ABSTRACT

A STUDY OF 192'194'196'198Pt USING THE (p,t) AND (p,p')
REACTIONS AND THE INTERACTING BOSON APPROXIMATION MODEL

by

Paul Thomas Deason, Jr.
The low-lying collective states of the 192’194’196’198Pt
nuclei have been studied with the (p,t) and (p,p') reactions
at Ep = 35 MeV. Approximately 45 levels were populated below
3 MeV for each nucleus in both reactions, with many 1levels
seen for the first time. Angular distributions have been
obtained in each reaction using a delay-line proportional
counter in the focal plane of an Enge split-pole spectrograph
and accurate energies were obtained from high-resolution,
nuclear emulsion plate data. Distorted-wave Born approxima-
tion (DWBA) calculations were performed for transitions in

194,196,198 192,194,196Pt

the Pt(p,t) reactions, and were

used, in addition to empirical angular distribution shapes,

to make J7 assignments. NO new 1levels were seen below

1.5 MeV excitation. A new state with J" = 0+ at 1.628 MeV

192Pt

was found in and new levels tentatively assigned

Jg" = 4+ were seen in all three final nuclei near 1.9 MeV. 1In

196’198Pt(p,t), these 47 levels are populated with 15% of the



ground state strength at 7°. Enhancement factors, €, were
calculated for simple two-neutron pickup configurations.

A comparison is made between experimental (p,t)
strengths and those calculated in the 0O(6) 1limit of the
interacting boson approximation (IBA) model for L = 0 and
L = 2 transitions. The calculations included a small,
quadrupole-quadrupole symmetry breaking term and allowed for
both neutron and proton bosons. The calculations are
generally in good agreement with the data, particularly the
prediction that the second excited 0+ level should be more
strongly populated than the first excited 0% level.

In the inelastic proton scattering studies, high

194’196’198Pt. In 198Pt

resolution data are presented for
thirty-eight of the forty-four levels seen are reported for
the first time. Assignments of J" were made in each reaction
by comparisons of angular distributions to those for states
with well-known spin and parity. Coupled channels calcula-
tions have been performed for each reaction using a deformed
optical model potential for the radial form factors, with
relative matrix elements obtained from the IBA model near the
0(6) limit. Good fits to the data are obtained for the ground
band (up to spin 4) and second 2+ level. Best fits are

194,196Pt

obtained in with a negative value for the

interference term P3 (= M02M22,M02.), 1n agreement with
recent (a,a') studies of 194Pt and with the predictions of

the 0(6) limit of the IBA model. To explain the strength of



the second 4+ state in all three reactions a large value for
M04, is needed, indicating a strong, direct E4 transition
competes with the various multi-step paths.

The quadrupole (E2) and hexadecapole (E4) potential
moments have been calculated from the parameters of the
deformed optical model potential used in the inelastic proton
scattering. The moments are in better agreement with the
charge moments from Coulomb excitation in each case than
those from the potential moments calculated from alpha
scattering. This may indicate that inelastic proton
scattering is a more reliable method for extracting potential
moments than a-—-scattering due to the more complex intrinsic

structure of the alpha particle.
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CHAPTER I

INTRODUCTION

A. Orientation

The Pt isotopes lie in a shape transitional region,
between well-deformed rare-earth nuclei and the spherical
nuclei near doubly magic 208Pb. Since the Pt nuclei are not
well described by simple model limits for collective nuclear
motion (e.g. the symmetric rotor or the harmonic vibrator),
they provide a valuable testing ground for more current
models.

Figure I-1 shows the low-lying energy levels for three
of the four Pt nuclides studied in this work. The first item

one notes is the similarity of the 1levels from lgth to

196Pt. Most of the levels decrease or increase in energy
very dgradually in these nuclei, part of the evidence for the
slowly changing shape characteristics in this region. Within
a particular nucleus the most obvious features are the nearly
equal spacing between the first three levels, and the low-
lying second 2t state. Understanding these relatively simply
systematics, along with the many electromagnetic branching

ratios, has provided the framework for comparing the

predictions of several nuclear models.

1
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It has been known for several years that a transition
from prolate (negative quadrupole moment) to oblate (positive
quadrupole moment) shapes occurs among the heavier Os and the
lighter Pt nuclides [Gl 68, Gl 69, Pr 70]. For the heavier
Pt nuclides (192_198Pt) the quadrupole deformation parameter,
B, has a value [Ba 76, Ba 78] of approximately 0.15, or about
one-half the value determined for the well-deformed rare
earth nuclei. Consequently, these Pt isotopes exhibit few
rotational features. Some aspects of the lowest energy
levels of these nuclides, such as the nearly equal level
spacings and a small 2; > OI transition, can be interpreted
in terms of a harmonic vibrator.‘ However, a notable problem
with this picture is the lack of a candidate for the ot member
of the 2-phonon triplet. Moreover, the platinum isotopes are
farther away from closed shells than those nuclei for which
vibrational models have been applied most successfully.

Because of the difficulty with vibrational models,
various other collective models have been explored, such as
the vy-unstable [Wi 56] or the asymmetric [Da 58] rotor
models. These models predict only one ot state (the ground
state) and allow the second 2+ state (2;) to be degenerate
with or below the energy of the first a4, Figure I-1 shows
that the Pt nuclides display both these features.

The asymmetric rotor model [Me 75, To 76, Do 77, Pa 77,

Sa 77] has had considerable success in describing the odd-A

nuclei in the Pt region by coupling the odd particle to a



triaxial core. However, the predictions for this approach
~ have been shown to be experimentally indistinguishable thus
far from those obtained by a variety of other particle core
couplings [Do 77, Pa 771, including that for a y-unstable
core. Several attempts [Ku 68, Gn 71, Le 76] have been made
to treat this region by solving the full Bohr-Hamiltonian,
beginning with the work of Kumar and Baranger [Ku 68] in
which the parameters of the Hamiltonian were determined by
using the pairing-plus-quadrupole (PPQ) model. The PPQ model
has demonstrated considerable success in predicting the
prolate-to-oblate shape transition, but only addresses the
properties of lower energy levels. It also predicts the
potential energy surface to be Y —soft. This is one of
several predictions of y—soft potentials in the Os—Pt region.
(Another model with similar predictions for the Pt nuclei is
the boson expansion technique of Kishimoto and Tamura [Ki 72,
Ki 76].) One problem with these more complete treatments of
the collective properties of heavy nuclei is the rather
complex numerical methods needed to solve the Hamiltonians.
A simpler description of the nuclides in the Pt—Os
region has recently emerged from the interacting boson
approximation (IBA) model of Arima and Iachello [Ar 76,
Ar 78, Ia 78, Sc 78]. 1In this model the emphasis is on the
symmetries of the nuclear structure rather than the geometry,
while also including the finite dimensionality of the

subshells. The IBA model treats the nucleus in terms of a set




of bosons, one for each pair of neutrons or protons outside a
closed shell. The bosons can be in either of two states,
denoted by their angular momentum, L = 0 or L = 2 (s or 4
bosons), and are allowed to interact.

The most general Hamiltonian describing such a system
possesses an SU(6) group symmetry. Particularly simple
descriptions are possible when the Hamiltonian is symmetric
with respect to subgroups of SU(6). Analytical solutions
have been found for both the energy levels and electro-
magnetic transitions for three subgroups, SU(5), SU(3), and
0(6). These symmetries are applicable at the beginning,
middle, and end of shells respectively. The SU(5) subgroup
corresponds approximately to the vibrational 1limit of the
collective model, and SU(3) to the rotational limit. The
third limiting symmetry, O(6), is most like the y—unstable
model of Wilets and Jean [Wi 56]. It has been shown by
Cizewski et al. [Ci 78] that this 1limit is capable of
accounting for most of the energy and decay properties of all
positive parity levels below the pairing gap for 196Pt,
Moreover, it predicts no ot level with 2—phonon components
near the 4+ and 2; level, and it has no equivalent to the
3—phonon 2+ level. 1In fact, the structure of 196Pt and most
of the lighter mass even-even Os and Pt nuclides can be
understood [Ca 78] by.adding a small but gradually increasing

symmetry-breaking term to the Hamiltonian as one goes further

away from the 0O(6) limit. This A—dependent deviation from




the O(6) limit is predicted to occur within the more complete
SU(6) representation of the IBA.

The majority of the experimental information on the
heavier Pt isotopes has come from y-ray studies following the
E,Bi decay of Au and Ir isotopes [Be 64, Ny 66, Ja 68, Be 70,
Fi 72, Cl1 76]1. There have also been several publications on
Y—decay following neutron capture [Gr 68, Sa 68, Su 68,
Ci 79]. More recently the nature of the high-spin levels of
the platinum nuclides up to spin 20 has been studied by
(¢,xnY) in-beam y-ray spectroscopy [Ya 74, Fu 75, Hi 76,
Sa 771].

There have been numerous inelastic scattering experi-
ments [Gl 68, Ba 76, Le 77, Ro 77, St 77, Ba 78, Ba 78al
performed on the Pt nuclides, primarily by Coulomb excitation
of the first 2+ states. However, three more detailed Coulomb
excitation studies have recently been performed yielding
conflicting conclusions when the results are interpreted in
terms of various models. Lee et al. [Le 77] see evidence for
a stable triaxial shape, Baktash et al. [Ba 78a] favor the
PPQ model, while the third study proved inconclusive [St 77].
The bulk of the transfer reaction data is from one-neutron
transfer studies of the odd-A platinum nuclei [Mu 65, Ya 76,
Sm 77, Be 78, Ya 78], but there have been searches for strong

L = 0 transitions in the 190_196Pt(p,t) reactions [Ma 72,

Ve 76, Ve 781].




B. Motivation

When this study began, most of the information on the Pt
region was obtained from decay works and Coulomb excitation
of the first 2t states. The intention of this study was to
utilize the high resolution capabilities of the Michigan
State University cyclotron in collecting transfer reaction
data on the even-even Pt nuclides to complement the existing
data. The (p,t) and (p,p') reactions were chosen because
both reactions populate primarily the collective levels of a
nucleus and it is this type of state that most models of
heavier nuclei attempt to explain. Specifically, the (p,t)
reaction was chosen for the distinctive, diffractive angular
distributions of tritons from the L = 0 transfers, which
populate J" = 0+ levels in the residual nucleus when using
even-even targets. Information on the spin and parity of
these and other states seen in transfer reactions are
obtained by interpreting the shapes of the transitions in
terms of the distorted -wave Born approximation (DWBA)
reaction formalisms. The low-lying ot states play an
important role in any attempt to distinguish the models men-
tioned above, although additional information on branching
ratios from the decay of these states is also necessary.

In addition to locating the 0+ states, the strength of
the transition populating such states in a (p,t) reaction can
also provide information on the shape of a nucleus, as was

seen in the Sm isotopes [Bj 66]. If the ground states of Os



or Pt nuclei are relatively rigid in the y—direction, and Y
varies rapidly, strong L = 0 transitions are expected to
populate excited 0+ levels, which have shapes similar to the
target ground state. However, Sharma and Hintz [Sh 76]
observe no strong L = 0 transitions in the Os nuclei,
possibly because the y shape parameter appears to be changing
slowly. The present study would extend this search into the
Pt isotopes.

The (p,p') reaction study was initiated as a probe of
the macroscopic structure of the transitional Pt nuclides.
Techniques have been established for determining deformation
parameters and charge/potential moments from such inelastic
scattering studies. These experimental parameters, obtained
using matrix elements from some nuclear model, can then be
used to determine the shape of the nucleus. The procedure
has primarily been used for well deformed nuclei in (o, a')
experiments. The work described here, along with (p,p'")
experiments on well deformed rare-earths and actinide nuclei
at this laboratory [Ki 78], is an attempt to extend the
technique from alpha [He 68, Ba 76] to proton scattering
(which is now thought to be a better probe of the nuclear
matter distribution than high energy (o,a') experiments
[Ha 77]). The most widely used code for analyzing inelastic
scattering data, ECIS [Ra 73], is capable of calculating
several different sets of matrix elements, thus affording an
excellent means of testing several models by using them to

interpret scattering data.
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The (p,p') study also complements the two-nucleon
transfer study because each reaction populates collective
states, particle-hole types in (p,p') and two-particle or
two-hole configurations in (p,t). Due to these similarities,
one would expect to see some correlation between the levels
populated in each reaction and thus aid in the assignment of

spin and parity for new levels.

C. Organization

The next two chapters of this dissertation are an
introductory discussion of the theoretical background used in
the study. Chapter II deals with the primary nuclear models
used in the remainder of the text, while in Chapter III the
theoretical methods of describing nuclear reactions and
calculating transition strengths and shapes are presented,
including the standard Distorted-Wave Born Approximation and
the method of coupled channels for inelastic scattering.
Chapter IV discusses the experimental procedures and the
methods used in the data analysis.

In Chapters V and VI the experimental results are

presented for the 1°24r196,198 192,194,196,

194,196,198

Pt(p,t) and
Pt(p,p') reactions, respectively. Also included
in each chapter is an interpretation of the results,
primarily with the O0(6) 1limit of the interacting boson

approximation model. The last chapter is a summary of the
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results for both sets of reactions and a discussion of the

effectiveness of the IBA model in explaining the data.



CHAPTER II

THEORETICAL BACKGROUND - NUCLEAR MODELS

A. Introduction

When one is studying a complex problem or situation
where all the forces or variables involved are not known,
some type of model is usually used to gain insight, answers,
and ultimately predictions. The study of the nucleus is an
excellent example of this situation. First, the nucleus must
be handled as a many-body problem (A > 2, of course), which
has no analytical solution. But the situation is even more
complex than the atomic many-body problem because of the
complicated nature of the nuclear force. The force between
nucleons is very strong, with many complexities. In the
atomic case the force involved is the simple electrostatic
force between charged particles. Second, the dynamics
involved in the nucleus are extremely complex due to the high
particle density and the short range of the nuclear force.

