
PRODUCTION OF NUCLEI IN NEUTRON UNBOUND STATES
VIA PRIMARY FRAGMENTATION OF 48CA

By

Gregory Arthur Christian

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Physics and Astronomy

2008

ABSTRACT

PRODUCTION OF NEUTRON UNBOUND NUCLEI VIA PRIMARY
FRAGMENTATION OF 48CA

By

Gregory Arthur Christian

The method of sequential neutron decay spectroscopy beginning with a primary

beam of 60 MeV/nucleon 48Ca was investigated as a potential tool to measure un-

bound resonances in neutron rich nulei. Neutrons were measured in coincidence with

fragments, and unbound resonances were observed for 10Li, 12,13Be, and 23O. The

method is currently limited to resonances with small decay energies (Edecay . 100

keV) in lighter (Z ≤ 10) nuclei, and the possibility of extending it to heavier, more

neutron-rich nuclei will be discussed.

Contents

1 Introduction 1
1.1 Structure of Neutron Rich Nuclei . 1
1.2 Neutron Spectroscopy . 2

2 Experimental Setup and Calibrations 7
2.1 Sweeper Magnet . 10
2.2 MoNA . 13

3 Data Analysis 17
3.1 Particle Identification . 17
3.2 Scattered Background . 23
3.3 Decay Energy Reconstruction . 25
3.4 Monte Carlo Simulations . 26

4 Results and Discussion 31
4.1 Results . 31
4.2 Analysis of Low Energy Decays . 39

5 Future Prospectives 55

6 Summary 58

A Using the MoNA Simulation Code 59
A.1 Introduction . 59
A.2 Getting Set Up . 60
A.3 Running the Simulation . 62
A.4 Using Flags . 64

A.4.1 Decay Energy Model . 67
A.4.2 Stripping Reaction Model . 67
A.4.3 GEANT Output . 68

A.5 Analyzing Your Simulation . 69
A.5.1 Parameter Names . 71

iii

A.6 Customizing the Simulation . 73
A.7 Using SVN . 77

B Using ROOT 79
B.1 Introduction . 79
B.2 Installing ROOT . 80
B.3 Files and Trees . 81
B.4 Drawing Histograms . 84
B.5 TCanvases . 87
B.6 Gates . 89
B.7 Creating Pseudo Parameters . 91
B.8 Using Macros . 92
B.9 Various Odds and Ends . 94

Bibliography 97

iv

List of Tables

4.1 Summary of Previous 10Li Ground State Measurements. 40

A.1 Simulation Beamline Element Numbering Scheme. 72

A.2 Simulation Parameter Naming Scheme. 72

B.1 Example ROOT TTree. 82

v

List of Figures

1.1 Chart of Light Neutron Rich Nuclei 2

1.2 SDNS Setup at Large Angle . 5

1.3 Fragmentation Reaction Angular Distribution. 5

1.4 Sample Zero Degree SDNS Setup. 6

2.1 Beam Production. 8

2.2 Experimental Setup . 9

2.3 TDC Pulser Calibration. 10

2.4 Masked CRDC Position Spectrum. 11

2.5 Sample MoNA Bar Time Difference Spectrum. 13

2.6 MoNA Angular Acceptance. 14

2.7 γ-ray ToF. 15

3.1 Uncorrected Particle ID. 18

3.2 Focal Plane x-vs-θ. 19

3.3 Particle ID x-correction factors. 20

3.4 Particle ID θ-correction factors. 20

vi

3.5 Particle ID . 21

3.6 MoNA ToF for 10Be Fragment . 22

3.7 Scattered Background . 24

3.8 Tracking of Background Events Through the Sweeper. 25

3.9 9Li Fragment Energy Distribution. 26

3.10 Neutron Kinetic Energy Distributions. 27

3.11 Opening Angle Distribution. 28

4.1 Observed Isotopes . 32

4.2 Velocity Difference Spectra . 34

4.3 Decay Energy Spectra . 35

4.4 Event Mixed Decay Energies. 36

4.5 Event Mixed Decay Energies. 37

4.6 Efficiency of the Experimental Setup 38

4.7 Simon et al 10Li Decay. 41

4.8 9Li + n Decay Energy Spectrum . 42

4.9 9Li and 10Li Level Scheme. 43

4.10 Deák et al 10Be + n Relative Velocity. 45

4.11 Peters et al 11Be Decay. 45

4.12 10Be + n Decay Energy Spectrum . 46

4.13 10Be and 11Be Level Scheme. 47

vii

4.14 Thoennessen et al 12Be + n Relative Velocity. 49

4.15 12Be + n Decay Energy Spectrum . 50

4.16 12Be and 13Be Level Scheme. 51

4.17 Schiller et al 23O Decay. 52

4.18 22O + n Decay Energy Spectrum . 53

4.19 22O and 23O Level Scheme. 54

5.1 Neutron ToF at Different Beam Rates 55

B.1 Example 1d ROOT Histograms. 85

B.2 Example 2d ROOT Histogram and Divided Canvas. 86

B.3 Example of 2d Gates in ROOT. 91

Images in this thesis are presented in color.

viii

Chapter 1

Introduction

1.1 Structure of Neutron Rich Nuclei

Nuclei are highly complex, many body quantum mechanical systems consisting of

spin 1/2 fermions (protons and neutrons) which interact via the strong nuclear and

coulomb forces. The strong force is attractive and responsible for holding nuclei to-

gether, while the coulomb force provides a relatively small repulsive interaction be-

tween the positively charged protons.

Due to their complexity, phenomenological models must be employed to describe

the structure of nuclei. The most widely used model is the shell model, which subjects

the constituent protons and neutrons in a nucleus to a mean field potential. The form

of this potential is adjusted to reproduce experimental observations. Typical shell

model potentials build upon the Woods-Saxon potential with a spin-orbit coupling

term [1]:

V (r) =
−V0

1 + e(−r−R)/α
− Vℓs. (1.1)

Subjecting nucleons to a potential well causes them to occupy discrete energy

levels. These energy levels are observed to group into shells, analogous to the case of

electrons in an atom. The energy gaps within a shell are relatively small, and those

between neighboring shells are much larger. Nucleons can be excited to higher energy

1

0

p
ro

to
n
s

0 10

10

neutrons
20 30

H
He

Li
Be

B
C

N

F
O

Ne
Na
Mg

A = 10

A = 20

stable

unbound - limit

bound

unbound - measured

A = 30

no bound excited states

Figure 1.1: Chart of the nuclides showing neutron rich isotopes in the Z ≤ 12 region.
Unbound isotopes and isotopes without any bound excited states are indicated on
the figure [2].

levels within the outermost shell or between shells if enough energy is added to the

nucleus.

There is evidence that the shell structure of very neutron rich nuclei is significantly

different from that of stable nuclei. Shell models describing nuclei in this region are

often tested based on their reproduction of nuclear energy levels. For nuclei lying

beyond the neutron dripline—those for which the number of neutrons is so great that

the nuclei are unstable with respect to neutron emission—the energy of the ground

state with respect to neighboring nuclei is also of interest.

1.2 Neutron Spectroscopy

The excitation spectra of ordinary nuclei are typically studied using γ-ray spec-

troscopy. This involves measuring the energy of the γ-rays emitted when an excited

nucleus de-excites to a lower energy state. For very neutron rich nuclei, however, ex-

cited states often lie above the one-neutron separation energy, as indicated in Figure

1.1. The lack of bound excited states makes it difficult to study the structure of these

nuclei with γ-ray spectroscopy. Thus other techniques must be employed to observe

unbound excited states, whose decay is dominated by neutron emission.

Single and multiple particle transfer reactions from stable beams have been used

2

to populate and characterize unbound states in lighter (Z ≤ 4) neutron-rich nuclei

[3, 4]. In order to populate heavier nuclei close to the dripline, radioactive beams are

required. In addition to transfer reactions [5–8], β-delayed neutron spectroscopy [9–11]

and invariant mass measurements following knockout reactions [8, 12, 13] have also

utilized radioactive beams.

An alternative method to populate excited states of very neutron-rich nuclei with

stable beams is sequential neutron decay spectroscopy (SNDS). In this method the

excited nuclei are produced in heavy-ion reactions and the decay fragments are mea-

sured in coincidence with the emitted neutrons in a collinear geometry.

Early SDNS experiments detected neutrons and fragments at large angles relative

to the beam [14–16]. An example setup, taken from Ref. [15], can be seen in Figure 1.2.

In these early experiments, the angular separation between fragments and neutrons

was needed to allow for event by event separation of neutrons and charged fragments.

Large angle detection is disadvantageous, however, because medium energy fragmen-

tation reactions are kinematically focused near zero degrees. Hence the yield for large

angle fragment-neutron coincidences is rather low. This is demonstrated in Figure 1.3,

which shows a simulated angular distribution, produced by the code LISE++ [17],

for the fragmentation of 18O into 9Li. As can be seen in the figure, the relative yield

peaks at zero degrees and falls off sharply at larger angles.

Later SDNS experiments, beginning with Kryger et al. [18], made use of a magnetic

spectrometer to separate charged fragments from neutrons. In this configuration, the

neutron detector can be placed at zero degrees relative to the incoming beam, resulting

in a greater yield of detected coincidences than in the case of a large angle setup. A

generic schematic of the zero degree setup is shown in Figure 1.4. The higher yield

afforded by the zero degree setup allowed more neutron rich nuclei to be studied,

including nuclei beyond the dripline [18–20].

Zero degree SDNS experiments performed in the past [18–20] have only measured

two observables: neutron velocity (vn) and fragment velocity (vf). In order to extract

3

a decay energy from these measurements, the authors must rely on the approximation

that the opening angle between the fragment and the neutron, θopen, is equal to zero.

This approximation is valid since the angular acceptance of these experiments is small.

In the zero degree approximation, decay energy can be approximated as:

Edecay ≃ µ

(

1
√

1 − v2
rel/c

2
− 1

)

, (1.2)

where µ is the reduced mass of the neutron-fragment system. In practice, experiments

using the small angle approximation make use of Monte-Carlo simulations to relate

Edecay to vrel. These simulation programs model Edecay with a chosen distribution,

then track the fragment and neutron through the experimental system, applying all

relevant resolution and acceptance effects. A simulated relative velocity curve is then

calculated and compared directly to the data.

Although the use of Equation 1.2 proves to be quite useful in extracting decay

properties of unbound nuclei, it is desirable to make a measurement of Edecay directly,

rather than rely on the approximation. This can be achieved by measuring θopen,

which makes it possible to calculate Edecay directly using the invariant mass method:

Edecay =
√

m2
f + m2

n + 2 (Ef · En − pf · pn · cos (θopen)) − mf − mn. (1.3)

Until now, the use of zero degree SDNS measurement techniques has been limited

to the study of light nuclei (Z ≤ 4) produced with light primary beams (Z ∼ 8).

Moreover, past SDNS experiments have relied on relative velocity measurements to

estimate decay energy [18–20]. In the present work, the feasibility of using zero degree

SDNS to extract a direct measurement of Edecay for heavier isotopes, starting with a

primary beam of 48Ca, is explored.

4

Figure 1.2: Example SDNS experimental setup at large angle, taken from Ref [15].

Angle (degrees)
-10 -5 0 5 10 15

R
el

at
iv

e
Y

ie
ld

 (
%

)

0

1

2

3

4

5

Figure 1.3: Simulated angular distribution for the projectile fragmentation reaction
9Be(18O, 9Li)X. [17].

5

Figure 1.4: Generic SDNS setup with neutron detector at zero degrees.

6

Chapter 2

Experimental Setup and

Calibrations

The experiment was performed at the National Superconducting Laboratory (NSCL)

at Michigan State University. A primary beam of 48Ca was accelerated to 90 MeV/u

using the coupled K-500 and K-1200 cyclotrons [21]. In order to allow reaction prod-

ucts to be bent by the sweeper magnet (see below), the beam was degraded to 62.8

MeV/u in the A1900 fragment separator [22]. The reason for first accelerating the

beam to 90 MeV/u then degrading it, as opposed to starting out with a ∼ 60 MeV/u

beam, is that 90 MeV/u 48Ca is a standard tune of the NSCL’s coupled cyclotron

system. Hence a higher beam quality is achieved by accelerating to 90 MeV/u then de-

grading, as opposed to accelerating directly to ∼ 60 MeV/u. After exiting the A1900,

the beam was delivered to a 94 mg/cm2 beryllium reaction target. A schematic of the

beam production setup can be seen in Figure 2.1.

Charged fragments produced in the reaction of calcium on beryllium were first

sent through a focusing quadrapole triplet and then deflected through a large gap

sweeper magnet [23]. Neutrons produced in the reaction were detected by the Modular

Neutron Array (MoNA) [24, 25] located at zero degrees. The timing start signal for

all events was provided by the cyclotron radio frequency (RF) signal. A schematic of

the experimental setup can be seen in Figure 2.2.

7

Figure 2.1: Schematic of the beam production setup.

8

Figure 2.2: Experimental setup.

9

Figure 2.3: Example TDC spectra from pulser calibration runs for sweeper TDCs (left
panel) and MoNA TDCs (right panel).

2.1 Sweeper Magnet

The dipole sweeper magnet has a bending angle of 43◦ and a vertical gap of 14 cm.

During the experiment it was set to a magnetic rigidity of 2.994 Tm, and a tungsten

beam blocker was placed on the low rigidity side of the magnet in order to block

unreacted beam particles. The focal plane box located after the magnet contains

detectors which can be used to measure position, timing, and energy information of

the charged fragments. The present experiment utilized a pair of 30 mm × 30 mm

cathode readout drift chambers (CRDCs) located 182 cm apart to measure focal

plane position and angle; a 65 cm long ion chamber to measure energy loss; and a

thin (4.5 mm) plastic scintillator to measure time of flight (ToF).

The TDCs for each of the timing detectors were calibrated using a pulser set to a

20 ns period; an example calibration spectrum can be seen in the left panel of Figure

2.3. Time offsets were set based on target-out runs with the sweeper magnet set to

beam rigidity. Running at this setting ensures that the central velocity of 48Ca events

in the focal plane is at 10.5 cm/ns, and dividing this into the known path length of

680 cm gives a travel time of 64.8 ns.

10

CRDC1 X-Position (mm)
-40 -20 0 20 40 60 80

C
R

D
C

1
Y

-P
o

si
ti

o
n

 (
m

m
)

-40

-20

0

20

40

60

80

100

1

10

210

310

410

Figure 2.4: CRDC 1 y-vs-x spectrum with a mask placed in front of the detector.

CRDC x (dispersive) positions were calculated based on the deposited charge on

each pad. The centroid of the charge distribution in pad space is calculated by first

finding the pad with maximum deposited charge and then performing a gravity fit

over all of the pads. A gaussian fitting routine is then called, using the centroid and

width of the gravity fit as initial parameters. The resulting centroid of the gaussian

fit is then defined as the x position in pad space. The slope needed to convert pad

position to position in mm is simply the width of each pad: 2.54 mm. Offsets are

determined using mask runs as described below.

Position in the y (non-dispersive) direction is measured based on the travel time

of the avalanche charge from the interaction point to the pads. The slope and offset

needed to turn the raw time signal into a calibrated position in mm is determined by

placing a mask with holes and a slit drilled at known positions in front of the CRDC

11

detector. The beam is then swept across the focal plane to illuminate the entire mask.

