given by

(ks =(p-) (=15 5,1 3. cos(Or)/,sin(6r)

For the purposes of illustration, we choose to emit the positron in the direction ko -
&y = cos(fr) = % By momentum conservation, the dominant photon momentum

is (q+p) = Py + (kap)-
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On the left in Figure 15, we plot the electron source for p, = (2.0, 2.05, 07)
MeV/c electrons from a point charge moving to the right with vz, = 0.9¢. We choose
this p,, because it is both collinear with the point charge and because it is space-like
(p® < 0). Our source can emit both p? > 0 and p* < 0 electrons, however the typical
QCD parton in a parton ladder is either space-like or on-shell.!* On the right in
Figure 15, we also plot the photon distribution corresponding to the dominant (g,).
Note that both the source and the photon distribution have approximately the same
width in both the longitudinal and transverse directions. The tilt in the photon

distribution gets averaged away in the kr integrals in Equation (67).

The Electron Density

Now we put elements of the electron distribution together. According to Equa-
tion (67), we need the Wigner transform of the Feynman propagator. However, since
the electrons have positive energy we can replace the Feynman propagator with the
retarded propagator as we did for the photons. We discuss both the retarded and
Feynman phase-space propagators in Appendix A.

We are interested in electrons that have momenta that are both space-like and
collinear with the source (for comparison with QCD partons), so we plot the coor-
dinate space distribution of electrons with p, = (2.0,2.05, ()}) MeV/c in Figure 16.
The point source is moving to the right with velocity 0.9¢c. Both the source and the
underlying photon distribution for these electrons is shown in Figure 15. To perform

the four-dimensional spatial integral in Equation (67), we use a Monte-Carlo integra-

Udepending on how one formulates the parton model
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Figure 15. Plots of the electron source and underlying photon distribution. On the
left:the electron source for electrons with p, = (2.0, 2.05, Or) MeV/c. In this figure,
only the zero contours are labeled. The positive contours are (in arbitrary units) 1.0,
2.5, 5.0, 7.5 and 10.0. On the right: the virtual photon distributions corresponding to
one of dominant contributions to electron source. These photons have a momentum
of {g;,) = (0.956,1.063,0.045,0.045) MeV /c. The other root has similar momentum
and a similar distribution. In this figure, only the negative and zero contours are
labeled. The positive contours increase in increments of 0.25 (in arbitrary units).
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tion scheme [P792]. This integration scheme, being probabilistic by nature, returns
both the integral at a point and the error on the integral at that point. The nonzero
data points never had a relative error greater than 20%, but due to this error, the
location of the zero contours is uncertain by ~ 30 fm.

Comparing the electron distribution with the source, we see that the electron
distribution is elliptical with longitudinal and transverse widths comparable to what
one expects by adding the source width in Figure 15a to the estimates for the prop-
agation distance in Equations (127c). Unlike the electron source distribution, the
electron distribution is not symmetric about z; = 0. This is caused by the positron
recoil because, were there no positron recoil, we would have a delta function to insure
po = prvr (as we found for the photons). Because of the positron recoil, the delta
function is widened and the additional spread in energy causes electrons with the

chosen momentum to propagate forward preferentially.

3.2.3 What the Electrons Tell Us About QCD Partons

In this section, we learned several things about the phase-space densities for massless
QCD partons. Owing to the fact that the simplest parton ladder contains one rung
representing a single partonic splitting, we learned how both the parent parton and
cut rung affect the parton distribution. The shape of the parent parton distribution
determines the spatial structure of the parton source. The integral over the final
states of the parton represented by the cut rung of the parton ladder has a 1/kg
weight — giving the parton a low k¢ (or small longitudinal momentum) and giving

rise to the expected collinear singularity.
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Figure 16.  Coordinate space dependence of the electron phase-space density at
four momentum p, = (2.0,2.05, 0) MeV/c. Only the negative and zero contours are
labeled. The positive contours are in increments of 1.0 (in arbitrary units). The sign
of the contours in each region are denoted by + signs.
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3.3 The Parton Cloud of a Nucleon

We cannot calculate the phase-space Parton Distribution Functions without a set
of QCD phase-space evolution equations. Although both the work in Chapter 2
and the recent work by Makhlin and Surdutovich [MS98] are steps toward this goal,
neither are sufficient. In the renormalization group improved parton model, one
specifies the Parton Distribution Functions along some curve in the zz-Q* plane
and then evolves in zr, @Q? or both, mapping out the entire PDF for all zr and
@Q?. This evolution is equivalent to summing over a class of ladder diagrams in the
Leading Logarithm Approximation. Because the Leading Logarithm Approximation
can be translated into phase-space, many of the insights from the Leading Logarithm
Approximation in momentum-space can be reused in phase-space. More precisely,
using the momentum ordering in the Leading Logarithm Approximation and a simple
model of the nucleon we can estimate the size of the sea parton distribution as a

function of parton momentum.

3.3.1 QCD Parton Model and Leading Logarithm Approximation

Typically the Parton Distribution Functions are calculated using either Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP), Balitsky-Fadin-Kurayev-Lipatov (BFKL),
or Gribov-Levin-Ryskin (GLR) evolution equations, all of which are equivalent to
applying a Leading Logarithm Approximation (LLA) [GLR83, LL94, D*91]. In the
LLA, we assume the parton is produced in a cascade represented by the ladder

diagram in Figure 17. The probability of emitting the n** parton with longitudinal
g
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Figure 17.  Cut diagram for probing the n'* generation of partons in a typical
cascade.

momentum fraction zr, and transverse momentum g2, from this cascade goes like

[LL94]

Ncas dan qu%T

2
™ TFn an

dP, =

(69)

Thus, by ordering the momentum properly as we go down the ladder, we can pick
up the largest logarithmic contributions to the n** parton’s density.

Most hadron colliders probe regions where the data are well described with Par-
ton Distribution Functions calculated within the Dokshitzer-Gribov-Lipatov-Altarel-
li-Parisi (DGLAP) evolution scheme. DGLAP evolution is equivalent the Leading
Logarithm Approximation in 1/¢* (LLA(Q?)). New experiments at HERA are be-

ginning to see evidence that Balitsky-Fadin-Kurayev-Lipatov (BFKL) type evolution

101



is necessary to describe the Parton Distribution Functions at small-zr [AHC95].
BFKL-type physics is believed to be responsible for the rise in the number of par-
tons as zr — 0, however this rise can also be partially described by DGLAP-type
physics [LL94, NR86, AHC95]. BFKL evolution is equivalent the Leading Logarithm
Approximation in 1/zr (LLA(zF)). Unlike DGLAP and BFKL evolution, Gribov-
Levin-Ryskin (GLR) type evolution does not have a simple momentum ordering be-
cause one sums terms with varying powers of 1/zr and 1/¢* [GLR83, LL94]. Because
of the simplicity of the ladder structure and the momentum ordering needed to pick
up the largest contributions, we will discuss both DGLAP and BFKL type partons
in phase-space.

We can apply the QCD parton model and LLA in phase-space if both are mod-
ified appropriately. Assume that we are working in a regime where o, < 1, so we
can apply perturbation theory, and assume that all elementary particles are massless.
Assume also that the probe in Figure 17 is localized on the length scale of the parton
cloud. This assumption is equivalent to saying the parton lifetime is large compared
to the interaction time.

Now, if we find the same singularities in both phase-space and momentum-space,
then we know that the LLA will give the dominant contribution to the particle
densities in phase-space. From what we have seen from the photon and electron

density calculations and from the Generalized Fluctuation Dissipation Theorem, the
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parton densities have the form

f(z,p) = /d4y Gz —y,p)Z(y,p). (70)

The self-energy, ¥, is given by the parton ladder in Figure 17 and the n'* segment of
Y. is shown in Figure 18. In momentum-space, the cut rung gives a d>k/|ko| which
leads to the dzp/zr in Equation (69). To see how the factor of d®k/|ko| arises in
phase-space, one needs only look at the electron source in Section 3.2.2. The electron
source has exactly the form of the segment in Figure 18 and in that calculation we
found exactly this factor of d®k/|kq|. The fact that we find the same factor of d*k/|ko|
in both the energy-momentum representation and in phase-space simply reflects the
fact that the cut parton density is proportional to 6(k) d(k®) in both cases and we
sum over final parton states. The factor of dg?/¢* in Equation (69) comes from the
integration over the leg’s propagator, 1/¢%. In phase-space, the 1/¢* poles are tied

up in the Wigner transform of the retarded propagator, but they are still there:

d4(Q1 - CI2) i 1 1
o+ _ _ [ ¢\ T R) iz(q1-g0) )
(z,q1 — ¢2) / e ¢ g} +ieqio g3 — ieqao

Thus, this segment of the parton ladder produces the same divergencies in phase-
space and momentum-space. Whatever orderings are needed to produce the leading
contributions in momentum space will produce the same leading contributions in
phase-space.

Our self-energy has the same ladder structure as the electron source in Section
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Figure 18. Typical rung of the LLA ladder.

3.2, so we know the spatial structure of the n** parton’s source is given by the n— 1%
parton’s distribution. Iterating back to the 0®* parton (a valence quark), we see that
the shape of the valence distribution sets the shape of the sea parton source. So, we
take the valence quark wavefunction to be uniformly spread throughout a bag with ra-
dius Rpe4 as illustrated in Figure 19. Since we are interested in high-energy collisions,
we take the nucleon to be moving to the right with 4-momentum p, = (F, Py, Or)
with Py ~ P, > My. Thus, this nucleon has 4-velocity v, = (1,vr,,07) and the
bag is contracted in the longitudinal direction by a factor of v = 1/ m > 1.
We assume the partons lose memory of the original valence quark momentum as one
goes down the ladder. Thus, any momentum/coordinate correlations in the source
function should be washed out by the spatial integrations in Equation (70). One
might expect that the sea partons forget the shape of the nucleon bag as well, but
we show that the partons cannot propagate far enough from the original source for

this to happen.
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R bag

Figure 19. Schematic of the relativistic nucleon’s valence quark distribution.

3.3.2 Large-Q? (DGLAP) Partons

In the large-Q)* regime, the parton density is low but o, (Q*) In(Q*/A%p) 2 1. Here
the largest contribution to the leading log ladder comes from large Q* logarithms.!?
To get the largest contributions from these logs, we order the momenta as we move

down the ladder:

—qa > =i > ... > = > /Ry~ Ajep.

Here ¢? is the virtuality of the i leg. The kinematics at each leg-rung vertex ensure

that the momentum fraction carried by each leg is also ordered:

1> 2p1 2 ... 2 Zpn-1 2 TFn-

120)? can be taken as the typical momentum scale of the process. In the case of a
DIS probe, this is the momentum transferred by the probe.

105



Whether a rung or leg is a quark or gluon is irrelevant, provided k2 = 0 and the ¢*
ordering holds. Now, given that the proton has longitudinal momentum Py, and the
rungs and legs are massless, each generation of partons must have energy ¢,0 ~ x5, L,
and transverse momentum of g2 ~ —¢* < 7% P?.

Let us figure out the general features of the parton cloud. The retarded propa-
gator lets the n'* parton propagate out to R, ~ hc/ \/Tq,% transverse to the parton
momentum and to Ry ~ fic/gno = hc/xp, Py, parallel to the the parton momentum.
The parton momentum is approximately parallel to the nucleon momentum, since
xpP;, > pr. The partons can never get far from the bag in the transverse direc-
tion because R, < Rpqaq, so the transverse spread of the partons will be dominated
by the bag size: ARr ~ Rpey. On the other hand, the longitudinal spread of the
partons is roughly given by ARy, ~ Ry.,/7v + fic/zr P, so can be dominated by the
longitudinal propagation distance R} if tp < MyRpog/Fic. In fact, for very small z
(i.e. zp ~ MyRy,,/7vhic) the spread of the partons can meet or exceed the nucleon
bag radius. Furthermore, the actual distribution may be somewhat broader due to
the propagation of the virtual partons between the subsequent emissions along the
ladder.

So in our picture, which is summarized in Figure 20, the sea large-Q? parton
distributions have the same transverse size as the parent nucleon’s transverse size,
but the longitudinal size can be significantly bigger than the parent’s longitudinal
size and even approaching the parent’s transverse size. Furthermore, the drop off in
the parton density in the longitudinal direction occurs at the characteristic radius of

~ he/xpPr. This picture of the nucleon is consistent with the uncertainty principle
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based arguments of A. H. Mueller [Mue89), later user by Geiger to initialize the parton

distributions in his Parton Cascade Model [Gei92a, Gei92b, Gei94, GK93, Gei95].

3.3.3 Small-zr (BFKL) Partons

In the small-zr regime, the parton density is high and «,(Q?)In(1/zr) = 1. The
small-zp partons are mostly gluons. In this regime, the leading logs come from
the 1/zp-type singularities, i.e. from the cut rungs. Since leading logs come from
the 1/xp singularities, the largest contributions come about by strongly ordering
the longitudinal momentum fraction as one moves down the ladder [BL78, KLF76,

KLF77, Lip76]:

I>zp1 > ... > Tpp_1 > Trn.

BFKL evolution has only a weak dependence on the virtuality of the partons as we
move down the ladder, so we assume ¢* to be fixed: ¢;_, ~ ¢} > 1/Rj, . This does
not significantly effect the results of the analysis [BL93].

Now we must understand how the transverse momentum and energy of each
parton leg changes as we go down the ladder. A well known effect of iterating the
BFKL kernel (equivalent to moving down the ladder) is that the transverse momen-
tum undergoes a random walk in In(¢2) [LL94, BL78, KLF76, KLF77, Lip76]. In

fact, after iterating through a sufficiently large number of rungs, the spread in the g7
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distribution is given by:

<<1n(g%“)>2> _ Cln(%)

where C = 8:2298((3) = 32.14c;,. Thus, ¢2; can be orders of magnitude larger or

smaller than ¢Zy. This is more clearly seen by rewriting ¢, as
qiT ~ q%Te:I:E).ﬂ/as ln(l/wF). (71)

We will consider the extreme cases of the transverse momentum and comment on the
typical case, ¢2r ~ @

If the random walk results in a large transverse momentum, we will have
Cr > ¢ ~ —¢* ~ (zpPr)?. Thus, the n™ parton will have 3-momentum in

the transverse direction. We know that the parton can only propagate to a distance

of roughly Ry ~ hc/|qo| = he/+v/q? + g% + (zrP1)? in the direction parallel to ¢. Since
l T

V@ + ¢+ (zrPr)? ~ |gr| and fic/|gr| < Ryqy, the parton cannot travel far from the
original source in the transverse direction. On the other hand, the parton’s longitu-
dinal spread can be larger than the longitudinal bag size. The parton can propagate
to a distance of R, ~ hc/ \/—ti in the direction perpendicular to ¢, so we can expect
a longitudinal spread of the parton distribution of ARy, ~ Ry, /v + hc/+/—¢?. Since
Ryog > he/ \/—7q2, this additional spread can not match the spread of the DGLAP
partons.

If the random walk results in a small transverse momentum, we will have ¢2; <
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@y ~ —¢*> ~ (zp,Pr)% In this case, the n' parton will have 3-momentum in the
longitudinal direction. As in the case of the DGLAP partons the additional transverse
spread is ARy ~ he/ \/—7q2 < Rpqg and so is negligible. The additional longitudinal
spread is ARy, ~ hc/|qo| = Fic//q? + (zrPp)2. This may be significantly larger than
the spread of the DGLAP partons because the partons have space-like momenta
making ¢° + (zpPr)? < (zrPr)?.

Summarizing both possibilities, the BFKL parton distribution has a transverse
spread of ARy ~ Ry,g, but a widely varying longitudinal spread, ranging from ARy, ~
Riag/Y + he/+/—¢* < Rugy t0 ARy ~ Ryg/v + hc/\/@ + (spPL)® > Ry for
partons with space-like momentum. Presumably the typical case, when ¢2r = g7,
lies between these two extremes so the BFKL parton distribution ranges from much
smaller than the DGLAP distribution to a lot larger than the DGLAP distribution.
In all cases, since |go|, v/—¢2, (trP1) > Aqcp, the DGLAP and BFKL distribution
longitudinal widths must not be as large as the transverse width. A picture of BFKL
partons is illustrated in Figure 21.

The fact that the longitudinal extent of the BFKL cloud can be so much larger
than the longitudinal width of the nucleon bag has implications for the small-zp
parton distribution of a nucleus. Because the longitudinal width of the small-zp
distribution is so large, the small-zr partons (which are mostly gluons) can see the
color charge of any other nucleon in a longitudinal tube centered on the parent
nucleon. This suggests that we should treat the nucleus as a whole as a source of
color charge for the small-xr partons in the spirit of McLerran-Venugopalan model

[Ven95|. Specifically, the Lorentz contracted nucleus is replaced with a semi-infinite
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sheet of fluctuating color charge. In this limit, the gluon distribution function per
unit area is the semi-classical Weizsidcker-Williams distribution for gluons scaled by
the density of charge squared fluctuation per unit area. In practice in a nuclear
collision, this approach may only be useful when the nuclei are far apart. As the
nuclei approach, the BFKL partons from each nucleus begin interacting and exciting
shorter wavelength modes. These shorter wavelength modes will not see the nuclei
as sheets of color charge, but rather objects extended in the longitudinal direction.
Eventually then, the McLerran-Venugopalan approach must break down.

The large longitudinal extant of the small-zr cloud may have another conse-
quence: in a zero impact parameter nucleon-nucleon collision, we would find that the
soft (BFKL) partons interact much earlier than the harder (DGLAP) partons because
of their greater longitudinal spread. This, coupled with the large density of small-zp
partons, leads to earlier entropy production and stopping of the soft partons. In fact,
this is likely to be part of the cause of the high stopping and early entropy produc-
tion in the Geiger’s PCM model [Gei92a, Gei92b, Gei94, GK93, Gei95]. However, it
is known that small-zr partons couple weakly to themselves and to the rest of the
system [McL97, LL94], so this may end up having no observable consequences on the

rest of the system.