These complexities thus compel one to use a model to
describe the nucleus and to predict experimental quantities.
In the past forty years there have been numerous models

developed in an attempt to understand the nucleus. For the

12
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most part, these models work well only for limited special
cases because of assumptions that are necessarily made to
make the problem tractable. There are basically two kinds of
models: one describing the particle-like or intrinsic
features of nuclei; the other deals with the collective
features often exhibited by heavier nuclei. This section
will concern itself with the latter kind of model because of
the collective nature of the Pt nuclides and also because the
reactions employed in this study, (p,t) and (p,p'), are
probes of collective structure. Extensive detail 1is not
necessary as there exist many classic works and review
articles on the subject [Bo 53, Da 58, Bo 69, Pr 75, Ra 75].

The most widely used model for collective nuclei is the
phenomenological, hydrodynamic model of Bohr and Mottelson
[Bo 53, Bo 69]. The nucleons are treated as a deformable
liquid drop, whose macroscopic properties such as surface
tension, volume, and Coulomb energy are included in the total
Hamiltonian. Two idealized 1limits arise, one due to
vibrational modes and the other from rotations. The
vibrational model applies in first order to spherically
shaped nuclei, whére the nuclear excitations (of a collective
nature rather than intrinsic) are assumed to be small-
ampli tude, harmonic vibrations about the equilibrium
spherical shape. -~ In the rotational model, which best
describes well deformed nuclei in the middle of shells, two
collective modes of excitation are considered, viz. rotations

and small vibrations of a permanently deformed system.
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B. The Vibrational Model

The usual parameterization of the surface of a distorted

body involves an expansion in terms of spherical harmonics,
R = Ro[l +).\Zuoz>\u(t)Y)\u(9,¢)] ’ (II-1)

where the qu are the spherical harmonics expressed in terms
of the laboratory angles 6 and ¢, and the alu are time-

dependent parameters defining the distortion of a sphere of

volume 4/3 ﬂRg. The kinetic energy, T, can be expressed as
po= L I 2 -
T =3 %! Bx|a>\u| (II-2)
and the potential energy V as,
_1 2 -
V=3 Azu C)\Iawl ' (II-3)

where the BA are "mass parameters" and the CA are the vibra-
tional "force constants". Values are determined either
empirically or via some microscopic model. The total Hamil-

tonian for this system is given by

=1 5 T 2 -
H =3 )\u[B)\IaMll + Cx'“xu! 1, (I1-4)
which corresponds to a set of uncoupled harmonic oscillators

with frequencies, wk
1/2
wy, = (¢, /B2, A > 2, (1I-5)

where A is associated with the order of the excitation and

also the magnitude of the angular momentum. The modes
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arising from A = 0 and X = 1 have been neglected since A = 0,
the compression mode, corresponds to a volume change of the
nucleus and )\ = 1 refers to a translation of the center of
mass of the nucleus. The energy 1levels of this simple

harmonic oscillator are given by

EX = hwk ﬁ (n)\u +1/2) , (II-6)

where n)\u is the number of vibrational quanta, called

phonons, which have angular momentum A and parity (—l)x.
Thus, the energy spectrum of a simple vibrator has a
ground state with zero phonons and spin and parity J' = 0+.
The first excited state has one A = 2 phonon with an energy
of ﬁwz and 3" = 2%, Since one A = 3 phonon has nearly the
same energy as two ) = 2 phonons, the next excited state,
which appears at 2hw2, could be either a 3° state or the three
degenerate states formed via the coupling of two quadrupole
phonons. In practice these states are not degenerate due to
anharmonicities, so the third excited state could be either

+

the 3~ state mentioned above or a O+, 2, or 4+ state from the

2—phonon triplet.

Some of the electromagnetic properties of this model
include: (i) strong E2 transitions from the first excited 2+
state to the ground state as well as from the members of the
three phonon triplet to the first 2t state, (ii) no E2

transition from the second 2% state to the ground state, and

(iii) no quadrupole moment for the first 2t level. The
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nuclei which should exhibit these energy and decay properties
lie near the closed shells, far from the strongly deformed

regions and should be nearly spherical.

C. The Symmetric Rotor Model

Measurements of the quadrupole moments of nuclei have
shown that the larger values occur in the region between
major shell closures. This implies that these nuclei are not
spherical, but ellipsoidal, and one would expect to see
energy and decay properties quite different from those of a
spherical vibrator. These strongly deformed nuclei exhibit a
rotational structure much like that seen in molecules. To
describe such nuclei in the Bohr-Mottelson model the nucleus
is assumed to be strongly deformed with axial symmetry. The
expansion of the nuclear surface is handled in a fashion
similar to the spherical case except that the “xu parameters
are replaced by a)\u values related to the body-fixed system
and the Euler angles (el, 62, 93) of the principal axes of the
nucleus with respect to the space-fixed axes.

Thus, for quadrupole (A = 2) shapes the nuclear surface

can be expressed as

R = Ro[l + E azuyzu(e',cb')] . : (II-7)

The axes of the body-fixed frame are chosen such that
a,) = ay; 1 = 0 and 359 = a, o So for the rotational

system, Ay07 9o along with the three Euler angles are used
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to describe the system rather than the five axp variables.
For later convenience, a5 and a,, are defined in terms of
two new parameters B and y:
a9 = Bcosy, as, =§£%§iny . (I11-8)
2
The significance of B and y can best be shown by the value of

R(6',¢") — Ro along each axis

Ve
R(8',6') - R, = 6R, = vg? BR_cos(y - 2L), k = 1,2,3 ,

(I1-9)

where k represents the body-fixed axes, x!', y', and 2'. From
(IT-9) one sees that B is a measure of the size of the
deformation,the departure of the nucleus from sphericity.
The value of Yy determines the type of ellipsoid. For values
of Yy = 0 or multiples of m/3, there is one axis of symmetry.
With B > 0 and y = 0, 2n/3, 471/3 a prolate (football) shape
is obtained, while for B> 0 and Y= T, n/3, 57/3 an oblate
(doorknob) shaped ellipsoid is formed. If B < 0 the two
shapes would be reversed in the examples above. For other
values of Y there is no symmetry axis in the nucleus. This
case (asymmetric rotor) will be discussed in the next
section. Now one can discuss the shape of a nucleus in a two
dimensional B—Y plane, which can be reduced to a 60° sector
of polar coordinates due to the symmétries about m/3.
Figure II-1 shows a schematic view of this 60° sector.

To derive an expression for the energy levels of a

symmetric rotor the terms of the Bohr-Mottelson Hamiltonian
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Figure IT-1. A 60° Sector of the B-y Plane. The point P
represents an asymmetric shape with magnitude 8
and an asymmetry parameter Y.
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must be recast in terms of the body-fixed frame. After this
transformation the expression for the kinetic energy is given

by

1 02 2:2 1 2 _
T =35 B(B” + B*y*%) + 5 LYy » (II-10)

HMw

k=1
where w is the angular velocity of the principal axes with
respect to the space-fixed axes and I, the effective moment

of inertia, is given by

I = 488%sin (y - 3%5 . (II-11)

The first term of Equation (II-10) represents the vibrational
energy and the second term is the rotational contribution.
The potential energy can be expressed in terms of the B—y

plane mentioned earlier so that the total Hamiltonian has the

form

H = TB + TY + T+ V(B,Y) . (IT-12)

From this general Hamiltonian, solutions for both the rota-
tional and vibrational 1limits can be obtained. For a

spherical nucleus,

V(B,y) > V(B) = 3 g (11-13)

is obtained straightforwardly from Equation (II-3). Sub-
stituting this expression into (II-12) 1leads to the same
energy spectrum obtained in the previous section for a vibra-
tional nucleus (see Figure (II-2)). If one assumes that B

and y change very little, which implies a very steep V(8,7Y)
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energy level spectra associated with these
potentials. Taken from Reference [Pr 75].
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about the equilibrium value of B8 and Y, the Hamiltonian

simplifies to
3 3 ‘
= 1 2 _ _k_ -
H=3 E T oy = E 5 . (IT-14)

For an axially symmetric nucleus, the moment of inertia about
the symmetry axis is zero as no rotations about this axis are
observable. From (II-11) one sees that the two remaining Ik
values are equal in this case. This leads to the simple

energy expression

ﬁ2
EJ =31 J(J + 1) , (II-15)

with the total angular momentum J = 0, 2, 4... for the ground
band. An example of this band structure is shown in
Figure II-2. If small vibrations are allowed about
V(BO,YO = 0) two additional low-lying bands may be seen in a
strongly deformed nucleus. These are called B and Y
vibrations. The B8 vibration causes a distortion from the
equilibrium value of Bc> while preserving axial symmetry
(y = 0, for a prolate example). The vy vibrational mode
involves oscillations about y = 0 with 8 fixed. This type of
oscillation disrupts the axial symmetry. These vibrational
states will usually have a rotational band built on them
which have the same J(J + 1) spacing (see Figure II-2). The
quantum number K, the projection of J onto the symmetry axis,

is often used to describe these bands. The B vibrations

Preserve axial symmetry so K = 0, while the y vibrations have
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K = 2 since they represent motion out of the symmetry plane.
It is possible to have a two y—phonon vibration, much like
the simple 2-phonon states described in Section II-A. This
would result in a K = 0 and K = 4 bandhead, but these would
be expected at approximately twice the single +y—phonon
enerqgy. This type of state will be discussed further in

Chapter V.

D. The Asymmetric Rotor Model

The asymmetric rotor model of Davydov and Fillippov
[Da 58] is actually not too different from the basic

framework of the simple rotor except that the zero-point

value of y is allowed to be non-zero. This allows for
rotation about all three axes and thus three different Kk
values. Cast in 1its simplest form, this model has a

potential V(B,y) with a steep minimum about a fixed B and
some vy # 0. If this condition is relaxed, similar g and Y
vibrations will be predicted at lower excitation energies,
much like the symmetric rotor case of Section II-B.

The Hamiltonian is identical to Equation (II-14) except
that each Ik is allowed to be non-zero. The solution of the
Hamiltonian is somewhat more involved in this case, however,
since the quantum number K, the projection of J onto the
symmetry axis, is no longer a good quantum number because the
non-zero y-value destroys the axial symmetry. The
eigenfunctions are thus mixed in terms of K and can be

expressed as
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=3z J
e Ked gki(y)!JMK> , (II-16)

where the mixing coefficients gg. will be derived from
Equation (II-17) and the | IMK> arelthe eigenfunctions of an
axially symmetric rotor [Pr 75]. Solving the Hamiltonian in
the |JMK> basis shows that only one 0 state, two 2% states,
one 3+ state, three 4+ states, etc. are formed. This is due
to the allowed values of J and K as a result of symme try
considerations

K =20, 2, 4...

{K, K+ 1, K+ 2,..if K #
Or f K =

(I1-17)
2, 4... i

J

0
0o .

Solutions for the energies of these states are obtained by
solving the following equation for each value of K

3 Ll

<JMK| I 5T

-Elv.> =0 . (II-18)
k=1 IM

k
Figure II-2 shows a typical energy level pattern and V(B,Y)
surface for an asymmetric rotor. The level spacing is quite
similar to the simple J(J + 1) rule of a symmetric rotor. 1In
fact, if one "softens" the asymmetric rotor to permit
B—vibrations following Davydov and Chaban [Da 60] there are
actually very few differences between the electromagnetic
properties and the energy levels predicted from this model or
from an axially symmetric model with the rotation-vibration
coupling terms included [Fa 65]. Yamazaki has shown [Ya 63]

there are really no discernable differences in the two models
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unless one studies the higher-lying bands, in particular the
K = 4, two y-phonon band. Thus, distinguishing between the
two models on the basis of data related to the ground band and

lowest K = 2 band is quite difficult.

E. The Interacting Boson Approximation (IBA) Model

1. Introduction

All the models previously mentioned in this chapter and
in the introduction have a common framework in the hydro-
dynamical model of Bohr and Mottelson. The only differences
between the models lie in the assumptions made in deriving
certain parameters or in those assumptions which simplify the
Hamiltonian. 1In this section an entirely different approach
to the modeling of the nucleus will be described. Arima and
Iachello [Ar 76] have proposed a group-theoretical approach
to explain the collective properties of nuclei with A > 100
except those near closed shells. The cutoff of the model at
A > 100 is due to the proximity of the shell closures in
lighter nuclides and the small number of particles outside
the core available for this type of collective interpreta-
tion. This discussion will be confined to even-even nuclei,
although the model is capable of describing odd-A nuclei as
well [Ar 76al.

In this model pairs of particles (protons or neutrons)
are treated as bosons, which can occupy two levels, a ground

state, associated with s bosons, and one excited state
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occupied by d bosons. All possible interactions are allowed
between the two types of bosons. The energy and angular
momentum of s bosons is € and L = 0, and for the d bosons, €4
and L = 2. The total number of bosons for a particular
nucleus, N = nS + Ngr is a fixed parameter. N is determined

from the number of neutron and proton pairs (or holes)

outside their respective closed shells. For the nuclides

192-198
78Ptll4—120 the nearest shell closures are 126 for
neutrons and 82 for protons. Thus, the number of neutron

pairs ranges from 6 to 3 while there are 2 proton pairs,
(82-78) /2 = 2. This gives values of N for 192’194’196’198Pt
of 8, 7, 6, and 5 respectively. The following derivation of
the many IBA expressions follows very closely the formalism
of Reference [Ar 761.

The simplest Hamiltonian for the IBA which contains only

one- and two-body terms is

H-€s+s+e 2d+d + Igv (ITI-19)
T s dm "mm i< ij !

where s+(s) is the creation (annihilation) operator for s
bosons, df(d) is the creation (annihilation) operator for d
bosons, and V is the interaction between the bosons. The sum
is taken over the (2L + 1) spin projections of the d bosons
which gives 5 terms. Group theory is introduced by allowing
the six components of the s and d bosons to provide a basis
for the representation of the SU(6) group. Then the

Hamiltonian can be written in a more general second quantized
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form where only symmetric representations are allowed. These
terms are comprised of generators of the SU(6) group, which
are (s+s)(0), (d*d)(L), (d*s)z... totaling 36 generators.

