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ABSTRACT

QUADRUPOLE COLLECTIVITY MEASUREMENTS IN EVEN-EVEN,
NEUTRON-RICH SILICON AND SULFUR ISOTOPES APPROACHING N = 28

By

Christopher M. Campbell

An inelastic proton scattering experiment was performed at the National Super-
conducting Cyclotron Laboratory to study quadrupole collectivity in the even-even
silicon and sulfur isotopes near N = 28. Experiments on neutron-rich sulfur isotopes
have found significant collectivity and have been interpreted as pointing to the col-
lapse of the N = 28 shell gap. Narrowing of a proton subshell gap in the sulfur
isotopes may, however, be responsible for the increased collectivity. This experiment
gives a quantitative measurement of the decrease in collectivity between 42S and 44§
showing that the N = 28 shell gap does not vanish at Z = 16. In the silicon isotopes,
the large, stable Z = 14 subshell gap directly ties collective trends to the strength of
the NV = 28 shell closure. Quadrupole collectivity and Z;f excitation energies in the
isotopes 36:38:408i give clear evidence for the narrowing of the N = 28 shell gap in

the absence of strong proton collectivity.
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