3.4 Summary

The parton model rests firmly on the concepts of factorization and on evolution of
the parton densities. Using conventional S-matrix perturbation theory on simple
QED processes, we showed the reaction rates (and hence the cross sections) can
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be factorized into a parton model-like form. In other words, they take the form
of a reaction rate density convoluted with a phase-space Parton Distribution Func-
tion. This phase-space PDF is the quasi-particle parton number density and has the
form of a phase-space source folded with a phase-space propagator. Our work with
the Weizsdcker-Williams Approximation demonstrates that the Parton Distribution
Functions can be defined in phase-space. Since parton evolution is equivalent to sum-
ming over a class of ladder diagrams, we examined the first segment of a QED parton
ladder. This ladder is simple as it includes only one “partonic” splitting: a virtual
photon splitting into an electron-positron pair. Not only does this simple ladder ex-
hibit the 1/zF singularity that we would expect from cutting the rung of a parton
ladder, but the study of this ladder shows that the shape of a parton’s distribution
is controlled to a large extent by the shape of its parent’s distribution.

As a side benefit of this study, we were able to discuss how the phase-space
propagators work. We found that the retarded propagator propagates particles to
distances of ~ R = hc/min(|go|,|q]) parallel to the particle’s momentum and to
distances of ~ R, = hc/ m perpendicular to the particle’s momentum when
g*> # 0. When g2 = 0, the particles tend to follow their classical paths with deviations
from this path being of order 1/|g|. Furthermore, the retarded propagator can only
send particles forward in time and inside the light-cone.

In the end, we have made progress toward specifying the initial phase-space
parton distributions of a relativistic nuclear collision. Regardless of the kinematical
regime, the transverse spread of a parton distribution is dominated by the bag radius

~ 1 fm. The longitudinal spread of a parton distribution varies from roughly ~
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Ryag/v + hic/zpPp, for moderate to large zr (i.e. for DGLAP partons) and from
ARy, ~ Ryay/7 + Fic/\/—q% to ARy ~ Ryey/v + Fic/\/q% + (xrPr)? for small z (i.e.
BFKL partons). Since the small zr partons have a large longitudinal spread and a
high density, we expect the small z partons to interact much earlier than the large
zp partons in a typical nuclear collision. This may cause earlier entropy production
and higher stopping than one expects in models that include only DGLAP parton

distributions such as HIJING [WG91, WG92, Wan95] and others.
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CHAPTER 4

NUCLEAR IMAGING

Imaging techniques have been applied to a wide variety of problems, from extracting
license plate numbers from blurred photos of speeding cars to imaging the interior
of the earth. The typical linear imaging problem is to extract an image from exper-
imental data where the data is the convolution of the sought-after image with some
kernel. In the study of nuclear reactions we have one such linear imaging problem —

inverting the Pratt-Koonin equation:

Cold) - 1= [ Er K@D (72)

Here, the data is the two-particle correlation function, C', and the image we seek is
the source function, S. The source function is the relative distribution of emission

points for the pair of particles:

=

() = / &R dtydta D(P, B+ 7/2,6)D(P, B — 7/2,1y). (73)

Here D is the normalized single particle source and D can be identified with the

distribution of last collision points in space, time and momentum of the particles in a
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nuclear collision. The source function and single particle sources are discussed briefly
in Section 4.1 and in detail in Appendix B. In (72), the kernel in the convolution is

K(q,7). For identical pairs, the kernel can be written

K@) =670 -1 (74)

where, as we discuss in Appendix B, QS((T_) (7) is the two particle relative wavefunction.
In (72), 7 is the relative momentum between the particle pair, 7 is the separation of
emission points in the pair rest frame and P is the total pair momentum.

At first glance, imaging appears easy: we could discretize C5 and Sz and invert
the resulting matrix equation. However, in practice this does not work as small
variations in data, even within statistical or systematic errors, can generate huge
changes in the reconstructed source. This stability problem is well known in other
fields and vast literature exists on its resolution [B*85, SG85b, P792, Balg80, BG67].
In fact, many imaging problems [B*80, P*92] that are now routinely solved would
be considered ill-posed in the sense of Hadamard who discussed stability in inversion
as early as 1923 [Had23]. One would think then that we could take a well known
imaging method, such as the Maximum Entropy Method (MEM) which is often used
in astronomical imaging [SG85a, Bev85, P792|, and apply it directly to our case.
MEM assumes the most likely image on large length scales, corresponding to small
amplitude noise, and uses that information to stabilize the image on the shorter
length scales, corresponding to the point-like stars. MEM is very successfully applied

to astronomical problems but it is not an appropriate approach for nuclear imaging.
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The reason is that the kernels often encountered by astronomers mainly blur the stars,
mixing them into uniform noisy background. In short, the data is rather singular and
the kernel is smooth. In our case, the situation is quite the opposite; the source in
(72) is highly peaked at small to intermediate distances and drops to zero only at high
distances and the kernel is more like a Fourier transform than a blurring function. In
other words, our kernel is singular while our data is smooth. In fact, when the kernel
does blur, we tend to lose a lot of information.

Given our unique situation, we have tried a variety of techniques to invert (72).
These techniques have been applied mainly to the angle-averaged Pratt-Koonin equa-
tion and the techniques are discussed in the Section 4.2. These techniques vary from
directly Fourier Transforming the correlation function to more sophisticated methods
that seek to arrive at “most likely” source. These more sophisticated methods in-
clude the Lucy-Richardson algorithm, where we seek the “most likely” source through
an iterative scheme, and others that take the “most likely” source to be the source
that minimizes the x? fit to the correlation function. These last methods include
brute force minimization of the x2, solving an algebraic equation for the source that
produces the smallest x%, and an improvement of this method we term Optimized
Discretization. The most successful of these techniques take advantage of specific
properties of either the kernel or the data. In all cases, if we exploit certain proper-
ties of the images, i.e. use constraints, we can further stabilize the imaging. Use of
constraints implies discarding spurious solutions not meeting the criteria for a valid
source. The use of constraints in this role was first recognized by Tikhonov [Tik63]

and we will illustrate the use of constraints in the Section 4.2.
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While the images we obtain are interesting in their own right, we will discuss
how other pieces of information can be extracted from them in Sections 4.4 and 4.3.
In particular, we can estimate both the average phase-space density at freeze-out and
the entropy of the system at freeze-out from the images. In the past, the average
pion phase-space distribution at freeze-out has been estimated using the correlation
function [Ber94, Ber96). However, because we use the source function directly we can
make the estimate for any type of particle. There is another piece of information one
can extract from the images — the integral of the source over space out to a specific
distance. Given that the source function is normalized to 1, if we integrate the source
out to a set distance and do not get 1, then we know that a certain amount of the
source must lie at greater distances. Since our images can not extend out indefinitely,
we can use this quantity to signal for large distance (or long time) emission of pairs
we can not otherwise image.

Our imaging work has already yielded an array of new results as we have in-
verted several data sets from the AGS experiment E877 and from the Michigan State
Cyclotron. The results of these inversions are contained in Sections 4.5, 4.6 and 4.7.
From the AGS, we analyzed both pion correlations at two different beam energies
and kaons at the highest of those two beam energies. Our analysis shows that the
kaon source is much narrower than the two pion sources and that the pion sources
show evidence for a tail, possibly from long-lived resonance decay. While the pion
and kaon sources we found are consistent with Gaussian sources, both the proton and
IMF sources are definitely non-Gaussian. We also see clear emission lifetime effects in

the sources of both IMF and proton correlations at MSU energies. While we expect
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that lifetime effects dominate the IMF sources, it was a surprise to see evidence for
a tail in the proton sources. In all cases, our imaging allow us to test the positivity

of the sources, a condition necessary to interpret the sources semi-classically.

4.1 What Is the Source Function?

To understand what the images will tell us, we must understand what the source
function is, what the source function is not and the coordinates we use to express the
source function.

The source function is the probability distribution for emitting a particle pair a
distance 7 from one another, in the pairs center of mass frame. First, because it is
a probability distribution, if we sum over all possible emission points, then we must

obtain 1:

/d3r S5(7) = 1.

This will prove useful in our discussion in Section 4.3. Second, the source says nothing
directly about the time separation between the particle emissions. This is clearly
seen in Equation (73) as the temporal information in the single particle sources
is integrated over. As a specific example of this problem, we can not distinguish
between the two scenarios pictured in Figure 22: simultaneous emission with a pair
separation 7 and sequential emission with a time separation At combined with a
spatial separation 7 in a model independent way, if ¥ = 7y + ¥At. The fact that

the temporal information is entangled into the source function in such a nontrivial
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Figure 22. Two emission scenarios that give the same separation of emission points.
On the left, the pair is emitted simultaneously with a relative separation 7. On the
right, the first particle is emitted with a relative velocity ¥ and the second particle
is emitted At later a distance of 7y from the first particle. The combined spatio-
temporal separation of emission is 7 = 7y + UAt, giving a separation identical to that
in the scenario on the left.

manner cast some doubt on efforts to simultaneously fit the radius of a source function
and an effective emission time. Finally, the source is model independent. The only
assumption that goes into the inversion process is an assumption of the validity of
the Pratt-Koonin equation. In other words, we only require a factorization of final
state interactions of the pair from the evolution of the pair in the excited, colliding,
nuclear system.

The source function must not be confused with the single particle sources,
D(Z,t,p). However, the source function and single particle sources are related
through Equation (73). The single particle sources tell us where and with what
momentum the particle are created relative to the system as a whole. The source
function can not tell us where either of the particles are created, just how far apart
they were when the second one was emitted. Nevertheless, because the source can
be written in terms of the single particle sources, model source functions can be con-

structed from any transport model that gives the distribution of the last collision
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points in space, time and momentum of the particles in the collision.

The source function is given in the pair center of mass frame in the coordinates
sketched in Figure 23. We use the coordinates in Figure 23 as they are commonly
used in the analysis of correlation data. We use the CM frame of the pair to simplify
the form of the Pratt-Koonin equation. In an arbitrary frame, the source function
obtains a dependence on the separation time of the pair emission. This might appear
to aid in unfolding the temporal structure of pair emission, but this time dependence
is folded into the spatial separation in the P, direction in a non-trivial manner. In the
end, the Pratt-Koonin equation says nothing more than it does in the CM frame, it

just does so in a more complicated way.

4.2 Restoring the Source Function

There are several ways that we can approach our imaging problem and in this sec-
tion we will discuss each of the ones we have considered. These ways range from the
simplest Fourier inversion, which is only applicable to particles with no final state
interactions, to more sophisticated methods that seek the “most likely” source. The
first of these other methods is an iterative scheme called the Lucy-Richardson al-
gorithm. In this scheme the “most likely” source is one that minimizes a quantity
similar to the information entropy. The rest of our methods are based on Bayesian
arguments that suggest the “most likely” source is one that minimizes the x? fit.
The least sophisticated (and least successful) of these is the brute force minimization
of the x%. A more fruitful approach is to create an algebraic solution for the 2
minimum. Now, none of these approaches use any features of the data or kernel to
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Figure 23. The directions we use in the analysis of S in the pair center of mass
frame are outward along the transverse momentum of the pair, longitudinal along
the beam, and the remaining direction we term transverse.
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stabilize the inversion. As we will see, our most promising method, the Optimized
Discretization method, uses the error on the data and the behavior of the kernel to
choose the resolution that produces the best source. One can go further than just
taking advantage of the kernel to taking advantage of known properties of the source
itself. We describe some of these properties and then use them to further constrain
the inversion. We demonstrate the role these constraints have with an example. How-
ever, before discussing the various methods, we will recast our inversion problem into

the angle-averaged version of the problem.

4.2.1 The Angle-Averaged Pratt-Koonin Equation

To begin, we write the angle averaged version of the Pratt-Koonin equation as this is
the version we use in the data analysis at the end of the chapter. Although we stick
to angle averaged work throughout this chapter, our results are applicable to the full
three dimensional case.

If we introduce C(q) = V47 Y, C™™(g) Y*™(Q3), and an analogous representa-

tion for S then the individual moments satisfy

Ol (g) — 6°6™ = 4n /0 dr? Ky(q, ) SE(r) (75)

Here the spin-averaged kernel K depends only on the angle between ¢ and 7, and not

on the separate directions of these vectors:

1

Kilg,r) = /_ d(cos 0)K (7, 7) P"(cos 6). (76)

1
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Due to the symmetry of S and C, only even ¢ appear in the angular ex-
pansion of these functions. Since both functions are real, the moments satisfy
(Cf™)* = (=1)™C*~™. The relation between the angular moments in (75) may
help in analyzing three-dimensional data.

As a specific case, relation (75) shows that the angle-averaged correlation func-

tion C%(q) = C(q) is directly related to the angle-averaged source S%(r) = S(r):

Cslg) —1=Rp(g) =4rm /000 drr® K(q,r) Sa(r). (77)

4.2.2 Fourier Transformation

One way to invert (77) or (72) is to take advantage of the fact that, when final
state interactions can be neglected, the imaging problem becomes a Fourier inversion
problem. This means that our intuition regarding Fourier transforms can be applied
to the imaging problem.

When we can neglect the final state interactions, the relative wavefunction sim-
plifies dramatically. In particular, for like-charged pions' emitted from small sources,

their relative Coulomb wavefunction factorizes [PCZ90]:

65| & G2(q) |pee()|”

1We can safely ignore the nuclear forces between the pions even for small relative
momentum.
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where

2mn
e2™ — 1 2q

G(q) =

and the free wavefunction in the pair rest frame is ¢5%°(7) = (v/2)~'(e™7 + e~%7).
Thus, the Coulomb effects can be “corrected” by dividing out the Gamow factor

G?(q) and the inversion becomes a Fourier cosine transform:

Sp(7) = 75 [ @ cos(24-7) (Co@) - ) (79)

The angle averaged case follows just as simply as K(g,r) = sin (2¢r)/(2¢r) and
the source, Sp, is an inverse Fourier sine transform of C' [BD97]. For the angle-

averaged source one finds:

rS(r) = /0 " dgq sin (2g) (Cplg) — 1) (79)

In fact, for any ¢m, we have

St (r) = (P4 /0 " daq? Ge2ar) (C(r) — 5 5™0) (80)

T2

In practice, the integration in (79) must be cut off at some suitably chosen value
of gmax. This upper limit must be chosen so that the integral covers the region where
the correlation in (77) is dominated by the two-particle interference. The magnitude

of this cut-off determines the smallest feature that we can resolve in the source. This
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happens because a feature of size Ar will contribute maximally to Fourier modes
with frequency ~ 1/Ar. If the maximum mode one restores has frequency guax then
the smallest feature that can be resolved has size ~ 1/2¢max. Similarly, since the
data is typically binned in relative momentum with size Ag, the source can only be
imaged to a distance of 1/Aq.

We will demonstrate the application of Fourier inversion on a two pion correlation
function in Section 4.5. Despite the simplicity of this approach, it does suffer from
some problems. First, it only works for cases where the final state interactions can be
neglected. This means that it can only really apply to pion and photon correlations.
In fact its application to pions is limited to the class of reactions where the source
is small. For larger sources, typically a “finite size Coulomb correction” is used,
wherein instead of dividing by the Gamow factor, one divides the correlation function
by the square of the Coulomb wavefunction smoothed over a finite size Gaussian.
It is doubtful that such a correction does anything more than confuse the analysis.
Second, Fourier inversion is very sensitive to noise in the correlation function. Simply
put, a bump around a specific relative momentum gy appears as a standing wave of
frequency ¢¢ in the imaged source. This can lead to nonsensical behavior in the
tails of the source where the sources amplitude is comparable to the magnitude of
the standing wave. Together these problems lead us to consider more sophisticated

approaches to imaging the source function.
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4.2.3 General Case

Typically in an experiment, the correlation function C3 is determined at discrete
values of the magnitude of relative momentum {g¢;};—, .. u for directionally-averaged
function, or on a mesh in the momentum space {g; };=1,... s when no averaging is done.
With each determined value C;™® some error AC; is associated. It is this set of values
{C7*}iz1,... m, that we use in determining the source function. In the 3-dimensional
case we may introduce a rectangular mesh in the space of relative particle separation
and assume that the source function is approximately constant within different cells
of the mesh. In the angular expansion (75), we may also assume that the spherical
expansion coefficients vary slowly within the r-intervals. In the angle-averaged case,
discretization amounts simply to the representation S ~ Z;V: 1 S;j 9j(r), where N is
the number of intervals in r, g;(r) = 1 for r;_; < r < r;, and g;(r) = 0 otherwise,
with 7; = j Ar. On inserting a discretized form of S into Equation (72) or (77),

we find a set of equations for the correlation functions {Ci"};_; . a7, in terms of

{S]}]:177N7
N
C;Fh —-1= 'R,:h = ZKZ']' Sj, (81)
j=1
where, in the angle-averaged case,

j
K;; = 47r/ drr® K(g;,7). (82)

-1
Now, supposing that the correlation function was measured with high accuracy
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(i.e. that the experimental uncertainties are negligible compared to the data) and that
the data do not contain a noise component, the Equation (81) can be inverted using
standard Maximum Likelihood methods such as the Lucy-Richardson algorithm. In

this method, the source is found through the iteration of the equation [VL93]

Sl 90
n_— _J K..—*
S] >, Ky i ij Cr (83)

where
Cr=> K;Sr! (84)
J

and S? is an initial guess for the source and C} is the correlation data. One can
see that when the n'" iteration generates a source close to the correct one, then
C} ~ C} making S} ~ S]’.‘_l. So in this method, the “most likely” source is the

end result of this iteration and should be close to the true source in the sense of the

Kullbeck-Leibler information divergence [VL93]:

Z S;grue log (S;rue/s;z)
J

This method is general but the convergence is very slow. Furthermore it relies on
the notion of highly accurate data, which is often not the case in practice. Finally, it
is difficult to implement constraints or to estimate the error in the imaged sources.
Luckily images of comparable or better quality can be achieved in much shorter times

using the Optimized Discretization method discussed below.
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We now adopt a more Bayesian outlook and take the “most likely” source to
be the one that has the highest probability given the correlation data. For Gaussian
distributed errors, the probability density for S to be the “most likely” source of C'

is [P*92, D’A95]

1
f(S|C) oc exp (—5X°) (85)
where the x? is given by
M th expy 2
2 _ Ch =GP

Clearly the probability density is largest when the source gives the minimum x?2.
We can adjust the probability density in (85) by adding factors representing a priori
knowledge of the source. For example, if we knew that the source is positive, we
could add a factor of [[;6(S;) to the probability density. The addition of factors
such as this, which encode prior knowledge of the source, lead to constraints and the
discussion in Subsection 4.2.5.