Equation (II-19) can now be written as

+ ¥ 1/2
s + €q % dmdm + I (2L + 1)

H=¢_s
S L=0,2,4

Nl

x ¢ [(da'a") () (aq) (1) (0) (I1I-20)

2

H

¢ o ris  (0)(0)

- (ss

where the parentheses denote angular momentum couplings and

the CL, V_, U_ represent the two-body matrix elements

L' "L
cp = <d2L|V|d2L>

v, = <ds2|v|a®2>V5/z

V= <d20|V|520> V.2 (II-21)
o 2

U, = <ds2|v|ds2> V5

U, = <520|V|520>

The complex Hamiltonian of Equation (II-20) actually
only has 4 types of terms. The first two terms are just s and

d boson counting terms. Terms with the coefficients CL and
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UL do not change the number of s or d bosons, ng and nge The
third type of term has the coefficient V2 and changes N4 by
one unit, while the fourth type, with VO as its coefficient,
changes Ny by two units. The dominance of one or more of
these terms allows for the simplification of the IBA
Hamiltonian and in three special situations will even allow
analytical solutions to be obtained. These three limits are
denoted by the group designations SU(5), SU(3), and 0(6), and
are attained by requiring the Hamiltonian to contain terms
that are generators of each subgroup. In the case of the
SU(5) limit, the Hamiltonian would contain only terms that
conserve nd. For the SU(3) limit, both one and two d-boson
number changing terms are included, while only the two d
boson changing terms are allowed in the O(6) system.

The basis states for the IBA Hamiltonian can be written

as

_ tk_tN-k
| > = |Nngnen,JM> = Cd s

a™A | o> , (11-22)

=
N~z

k=0
where |0> represents the closed shell, and A is a normaliza-
tion constant. The d+ operators are coupled to some definite
angular momentum J,M. Here Ngr g, and n, are the number of
d bosons, number of pairs of 4 bosons coupled to spin zero,
and the number of =zero-coupled triplets of d bosons
respectively.

The full SU(6) Hamiltonian of Equation (II—20) can also

be written in terms of the specific boson-boson interactions
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+ > >
H=¢2dd -k Z 0.-0. ~k' I L.,.+ k" £ bp,.,
m mm ij *i =3 i< ij i<
(II-23)
where e = sd — es (GS is usually set equal to =zero), 6i is
the quadrupole moment of the ith boson, Lij = 2Ii'7fj with

th

E., Ej being the angular momentum of the i and jth boson,

i
Pij is the pairing operator between bosons, and k, k', k" are
constants determining the strengths of each interaction.
This form of the Hamiltonian is considerably more convenient
to use when one is studying nuclei that lie between the three

analytical limits as will be seen later. It should be noted

that the spin dependent part of Equation (II-23) contains

only And = 0 terms, the pairing interaction only And =+ 2
terms, and the Q-Q interaction only And =+ 1,2 terms.
The relationship be tween the coefficients of

Equations (II-23) and (II-20) can be found in the computer
code PHINT [Se 77], and are shown in Table II-1. The program
PHINT is a general program written to diagonalize the IBA
Hamiltonian whether expressed in terms of Equation (II-20) or
(II-23), or as a mixture of both. With this program several
properties [Sc 78] of most nuclei with A > 100 can be solved
numerically with relatively small matrices, typically of
order N.

One of the most useful aspects of the IBA model is its
simplicity for several regions of nuclei. When certain terms

dominate in the Hamiltonian, simplifications can be made
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Table II-1. The Relationship Between the Coefficients of
Equation (II-20) and (II-23).

Equation (II-20) Equation (II—23)a
= K + K' + K"
P 9/2 x 6K 0
C, ~Tk 12k 5Kn
C2 3/2« 6K!' 0
C4 ~-2K -8K? 0
A -(20) /% 0 ~(5/8) /%o
v, 2(35) 1/ % 0 0
U0 0 0 k"
U2 1 0 0

a%‘hese factors have been obtained from the IBA program PHINT
Sc 771].

bThe values for Equation (II-23) are additional contributions
to € not explicitly included in the first term of
Equation (II—-23).
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which greatly reduce the problem. Arima and Iachello [Ar 76,
Ia 78] have shown that in three cases these simplifications
lead to a Hamiltonian which contains the generators of a
particular subgroup of SU(6). Then, by exploiting the
symmetry properties of each group, an analytical solution can
be obtained. The three subgroups, SU(5), SU(3), and 0O(6),
have been used to solve for closed expressions for the energy
levels and transition probabilities. The following sections
will provide a more detailed discussion of each of these
limiting cases, particularly the 0(6) 1limit which seems

applicable in the Pt region.

2. The SU(5) Limit - Vibrational Nuclei

When the energy gap ¢ = €3 ~ €4 is much larger than the
value for the various 2-body matrix elements shown in
Equation (II-21), the Hamiltonian reduces to a simple d boson

counting term, ¢ % d;dm with eigenvalues

E(N, n n, L, M = ¢n

g’
where ng = l, 2, 3...N. This gives the same energy spectrum
as the Bohr-Mottelson Hamiltonian of Equation (II-4). A
typical spectrum is shown in Figure II-3, which is charac-
terized by a constant level spacing and multiple degeneracies
for a given nge If the And = 0 terms of the IBA Hamiltonian

are small but non-zero, CL # 0, the full SU(5) "invariant"

Hamiltonian can be expressed as




Figure 11-3.
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Energy Levels in the IBA With No

Interactions. This spectrum is identical to
that for a harmonic vibrator. The energies are
calculated from Equation (II-25).
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a + %}]:J (2L + 1) 1/2C]._‘[(d+d+) (L) (gq) (I 7(0),

(II-25)
A closed solution is still possible [Ar 76] with this added
term. Rewriting the second term of Equation (II-25) in terms
of the actual boson-boson forces (see Equation (II-23)), the

result is

\4 i3 Vij 1<5 (oclij + BPij + YLij) ’ (I1-26)

where lij ié the unit operator and, as before, Pij and Lij are
the pairing and ¢-§ operators. The coefficients a, B, and vy
are the new parameters in this limit replacing the CL's.
Table II-2 shows the relationship between these equivalent

sets of parameters. The expectation values for these

operators are

<1l> = 3 nd(nd - 1)
<L> = L(L + 1) - 6nd (ITI-27)
<pP> = (nd - v)(nd + v + 3,

where v is the seniority number for the bosons, v = ng — ZnB.

This gives an eigenvalue expression for the complete SU(5)

limit:

_ 1 -
E(N, nd, v, nA, L, M) = end + a2 nd(nd 1)
+ B(nd - V) (nd + v + 3) (II-28)
+ y[L(L + 1) - 6ngl .
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Table II-2. The Relationship Between the Coefficients of
Equation (II—-26) and the CL Coefficients of
Equation (II-25). The factors for
Equation (II—-26) were obtained from [Ar 761].

Equation (II—26) Equation (II-25)
o €2 Cyq
o - 4/7 C2 3/7 C4
B 1/10 C0 -1/7 C2 3/70 C4
Y - -1/14 C2 1/14 C4
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These extra terms in the energy expression now 1lift the
degeneracies shown in Figure II-3 and produce a spectrum
similar to the one shown in Figure II-2 for the hydrodynamic
vibrator. Figure II-4 shows how the energy levels can now be
arranged into bands with the maximum spin determined by N.
All three 1limits of the IBA display this "cutoff" aspect,
evident in both the energy and decay properties. This
results from the finite dimensionality built into the IBA, in
contrast to the geometric models which have N + © for the
liquid drop. The effect of finite dimensionality is most
evident in the branching ratios within the "ground band" as
shown for the SU(5) limit in Figure II-5. 1In all cases of a
simple vibrator, the IBA predicts a ratio less than the
geometrical predictions. This is in agreement with current
experimental measurements.

As mentioned earlier, one of many properties which can
be calculated within the IBA is the electromagnetic decay of

a nucleus. The most general form of the IBA transition

operator is given by

(% _ + tqy (2) Ty (2)
Tn = = 0y §pp(d's +s7d) 7 + By (d d)
t., (0)
+ YQOSQOGmO(S s)0 , (I1-29)
where % is the multipolarity of the transition with

projection m, and a, B, Y are the coefficients of the various

terms. The exact form of the coefficients will depend on the
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specific limit of the model, SU(3), O(6), and SU(5). The
form of this operator must also be a generator of the
particular subgroup, which simplifies Equation (II-29) and
allows for an analytical solution. For E2 transitions in the

SU(5) limit Equation (II-29) reduces to

TéEz) = a@’s + s+d)éz) . (II-30)

where

o = <a|[d)]s V3,

6 being the quadrupole operator. This operator leads to a
selection rule of And =+ 1, the same as in its geometrical
counterpart. The trends of several branching ratios are

given in References [Ar 76, Ar 78, Sc 78].

3. The SU(3) Limit - Rotational Nuclei

In situations where the Q-0 and L terms of
Equation (II-23) dominate, the boson energy, €, and the
pairing force, Pij’ analytical solutions can be obtained
from the simplified Hamiltonian by wusing the symmetry
properties of the SU(3) group. Many of the results are
similar to a special type of symmetric rotor.

A new set of basis states is used to solve the SU(3)

eigenvalue equations

H|N, (A ,u) KLM> = E|N, (A ,u) KLM> (I1-31)

and

- 2 3.8 _ k' I -
H = -k i3 Qi Qj k ij Lij ' (I1-32)
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where (),y) are quantum numbers that label the represen-
tations of SU(3), L, and M are the angular momentum and its
Z—axis projection while K distinguishes states with identical

(A,u), L. The solution of (II-31) is given by

E(N,(A,u)KLM) = aL(L + 1) - BC(:,u) (I1-33)
Here o = 3

z K~ K'y B = kK, and C(A, ) is the quadratic Casimir

operator [Ar 78] of SU(3)
2 2
CAsu) =A% + ™ + 2 + 3(X + ) . (II-34)

The (A,u) can assume values of (2N,0), (2N — 4,2), (2N — 8,4)
...etc. Figure II-6 shows a typical energy spectrum obtained
within the SU(3) 1limit with k' = 0. Note that the level
spacing is proportional to L(L + 1) and that a K = 0 "8—band"
and K = 2 "y-band" arise quite naturally from this limit
along with higher lying bands of a 2-8 or 2-y nature. One
notable exception in these bands compared to those of the
symmetric rotor is that states of the same spin, L, belonging
to the same (A,H) representation, are degenerate in the
strict SU(3) limit.

The E2 operator in the SU(3) limit is given by

—
1) = a,lid’s + sTa) (P - YL (aTe) (27, (11-35)

where o, is the effective E2 charge and 82 in (II-29) is now

\4 . . , ‘o
—-——%az. This expression predicts very strong transitions

within a band but in the strict limit transitions are not
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Equation (I1-34). Taken from Reference
[Ta 7817.



43

allowed between states with a different (A,n). Thus
intraband transitions are allowed for the 8- and y—bands, but
no transitions are predicted from either of these bands
(Aru) = (2N — 4,2) to the ground band A,u) = (2N,0). This is
contrary to the predictions of the geometrical symmetric
rotor model. Examples of other decay systematics are given
in Reference [Ar 78]. Closed form expressions can also be
obtained for certain types of transitions. Of particular
interest is the expression for transitions within the ground

band. For the SU(3) limit [Ar 78]

. _ 223 (L' + 2)(L+ 1)
(E2; L + 2> L) =05 7 120 v 3) (2L 7 5

BIBA

X (2N - L) (2N + L + 3) (II-36)

for the E2 decays, and

- 167, 1/2 L
Q; = -a, (=g5) ST13 (4N + 3) (I1-37)

for the static moments. If these expressions are compared

with those of the geometrical model [Bo 69] one obtains

B(E2; L + 2 + L) _ (2N - L) (2N
Bpy (E2; Lt 2 » L) (2N +

L + 3)
)2

+
3 : (II-38)
2

This ratio illustrates the finite dimensionality present in

the IBA model. As N > o, BIBA > BBM‘

"correction factor" differs from unity for finite N values

However, the

and approaches zero as L -+ 2N. This implies that the IBA
model predicts decreasing values for the transition proba-

bilities between states with higher L values compared to a
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single value predicted by the geometrical model. This cutoff

effect has been seen in 20Ne decay [Ar 78].

4. The 0(6) Limit - Transitional Nuclei

For this third limit of the IBA, the dominant interboson
force is the pairing interaction. The analytical solution to
the IBA Hamiltonian is achieved by requiring the terms of the
Hamiltonian to be generators of the subgroup 0O(6). This

produces a Hamiltonian of the form

- t 1 1/2 t 4y (L) (L) ,(0)
H=¢Xdd + % 5 (2L + 1) c. [(a qd) (ad) 1
+ 3 v @) (9 (s5) O 4 (sTs") (0 (4q) (01700 (1139,
+ % Uo[(s+s+)(o) (SS)(O)](O) .

Recall that the VO (pairing) term results in a change in the
number of d bosons by % 2., This causes considerable mixing
of the wave functions if the basis set shown in (II-22) 1is

used. If the basis denoted as |NJoTv,LM> is used, the

A
Hamiltonian can be expressed in terms of operators which are
diagonal in this new basis. New quantum numbers are then
obtained: 1) o characterizes the totally symmetric
irreducible representations of 0(6), witho = N, N — 2...0 or
1l for N even or odd; 2) Tt characterizes the totally symmetric
irreducible representations of 0(5), where T = c, 0 —1...0;

3) Va is the number of zero-coupled boson triplets, with the

relationship 1t = 3vA + A, Vp = 0,1..., where 1L is allowed to
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be L = 2)\, 20 — 2,...0 + 1,00, The Hamiltonian is

conveniently expressed as

H = AP6 + BC5 + CC3 ’ (I1-40)

where P6 is the pairing operator and C5 and C3 are the Casimir
operators of 0O(5) and O(3) respectively. The presence of
operators for several subgroups in this expression results

from the group reduction
SU(6) D 0O(6) D 0O(5) > 0O(3) .