The measured CRDC position spectrum, as shown in Figure 2.4, only contain data at

the locations of the mask holes and slit. The slope is calculated based on the spacing

between the holes, while offsets in both the x and y directions are determined from

the known position of the center hole. The L-shaped pattern seen in the right side of

the figure is used to identify the center hole.

12

 (ns)diffT
-25 -20 -15 -10 -5 0 5 10 15 20 25

co
u

n
ts

0

0.5

1

1.5

2

2.5

310×

Figure 2.5: Time difference spectrum for the center bar in MoNA’s front layer.

2.2 MoNA

MoNA is an array of 144 plastic scintillator modules, each 10 cm high x 200 cm

wide x 10 cm deep. The scintillation light is detected on both ends of the modules by

photomultipiler tubes (PMTs). ToF is determined by the mean of the timing signals of

the two PMTs, while horizontal position is determined by the time difference between

the two PMT signals, as explained below. Vertical and lateral position are determined

based on the module in which the neutron interacts.

In order to convert the time difference between the left and right PMTs into a

calibrated position, a simple linear conversion was used:

x = m · t + b, (2.1)

13

Figure 2.6: Plot of MoNA y-angle vs. x-angle, demonstrating the limited acceptance
caused by the quadrupole tiplet.

where x is the position in the bar, t is the time difference between the two PMTs,

and m and b are the linear slope and offset, respectively. The needed parameters

m and b are determined experimentally using cosmic ray muons; Figure 2.5 shows

an uncalibrated time difference spectrum for one MoNA bar, taken from a cosmic

ray run. The physical edges of the bar are defined to be at 1/3 of the maximum

height on each edge of the spectrum, based on Monte Carlo simulations. Using the

200 cm length of the bar, along with the position in time space of each edge, m can

be calculated to be:

m =
200 cm

tright − tleft
, (2.2)

where tright and tleft are the right and left edges of the bar in time space. The

14

Figure 2.7: ToF spectrum for γ-rays from the production target to the center of the
front layer of MoNA.

offset, b, can then be determined by setting x = 0 at the halfway point between tleft

and tright, (tleft + tright)/2, and solving for b:

b = (tright + tleft) ·
m

2
. (2.3)

In the present experiment, MoNA was arranged in a configuration 16 modules

high by 9 modules deep, and the front face was placed at a distance of 15.38 m from

the reaction target. In this configuration, neutrons are shadowed by the opening bore

of the triplet, resulting in an angular acceptance of ±1.5◦ in the vertical direction and

+2.5◦

−2.0◦ in the horizontal direction, as shown in Figure 2.6.

MoNA TDCs were calibrated using a pulser set to a range of 320 ns and period

of 40 ns. The full range of each TDC was set to 350 ns. The time calibrator sends a

15

pulsed signal every 40 ns that is read into each MoNA TDC spectrum, as shown in in

Figure 2.3. The slope needed to convert raw channels into nanoseconds is determined

by simply dividing the average spacing between the spikes shown in the figure into

40 ns.

The overall time offset for MoNA was calculated using γ-rays originating from the

production target. Using the known γ-ray velocity of 29.998 cm/ns and the measured

distance from the production target to the center of the front layer of MoNA of 15.38

m, the ToF of a γ-ray from the target to the center of the front layer of MoNA was

calculated to be 51.3 ns. The TDC offset was then set such that the central γ-ray

ToF falls at 51.3 ns, as shown in Figure 2.7.

16

Chapter 3

Data Analysis

3.1 Particle Identification

The charged fragments are separated and identified using energy loss and ToF mea-

surements. The element (Z) identification comes primarily from the energy loss signal

in the ion chamber, while mass number (A) is determined from ToF. As can be seen

in Figure 3.1, the uncorrected ToF signal does not provide sufficient resolution to sep-

arate the fragments, due to the large momentum acceptance of the sweeper magnet.

Hence the ToF must be corrected event by event, based on the magnetic rigidity of

the fragment.

Since position and angle in the dispersive (x) plane correlate with magnetic rigid-

ity, the needed correction is performed based on x and θx at the focus of the triplet-

sweeper magnet setup. The method used to correct the ToF is to apply linear correc-

tion factors, as demonstrated in the following equation:

tcorr = t + cx · x + cθ · θ, (3.1)

where cx and cθ are empirically determined constants. Due to nonuniformities of

the magnetic field, the correction factors depend on the location of the particle in

angle-position phase space. To account for this effect, the phase space is divided into

17

ToF (ns)
55 60 65 70 75 80

E
n

er
g

y
L

o
ss

 (
au

)

0

20

40

60

80

100

120

140

160

1

10

210

Ca

P

Ne

Be

Figure 3.1: Uncorrected energy loss vs. ToF plot, with selected elements indicated.

a 5× 6 grid, as shown in Figure 3.2. Separate correction factors are then determined

for each grid region. As can be seen in Figures 3.3 and 3.4, the correction factors cx

and cθ trend upwards as x and θ increase, respectively. Figure 3.5 shows a sample

particle ID plot for one grid region, using corrected ToF.

Neutrons are identified simply by their ToF. Charged particles are deflected by

the sweeper, and the neutrons are cleanly separated from prompt γ-rays as shown in

Figure 3.6. Background neutron events are subtracted as described in Section 4.2.

18

Focal Plane X-Position (m)
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

F
o

ca
l P

la
n

e
X

-A
n

g
le

 (
ra

d
)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

1

10

210

310

410

Figure 3.2: Focal plane angle vs. position. The black outline indicates events which
are accepted for analysis, and the inner lines are the boundaries of the grids used for
calculating ToF corrections. The peak around θx ≃ 0.04 rad, x ≃ 0.005 m is composed
primarily of scattered background events, which are excluded as described in section
3.2.

19

 (rad)θ
-0.02 0 0.02 0.04 0.06 0.08 0.1

-100

0

100

200

300

400

500

600

--X Grid 5
--X Grid 4
--X Grid 3
--X Grid 2
--X Grid 1xC

Figure 3.3: x-correction factor (cx) as a function of θ position.

X (m)
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

-100

-50

0

50

100

150

200

 Grid 5θ--
 Grid 4θ--
 Grid 3θ--
 Grid 2θ--
 Grid 1θ--

θC

Figure 3.4: θ-correction factor (cθ) as a function of x position.

20

Corrected ToF (arbitrary units)
56 58 60 62 64 66 68 70 72 74 76

E
n

er
g

y
L

o
ss

 (
ar

b
it

ra
ry

 u
n

it
s)

0

5

10

15

20

25

30

35

40

-110

1

10

N/Z = 2

O22

O21

Be10

N/Z = 1.5

Figure 3.5: Sample particle identification plot. The vertical N/Z = 2 and N/Z = 1.5
bands, along with selected isotopes, are indicated in the figure.

21

ToF (ns)
-50 0 50 100 150 200 250 300

co
u

n
ts

0

200

400

600

800

1000

1200

1400

-Raysγ
Prompt

Neutrons
Prompt

Figure 3.6: MoNA ToF spectrum, gated on 10Be, showing clear separation between
prompt neutrons and prompt γ-rays.

22

3.2 Scattered Background

The upper left panel in Figure 3.7 shows a double peak in velocity for 20O. This double

peak structure is present in nearly all of the isotopes observed, and comparison with

coincident neutron spectra rules out the possibility of the double peak structure being

a result of the kinematics of the neutron emission. Further insight into the cause of

this double peak structure can be gained by plotting focal plane dispersive angle (θx)

versus fragment velocity, as shown in the remaining three plots in Figure 3.7. Events

falling outside of the outlined oval regions in these three plots are identified to be

background events, as explained below.

The sweeper magnet curves the trajectory of particles with a lower magnetic rigid-

ity more strongly than those with higher magnetic rigidity. A more drastic bending

corresponds to a more negative value of θx. Since magnetic rigidity is proportional to

mv/q, there is a positive correlation between θx and vfrag—slower particles are bent

more, making θx more negative, while faster particles are bent less making θx more

positive. This positive correlation between θx and vfrag can clearly be seen for the

events falling inside the ovals in Figure 3.7. Events falling outside of the ovals have

the opposite correlation—slower fragments come with a more positive angle. This

correlation indicates that these events must not have taken an unobstructed path

through the sweeper magnet.

The events shown in Figure 3.7 which fall outside of the oval regions do come in

coincidence with neutrons. These neutrons have a normal ToF and position distribu-

tion, indicating that they were produced at the reaction target. This makes it unlikely

that the suspected bad events in Figure 3.7 are due to scattered primary beam and

instead indicates that they are due to scattered reaction products.

Tracing the path of the suspected background particles through the sweeper’s

magnetic field provides further evidence that these events must be the result of scat-

tering. The nominal Bρ value of the suspected background events is approximately

23

Figure 3.7: Focal plane angle versus velocity plots for selected Oxygen isotopes. The
plot in the upper left corner is a projection onto the velocity axis for 20O. Events
falling outside of the indicated ovals are attributed to scattering off the low rigidity
side of the sweeper magnet.

2.8 Tm, based on the velocity of coincident neutrons. Tracking of a 2.8 Tm particle

through the field of the sweeper magnet results in the particle exiting the magnet in

an area covered by the tungsten blocker, as shown in Figure 3.8. Clearly the particles

in question can not have arrived in the focal plane by taking an unobstructed track

through the magnet.

Based on the arguments presented above, events falling outside of the region in

which θx and vfrag are positively correlated are excluded from the analysis.

24

Figure 3.8: Track of a 2.8 Tm particle through the magnetic field of the sweeper.
The blue curve is the path of the 2.8 Tm particle, while the black line represents the
central trajectory. The location of the tungsten blocker is indicated on the figure.

3.3 Decay Energy Reconstruction

Invariant mass spectroscopy is used to reconstruct Edecay, according to Equation 1.3,

which is reproduced here:

Edecay =
√

m2
f + m2

n + 2 (Ef · En − pf · pn · cos (θopen)) − mf − mn.

The equation contains the masses, energies and momenta of the neutrons (mn,

En, pn) and the fragments (mf , Ef, pf) as well as the opening angle θopen between the

two particles.

The neutron angle is calculated from the measured interaction point in MoNA, and

the energy and momentum is calculated using ToF and flight distance. Likewise for the

charged fragment, the energy is calculated using ToF and path length, while the angle

is reconstructed from a partial-inverse matrix produced using COSY INFINITY [26].

25

Figure 3.9: Fragment energy distributions at the reaction point for 9Li 10Be, 12Be and
22O. Open circles are the data and solid lines simulation.

3.4 Monte Carlo Simulations

In order to account for the experimental resolution and acceptance effects that are

present in the data, Monte Carlo simulations are performed which fold these prop-

erties into a theoretical lineshape. The code used presently is an extension of a code

originally written by H. Scheit for the analysis of 23O and 24O neutron decays which

were studied in the Sweeper-MoNA setup [8,27,28]. The simulation begins by describ-

ing the position, angle and energy of the incoming 48Ca beam, using a GSL gaussian

random number generator [29]. It then strips the beam of the number of protons and

neutrons needed to go from 48Ca to the excited fragment of interest.

An attempt was made to approximate the kinematics of the 48Ca fragmentation

26

Figure 3.10: Kinetic energy distributions (open circles) and simulation results (solid
lines) of neutrons in coincidence with 9Li, 10Be, 12Be and 22O. Both the data and the
simulation are gated on events with Edecay < 20 keV.

reaction using a Glauber model [30]. However, due to the violent nature of the reac-

tion and the limited Bρ acceptance of the sweeper magnet, the shape of the energy

distribution of fragments recorded into the data stream is dominated by acceptance

effects rather than the shape of the kinetic energy distribution at the target. This

results in many of the fragment energy distributions being peaked at values signif-

icantly higher or lower than the incoming beam energy, meaning that the recorded

data are taken from a small slice of the tail of the energy distribution at the target.

Since the precise shape of the energy distribution in this tail region is not known, and

because accepting only a small fraction of the generated events causes the necessary

27

Figure 3.11: Opening angle distributions for 9Li + n, 10Be + n, 12Be + n and 22O +
n, for events with Edecay < 20 keV. Open circles are experimental data and the solid
lines are simulation results.

run time of the simulation to become prohibitively large, it was determined that it is

not practical to simulate the fragment energy distributions using a kinematical model.

The method used to describe the fragment energy distribution is to simply give

the incoming beam an energy distribution which matches a fit to the kinetic energy

distribution of the data. Because of the fragment’s heavier mass, calculation of decay

energy is dominated by the kinematics of the neutron; hence the influence of using a

fitted input fragment energy on the final decay energy curve is negligible. Measured

kinetic energy distributions of the four fragments observed with a low energy reso-

nance (9Li, 10Be, 12Be and 22O)1 are shown in Figure 3.9 (open circles), along with

1It should be noted here that the labels 9Li, 10Be, 12Be and 22O here refer to the species of

28

fits to the data which are input into the simulation (solid lines). For 9Li, 12Be and

22O, the shape of the energy distribution is approximated as a gaussian, while 10Be

is fit with a gaussian tail on either side of the curve and a flat distribution in the

middle.

The next step in the simulation program is to model the de-excitation of the ex-

cited nucleus via neutron emission. In this step, the excited nucleus loses one neutron,

resulting in a system composed of the neutron and the remaining charged fragment.

The relative energy distribution of the neutron and charged fragment is generated

based on what is known about the spectroscopic properties of the nucleus in ques-

tion. The relative energy distributions used to model the decay of the present data

are discussed in Section 4.2.

After it exits the target, the charged fragment is tracked to the focal plane of

the sweeper magnet using a COSY forward map [26]. Here cuts are placed on the

data such that only those events which fall inside the physical dimensions of the

focal plane detectors are accepted. Software cuts equivalent to those used to filter

out scattered background data are also applied at this time. In order to simulate the

resolution of the CRDC and timing detectors, the position, angle and time values

are given a gaussian spread, based on the known resolutions of the detectors. From

these randomized focal plane positions and angles, the angle of the fragment at the

reaction point is reconstructed using a four parameter partial inverse matrix [31, 32]

produced using COSY. The energy of the fragment is also calculated based on the

ToF and mean flight path.

The neutron is tracked to its position in the first layer of MoNA. At this point, its

horizontal position is given a gaussian spread to simulate resolution, and its vertical

position is set to the center of the bar in which it interacts. The lateral position

of the interaction is inconsequential to the calculation of neutron energy; hence all

neutrons are assumed to interact in the first layer of MoNA. However, the lateral

charged fragment remaining after the excited nucleus decays via neutron emission.

29

position within this layer is randomized to reproduce the effects of ToF resolution.

Neutron energy is then calculated based on the randomized ToF and flight distance,

and the angle of the neutron as it exits the target is calculated from the randomized

interaction point in MoNA.

From the neutron and fragment energies and opening angle, a simulated decay

energy distribution is calculated, using Equation 1.3. Since the parameters that go

into calculating this decay energy include experimental resolution and acceptance

effects the resulting curve can be compared directly to data. Plots of the simulated

decay energy curves for the fragments 9Li, 10Be, 12Be and 22O are presented along

with a discussion of the experimental results in Section 4.2.

As can be seen in Equation 1.3, the parameters which are most important to

calculation of the decay energy are fragment kinetic energy, neuron kinetic energy

and the opening angle between the fragment and the neutron. For the fragments 9Li,

10Be, 12Be and 22O, Figures 3.10 and 3.11 show comparisons between simulation (solid

lines) and data (open circles) for kinetic energy and opening angle, respectively. The

figures exclude events for which Edecay ≥ 20 keV. This is done to reduce the effect of

background neutron events which dominate at higher decay energies, as demonstrated

in Section 4.2.