At this point, the obvious thing to do is to search the x? surface for a minimum
by varying the values of the source function in Equation (81). This is in fact the
very first thing we tried however there are problems with this method. In a typical
inversion, the source function has roughly 10-15 points so the search for a minimum
x? takes place over a 10-15 dimensional parameter space. This makes the method

slow. Furthermore, in a typical search, one is not always sure the minimum one finds
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is a true minimum or just a local minimum. This means there is a chance that any
solution found is spurious.

Instead, we look for an algebraic way to find the source that minimizes the x2.
If we do not constrain the space within which we search for {S;};- . v, then we can
get a set of linear equations for the values by functionally differentiating (86) with

respect to {S;}i=1,...n,
1
2]: AT, (Ki; S; —R{®) Ky =0, (87)
or in a matrix form
K'B(KS—-R™)=0, (88)
where By = 6;;/A?C;. This matrix equation can be solved for S:
S=(K"BK)" K'BR™®. (89)

So, in Equation (89) we have an algebraic equation for the source function and a new
method for determining the source. In the following subsections, we will examine
this method and its enhancement, the Optimized Discretization method.

We can determine the error on the source function by applying standard methods
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of error propagation to (89),

A’S; = (K" BK) (90)

1
Jj
The N x N matrix K" B K in (89) is symmetric, positive definite and may be diag-

onalized,

M N
1
(KTBE); =D jag, KKy = 2 Aauf v (91)
i=1 ¢ a=1

where {u®}q=1,.. v are orthonormal and A, > 0. With (90) and (91), the square

errors for individual values of S are
re o (u9)?
A*S; = Ea VR (92)

We see in (92) that the errors for the source diverge (or the inversion problem
becomes unstable) if one or more of the eigenvalues A\ approaches zero. In particular,
this happens when K maps an investigated spatial region to zero. A specific case
is when one of of the particles is neutral so |®|? ~ 1, cf. Equation (74). Moreover,
instability can arise when one demands too high a resolution for a given set of mea-
surements. In such a case, what might happen is that K smoothes out variations in
S, so we lose this information in the correlation function. If we then try to restore
S, we find that we cannot restore S uniquely at high resolution. However at lower
resolution, we might still be able to restore it. Unlike typical numerical methods, we

need a singular rather than a smooth kernel [P792, dH80] for our inversion problem to
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be tractable. Finally, a A close to zero can be reached by accident for an unfortunate

choice of {ry}x=1,. a in a given measurement.

4.2.4 Optimized Discretization

To make progress from here, we take advantage of the behavior of our kernel. In
particular, we ask whether the fixed size binning in r is optimal in the algebraic ap-
proach. For example, in the pp case, the correlation function is dominated by the
Coulomb interaction at low-relative momenta and by the strong interaction and an-
tisymmetrization at intermediate momenta. The different momentum regions should
give access to large and short distances within the source, respectively, with the reso-
lution decreasing at the large distances, rather than being fixed. This suggests that,
by varying the size of the discretization interval of S, we can optimize the kernel to
best restore a given source. Since we do not know the source ahead of time, we must
specify an “model source” in order to choose the best kernel. This kernel is then used
in the actual inversion process in Subsections 4.6 and 4.7.

The first stage of analysis involves the values of relative momenta {g;}i—1 . u,
where correlation function was measured, and errors on these measurements
{AC;}iz1,.. m, but not the values themselves. Specifically, we vary the edges of
the intervals for source discretization, {r;};—1 .. ~, demanding that the sum of errors

relative to some “model source” is minimized at fixed N and rq = 0,

= min, (93)

N
j=1

AS;
S;md
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where the {AS;},-1 . v stem from Equation (92). The specific choice of S™9 does
not bias the inversion as it only ensures that there is sufficient resolution where
we know it is needed. In fact, we find a rather weak sensitivity of the results to fine
details of S™°9 in (93), so we just use a simple exponential form S™¢ o exp (—7/R}),
Syrod = §med((r;_y 4 15)/2), with R of the order of few fm. The exponential form is
consistent with a possible tail in the source due to prolonged decays.

Features of the squared wavefunction in (74) and the binning in q appear to
have the greatest effect on determining the best set {r;}i=1,.. v . Nevertheless, it is
important to use relative errors, with some sensible S™°¢ in (93). If absolute errors
are taken, then the 72 weight from angle-averaging in (82) favors large r’s. The
net result is that we learn that the source is close to zero at large r to a very high
accuracy; we do not need imaging to tell us this. Our practical observation is that
the sum of relative errors in (93), rather than the sum of squares, is preferred for
minimization; the sum of squares pushes {r;},—; . ninwards, leaving little resolution
at high r.

To illustrate how well this imaging procedure works, we take a relative pp source

of a Gaussian form

and generate a correlation function C' at relative momenta ¢ separated by Ag =
2 MeV/c. We use the folding (77) with the wavefunctions in the kernel calculated

by solving the Schrodinger equation with the regularized Reid soft-core potential
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REID93 [S*94]. This simulated correlation function is shown in Figure 24. We take
Ry = 3.5 fm in the source and we add random Gaussian-distributed errors to the
correlation function from the folding. The rms magnitude of the error is 0.015,
which is representative of the pp data of Reference [GT90] analyzed in [BD97]. We
then attempt to restore the source by discretizing it with 7 intervals of fixed size,
Ar = 2 fm, for r = (0 — 14) fm. We use a g-interval similar to the one used in
Reference [BD97], i.e. 10 MeV/c < ¢ < 86 MeV/c. Note that, were the inversion
problem a Fourier-transform, we could use more than 7 equally spaced r-intervals
narrower than 2 fm.

The results of applying our procedure to the simulated pp correlation function
of the preceding section, are shown in Figure 25, for N = 7. The optimal intervals
for discretization typically increase in size with r. For example, the first interval in
Figure 25 is 2 fm wide and the sixth is 3.6 fm wide. The figure clearly shows that
we can satisfactorily restore the source without imposing any constraints. Figure 26

shows the results from a similar restoration of the source with an exponential tail:

1 1 o r? n 1 15 T (95)
=" X _—— —_
2 (2w R3)3/? P 2R 2 475R} exp (r/R1) — 1’

S(r)

where Ry = 3.5 fm and R; = 6 fm. We show the correlation function corresponding to
the restored source in Figure 24, both with and without errors and random noise with
an rms magnitude of 0.015. Since the same N and the same {g;, AC;},—;, ... s are used
in the inversion, we find the same optimal {r;};—1 ..~ used in Figure 25. The restored

source gives evidence for the tail in the source, despite of the fact that the magnitude
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Figure 24.  Comparison of original correlation function and restored correlation
function. The solid line is the correlation function from the source in Equation
(94) and the dashed line is from the source in Equation (95). We obtained the
wavefunctions in the kernel in (77) by solving the Schrédinger equation with the
REID93 potential [ST94]. The symbols represent the correlation functions with added
random noise; the noise has a rms magnitude of 0.015. The square brackets above
the horizontal axis indicate the range of ¢ we used to restore source.
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Figure 25. This plot is the same as Figures 27 and 28, except that the source is not
constrained and is restored with the Optimized Discretization method.

of the tail is lower by 2 orders of magnitude compared to the maximum at r = 0.
Comparing Figures 25 and 26, we see that our method can discriminate between the
two source shapes. If we impose additional constraints to the optimized discretization
method, the agreement between the restored and original source functions improves.

So, while imposing constraints on the source stabilizes the inversion (as we will
show in the next subsection), we have developed an imaging method that can yield
very satisfactory results even without any constraints. Indeed, one may want to see

directly whether the data are consistent with positive definite sources.

4.2.5 Constraints

In the Optimized Discretization method, we used the specific behavior of the kernel

and the data to improve the inversion. We can also use the source itself, or at least
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Figure 26. The solid histogram is the relative pp source restored using the Optimized
Discretization method. The correlation function used is the solid data in Figure 24.
The original source function is shown with the dashed line.

known properties of the source, to stabilize the inversion further. We do this by
adding constraints as first suggested by Tikhonov [Tik63]. In practice this amounts
to Monte Carlo sampling the error on the experimental data to construct a test
correlation function, inverting the test correlation, and testing whether the test source
obeys a known set of constraints. If the source is not acceptable, we discard it. We
repeat this sampling until we have enough statistics to report the source and its error.

Without using either Optimized Discretization or constraints, it is difficult to
obtain stable images. To illustrate how serious an issue of stability is, take the Gaus-
sian source used in Figure 25. Applying the straight algebraic approach yields the
results in Figure 27. Clearly the errors for restored source far exceed the original
source function. In fact, every second value of the restored source is negative. Inci-

dentally, this is one of our more fortunate simulations, since all of the errors actually
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fit on the plot.

We next illustrate the dramatic stabilizing effect that the constraints have on the
imaging, as it was first discussed by Tikhonov [Tik63]. We carry out the inversion
using the same correlation function and errors that we used for Figure 25. We impose
the constraints that the imaged source is positive definite, i.e. S; > 0, as expected in
the semi-classical limit, and that the source is normalized: within the restored region
1> dn [[Ndrr? S~ 4ny )| S, fT:,j_l dr r?. Following the general strategies [D’A95]
for estimating values with errors under constraints, we carry out our imaging by
sampling the values of the correlation of function according to the errors {AC;},—1,.. v
(equal to 0.015 in our case) and by applying (89). This amounts to the replacements
n (89): C; = C; + AC; &, i=1,...,N, with &’s drawn from the standard normal
distribution. We accept only those samplings where the constraints are met. With
these samplings, we calculate the average source values and the average dispersions.
The results are shown in Figure 28 together with the original source. They now
compare favorably to the original source.

Clearly usage of constraints helps to stabilize the images, so what constraints
can be used during imaging? We have already mentioned two: normalization and
positivity. One other that we have used takes advantage of the fact that the source for
like particle pairs is actually the convolution of the single particle sources in Equation

(165). Fourier transforming Equation (165) we find that the Fourier transform of the
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Figure 27.  Comparison of the original source with the source restored without
constraints. The solid histogram is the source function S restored from the simulated
correlation function with the open symbols in Figure 24. The dashed line is the
original source function in (94) used to generate the correlation function. We used
fixed intervals of Ar = 2 fm for discretizing the source function.
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Figure 28. This plot is the same as Figure 27, except that the restored source is
constrained to be positive and is normalized to one.
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source must be positive definite:

/ d’r e™IS(7) = |g(P* 2 0 (96)

where the ¢’s are Fourier transforms of the time-integrated single particle sources (see
Equation (73)). For the angle averaged source, this constraint is written in terms of

a spherical Bessel function:

/0 " dr r28(rYjo(gr) > 0. (97)

Another constraint one might use [Tik63, B*80, dH80] is an assumption of smooth-
ness of the source, permitting inversion with more points in the image then there
are in the data. Cutting off the integral in the Fourier-transform method [BD97]
at gmax implies the constraining assumption that S varies slowly on the scale of
1/(2¢max) = 1.2 fm in [BD97], which is reasonable given the range of strong interac-
tions. Finally we comment that, in imaging terms, the common Gaussian parameter-
ization of sources in heavy-ion collisions is a very extreme constraint for stabilizing

the inversion.

4.3 Generalized Chaoticity Parameter

Just as important as what is in the images, there is a quantity that characterizes what

is not in the images. This parameter is the generalized chaoticity parameter and is
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defined as the integral of the source over a region where the source is significant:

AMrw) = / s, (98)

This symbol, A(ry), is a generalization of the the chaoticity A used to parameterize
high-energy 77 correlations. The standard chaoticity parameter is defined by fitting

the 77 correlation function to a Gaussian:

_ 2w &0

C(g) -1 7 J;

drr sin (2gr)S(r) ~ Xexp (— 4¢°R}) . (99)

When we uses this parameterization of the correlation function, we are assuming this
parameterization of the source:
2
S(r) =~ Wexp (— 4T—R(2)> (100)
Our chaoticity parameter generalizes the one in (99) and (100) in two ways.
First, the integral defining the generalized chaoticity parameter extends only up to
some cut-off, ry. The conventional definition of A can be recovered from ours by
extending ry — co. Second, because our chaoticity parameter is defined in terms of
the imaged source function, rather than a Gaussian fit to the correlation function, it
can apply to any particle pair, not just pion pairs.
The importance of our definition of the generalized chaoticity parameter lies

in the fact that some particles in the reaction, such as pions or protons, can stem

from long-lived resonances and be emitted far from any other particles. Thus, they
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contribute primarily to S at large r, outside the imaged region. For large r and
moderate-to-high ¢, the kernel K averages the large-r tails in S to zero so they would
not contribute to deviations of C' from 1 in Equation (72) or (99). In practice, it
should be only possible to directly detect the tails in S by investigating the low-q
correlation functions for charged particles. For the analyzed pp data [GT90], this g¢-
region is either not available or is associated with large systematic errors. Imaging can
only extend up to 7y ~ 20 fm and we expect A(ry) < 1. In many 77 measurements,
e.g. [BECI7], the resolution allows one to image regions of comparable sizes, typically
10-20 fm [BD97]. In contrast to the pp and w7 data, the data on IMF, such as [H196],
often extend to low values of relative velocity. This permits imaging up to relative

separations as large as 50 fm. For a discussion of this, see Section 4.7.

4.4 Freeze-Out Density, Average Phase-Space Occupancy and Entropy

The source function and generalized chaoticity parameter both indirectly tell us quite
a bit about the reaction dynamics. For example, the source function tells us the
relative emission profile, but in the pair frame. It would be an improvement if we
had this profile in the system frame. We show how to get this in this section. Of
course, we really want is to see the time-evolution of the entire phase-space density.
This is not directly accessible from the source, but we can get at the average phase-
space density. From this, we can estimate the entropy.

To get at the source function in the system frame we must make some assump-
tions. For a rapid freeze-out, the single particle source is given by D(p,7,t) =~
f(P,7)6(t —ty) where f is the Wigner function of the particles. For weak directional

141



correlations between the total and relative momentum of pairs and between the spa-
tial and momentum variables, the momentum average of S approximates the relative
distribution of emission points for any two particles from the reaction, and not just for
the particles with close momenta. Under these conditions, the relative distribution

for any two particles is

BP dBPpdR f(P/2+p,R+7/2) f(P/2— 5, R —7/2)

_J
5= f d®py d3ry f(p1, 1) f d3pa dPry f (D2, )

(101)
Rewriting and expanding the numerator in (101):

f(P/2+p5,R+7/2) f(P/2 - 5, R - 7/2)

_ 3,0 = 3./ = (ﬁ/Q—i—ﬁR—i—F/Q) (P/2 p7 _T/2)
—/d7"1 f(p177"1)/d7"2 e Q)fd37"1 P/2+P77"1 fd37"2 P/2 D, 75)

. . L0
:/d37"’1 f(pl,f'l)/d?’r; f(pQ,Fé) (1 —i—paﬁ )

F(P/2+7, R+7/2) f(P/2—F,R— */2)
J & f P/2+P ™) [d¥ry f P/2 7', %)

(102)

=0

The gradient term must be proportional to a combination of the vectors ]3, 71, and 7
and for the weak directional correlations it would average to zero under the integration

n (101). Inserting (102) into (101) and keeping the leading term, we obtain

dN dN A
S = 37 [ @01 &2 oo o S i (= D(apT), (103

where N is particle multiplicity and 75 = P/|P|. The argument of Sz has been

written in the CM frame of an emitted pair and yp is the Lorentz factor for the
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transformation from the system frame to the pair CM frame. In general, the relative
distribution of emission points for any two particles with » — 0, when multiplied
by N — 1, gives an average freeze-out density. Thus, if the assumptions above are
valid, this density may be obtained by multiplying the average (103) of Sz(r — 0)
by N — 1.

We can estimate the phase-space occupancy at freeze-out regardless of any corre-
lations between momentum of coordinate variables or of the validity of instantaneous
freeze-out. The product of the r — 0 source function and the momentum distribution

yields the configuration-space average of the phase-space occupancy at freeze-out,

o= L

52;5(7" — 0) , (104)

as is discussed in [Ber94, Ber96]. Equation (104) can then be used to determine the

phase-space average of the occupancy at freeze-out,

) = / Ep (1) @)/ / &p (@), (105)

and to estimate the entropy per particle,

S _ & (H@) log (@) - (1 = (/)(P)) log (1 — (/) (7))
A [ &p (£)(P) '

(106)

Now, the average phase-space occupancy at freeze-out and the entropy per pion
are often calculated for pions because this can be done directly from the correlation

function [Ber94, Ber96]. What is new here is that, because we use the source function
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directly, Equations (104)—(106) apply to any type of particle. In particular, we will

calculate the phase-space occupancy and entropy per proton in Section 4.6.

4.5 Pions and Kaons

As a specific example of the source extraction, we present the inversion of the angle-
averaged 7~ source function determined from the central 10.8 GeV/c Au 4+ Au data of
Reference [MEC96] and the angle-averaged 7~ and K source functions determined
from the preliminary central 11.4 GeV/c Au + Au data of Reference [Von98]. The
comparison of the data sets will show the lack of variation of the 7~ sources with
energy and will show the dramatic difference between the 7~ and K™ sources. Before
presenting this discussion, we will compare inversions of the [MEC96] data set using
the Optimized Discretization method and direct Fourier transformation of Coulomb

corrected data, demonstrating the consistency of the inversions.

4.5.1 Comparison of Inversion Methods

The data of [MEC96] has been Coulomb corrected for the pair Coulomb force. So
in the Pratt-Koonin equation, we may use the kernel for a non-interacting pair,
K(q,7) = sin (2¢r)/(2¢r). Thus, the inversion can be done by performing a Fourier
transform. In Figure 29, we show the results from this Fourier transform of the
correlation function and from using the Optimized Discretization method. Unlike in
[BD97], we do note correct the data for the Coulomb interaction between the pions
and the source as in [BBM96].

In the Fourier transformed data, the upper and lower lines represent the error
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band surrounding the average source. We carried out the Fourier inversion in (79)
for Figure 29 up to ¢uax =~ 50 MeV /c giving a resolution in the relative distance of
A1 ~ 1/2¢max ~ 2.0 fm. The largest r that we should be able to image follows from
1/2 Ag =~ 20 fm, where Agq is the momentum resolution for the data (Ag = 5 MeV/c
in the case of [MEC96]).

For the Optimized Discretization results, we again use the non-interacting pion
kernel. Ideally we would have liked to do the inversion using the full Coulomb wave-
functions for the kernel as this would increase the overall accuracy of the plot, how-
ever the data was corrected using the “finite size Coulomb correction” and a finite
resolution correction which we can not unfold.