Table II-3 shows the correspondence between the new coeffi-
cients in (II-40), A, B,and C with the CL, VL’ and UL coeffi-
cients of (I1-20,31). The eigenvalues resulting from (II-—40)

are [Ar 78al

E(N, 0, T, vALM) = %(N - 0)(N + 0 + 4)

+ % T(t + 3) + C[L(L + 1)] . (I1-41)

Figure II-7 displays a typical energy level spectrum for the
O0(6) limit with N = 6 and A, B, C > 0. The signs of the three
terms can considerably alter the 1level pattern. In
particular, a positive value for C drops the 2; state below
the 4{, a feature of the Pt nuclides. The grouping of energy
levels in Figure II-7 is similar to those in Figure II—-4 for
the SU(5) limit with a few exceptions. The most notable of

these are the "missing"” 0+ and 2+ levels in the T = 2 and

T = 3 groupings in 0O(6) (o0 = Gmax) which correspond to the
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Table II-3. The Relationships Between the Coefficients of
Equation (II-40), (0(6) Limit) and Those of
Equations (II-20, 39) (Full IBA Hamiltonian).

Equation (II-—20) Equation (II—40)
0(6) Limit?
Full IBA A B C
€ 0 4B 6C
Cy 5/2 A -8B -12¢C
c, 0 2B -6C
C, 0 2B 8C
v, ~(5/16) /2 0 0
v, 0 0 0
U, 1/2 A 0 0
u, 0 0 0

3Values from [Ca 78a].
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ng = 2 and ng = 3 states in SU(5). These states in the SU(5)
limit effectively have been pushed higher in energy than
their Ny neighbors due to their nB = 1 character, while the
other states in each group have ng = 0. This should be
expected since nB is the number of boson pairs coupled to
zero, and the difference between the SU(5) and 0(6) limits is
the introduction of a pairing interaction. An additional
feature of this limit is the set of 0 — 21 — 2+ groupings
with strong E2 cascades, and level spacings proportional to
(Tt + 1).

Several closed expressions for E2 transition rates have
been obtained, again by using a transition operator which is
a generator of the limiting symmetry, in this case 0(6). The

operator satisfying this condition is

o (E2)

m az(d+s +sTay (B, (I1-42)

where o, is a strength factor. This operator requires
selection rules of Ac = 0 and AT = + 1. The o selection rule
is a direct result of the operator being a generator of the
0(6) group and thus cannot connect states with different
representations. This 1is analogous to the A(A,u) =0
selection rule for the SU(3) 1limit. The AT restrictions
arise from the fact that the operator can create or destroy
one d boson. Several examples of these closed expressions
are given in Reference [Ar 78a]. Two informative branching

ratios are
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such that as ¢ increases from the heavy to light samariums,
the boson energy term overshadows the Q.-Q terms, thus
providing a transition from the SU(3) to the SU(5) limit.
This perturbation causes the wave functions to mix so that
most of the transition rate selection rules are broken.
Casten and Cizewski [Ca 78] have carried out a similar
procedure to describe the O0(6) + rotor transition for the
Pt—Os region. This 1is accomplished by introducing a
logarithmically increasing (with N) gquadrupole-quadrupole
boson interaction, while varying the 0(6) parameters, A, B,
and C, to account for the changes in mass. Because the Q-*Q
force is comprised of a one d boson operator, all wave
functions become mixed and both the 0 and T selection rules
are broken.

This study of the Pt nuclides with the (p,t) and (p,p')
reactions has for the most part used wave functions similar
to those of Casten and Cizewski [Ca 78], derived from the
slightly perturbed O(6) limit. The intention of this study
as well as [Ca 78] was not to find a set of "best fit"
parameters for the 0(6) limit, but rather to use a consistent
set of parameters to adequately describe the Pt region.
Another reason for not fine tuning the parameters is the
absence of any explicit proton-neutron interaction between
bosons [Ar 77]. Recall that when determining N, the total
number of bosons in a system, the particular type of boson, p

or n, was not a factor, only the sum of each type. The role
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of this proton-neutron boson interaction appears to be most
critical near the end of a shell — the region where the 0(6)
limit should be most effective [Ar 78a]. Preliminary results
indicate that the energy predictions will improve, while the

branching ratios remain unchanged [Ci 78].




CHAPTER III

THEORETICAL BACKGROUND - NUCLEAR REACTIONS

A. The Distorted-Wave Born Approximation (DWBA)

for Transfer Reactions

1. Introduction

Current methods used to calculate cross sections for
direct nuclear transfer reactions fall into three major
categories, the DWBA, coupled channels Born approximation
(CCBA) , and the multi-step sequential transfer approximation.
Although each method has a somewhat different domain of
applicability, the DWBA is by far the least elaborate of the
three methods and actually provides the basic framework for
the latter two. The CCBA 1is usually used to describe
reactions which involve very collective type nuclei, such as
the rare earths. 1In these cases the levels in the rotational
bands are so coupled that a one-step (one channel) analysis,
like DWBA, cannot reproduce the data. The sequential
transfer approximation 1is primarily used in multi-nucleon
transfers, where several intermediate steps in the transfer
process may be necessary to interpret the results. The
degree of computational difficulty increases very dra-

matically from DWBA to the sequential transfer approximation

53
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for even the simplest one-nucleon transfer reactions. For a
two-nuclear transfer reaction, such as (p,t), these computa-
tional problems are magnified. For this reason, and the lack
of collectivity in the Pt region, the theoretical inter-
pretation of the (p,t) reactions was limited to the DWBA
method.

The theory of direct two-nucleon transfer reactions has
been developed by several authors I[To 61, Gl 62, Sa 64.
Au 701 utilizing plane-wave (PWBA) and distorted-wave Born
approximations (DWBA). The basic idea underlying these
studies is a one step mechanism involving an interaction
between the projectile and the transferred nucleons. The
transfer process itself is assumed to be weak so that it can
be treated in a first order Born approximation. The
following derivation is presented as an outline of the
general DWBA theory primarily to show the basic assumptions
and approximations used to calculate direct reaction cross
sections.

The actual reaction process in DWBA can be broken down
into three stages:
1) The projectile and target nucleus approach each other

within their Coulomb and nuclear potentials.
2) The transfer 1is accomplished by a one-step mech-

anism — for a (p,t) reaction the two neutrons are

transferred at the same time, not sequentially.
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3) The outgoing particle and the residual nucleus move
apart under the influence of their Coulomb and nuclear
interactions.

Direct nuclear reactions are often divided into two types:

stripping and pickup. In a stripping reaction, part of the

projectile is transferred to the target nucleus (e.q.

24Mg(3He,d)25Al), while in a pickup reaction the projectile

"picks up" particles from the target nucleus (e.q.

24Mg(d,3He)23Na). Although the theory is identical for these

two categories of reactions, the conventions and notation
differ slightly. For convenience the remaining discussion

will use the conventions for pickup reactions since the

results will be applied to (p,t) reactions.

2. The Transition Amplitude, Ta b
14

For any nuclear reaction A + a + B + b, commonly denoted
by A(a,b)B (A =B +x and b = x + a, where x 1is the
transferred particle(s)), the Schrddinger equation can be
written

(H-E)Y =10 , (III-1)
where ¥ is the complete wave function which describes all
possible results of the collision, direct reactions as well
as elastic scattering, multistep and compound nuclear

reactions. The Hamiltonian can be expressed as

H=K_+V_ =K +V , (ITI-2)
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where Ka (Kb) is the Hamiltonian outside the range of the
interaction potential in the entrance channel, Va (or exit
channel, Vb). Ka includes the kinematics of the system as
well as the internal motion of the various particles and
nuclei involved. The eigenstates of Ka can be defined as

K, ¢, = E ¢_ . (III-3)

The transition amplitude or T-matrix for the reaction can now

be represented by [To 61]
- (-) -
Top = <Y Iva|¢a> . (II1-4)

This is the "prior" form of the T-matrix which is used for
pickup reactions. The (-) superscript is used to indicate
there are plane waves and incoming spherical waves in the b
channel of the reaction. With this expression for the

transition amplitude one can determine the reaction cross

section
u_u k
do _ 1 a"b b 2
@ - 22 &, |Ta,pl ™ - (III-5)
(23, + 1)(2si + 1) (21h°) a '

Here LN and W, are the reduced masses in the entrance and exit
channels and ka and kb are the ane numbers. 1In general, for
a reaction, with non-polarized beam and target, one must
average over the spins of the initial channel and sum over
the spins in the final channel; thus, the additional factors
in (III-5), where Ji and Si are the spins of target and

projectile, respectively.
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The basic problem now is to solve for y \ ), the complete
wave function, which is very complex in its own right, by
using potentials which are not fully understood. In
practice, to obtain solutions to Equation (III-4) one must
truncate W(—) by replacing the exact interaction potential
with an effective, phenomenological interaction. The
potential that is wuniversally used is the optical model
potential (Ua), whose exact form is determined empirically.
More details of the optical model will be discussed in the
coupled channels section of this Chapter. The two basic
restrictions of U, are that U, » 0 as > @ and that U, be
diagonal in the "a" channel. The eigenfunctions of this
potential, usually called the "distorted waves," are

determined from the expression
(K, + U, - E)E_ =0 . (III-6)

Introducing this new potential using a Gell-Mann,
Goldberger transformation for scattering from two potentials

[To 611, Equation (III-4) becomes
- (-) _ (+) -
Top = <Yp |V, = U lE. > (III-7)

where the (+) superscript indicates plane waves plus outgoing
spherical waves 1in the "a" channel. Since the dominant
process in most reactions is elastic scattering, it follows
that the major component of the interaction Va should reflect

this. 1If Ua is taken to be the observed optical potential,




58

then Va- Ua ='an becomes the perturbing residual inter-

action responsible for the reaction. Thus, in general form,

Equation (III-7) becomes

(+)

T o <wé“)|vxa|ga > . (ITI-8)

a,b ~

Now with a small interaction potential, an, perturbation
techniques can be used, in this case the first-order Born
approximation. In the Born approximation Vv (=) can be

b
expressed as

g ikr
(=) ik-r e _
wb ~ e + Ta,b el (III-9)
ik-T
where e ' is the incident plane wave. A more physical

expression contains the distorted waves rather than the plane
waves, because of the presence of an interaction potential as
the incident particle approaches the nucleus. The first-
order Born approximation with distorted waves consists of

truncating Yé~) to

(=) (=)
¥y = £y ' (III-10)
so that the expression for Ta b becomes
14
DWBA _ (-) (+) -
Ta,b = <gb |an|ga > . (III-11)

From Equation (III-2) Ka can be defined as

Ka = Ha + HA + Ta p (ITI-12)

with




59

Ha.= internal Hamiltonian for the incident particle a ,
HA== internal Hamiltonian for the target nucleus A, and
T_= kinetic energy of relative motion.

a

The associated eigenfunctions for these Hamiltonians are
derived from the following expressions

J

A i, >
(HA - EJi)<I>A (A) =0 (ITI-13a)
a Si >
(Ha - Esi)<I>a (a) =0 (ITI-13b)
a -
(Ta + Va = Ei)Xai =0 v (III—13C)
> >
where A and a are the internal coordinates and
A a a
E = EJi * Esi +E; . (ITI-14)

Since each Hamiltonian spans a different space, the distorted
waves can be expressed as a product of target and projectile
internal wave functions along with an expression for the

relative motion involved. Thus

J. S.
e = e, de L@y (111-15a)
1 1
and
J S
(=) _ £ 2 £,2 (=)
Ebf = ¢B (B)<I>b (b)xbf . (ITI-15b)

In a typical pickup reaction the relative motion wave
functions are a function of the relative momentum and a
relative coordinate between the particles in each channel.

Figure III-1 displays the coordinate system used in this




Figure I1I-1.
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Coordinate System Used for Pickup Reactions,
Denoted by A(a,b)B, Where b =a + x and
A = x + B.
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COORDINATE SYSTEM FOR
PICKUP REACTIONS

Figure III-1. A(a:b)B
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derivation for pickup reactions. The expressions for the
relative coordinates of Xy p are
14

> N >
m m
at Tx

>
R =

a X
m_+m
a X

and (ITI-16)

>, - My
fa " Ya " m +m
X B

T
X 1

where mx, ma, and mB are the masses of x, a, and B,

> -+ -
respectively. Thus, X;+) is a function of ka and ré, and Xé )
depends on Kb and ﬁ. Now, after substituting

Equation (III-15) into (III-11)

DWBA _ > > (=)Y*,>» =
Ta,b = JArdr xp ' (Ky/R)
Jf Sf Ji Si
X <0 70 |Vax|<I>a o, "> (ITI-17)
(+) > +'
X Xa (ka, ra) .

Next, a parentage expansion, relating A to B and b to a,

can be defined for @A and @b

J.

-+ > N
oty = z F,__(r)[eY (By[y. (£ )6% (%) 1.1
A 2L6JJ" L0J " x B [ S 4 J Ji
(ITI-18a)
and
S
f—)_ S"*' PN 0-+
2, (b) = XGZS' Ekcs(rax)[Qa (a)[YA(rax)Qx(x)]S]Sf !