Detailed instructions on how to run the simulation program can be found in Ap-

pendix A.

30

Chapter 4

Results and Discussion

4.1 Results

The isotopes which could be identified and separated and which were produced in

sufficient quantities to be studied are indicated on a chart of nuclides in Figure 4.1.

The range of isotopes is determined by the Bρ and the momentum acceptance of

the sweeper magnet. For Z > 10 the ToF resolution is not sufficient to separate

neighboring isotopes.

Figure 4.2 shows relative velocity spectra for the three most prevalent fragments

of each element from lithium through neon. The spectra of 9Li, 10Be, 12Be, and 22O

show a peak near zero relative velocity, suggesting the presence of a neutron-unbound

state with small decay energy. The enhancement near zero relative velocity in 11Be

is attributed to contamination from 10Be. All other fragments, including those not

displayed in the figure, have a rather broad shape indicative of a background distri-

bution.

The presence of a coherent neutron decay in 9Li, 10Be, 12Be, and 22O can be con-

firmed by doing an event mixing calculation to give an estimate of the background

arising from uncorrelated neutron events. For a given fragment, the event mixing is

performed by pairing each fragment event with a neutron that comes in coincidence

31

Neutrons

P
ro

to
n

s

0
0

5

5

10

10

15

15

20

20

25 30 35

--H
--He

--Li
--Be

--B
--C

--N
--O

--F
--Ne

--Na
--Mg

--Al
--Si

--P
--S

--Cl
--Ar

--K
--Ca

--Unbound
--Unstable
--Stable

Figure 4.1: Chart of the nuclides. Isotopes outlined in white were observed in sufficient
quantities to be studied.

with a different isotope. The decay energy calculation of Equation 1.3 is then carried

out using the mixed events. Figure 4.4 shows the results of this event mixing calcu-

lation, superimposed with the experimental data, for 9Li, 10Be, 12Be, and 22O. For

each of the four fragments, there is clearly a low energy peak rising above the event

mixed spectrum. In contrast, Figure 4.5 shows event mixed and real data histograms

for four representative fragments that do not have a low energy enhancement: 12B,

18N, 22F, and 26Ne. In this figure, the real data and event mixed histograms for these

fragments show no discernable difference.

As can be seen from Figures 4.2 and 4.3, the majority of the isotopes produced in

this experiment show no evidence of a coherent neutron decay. These isotopes possibly

possess a continuum of states above the one neutron separation energy, and since the

experimental resolution of the present setup is not sufficient to separate closely spaced

states, the resulting spectrum resembles a broad background distribution. Another

possibility is that there is an isolated unbound state present, but that it is at too high

of an energy to be observed, c.f. Figure 4.6.

The observation of only low decay energy states is not surprising and is due to the

32

limited angular acceptance of the experimental setup. Figure 4.6 shows the efficiency

of the entire setup as a function of decay energy for a Monte-Carlo simulation [27] of a

flat decay energy distribution from 0 to 1 MeV. The efficiency peaks at zero energy and

then falls off rapidly with increasing energy. This demonstrates a major limitation of

the method. The small angular acceptance is determined by the 4 inch bore diameter

of the focusing quadrupole magnet, which is essential for the identification of the

isotopes. In order to increase the acceptance using the present setup, a quadrupole

with a significantly larger bore would be necessary.

33

-3 -2 -1 0 1 2 30

20

40 Li9

-3 -2 -1 0 1 2 3

500

Be10

-3 -2 -1 0 1 2 3

50

100

150

200 Be11

-3 -2 -1 0 1 2 3

50

100 Be12

-3 -2 -1 0 1 2 3

50

100

150

200 B12

-3 -2 -1 0 1 2 3

100

200

300

400
B13

-3 -2 -1 0 1 2 3

20

40
B14

-3 -2 -1 0 1 2 3
0

20

40

60

C14

-3 -2 -1 0 1 2 3

50

100

150

200
C15

-3 -2 -1 0 1 2 3
50

100

150

200

250
C16

50

100 N17

50

100

150

200 N18

0

50

100

150
N19

-3 -2 -1 0 1 2 3

50

100 O20

-3 -2 -1 0 1 2 3

50

100
O21

-3 -2 -1 0 1 2 3

50

100
O22

-3 -2 -1 0 1 2 3

50

100 F22

-3 -2 -1 0 1 2 3

20

40 F23

-3 -2 -1 0 1 2 30

5

10

15 F24

-3 -2 -1 0 1 2 30

10

20

30 Ne25

-3 -2 -1 0 1 2 30

20

40 Ne26

-3 -2 -1 0 1 2 30

5

10

15 Ne27

 (cm/ns)f - VnV (cm/ns)f - VnV (cm/ns)f - VnV

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

Figure 4.2: Velocity difference (neutron minus fragment) for the most prevalent iso-
topes.

34

0 1 2 30

20

40

60

80
Li+n9

0 1 2 3

500

Be+n10

0 1 2 3

50

100

150

200 Be+n11

0 1 2 30

50

100

150
Be+n12

0 1 2 3

50

100

150

200
B+n12

0 1 2 3

100

200

300 B+n13

0 1 2 3
10

20

30

40

50

B+n14

0 1 2 3

10

20

30 C+n14

0 1 2 3

50

100

150
C+n15

0 1 2 3
50

100

150

200

C+n16

20

40

60

80 N+n17

50

100

150

200

250

N+n18

50

100

150 N+n19

0 1 2 3
20

40

60

80
O+n20

0 1 2 3

20

40

60

80
O+n21

0 1 2 30

50

100

150

O+n22

0 1 2 3

20

40

60

80

F+n22

0 1 2 3

20

40

60
F+n23

0 1 2 30

5

10

15 F+n24

0 1 2 30

10

20

30
Ne+n25

0 1 2 30

20

40 Ne+n26

0 1 2 30

5

10

15

20 Ne+n27

Decay Energy (MeV) Decay Energy (MeV) Decay Energy (MeV)Decay Energy (MeV) Decay Energy (MeV) Decay Energy (MeV)

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

co
u

n
ts

Figure 4.3: Decay energy spectra for the most prevalent isotopes.

35

Figure 4.4: Decay energy spectra (open circles) for isotopes showing evidence of a
resonance, with event mixing background (blue histograms) superimposed.

36

Figure 4.5: Decay energy spectra (open circles) for isotopes without a resonance, with
event mixing background (blue histograms) superimposed.

37

Decay Energy (MeV)
0 0.2 0.4 0.6 0.8 1

E
ff

ic
ie

n
cy

(%
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.6: Efficiency the experimental setup as a function of decay energy.

38

4.2 Analysis of Low Energy Decays

In the following, the spectra of the four isotopes showing evidence for the presence of

a low energy neutron decay state are analyzed in more detail. Experimental results

from the literature are presented for each nucleus, along with a brief overview of

theoretical considerations. The present data are then compared with past results.

The intent of this analysis is not to make independent measurements of the decay

properties of these nuclei, but rather to confirm that the present data are consistent

with previous measurements.

For each of the four isotopes, Monte Carlo simulations were performed as described

in Section 3.4, with the decay parameters for each individual isotope taken from the

literature. The results of these simulations and experimental data for the fragments

9Li, 10Be, 12Be, and 22O, which originate from states in 10Li, 11Be, 13Be and 23O,

respectively are shown in Figures 4.8, 4.12, 4.15 and 4.18. In the figures, background

contributions calculated by event mixing, as shown in Figure 4.4, are subtracted from

the data.

10Li

The ground state of the neutron unbound nucleus 10Li has been well studied [33], as

knowledge of the ground state properties of 10Li is essential for an understanding of

the Borromean nucleus 11Li [19, 34]. The general consensus is that the ground state

of 10Li is a virtual s-wave resonance in the 9Li + n system [33, 34]. Experiments

measuring ground state properties of 10Li are analyzed in terms of the scattering

length as, which is related to decay energy via:

as = −~/
√

2µE, (4.1)

where µ is the reduced mass of the 9Li + n system. A summary of previous results is

presented in Table 4.2. The most recent measurements [34] extract as = −30+12
−31 fm,

39

Year Authors Reaction −as (fm) Reference

1990 A.L. Amelin et al. 11Be(π−,p) 11Li 30+∞
−20 [35]

1993 R.A. Kryger et al. natC(18 O, 9Li+n)X ≥ 10 [18]

1994 B.M. Young et al. 11B(7Li, 8B) 10Li ≥ 15 [36]

1995 H. Zinser et al. natC(11Be, 9Li+n)X ≥ 20 [37]

1998 M.G. Gornov et al. 11B(π−,p)10Li 15+∞
−5 [38]

1999 M. Thoennessen et al. 9Be(18O, 9Li+n)X ≥ 20 [19]

2001 L. Chen et. al 9Be(11Be, X) 10Li ≥ 20 [39]

2001 M. Chartier et al 9Be(11Be, X) 10Li ≥ 20 [40]

2006 H.B. Jeppesen et al. 9 Li(2H,p) 10 Li 13–24 [41]

2007 H. Simon et al. natC(11Li, 9Li+n)X 30+31
−12 [34]

Table 4.1: Summary of previous measurements of the scattering length of the ground
state of 10Li.

and the relative energy spectrum from this measurement is shown in Figure 4.7.

In the present work, the decay energy of 10Li into 9Li + n is simulated assuming

an s-wave interaction, using the model described in Ref. [19]. A fit to the data at

as = −50 fm, consistent with Ref. [34], is shown in Figure 4.8. This decay is shown

on a level scheme in Figure 4.9.

40

Figure 4.7: Relative energy spectrum (top panel) for 10Li to 9Li + n from Ref [34].

41

 (MeV)decayE
0 0.2 0.4 0.6 0.8 1

co
u

n
ts

0

10

20

30

40
Li + n9Li -> 10

Figure 4.8: Background subtracted decay energy spectrum (open circles), with results
from Monte-Carlo simulation superimposed.

42

Figure 4.9: Level scheme showing the measured decay from 10Li to 9Li + n. Levels
are taken from Ref. [42].

43

11Be

11Be is particle bound, with a one-neutron separation energy of 504 keV [42]. The

lowest lying unbound excited state is located at 1778 keV [43]. A low energy neutron

decay originating from 11Be has been observed previously and attributed to a decay

to the first excited 2+ state at 3368 keV in 10Be [13, 15, 44]. Deák et al. [15] quote

a decay energy of 19(15) keV and assign this decay to the 3887(15) keV state in

11Be [43]. Peters [44] states a decay energy of 84(15) originating from the 3956(15)

keV 3/2− state in 11Be [43]. Pain et al. [13] do not attempt to assign the decay to

a specific state in 11Be and remark that the decay originates from excited 11Be at

approximately 4.0 MeV.

One-neutron knockout reactions selectively only populate specific states; therefore

it is possible that the low energy state at 19 keV of Ref. [15] was not observed

by Refs. [13, 44]. The relative velocity spectrum of Ref. [15] on the other hand was

probably not sensitive enough to resolve a possible contribution of the state at 84 keV

observed in Refs. [13,44]. Thus, the present decay of 11Be to 10Be + n is simulated with

two Breit-Wigner resonances as described in [8]. The energies and widths of the two

decays are Edecay = 19 keV; Γdecay = 10 keV and Edecay = 84 keV; Γdecay = 10 keV,

based on the level assignments of Refs. [15] and [44], respectively. The widths for

both decays are set to the upper limit of 10 keV, taken from Ref. [42]. Relative

contributions from each of the two states are set as free parameters, and the best fit

to the data is achieved with a 52.7% contribution from the 19 keV decay and a 47.3%

contribution from the 84 keV decay. The fit is shown in Figure 4.12, along with the

contributions from the 19 keV resonance (dashed) and the 84 keV resonance (dotted).

A level scheme including the observed transitions is shown in Figure 4.13.

It should be mentioned that the data could also be described by a single resonance

at Edecay = 30 keV, Γdecay = 65 keV. This fit is shown as the blue line in figure 4.12.

It is unlikely, however, that the data arise as the result of a single decay, due to the

large width required in order to describe the data with a single resonance.

44

Figure 4.10: Relative velocity spectrum (rightmost panel) for 10Be + n from Ref [15].

��

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� ���� �� ���� �� ���� �� ���� ��

�����������������
������������������

������������������
�������������������

'HFD\�HQHUJ\��0H9�

&
R
X
Q
WV
��
S
H
U�
�
�
�N
H
9
�

��%H���
G���
S���

7KHUPDO
6XP

������GDWD

Figure 4.11: Decay energy spectrum for 11Be to 10Be + n from Ref [44].

45

 (MeV)decayE
0 0.2 0.4 0.6 0.8 1

co
u

n
ts

0

100

200

300 + n
*

Be10Be -> 11

Figure 4.12: Background subtracted decay energy spectrum (open circles), with results
from Monte-Carlo simulations (solid black line) for 10Be + n. The Monte Carlo curve
includes contributions from a 19 keV resonance (dashed line) and 84 keV resonance
(dotted line). A simulated curve resulting from a single Breit-Wigner at E = 30 keV,
Γ = 65 keV is also included (solid blue line).

46

Figure 4.13: Level scheme showing the measured decay from 11Be to 10Be∗ + n. Levels
taken from Ref. [42].

47

13Be

Analogous the case of 10Li, knowledge of the ground state properties of neutron un-

bound 13Be is needed to understand the Borromean 14Be nucleus [34]. Theoretical

calculations predict the ground state of 13Be to be an s-wave close to the neutron

emission threshold [45, 46], though other models have suggested that it could be a

p-wave at approximately 30 keV above threshold [47].

Experimental investigations into the nature of the 13Be ground state have pro-

duced varied results. An SNDS experiment from a primary 18O beam observed a

low-lying s-wave resonance as the ground-state of 13Be [20]. This study used relative

velocity measurements to estimate the decay energy, and it extracted a scattering

length of as < −10 fm. However, the possibility of a p or d state at Edecay = 50(10) keV

with a width of Γdecay ≤ 10 keV could not be ruled out. Subsequent observations us-

ing a single proton-knockout reaction from 14B [48] or single neutron-knockout from

14Be [34] failed to observe this low-lying resonance. Instead a strong resonance at

approximately 700 keV was reported.

The present decay spectrum for 12Be + n indicates a low-energy decay similar to

Ref. [20]. Figure 4.15 shows the results of fits using an s-wave (solid line) and a Breit-

Wigner resonance (dashed line). The parameters used for the fits are as = −20 fm

(s-wave) and Edecay = 60 keV, Γdecay = 10 keV (Breit-Wigner), based on the results

presented in Ref. [20]. A level scheme placing the ground state of 13Be slightly above

12Be + n is also shown in Figure 4.16.

48

Figure 4.14: Relative velocity spectra for 12Be + n from Ref [20].

49

 (MeV)decayE
0 0.2 0.4 0.6 0.8 1

co
u

n
ts

0

20

40

Be + n12Be -> 13

Figure 4.15: Background subtracted decay energy spectrum (open circles), with results
from Monte-Carlo simulations superimposed. Two simulated curves are shown: an
s-wave with as = −20 fm (solid line) and a Breit-Wigner with Edecay = 60 keV,
Γdecay = 10 keV (dashed line).