The results from both inversions are quite consistent except for the lowest r bin
in the Optimized Discretization set. This point is at » = 1.45 fm and at that range,
the inter-pion force should receive significant contribution from the nuclear force and
neither inversion results should reflect the actual source. In the tail region, where
past the edge of the Fourier inverted data, the Optimized Discretization data tends
to flatten a bit. This is probably due to the large size of the bins rather than an
actual flattening of the source. So, in the end it is comforting to see that the source

comes out the same with both methods.

4.5.2 Comparison of 7~ and Kt Sources

We now discuss the Optimized Discretization results from the 10.8 GeV/A pion data
of [MEC96] and the preliminary 11.4 GeV/A pion and kaon data sets from [Von98|.

The plots of the source functions for these data are shown in Figure 30. The 10.8
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Figure 29. Source function for negatively charged pions from Reference [MEC96].
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GeV/A 7~ data set was Coulomb corrected and inverted in the manner described
above. The 11.4 GeV/A pion data set was treated differently since it is not Coulomb
corrected for the pair Coulomb force. We restored this source using the full Coulomb

wavelunctions and the kernel

Ko(g,r) =) % —1. (107)

£ even

The kaon data set was also restored using this kernel and the full Coulomb wavefunc-
tions. In both the pion and kaon cases, the inter-meson nuclear forces were neglected
as they are only important at distances < 1 fm for the momenta of interest.

Examining Figure 30, several things are apparent. First, we note that both 7~
data sets are consistent despite the difference in beam energy and the difference in
centrality cuts (0/0geom < 10% for the 10.8 GeV/A data versus o/ogeom < 4% for
the 11.4 GeV/A data). Because the higher energy data set has roughly five times the
statistics of the lower energy set, we can restore with higher resolution.

The next thing we notice is that the kaon source is more compact than the pion
sources. Because the temporal and spatial evolution of the single particle sources
is entangled in the source function in a non-trivial way (see Equation (73)), the
difference in sources sizes can be attributed to either life-time effects, emission time
effects, real differences in the source size or a combination of the three. First, a
sizeable fraction of the pions are the products of resonance decays such as the w, p,
and 7' (the rest are produced directly) while the majority of the kaons are produced

directly or via the decay of K*’s. Since both the n and n’ decay at distances much
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greater than 35 fm (the 7 lifetime is 1.6 x 10° fm/c and the 7' lifetime is 980 fm/c),
decays from these resonances do not contribute to the shape of the pion source.
Comparing the lifetimes of the p (1.3 fm/c) and the w (23 fm/c), it would seem that
w decay would have the greatest effect on the shape of the pion source, provided
they are produced in sufficient numbers. Similarly, the decay of the K* would have
a great effect on the kaon source as it’s lifetime (3.9 fm/c) is comparable to the size
of its source. Second, the difference in the pion and kaon sources may be attributed
to emission time effects. Given that the pion mass is roughly 1/3 the kaon mass,
the pions will have a larger average velocity. Comparing a kaon pair and a pion
pair, both created with a similar time separation, the early pion can travel much
farther the early kaon could — extending the pion source relative to the kaon source.
Finally, the pions may be emitted for a larger source region than the kaons. The cross
sections for the pions to interact with the particles in the system are, on the average,
larger than the kaon cross sections. This means that the pions couple to the system
more strongly and so are more effected by the system’s evolution. Since the colliding
system expands as it evolves, the source size of the pions could be attributed to the
pions being emitted at a later stage in the system’s evolution than the kaons.
Unentangling which combination of effects is responsible for the difference be-
tween the 7~ and KT sources could be accomplished either through modeling or
further experimentation. We have not yet performed model calculations for this re-
action but calculations for similar reactions at CERN energies have been performed
by Sullivan and coworkers [ST93] and many of their qualitative results are applica-

ble at AGS energies. First, they find that most of the kaons stem from the decay
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of K*’s and string fragmentation. There are few (if any) strings at AGS energies,
so it is likely that our kaons stem solely from K* decays. Second, they find that a
majority of pions are produced in secondary collisions or via short-lived resonance
decays (meaning those with lifetimes < 2 fm/c). However, they also found that a
large fraction of pions are made from long-lived resonance decays (with lifetime > 2
fm/c). The long-lived resonance contribution dominates at distances of about 10 fm
onwards with the longest-lived resonances (the 1 and 71’) producing 1 out of every 4
pions in the central rapidities at SPS energies. So, it would seem that a combination
of effects can explain why the kaon source is narrower that the pion sources. We
could also unravel which combination of scenarios gives the difference in source sizes
by using the full three-dimensional correlation function. With the full source func-
tion, we would look for elongation in the P direction. A difference in emission time
of the pair would show up as an elongation in the direction of the average relative
velocity of the pair and this average velocity is parallel to the total momentum of the
pair.

Let us now move beyond discussion of the size of the pion and kaon sources and
examine the integrals of the sources and what we can learn from Gaussian fits to the
sources. Now, all three data sets appear Gaussian so we can fit the sources with the

Gaussian parameterization

Results from the fits are listed in Table 3. In this table, we have also tabulated the
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Table 3. Listing of Gaussian fit parameters and the integrals of the source for the
pion and kaon sources.

Ry [fm]  Age  A(35fm)
K* (114 GeV/A) 276 0.702 0.86%0.56
7~ (114 GeV/A) 642  0.384 0.44+0.17
7~ (10.8 GeV/A)  6.43  0.486 0.59+0.22

integrals of the sources over the entire imaged region. In all three cases, the integrals
of the source, a.k.a. the generalized chaoticity parameter, are consistent with the fit
parameter Ag;. The fit parameter Ag; is usually identified as the chaoticity parameter.
The fact that the integral of the kaon source is consistent with 1 tells us that the entire
source is within the imaged region. The fact that both pion sources are not consistent
with 1 tells us that much of the pion sources must lie outside of the imaged region.
In fact, we could estimate that roughly 40% of the pion pairs have one or both pions
emitted farther than 35 fm from the center of the reaction zone. What could account
for this long-distance emission? The most obvious answer is resonance production of
the pions. The w decays with a lifetime of 23 fm/c so it might account for a tail near
the edge of the image — higher resolution correlations (especially near ¢ =~ 0) might
show evidence for this long-distance decay. The n and 1’ decays are much longer —
the lifetimes are 1.6 x 10° fm/c and 980 fm/c respectively. Pion production from
either of these resonances could not be detected directly with our imaging method

but could account for A\(35fm) being less than one.
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4.6 Protons

Now we apply the Optimized Discretization method to analyze the pp correlation
data [GT90, G*91] from the N +27Al reaction at 75 MeV /nucleon, that we im-
aged in a naive fashion in Reference [BD97]. Since this method does not require a
positive definite source to stabilize the image, we are able to lift this constraint and
verify whether the data favor positive definite sources. Further, we do not need to
normalize the sources to one within the imaged region. We also compare the pp
sources from data to those from the transport model [Dan95], over a large range
of relative separations and magnitude of the sources. Past experiences in compar-
ing semi-classical transport models to single-particle and correlation data have been
mixed [G190, G191, G*93, Ht95, GT95], for this particular reaction and others in
this energy range.

In Reference [GT90, G*91], the low relative-momentum pp-correlations were
determined for pairs emitted around 6, = 25° from the N 4+ 27Al reaction at
75 MeV /nucleon, in three intervals of the total momentum: 270-390, 450-780, and
840-1230 MeV/c. The highest lab momenta interval corresponds to the highest
proton momenta in the participant CM for this reaction. These momenta are higher
than the average for participant protons and directed rather forward. Transport
calculations [BD97, Dan95| show that the highest momenta bin is mostly populated
by pairs from the semi-central to peripheral collisions. The intermediate momenta
interval corresponds to the magnitude of typical momenta of participant nucleons in

the forward NN CM hemisphere. The transport calculations show that these pairs
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stem mainly from the semi-central collisions. The lowest lab momenta interval has
both participant and target spectator contributions. In the latter case, the transport
calculations show that pairs are mostly from the semi-central to central collisions.
According to the transport model, the average emission times for protons in the
three momenta intervals, from the first contact of the nuclei, are ~ 35, ~ 80, and
~ 110 fm/c, respectively.

The results of analyzing data using the Optimized Discretization method are
presented in Figure 31 The angle and spin averaged kernel that we used to produce

these images is [BD97]

Kofa.r) = 5 325 +1) () -1, (108)

gsel!

where g% is the radial wave function with outgoing asymptotic angular momentum £.
While we only show the source obtained using wavefunctions for the REID93 poten-
tial, the values for the NIJM2 [S*94] differ only by a fraction of 1/1000%". Both
sources imaged with and without constraints are similar; given their errors we only
plot the constrained source in the figure. The results obtained without constraints
are generally consistent with positive definite source functions.

In Figure 31, we compare the constrained results from the data to the distribu-
tions of relative separation of last collision points for protons with similar momentum
from the transport model [BD97, Dan95]. Clearly, the semi-classical model can only
yield positive-definite source functions. Again, we can see the focusing of the exper-

imental distribution at low r as the pair momentum increases. The large-r tails in
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the distribution at different momenta cannot be accommodated with the Gaussian
parameterizations used to describe the low-r behavior of the sources [GT90, G191].

Generally (see Figure 31), the Boltzmann-equation model (BEM) yields relative
emission point distributions that are similar to the imaged data, including the depen-
dence on total pair momentum. In fact, the maximae around ¢ = 20 MeV/c (such as
in Figure 24) are nearly the same height as the data (see Figure 2 in [G793]). Such
findings are somewhat surprising for the low and intermediate total momentum in-
tervals. While BEM adequately describes high-momentum wide-angle single-particle
spectra of protons, which correspond to the highest total-momentum interval (see
Figure 1 in [G193]), the model overestimates the single-particle proton spectra by
as much as 1.5-5 in the two lower momentum intervals [GT93].2 Looking closer at
Figure 31, we find that the distributions from data are somewhat sharper at low-r in
the two lower total-momentum intervals than the the distributions from the model.
In the next section, we reveal a serious discrepancy when we go beyond a point by

point examination.

4.6.1 Integral of Proton Source and Its Implications

In Table 4, we have tabulated A(ry) in each momentum interval for the constrained
and unconstrained sources as well as sources from the BEM. Comparing the re-

sults of the BEM to the constrained source, we only find agreement in the highest

2For other comparisons of the transport theory to single-particle data from the
same or similar reactions see [G190, DB91, H*95]; overall proton multiplicities are
typically overestimated by a factor of 2, possibly due to excessive stopping within
the semi-classical transport model in this energy range.
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Figure 31. Relative proton source from the N + 27Al reaction at 75 MeV /nucleon,
in the vicinity of 6, = 25°, in the three total momentum intervals of 270-390 MeV /c
(left panel), 450-780 MeV /c (center panel), and 840-1230 MeV /c (right panel). Solid
lines are the source values extracted from the data [G791] and the dotted lines are
the source values obtained in the Boltzmann-equation calculation.

Table 4. Comparison of the integral of the relative pp source function, A(ry), for
the restored and BEM sources in three total momentum gates. The restored sources
use the data of Reference [G190]. The integrals are truncated at the distance 7.

P-Range A(ry) TN

[MeV/c] unconstrained constrained BEM [fm]
270-390 0.69+0.22 0.69£0.15 0.98 20.0
450-780  0.560+0.065 0.574+0.053 091 18.8
840-1230  0.65+0.37 0.87+0.14 0.88 20.8
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momentum interval. It seems that, when compared to the model, significant portions
of the source are missing from the imaged regions. This discrepancy is especially pro-
nounced in the intermediate-momentum region. Nevertheless, it is comforting that
the transport model describes the features of the relative source for the high momen-
tum protons since it properly describes [G193] the high-momentum single-particle
spectra. Now, in BEM no IMFs are produced and the IMFs may decay over an ex-
tended time, contributing to large separations in the relative emission function, as
they move away from the reaction region. Of course these decays produce some final
IMFs, contributing to the relative IMF sources at distances similar to those for the
pp sources. It may be interesting to see whether a significant portion of the relative
IMF sources in Section 4.7 can extend beyond ~ 20 fm, as is apparent for the pp
sources.

The disagreements between the data and calculations in both the values of A(ry)
and the single-particle spectra [G193], for the lower momenta, reveal unphysical fea-
tures of low-momentum proton emission in the transport model. The coarse agree-
ment between the measured correlation function and the function calculated using
the model in Reference [G193] in the lower total-momentum intervals is coincidental.
Since the images show A(ry) < 1, some of the strength of S is shifted out to large
r and a large source results in a correlation function with a sharper shape. Thus,
the BEM correlation function can match the height of the sharper correlation peak,
while not matching the shape of the peak. For other systems in the general energy
range, disagreements were found even for the height of C' [GT91, HT95, G795].

These conclusions make us question the sensibility of attempting to fit the
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magnitude of pp (or nn) correlation functions at the maximum [BGJ90, G190, G*91]
by adjusting the radius Ry while keeping A = 1 in a Gaussian parametrization of the
source function (such as in Equation (100)). When one fits 77 correlation functions
at intermediate relative momenta, one varies both the strength and extent of the
source function at low r: A is read off from the magnitude of the correlation function
at low ¢ and R, is read off from the width of the correlation function in q. However,
because of the resonant nature of the low-momentum NN interaction the magnitude
of NN correlation functions are determined by the strength of the source within the
resonance peak of the wavefunction. That amount is both effected by the strength of
the source at low-r and the low-r source falloff. This is illustrated in Figure 32 which
shows pp correlation functions for the source in (100): the same maximum height
can be obtained using Ry = 4.5 fm and A =1 as using Ry = 3.5 fm and A = 0.5.
Given that the resonance peak in the 'Sy wavefunction is quite narro (it has an
outer radius of ~ 2.5 fm), and the source falloff cuts off large-r contributions to the
integration in Equation (72), the low-r limit of S is proportional to the C'— 1 at the
maximum (to a £20% level) for virtually all low-r falloffs that may be encountered

in practice (namely, Ry = 2.5 — 6.0 fm):

C(20MeV /c) = 1 + 520 fm® S5(r — 0). (109)

For the two sources in Figure 32, we get about the same value of S(r — 0) and
therefore about the same maximum height in C. With the same maximum height,

the source falloff is reflected in the width of the maximum in Figure 32.
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Figure 32. The solid line is the two-proton correlation function for Ry = 4.5 fm
and A = 1 while the dashed line is for By = 3.5 fm and A = 0.5. The source is the
Gaussian in Equation (100).
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4.6.2 Nucleon Freeze-Out Density, Proton Phase-Space Occupancy and

the Entropy per Nucleon

Now that we have discussed the pp data, let us see what we can learn about the final,
freeze-out, conditions of the reaction. From the source, we can estimate the nucleon
freeze-out density, the average proton phase-space occupancy at freeze-out and en-
tropy per nucleon. First, we need to know which momentum gate best represents the
average situation in nearly central collisions. Transport calculations [Dan95] indicate
that the measured [GT91] coincidence cross sections for the N + 27Al reaction are
dominated by nearly central collisions with b ~ 2.8 fm. The chance of detecting two
particles at a wide angle simultaneously is large only for such collisions. The rms
nucleon CM momentum in these collisions is ~ 185 MeV/c. At 25° this corresponds
to ~ 320 MeV/c nucleon laboratory momentum, or ~ 640 MeV/c total momentum
for a pair. Thus, the results for the intermediate-momentum gate in Figure 31 best
represent the average situation in central collisions.

We can estimate the freeze-out nucleon configuration-space density. We start
with Equation (103) and use the assumptions of Section 4.4, together with the pre-
sumption that the relative spatial distributions of other particles to protons is similar
to that between two protons. We further assume the participants to have a total mass
of 18 and to be in a fireball geometry with b ~ 2.8 fm. Given this, the proton relative
spatial distribution gives the average nuclear density in the vicinity of any emitted
proton of 17 x S(r — 0) ~ 17 x 0.0015 fm~2 = 0.025 fm™ = 0.16 ng, where ng is

the average nuclear density. The directional space-momentum correlations due to
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collective motion, to shadowing, or to emission that is most likely not instantaneous
make this value actually an upper limit on the freeze-out configuration-space density.

We can also estimate the proton phase-space density at freeze-out and, from
that, the entropy per nucleon at freeze-out. References [G191, G793] give the in-
clusive proton cross-sections in the N + 27Al reaction, but only at two angles and
the cross sections include large contributions from peripheral events. Under these
circumstances, we use the thermal distribution dNy,/d®p o 1/(z~e?’/?mT 4 1), for
the central events, in formula (104). Here z is set from the requirement of maximum
entropy. For ~ 9 participant protons at & = 2.8 fm in the N 4+ 27Al reaction,
that requirement gives z ~ 1.10 and T = 10.2 MeV. Use of the thermal momen-
tum distribution for the “N + 27Al reaction in Equations (105) and (106) yields
(f) =~ 0.23 and S/A = 2.7. For a distribution with non-equilibrium features, these
values should represent the lower limit on the average occupation and the upper limit
on the entropy. Indeed, when applied to the transport model, using a thermal dis-
tribution yields an entropy about 0.5 per nucleon higher than the entropy calculated

directly within the model.

4.7 Intermediate Mass Fragments

We now turn to the analysis of IMF sources. We choose the correlation data of Hamil-
ton et al. [H*96], from central 3 Kr + %7 Au reactions at 35, 55, and 70 MeV /nucleon,
because these data give us the opportunity to examine the variation of sources with
beam energy.

Hamilton et al. collected pairs in the angular range of 25° < 6, < 50° in
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order to limit contributions from target-like residues. They tabulate the correlation

functions in terms of the reduced velocity

v

red = 755 ~T79 11
Ured (Z1+Z2)1/2 ( 0)

under the assumptions that the pair Coulomb correlation dominates the fragment
correlation and that the fragments were approximately symmetric, Z/A ~ 1/2. Under
these assumptions and the additional assumption that three body effects can be

neglected, the kernel is

Ko(g,r) =0(r—ro) (1—r./r)* =1, (111)

The distance of closest approach in (111) for symmetric fragments is approximately

N 2Z1Z2 (A1+A2) 62 ~ 62
€ Ay As mpy v? ~ my v2y

(112)

The correlation functions at the three beam energies are shown in Figure 33.
We have reduced the normalization of the correlation function at 35 MeV/nucleon
by 5%, compared to [H*96] to better satisfy the condition that C — 1 at large
Urea (this also allows C' = 1 for veq = (0.05 — 0.08)c, a requirement of the authors
in [H*96]). When we examine Equations (72),(111), (112) and Figure 33, an issue
becomes apparent: only the region of the source with » > r. contributes to the
correlation function at a given vreq. AS vreq increases from 0, the distance of closest

approach r. decreases, with more and more inner regions of the source S contributing
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to C'. The low-v,eq correlation functions at the three beam energies in Figure 33 are
quite similar, suggesting that the tails of the source functions are similar. Differences
occur at higher v.eq, indicating differences in the inner regions of the source.