(ITI-18b)

where the brackets represent angular momentum couplings:

m

22@2(5) . (III-19)

> o> M _
[Y,(r e ,(x)]; = X (amoom |IM) Y
MM
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FQGJ(rx) and Excs(rax) are called the nuclear and projectile
form factors. These will be discussed in more detail later.
The quantity in parentheses is a Clebsch-Gordan coupling
coefficient, the Y?Q are the spherical harmonics and'ﬁi(a) is
the internal wave function for the transferred group, X, with
angular momentum g. The quantum numbers g and A, defined in
Equation (III-18), denote the angular momentum of "x" within
A and "b" respectively. By inserting Equation (III-18) into

DWBA . . > >

-5
the expression for T and integrating over B, a, and x,

one obtains

DWBA
Ta,b. = £ [(2n + )25 + 1)IY2 (3 M am|3.m.)
i€ f i1
LSJ
X (S;M.,SM|S.M.) (LM SM|JM)rLSJ ' (II1-20)
where
Mo orgr ar v 3 > (+) +
Tisy = Idradrxxbf (kb,R)fLSJ(r PT)Xg a, (k arfa)
(IT11-21)

The form factor, f contains all the nuclear structure

LSsJ’
information involved in the reaction,

A-m

* A
f (r ) = & (-1) (Am, &m |LM)
LSJ X Py AT
X W(XGLJ7SQ)F20J(rX) (III-22)
> m%* A
X EAOS(rax)V(rax)Yk (rxa) '

where W(AoLJ;S%) represents a Racah coefficient. In the
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expressions above, J, L, and S are the transferred total,
orbital, and spin angular momenta, respectively. The angular
momenta and spins along with their couplings are defined by

the following expressions:

> > >

Ji + J = Jf

8 T F

> > >

L +8S =73

> > > (II1-23)
A+ 2 =1

>v
+
Q4
I}
0¥

=4
+
Qs
1]
Gy

These relations are wused in the determination of the
selection rules for a particular reaction.

Substituting (III-20) into Equation (III-5) one obtains
the following expression for the DWBA cross section:

DWBA uiuf k

dg - b 1
an (2nhz)2 ka (2Ji + 1)(2Si + 1)
x & |rPWBA|2 (III-24)
m.m
1
MM

Now, by utilizing the orthogonality relations of the Clebsch-

Gordan coefficients and Equations (III-20, 21, 22),

DWBA HiMeg Ky (28 + 1) 2

b £ M
do = = | oz T (III-25)
o (2mk2y 2 K (25, + ) g, ' o L83

With this final expression of the DWBA cross section, the
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remaining task is to evaluate the form factor, f which

LSJ '
contains all the nuclear information.

3. The Nuclear Form Factor

From Equation (III-21) one sees that the expression
containing the form factor contains a six-dimensional,
nonseparable integral. This integral can be simplified by
making a further assumption about the mechanism of the actual
transfer of the particle group, x. It has been stated
earlier that the process is assumed to take place in one step
rather than by a sequential method. This is often referred
to as the cluster transfer method. At this point, it is
practical to assume that particle b is emitted at the same

point at which particle a is absorbed. This is known as the

zero-range approximation. Physically this implies that
;a = ;x’ which effectively reduces the integral in (I11-21)

to a tractable, three dimensional integral. This approxima-
tion has been shown [Ba 71] to be especially suitable for
Os—shell projectiles (p, d, t, 3He,on ) » which implies "a" and
"x" are in a relative s—state or A = 0 in (III-23). The
primary effect of the use of this approximation is an overall
renormalization of the strength of the calculated cross
sections.

Equation (III-22) can now be reduced with the zero-range

approximation using the relation

> > >
Vax(rax)Exgs(rax) = Do(r)d(rax) ’ (III-26)
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where Do(;) is the zero-range function, and G(Tax) is the
Kronecker delta function. Also, T = ?2 - ?l’ which is the
distance between the two neutrons in the case of a (p,t)

reaction. The zero-range function can be written as
> >
Do(r) = Do¢b(rx) ’ (111-27)

where, for (p,t), ¢b is the triton wave function.
S50, substituting (III-26, 27) into the expression

containing the form factor,

ZR _ D - (_) > > > >
Trsam = o [arxp kit DFpg (T ) oy (r)
V(28 + 1) (2L + 1)
M m
L, (+) 2 B =+
x Y T x, (ks mg * m_ ry) - (II1-28)

DO can be determined for a particular reaction by sub-
stituting the appropriate expressions for Vax and Elos' In
the case of (p,t) reactions the form of Vax and Ekos is taken
to be a gaussian shape [Ba 73]. Note that the variable of the
> >
distorted waves have also been simplified because of r, = Iy
which implies
<>
r

>
R =

14

and

The distorted-waves are usually described in terms of a

partial wave expansion,
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(+) 4t La LA ma*
X4 = 2 (i) exp(loL )fL (ka,ra)YL (ra)YL (ﬁa)
a a LaMa a a a a

(I11-29)
and similarly for)(é_). Here La(Lb) represents the angular
momenta of the partial waves, the o;, are the Coulomb phase-

a
shifts, and fL ’ fL are the radial functions as determined
a

b
from the solution of the optical model eigenvalue equation.
The number of partial waves in a particular reaction at these
energies (35 MeV) is primarily a function of the Z of the

projectile and nucleus (or the range of their Coulomb

interaction). Making these partial wave expansions for the

distorted-wave gives

. L L_-L -L
"They = I (1) % P expiog )
L_L a
ab
MaMb
47 (2L, + 1)
. b 1/2
X exp(loLb)[ LTI ]
a
(III-30)
x (L,0LO|L_0) (LM IM|L_M_)
M M
X YLb(kb)YLa(ka) L
b a b~ a
and
159 - e (e )E. (K ,r)f. (k B ydr
= r , L y ————— [ r_ .
LbLa 0"LSJ ' a Lb b’ a La a’ m + mp "a a
(IT1-31)
Note that the Clebsch-Gordan coefficients require L, + L = L

b a
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and that (LB0L0|LaO) vanishes unless L + La + Lb is even.
This result, along with the conservation of parity,
La Lb
nanA(—l) = nan(—l) ' (II1I-32)
requires that for the parity change of the reaction
L _+L
_ . a b _ , 4,L _
Ar = T A" = (-1) (-1) . (III-33)

This condition is often termed the natural parity selection
rule. This is a direct result of the zero-range approxima-
tion and is not true for a full finite-range calculation.
Returning now to the explicit evaluation of the form
factor for (p,t) reactions, FLSJ(rx) can be expanded in terms
of single-particle wave functions, Uq , where the q; are the

i
neutron shell-model quantum numbers, nigiji, and

]_/2 > ->
F (r,) = X 87°U_ (r,)Uu_. (r.), (I11-34)
LS J 1 2
J' 'x qlqz ql q2
where Sé/z is the spectroscopic factor defined by deShalit

and Talmi [De 63] for (p,t) reactions:

J. J
t t £ 3
< PRl lal (rpal (o) llv TR - 2)5
1/2 ) ny 1 n, 2 H
J (2Ji + l)l/2

S (ITII-35)

Here, a:l and a:2 are cr??tion ogfrators for the two neutrons
being transferred, and ¥ i and ¥ £ are the wave functions of
the target and residual nuclei. The single particle wave
functions are determined by solving the Schrddinger equation

for a bound particle in a Woods-Saxon shaped potential, where
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the well depth is adjusted to give each neutron one-half the
two-neutron binding energy.

In general, determining the form factor for two-particle
transfer reactions can be very difficult. Unlike the
procedure for single nucleon transfer reactions, the form
factor cannot be broken up into a radial part and a strength
factor because of the coherent sum taken over many possible
particle couplings (see (III-34)). In single nucleon
transfer the summation in (III-34) disappears since the
transfer usually involves only one particular orbital of a
shell. A similar situation can be obtained in a two-particle
transfer reaction by assuming a pure two-particle pickup

1/2

configuration giving SJ = 1 and thus allowing the radial

dependence of FLSJ to be determined separately. This
procedure is often used in (p,t) reactions when accurate
shell model wave functions are not known [Ba 73, Br 73].
This simplification was used in this study and is discussed
further in Chapter V.

Two interesting features of two-nucleon transfer
reactions which have made them a widely used method of
examining nuclei are the distinctive diffraction-like shape
of the L = 0 transitions and the concentration of the total
cross section in the ground state to ground state transition
for even-even nuclei (except near closed shells). Most of

the angular distributions are expected to have some diffrac-

tive-type shape, since they result from a superposition of
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waves scattering from all parts of the nuclear surface.
However, the L = 0 transitions display this feature much more
so than higher L—transfers. This can be traced in part to the
limited number of couplings that are allowed between the
incoming and outgoing partial waves. Thus there are fewer
terms in the superposition of the waves that can interfere
and destroy the diffraction pattern. The explanation of the
strong ground state to ground state transitions can be
understood in terms of the pairing model of the nucleus
[Br 73], where the ground states of even-even nuclei are
considered to be "superconducting” states composed of many
coherent pairs of nucleons. Thus, a two-nucleon transfer
reaction is quite sensitive to these pairing correlations.
The large cross sections result from the coherent sum taken
over the many configurations that may be involved in the

transfer (see Equation (III-34)).

B. The Coupled Channels (CC) Method

For Inelastic Scattering

1. Introduction

In most inelastic scattering experiments the common
starting point for analysis is usually with the DWBA [Ba 62],
using a collective model form factor (see discussion in
Section B.4). One of the major advantages of this method is
its relative simplicity, as it deals with only one channel of

the reaction and thus the numerical methods involve the



71

solving of uncoupled equations. The reason for the success
of the DWBA method is a direct result of the comparatively
weak interaction which causes the reaction and allows for the
perturbation treatment. However, in some scattering
reactions there are strong couplings between various levels
of the target nucleus. When this occurs multi-step effects
become significant in accounting for the varying strengths
and shapes of the angular distributions. This feature is
observed in scattering studies with the collective, well-
deformed nuclei where the majority of the inelastic strength
appears in the strongly coupled states of the ground band.
Improvements in the DWBA method can be obtained by using
second or higher order Born approximations. However, the
computational difficulty is greatly increased. More
improvement can be achieved by using the coupled channels
method, where the interaction is treated to all orders and
the number of 1levels that can be coupled is basically
determined by computer size. Figure III-2 depicts the
various excitation routes available in the CC and DWBA
inelastic scattering methods. The DWBA method can only
account for the "up" transitions of a, b, and ¢, the direct
transitions. The CC method can calculate all transitions in
Figure III-2 to all orders of the allowed angular momentum
coupling (i.e. 4 has L = 2, 4, 6 components). For example,
in the population of the at level, the CC method includes

pathways such a + d, ¢ + e, a + g + 4 (where g represents the
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reorientation effect), and b, plus higher order multi-step
paths, all of which can be included in one calculation.
Although the computational problems encountered when solving
many coupled equations are quite involved, their solutions
result in a more complete treatment of the scattering

problem.

2. The Coupled Equations

The basic scattering problem is identical to that shown
in the previous section on the DWBA. Solutions of the full

Schrodinger equation,
> >
(H - E)¥(x, A) =0, (ITI-36)

will be sought for the scattering system with appropriate

boundary conditions and an expansion of Wu (A) . Defining H

J A
as the Hamiltonian for the nucleus of mass A and with

-5
internal coordinates A, the nuclear eigenfunctions are

defined by

(Hy - E )Y ;&) =0, (111-37)

where EaJ is the energy of state oJ and o represents all
remaining quantum numbers needed to describe the state. For
the system of the nucleus and scattered particle (in this
derivation, a proton) the full Hamiltonian can be expressed

as

> >
H = HA + T + V(r, A) (ITI-38)
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where T is the kinetic energy of the proton, and V is the
interaction of the proton with the nucleus. The spin-orbit

functions of the proton are given by

m - A m
Ylsj = [Yz(r)x(o)]j , (ITI-39)

or explicitly showing the couplings

m

- . 9 . A _
stj = I i (zmlsms|jmj)Y2(r)x(o) ' (IT1-40)

MM

where X is the spin function for the proton. For clarity, all
the quantum numbers which describe a particular state of the
nucleus and proton and their relative angular momenta before
the collision will be denoted by C = aJ%sj and all other
states formed as a result of the collision by c'. By

combining the wave functions for the nucleus and proton, the

functions of total angular momentum, I, and parity, m, are

obtained
M A > M
bopg(Tr Or B) = ¥, 00510, (III-41)
with
> -+ > :
I=3+J, 1= ('1)1"1 i (ITI-42)

> >
Now an expansion of ¥(r, A) in (III-36) can be performed in

terms of the total angular momentum and parity,

M > > _
Yopp(ErA) =

M A >

ctml
c'rp s 9, A) (II1-43)

1
r c!

(r)é

I u
cl

Inserting this expansion into (III-36), multiplying from the

left by the complex conjugate of (III-41), and making use of
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the orthonormality of the ¢ functions, a set of coupled
equations for the radial functions u(r) of the scattered
proton is obtained for each I and 1 of the system. For each

channel c', the coupled equations have the form

(Tgu + Viigi(r) = E_ug, (1) = "L Vg gn (£) U (1)
(I11-44)
where
2 4> @+ 1) 2 _2m
Ter Tam L2t g ) Ko = 5 B
By, = E- B (111-45)

with E denoting the incident proton energy. Note that the
potential, V, has been broken up into the diagonal terms, on
the left side of (III-44), and the off-diagonal, coupling

terms on the right. Also

I - aA > > > A > _
Veren (£) = <4 1 (BB [V(Z,A) [¢ ny 1 (R/A) (I11-46)

"TTI(

where the integration is over all internal coordinates and
the polar angles of }.

As it stands (III-44) is a system of equations, infinite
in number, which must be simplified to achieve any reasonable
solutions. The approximation that is made is to limit the
number of inelastic channels to those with a large cross
section and/or other special states of interest. The problem
is now finite and can be solved numerically. As in the DWBA,

the interaction will need to be adjusted to account for
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channels that were explicitly eliminated. 1In fact (II1—-44)
can be essentially converted to DWBA by simplifying to one
scattering channel. This eliminates the coupled terms on the

right side of (III-44).

3. The Effective Interaction: The Optical Model Potential

The introduction of a nuclear model at this point allows
for a parameterization of the potential and provides the

necessary wave functions, for computing the matrix

b0 7
elements in the form factor. Also at this point it is assumed
that the orientation of the nucleus does not change
significantly during the time the proton is within the range
of the interaction. This is referred to as the adiabatic
approximation [Gl 67].