50

Figure 4.16: Level scheme showing the measured decay from 13Be to 12Be + n. The 2
MeV state in 13Be is taken from Refs. [34,48]; all other levels are from Ref. [42].

51

Figure 4.17: Decay energy spectrum for 23O to 22O + n published in Ref [8].

23O

The Oxygen isotopes on either side of 23O both show evidence of being magic nu-

clei, thus making knowledge of the excitation spectrum of 23O important for shell

model calculations [8]. An attempt to study the first excited state of 23O using γ-ray

spectroscopy [49] failed to observe a decay, indicating that the state is unbound with

respect to neutron emission. A recent measurement using neutron spectroscopy [8]

has placed the energy of the first excited state at 2.8(1) MeV. This study employed a

two-proton knockout reaction from 26Ne to observe a decay of 45(2) keV from excited

23O to the ground state of 22O.

The present results shown in Figure 4.18 also indicate a resonance at a very low

decay energy. The fit shown in the figure corresponds to a Breit-Wigner resonance

with Edecay = 45 keV and Γdecay = 5 keV, consistent with the resonance parameters

in Ref. [8]. Figure 4.18 shows a level scheme of 23O, including the decay of the first

excited state to the ground state of 22O.

52

 (MeV)decayE
0 0.2 0.4 0.6 0.8 1

co
u

n
ts

0

10

20

30

40

O + n22O -> 23

Figure 4.18: Background subtracted decay energy spectrum (open circles), with results
from Monte-Carlo simulation (solid line). The simulation curve is the result of an
Breit-Wigner distribution at Edecay = 45 keV, Γdecay = 5 keV.

53

Figure 4.19: Level scheme showing the measured decay from 23O to 22O. Levels for
the two highest excited states in 23O come from Ref. [50], and the lowest lying state
in 23O is from Ref. [8]. Levels in 22O are taken from Ref. [42].

54

ToF (ns)
-50 0 50 100 150 200 250 300

co
u

n
ts

0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 5.1: Neutron ToF for normal (blue) and high rate (black) runs.

55

Chapter 5

Future Prospectives

The present experiment reaches nuclei beyond the dripline only for the lightest el-

ements (10Li and 13Be). Figure 3.5 shows that for heavier elements the populated

nuclei are significantly removed from the dripline. In order to observe decays of more

neutron-rich nuclei, the magnetic rigidity of the sweeper magnet was increased to

Bρ = 3.14 Tm. This corresponds to a shift of about one isotope for neon. The cross

section to populate these nuclei decreases, so the primary beam intensity had to be

increased to compensate, and this higher beam rate increased the random background

rate of neutron events. Figure 5.1 shows the neutron ToF for one of the production

runs for the data shown in Section 4.1 (blue line) and a high-rate run (black line).

The periodic features of the random background correspond to the cyclotron fre-

quency. The increasing random-to-real ratio makes it more difficult to extract the

signal from unbound resonances. A shift of only one isotopes towards the dripline

already increases the background rate by about 40%. Thus it was impossible to reach

the dripline for the heavier elements in the current experiment.

In the future SNDS could be extended to higher decay energies as well as heavier

masses. The angular acceptance could be increased by substituting the quadrupole

with the S800 spectrograph [51]. The target could be placed immediately in front of

the sweeper magnet which would eliminate the shadowing of MoNA due to the small

56

bore of the quadrupole. The increased flight path and higher resolution of the S800

will also enable isotopic separation up to significantly heavier elements.

However, it does not appear to be possible to populate and measure the decay of

neutron unbound states closer to the neutron dripline with SNDS in the near future.

The small cross section for the production of the dripline nuclei with stable beams

requires large beam intensities which in turn generate a large number of neutrons

from unrelated reactions. In the longer term SNDS could be used at the next genera-

tion radioactive beam facilities [52]. The unbound states could then be populated by

intense secondary beams closer to the dripline nuclei of interest.

57

Chapter 6

Summary

The method of sequential neutron decay spectroscopy (SNDS) has been applied for the

first time using medium mass projectiles (48Ca). The method succeeded in populating

and identifying unbound ground states of 10Li and 13Be as well as unbound excited

states in 11Be and 23O. The extracted resonance parameters were consistent with

values reported in the literature. The common feature of these states is their small

decay energy (<100 keV). The small angular acceptance of the experimental setup for

neutrons limited the observation to unbound states with small decay energies. Isotopic

separation could be achieved up to neon and was limited by the ToF resolution for

the charged particles.

The future study of neutron unbound states with higher decay energies will require

significant modifications of the experimental setup. The measurement of masses of

nuclei beyond the dripline using SNDS will have to wait for the next generation of

radioactive beam facilities.

58

Appendix A

Using the MoNA Simulation Code

A.1 Introduction

This document explains how to run simulations of the MoNA-Sweeper detector setup

using the “simple-track” code written by H. Scheit. The code is written in C++ and

uses Monte Carlo methods to simulate the influence that geometrical acceptance cuts

and finite detector resolution have on a measured decay energy spectrum. This allows

simulation results to be compared directly to experimental data. The simulation can

also be useful in determining how the system will respond to experimental setup

changes, such as changing the magnetic field of the sweeper, adding a blocker or

changing the distance of MoNA from the target. This information can be very useful

when planning for a new experiment as it allows the optimal running conditions to

be estimated ahead of time.

The simulation starts with an incoming beam with a gaussian distribution of

position, angle and energy. The beam is then stripped of a set number of protons and

neutrons to arrive at an excited nucleus, which then emits a neutron according to a

set decay model. The resulting fragment is then forward tracked through the sweeper

magnet to its position at CRDC1, and the emitted neutron is tracked to its position

in the MoNA detector. A .root file is then written containing the energy, position

59

and angle of the incoming beam; energy, position, angle, and time of the fragment

at the target and at CRDC1; and energy, position, angle, and time of the neutron

at MoNA. This file can then be analyzed to find the reconstructed target position,

angle, and energy of the fragment, along with the reconstructed decay energy curve.

A.2 Getting Set Up

To start, log into a 64-bit fishtank machine (lobster, shrimp, mussel, oyster,

octopus) with the account from which you plan to run the simulation. Note that you

must run from one of the 64-bit fishtank machines and not one of the 32-bit spice

machines.

In order to run the simulation, you first need to set some new environment vari-

ables for your user account. This will allow the simulation program to source and link

with the correct libraries when you are compiling or running the program. If you plan

to run the simulations as user mona, then these environment variables are already set.

Otherwise if you are running from your own account, the environment variables are

not set by default.

To set up your needed environment variables, cd to your home directory and open

up the .bashrc file. Scroll down to the bottom and add the following lines:

export ROOTSYS=/projects/proj6/mona-sim/soft/root/root_v5.12_00/

export PATH=$ROOTSYS/bin/:$ROOTSYS/include/:$PATH

export LD_LIBRARY_PATH=$ROOTSYS/lib/:$LD_LIBRARY_PATH

Then save the file and type:

> source ~/.bashrc

at the command prompt. You will now have the proper environment variables set in

your current session as well as any future ones that you start. This also “installs” the

MoNA collaboration version of ROOT for use on the fishtank machines.

60

Once you have the environment variables set, you need to set up a new directory

from which to run the simulation. The simulation program is managed with the

Subversion (SVN) repository, and you should start by checking out the latest version.

To do this, first create a new directory to fill with the simulation files. It is suggested

that you make use of the projects space set aside for the MoNA simulation, which

is located in /projects/proj6/mona-sim/. Go there and create your new directory;

then cd to it and type:

> svn --username mona co http://www.mpi-hd.mpg.de/cbsvn/st/branches/mona/0.1

with the password mona (if you are prompted for one). Once this process is done

running, type ls, and you should see a new directory called 0.1 This directory con-

tains all of the source code for the simulation program. You still need to compile the

program, however, so do:

> cd 0.1/

> make

This will create two new executables, st_mona and mona_analysis, which are the

simulation and analysis programs, respectively. There is still another executable,

st_geant, which needs to be created; to compile this do:

> cd st_geant

> ./compile.sh

It is also suggested that you make use of the /evtdata space set aside for mona

simulations, as the files produced by the simulation program can get rather large, es-

pecially as the number of simulated events increases. To set this up, type the following

commands to create your own directory in /evtdata:

> cd /evtdata/mona-sim-data/

> mkdir mysimdata

Then cd back to your 0.1 directory and make a link to the /evdata space:

61

> ln -s /evtdata/mona-sim-data/mysimdata/ .

Whenever you run the simulation program, save the output files in the mysimdata

directory.

A.3 Running the Simulation

Once you have set up your directory as described above, you are ready to begin

running simulations. All commands described from here on should be run from your

new 0.1 directory unless otherwise specified. The simulation program is run from the

command line and uses flags to set input and output variables. To run the simulation

program, one simply types:

> ./st_mona [-flags]

where [-flags] represents whichever flags you want to use in running the simulation.

To get a comprehensive listing of the available flags, type:

> ./st_mona -?

The three most important flags are -exp, -n, and -f; these flags set the experiment

number, number of simulated events to be run, and output file, respectively. The

-exp flag is followed by a string that represents a certain experiment number, and by

invoking this flag you set all other variables to their default value for that experiment.

The -exp flag should always be the first one typed after st_mona. Setting a given

-exp flag also instructs the program to use the proper forward COSY matrix for that

particular experiment.

The -n flag should be followed by the integer number of simulated events that you

wish to run. A suggested number which is a good compromise between run time, disk

space and statistics is 100,000 events. You may wish to run more events than this if

you want to eliminate statistical fluctuations in your output or if your simulation will

62

have large acceptance cuts, but anything more than 1,000,000 events is prohibitively

slow and should typically only be used if you want to make “curve-like” histograms

for publication. The default number of events run if you omit the -n flag is one.

As mentioned above, the filename is set using the -f flag, followed by the name of

your output file. The output file needs to have the .root extension, as the simulation

stores its output data in a ROOT file.1 If you forget to set the -f flag, the default

output filename is st_mona.root.

As an example, if you want to run a 100,000 event simulation for the experiment

number 03038, with all parameters set to the 03038 experiment defaults, and write

out the results to a file called Sim-03038.root, then you would type:2

> ./st_mona -exp 03038 -n 100000 -f Sim-03038.root

If you would like to see what the default parameters for the experiment number

you are running, then you will need to view the st_mona.cc file:

> less ./st_mona.cc

Scroll down through the file until you find the lines that look like this:3

else if (x == "03038") { // Kiss 7He

INFO("Using Default Values For Experiment 03038 (Kiss 7He)");

eBeam = 40.8; //\Beam Energy in MeV/u.

beamA = 8; //\Beam Mass in amu.

beamZ = 3; //\Beam Charge Number

dTarget = 192.2; //\Target thickness in mg/cm^2.

dEbeam = 0.01; //\Sigma of beam energy in percent.

resTime = .3; //\Resolution (gaussian sigma) of time measurements.

resTargetX = 1.; //\Resolution (gaussian sigma) of target X-position.

resCRDC1XY = 1.; //\Resolution (gaussian sigma) of CRDC positions.

resCRDC1ThetaXY = 1.; //\Resolution (gaussian sigma) of CRDC angles.

resMonaX = 1.; //\Resolution (gaussian sigma) of MoNA X-position.

resMonaBar = 1; //\Turns on/off MoNA bar discreetness (1=ON).

nNeutr = 0; //\Number of neutrons removed from beam.

nProt = 1; //\Number of protons removed from beam.

bSpotDx = 0.004; //\Sigma of the beam position in the X-direction.

1It is also possible to have the simulation write out to a gsl ntuple instead of a ROOT file; to do
this, give the filename the .gsltup extension.

2Note that the order of the flags, EXCEPT FOR THE -exp FLAG, does not matter.
3All positions are in meters and all angles are in radians unless otherwise specified.

63

bSpotDy = 0.008; //\Sigma of the beam position in the Y-direction.

bSpotDtx = 0.011; //\Sigma of the beam angle in the X-direction.

bSpotDty = 0.005; //\Sigma of the beam angle in the Y-direction.

bSpotCtx = 0.0; //\Centroid of the beam angle in the X-direction.

bSpotCx = 0.0; //\Centroid of the beam position in the X-direction.

bSpotCty = 0.0; //\Centroid of the beam angle in the Y-direction.

bSpotCy = 0.0; //\Centroid of the beam position in the Y-direction.

crdc1MaskLeft = 0.086; //\CRDC1 blocker position on the positive-X side.

crdc1MaskRight = -0.15; //\CRDC1 blocker position on the negative-X side.

crdc2dist = 1.00; //\Distance from CRDC1 to CRDC2.

monaDist = 8.208; //\Distance from the target to the center of the

//\first bar of MoNA.

}

The comments set off by //\ in the lines above explain what each of the variables

represent. Note that the nNeut and nProt variables are the respective number of

neutrons and protons stripped from the beam to get to the excited nucleus, which

always has one more neutron than the fragment that you see in your particle detectors.

So for example, if you were to simulate a 48Ca beam going to excited 23O, and then

the exited 23O emitting a neutron to become 22O + n, you would set nNeut and nProt

to 12 and 13, respectively.

In addition to the experiment specific defaults, there are also a number of global

defaults; the most important one is the excitation energy model, which is the type

of lineshape that describes the decay energy of the emitted neutron. The default

is set to be a uniform distribution between 0 and 5 MeV. There are a variety of

excitation lineshapes available, and the decay model can be changed using the -e flag

as described below.

A.4 Using Flags

As has been mentioned previously, nearly any input variable can be changed by using

the proper flags. This is very useful when running simulations as it allows parameters

to be adjusted “on the fly” to quickly see how they affect the overall measurement. The

help invoked by running st_mona -? (or st_mona --help) does a good job explaining

what each flag does. For reference the help output is reproduced here (some extra

comments have been added in square brackets, for more clarity):

64

usage:

-v Run verbose

-n Set number of events

-f Set output file name. Extension determines file type.

root -> ROOT file

gsltup -> GSL n-tuple (also a file *.gsltup.dsc is written, describing

the columns)

-geant <filename> Cause st_mona to write out neutron energy & angles to an

ASCII file called filename

-reac Set reaction model

glaub (normal fragmentation w/ glauber kick)

2body <Q-value> <Q-value spread> (two-body stripping)

n.b. spread is relative, e.g. 0.1 = 10% spread

-e Set decay energy model and parameters (MeV)

const <energy> [delta-function spike at <energy>]

uniform <e-low> <e-high> [uniform distribution]

e1 <e-low> <e-high>

therm <temp> [thermal with ‘‘temperature’’ <temp>]

gauss <centr> <sigma> [gaussian]

bw <centr> <gamma> [breit-wigner]

asymbw <energy> <RedWidth> <angMom> [energy-dependent breit-wigner]

-be Set beam energy per A

-bZ Set beam Z

-bA Set beam A

-dT Set target thickness

-dbe Set relative beam energy spread (sigma)

-rTx Set resolution of target-x

-rt Set time resolutions (ns)

-rxy Set resolution of CRDC1 xy (m)

-rth Set resolution of CRDC1 theta xy (rad)

-rMx Set resolution of MoNA X

-rMyz Switch MoNA Y and Z discretization on/off (1/0)

-dKE set Kinetic Energy loss/gain from the reaction (in MeV/u).