To image of the IMF sources, we optimize {r;},—; . v as in the pp case, but we
add the constraint 71 > . We do this because the Coulomb interaction in (72)
does not dominate when the measured fragments are in close contact. The Coulomb
correlation alone cannot be relied upon to get information on the most inner portion
of the source. The typical touching distance for the fragments measured in [H*96] is
ry ~ 5 fm; we chose a minimum imaging distance 7™* = 7.0 fm which ensures that
there is more volume in the lowest bin outside r;, than inside r;.

The results from our imaging are shown in Figure 34. Given the errors in the
figure, the tails of the sources at the three energies are not very different. However,
we observe significant variation with energy at short relative distances (r < 12 fm)
with the source undergoing a larger change between 55 and 75 MeV /nucleon, than
between 35 and 55 MeV /nucleon.

In Table 5 we tabulate the generalized chaoticity parameter for the IMF sources
with 7y = 20 fm and over the whole image. The Apor for all three energies are
all consistent with one, within errors. Since the A(20fm) are all 20%-30% lower
than Ator, we see that a large part of IMF emission occurs at distances that are
not imaged with the protons. Nevertheless, the A(20fm) for the the low- and high-
momentum pp sources in section 4.6 are roughly equal to the IMF A(20fm) but the
the intermediate-momentum pp A(20fm) is lower. It should be mentioned that no

complete quantitative agreement should be expected, even if the data were from the
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same reaction and pertained to the same particle-velocity range. This is because more
protons than IMFs can stem from secondary decays. Besides, the velocity gained by
a proton in a typical decay is large compared to the relevant relative velocities in
pp correlations, but the velocity gained by an IMF can be quite small on the scale
of velocities relevant for the IMF Coulomb correlations. Thus, the IMF correlations
may reflect the primary parent sources, which are concentrated around the origin,
rather than the final sources.

The tails of the IMF sources extend so far that they must be associated with
the time extension of emission. Even so, it is interesting to ask how far into the
center of the source must we go to see where the effects due to the spatial extent of
the primary source. In [H*96], the combinations of single-particle source radii and
lifetimes that gave acceptable descriptions of their data have radii varying between 5
and 12 fm. In general, the combination of spatial extent and lifetime effects should
give rise to a bone-like shape of the relative source, with the source elongation being
due to the emission lifetime. With this, one could try to separate the temporal and
spatial effects using a three-dimensional source restoration. In the angle-averaged
source, the part dominated by lifetime effects should fall off as an exponential di-
vided by the square of the separation, 72, as a function of relative separation . On
the other hand, the part of the relative source dominated by spatial effects may fall
off at a slower pace or even be constant. In Figure 34, we see that the sources change
weakly with r at 35 and 55 MeV /nucleon and faster at 70 MeV /nucleon, within the
range where sources vary with energy (r < 12 fm). For reference, in the insert to

Figure 34 we show the IMF source multiplied by 72. We see an edge at r ~ 11 fm

163



Table 5. Comparison of the integrals of the IMF source function, A(ry), for different
truncation points, 7y, in three total momentum gates. The restored sources use the
data of Reference [H*96].

beam energy AToT A(20fm)
[MeV /nucleon]

39 0.96+0.07 0.72+0.04
99 0.97+0.06 0.78+0.03
70 0.99+0.05 0.79+0.03

at 35 and at 55 MeV /nucleon which disappears at 70 MeV /nucleon. This is consis-
tent with an emission from the spatial region of a radius R ~ 11/y/2 ~ 8 fm that
becomes more diffuse, and possibly spreads out, with the increase in energy. The dis-
appearance of the sharply pronounced spatial region at 70 MeV /nucleon agrees with
the general expectation on the IMF production in central symmetric collisions or
from central sources in asymmetric collisions that the IMF yields maximize towards

100 MeV /nucleon [Lyn98|.

4.8 Summary

Imaging the source functions from two particle correlation data is possible and we
have introduced several methods for doing the inversion. Our most successfull meth-
ods use specific features of the kernel or data to aid in the inversion. For example, in
the method of Optimized Discretization, we use the behavior of the kernel and the
error on the correlation function to adjust the resolution to minimize the relative er-
rors of the source. The fact that we can actually estimate errors in this method gives

our method a significant advantage over the Maximum Entropy Method. We tested
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Figure 33. Fragment-fragment velocity correlation function in central 34Kr + %7 Au
reactions. The symbols show the data of Reference [H*96] and the lines show the
imaged source function. The 35 MeV /nucleon data is represented by the open circles
and dotted line, the 55 MeV/nucleon data by solid circles and dashed line, and
70 MeV /nucleon by open squares and solid line.
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tions from the data of Reference [H*96] at 35 (dotted line), 55 (dashed line), and
70 MeV /nucleon (solid line). The insert shows the source multiplied by r2.
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this method by restoring assumed compact pp sources and found that the quality of
the restored source is comparable to the restored source we obtain by imposing the
constraints of positivity and normalization. Imposing these constraints in our new
method further reduces the source errors, but is no longer required. This method
allows one to study the long-range source structure by adjusting the overall size of
the imaged region and the resolution at large distances.

The robustness of our imaging method gave us the capability to search for fea-
tures of the sources that can not be seen in any other analysis. For example, we can
look for the resonance contribution to pion sources in [MEC96] or check the positive
definiteness of proton Wigner sources in the *N + 27 Al reaction at 75 MeV /nucleon
[G190, G™91]. In principle, unraveling the quantal negative values of a Wigner func-
tion is not far fetched. In fact, negative values of Wigner functions have been observed
in interfering atomic beams [KPM97]. Admittedly, if we had discovered such values
in the heavy-ion reactions, we would first have to check for a possible breakdown of
the assumptions leading to (72) and on systematic errors in data, before concluding
on a success. The extensive averaging in the reactions® makes it unlikely that a gen-
uinly quantal oscillation in the source function would survive except in the very tail
of the function.

Our analysis of pion and kaon source in Au-Au collisions at ~ 11 GeV /A show

that the kaons stem from a much smaller source region than the pions. This is likely to

3The averaging includes averaging over the impact parameter, the central position
for the source and emission times (R, and ¢, and {3, respectively, in Equation (2)
in [BD97]), and the total pair momentum P.
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be due to a combination of emission time and source size effects. Both the pions and
the kaons are produced directly and from the decay of short lived resonances, so their
sources should be dominated by the shape of emitting region. However, because the
pions are lighter and couple more strongly to the system, they are subject to various
dynamic effects that can extend their source function relative to the kaon source
function. When examining the generalized chaoticity parameters of the sources, we
find the kaons have a A consistant with one, indicating that we have imaged the entire
source. We also find that the pion A is not consistant with one, indicating that a
large fraction of pions are emitted at large distances (2 35fm). This large distance
emission is likely due to contributions from the decay from long-lived resonances such
as the n and 7.

We found that our imaged proton and IMF sources change significantly with
the total pair momentum, becoming sharpest for the largest momenta in the CM.
Significant portions of the imaged proton source are missing from the imaged region?
at typical participant momenta in the CM, but not at the highest momenta. The
chaoticity parameter (the integral of the source) from the Boltzmann-equation model
[DB91, Dan95] agrees with the data, at the highest momenta but the integral is close
to one in the participant and target-emission momenta. Nevertheless, the model
yields the correct height of the maximae of the correlation functions [G*93]. This is
because the right combination of source normalization and sharpness in the model

can yield the right value of S at short separations, Sz(r — 0), and this primarily

4The imaged region corresponds to relative distances with r < 21 fm.
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determines the height of C'. Gaussian-source fits to the height of the pp correlation
function [BGJ90, G*90, G*91] are of a limited value because considerable source
strength may lie at large relative separations.

In our analysis of midrapidity IMF sources in central #Kr + 1% Au reactions at
different beam energies, we found a significant variation of the sources with energy
at short distances, but not at large distances. Considerable portions of the IMF
sources extend to large distances (r > 20 fm) just like the lower total-momentum
pp sources. It would be very interesting to image both the IMF and pp sources in
one reaction. There is a deficiency of our fragmentation analysis method, namely
our method lacks three-body Coulomb effects. When weak, these effects could be
included as a first-order perturbation.

While we have made significant progress in the inversion of angle-averaged cor-
relation functions, we have much work to do in the area of inverting full three dimen-
sional data. Unravelling the emission time effects from the three-dimensional sources
would be possible because the three-dimensional sources would be distorded in the
direction of the pair total momentum. In fact, in the case where lifetime effects dom-
inate the source, we would expect the source to be nearly bone-like in shape [BD97].
In any event, the Optimized Discretization method should prove helpful in invert-
ing three-dimensional data. Finally, the strategy of letting the errors and the kernel
choose what source they can image is novel not just for the problem of inverting

correlations but the inversion problem in general [P792].
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CHAPTER 5

CONCLUSIONS

Do we fully understand the space-time development of a heavy-ion collision? Def-
initely not, but the two sets of techniques that we study in this thesis, transport
models and nuclear imaging, can play an important role in deducing this space-time
evolution at the next generation of nuclear colliders at Brookhaven and CERN. Trans-
port models give us access to the space-time development of collisions by giving the
phase-space densities of particles as their output. We studied the application of these
models to the massless partons in RHIC collisions. Crucial input to a parton trans-
port model are the initial parton densities. Since it is desirable to be able to connect
these phase-space densities to the experimentally determined Parton Distribution
Functions, we studied some of the issues associated with constructing a phase-space
Parton Model. In contrast to this theoretical effort, nuclear imaging gives us direct
access to the space-time development by allowing us to reconstruct the two-particle
relative emission distribution from experimental data. Both of these studies are still

in their infancy but have yielded many important results.
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5.1 Transport Theory for Partons

Transport models have aided immensely in understanding the space-time evolution
of reactions at intermediate energies and we can only hope that they will again aid
us as we move into the realm of ultra-relativistic nuclear collisions at RHIC and the
LHC. For this to happen, we must have a transport theory applicable to massless
partons. We have taken several steps to this goal by providing a scheme that does
not rely on either the Quasi-Particle or Quasi-Classical approximations. Instead,
the scheme rests upon the phase-space Generalized-Fluctuation Dissipation Theorem
which states that the phase-space densities are convolutions of the phase-space source
of the particle with the phase-space propagator. We illustrated several ways to cal-
culate the densities in this new framework. These ways include a coupling constant
expansion and solving semi-classical transport equations. In both cases, because we
have not made either the QCA or QPA we can make controlled approximations based
on the strengths of couplings or the size of densities.

In the future, we can hope to advance this approach in several ways. The first
job is to understand how renormalization will work in phase-space in particular and
non-equilibrium field theory in general. Will we need to dress the vertices and the
phase-space propagators or will dressing the densities and letting the masses and
couplings run be enough? If we are to renormalize the masses, then we need analytic
results for the phase-space propagators for particles with mass. We will also need this
propagator if we are to discover if, where and how standard semi-classical transport

theory breaks down for lower energy collisions. Also along this track, it would be
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very useful to understand the interplay and limits of the QCA and QPA in this
phase-space approach. Finally, we would like to investigate what it would take to

implement bound states in this phase-space approach.

5.2 Parton Model in Phase-space

A transport model for RHIC or LHC nuclear collisions will need input phase-space
parton distributions. We would like to be able to constrain these input distributions
using the momentum-space Parton Distribution Functions. Given this, it seems rea-
sonable to wonder if we can rewrite the entire Parton Model in phase-space. As a
first step toward this, we examine whether two key tenets of Parton model, namely
factorization and evolution, will work in phase-space. We demonstrated the concept
of factorization by deriving the QED analog of the parton model, the Weizsicker-
Williams method, in phase-space. We also demonstrated that parton ladder diagrams
can be evaluated in phase-space. This is useful because these ladders are the basis of
the Leading Logarithm Approximation which is, in turn, equivalent to evolution in
the renormalization group improved parton model. The ladder diagram we consid-
ered was a simple QED ladder consisting of a point charge radiating a photon which
subsequently splits into an on-shell final-state positron and virtual electron. Despite
its simplicity, it contains many of the features that we expect from a full-blown QCD
parton ladder such as both 1/zr and 1/Q? type singularities. Furthermore, investi-
gation of this simple ladder shows us how a realistic source distribution shapes the
particle phase-space densities. Armed with this understanding, we investigated the
size and shape of the parton cloud of a nucleon. We found that the sea parton distri-
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butions are roughly the same size as the valence quark bag in the transverse direction
and ranged from marginally larger to vastly larger than the valence quark bag in the
longitudinal direction.

In the future, we will need quantitative calculations of the parton phase-space
densities for input into a transport model. This means a couple of things: this S-
matrix based approach must be connected with the time-ordered non-equilibrium ap-
proach and we must implement renormalization in the time-ordered non-equilibrium
approach. Some of this work has already been done by Makhlin and Surdutovich

[Mak95a, Mak95b, Mak96, MS98] however it must be reworked in phase-space.

5.3 Nuclear Imaging

Directly accessing the space-time development of nuclear reactions through intensity
interferometry and nuclear imaging is possible. Results from this approach go far
beyond standard Gaussian fits by reconstructing the entire two-particle source func-
tions. We found several methods to perform nuclear imaging and the best ways rely
on specific features of the source, the kernel, or the data itself. In fact, the method
of Optimized Discretization uses the behavior of the kernel and the error on the
correlation function data to choose the best resolution for the source. This method
is further improved by using the constraints that the source is known to obey. We
applied the inversion methods to several data sets including K*K*, 7~#~, pp and
IMF correlations. An important quantity derived from these sources is the general-
ized chaoticity parameter which can be used to characterize the amount of the source
that lies within, or outside of, the imaged region. The source functions provides other
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information, namely the freeze-out density and the entropy per nucleon. In total the
images provide a great deal more information than previous Gaussian fits and related
approaches.

We would like to extend our imaging to invert three-dimensional correlation
pion and proton data sets. Such results would be immensely useful in separating the
temporal and directional dependence of the sources. Of course there is still much to
do for the angle-averaged inversions. We are in the process of analyzing other pion
and proton data sets at different energies and with higher resolution. Furthermore,
we are developing a set of computer programs that we hope will become generally

available for nuclear imaging.

5.4 Final Remarks

The nuclear physics community has made great strides in understanding the space-
time development of nuclear collisions. Nevertheless, our understanding will be tested
when we begin to see results from RHIC and the LHC. Is there a quark-gluon plasma?
How will it evolve? Our studies of parton transport theory and nuclear imaging should

help answer these and many more questions.
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APPENDIX A

PHASE-SPACE PROPAGATORS

Quantum particles do not propagate between two space-time points by traveling
along straight line classical trajectories. Instead, a particle with fixed 4-momentum
can propagate from a point to anywhere in some space-time region defined by its
4-momentum. The propagation is controlled by the phase-space propagators and,
in this appendix, we study the retarded and Feynman phase-space propagators in
a detail not possible in the main text. Here, we state our phase-space propagators
for scalar particles, discuss the symmetries of these propagators, detail both how
the retarded and Feynman propagators work, give the derivation of their analytic
expressions and, finally, discuss what is needed to treat particles with nonzero mass.
The Feynman propagator for particles with nonzero mass has already been discussed
by Remler [Rem90] so our discussion here is brief. The Dirac and vector propagators
differ from the scalar propagators by the addition of spin projectors so we do not
need to discuss them separately.

We define a phase-space propagator as the Wigner transform of two translation-

ally invariant propagators (such as in Equation (35) of Chapter 2 or Equation (50)
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of Chapter 3):

Glap) = [ 55 G+ G 012

= / d*z' € PGz + ' /2)G (z — 2'/2)
The vacuum propagators in momentum space are [BS79):

G*(p) = — (p° — m® L iepy) ™

[+

G*(p) = — (p2 —m?+ 7le)_1
In configuration space, the propagators are [BS79):

Gﬂm=;9&%w@ﬂ

m@:i(&ﬁ;ri>

T2

(113a)

(113b)

(114a)

(114b)

(115a)

(115b)

As one can see from the configuration space listing, the time ordering is explicit in the

retarded propagator while there is no time ordering in the Feynman propagators. This

feature is preserved in the phase-space propagators even after the Wigner transforms

in (113a)-(113b).

A.1 The Propagators for Zero Mass Scalar Particles

We now present the Feynman and retarded propagators for particles with zero mass.

The advanced and anti-Feynman propagators can be recovered using the symmetry
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relations discussed in the next section. The propagators are:

G*(z,p) = [ sen(a?) + sen(p?) +2 sen(z - p)]

e v
G (z,p) :_9(150)9(552)9()\2)% (116b)

Here the Lorentz invariant A\? is given by A\? = (z - p)? — 2?p®. The retarded phase-
space propagator is used throughout Chapters 2 and 3 while the Feynman phase-space
propagator is mentioned only in Chapter 3. We discuss how the propagators work in
the Sections A.3.1 and A.4.1 and derive the analytic form of each of the propagators

in the Sections A.3.2 and A.4.2.

A.2 Symmetries of the Propagators

Here we list how the phase-space propagators behave under several coordinate trans-
forms. Some of these relations are quite useful because they relate several of the
propagators together through simple coordinate reflections.