The standard form of the interaction potential that is
used in most reaction problems is the complex-valued optical
model, developed in 1953 by Feshbach, Porter, and Weisskopf
[Fe 53]. The shape of the potential is usually that of a

diffuse Woods-Saxon, which has the form

£(x) = (1 + 571, x = L - R (III-47)

where R(= rRA1/3) and ap are the radius and diffuseness

parameters. The actual form of the optical potential used in

proton scattering is given by

V(r) = -(V + iW) f(x) - 4iWDaIf'(xI)

> > 21 _
- Vg (@ B)X° T £' (xgy) (I1I-48)
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Here, V, W, W., and Vso are the real volume, imaginary

volume, imaginary surface, and spin-orbit well depths, Xy and

xso are similar in form to (III-47) except with different

values for the radius and diffuseness parameters. Also, X is

df (x)
dr °

part of the potential represents an average interaction

the m-meson compton wavelength, and f'(x) = The real
between the projectile and the nucleons of the target, while
the imaginary part represents absorption of particles from
the incident beam. Thus the imaginary part also fulfills the
need to account for the channels not explicitly included in ¥
after truncation.

The scattering from a deformed nucleus is assumed to
result from the interaction of the projectile with the part
of the nuclear field arising from the deformation. To
account explicitly for this, the nuclear shape is
parameterized by the usual expression

R = Ro[l + )\zu SAuYXu(e"d")] =R + 6R , (IT1-49)
with the sums over even values of A andpu. The parameters o'
and ¢' refer to the body-fixed (symmetry) axis of the
nucleus, and the Bku are the deformation parameters. Sub-
stituting this expression into (III-48), which along with the

Coulomb potential, V has been taken as the effective

Coul’
interaction in (III-46), and expanding V about the spherical

shape, one obtains for the nuclear part of V

Vnuc(r - R) = Vnuc(r - Ro) + T -_— . (ITI-50)
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This new form of the optical potential is often called the

deformed optical model potential (DOMP). Since

SR
R z

8, Y.
o Au AH '

AU (ITI-51)

an expression in terms of the generalized deformation

parameters, §, can be obtained by using the addition theorem

for spherical harmonics [Ro 571,

(35) = 5 & Dy

RO LK LK LK

n L. 1/2
Tk = = Y2 (auklL, - ®) (A0A0|L0) (I11-52)

A KpA

n-1
X sAu Bxk (for n > 1),

Ap = Bk and L =2L + 1. nNow

Voue(t ~ R =V (r - R) + B N (Y, 00000

(ITII-53)
where

e n
9 V(r)
N. (r) = I Q- §D 2 ¥LE) (III-54)
Lu n=1 ™ L e

Likewise, a similar expression can be obtained in terms
of the generalized Coulomb deformation parameters, 6c, for
the Coulomb part of the potential (see Reference [Gl 671])

= ZZ'e2 f ~ Q(r:) dr"

VCOUl(r ) lr' - rnl

where a variety of charge distributions can be used for

p(r"). Using the D-—functions [Ro 57] to express the
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potential in the laboratory frame and combining the nuclear

and Coulomb parts of V, one obtains

VIr - R(6,¢)] = V(r =R) + I Y_ (6,6) I V (r)
o v LM k>0 LK
L L
Dy * Dy, —x
% ' (III-55)
T+ 85
where
Vigk = g * Cpk v

the nuclear and Coulomb parts. The first term of (III-55) is
just the spherical optical model potential of (II1I-48) plus
the Coulomb potential. This term has only diagonal matrix
elements, the Vc'c' of (III-44), while the second part of
(III-55) is responsible for the excitations of the nucleus

from one rotational state to another.

4. The CC Form Factor

The coupling potential can also be written in a general

form as

In - . _
Vergn (X)) =1 V(1) (Q-Y,) (III-56)

A
where QA is an operator which operates only on the
coordinates of the target nucleus. Comparing the second part

of (III-55) with (III-56) yields

o,J 0,J
vm = I co o F L1202 (III-57)

\'
LSJ SLJ LSJ
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where CLSJ is a geometric factor, defined in
Reference [Gl 67], and F gy 1S the form factor

a. J. o J
1¥172%2 _
Frsg = VLK<J1K1||QL||J2K2> , (II1-58)

where QL is the multipole operator of the form

L L
Dwg * Dy, -k
7
1 + SKO

for the symmetric rotor model. The problem has now been
reduced to the evaluation of a series of form factors, which
involves determining a set of optical model parameters as
well as computing a group of matrix elements.

As an illustration of the coupling nature of this
problem, in particular the role of the deformations, BA’ the
form factor for an L = 2 transition in the ground band
(K = 0) of a symmetric rotor will be derived. For clarity
only the nuclear part of VLK will be used and the § values of
(ITI-52) will be taken to second order. Starting with
(ITI-58) and substituting the simple expression for the
matrix element [Pr 75]

Jl-L

2
Fron(®) = Vo211 (3 0101 3,0) . (111-59)

Taking the expansion of § to second order

2

AR
L0 LI

) =
AN' 4nf

]l/z(XOK'OlLO)BABA. , (I1I-60)

where A and X' are cut off at 4 and again & = 2L + 1. Thus

explicitly
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52 = [12211/2 5050 10) 252 2 4 2[Q 1 l/2(2040|L0)23234
anf
¥ [3—211/2(4040|L0)232 . (I1I-61)
41L

. + L .
Now consider a 0 =~ 2+ transition with Jl =0, J2 = 2, and

L = 2, Inserting (III-61) into (IIT-54) (with no Coulomb

part, VL0 = NLO) and combining with (III-59) one obtains

=0, J, =2

}2 =R (20“)1/2[ -8, ar

F

R 2
o 3V 2 .2

(ITII-62)

+

2(45)1/2 (2040120) %88,

+9(4040]20)%g2 .
The L = 2 collective model form factor mentioned earlier

in the DWBA section is actually the first term of (III-62)

F 2%By 3 (III-63)

5. Solving the Coupled Equations

It should be noted that there are considerably more
coupled equations than there are nuclear states being
considered. This is because "c" labels the nuclear state oJ
and the angular momentum of the scattered particle. So for
each value of I,q, the total angular momentum and parity of

the system, and for each nuclear state aJ, there will be
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scattered particles with angular momenta 2, Jj, that satisfy
the conditions of Equation (III-42). For spin 1/2 particles
there are 2J + 1 such couplings and thus for each I, wvalue

there are
N =32 (27 + 1) (I11-64)

coupled channels, where the summation is over all states

under consideration. For a spin zero projectile,

N I (J+1. In a calculation of proton scattering on a

nucleus where a 0-2-4-6 level sequence is used, there would
be a maximum of 28 coupled equations for each I,m and for
alpha scattering, N = 16. With the angular momentum of the
incident partial waves ranging in wvalue from & =1 to
zmax = 2kR, where R 1is the radius beyond which the
interactions are effectively zero, and 2] states for each %
(for protons), the total number of differential equations
that need to be solved is about 4kRN2.

The usual method of solving coupled channel problems is
to impose boundary conditions on the radial wave functions
U of Equation (III-44); at the origin, where the functions
must go to zero, and in the region where the nuclear

potential is negligible, the equations become uncoupled and

the uc's asymptotically become

k
_ (¢ ,l/2.1
Uor > SgigI (ko) (kc') Sce

0 (k_ 1) - (III-65)

cl

Here the I and O functions are incoming and outgoing

waves respectively, which are represented as a 1linear
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combination of the reqular and irregular Coulomb functions, F
I
and G. The Scc' are the elements of the S—matrix. Two sets

of linear algebraic equations can be set up and solved for

I
cc'!

transition matrix, ch,, by

the matrix elements of S - The S—matrix is related to the

Scc' = Gcc, - 2niTCC,6(Ec - EC,), (II1I-66)

from which the «cross section can be obtained (see
Equation (III-5)).

Recently, a new method has been derived Ffor solving
equations using a sequential iteration process [Ra 72]. The
program which incorporates this method is called ECIS
(equations couplees en iteration sequentielle) [Ra 73]. The
use of this method is increasing rapidly because of the
drastic reduction in computational time in most cases,
however, the storage requirement for this method is larger
than for the usual methods for coupled equations. The ECIS
method actually gives better results than DWBA codes after
the first iteration, while the second iteration often gives
the same results as the standard coupled channel method. The
last iteration, defined by a convergence test on the phase
shifts, is required to give the same result as the standard
method. The details of both the integral and differential

methods used in ECIS are given in Reference [Ra 72].
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C. Charge, Mass, and Potential Moments

One of the most fundamental quantities that can be
learned from inelastic scattering experiments is the shape of
the nucleus. There are basically two methods used to study
this property of nuclei with each sensitive to a different
aspect of the nucleus. The first method involves low energy
hadronic particles for Coulomb excitation, and electron
scattering, where both serve as a probe of the charge
(proton) distribution in the nucleus. The other group of
measurements are made with higher energy hadronic particles
that sample the mass distribution of both the neutrons and
protons. With these two methods available, one may be able
to detect differences in the charge and mass distributions
within a nucleus, if they exist. This might be obtained by a
comparison of the results from these two methods, however,
this in itself is not a straightforward task.

Because the Coulomb interaction is well understood, the
measured charge moments can be related to the charge dis-
tribution with only a few model dependent assumptions. The

L—th moment of a charge distribution can be defined as
_ . - )\ -> > _
q, = M(Ex;u) =[r Y (8ré)o (rdr (I1I-67)

where p is the nuclear charge density. This is also the same
form for the electric multipole operator and can be related
to the reduced matrix elements for y-decay in a collective

nucleus
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<JMK|M(E>\) | JMK> = (23, + l)_l/z(JlMikulJfo)
X <Jf||M(E)\)||Ji> , (III-68)

By specifically introducing the reduced transition

probability, B(EX), for quadrupole transitions on obtains
B(E2,J, » J.) = (20, + 1) |<a | |M(E2)||3.>|?
i f i f i '

(II1-69)
Thus, the charge moment, d, is equal to the matrix element

in special cases

q’ = B(EA,0 > J.) = M(EA,0 - g % (I1I-70)

In summary the measured experimental quantities are the qk‘s
which can be related to the charge distribution by (III-67),
where Pe is the only model dependent term.

This rather direct approach of relating the measured
quantity to the underlying density is not available for the
high-energy scattering measurements because the nuclear force
is not well understood. This mandates the use of an
effective interaction for the analysis of the data. One
method is to use a deformed optical model potential (DOMP),
which introduces additional uncertainties in any attempt to
relate the deformation parameters of the DOMP to the more
physically relevant mass distribution. This study will
follow the suggestion of Mackintosh [Ma 76] and discuss the
results in terms of normalized potential moments. These are

equivalent to the mass moments of the nuclear if the
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underlying nucleon-nucleon interaction is assumed to be
independent of the local density [Sa 72, Ma 76]. There is
also evidence [Ma 74al] that this method is less model
dependent and thus more fundamental than the usual deforma-
tion parameter, BX’ or the deformation lengths,
BAR (R = rOAl/3). The L—th multipole of the DOMP is defined
as

Kfv(r - R(G))erxo(S)d;

qy = , (III-71)

[V(r - R(8))dr

where V(r — R(8)) is the real part of the optical potential
and K is chosen to be Z, the atomic number. This gives a
charge component of the potential for comparison with the
charge moments measured in electron scattering, or Coulomb
excitation from low energy hadron scattering.

With the results of the two types of measurements cast
in a form to facilitate their comparison, one now must judge
whether any difference between the charge and potential
moments actually reflects a difference between the charge and
mass distributions of the nucleus, or whether it is the
result of ignoring the density-dependence of the nucleon-
nucleon interaction, or one of the other assumptions used in
this method. Calculations [Ha 771 for 154Sm indicate a
20-30% difference may exist between the potential and mass
moments. This implies an even more detailed approach may be
needed to extend these methods to measure differences in

charge and mass distributions of deformed nuclei.




CHAPTER IV

EXPERIMENTAL PROCEDURES AND DATA ANALYSIS

A. Introduction

An important consideration in undertaking this reaction
study was the quality of proton beams available from the MSU
cyclotron. The MSU cyclotron is a variable energy, sector-
focused machine with single-turn extraction capabilities.
The single-turn extraction results in a very small spread in
energy of extracted beam, typically = 0.1% of the beam
energy. This property, when combined with proper spatial
correlations of the beam, allows one to operate the
cyclotron-spectrograph system in the dispersion matching
[Co 59, Bl 71] or energy-loss mode, which will typically
result in 5-10 keV full width half maximum (FWHM) resolution
for inelastic scattering of 35 MeV protons, and 1.5 keV under
ideal conditions [No 75]. Although the level density in the
even-even Pt nuclides studied is not very great below
1.5 MeV, nevertheless, resolution and low background are very
important in a reaction where the population of weak states

is of prime concern, as was the case in the (p,t) reactions.
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B. Proton Beam and Transport System

The 35 MeV proton beam was used in both reactions
studied, primarily for two reasons. In the (p,t) reactions,
the maximum energy tritons that the Enge-split pole
spectrometer can bend is approximately 30 MeV, so with the
Q—values for these reactions near —5.0 MeV, a 35 MeV beam
will produce the maximum energy tritons for the spectrometer.
The highest energy tritons are desirable because a more
oscillatory diffraction pattern will result. The 35 MeV
proton beam is also one of the most reliable beams available
on the MSU cyclotron, with highly reproducible set-up
conditions for the cyclotron and beam lines. Beam currents
are typically 1 to 2 uA on target.

Figure IV-1 shows the relationship of the cyclotron, the
beam transport system, and vault 3 where the spectrograph is
located. The transport system includes three bending magnets
(M3, M4, and M5), two intermediate focus points (box 3 and
box 5), and several sets of quadrupole doublet focusing
magnets.