-strag scale

-glaub scale

-np number of removed protons

-nn number of removed neutrons

-md distance to MoNA (middle of A8)

-cmL position of left edge of blocker (before CRDC1)

-cmR position of right edge of blocker (before CRDC1)

-c2d distance between CRDC1 and CRDC2 (meters)

-ctx centroid of x angle in radians

-cx centroid of x position in meters

-cty centroid of y angle in radians

-cy centroid of y position in meters

-dtx sigma of x angle (rad)

-dx sigma of x posn (m)

-dty sigma of y angle (rad)

-dy sigma of y posn (rad)

-disType type of MoNA X distribution

-exp <exp number> set default values for experiment <exp number>

03033 - Nathan’s 23O, 22O

03038 - Kiss 7He

...

65

Unless otherwise specified, whenever you invoke a flag, it should be followed by a

number representing its argument(s).

As an example, if I want to run a simulation of the 03038 experiment, with the

following changes made to the default input parameters:

– Decay energy = Breit-Wigner with Edecay = 0.74 MeV, Γdecay = 0.1 MeV

– Beam energy = 42.0 MeV/u with 1% spread

– Centroid of beam x position = 0.005 m

– Centroid of beam x angle = 0.002 rad

– Centroid of beam y position = 0.004 m

– Centroid of beam x angle = 0.002 rad

– Sigma of beam x position = 0.003 m

– Sigma of beam x angle = 0.001 rad

– Sigma of beam y position = 0.002 m

– Sigma of beam x angle = 0.003 rad

– Resolution of CRDC positions = 0.004 m,

then I would type the following:

./st_mona -exp 03038 -n 100000 -f Sim-03038.root -e bw 0.74 0.1 -be 42.0 \

-dbe 0.01 -cx 0.005 -ctx 0.002 -cy 0.004 -cty 0.002 -dx 0.003 -dtx 0.001 \

-dy 0.002 -dty 0.003 -rxy 0.004

Doing this will give me a new file called Sim-03038.root, with the input param-

eters set as above.

The following subsections explain some of the more commonly used flags in more

detail; if the reader is simply interested in learning how to run the simulation, then

he/she can safely skip to section A.5

66

A.4.1 Decay Energy Model

As mentioned above, the decay energy model can be set using the -e flag. The most

common types of decays are the Breit-Wigner, energy-dependent Breit-Wigner, and

Thermal. The Breit-Wigner and energy-dependent Breit-Wigner represent the two

most common lineshapes for unbound resonances, and they are respectively invoked

with the bw and asymbw arguments to the -e flag. The bw argument expects two

numbers to follow it, representing (in order) central Breit-Wigner energy, and the

width of the lineshape; the asymbw argument is followed by three numbers repre-

senting (again, in order) central energy, reduced width, and angular momentum. The

thermal distribution is characteristic of a neutron background, and is invoked with

the therm argument to the -e flag; therm is followed by one number representing the

“temperature” of the thermal distribution, in MeV. Typical temperatures are usually

on the order of 1 MeV.

A.4.2 Stripping Reaction Model

The stripping reaction model can be changed by invoking the -reac flag. The global

default4 reaction is a simple Glauber model, which conserves the momentum of the

incoming beam. This model allows for the option of setting a momentum kick and

angular straggling scale, using the -glaub and -strag flags, respectively. The -glaub

and -strag flags are each followed by one number which represents the overall scale

for each parameter; the default value for both -glaub and -strag is 1.

A second stripping reaction model has also been added as it produces a better fit

to the data for the 03038 7He experiment. This is a “two-body” stripping reaction,

which conserves total energy as opposed to total momentum. It can be invoked by

following the -reac flag with the argument 2body; the program will then expect two

numerical arguments representing (in order): Q-value of the stripping reaction (in

4Note that since the Glauber model is the default reaction, you do not have to invoke the -reac
flag at all if you wish to use it.

67

MeV) and spread in the Q-value (in percent). So for example, if you wanted to model

your stripping reaction as a two-body reaction with Q = −8.0 MeV, dQ = 1%, then

your command to run st_mona should include:

-reac 2body -8.0 0.01

A.4.3 GEANT Output

It is possible to have st_mona write out neutron energy and angles into a text file

which can then be read into a GEANT simulation to more accurately model the

interaction of the neutrons in MoNA. To do this, use the -geant flag, followed by the

name of the text file that you wish to write out, e.g.

-geant geant_out.txt

Note that invoking the -geant flag will not affect the rest of the simulation program;

neutrons will still be tracked to MoNA as usual.

As mentioned above, the text file written by using the -geant flag can be read

into GEANT to do a more accurate simulation of the neutron interaction;5 the output

of the GEANT simulation is another text file, which can be integrated into your

existing simulation data using the st_geant executable. This program is located in

the st_geant subdirectory of your 0.1 directory. It takes in two files: a .root file

produced by st_mona, and a text file produced by GEANT, and merges the data into

a new .root file. This new file links the neutron events produced by GEANT with

the charged fragment events produced by st_mona, and it can be analyzed just like a

normal st_mona output. For more information on how to run the st_geant program,

go into the st_geant directory and type st_geant --help.

5Running the GEANT simulation is outside the scope of this manual; for information on how to
do this, contact Artemis Spyrou.

68

A.5 Analyzing Your Simulation

The .root file produced as described in Section A.3, contains only simulated target,

CRDC1, and MoNA parameters; it does not include the inverse reconstructed pa-

rameters necessary to compare simulation results directly with data. These inverse

reconstructed parameters can be calculated by using the program mona_analysis.

This program has two basic modes: it can either be used to calculate the needed

reconstructed parameters directly, with the results written out to a .root file, or

it can be used to convert the .root file produced by st_mona into a SpecTcl fil-

ter file which can then be analyzed using the SpecTcl_filter program available on

zuma.iusb.edu or on the NSCL spice machines.

To use mona_analysis to convert a .root file (called, e.g. simfile.root) into a

filter file, simply type:

> ./mona_analysis -flt -if simfile.root -of simfile.flt

Here the -flt flag tells the program to convert the .root file into a SpecTcl file; the

-if flag sets the name of the input file, and the -of flag sets the name of the output

file. Note that the output file when using the -flt option must have the extension

.flt.

If you wish to use mona_analysis to analyze your simulation file directly, then

the procedure is to run the program as follows:

> ./mona_analysis -if simfile.root -of simfile_ana.root -frag 6He

Doing this would run mona_analysis with on an input file called simfile.root

(set with the -if flag), and it would return a new file, simfile_ana.root (set with

the -of flag). The -frag flag tells the program what type of analysis to do; it sets

the inverse map to be used; the mass, charge, and brho of the fragment being recon-

structed; and the target thickness and material. So in the example above, the program

would perform the reconstruction using the parameters which are defined for the 6He

69

fragment. Note that the argument of the -frag flag must be a string which is defined

within the mona_analysis program; to see which strings are available, and the set-

tings used for each string, view the mona_analysis.cc file, and scroll down until you

see some lines that look like this:

else if (frag == "6He") {

INFO("Using settings for fragment 6He");

e->setMaps(m6He, m6Hei);

e->fragA = 6;

e->fragQ = 2;

e->dTarg = 188;

e->targA = 9;

e->targZ = 4;

}

Looking at the lines above, you can see that the "6He" flag sets the reconstructed

fragment to be 6He; target thickness to be 188 mg/cm2; and target material to 9Be.

It also tells the program to use the inverse map named m6Hei; the meaning of this

map name will be explained in Section A.6.

Once you have run mona_analysis, you now have a full set of simulated and re-

constructed parameters available to you, contained in the output files of st_mona and

mona_analysis (e.g. simfile.root and simfile_ana.root in the example above).

These files can be analyzed using the ROOT data analysis program. If you are un-

familiar with ROOT, some basic instructions for using it can be found in Appendix

B.

One important consideration to keep in mind is that the simulation and analysis

programs track and store every event, even those which are “unphysical,” such as

events for which the neutron does not hit MoNA or events for which the fragment

does not hit CRDC1. The program does flag these events by setting the kinetic energy

of the offending particle to zero. So for example, in an event for which the neutron does

not hit MoNA, the parameter representing neutron kinetic energy will be set to zero,

and likewise, for an event where the fragment misses CRDC1 (or hits the blocker),

70

the fragment kinetic energy parameter is set to zero. Whenever looking at simulation

results as a comparison to experimental data, the simulation spectra should always be

gated such that events with KEfrag = 0 or KEneutron = 0 are excluded. Depending on

the geometry of your individual setup, you may need to make other cuts as well; for

example the simulation does not flag events for which the fragment hits CRDC1 at a

large enough angle that it misses CRDC2. If you want to exclude those events, then

you need to calculate CRDC2 position based on the simulated position and angle at

CRDC1 and then apply the physical cuts directly.

A.5.1 Parameter Names

This section explains the names of parameters stored in the .root files created by

st_mona and mona_analysis. It assumes a basic level of knowledge of the ROOT

program. Readers who are not experienced in ROOT should read Appendix B first

and then return to this section.

The .root files output by st_mona and mona_analysis each contain an incom-

plete set of parameters; the st_mona file only contains simulated and forward-tracked

parameters, while the mona_analysis file only contains reconstructed parameters. In

order to view and compare simulated and reconstructed parameters, you will need to

use the AddFriend command available in ROOT.

Parameters in a file created by st_mona are stored in a TTree called t, and they

are named according to a system which denotes beamline position, particle number

(e.g. fragment or neutron), and parameter name. The system is best explained with

an example: the parameter denoting CRDC1 x-position is b7p0x, meaning that we are

at beamline position 7 (crdc1), looking at particle 0 (the charged fragment), and the

final x tells us that we are looking at x-position. The available parameter numbers are

0 (charged fragment) and 1 (neutron). The beamline numbering scheme is described

in Table A.5.1, and the parameter naming scheme in Table A.5.1.6 For a few more

6Each of the parameters listed in Table A.5.1 is not necessarily available for every beamline

71

Number Location
1 Before Target
2 After Target
7 CRDC 1
13 MoNA

Table A.1: Numbering scheme for beamline elements as produced by the program
st mona.

Name Parameter
Ekin kinetic energy (MeV)

x x-position (m)
y y-position (m)
tx x-angle (rad)
ty y-angle (rad)
z z-position (m)
t time (ns)

Table A.2: Naming scheme for simulation parameters as produced by the program
st mona.

examples, consider the following:

b1p0Ekin – Beam energy before the target.

b2p0tx – Fragment x-angle after the target.

b13p1t – Neutron ToF to MoNA.

Parameters for analyzed .root files are stored in a TTree called at. Because the

analyzed file does not contain parameter values at a variety of beamline positions, it

uses a more straightforward parameter naming scheme, as described below:

deltaE[1] – Energy loss in the target.

exen – Decay energy.

tLab – Opening Angle betwen fragment and neutron.

vRel – Relative velocity betwen fragment and neutron.

nVel – Neutron velocity.

element. To get a full listing of the available parameters, from within ROOT, use the t.Print()
command. There are also a few parameters specific to b2 which are not included in Table A.5.1;
these are: TP (position of the interaction within the target), dE (energy loss in the target), and
R exen (excitation energy).

72

fVel – Fragment velocity.

fragKinE – Fragment Kinetic Energy.

neutronKin – Neutron Kinetic Energy.

nTheta – Neutron θ.

nPhi – Neutron φ.

fTheta – Fragment θ.

fPhi – Fragment φ.

fpATA – Fragment x-angle at target.

fpBTA – Fragment y-angle at target.

fpYTA – Fragment y-position at target.

fYfp – Fragment y-position at CRDC1.

fBfp – Fragment y-angle at CRDC1.

fXfp – Fragment x-position at CRDC1.

fAfp – Fragment x-angle at CRDC1.

There are more parameters present in the at tree, but they are not needed for a

typical user.

A.6 Customizing the Simulation

It is likely that at some point you will need to add code to the simulation in order to

continue with your analysis. Since the code is managed with SVN, modifying it is a

fairly low-risk task, even for those who are inexperienced in C++. As long as the user

does not “check in” his/her changes, the worst case scenario of a bad modification

is that the code in the user’s directory has to be scrapped, and the current version

re-checked out from the repository.

The most common type of modification is to add a new experiment option to

the simulation. In order to do this, you need to modify three files: st_mona.cc,

73

mona_analysis.cc, and mk_maps_icc.sh. The first file that you should modify is

st_mona.cc. Open up this file and scroll down until you see lines that look like:

else if (x == "05039") { // Hoffman 25O

INFO("Using default values for experiment 05039 (Hoffman 25O)");

eBeam = 84.0;

beamA = 26;

beamZ = 9;

dTarget = 500.0;

dEbeam = 0.025;

resTime = 0.3;

resTargetX = 0.0007;

resCRDC1X = 0.0013;

resCRDC1ThetaX = 0.0013;

resCRDC1Y = 0.0013;

resCRDC1ThetaY = 0.0013;

//resMonaX1 = 0.04;

//resMonaX2 = 0.10;

//resMonaP = 0.66;

//resMonaBar = 1;

nNeutr = 0;

nProt = 1;

bSpotDx = 0.005;

bSpotDy = 0.004;

bSpotDtx = 0.009;

bSpotDty = 0.0035;

bSpotCtx = 0.008;

bSpotCx = 0.00;

bSpotCty = -0.001;

bSpotCy = -0.001;

crdc1MaskLeft = 0.15;

crdc1MaskRight = -0.15;

crdc2dist = 1.88;

monaDist = 8.20;

}

Copy and paste these lines to create a new experiment. In the new lines, replace the

05039 in the line else if (x == "05039") with the name that you want for your

new experiment. You should also change the string in the line beginning with INFO

to something sensible for your new experiment. All of the other variables should be

set to their proper values for your experiment. An explanation of what each variable

represents is given in Section A.3.

The next lines that you should edit look something like this:

74

else if (beamA - nProt - nNeutr == 25 && \

beamZ - nProt == 8 && beamZ == 9) {

dipole = new StPropMapCosy(m24O);

dmona = new StPropDrift(monaDist - m24O.getLen());

INFO("using 24o map for 05039");

}

As before, copy and paste these lines, and change the line reading

beamA - nProt - nNeutr == 25 && beamZ - nProt == 8 && beamZ == 9)

to reflect your new number of total particles lost, number of protons lost, and beam

Z. Recall that the final mass number should be that of the excited nucleus, before

emitting the final neutron. You also need to change the map name in the second and

third lines. In the example shown above, the map name is m24O, so you would replace

m24O with your new map name. At this point the map name can be anything you

want; you will give it a meaning later when you modify mk_maps_icc.sh. Finally you

should change the string coming after INFO to reflect the new map and experiment.

The final change to make to st_mona.cc is to update the help message to include

your new experiment. This is not necessary for the code to run properly, but doing

it will make everyone’s life a little easier. Scroll up near the top of the file until you

find the lines:

" -exp <exp number> set default values for experiment <exp number> \n"

" 03033 - Nathan’s 23O, 22O\n"

" 03038 - Kiss 7He\n"

" 03048a - 12Be g.s. to 10Be\n"

" 03048b - 11Be Coul to 10Be\n"

" 05039 - Hoffman 25O\n"

..

Pick a line to copy and paste, and update the <exp number> and description fields

to reflect your new experiment.