A time reversal transform in coordinate space is equivalent to a simultaneous
reflection in time and energy in phase-space. Under time reversal the 4+ and — prop-

agators change into one another while the Feynman and anti-Feynman propagators

178



remain unchanged:

G+($0,f,p0,m :G_(_:Emf: _p07m (1173’)

G¥(w0, &, po, §) =G* (0, T, —po, 7). (117D)

A parity transform in coordinate space is equivalent to a simultaneous reflection
in a space coordinate and the corresponding momentum coordinate. Under a parity

transformation, all of the propagators remain unchanged:

Gi(IEO;f;pO;ﬁ) :Gi(x()?_f?p()?_m (119)

GC(IEO;f;pO;ﬁ) :Gc(x07_f7p07_m' (120)

The Feynman propagators have another (rather amusing) argument switching
symmetry. Here all the space-time components are switched with the the corre-

sponding momentum-energy components:

a

G*(z,p) = G*(p,2) (121)

Finally, the Feynman and anti-Feynman propagator are related through a com-

plete reflection of all of the space or momentum coordinates:

G*(z,p) =G*(—=,p) (122a)

G(z,p) =G*(z,—p) . (122Db)
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A.3 Detail: the Retarded Propagator

The phase-space retarded propagator naturally arose in our discussion of the phase-
space Generalized Fluctuation-Dissipation theorem in Chapter 2 and in the discussion
of time-ordered amplitudes in Chapter 3. In this section we will describe how the
scalar propagator works and how we derive the analytic expression for it at lowest
order. A simplified version of the discussion of how the propagator functions is

contained in Section 3.1.4.

A.3.1 How it Works

The Wigner transform of the retarded propagator gives the weight for a particle with
four-momentum ¢, to propagate across the space-time separation Az, = z, — Y.
Without loss of generality, let us give the particle a the momentum ¢, = (o, ¢z, 0) and
estimate how far the retarded propagator can send the particle. First, the retarded
propagator has two theta functions, one that enforces causality and one that forces
propagation inside the light cone. The rest of the interesting features of the propaga-
tor are tied up in the dependence on A2. Since G*(Az, q) o #(A?) sin (VA2)/v/ A2, the
particle does not propagate much farther than the inequalities 0 < /A2 < 1 allow.
To see what these constraints mean, we investigate the ¢ > 0, ¢> < 0, and ¢ = 0
cases separately.

To study the ¢? > 0 case, we position ourselves in the frame where q, = (g5, 6).

In this frame, the A\? constraint translates into a restriction on the spatial distance a
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particle can propagate:

0< gy’ [AZ]* S 1.

Combined with the light-cone constraint, Az’ is constrained to

Azy  for small Azj < 1/|qf|
(123)

1/|gy| for large Azy > 1/|qj|.
To find a cutoff for Azj, we realize that, for a given g, the propagator gives the
“probability” distribution for propagating across the space-time displacement Az;,.
Thus, we can integrate Gt(Az',¢') over all space and over time up to some cutoff
time 7, giving us the total “probability” for propagating to time 7. We find that the

propagation probability becomes unimportant for 7 2 1/|gj| and this sets a cutoff in

'
Axy:

Azy $1/lq0. (124)

Together, these three constraints define the space-time region where the particle can
propagate. When we move back to the frame with g, = (qo,qz,0r), the region

contracts in the temporal and longitudinal directions. From Equation (124), the
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limits of the propagation region are

1

A SR = (1252)
1

Az | SR = T2l (125b)
1

We study the ¢ < 0 case in a similar manner. In the frame with ¢}, = (0, g7, 0r),

the A2 constraint implies
0 < g1 (Ads— Az'r) S 1.

Combining this with the light-cone constraint immediately gives us a limit on Az’ :

1

: (126a)
|97

[Azy] S

As with the ¢? > 0 case, we can integrate the propagator to find the total “prob-
ability” for propagating to the time 7. In this case, the propagation probability is

important only for 7 < 1/|¢}|, giving us a limit in Az of:

1
Azh| < . (126b)

™~ gt
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The limit on |AZ| then follows directly from the light-cone constraint:

1

AT < )
T gy |

(126¢)

Again, these constraints define a the space-time region where the particle can prop-
agate. Boosting back to the frame with ¢, = (¢o, ¢z, Or), again the longitudinal and

temporal spread gets Lorentz contracted:

1

|AfT| SJRJ_ = (127&)
V|
1
|Azy| SRy = 7— (127b)
|90l
1
|Azo| SRy = 7 (127¢)
|qz.|
Now we study the g2 = 0 case. With ¢? = 0, A\? becomes
N =|Az - g| = |go||AT - § — Az S 1. (128)

On other words, high energy particles tend to follow their classical path while low
energy particles can deviate from their classical path. Expression (128) then gives a

measure of the deviation from the classical path.

A.3.2 Derivation

The Wigner transform of Gt is easiest to do in coordinate space. In coordinate

space, Gt (z) = :=0(x()d(z?), so the Wigner transform integral in Equation (113b)

2w
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is a series of delta function integrals. Performing the first delta function integral and

simplifying the theta functions, we find

G (z,p)

2
daﬁ0 412 4 ;)
—2z9

dee” P§(z’ - x).

Using 276 (z f dae®®, we can do the angular integral, giving us a Bessel func-

tion:

G (z,p) = 470 (zo)0(z?) /_1 dae™ Jy (V1 — a2).

Here 7 = 2(po|T| — zo% - ) and & = 24/22(72 — (- 2)2). This integral is in any stan-
dard integral table [GR94]. After a bit of simplification, one gets the result (116b).
This result can be checked by performing the Wigner transforms in momentum space,

but the contour integrals needed for this calculation are quite tedious.

A.4 Detail: the Feynman Propagator

The phase-space Feynman propagator naturally arose in our discussion of the exclu-
sive reaction probabilities in Chapter 3. There we choose situations where we can
avoid using the phase-space Feynman propagator. Here we should discuss it anyway.
In this section we will describe how the scalar propagator works and how we derive

the analytic expression for it at lowest order.
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A.4.1 How it Works

While the Feynman propagator propagates a particle with a given momentum (say
Py = (po,pr, Or)) across a space-time displacement Az, = (Azy, Az, AZ7), it does
so in a manner very different from the retarded propagator. Looking at the definition
in (116a), we see that the combination of the sign functions in the square brackets

can be rewritten in a more transparent form:

4 if Az -p, p?, Az? >0

[..]=9 -4 if Az -p, p?, Az? <0

2sgn(Az -p) if p?, 22 have opposite sign
\

Thus, particles with time-like momentum tend to travel forward in time and inside
the light-cone and particles with space-like momentum tend to travel backwards in
time outside the light cone. Anti-particles with time-like momentum tend to travel
backwards in time inside the light-cone and anti-particles with space-like momentum
tend to travel forwards in time outside the light-cone.

The rest of the interesting features of the Feynman propagator are tied up in the
dependence on the Lorentz invariant A\? = (Az - p)? — Az?p?. As with the retarded
propagator in Subsection 3.1.4, we will study the p? > 0, p? < 0, and p? = 0 cases
separately.

To study the p? > 0 case, we boost to the frame where P, = (o, 6) In this frame,

M2 = p/s|AZ'|2 > 0, so only the sine term contributes. The sine term is greatest for
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VA2 < 1 so we have the following limit on the spatial propagation distance:

1

AT | S —-
|10

(129a)

o~

As with the retarded propagator, we can compute the total “probability” to propa-
gate to certain time. This calculation gives us the following limit on the temporal
propagation distance:

1

|Azgy| < )
7N

(129b)

Boosting the space-time region defined by these constraints back to the frame with

Py = (o, Pr, Or), we find the following constraints:

S 1
1
Az | SRy = o] (130D)
1

These limits are exactly the same as the ones we found for the retarded propagator
in Subsection 3.1.4.
To study the p < 0 case, we boost to the p|, = (0,pf, Or) frame. In this frame,

M2 = p'3(Az's — Az'2). Inside the light-cone, the exponential term disappears and
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we get a constraint on \2:

0> N =p2 (A2l — Az'7) < 1

We can integrate to find the total “probability” to propagate to a certain time, giving

us a limit on Agzj:

1
|

|Azg| S (131)

Using the A? and light-cone constraints, we find similar limits on AZ} and Az’ :

1
ATy S (132a)
[
1
AT S (132D)
[
Boosting back to the p, = (po, pr, Or) frame, we find
B 1
|AIET| SJRJ_ = (133&)
a
1
Az | SRy = ool (133b)
0
1
|AIEO| ,SRO = T, (133C)
|pz|

which is what we found for the retarded propagator. Now, outside of the light-cone

the situation is more complicated and we must integrate the propagator in the various
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directions to find limits. We find:

1
77|

1
[

PEARSE

[Azg| S

~J

[Azy| S

~J

L N@-

(134a)
(134b)

(134c)

When we boost back to the frame with p, = (po, pi, 0r), we find the result in Equa-

tions (133a)-(133c).

Finally, we investigate the p?> = 0 case. With p? = 0, A? becomes

0§A2=|A:B-p|=|p0||A:Z"'-ﬁ—A:E0|§1

(135)

because the exponential term does not contribute on the light cone. On other words

the Feynman propagator functions exactly like the retarded propagator: high energy

particles tend to follow their classical path while low energy particles can deviate

from their classical path. Expression (135) then gives a measure of the deviation

from the classical path.

We find that, despite the different boundary conditions on the two propagators,

both the Feynman and retarded propagators send particles the same distances. This

is probably no surprise since a calculation done using Feynman’s formulation of per-

turbation theory for the S-matrix must give the same results as a calculation done

using time-ordered non-equilibrium perturbation theory.
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A.4.2 Derivation

The simplest derivation of G°(z,p) is far more complicated than the derivation of
G*(z,p). We start by finding the transport-like equation of motion for the Wigner
propagator.! The derivation is simple and very similar to the derivation for the
retarded equation of motion in Section 2.8. So we only state the result:

1 1
p-0G(z,p) = = 76(z?) sin (22 - p) — PP cos (2z - p)| .

Now we define a projector onto the space perpendicular to the particle’s momentum,
9iw = 9w — Pupy/P?. This allows us to change variables to z,, = g 2" and
7 = - p/+/|p?| sgn(p?). In terms of these variables, we find A\> = —p?2z? and the
equation of motion becomes

cos (2+/|k2?|7)

2 2
0rG(r,a1,5) = VL |2 = o) sin 2/ ) - P

T2

So, instead of doing the Wigner transform directly, we only have to solve this ordinary
differential equation.
We find the solution by integrating this differential equation. The delta function

integral is simple and the principle value integral can be done by contour integration.

!The constraint-like equation could also be used, but G¢ is easier to derive using
the transport-like equation.
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We find

G(1,z.,p) =G%(co,z1,p)
- {a(ﬂ% 5067 — 0 + ssn(s?)o(—n
exp (—2\/——)\2)}
VS

— sgn(p*)f(—7)

We must now divine the boundary condition at 7 — oc.

To find the boundary condition, we actually have to go back to the Wigner trans-
form of the propagator starting from momentum-space version of equation (113a).
We again change variable from x to 7 and =, . We also change from p’ to p/, = g1 ,,p""
and p-p' = sgn(p?)+/|p?[k. With this, we perform the k contour integral. The in-
tegral is straight forward, but tedious. However, when we take the limit as 7 — o0,

the result simplifies dramatically:

1

72/ |p?|

G<(00, 1, p) = / dp. cos (21 - p1 )52 +p2).

The delta function integral is trivial and the last pair of integrals requires integral

tables, but in the end we find:

G(c0,z1,p) =

: {W) sgn(zf)% o= N)o(—p) =P (\;%‘T) } .

Plugging this into the solution of our differential equation, we find Equation (116a).
This result can be checked by performing a series of contour integrals in momentum

or coordinate space.
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A.5 Propagating Particles with Nonzero Mass

The issue of propagating particles with nonzero is an important one if one is either
to dress the particles with an in-medium mass or to test conventional transport
theory as applied to nucleons. In this section, we will discuss the beginnings of work
aimed at getting analytic expressions for the propagators for particles with nonzero
mass. There are two ways that we know for getting the propagator for particles with
nonzero mass. The first is a transform we that adds mass to the massless propagators.
We demonstrate it on the retarded propagator. The second is an approximation
developed by Remler [Rem90] which we will outline and state the results he obtained

for the Feynman propagator.

A.5.1 The Retarded Propagator

According to (113a), a phase-space propagator is the Wigner transform of two prop-
agators. To find the propagator for particles with nonzero mass, we begin by writing
out the Wigner transform of the two retarded propagators in the coordinates where

the transfered momentum is p, = (po, pz, Or):

G*(x,p) = / (c2i4p)'4 e PG (p+p/2)G (p—p/2)

:/ dpo/ dpL /oo dp /27T de’ —i(xopy—x Py, —wTP] cos ')
_ ™2 Jo o C

x (o4 6/27 = (o1 + /2" — (P44 )+ iepo + 9/2))

x (o= Ph/2? = (o1, = p1/2? = P4+ ) + (oo — 7/2))

(136)
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Now, we notice that the denominator is independent of #', so we can perform

the ' integral using the relation
2w ) , ,
/ df’ ePr s = on Jo(zply) .
0

This turns Equation (136) into a Fourier-Bessel transform. We can invert the pf

integral to get

27 o0 ! o0 /
dp dp . ;o /
2 dmzrJo(zrnl) G (z. ) = / dpy / IPL  —i(oopy—aur)
7T/0 TTIT O(IETPT) (IEaP) o ) on €
— . -1
x ((po + /2 = (b +P1/2)° = (Br/4+m) + iz(po +7/2))

x (o0 = £b/2)" — (on. — 74/2)" — W/ 4+ m) + icloo — p/2))

(137)

Now here is the trick: if we rename pl, — 4/ph.> — 4m2, then we get the m — 0 limit
in the right hand side of (137). We can use that fact to our advantage and obtain the
result that the propagator with mass and the propagator without mass are related

though a pair of Fourier-Bessel transforms:
2w 2w
27r/ dzr 1 Jo(zTPY) GT(2,D) = 27r/ drr o1 Jo (:ET\/p’T2 + 4m2> G{ (z,p).
0 0
(138)

Here G{ is shorthand for the massless limit of the retarded propagator.

Equation (138) can be inverted to give the propagator with mass as a Fourier-

192



Bessel transform of the propagator without mass! Using

0 ifor > al >0
/ dp p Jo(par) Jo(\/p2 + 4m2x’T) =9 6(zh — z7) [T if 77 =2 =0
0
J1(2m\/w’T2—wT2)
—2m

2
\ Vi —ar?

if o0 > a7 >0

(139)

and the known result for the massless propagator, Equation (138) can be rewritten

as

sin (2\/)\2 + §2p2)

1 \/ﬁ
Gt (z,p) = G§ (z,p) — 2m7—T0(:E0) 0(z*) /0 d¢ Jy(2mé) . (140)

Here, \? is the Lorentz invariant defined earlier. Notice that, as with the propagator
for massless particles, massive particles must propagate forward in time and they
must propagate inside the light-cone.

Now, we do not know how to perform the integral in (140) analytically, but we
can evaluate it numerically. A contour plot of G*(z,p) (without the # functions) for
on-mass-shell particles is shown in Figure 35. One should notice the central peak at
|z - p|,mVz2 < 1. Because this peak gives the dominant contribution in any integral
over all of phase-space, we can estimate that |z - p| = /m2 + p?|zo — 7- 2| < 1 for

these on-shell particles. For non-relativistic particles, m > |p] and ¥ = p/m so
o —T-Z| S 1/m. (141)
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Figure 35. Plot of the phase-space retarded propagator for a particle with nonzero
mass.
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In other words, on-shell non-relativistic particles deviate from their classical paths to
distances no more than fic/m — in other words the Compton wavelength, Ac. This
estimate tells us that a nonrelativistic particle is localized to a region of radius A¢ and
follows its classical trajectory. Given that the Compton wavelength of a nucleon is
~ 0.2 fm, this explains why it is reasonable to treat the nucleons as point-like particles
that follow straight line classical trajectories in the Quasi-Particle Approximation.
For pions though, it is not so clear that they can be treated as point-like particles in
this manner. Their Compton wavelength is ~ 1.4 fm, a distance comparable to the
effective range of the nuclear force.

Even though we cannot evaluate Equation (140) in general, we can evaluate it

in the low mass limit. For m? < |p?|, we find

o) = Giesp) = L9(en)06") T |cos @A) —cos @iz -)+0 ()|

(142)

This result may prove useful for describing propagation of highly virtual particles in

a transport approach.

A.5.2 The Feynman Propagator

Remler [Rem90] has found the Wigner transform of the Feynman propagator for
particles with nonzero mass. Remler begins with the full Wigner transform in Equa-
tion (113a) and makes the integrals into simple contour integrals by approximating

p'? = (p-p')?/p?, where p is the average momentum and p' is the relative momentum.
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We state Remler’s result here:

G%(z,p) = {

(

* d 54 R —2m|7| 1
/—oo " (:v Vv -p? T) ‘ 2ma/—p?(m?—p?) for p? < 0
X {\/—p2 cos (27+/—p?) + msin (2|7’|\/—p2)}

d 1 sin (27(\/z§—m))64 _p
/0 " o/ { (/o —m) v~y
_sin (27'(\/;z§+m))64 p
/7 +m) (‘"‘ * \/p—27> }

for p* > 0

(143)

Now because of this approximation, the propagator is oversmoothed in the direction

transverse to the particle’s momentum and we expect these propagators to be ac-

curate only on length scales much larger than the smoothing scale, i.e. on lengths

> 1/m. Note also that the sine and exponential functions in the two terms in (143)

become proportional to 6(p* —m?) as 7 — oo. Thus, this propagator reduces to

the classical propagator [Rem90]. Finally, we note that the é-functions constrain the

particle to move along its classical trajectory, even though its four-momentum (and

hence its four-velocity) is being modulated by the sine and exponential functions.
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APPENDIX B

MEASURABLES OF INTEREST

We cannot measure the phase-space densities directly, but we can measure related
quantities such as inclusive and exclusive N-particle spectra. For example, the ratio
of two-particle inclusive spectrum to two one-particle spectra define the correlation
function which, in turn, is inverted to get the source function in nuclear imaging.
It turns out that inclusive spectra are intimately related to the particle densities —
the single particle inclusive spectra 4s the momentum space particle density. The
inclusive distribution is a sum over all exit channels containing the particles of in-
terest. If we concentrate on one exit channel, then we have the N-particle exclusive
spectra. Furthermore, if the reaction is dominated by one channel, the full inclu-
sive distribution and the exclusive distributions are approximately the same. The
exclusive distribution is directly related to the S-matrix for the reaction and thus
can be calculated perturbatively using the Feynman rules tabulated in many field
theory books [AB65, 1Z80, Lur68, Ste93, BS79]. Because these Feynman rules are
familiar and simple, we used them to discuss the photon and electron phase-space
distributions in Chapter 3.

Let us briefly outline this appendix. First we define the S-matrix. Second,

we describe exclusive and inclusive N-particle spectra and write them in terms of
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the S-matrix. Finally, we discuss how the correlation function is written in terms
of inclusive spectra and outline the derivation of the Pratt-Koonin equation. The

Pratt-Koonin equation is the starting point of the discussion in Chapter 4.