These quadrupole doublets are primarily used to achieve
the dispersion matching conditions discussed below. The beam
energies are determined by proton NMR readings in M3 and M4.
Figure IV-2 shows the scattering chamber and the Enge split-
pole spectrograph. The targets are located in the center of
the scattering chamber, housed in a remotely controlled

"ladder" capable of holding three targets and a scintillator,
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which is used for visually adjusting the focusing and shape
of the beam spot in the target plane. The amount of beam on
the target was monitored with a 0° Faraday cup with a current
integrator. The beam and target conditions were monitored
with a well shielded NalI (TR) detector placed at 90° to
record elastically scattered protons. Two aperture sizes
were used in the reactions: for the (p,t) study a 2° x 2°
aperture corresponding to a solid angle of 1.15 milli-
steradians, and for (p,p') the 2° x 2° as well as a 1° wide by
2° high aperture or 0.60 msr.

The reaction products were analyzed with the Enge split
pole spectrograph with particle groups of the same momentum
focused at the detector plane. The use of a magnetic device
in particle reactions allows one to select preferentially
particles of given types and energies to be incident on the
counter. Since different particles with varying energies
have different magnetic rigidities (particle momentum divided
by its charge), the magnetic field can be adjusted to study
only particular groups of one particle type. This technique
worked very well for the (p,t) reactions because of the large
negative Q—value. However, in the (p,p') reactions, there is
a small background due to a virtual continuum of high energy
deuterons and y-rays entering the counter and even a discrete
state from the 12C(p,d)llC (g.s.) reaction which appears near
the ground state. But the majority of deuterons and tritons
(from Pt(p,d) and (p,t) reactions) appear at another position

in the focal plane.
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C. Dispersion Matching

The high-resolution data are obtained by using
dispersion matching and kinematic compensation at the focal
plane. The dispersion matching is achieved by adjusting the
dispersion of energies in the beam to match the dispersion
properties of the spectrograph. The energy spread must be
coherent so that particles of energy E + AE go to one side on
the target, and particles with energy E — AE go to the other
side of the center, with intermediate energy particles in
between these extremes. The dispersion of the spectrograph
then focuses particle groups with the energy spread * AE at
the detector. The kinematic compensation corrects for the
differing energies of particles across the aperture due to
recoil of the target nucleus. This is done by moving the
detector within the reaction plane.

Experimentally this condition is achieved via a "tuning"
procedure involving the beam transport elements, a small
tuning counter in the focal plane, and a computer feedback
sytem controlling the spectrograph magnetic field. The
tuning is accomplished by adjusting the transport elements
and focal plane positions to minimize the line width of
elastically scattered protons from a thin target (usually
50 ug/cm2 Au foil). A 1 cm delay-line counter [RCMe], backed
by a solid state counter, was employed. The computer
feedback system is necessary to keep the elastic line on the

detector. With the particles incident on the counter at 90°
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(versus the normal running mode of 450), line widths of 70 um

have been obtained.

D. Particle Detection

Two types of particle detection were used in these
experiments. The highest resolution data were taken with
Kodak NTB 25 p nuclear emulsion plates. For the (p,p') data,
a 15 mil stainless steel absorber was placed in front of the
plates to lower the energy and thus increase the ionization
of the protons. The resolution achieved for the plate data
ranged from 5 to 10 keV FWHM. Figures IV-3 and IV—-4 show
sample spectra for both types of reactions. Although plates
do provide the maximum resolution and do not require an
elaborate electronics setup, there are still drawbacks in
measuring a complete angular distribution for a series of
reactions. The data from plates are obtained by visually
scanning the plates for individual tracks with an off-line
microscope. This is a very time-consuming process, which,
for high track density plates, may require several months to
complete a scan for one angular distribution. For the six
reactions in this study, the plates were used primarily for
calibration purposes by taking a spectrum at two or three
angles to insure that no peaks in the spectrum were obscured
by impurity lines. However, in the (p,t) reactions, plate
data were taken at the first and second maxima and the first
minimum of an L = 0 transition as an aid in searching for

weaker or unknown L = (0 transitions.




Figure IV-3.
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Triton Spectra Recorded at 7O for the

1941961 8Pt(p’t)192’194'196pt Reactions.
The data were obtained with nuclear emulsion
plates in the focal plane of an Enge split-pole
spectrograph. Peaks with an "*" above them
indicate peak height has been cut off at the
maximum value on the vertical axis.
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Figure 1V-4.
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Inelastic Proton Spectra for the

194'196’198Pt(p,p') Reactions at E., = 35 MeV.
The data were obtained with nuclegg emulsion
plates in the focal plane of an Enge split-pole
spectrograph. The elastic scattering peaks are
not shown because they were too intense to
scan. Peaks with an "*" above them indicate
peak height has been cut off at the maximum
value on the vertical axis or were unscannable.




100

\'Il
Qo
aM

(ul

i
o
o

ISSP*

D

gtz - 6¢le
No, (b} 8002 -
I
b “net 88l -
.
0'—
S 2Epl L SBhI - .
— £ Llvpl
Qo
aln . eecar -
&
T 8
5 & e
T8 -

£ 2891 -

ooer -

() G821 -

po I Y PE—

(h)

(.8) «¢9gT -
2821 -

2
£ 82t
S ) S ) c o =)
o o o o S Y]
T (4] N — m N —
TANNVHO Y3d

-2.0

Q@ VALUE(MeV)

Figure IV-4.



101

Most of the data for each of the six reactions were
taken with a high-resolution, slanted cathode, position-
sensitive delay line counter [Ma 75]. Figures IV-5 and IV-6
show a cross sectional view of the entire counter and a top
view of the forward chamber (delay-line). A block diagram of
the electronics used in processing all the signals in the
wire counter experiments is shown in Figure IV-7. As
particles enter the counter, the ionizations they produce are
multiplied by the anode wires in the front counter. Only the
center five anode wires are biased for amplification, while
the two outer wires on each side are for field shaping. Thus,
ionizations originating anywhere in the active region produce
multiplication only on the wire directly above or below. The
reason for effectively dividing the counter into five thin
counters 1is to define the path of the particle more
precisely. A charge is then induced on the slanted cathode,
pickup board below the wires by the ionization. This induced
charge is passed through a delay line, in which the signal
from one end is used to start a time-to-amplitude converter
(TAC), while the other end is delayed and used to stop the
TAC. The height of the resulting output pulse is propor-
tional to the position along the counter. Immediately behind
the position counter is a single wire proportional counter.
This is operated in an energy-loss (AE) mode which is used to
identify different particles, since energy-loss through a
medium is proportional to the charge (2Z), mass (m), and

2
energy (E) of the particle, AE<rE%~.



102

*[GL BW] 9DULI9J9Y WOIJ udyel
pue autT AeTsp ©yz 103 sweij (o) ‘pieoq dnyoid (d)

*dutT-4AeTep (H) pue ‘pieoq
‘21TM 9pour HYy () ‘saitm

spoue (g) ‘Lweiy Tr10oJ 1ojzeiedsas (D) ‘3ioddns opoue (g) ‘sswei Mopuim (VY)
:9xe sjaed paTaqeT 9yl *I923Un0) ouIrT-AeTo@ JO UOTIODDS SS0ID OTFewayss

*G-AI 21nbT1g



A

NN\ ,’”””,’”” N\




104

*[GL BW] 90ULI9ISY WOAF USDIRL *ID2IUNO) SUTT-AeTod JO moTA doJ DTIPWSYDS *9-AT =Inb1g

H31INNOD 40 (MaIA upid) DI LYWIHOS

AN MOpUIM
$841S sadiug
_,\uoyoonduiny _ _dmyid
¢N w N N\ A }
saNM Buifyidwy gm. - |rﬂx , // oo ____%od
4 |0304
\\ \
S3JIM piong — c \. Y
9joulwo sso|biaq) 4 /mao 1L euq ojeg o)
MOpUIM
A10498fDa}

aJo1410g



105

*sjusawrIadxy I93UNOD SITM 10J SOTUOIFOSTH JO wWeibeid OT3eWdYDS

*L—-ATI ©InbTd



106

[ 0497 |ouuDy
v uoI4ISOd|
oav oav
38041S
g ’ \ VL
-3 4 A v
2 3g0dls | dOlS “Juousod 14vis
091 e ‘ud
anN 3 9409 >2Mo
L3 JLENTR +
84D9
oo ! ' ]
103
U J8|D0g
2510 asiq
uolo0I4 uoNoDI4
vos vis VoS Jupisuo) huoysuony
‘dwy
Kojeq
dnd
-duy Kopoip 4 Mﬁ“
-dw -duiy 184114 o
WMM v bunisi| Bujwsy )
K J
dols 14v1S 4
]
ZHN
Jols]] A
dwp nE%
fo1eq 9.d NJuV!
AH

04401942, J8/1

‘L-AI ®anbTd

odid b1

sutq LojeQ

$02114nd Buiwoou



107

This system is then backed by a plastic scintillator
with a light pipe and photomultiplier. The anode signal from
the scintillator is used to start another TAC which is
stopped by the cyclotron rf. This gives redundant particle
information via the time-of-flight (TOF) of the particles.
The dynode signal is also used to identify the energy of the
particle. Note in Figure IV-7 that the only signals sent to
the computer for processing are the AE signal and the
position information. The energy, TOF, and AE are used to
provide a coincidence requirement and provide a strobe to the
position TAC and AE linear gate. Thus, unnecessary signals
from unwanted particle groups have been electronically gated
and are not processed by the computer. Figures IV-8 and IV—9
show sample spectra taken with the wire counter setup for
each reaction studied. The resolution for the triton spectra
was typically =15-20 keV FWHM and for the proton spectra was

18—25 keV FWHM.

E. Targets

Two types of targets (for properties see Table IV-1)
were used for this study. 1In the wire counter experiments
rolled-foil Pt targets with a thickness of approximately
625 ug/cm2 were used [FKar]. For the data taken with photo-
graphic plates, thinner targets were needed to minimize
resolution degradation due to straggling and energy loss in

the targets. For the 600 ug/cm2 targets the energy loss and
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Figure IV-8. Triton Spectra for the 194’196’198Pt(p,t)
Reactions at Ep = 35 MeV. The data were
obtained with a delay-line proportional wire
counter in the focal plane of an Enge split-
pole spectrograph.
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Figure IV-9. Sample Spectra_ for the 194’196’198Pt(p,p')
Reactions at 85°. The data were obtained with
a delay-line proportional wire counter in the
focal plane of an Enge split-pole spectrograph.
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straggling particles contribute about 4-5 keV to the
resolution, while the thinner, sputtered targets cause a
1-2 keV contribution. So for the wire counter the thick
targets sufficed, but for plates, thinner targets were
necessary. Targets [No 78] were made for this purpose by
sputtering Pt metal onto a backing resulting in thicknesses
of = 200 ug/cmz. The platinum used in each target was
isotopically enriched to near 97%. This provided very clean
targets for the foils but the sputtering process introduced
several impurities (Sn, Ni, Fe, Cl, Na, Si) which limited the
usefulness of the plate data for the (p,p') reactions. For
the (p,t) plate data, however, the large negative Q-values

allowed for very clean spectra.

F. Data Analysis

Peak areas and centroids were determined with two
computer codes, AUTOFIT [JRCo] and SCOPEFIT [HDav]. Each
program uses an empirical reference peak shape (usually
derived from the ground state), with a user-supplied
background to unfold the peaks of interest. The energy
calibration was performed for each reaction by two methods,
both using six or seven known excitation energies for
Platinum levels as given in Nuclear Data Sheets. The first
method involved fitting a second-order polynomial to the
levels and the second method used a kinematic routine to map

out momentum versus distance along the focal plane for the
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MSU spectrograph. Both methods generally agreed within 0.2%

in the energies up to 3.0 MeV in excitation. Since only one

excited level is known with any accuracy in 198Pt, a separate

calibration experiment was performed to obtain energy

information in this case. Plate data were taken at 75° and

196,198 206

43° for the Pt(p,p') and Pb(p,p') reactions.

Spectra from all three reactions were recorded on one plate
at each angle. Only the height of the plates was adjusted for
each reaction, not their positions, thus assuring an accurate
relative calibration. These two angles were chosen for

minimum interference from the silicon, carbon, and oxygen

impurity peaks. 196Pt was used because of the well-known

low-lying levels, while 206Pb was chosen because of the

strongly excited 3 level at 2.648 MeV. The known levels in

196Pt and Pb then provided the necessary calibration lines to

bracket the 198Pt levels of interest. Due to energy losses

from the different target thicknesses, the absolute energies

of 196Pt and 206Pb cannot be used for calibration, so a value

for the gain (keV per channel) was obtained for each

198Pt(p,p')

spectrum, which was then used to calibrate the
data. The gain should be the same for each reaction since
these were recorded consecutively on the same plate. The
uncertainty in the excitation energies is approximately 1 keV
below 1.5 MeV and 0.1% above 1.5 MeV.

Cross sections were calculated from the equation

2.67 A YOE

dO'/inab (mb/sr) = —"E‘STQ‘——“ [/
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with
Z = charge of projectile
A = mass number of target
YO = number of counts in peak (area)
t = target thickness (in ug/cmz)
Q@ = solid angle (in 1074 steradians)
Q = collected charge (in u Coulombs).

A conversion to center of mass angle and cross section was
also performed. The experimental data were normalized to the
integrated beam current measured in a Faraday cup and
compared to elastically scattered protons monitored at 90° to
the beam. Disagreement between charge and monitor counter
normalization was generally less than 5% for the rolled foil
targets. Absolute cross sections for all targets were
obtained in a separate set of experiments by normalizing the
angular distribution of elastically scattered 35 MeV protons
to optical model predictions between 25° and 50°. The
normalizations for the (p,p') reactions were determined in a
similar manner with the code ECIS [Ra 73], to be discussed in
Section VII. The absolute uncertainties are on the order of
15-20% due to target thickness and aperture size uncertain-
ties. The optical model calculations were performed with the
Becchetti-Greenlees [Be 69] proton parameters given in
Table III-1.