The next file that you should edit is mona_analysis. Only one set of lines needs

to be updated here: those that look like:

75

else if (frag == "24O") {

e->setMaps(m24O, m24Oi);

e->fragA = 24;

e->fragQ = 8;

e->dTarg = 500;

e->targA = 9;

e->targZ = 4;

}

Copy and paste these lines, and then change the text reading frag == "24O" to

reflect your new fragment name (in this example, you would replace 24O with the

new name. The new name can be anything you like (but it must be unique), and it

is what follows the -frag flag when you run mona_analysis, as described in Section

A.5. Next you should update the line reading e->setMaps(m24O, m24Oi); This line

is what sets the names of the forward and inverse maps. The name of the forward

map, which in this example is m24O, must match the new map name that you set in

st_mona.cc. The name of the inverse map—m24Oi—can be anything you want since

it has not yet been set elsewhere, but it is suggested that you stick to the convention

of simply adding an i to the end of the forward map name. Finally you will need to

update the remaining lines to reflect the correct variable values for your experiment;

the meaning of each variable is explained in Section A.5.

The last file that you need to edit, mk_maps_icc.sh is what ties together the map

names that you set in st_mona.cc and mona_analysis.cc to the actual COSY map

files. In the mk_maps_icc.sh file, copy and paste the lines that look like:

echo "// forward map"

mkMapEntry m24O 24 8 1.5741 3.77548 24o-cosy.map

echo "// partial inverse map"

mkMapEntry m24Oi 24 8 1.5741 3.77548 24o-sch.imap

You need to edit the two lines beginning with mkMapEntry. These two lines set

variables for the forward map (top line) and inverse map (bottom line). The expla-

76

nation of each entry in these lines is given below:7,8

m24O and m24Oi – Name of the forward and inverse maps, as assigned in

st_mona.cc and mona_analysis.cc.

24 – Mass of the tracked/reconstructed fragment (the fragment that is left

after neutron emission).

8 – Charge of the tracked/reconstructed fragment.

1.5741 – Central track distance from the target to CRDC1.

3.77548 – Brho setting of the map file that you are using.

24o-cosy.map and 24o-sch.imap – Filenames of your COSY forward and

inverse map files.

Once you have edited these lines and saved all of your files, you should be ready

to recompile the programs. To do this, from within the 0.1 directory, type make,

and if there are no errors you should end up with new executables that include your

changes.

A.7 Using SVN

If you have made modifications to your simulation code that you think might be

useful to the rest of the collaboration, then you should check these changes into the

respsitory so that others can access your updated code. It is also a good idea to

regularly update your own directory so that your code always contains the latest

implementations. Below are some of the basic SVN commands that you will need:

> svn update – Update to latest code version.

7Note that both the forward and inverse map files must be in “COSY format” (without line
headers) and not “SpecTcl format” (with line headers). If need to convert a map file to COSY format,
use the program spctkl2cosy, which is located in /projects/proj2/sweeper/bin/. This program will
only run on 32-bit spice machines and not the 64-bit fishtank machines.

8It is recommended that you DO NOT follow the past practice of copying individual map files into
the 0.1 directory, as doing this leads to clutter and compatibility issues between different versions.
A better method is to simply include the full filepath of the map file in its original location, e.g.
/projects/proj2/sweeper/maps/.../*.map

77

> svn add <filename> – Add a file to the repository.

> svn ci <filename> – Check in file to SVN (must be added first).

> svn co <filename> – Check out file from SVN.

> svn stat – View status of all SVN files.

As explained above, if you want to check in your changes to the repository, use

the command svn ci <filename>, where <filename> is the name of the file that

you are checking in (you can also use svn ci without the <filename> argument to

check in all files in your directory). When you use the svn ci command, a vi editor

will automatically open up to allow you to make a comment on the changes that you

are adding. To begin inserting text, press i, and when you are done writing your

comment, hit the esc key, followed by :wq and then hit the Enter key.

Before you check in any changes, your new code should be well tested to ensure

that there are not any bugs. You should also be sure that your new code does not cause

any incompatibilities with the existing code. This can be checked using the svn stat

command, which lists all edited files in the directory with a status character before

the filename. The status characters are as follows:

M–modified (not checked in yet)

A–added

?–unknown (not added yet)

C–conflict (please edit to agree with checked out version)

U–updated

If one of your files is flagged as having a conflict, you must edit the file until the

conflict is resolved. Once you have done this, type:

> svn resolved <filename>

to tell subversion that you have resolved the conflict. For more information on

using SVN, see the documentation at: http://subversion.tigris.org/.

78

Appendix B

Using ROOT

B.1 Introduction

ROOT is an “object oriented data analysis framework” written by programmers at

CERN. It is particularly suited for analysis of the large data sets found in nuclear

physics. It is capable of performing basic analysis tasks such as gating, histograming

and fitting, in addition to much more complex tasks. ROOT is primarily command

line driven, using the CINT C/C++ interpreter.

This manual is intended to introduce those who are new to ROOT to some of its

basic functions. After reading this manual you should have a “SpecTcl like” level of

functionality in using ROOT, i.e. you should be able use ROOT perform all of the

tasks that are possible in SpecTcl (plus a few more).1 At times the manual may gloss

over some of the more subtle subjects involved in using ROOT; this is done in the

interest of promoting simplicity and quick learning of the program. The manual also

makes purposeful use of imprecise terminology as opposed to technically correct C++

jargon, with the hope that it will be better understood by readers with little or no

knowledge of C++.

1SpecTcl is just being used as an analogy here; if you aren’t familiar with SpecTcl, don’t worry
about it.

79

B.2 Installing ROOT

Before you can start to use ROOT, you need to “install” it (e.g. set the needed

environment variables) on your NSCL user account.2 If you have already set up your

account to run st_mona simulations—as outlined in Appendix A—then you are all

set and can begin using ROOT on any of the 64-bit fishtank machines. Otherwise,

open up your ~/.bashrc file, and add the following lines to the end of the file:

export ROOTSYS=/projects/proj6/mona-sim/soft/root/root_v5.12_00/

export PATH=$ROOTSYS/bin/:$ROOTSYS/include/:$PATH

export LD_LIBRRY_PATH=$ROOTSYS/lib/:$LD_LIBRARY_PATH

Then save the file and type

> source ~/.bashrc

Once you have done this, the command to begin the ROOT program is:

> root.exe

When you type this at the command line, ROOT should start up and you should

see something like this:

* *

* W E L C O M E to R O O T *

* *

* Version 5.12/00 10 July 2006 *

* *

* You are welcome to visit our Web site *

* http://root.cern.ch *

* *

FreeType Engine v2.1.9 used to render TrueType fonts.

2If you are logged into the NSCL servers as user mona, then the environment variables are already
set; in this case you can go ahead and begin using ROOT on the 64-bit fishtank machines.

80

Compiled on 15 November 2006 for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.16.13, June 8, 2006

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

ROOT’s command line works much like a BASH shell: you can scroll through your

most recent commands by hitting the up-arrow key, and auto-complete recognized

commands using the Tab key. You can quit the program by typing .q at the command

line. Also note that all commands in ROOT are case sensitive.

B.3 Files and Trees

ROOT reads data that is stored in a binary file with the .root extension. These

files are capable of storing many types of objects, but for the purposes of this doc-

ument we will focus on the most basic one: the TTree. There are two example files,

example1.root and example1_ana.root located in the /projects/proj1/MoNA/ROOT/

directory. It is suggested that you use those two example files to practice the com-

mends being presented throughout this document.

To read data from a root file, you must first read the file into ROOT’s memory.

There are two ways to this. The easiest is to simply follow the root.exe command

by the name of the file, e.g.

> root.exe example1.root

The second way is to open up the file once you have already begun the program;

you can do this using the following command:

TFile * _file0 = TFile::Open("example1.root");

One note about this method: the _file0 can be thought of as a “variable” name

(more accurately, it’s the name of the pointer to the TFile object). It could be set to

anything that you wish.

81

Event # Value of P1 Value of P2
1 74.689 5670.4
2 93.452 6987.6
3 45.657 3331.4
4 22.389 3787.6
5 61.723 2229.3

Table B.1: Simple example of the type of data stored in a TTree.

Now that you know how to read a file into ROOT, we’ll go a bit into what makes

up a ROOT file. As mentioned above, the most fundamental part of a ROOT file is

the TTree; a TTree is essentially a collection of “events” and parameters. Each event

is a collection of data values for all of the parameters present in the file. As a simple

example, consider a TTree that stores two parameters, P1 and P2, and five events.

The structure of the data might look something like what is shown in Table B.3, with

each event number being associated with specific values of P1 and P2.

Each TTree has a “name” associated with it, and in order to perform operations

on the tree, you must know what that name is. To see the names of all the trees

contained with the file you have open, use the command:

.ls

and you should see something like:

root [2] .ls

TFile** example1.root

TFile* example1.root

KEY: TTree t;1 simple-track tree

Here the line KEY: TTree t;1 simple-track tree tells you that you have a

TTree with the name t stored within this particular ROOT file.

The parameters in a TTree are given names by the person or program who writes

the ROOT file; to see a list of all of the parameters stored in your particular TTree,

type:3

3Throughout this document, we will use the tree name “t” to represent a generic TTree, and

82

t->Print("all");

doing this will show you a bunch of entries that look like this:

..

*Br 4 :b1p0Ekin : b1p0Ekin/D *

*Entries : 100000 : Total Size= 802866 bytes File Size = 697625 *

*Baskets : 25 : Basket Size= 32000 bytes Compression= 1.15 *

..

The lines above give information about the parameter called b1p0Ekin. For the

purposes of this document, you just need to be able to read off the parameter name

from lines like the one above: as you can see the name, b1p0Ekin, is located on the

first row directly after the first colon.

One useful (and necessary if you want to look at MoNA simulation data) feature

of ROOT trees is the ability to merge TTrees from separate ROOT files together,

by adding the second tree as a “friend tree” to the first. Essentially, when you add

a friend tree to an existing tree, the existing tree looks as if it contains all of the

parameters present both in itself and in the friend tree. As as example, consider

the files example1.root and example1_ana.root. Start up ROOT and load in the

file example1.root. Now add as a friend the tree contained in example1_ana.root"

(which is named at) by doing the following:

t->AddFriend("at=at","example1_ana.root");

Once you have done this, you can seamlessly work with parameters in

example1 ana.root, just as if they were contained in example1.root.

In addition to the parallel merging capabilities of AddFriend, it is also possible to

merge multiple files in series, such that a group of files can be used as if it were one

large file. A grouping of files in series is called a TChain, and the syntax to create one

is:

all “operations” on a TTree will assume that the tree name is “t” (unless specifically specified
otherwise).

83

TChain * mychain = new TChain("t");

Note that the t in the expression above should be substituted with the actual

name of the TTrees in the files that you are chaining together.

The new TChain() command shown above only creates a new TChain; you still

need to add files to it using:

mychain->Add("file1.root");

mychain->Add("file2.root");

mychain->Add("file3.root");

mychain->Add("file4.root");

mychain->Add("file5.root");

mychain->Add("file6.root");

mychain->Add("file7.root");

...........................

Once you have done this you can treat mychain as if it were a “normal” TTree

name.

B.4 Drawing Histograms

Histograms are one of the most commonly used methods of viewing data in nuclear

physics. A histogram in ROOT can be thought of as the analogy of a spectrum in

SpecTcl: for a given parameter it displays the number of counts falling within a user-

defined bin range. The command used to draw a histogram is best illustrated with an

example: lets say I am interested in seeing a histogram of the parameter b1p0Ekin,

and I want to let ROOT set the histogram limits and bin ranges automatically. In

order to do this, the command is as follows:

t->Draw("b1p0Ekin");

The histogram drawn by this command is shown in Figure B.1(a). Now lets say

that I want to draw another histogram of b1p0Ekin, but I want to manually set it to

display from 2960 to 3070 in 300 bins. The command to do this is as follows:

84

t->Draw("b1p0Ekin>>hst(300,2960,3070)");

which draws the histogram seen in figure B.1(b). The instructions to set the binning

and ranges are contained in the characters >>hst(300,2960,3070). Here hst is the

histogram “name,” and could be set to anything.4 The 300, 2960, and 3070 represent

the number of bins, low bin and high bin, respectively.

htemp
Entries 100000
Mean 3017
RMS 15.11

b1p0Ekin
2960 2980 3000 3020 3040 3060 3080

0

500

1000

1500

2000

2500

3000

3500

4000

htemp
Entries 100000
Mean 3017
RMS 15.11

b1p0Ekin

(a)

hst
Entries 100000
Mean 3017
RMS 15.08

2960 2980 3000 3020 3040 3060
0

200

400

600

800

1000

hst
Entries 100000
Mean 3017
RMS 15.08

b1p0Ekin

(b)

Figure B.1: Example ROOT histograms; the histogram in the left panel is drawn with
automatic binning and ranges, and the one in the right panel is manually set to go
from 2960 and 3070 in 300 bins.

The syntax to draw a two-dimensional histogram is an extension of the 1d syntax

shown above. For example, if I want to plot the parameters b1p0Ekin vs. b2p0Ekin,

with b1p0Ekin displayed on the y-axis from 2960 to 3070 in 300 bins, and b2p0Ekin

displayed on the x-axis from 400 to 800 in 300 bins, the command is:

t->Draw("b1p0Ekin:b2p0Ekin>>hst(300,400,800,300,2960,3070)");

Note that the syntax for specifying parameters is Y:X, while the syntax for setting

bin and axis ranges is (somewhat unintuitively): (xbins, xlo, xhi, ybins, ylo, yhi).

The 2d draw command shown above will display the desired histogram using a

2d black and white scatterplot. It is usually desirable to view histograms in color,

with different hues representing different z-axis values. Before you try drawing a 2d

histogram in color, you should change the color scheme from the default (which is

4Although histogram names can be reused, doing so will delete the current histogram with that
name from memory. Reusing histogram names can also lead to segmentation faults, so it is advisable
to choose a unique name for each new histogram that you draw.

85

ugly and hard to decipher) to a more traditional blue-green-red. You can do this with

the command:

gStyle->SetPalette(1);

Now that you have a nice palette, the command to draw a 2d histogram in color

is:

t->Draw("b1p0Ekin:b2p0Ekin>>hst(300,400,800,300,2960,3070)","","col");

It should be obvious that the "col" is what tells ROOT to draw the histogram in

color. It should also be noted that if you want to display a color scale on the side of

your histogram, you can replace "col" with "colz" in the command above. You may

be a bit confused by the unfilled set of "" in the command. These are being used as

“placeholders” for the gate argument, which is described in Section B.6. The results

of the command above can be seen in Figure B.2(a).