B.1 The S-Matrix

We begin by writing the transition amplitude from an arbitrary incoming state in

the Heisenberg picture |i(in)) with an arbitrary outgoing state |f(out)):
Sivp = (f(out)]4(in)) . (144)

This is commonly defined as the S-matrix and it is the main building block of the
inclusive and exclusive spectra to follow.

In practice, we are often interested in the transition amplitude to a state that
contains a known object. For example, consider the following arbitrary N-particle
state, indexed by quantum numbers v (here v might correspond to the momentum
of the particles in the state, e.g. p7,..., 74 of the individual particles or a center of

mass momentum P for a cluster):

, (145)
- / By . Bry e PN (@ L En)PN@L ) . (@, 1) [0)

This state can be anything from a single nucleon (for N=1) to an intermediate mass
fragment as in [Rem86]. Here ¢!(Z,t) creates a particle at point Z at time ¢. Spinor,

isospin, and other indices have been suppressed in this equation. The exponential
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factor removes the time dependence from these creation operators rendering the entire
state time-independent (as it must be for a state in the Heisenberg picture). The total
energy of the state is F,. The many particle wavefunction 3 (Z1,...ZN) is simply
an arbitrary properly symmetrized wavefunction with outgoing boundary conditions
encoding the state. The action of the composite raising operator \il}rv(l/) creates the

N-particle state with the quantum number v out of the vacuum. With this operator,

we can write down a state that contains this N-particle object plus anything else:

|f +v(out)) = ¥h(v) £ (out)).

So, we can now write the transition amplitude from an incoming state ¢ to an

arbitrary final state f plus some known N-particle object v as an S-matrix amplitude:

~

Sivspv = (f +v(out)|i(in)) = (f(out)| Wy (v) [i(in)). (146)

At first glance, this result is both trivial and apparently not all that useful. This is
not the case. Any S-matrix involving free particles in both the initial and final states

can be written in the interaction picture:

Sipw = (f + vlout)|i(in)) = ( + 1] i)y (147)

The Feynman rules for the S-matrix! in the interaction picture are written in many

!These Feynman rules are what we refer to as Feynman’s formulation of pertur-
bation theory.
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field theory books (e.g [AB65, 1280, Lur68, Ste93, BS79] to name a few). So, if we
write a process in terms of an in-out transition amplitude, we have a ready made

calculation scheme. This is the basis for the perturbation calculations in Chapter 3.

B.2 Exclusive and Inclusive N-Particle Distributions

Experimentalists often measure the momentum space particle distribution for one
type of particle (or several types of particles). One can do this two ways: one can
look for specific exit channels (i.e. “I want particles A and B only”) or one can sum
over channels (i.e. “I want particle A and I don’t care what else comes out”). The
first possibility, where we select a specific channel, gives exclusive distributions. The
second, where we include all channels, gives the inclusive distribution. In both cases,

the distribution is related to the cross section by

dN, lda,,
dv o dv

(148)

where ¢ is the total reaction cross section. As before, v is the quantum numbers of

the state of interest.
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B.2.1 Exclusive Spectra

The exclusive particle distribution for an arbitrary N-particle object in the final state

and an initial state specified by a density matrix is

dNy+f . . *
= 3 1+ v(out) | fin) m(an)] £+ v(000) = 3 panS 0o 10
(149)
If the density matrix is diagonal, then this takes on a more familiar form:
dN,
==Y punl S (150)

So, given that this can be written in terms of the S-matrix, we have a ready made
computation scheme. In general, the density matrix can be arbitrarily complicated,
so it may be that while a perturbative solution exists, it is impractical to perform
the calculations.

In this thesis, we found it useful to localize particles using wavepackets in the
initial state. From (150) it should be clear that these wavepackets are just another
way to write the density matrix. Also, we mention that Equation (150) can be

rewritten in terms of phase-space quantities in the manner outlined in Appendix C.
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B.2.2 Inclusive Spectra

The N-particle spectra of into a specific mode v is simply the sum over exclusive

spectra:

D 3 T S5 s (0lin) | Ey (v) [ (out) (7 (out)| v (v) i)
f

f nm

(151)

The f states form a complete basis so

anm ()| T () I (V) Im(in)) = (S ) In()).  (152)

We recognize the spectrum then as the N-particle analog of the particle density
G< in (5). Indeed, if we set ¥ to be a single particle operator and fix v to be
the momentum of that operator, then (152) gives the momentum space density of
particles.

We can write the spectrum in the form written out by Danielewicz and Schuck

[DS92] by inserting the definition of ¥, (v) in Equation (145):

dN, \ 3 .
dv TT'_>00A|TTI/ dt/dxl-- xA/’ dt/d )

x exp[iB, (t — t)]| @)% (Zy, ... ,T4)®!

(153)
x (1@, t) - (@)1 .z/3<fA,t>>

We will use this form in all subsequent calculations in this appendix. The < ... >

is a trace with respect to the density matrix of the system. Again v are the quan-
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tum numbers associated with the states. The additional action of the two limits
limy_, o % fﬁT dt actually serves to project out unwanted contributions from heavier
nuclei? [DS92]. These limits work by averaging away all contributions with a total
energy higher than the energy of the states of interest.

Danielewicz and Schuck go on to show that (153) can be rewritten as

N, 1
ddy” :E/dt/d?’xl codPzy /di&’/d?’aﬁ’1 . d’2'y exp[iE,(t —t')]
)

X B (F, ... BN, ,T) (154)

x (JA@ - Bt a(@, - Fa))

Here J4 is the A-particle current operator. Their derivation assumes that the system
is nonrelativistic and obeys a Schrédinger-type equation of motion for each particle.
However one can easily see from their derivation that, by replacing their equation of
motion with a Klein-Gordon equation of motion and replacing their current with a
classical pion current, one arrives at the same equation, but for mesons. This is the

form we will use to derive the Pratt-Koonin equation.

B.3 The Correlation Function and Interferometry

In the remainder of this appendix, we define the two-particle correlation function
and outline the derivation of the Pratt-Koonin equation needed for Chapter 4. To

do this, we need to derive the single particle and two-particle spectra.

2such as the contribution to nucleons or deuterons from « particles in the final
state

203



B.3.1 Single and Two Particle Spectra

For the single particle spectra,

dNIV /dt/d3 /dt’/d%' exp[iE, (t — t')]
(155)

x o{ 1 (#)2)(@) (JI(@, ¢)11(3,1))

Assume that the particle is in free wave state ®57 (%) = @%_)(:Z“') = exp(ip’- ), then

(155) becomes the Fourier transform of the current-current correlator
dN S S
= (G, ) B)) (156)

Similarly for the two particle spectra,

Nu :
4o /dt/d T d°xo /dt /d3 ¢, expliE, (t — t')]

x ®C* (1, 7)) (2, 7)) (157)

X <J2(:i”1,f’2,t’)J2(f1,f2,t)>

Assume that the two particles interact, but that the pair as a whole do not interact
with the nuclear remnants. Then the wavefunction can be written as a product of

the center-of-mass wavefunction and the relative wavefunction.
q),(j_)(fl, fQ) >~ exp[iﬁ,, . (fl -+ fQ)/2]¢,(j_) (fl — fQ) (158)
This idea of separating the wavefunction into the CM part and relative part is be-
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ing used again, in a more sophisticated form, to do two-particle correlations in the
presence of a third body interacting with the other two by Coulomb forces in [DB98].
Inserting the two particle wavefunction (158) into (157) and introducing relative

(fl + fQ), we find

N =

and average positions, 7 = (¥} — Zo) and R =

ANy _1 / dt / &R d*r / dt’ / R d*r'
dv 2

X expliB, (t — ') —iP, - B+ iP, - B¢\ (7)) () (159)

<J2(R’+r’/2 B —1/2,¢) Jo(R+7/2, R — 7/2, t)>
So, defining the Fourier transformed current as follows,

~

Jo(7, B, E,) = /dtd3R expliB,t — iP, - R (R +7/2, R — 7/2,1)

the two particle spectra becomes

Ny 1 - (N (e P Jo (7, P
ddj =§/d3rd3r’¢,‘, "7 @) (0, B BB P ). (160)

B.3.2 The Correlation Function

The two particle correlation function is defined in terms of the one and two particle

spectra as follows:

dNy, _ dN; dNV,
d2P d3 d3p1 d3p2 CP(LT)

(161)
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where P = [, + P, is total momentum of the pair and § = (p1 — Pa) is the relative

1
2
momentum of one of the pair.> So, assuming no interaction between the emitted pair

and the nuclear source, we find the correlation function in terms of the one and two

particle currents:

_dNy dN, dN;
CP(q_) 3P d3q / d3p1 d®p,

:/d?’r d*r' QSE{)*(F)QSE{)(T

This result is not quite the Pratt-Koonin equation in Equation (72) in Chapter 4.

We will make the connection in the next section.

B.3.3 The Pratt-Koonin Equation

Now, at freeze-out both the Quasi-Particle and Quasi-Classical approximations
should be valid. At this point the particles should be fully decoupled from the
system, so they should be both on-shell and should no longer interact. Under these
conditions,* the system should act as an ensemble of incoherent particle sources.

With these assumptions, Pratt, Cs6rg6 and Zimdnyi [PCZ90] have shown that

) S5 (163)

3Experimentalists occasionally use Qjny = (p1 — Pa) here. It is likely they do this
to confuse us.

‘Note that, when pair emission is significantly distorted in the vicinity of the
source, e.g. due to the Coulomb interaction with the source, we can either account
for the distortions in the wavefunction in the kernel or we can absorb them into the
definition of the source.
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giving

L2
Cold) = [ @ |60 57 (161)
The source function, Sz(7), is identified as
Ss(7) = /d3R dt,dt, D(P, R +7/2,4,)D(P, R — 7/2,t,). (165)

where D is the normalized single particle source. D can also be identified with
the distribution of last collision points in space, time and momentum of the quasi-
particles. Equations (164) and (165) constitute the Pratt-Koonin equation and (164)
is the starting point for our imaging work in Chapter 4.

For Klein-Gordon fields, with (0% + m2)¢(z) = —j(z), D may be written, in
terms of single-particle self-energies, as

?

= I<(p E,, 7t
2Ep (p7 ;D7T7)

(166)

1 o0
X €xp [—ﬁ / dt’ (=2)Im IT* (9, By, 7 + % (t' — 1), 1) |,
pJt

where iII<(z,z") = (j(2') j(Z))irrea, and (—=2)Im I (z, ') = ([j(x), j(2')])irrea- For

the Schrodinger fields, with (i% + %) U(z) = j(z), the analogous result is
D(p, 7, t) = FiX<(p, E,, 7, t) exp [—/ dt'T (P, E,, 7+ T,(t' — 1),¢) |, (167)
t

where F43< is the single-particle production rate, FiX<(z,z') = (j(z') 7(2))irred, and
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[ is the damping rate.

In a transport approach, the particles (at least the nucleons and pions) are good
quasi-particles throughout most of the reaction. Thus, D can be extracted directly
from a model and both source and correlation functions can be constructed. This is

actually the procedure Pratt uses in his correlation code [PCZ90].
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APPENDIX C

THE CROSS SECTION AND PHASE-SPACE DENSITIES

In this appendix, we discuss writing the cross sections in Chapter 3 in terms of
phase-space quantities. Since the cross section is measured by scattering a beam of
particles off a target, we take a different approach than in Appendix B and define the
cross section in terms of the projectile/target reaction rate density and the projectile
flux. The beam is uniform in the beam direction and in time on the scale of the
projectile/target interaction. Thus, the beam can only directly probe the transverse
structure of the interaction region. Even this transverse information is washed out in
the typical experiment, since the beam is usually uniform in the transverse direction
on the length scale of the interaction. In the limit of a transversely uniform beam,
we recover the conventional definition of the cross section. Since we consider only
simple scattering problems, we work in Feynman perturbation theory where we can
specify both the initial and final states of the reactions.

The beam is a collection of single particle wavepackets distributed throughout

the transverse area A of the beam. For the sake of illustration, we take these particles
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to be scalars. The Wigner function of these incident wavepackets is

Hon =g [ a2 S0+ AL 001D 69

where the wavefunction f(p) is given by'

4

=] G FwI9). (169)
We assume the beam to be uniform in the longitudinal direction with length L and
to be turned on for macroscopic time 7. The quantities A, T, and L are much larger
than the projectile/target interaction region.

The projectile/target interaction region is characterized by a reaction rate den-
sity Wi, (z). We assume the reaction rate density to be localized in both space and
time. This reflects the small spatial extent of the target and the short interaction
time compared to the beam lifetime. The reaction rate is trivially related to the

reaction probability:

1S gl? = /d4:v Wi, (x). (170)

Thus, the reaction rate is easily identifiable in the calculations in Sections 3.1 and

3.2. For example, in the process vB — B’ in Figure 11(b), the reaction rate density

'The delta function that puts the particle on-shell is absorbed into f(p)
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is W,p_,p (2, ). For the process AB — A’'B' in Figure 11(a), it is

Woanoars (z) = / dir (d LI @+ /DD )T @1/, (7D

Note that the reaction rate density is a function of the average space-time location
of all the vertices in the process.

The cross section is the effective area of the target, so we define the cross section
as the integral over the beam face of the fraction of incident particles that interact

with the target per unit area:

_ / P (# scatte?ed particles) / (# incid(?nt particles) . (179)
A

unit area unit area

The number of incident particles per unit area crossing the target plane is the particle

flux:

cident varticl L2
# incident particles _/\/’mc/ doy - (@) = F (). (173)

unit area /2

Here 7 is a unit normal to the target plane and N, is the number of particles in the
beam. The single particle current is given in terms of the incident particle Wigner

function by [CZ83]

i@ = / &p dp? 71 (z, ). (174)

We do not need to average over time because the beam is uniform on the time scale of
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the reaction. The number of scattered particles per unit area is found by multiplying

the number of incident particles by the reaction probability per unit area:

ttered ticl L/2 T/2 —
# scattered particles =Mnc/ de/ dzo Wiy 1(2) = NincWiss(Zr). (175)

unit area —L/2 —T/2

Thus, the cross section is

_ 2 Mm Wi—)f(fT)
o= /Ad xT F(7r) : (176)

In Equation (176), all longitudinal and temporal structure of the interaction is
washed out by the beam. Furthermore, in any practical experiment, the wavepackets
are delocalized in the transverse direction on the length scale of the interaction region.
Thus, the transverse structure of F(Z7) is gone and the flux reduces to F = Ny |U]/A,
where |7 is the mean projectile velocity. The flux can then be pulled out of the
transverse integral in (176). The transverse integral of the reaction probability per

unit area is Nj,.|Si ¢|?, so the cross section becomes

AlSif|?
o = ASios (177)

4]

This is the conventional momentum space cross section in the choice of normalization

used in this thesis.
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APPENDIX D

COULOMB FIELD IN PHASE-SPACE

In this appendix, we describe the ¥ = 0 limit of the photon distribution of the point
charge in Subsection 3.1.4. Since the spatial dependence of the Effective Photon
Distribution is controlled by the Wigner transform of the vector potential, A,(z),
we only discuss A, (z,q) here. When ¢ = 0, the photon vector potential becomes
A,(z) = (e/|Z],0) so A, (z,q) is the Wigner transform of the Coulomb potential.
Take the point charge to be resting at the origin and emitting photons with

four-momentum ¢, = (go, ¢). Putting ¥ = 0 in Equation (60), we find

Aoo(2,q) = 32m%Cemd(q0) = A(2|Z]|7] cos(9), 2|Z]|d| sin(6))

1

a1 (178)
Aij =0

where 6 is the angle between ¥ and ¢ and the dimensionless function A is given in

Equation (61). Clearly the photon field is time independent and is composed entirely

of zero energy photons. Furthermore, by virtue of the 1/|q] singularity, the photon

field is mostly composed of low momentum photons.

In Figure 36, we plot the dimensionless function A as a function of Z for § =

(0,0.788,07) MeV/c in the plane defined by & and ¢. Note that the central region
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of the distribution is circular, but becomes elliptical as one moves away from the
center. In the transverse direction (i.e. the direction perpendicular to the photon
three-momentum), the distribution approaches zero, but never is negative. The width
in the transverse direction is approximately 250 fm. In the longitudinal direction,
the distribution drops to zero at about z; =~ 250 fm and oscillates about zero for
larger distances. These oscillations are expected for a Wigner transformed quantity
and simply reflect the fact that x; and ¢q; are Fourier conjugate variables.

Because the photon source is a point source, the shape of the Coulomb distri-
bution comes directly from the shape of the the retarded propagator discussed in
Appendix A. Thus, we can estimate the width of the photon distribution using the
estimates of the retarded propagator in Subsection A.3. In the both the longitudi-
nal and transverse directions, the propagator width is ~ fic/|qr| = 250 fm, which is

approximately the width we measure from the plots.
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Figure 36. Plot of the dimensionless function A corresponding to the Wigner

transform of the Coulomb field of a static point charge. The photons in this plot
have ¢, = (0,0.788,07) MeV/c. The longitudinal axis is defined by the photon

three-momentum.

215



APPENDIX E

GAUGE ISSUES

Parton densities are supposed to be gauge invariant but the Effective Photon Distribu-
tion in Section 3.1 is gauge dependent. In this section, we discuss how A, (z, ¢) trans-
forms under a change of gauge and determine the gauge invariant part of A,,(z,¢).
We then state how the gauge invariant part of A, (z, ¢) is related to the phase-space
Effective Photon Distribution. Finally, we comment on the gauge dependence of the

photon field of a point charge.