400 450 500 550 600 650 700 750 800
2960

2980

3000

3020

3040

3060

hst2d
Entries 100000
Mean x 593.7
Mean y 3017
RMS x 50.92
RMS y 15.08

hst2d
Entries 100000
Mean x 593.7
Mean y 3017
RMS x 50.92
RMS y 15.08

b1p0Ekin:b2p0Ekin

(a) Example two-dimensional ROOT histogram
displaying b1p0Ekin vs. b2p0Ekin, with user de-
fined binning of 300 bins between 400 and 800
on the x-axis and 300 bins between 2960 and
3070 on the y-axis.

hst1
Entries 4845
Mean 63.84
RMS 15.01

20 30 40 50 60 70 80 90 100 110 120
0

20

40

60

80

100

120

140

160

180

hst1
Entries 4845
Mean 63.84
RMS 15.01

b13p1Ekin {b13p1Ekin>0} hst2
Entries 57605
Mean 594.2
RMS 41.39

200 400 600 800 1000 1200
0

1000

2000

3000

4000

5000

6000

7000

hst2
Entries 57605
Mean 594.2
RMS 41.39

b7p0Ekin {b7p0Ekin>0} hst3
Entries 100000
Mean 3017
RMS 15.11

2960 2980 3000 3020 3040 3060 3080
0

500

1000

1500

2000

2500

3000

3500

4000

hst3
Entries 100000
Mean 3017
RMS 15.11

b1p0Ekin {b1p0Ekin>0}

-0.02-0.015 -0.01-0.005 0 0.005 0.01 0.015 0.02
-0.02

-0.01

0

0.005

0.01

0.015

0.02

hst4
Entries 100000

Mean x -8.489e-06

Mean y -3.309e-05

RMS x 0.003994

RMS y 0.005013

0

5

10

15

20

25

30

35

40

45

hst4
Entries 100000

Mean x -8.489e-06

Mean y -3.309e-05

RMS x 0.003994

RMS y 0.005013

b1p0y:b1p0x

-0.02-0.015 -0.01-0.005 0 0.005 0.01 0.015 0.02
-0.02

-0.01

0

0.005

0.01

0.015

0.02

hst5
Entries 100000

Mean x -1.543e-05

Mean y 1.428e-05

RMS x 0.007631

RMS y 0.004984

0

5

10

15

20

25

30

hst5
Entries 100000

Mean x -1.543e-05

Mean y 1.428e-05

RMS x 0.007631

RMS y 0.004984

b1p0ty:b1p0tx

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

hst6
Entries 100000

Mean x -0.0001353

Mean y 6.596e-06

RMS x 0.03187

RMS y 0.00796

0

20

40

60

80

100

hst6
Entries 100000

Mean x -0.0001353

Mean y 6.596e-06

RMS x 0.03187

RMS y 0.00796

b1p0tx:b2p0tx

(b) Example of a TCanvas divided into three
pads in the x-direction and two pads in the y-
direction.

Figure B.2: Example 2d ROOT Histogram (left panel) and Divided Canvas (right
panel).

Once you have drawn a histogram using the Draw() command, it is saved into

memory. You can access it later using the command, histname->Draw();, which will

re-draw the histogram named histname in the current window.

86

B.5 TCanvases

As you should have noticed, using the t->Draw() command creates a new graphical

window in which the histogram is drawn. This window is called a TCanvas. You can

also create a TCanvas manually, using the following command:

TCanvas * c2 = new TCanvas();

Here c2 is the “name” of the Tcanvas, and as with histogram or tree names it

could be anything you want. You can have multiple canvases open during a ROOT

session, but only one of the canvases is active at a given time; the active canvas

will have a yellow outline around its edges indicating that it is the active one. The

command to switch between canvases is canvasname->cd(); e.g. if I want to switch

to the canvas called c1, then I would use:

c1->cd();

It is also possible to divide a canvas up into “pads” or sections, allowing you to

draw multiple histograms on one canvas. This is done using the Divide() command.

For example if I want to divide c1 so that it has three pads in the x-direction and

two pads in the y-direction, then I would use:

c1->Divide(3,2);

Figure B.2(b) shows a 3× 2 divided canvas, with an example histogram drawn in

each subpad.

Another useful feature is the ability to look at histograms with axes on a log scale.

The command to do this in ROOT is SetLog*(), where * is the name of the axis (x,

y, or z) in lowercase. The SetLog command only operates on the canvas or pad that

is currently selected. As an example, if I have a one dimensional histogram and want

to view the y-axis on a log scale, I would use:

gPad->SetLogy();

87

For a two dimensional histogram for which I want the z-axis on log scale, I would

type:

gPad->SetLogz();

To go back to linear scale, the command is SetLog*(0), e.g. if I wanted to change

the y-axis back to linear, I would type:

gPad->SetLogy(0);

It is possible to modify histograms and other graphical objects using the built in

GUI. To make use of this, go to the View menu on your canvas and select the Editor

option. You will see a new window appear in the left edge of your canvas. Use of the

editor is fairly intuitive. Note that if you click on different parts of the canvas, the

object being edited (and thus the options available in the editor) change.

As a final note, you will probably want to save pictures of your canvas to file. The

command to do this is:

c1->Print("filename.*")

where * is the file extension. ROOT will automatically set the type of file being

written based on the extension you select. ROOT can save canvases to many different

file types, including .pdf, .ps, .eps, .svg, .png and .jpg. You can also save your

canvas using the File->Save As menu, or you can send it directly to a printer using

File->Print. Histograms points can also be written out to an ASCII file, using the

command:

hstname->Print("all"); > outputfilename.txt

This will write out the points of the histogram into a text file called

outputfilename.txt. The formatting of the output file is a bit clumsy; there is a

way to write out histograms into a plain two column format, but it requires the use

of custom commands; hence it will be explained later on.

88

B.6 Gates

The ability to set “gates” (logical restrictions) on parameters is needed to do any sort

of nuclear physics analysis. Gates in ROOT are treated as logical C++ statements.

Some of the more commonly used logical statements are: “greater than” (>), “less

than” (<), “equal to” (==), “not equal to” (!=), AND (&&), and OR (||). Any com-

bination of these logical statements can be used. The gate command is the second

argument of the Draw() command and is surrounded by " ". As an example, if I

want to view a histogram of the parameter b7p0x, with the restriction that another

parameter, b7p0tx, is greater than zero, I would use the following command:

t->Draw("b7p0x","b7p0tx > 0");

As a more complicated example, if I wanted to see a histogram of b7p0x subject

to the following conditions:

–b7p0tx greater than 0.
–b1p0Ekin less than 3000.
–b7p0Ekin not equal to zero,

then I would type the following:

t->Draw("b7p0x","b7p0tx > 0 && b1p0Ekin < 3000 && b7p0Ekin != 0");

In additional to one dimensional gates, ROOT can also create two dimensional

gates which constrain the values of two parameters to lie within a certain shape.

Two dimensional gates are given a name, and can be used just like any other logical

statement. For example, if I want to apply a 2d gate called “my2dgate” to a histogram

containing the parameter b1p0x, I would do:

t->Draw("b1p0x","my2dgate");

Two dimensional gates can be combined with other logical statements as well,

so if I wanted to draw b1p0x subject to both “my2dgate” and the requirement that

b1p0tx be greater than zero, then I would do:

89

t->Draw("b1p0x","my2dgate && b1p0tx > 0");

The easiest way to set a 2d gate is to make use of the TCanvas GUI. The steps to

do this are outlined below:

1. Draw the 2d histogram.

2. In the TCanvas containing the new histogram, select View->Toolbar.

3. In the toolbar, click on the cut tool. It has a picture of scissors on it and is the

farthest right tool on the toolbar.

4. Go onto the histogram and start drawing your gate. Single clicking sets a new

point in the contour, and double clicking closes the gate.

5. Move the mouse cursor over the gate (the cursor will turn into a hand with

a pointing index finger when you are in the right place), and right click. Then

select the SetName option, and type your desired name of the gate in the pop-up

window.

6. If you would like to modify your gate, you can do so by left clicking on one of

the gate points and moving it around.

Figure B.3 shows an example of a 2d gate created using the procedure outlined

above. Unlike in SpecTcl, your 2d gate will not automatically be drawn every time

that you re-draw a histogram, but the gate is still stored into memory until you quit

the program. To re-draw a gate the command is:

mygate->Draw();

You will likely find yourself typing the same gate conditions over and over, which

can get tedious. You can store these logical statements in a TCut object, and when

you do so, the gate conditions can be accessed just by invoking the name of the TCut.

The syntax to create a TCut is explained with an example: if I wanted to create a

90

htemp
Entries 35326
Mean -0.04163
RMS 0.01911

b7p0x
-0.15 -0.1 -0.05 -0 0.050

200

400

600

800

1000

1200

1400

1600

1800

2000

htemp
Entries 35326
Mean -0.04163
RMS 0.01911

b7p0x {mycut}

(a) Spectrum showing a parameter with the
gate drawn in panel (b) applied to it.

540 560 580 600 620 640 660-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

hst
Entries 57605
Mean x 594.8
Mean y -0.04164
RMS x 29.66
RMS y 0.02846

hst
Entries 57605
Mean x 594.8
Mean y -0.04164
RMS x 29.66
RMS y 0.02846

b7p0tx:b7p0Ekin {b7p0Ekin>0}

(b) Example of a two dimensional gate. The
events outlined in black are included within the
gate.

Figure B.3: Example 2d Gate (right panel) and histogram with the gate applied to it
(left panel).

TCut, named mycut, which requires that b7p0Ekin and b13p1Ekin both be greater

than zero, I would type the following:

TCut mycut = "b7p0Ekin > 0 && b13p1Ekin > 0" ;

The TCut can then be used like a normal logical statement, e.g.

t->Draw("b7p0x",mycut);

Note that in the above command there are no " " around mycut. This is because

the needed " " are contained in the definition of mycut. TCuts can also be combined

with “ordinary” gates or other TCuts as follows:

t->Draw("b7p0x",mycut && "b13p1x>0"); //\ combine a TCut with a "normal" gate.

t->Draw("b7p0x",mycut && mycut2); //\ combine two TCuts.

B.7 Creating Pseudo Parameters

Quite often one wants to look at mathematical combinations of the parameters stored

in a ROOT file. The simplest way to do this is to simply include the mathemati-

cal statements in the argument of the Draw() command. For example, if I want to

look at the velocity of a particle, which for the purposes of this example is equal to
√

2 · b7p0Ekin/10, then I would type the following:

91

t->Draw("sqrt(2 * b7p0Ekin / 10)");

Any valid C++ math operator can be used; some of the more common examples

are listed below

– add, subtract, multiply, divide: +, -, *, /

– square root of x: sqrt(x)
– raise x to the power n: pow(x,n)
– sin, cos, tan of x: sin(x), cos(x), tan(x)

– arcsin, arccos, arctan of x: asin(x), acos(x), atan(x)

– absolute value of x: abs(x)

As in the case of gates, you often do not want to type long mathematical expres-

sions over and over again. Fortunately, ROOT allows you to store your mathematical

expression in an object called an “alias.” For example, if I want to store the velocity

expression shown above as an alias called b7p0vel, I would do:

t->SetAlias("b7p0vel","sqrt(2 * b7p0Ekin / 10)");

Now to draw the velocity I just have to type:

t->Draw("b7p0vel")

Aliases can also be included in the definition of other aliases; for example, if I

want to create an alias of 2*velocity, called b7p0velx2, then I could do:

t->SetAlias("b7p0velx2","2*b7p0vel");

Aliases can be used just like any “real” ROOT parameter, e.g. you can draw them,

place gates on them (1d and 2d), and so on.

B.8 Using Macros

If you haven’t noticed by now, using ROOT involves a lot of typing of commands, and

you probably don’t want to repeat a bunch of commands over and over again. ROOT

92

allows you to save series of commands in a macro file; invoking a macro file has the

same effect as typing each one of the commands on the command line individually.

ROOT macro files should always have the extension .C, and all of the commands

must be enclosed in a set of curly brackets. The command to run a macro (called e.g.

mymacro.C) is:

.x mymacro.C

As a simple example consider the following macro, called examplemacro.C; it is

located in the /projects/proj1/MoNA/ROOT/ directory, and the code is reproduced

here. Comments in the code are set off by // (the comment symbol in C++), and

should explain to you what each line is doing.

{

//Macro File examplemacro.C

TFile *_file0 = new TFile("/projects/proj1/MoNA/ROOT/example1.C");

//Load the file example1.C into memory

TCut posenergy = "b7p0Ekin > 0 && b13p1Ekin > 0" ;

//Create a TCut

t->Draw("b7p0tx>>hst(100,-.1,.1)",posenergy);

//draw a histogram of b7p0tx, subject to the conditions of posenergy

}

You can also invoke other macros from within a macro; for example, if I want to

call a macrofile called macro2.C from within another macro, I would add the line:

gROOT->ProcessLine(".x macro2.C");

You can also load in a macro file when you start up ROOT, by typing the name

of the macro after the root.exe command. For example, if I want to automatically

load the file examplemacro.C at startup, then the syntax is:

93

> root.exe .x examplemacro.C

There is a useful “startup” macro file located in /projects/proj1/MoNA/ROOT/;

it is called root_logon.C It does a few formatting tasks like setting to default color

palette to the nice looking RGB one. It also loads up a custom function that allows

you to write out a histogram to a two column ASCII file. If you have loaded up

root_logon.C, then the syntax to write a histogram to file is:

hstname->WriteSpec("filename.txt",xlo, xhi);

where xlo and xhi are lower and upper limits of the histogram.

B.9 Various Odds and Ends

This section contains a brief overview of some more useful commands that don’t really

fit anywhere else. They are listed with a brief description of what the command does

followed by the command syntax.

• Draw a histogram using data points:

t->Draw("7p0x>>hst(100,-.1,.1)","","p");

This would draw hst with the default point size, which is very small; to change it do:

hst->SetMarkerStyle(20); //sets a reasonable point size

hst->Draw("p"); // redraws "hst" using points

• Draw a histogram with error bars (calculated as the square root of the number

of counts):

t->Draw("7p0x>>hstnew(100,-.1,.1)","","e"); //new histogram

hstold->Draw("e"); //existing histogram

• Change the color of the lines or points of a histogram already in memory:

94

hst->SetLineColor(4); //Lines

hst->SetMarkerColor(4); //Points

Colors in ROOT are assigned a number, so here I am setting the histograms to be

“color 4” (which is blue). To see a list of all available colors and their corresponding

numbers, select View->Colors from the TCanvas menu.

• Scale a histogram (by the number x):

hst->Scale(x);

• Draw an existing histogram on the same canvas, without erasing the one already

there:

hst->Draw("same");

• You can also combine arguments like p and same, e.g.

hst->Draw("psame"); //Draw hst on the same canvas, using points.

• Clear your current canvas:

c1->Clear();

• Write 2D gates into a text file:

ofstream out;

out.open("my2dgates.txt");

gate1->SavePrimitive(out);

gate2->SavePrimitive(out);

gate3->SavePrimitive(out);

out.close();

The text file my2dgates.txt will now contain C++ code describing the 2D gates

gate1, gate2, and gate3. This code can be copied and pasted into a macro file, to

allow the user to load the gates into memory in future ROOT sessions.

95

• Convert a SpecTcl filter file into a ROOT file:

–Run the executable flt2root.sh located in /projects/proj1/MoNA/ROOT/

This will prompt you for the name of the input filter file and the name of the output

root file. It must be run from a 32-bit spice machine. The new root file will contain a

TTree called h1 that contains all of the parameters written in the filter file. Any dots

in the parameter names will be converted into underscores (e.g. sweeper.fp.crdc1.x

becomes sweeper_fp_crdc1_x), and any uppercase letters past the first letter of the

name will be made lowercase (ToF_hit_1 becomes Tof_hit_1). Also, since ROOT

needs to assign a value to every parameter for every event, any “not valid” events in

the filter file will be given a value of exactly zero in the ROOT file. Finally, there is

a limitation on both the size of the filter files and the number of parameters allowed

per file, which the author of this manual has not yet determined. This limit is fairly

large, however, and can be worked around by making judicious use of Friend Trees

and TChains.