E.1 The Gauge Independent Part

If we gauge transform the photon field in the energy-momentum representation, we
add an arbitrary function in the direction of the photon momentum to the photon
vector potential: A,(q) — A.(¢) + ¢.f(¢). Because components of A,(¢g) in the
direction of ¢, are gauge dependent, we can write A,(¢) as a sum of the gauge

independent and dependent parts:

Aug) = All(g) + A ()
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where All(q) = 3= A¥(q) is the gauge dependent part and A, (g) = Au(q) — Al(q) is
the gauge independent part. Wigner transforming the photon field gives us a term

that is gauge independent and terms which are gauge dependent:

Au(z,q) = / (26147?4 e i [Al(g+q/2) + A (g + §/2)]
x [Alg—d/2)+ Ar(a - 3/2)] (179)

— 1 1

The only gauge independent piece of A, (z,q) is A, (z,q). We do the integrals in

(179) and identify the tensor that projects off the gauge dependent part of A,,(z, q):

A;JZVJ_(:E7 Q) = (g;w - h:a)(gl/ﬂ - h;p)Aap (:E7 q)

(180)
= PuopA”(2,9)
where
v _ (g=10/2),(¢ £140/2),
P = (q = i0/2)? (181)

This projector must be understood as a series in g, and J,, so can only really be used
when 0,A4,,(z,q) < ¢,A,(z,¢). Now, the statement of current conservation for a

general J,,(z,q) is

(q+1i0/2)" T (z,q) = (¢ £i0/2)" Ju(z,q) = 0. (182)
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So, as expected, current conservation ensures that only the gauge independent part
of A,,(z,q) appears in the reaction probability.

With A" (x,¢) in hand, we can postulate the gauge invariant photon distribu-
tion:

dn(z,q o
#ﬁ”qd;? =D _ Ve (V) Ay (3,q). (183)
A==

This reduces to (57) if the photon field varies slowly in space (i.e. we neglect the
gradients 0,4, (2, q) < ¢s A (x,q)), as we now show. Neglecting the derivatives in

(181), the projection tensor in (180) reduces to

qud Qg
Puyap ~ (g;w_ Z;r) (gup_ q2p>

: (184)
= (Z eme::u)) (Z @(Y) eZ(A’))-

A=+,0 N==4,0

Since the polarization vectors form a complete basis in Minkowski space, i.e. g,, =
> aeto €u(N) €(A) +4ug./¢°. Putting (184) in Equation (183), we arrive back at the
Effective Photon Distribution in (57).

The tactic of projecting out the gauge dependent parts of the photon distri-
bution works mainly because of the simple form of the U(1) gauge transformation.

Nevertheless, a variant of this technique may possibly be applied to the gluon field.
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E.2 Comment on the Gauge Dependence of the Effective Photon Distri-

bution of a Point Charge

The Effective Photon Distribution in Equation (57) is observable so it is gauge in-
variant. On the other hand, the A,,(z,¢) in Equation (60) for the classical point
charge is a gauge dependent object and so is not observable. Nevertheless, the fea-
tures of the Effective Photon Distribution come directly from A,,(z,¢). One might
ask whether the interesting features of A, (z, ¢) disappear under a gauge transform.
To see whether this happens, one must insert A,,(z,¢) into Equation (183). The
only things in (183) that could significantly alter shape of the distribution (60) are
the gradients. Now because the photon source is extremely localized (it is a delta
function), the shape of the photon distribution comes solely from the propagator.
Since the propagator varies significantly on length scale comparable to 1/g,, deriva-
tives of A, (z,¢) are always comparable in size to ¢, and any expansion of the gauge
projector in Equation (180) will not converge. So, we must conclude that our photon
distribution can not be made gauge invariant using this technique and that we can
not tell what features of the photon density survive a general gauge transform. Now,
had we not used a point source for our photons, the integration over the source could
smooth the photon distribution so that it varies slower in space. In that case, our

distribution could be rendered gauge invariant.
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APPENDIX F

WHEN FACTORIZATION FAILS

The “source-propagator” picture of the phase-space particle densities, from Chapters
2 and 3, and factorization of the exclusive reaction rate, from Chapter 3 and the
parton model, are both conceptually useful concepts. However, there are times when
both fail. In this appendix, we discuss one such failure: lepton pair production in
the strong field produced by two point charges. Because the photon fields of the two
point charges interfere, it is not possible to clearly isolate the source or probe and we
can not factorize the square S-matrix into an electron distribution and electron/probe
interaction. Nevertheless, we can still discuss the process in phase-space, even though
we cannot write down the electron distribution.

In this appendix, we investigate electron-positron pair production in the strong
field of two point charges. One might visualize this interaction as a virtual pho-
ton from one point charge probing the virtual electron distribution of another point
charge. Thus, the electron distribution would appear factorized from the virtual
electron-virtual photon collision process. However, we will show that this picture
is incorrect because the photon fields interfere with one another on length scales
comparable to the size of pair production region. Of course, this also means that

our “source-propagator” picture fails here. Nevertheless, we can still formulate the
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problem in phase space and discuss the interplay of the interaction length and particle

production length scales.

F.1 Interference of Photon Fields

The tree-level diagrams for pair production in a strong external field are shown in
Figures 37 and 38. We can write down the S-matrix corresponding to this using the
same procedures used in Chapter 3. To lowest order in the coupling strength, we
obtain:

d'k, d'ky d'p

2n)" (2r)" (2r)’

f*(kh k2) eikl-w1+ik2~w2+ip-(w1—wz) (185)
\/2k170V\/2k270V

XAy (K1, 81, ko, 89, p) { AV (21) A5 (22) + Az (1) AT (22) } -

4 4
Sl2—>1’2’eé = Oéem/d z1 d T

Here z; and x5 are the interaction points of the photons and should not be confused
with the classical source particles 1 and 2. We have already separated the ~yvyee

effective vertex

Ay (1, 51, k2, 82, p) = Uk, $1)7u15°(P) 100 (ke2, 52).-

In Ay (K1, 81, k2, S2,p), S¢(p) is the momentum-space Feynman electron propagator.
The final state electron-positron wavepacket is f*(ky, k2) and we will assume the final
e€ pair to be free and use the free wavepacket from Appendix H. The reader should
note that we can already see the photons interfering in Equation (185).

As usual, we can rewrite Equation (185) in terms of Wigner transformed
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Figure 37. Cut diagram for lepton pair production from a two photon interaction.
R is the space-time point of the center of the collision region.

Figure 38. The diagrams that contribute, at lowest order, to the vy — ee effective
vertex.
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quantities. However, due to the photon fields interfering, the structure of the cross
terms are complicated. The |Sq _)1,2,eé|2 is:
d4k1 d4k2 d4ql d4QQ d4p

(2m)" (2m)" (2m)" (2m)" (2m)"
Xf(R—T/2,k1,R+T/2,k2)

2 2 A g4
|Si2m12e|” = Oéem/d Rdr

XA;L;L’VV’(kly k27p7 T) (27T)454(QI + q2 — kl - k2)
< {(2m) 8" (g1 — by +5) AP (R 1/2,0) 457 (R+7/2,)

+ (2m)*6% (@1 — ko — p) AT (R +7/2,01) A5 (R —7/2, g2)
k1 — ko

+ /d4f exp [i7 - (—p+ ) —ir - (g1 — go)]

x A" (R —7/4,q) A" (R +7/4, go)

ki — ko
2

+ /d‘lf exp[i7 - (—p + ) +ir- (g1 — ¢2)]
x A (R +7/4,q1) A (R = 7/4,5) }

(186)

This equation could look simpler if, in the interference terms, we Wigner transformed
A; together with A;,. However then we would have a virtual electron being emitted
by some interference field and then reabsorbed by another interference field and the
resulting equations would be impossible to interpret using our photon distributions.
In Equation (186), we neglect k relative to & in the effective vertex and in the factors
of (2kgV) because the final state wave packets are sharply peaked in momentum.

In Equation (186), R is the center of the interaction points z; and z5 and r is the
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space-time separation of these points. The final state Wigner density is

1 1 d4];1 d4]~€2 —iki1z1 —ikoxo
f(IEl, k17$27 k2) - (2]{;170‘/) (2]{;270‘/) / (27’(’)4 (27’(’)4 €

X f* (ki + /51/2, ko + /;2/2)f(k1 - /51/2, ko — /52/2)
and the Wigner transform of the effective vertex is

4~

d . . . .
Auu’uu’(kly k27p7 T) = / (27‘_1))4 ezp.TA;w(kly k27p + p/2)Ap/y’ (kly k27p - p/2)

We can write the effective vertex in terms of the scalar Feynman propagator,

Ay (ks oy p, ) = Uk, s1) (B + 5 P+ me) v (ka, s2)

X0 (ka, $2) v (¥ — % @ + me)ypu(ky, s1)G(r,p) (187)

A (K1, k2, p, 7)GE(T, p)

We simplify the reaction probability by summing over the final state electron and

positron spins. We simplify things even further by working in the ultra-relativistic
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limit, namely when v? & v2 =~ 0. Under these approximations, we find

d4k1 d4k2 d4q1 d4QQ d4p
(2m)" (2m)" (2m)" (2m)" (2m)"

|Sl2—>1’2’eé|2 =043m/d4R d'r
X f(R—T/2,k1,R+T/2,k2)

X Z )‘MM'VV'(kh k27p7 T)GC(T7 p) (27‘—)464((]1 + g2 — kl - k2)

spins

< {8 (g1 — by + ) A (R = /2, 0) A (R7/2,0) )

+ (2m)'6" (g1 — ko — p) A (R+7/2,q1) A" (R — 7/2, )

ki — ks
2

+2/d4fcos[F-(—p+ ) =7 (q1 — )]

x AV (R—7/4,01) A4 (R+7/4,6)}

Given the relatively simple form of this equation, one would think that we could
identify the exchanged electron’s phase-space density. In fact, if we use free particle
distributions for the final state electron and positron and sum over final states, we can
identify the virtual electron distribution (Equation (65)) in the direct terms. However,
we can not make the same identification in the interference term and factorization is
not possible here. We might find factorization again if we had several point charges
as one can envision a situation with many photon sources screening the photons (a
plasma for instance). The photon field might then be an incoherent superposition of
photon fields. In the absence of photon interference, we might be able to define an

Effective Electron Distribution.
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F.2 The eé Production Region vs. the Interaction Region

Even though Equation (188) does not factorize or acquire the “source-propagator”
for any of the densities (except maybe the photon density), we can still figure out
where the electron-positron pairs are produced and the size of the region where the
two photons interact. We will see that the ee production region is set by the shape
and size of the photon distributions and that the two photon interaction region’s size
depends on the mass and virtuality of the exchanged electron.

First, take the virtual photon distribution of the classical point charge from
Section 3.1.4. Now, the lowest energy and momentum that each of the interacting
photons can have is' ¢ = (me, me/vr, 07). Because the high energy or far off-shell
photons are closer to the point charge then their lower energy and nearly on-shell
cousins, photons with the minimum g, have the largest distributions. So, the geo-
metrical overlap of the high energy portions of the virtual photon distribution sets
the size of the eé production region. In Figure 39 we illustrate this: the two ellipses
represent the edge of the photon distribution and the shaded region is the region
where the eé pairs can be created.

Now, the size of the two photon interaction itself is determined by how far
the exchanged electron can travel between the vertices in Figure 38. For this,
we look at the phase-space electron propagator. Assuming the electrons have

mass,2 we use Remler’s causal propagator. Here the phase-space “probability” for

'The distribution of photons with ¢ = (e, m./vr, Or) is shown in Figure 13.
2The m, = 0 case is uninteresting because the e€ production region always extends
over the entire two photon interaction region.
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Figure 39. Schematic of the pair production region. The ellipses represent the edge
of the photon distributions, each with four-momentum ¢ = (me, me/vr,0r). The
shaded region is the geometrical overlap of the photon distributions and sets the size
of the eé production region. The arrows point in the direction of the photons’ source’s
3-momentum.

propagating between two space-time points drops like e=2™¢" for space-like electrons
and like sin 27(/p? + m.)/(y/p? £ m,) for time-like electrons. The proper time
along the electron 4-momentum is 7. In the direction transverse to the electron
four-momentum, the “probability” is zero. Thus, the interaction region has a char-
acteristic length scale of &~ 1/m,. This is comparable to the width of the photon
distributions, so there is no scale separation. Typically one requires the interaction
length scale to be much smaller than the characteristic length scale of the particle
density in order to justify the gradient expansions of the Quasi-Classical Approxi-
mation and allow for a transport description. Because our approach does not rely
on the Quasi-Classical Approximation, the transport-like description in Chapter 2 is
still be possible.

So, to summarize, we learned that the “source-propagator” picture of parton

227



densities fails when the source particle and probe particle interact, even through
quantum interference. Nevertheless, we can still discuss the process in phase-space
with the phase-space sources and propagators, even if the densities have no clear

meaning.
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APPENDIX G

WAVEPACKETS

Throughout this paper, we use wavepackets in the initial and final states of a reaction
(or equivalently density matrices) to provide spatial localization or delocalization. In
this appendix, we detail the construction of an initial or final state wavepacket and

discuss the limits of either a completely localized or delocalized wavepacket.

G.1 On-Shell Gaussian Wavepacket

An initial (or final) state ket can be written with wavepackets:

L[ d'p
)= [ i S0 (189)

The corresponding Wigner function of the particles is

flon) = [ G5 e G = 200412 )

1 d4 / ,
= 2V / (27rp)4 e " flp+p'/2)f*(p—1'/2).

(190)

Particles in either the initial or final states are on-shell, so they can be expanded in

momentum eigenstates. We choose the wavepacket to be a Gaussian superposition
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of momentum eigenstates with a momentum spread o:

$(p) = No(p* — M?) exp [—(p'— 7)*/207]

The Wigner transform of this wavepacket can not be done analytically except in
the limit when |p;| > ¢. In this limit, p; =~ 7> 7' so our wavepacket is localized in
momentum giving the following Wigner density of particles:

N2
8mp}

fz,p) = o8 (p* — M?) exp [— M] (20v2m)% exp [—202 (T — £)2]. (191)

202

Here ¥ = §/p, is the velocity of the wavepacket. Thus, the particle’s Wigner func-
tion is a Gaussian in both momentum and space. The spread in momentum is the
inverse spread in space. The centroid of the Gaussian follows the particle’s classical
trajectory. The magnitude of the energy of the packet is set by the delta function
out front. We have not constrained the particle in energy so this density contains

both positive and negative energy contributions.

G.2 Delocalizing the Wavepacket in Space: Free Wavepacket

In accordance with the uncertainty principle, the wavepacket becomes completely
delocalized in space in the limit of complete localization in momentum (i.e. ¢ — 0).

In this limit, the spatial Gaussian approaches unity and the momentum Gaussian

230



becomes a delta function. After working out the normalization, we have

F(a,) = gy (25"~ ) (192

This is no surprise since the limit ¢ — 0 squeezes the state into a momentum eigen-

state. We use this result in Section 3.2 for the final state positron’s wavepacket.

G.3 Localizing the Wavepacket in Space: Classical Wavepacket

A classical particle is localized in both space and momentum, a seeming violation of
the uncertainty principle. In real life, this is not a problem since the reason classical
particles appear localized is that we probe them on length (or momentum) scales
too coarse to resolve the interesting quantum features. In the case of our Gaussian
wavepacket, this amounts to probing the distribution on length scales much larger
than 1/0. In this case, the space Gaussian is too localized to resolve and we can
replace it with a delta function. Additionally, if we assume that ¢ is large, we can

replace the momentum Gaussian with a delta function as well:
. 1
fdaSSlcal(:E,p) — 5(271’)453(13'— ﬁz) 5(172 _ M2) 53(1—)»:50 _ f) (193)

Here we have inserted the correct normalization for the wavepacket. This density
corresponds to an on-mass-shell particle that follows its classical trajectory v'zy = Z.
Again, we left in both positive and negative energy contributions. We use the result

(193) in the next appendix to find the current of a classical point charge.
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APPENDIX H

THE CURRENT DUE TO A CLASSICAL PARTICLE

In this appendix, we derive the classical current used in the Effective Photon Dis-
tribution calculation of Chapter 3. For the sake of illustration, we take the point
particle to be a scalar particle. The derivation takes three steps: first we define the
Wigner current of a scalar particle, then we derive the photon/scalar interaction ver-
tex in phase-space, and finally we localize the initial and final states of the scalar to

give the classical current.
H.1 Wigner Current
We begin by restating Equation (47):

7o) = [ L W)+ i1 A 14). o

We write the initial and final state bra’s and ket’s according to Equation (169) and

rewrite Equation (194) in terms of initial and final Wigner densities,

d4 ; d4 .
I (z,q) = / (2:;4 # fa(z,pi) fa (z,p8) 27)*6* (0 — pf — 4) Do (4, Pi> D)

(195)

232



We assume that the initial and final wavepackets are localized in momentum and
some-what delocalized in space. Shortly, we will also assume that we probe this

current on length scales much larger than even this delocalized space distribution.

H.2 Scalar Vertex

', (¢, pi, pf) is not quite the Wigner transform of the yAA' vertex, although it does

arise from performing the Wigner transform in Equation (194). It is defined by

(27T)4(54(pi —P5— Q) F;w(‘]:pi:pf) =

N (196)
2,0,0 g .. ~ S\ (=) ~ >
4V2pip; @n) (Dr| julq + @/2) |93) (Pi| 35 (a — G/2) |Pr)
Using the matrix element
o . pi+p
(571 () 17 = eZ(2m)6" (i — py — q) BT PL
2V /%!
We find
\ 1 1
L (q, i, pf) = CemZ”(pi + s + Q(pi +0¢))u(pi + 05 — i(pi +P¢))w (197)

The relative momenta, p; and ps, become derivatives on z in the current (195).
Assuming the wavepackets to be uniform the the reaction’s length scales, we can

ignore the derivatives and arrive at the phase-space scalar vertex

F;LV(Q7pi7pf) = CVemZ2(pi +pf)lt(pi +pf)u- (198)
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H.3 Classical Current

We are now in a position to derive Equation (58) for the classical current density in
phase-space. First, we take the final state to be a momentum eigenstate and sum
over it. Since the final state is localized in momentum around py, this is not a bad
approximation. Second, we take the initial state to be a classical wavepacket. In other
words, we assume that the initial state is localized in momentum and delocalized in
space but that we probe it on such large length scales that we still see a spatially
localized wavepacket. So, putting Equations (192), (193) and (198) into (195) and

summing over final states, we get

J*(z,q) = 27 Qem Z? vuv, 0°(Z — 30?) pid((ps + q)° — M?).

Using p} = M? and v, ~ pyu/pio and assuming ¢*/py < ¢ - v, we get the classical
current:

JH (T, 0) = 2T e Z% v,v, 6(q - v) 63 (T — z07) - (199)

classical

Note that this current allows for emission of both positive and negative energy pho-
tons. In Section 3.1, we restrict emission to positive energy photons by inserting a
factor of 6(qo) in Equation (199). This can be justified by suitably choosing p and

P; and restricting the initial and final states to have only positive energy.
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