If you are interested in using the more advanced functionality of ROOT, there

are many resources on the web. A good place to start is the official ROOT manual

located at:

http://root.cern.ch

There is also an online bulletin board (“Root Talk”) dedicated to helping users learn

to use ROOT located at:

http://root.cern.ch/phpBB2/

96

Bibliography

[1] K. Krane, Introductory Nuclear Physics, Wiley, New York, 1988.

[2] N. Frank, A. Schiller, T. Baumann, D. Bazin, J. Brown, P. DeYoung, J. E. Finck,
A. Gade, J. Hinnefeld, R. Howes, J. L. Lecouey, B. Luther, W. Peters, H. Scheit,
M. Thoennessen, Observation of the First Excited State in 23 O, in: Proceedings
of the 16th International Conference on Cyclotrons and their Applications, 2007.

[3] R. Kalpakchieva, H. Bohlen, W. von Oertzen, B. Gebauer, M. von Lucke-Petsch,
T. Massey, A. Ostrowski, T. Stolla, M. Wilpert, T. Wilpert, Eur. Phys J. A 7
(2000) 451.

[4] H. G. Bohlen, R. Kalpakchieva, W. von Oertzen1, T. N. Massey, A. A. Ogloblin,
G. de Angelis, M. Milin, C. Schulz1, T. Kokalova1, C. Wheldon, Eur. Phys J. A
31 (2007) 279.

[5] A. A. Korsheninnikov, M. S. Golovkov, A. Ozawa, E. A. Kuzmin, E. Y. Nikolskii,
K. Yoshida, B. G. Novatskii, A. A. Ogloblin, I. Tanihata, Z. Fulop, K. Kusaka,
K. Morimoto, H. Otsu, H. Petrascu, F. Tokanai, Phys. Rev. Lett. 82 (1999) 3581.

[6] A. H. Wuosmaa, K. E. Rehm, J. P. Greene, D. J. Henderson, R. V. F. Janssens,
C. L. Jiang, L. Jisonna, E. F. Moore, R. C. Pardo, M. Paul, D. Peterson, S. C.
Pieper, G. Savard, J. P. Schiffer, R. E. Segel, S. Sinha, X. Tang, R. B. Wiringa,
Phys. Rev. C 72 (2005) 061301(R).

[7] F. Skaza, V. Lapoux, N. Keeley, N. Alamanos, E. C. Pollacco, F. Auger,
A. Drouart, A. Gillibert, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay,
L. Giot, K. W. Kemper, L. Nalpas, A. Obertelli, A. Pakou, R. Raabe, P. Roussel-
Chomaz, J.-L. Sida, J.-A. Scarpaci, S. Stepantsov, R. Wolski, Phys. Rev. C 73
(2006) 044301.

[8] A. Schiller, N. Frank, T. Baumann, D. Bazin, B. A. Brown, J. Brown, P. A.
DeYoung, J. E. Finck, A. Gade, J. Hinnefeld, R. Howes, J.-L. Lecouey, B. Luther,
W. A. Peters, H. Scheit, M. Thoennessen, J. A. Tostevin, Phys. Rev. Lett. 99
(2007) 112501.

[9] C. S. Sumithrarachchi, D. J. Morrissey, B. A. Brown, A. D. Davies, D. A. Davies,
M. Fancina, E. Kwan, P. F. Mantica, M. Portillo, Y. Shimbara, J. Stoker, R. R.
Weerasiri, Phys. Rev. C 75 (2007) 024305.

97

[10] K. W. Scheller, J. Görres, J. G. Ross, M. Wiescher, R. Harkewicz, D. J. Morrissey,
B. M. Sherrill, M. Steiner, N. A. Orr, J. A. Winger, Phys. Rev. C 49 (1994) 46.

[11] Z. Radivojevic, P. Baumann, E. Caurier, J. Cederkall, S. Courtin, P. Dessagne,
A. Jokinen, A. Knipper, G. L. Scornet, V. Lyapin, C. Miehe, F. Nowacki, S. Num-
mela, M. Oinonen, E. Poirier, M. Ramdhane, W. H. Trzaska, G. Walter, J. Aysto,
Nucl. Instr. and Meth. A 481 (2002) 464.

[12] M. Zinser, F. Humbert, T. Nilsson, W. Schwab, H. Simon, T. Aumann, M. J. G.
Borge, L. V. Chulkov, J. Cub, T. W. Elze, H. Emling, H. Geissel, D. Guillemaud-
Mueller, P. G. Hansen, R. Holzmann, H. Irnich, B. Jonson, J. V. Kratz, R. Ku-
lessa, Y. Leifels, H. Lenske, A. Magel, A. C. Mueller, G. Munzenberg, F. Nickel,
G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, K. Stelzer,
J. Stroth, A. Surowiec, O. Tengblad, E. Wajda, E. Zude, Nucl. Phys. A 619
(1997) 151.

[13] S. D. Pain, W. N. Catford, N. A. Orr, J. C. Angelique, N. I. Ashwood, V. Bouchat,
N. M. Clarke, N. Curtis, M. Freer, B. R. Fulton, F. Hanappe, M. Labiche,
J. L. Lecouey, R. C. Lemmon, D. Mahboub, A. Ninane, G. Normand, N. Soic,
L. Stuttge, C. N. Timis, J. A. Tostevin, J. S. Winfield, V. Ziman, Phys. Rev.
Lett. 85 (2000) 032502.

[14] F. Deák, A. Horváth, A. Kiss, Z. Seres, A. Galonsky, C. K. Gelbke, H. Hama,
L. Heilbronn, D. Krofcheck, W. G. Lynch, D. W. Sackett, H. R. Schelin, M. B.
Tsang, J. Kasagi, T. Murakami, Phys. Rev. C 52 (1995) 219.

[15] F. Deak, A. Kiss, Z. Seres, G. Caskey, A. Galonsky, B. Remington, Nucl. Instr.
and Meth. A 258 (1987) 67.

[16] L. Heilbronn, A. Galonsky, C. K. Gelbke, W. G. Lynch, T. Murakami, D. Sackett,
H. Schelin, M. B. Tsang, F. Deák, A. Kiss, Z. Seres, J. Kasagi, B. A. Remington,
Phys. Rev. C 43 (1991) 2318.

[17] O. Tarasov, D. Bazin, Nucl. Instr. and Meth. A 746 (2004) 411.

[18] R. A. Kryger, A. Azhari, A. Galonsky, J. H. Kelley, R. Pfaff, E. Ramakrishnan,
D. Sackett, B. M. Sherrill, M. Thoennessen, J. A. Winger, S. Yokoyama, Phys.
Rev. C 47 (1993) R2439.

[19] M. Thoennessen, S. Yokoyama, A. Azhari, T. Baumann, J. A. Brown, A. Ga-
lonsky, P. G. Hansen, J. H. Kelley, R. A. Kryger, E. Ramakrishnan, P. Thirolf,
Phys. Rev. C 59 (1999) 111.

[20] M. Thoennessen, S. Yokoyama, P. Hansen, Phys. Rev. C 63 (2000) 014308.

[21] F. Marti, P. Miller, D. Poe, M. Steiner, J. Stetson, X. Y. Wu, Commissioning of
the coupled cyclotron system at nscl, in: Proceedings of the 16th International
Conference on Cyclotrons and their Applications, 2001, p.64.

98

[22] D. J. Morrissey, B. M. Sherrillb, M. Steinerb, A. Stolzb, I. Wiedenhoeverb, Nucl.
Instr. and Meth. B 204 (2003) 90.

[23] M. Bird, S. Kenney, J. Toth, H. Weijers, J. DeKamp, M. Thoennessen, A. Zeller,
IEEE Trans. Applied Superconductivity 15 (2005) 1252.

[24] B. Luther, T. Baumann, M. Thoennessen, J. Brown, P. DeYoung, J. Finck,
J. Hinnefeld, R. Howes, K. Kemper, P. Pancella, G. Peaslee, W. Rogers, S. Tabor,
Nucl. Instr. and Meth. A 505 (2003) 33.

[25] T. Baumann, J. Boike, J. Brown, M. Bullinger, J. Bychoswki, S. Clark, K. Daum,
P. DeYoung, J. Evans, J. Finck, N. Frank, A. Grant, J. Hinnefeld, G. Hitt,
R. Howes, B. Isselhardt, K. Kemper, J. Longacre, Y. Lu, B. Luther, S. Marley,
D. McCollum, E. McDonald, U. Onwuemene, P. Pancella, G. Peaslee, W. Peters,
M. Rajabali, J. Robertson, W. Rogers, S. Tabor, M. Thoennessen, E. Tryggestad,
R. Turner, P. VanWylen, N. Walker, Nucl. Instr. and Meth. A 543 (2005) 517.

[26] K. Makino, M. Berz, Nucl. Instr. and Meth. A 558 (2005) 346.

[27] H. Scheit, Simple Track for MoNA, Technical report, NSCL (2006).

[28] N. Frank, Spectroscopy of Neutron Unbound States in Neutron Rich Oxygen
Isotopes, Ph.D. thesis, Michigan State University (2006).

[29] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman,
M. Booth, F. Rossi, GNU Scientific Library Reference Manual,
http://www.gnu.org/software/gsl/manual/html node/ (2007).

[30] R. Glauber, Lectures in Theoretical Physics, Vol. I, Interscience, New York, 1959.

[31] A. Schiller, N. Frank, The Problem of Track Reconstruction in the Sweeper
Magnet, Technical report, NSCL (2005).

[32] N. Frank, A. Schiller, D. Bazin, W. Peters, M. Thoennessen, Nucl. Instr. and
Meth. A 580 (2007) 1478.

[33] D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, H. Weller, Nucl.
Phys. A 745 (2004) 155.

[34] H. Simon, M. Meister, T. Aumann, M. Borge, L. Chulkov, U. D. Pramanik,
T. Elze, H. Emling, C. Forssen, H. Geissel, M. Hellstrom, B. Jonson, J. Kratz,
R. Kulessa, Y. Leifels, K. Markenroth, G. Munzenberg, F. Nickel, T. Nilsson,
G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, O. Tengblad,
M. Zhukov, Nucl. Phys. A 791 (2007) 267.

[35] A. Amelin, M. Gornov, Y. Gurov, A. II’in, P. Morokhov, V. Pechkurov,
V. Savel’ev, F. Sergeev, S. Smirnov, B. Chernyshev, R. Shafigullin, A. Shishkov,
Sov. J. Nucl. Phys. 52 (1990) 782.

99

[36] B. M. Young, W. Benenson, J. H. Kelley, N. A. Orr, R. Pfaff, B. M. Sher-
rill, M. Steiner, M. Thoennessen, J. S. Winfield, J. A. Winger, S. J. Yennello,
A. Zeller, Phys. Rev. C 49 (1994) 279.

[37] M. Zinser, F. Humbert, T. Nilsson, W. Schwab, T. Blaich, M. J. G. Borge, L. V.
Chulkov, H. Eickhoff, T. W. Elze, H. Emling, B. Franzke, H. Freiesleben, H. Geis-
sel, K. Grimm, D. Guillemaud-Mueller, P. G. Hansen, R. Holzmann, H. Irnich,
B. Jonson, J. G. Keller, O. Klepper, H. Klingler, J. V. Kratz, R. Kulessa, D. Lam-
brecht, Y. Leifels, A. Magel, Phys. Rev. Lett. 75 (1995) 1719.

[38] M. G. Gornov, Y. B. Gurov, S. V. Lapushkin, P. V. Morokhov, V. A. Pechkuriv,
K. Seth, T. Pedlar, J. Wise, D. Zhao, Bull. Russ. Acad. Sci., Phys. Ser. 62 (1998)
1781.

[39] L. Chen, B. Blank, B. A. Brown, M. Chartier, A. Galonsky, P. G. Hansen,
M. Thoennessen, Phys. Lett. B 505 (2001) 21.

[40] M. Chartier, J. R. Beene, B. Blank, L. Chen, A. Galonsky, N. Gan, K. Govaert,
P. G. Hansen, J. Kruse, V. Maddalena, M. Thoennessen, R. L. Varner, Phys.
Lett. B 510 (2001) 24.

[41] H. Jeppesen, A. Moro, U. Bergmann, M. Borge, J. Cederkall, L. Fraile, H. Fynbo,
J. Gomez-Camacho, H. Johansson, B. Jonson, M. Meister, T. Nilsson, G. Ny-
man, M. Pantea, K. Riisager, A. Richter, G. Schrieder, T. Sieber, O. Tengblad,
E. Tengborn, M. Turrion, F. Wenander, Phys. Lett. B 642 (2006) 449.

[42] G. Audi, O. Bersillon, J. Blachot, A. H. Wapstra, Nucl. Phys. A 624 (1997) 1.

[43] F. Ajzenberg-Selove, J. Kelley, Nucl. Phys. A 506 (1990) 1.

[44] W. Peters, Study of Neutron Unbound States Using the Modular Neutron Array
(MoNA), Ph.D. thesis, Michigan State University (2007).

[45] P. Descouvemont, Phys. Lett. B 331 (1994) 271.

[46] P. Descouvemont, Phys. Rev. C 52 (1995) 704.

[47] M. Labiche, F. M. Marqués, O. Sorlin, N. V. Mau, Phys. Rev. C 60 (1999)
027303.

[48] J. Lecouey, Few Body Systems 34 (2004) 21.

[49] M. Stanoiu, F. Azaiez, Z. Dombradi, O. Sorlin, B. A. Brown, M. Belleguic,
D. Sohler, M. G. S. Laurent, M. J. Lopez-Jimenez, Y. E. Penionzhkevich,
G. Sletten, N. L. Achouri, J. C. Angelique, F. Becker, C. Borcea, C. Bour-
geois, A. Bracco, J. M. Daugas, Z. Dlouhy, C. Donzaud, J. Duprat, Z. Fulop,
D. Guillemaud-Mueller, S. Grevy, F. Ibrahim, A. Kerek, A. Krasznahorkay,
M. Lewitowicz, S. Leenhardt, S. Lukyanov, P. Mayet, S. Mandal, H. van der
Marel, W. Mittig, J. Mrazek, F. Negoita, F. D. Oliveira-Santos, Z. Podolyak,
F. Pougheon, M. G. Porquet, P. Roussel-Chomaz, H. Savajols, Y. Sobolev,
C. Stodel, J. Timar, A. Yamamoto, Phys. Rev. C 69 (2004) 034312.

100

[50] Z. Elekes, Z. Dombrádi, N. Aoi, S. Bishop, Z. Fülöp, J. Gibelin, T. Gomi,
Y. Hashimoto, N. Imai, N. Iwasa, H. Iwasaki, G. Kalinka, Y. Kondo, A. A.
Korsheninnikov, K. Kurita, M. Kurokawa, N. Matsui, T. Motobayashi, T. Naka-
mura, T. Nakao, E. Y. Nikolskii, T. K. Ohnishi, T. Okumura, S. Ota, A. Perera,
A. Saito, H. Sakurai, Y. Satou, D. Sohler, T. Sumikama, D. Suzuki, M. Suzuki,
H. Takeda, S. Takeuchi, Y. Togano, Y. Yanagisawa, Phys. Rev. Lett. 98 (2007)
102502.

[51] D. Bazin, et al., Nucl. Instr. and Meth. A 204 (2003) 629.

[52] D. Geesaman, C. Gelbke, R. Janssens, B. Sherrill, Ann. Rev. Nucl. Part. Sci. 56
(2006) 53.

101