A correction to the peak areas was necessary for the

194’198Pt(p,p') data due to a different configuration of the
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electronics. 1In this mode the position information was taken
versus the front counter AE signal, taken from the high p end
of the delay line rather than the AE signal from the back
counter. The AE signal from the back counter was still used
in the coincidence requirement part of the electronics. This
was done to control the long tails seen on the intense
elastic peak, which may obscure weakly excited states nearby.
These tails are caused partially by slit scattering in the
beam transport system, but mainly by the production of delta
rays (high energy electrons) along the wires of the delay
line. By displaying position versus the AE of the front
wires (where the delta rays are produced), one may set a gate
with the computer and collect two spectra, a "wing" band and
a "data" band. An example is shown in Figure IV-10. The
bands were set such that less than 10% of the total yield was
placed in the wing band. The correction factor for total
peak area was obtained from the ratio of total counts in the
wing band plus total counts in data band divided by counts in
the data band. 1In 198Pt data was taken in both modes at three
angles and the cross sections differed by only 2 to 4%, well

within experimental uncertainties.
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CHAPTER V

194,196,198

RESULTS FOR THE Pt (p,t) REACTIONS

A. General Analysis

Tables V-1, V-2, and V-3 contain the excitation
energies, cross sections, and assignments of JT for the three

194,196,198

(p,t) reactions studied, Pt(p,t), in addition to

results from previous works. Tables V-2 and V-3 also include

the results of the (p,p') study of 194’196Pt

. The cross
sections reported are for the (p,t) data taken at 7° using
nuclear emulsions, as the resolution (= 7 keV FWHM) and low
background allowed the observation for weakly excited and

close lying states. The energies and cross sections are

obtained for approximately 50 levels in the
196’lgBPt(p,t)194’196Pt reactions and 64 in the
194 192

Pt(p,t) Pt reaction, with about one-half of the levels
in each case being seen for the first time. Values for the
enhancements factors, €, (defined in Section V—-2) are listed
for those states where relatively complete angular distribu-
tions were obtained. Because simplified reaction couplings
were used in analyzing the (p,t) data, unambiguous spin and

parity assignments can be made when an experimental angular

119
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194

Table V-1. States Populated in the Pt(p,t)192 Reaction.

Present Experiment

194Pt(p,t)lgth Previous Results®
E, g 7 (7 eP E° g"
(MeV) (ub/sr) (MeV)
0.0 ot 971 5.1 0.0 ot
0.3169 2t 126 0.84 0.3165 2t
0.6139 2* 16 0.16 0.6124 2t
0.7859 at 15 0.21 0.7845 st
1.1959 ot 10 0.07 1.1951 ot
1.201¢ at 16 1.2010 4t
1.366 4 1.3653 6t
1.3789 3~ 16 1.3779 3~
1.406 7 1.4062
1.439 1 1.4391 (1%,2%
1.517 2 1.5182 7"
1.546 1
1.576 4 1.5766 2"
1.628 ot 49 0.26
1.792 6
1.800 23(10°)
1.858 43
1.879 5 1.8804
1.899
1.937 a*) 11 0.32
1.974 28
1.982
2.019 (3) 3 gt
2.044  (doublet) 70 2.0479

2.072 7 2.0741
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Table V-1 (cont'd.).

Present Experiment

l94Pt(p,t)192Pt Previous Results?

E, g’ o (7°) eP E° g"

(MeV) (ub/sr) (MeV)
2,132 7 2,.1301
2.140 13
2.153 8 2.1494
2.166 19
2.188 7
2.204 17
2.271 18
2.308 25
2.330 (3) 1 2.3356
2.352 4
2.358 7
2.375 2 2.3755
2.389 2
2.411 6 2.4085
2.428 15
2.444 11
2.450 9 2.4533
2,467 13 2.4722
2.486
2.492
2.506
2.526
2.549 21
2.556 11

2.575 4
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Table V-1 (cont'd.).

Present Experiment

194Pt(p,t)lgth Previous Results?®

E, " (7% eP E ° "
(MeV) (Ub/sr) (MeV)

2.588 6 2.5853

2,605

2.624

1 2.646 18

2.662 5

2.671 3

2.695 4

2.704 6

2.720 7

2.729 10

2.743 6

2,754 6

2.778 5

2.786 4

aReferences [Ny 66, Be 70, Ya 74, Hj 76, Ro 77, Sa 77,
Ba 78].

bThe enhancement factors were calculated with pickup con-
figurations (0Op ) for L = 0, (2p ® 1f ) for L = 2,
and (1f, ,, © 2p§;§) for L = 4. 3/2 172

CThe states above 2 MeV seen in this work and previous

results are associated only because of similar energies.

dUsed as calibration point with energy taken from Nuclear

Data Sheets B9, 195 (1973). Uncertainties in excitation
energy are approximately 1 keV below 1.4 MeV and 0.1% above
1.4 MeV, except as indicated.
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distribution has a characteristic shape of a particular
L-transfer. 1In this study experimental shapes were compared
to DWBA calculations and to shapes of angular distributions
with well-known L—transfers. This study at 35 MeV is the
first one in this mass region where L—transfers higher than
L = 0 have been assigned (with the exception of Pb(p,t)
[La 73, La 77]). The results of these shape comparisons are
discussed further in the following sections for various

I—transfers.

B. DWBA Analysis

The experimental angular distributions have been
- compared with standard, zero-range distorted waves calcula-
tions using the code DWUCK [PDKu]. Table V—4 is a list of the
optical model parameters wused in analyzing the (p,t)
reactions. Becchetti-Greenlees [Be 69] proton parameters
were used in the entrance channel, and the triton parameters
were taken from Flynn et al. [Fl 69]. The wave functions
were calculated for a Woods-Saxon potential with the usual
prescription for the binding energy of each neutron,
0.5 (S2n + Ex)' Here SZn is the two-neutron separation
energy and EX is the excitation energy of the residual
nucleus.

In order to test theé effect of small changes in the
optical model parameters, calculations were carried out using

the Becchetti-Greenlees proton parameters for 208Pb along
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with the 206Pb triton parameters of Flynn et al. The results

showed no major changes in the strength or shape for any of

196(p,t) reaction.

the transitions calculated for the

Since the platinum nuclides display low-lying collective
excitations, one might expect that second-order or multistep
effects would affect the strength and shape of the angular
distributions in (p,t) reactions. This has been found to be
true for reactions on well deformed nuclei [As 72, Ki 72].
Such effects are not accounted for in simple DWBA calcula-
tions. But, there is an absence of such strong effects in the
platinum nuclides, possibly because of relatively smaller
values of the quadrupole deformation parameter (82 ~ 0.15
for the Pt nuclides, whereas 82 ~ 0.3 for well-deformed rare
earths). Since the strength of multistep couplings depends
on terms involving various powers of 32, the smaller value of
82 may be responsible for the reduction of many of the
second-order reaction steps. Further evidence for the
predominance of the one-step mechanism is the absence, in all
three reactions studied, of any strength (> lub) populating
the unnatural parity states, in particular the 3+ level known

to exist at = 950 keV in 194’194'196Pt

. Such transitions are
forbidden to first-order in a one-step process. Previous
work [As 70, Ud 74] comparing DWBA with two-step coupled
channels calculations for 62Ni(p,t) and Cd(p,t), nuclei with

collectivity similar to Pt, has shown that there are very

small differences between the two reaction models in
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predicting shapes of angular distributions. The main effect
of the two-step mechanisms was seen in the transition
strengths.

One method for obtaining spectroscopic information from
two-nucleon transfer cross sections with DWBA calculations is
to use an empirical normalization (Dg) to define an enhance-
ment factor, €, for the configuration which produces the
strongest calculation for a given L transfer [Ba 73, Br 73].
The relationship between the experimental and calculated

cross sections can be expressed as:

1 LsJg

_ 2 2 -
= 9.72 Do e C° (27 + 1) %W

do
(3 exp (6) . (V-1)

The factor Dg is the normalization constant which results

from making the =zero-range approximation. A value of

2.2 x 105 MeVzF3 was used in these calculations [Ba 73]. The

constant 9.72 is derived from the choice of the size of the

outgoing triton used in DWUCK and the range parameters of the

two-body interaction. The isospin coupling coefficient, C2,

is unity for all transitions. The quantity J is the total

LSJ

is the differential cross section calculated in DWUCK. The

angular momentum of the transferred neutron pair and g

factor e is a measure of the adequacy of the wave functions
used in calculating the form factor. A value of ¢ = 1 would
indicate an ideal wave function description if all other
assumptions were valid. 1In the present case ¢ represents the

relative strength for a particular L-transfer expressed in
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arbitrary units (OE;J calculated from the dominant 2-neutron
configuration). This allows for the unfolding of kinematic
factors which may favor a particular L-transfer. The
configurations used for each L—transfer are in the footnotes
for Tables V-1, Vv-2, and V-3. As mentioned above, these
configurations produced the greatest calculated strengths for
their respective IL—transfer in each of the three reactions,
194'196’198Pt(p,t). No attempt was made to study the
interference effects of using more than one term in the
configuration. This could be an important factor as far as
the strengths of the calculations are concerned since a
coherent sum over these terms is involved. However, the

enormous number of configurations precluded any meaningful

approach to the problem.

C. L =0 Transitions

As expected, the L = 0 transitions were observed with
the very characteristic diffraction pattern seen in most two-
nucleon transfer reactions, allowing for reliable assignments
of 0F levels in the final nucleus. Eleven L = 0 transitions
were observed in the three reactions, including the three
ground state transitions and one transfer to a newly

identified excited 0+ level at 1.628 MeV in 192P

t. The L =0
transitions are shown in Figure V-1, along with the DWBA
calculations. There are few differences from nucleus to

nucleus, either in the phase of the distributions or in the
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Figure V-1. 0 Angular Distributions for the
194’196’198Pt(p t) Reactions. The curves are
the results of DWBA calculations. Energies are
given in keV.
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peak-to-valley ratios. The same is true for the calcula-
tions, which show only slight deviations at forward angles.
In general, the calculated shapes are independent of Q-value
or choice of the simple 2-neutron configuration used in

computing the form factor.
The ground state transitions are by far the most intense

transitions observed in each reaction. The strongest excited

o* state in Pt is populated with only 8% of the strength of

the ground state at 7°.

The 0+ state at 1.195 MeV 1in 192Pt, previously seen

[Be 70, Fi 72] in the decay of 192Au, was unresolved from the

a* level at 1.201 MeV in the proportional counter data used
for angular distributions. The spin of this level was

confirmed using the three point angular distributions taken

with nuclear emulsions. The new 0+ level seen in 192Pt at

1.628 MeV was populated with 5% of the strength of the ground

state at 70.

Three excited 0+ states were ©populated in the

Pt(p,t)194Pt reaction. All three states were previously

194A

196

seen [Be 64, Be 70, Cl 76] in the decay of u. The level
at 1.479 MeV is very weakly excited (< 0.5% of the ground
state at 70) and was resolved only in the plate data. The
L = 0 nature of the transition populating this state was also
confirmed by the three point angular distribution. The

levels at 1.267 and 1.547 MeV were excited with considerably

more strength, 3% and 6% respectively of the ground state
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strength at 70, and the 1.547 MeV level was the only excited
0+ state seen in the earlier (p,t) study of Maher et al.
[Ma 72]. There are two higher enerqgy ot levels known [Be 70,
cl 761 in “°*pt at 1.8936 MeV and 2.086 MeV. We observe a
level weakly populated at 7° in the plate data with an energy
of 1.892 MeV, but an angular distribution was not obtained.
We populate no state within 20 keV of the 2.086 MeV level.
Three excited 0+ states at energies of 1.135, 1.402, and

198Pt(p,t)l%Pt reaction. All

1.824 MeV were observed in the
levels have been previously reported, although the spin of
the state at 1.402 MeV was assigned as (0, 1) in the decay of

196Ir [Ja 68] and as (0+,2+) in the neutron capture experi-

ment by Samour et al. [Sa 68]. A recent (n,y) study of 1965,
by Cizewski et al. [Ci 78] also assigns a spin and parity of
0t for the 1.402 MeV level.

It is significant that there is no ot experimental

evidence for 1levels below 1 MeV in any of the three Pt

isotopes studied.

D. L = 2 Transitions

In contrast to the situation for (p,t) reactions
measured at lower energies in this mass region [Ma 72,
Sh 761, the L = 2 transitions observed in the present study
appear to be sufficiently characteristic to allow spin
assignments to be made. Transitions to the known first and

second 2+ levels have quite similar experimental angular
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distributions. The major difference appears near 18° where
the angular distribution for the second 2% has a more
pronounced oscillation than for the first 2+, as seen 1in
Figure V-2. The angular distributions for the remainder of
the excited 2+ levels have approximately the same shape as
the second 2 distribution. This small deviation in shapes,
seen in all three reactions, may be indicative of some weak
multistep effects. The sensitivity of the calculated angular
distributions to changes in the two-neutron configurations is
shown in Figure V-2, This could also account for the
variation in 27 shapes.

In the 194Pt(p,t)lgth reaction, only two 2+ levels were
populated with enough intensity to extract a complete angular
distribution from the data. These were the well-known first
and second 2% states at 0.316 and 0.613 MeV. Two levels at
1.439 and 1.576 MeV which have been previously assigned
[Fi 62, Ya 74] as (l+,2+) and 2% respectively, were weakly
excited at forward angles.

196Pt(p,t)194Pt

Four 2t levels were populated in the
reaction, with energies of 0.328, 0.622, 2.155, and
2.532 MeV. The two lowest energy levels have been seen in
earlier studies, while the state at 2.155 MeV may be the same
state seen at 2.158 MeV and assigned (l,2)+ by Cleveland and
Zganjar [Cl 77], and is tentatively assigned at 2 in the
present study. The new level at 2.532 MeV is also ten-

tatively assigned 2+. This level may be part of a broad peak
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FigureV-2. L = 2 and L = 3 Angular Distributions for the
194r1967198p¢ (p,t) Reactions. The curves are

the results of DWBA calculations. Energies are
given in keV.



do/dQ (pb/sr)

144

103 T

T T T T 3
E |96pt(p’”|94p' E

= L=2 '|03E T T T T T =

B T 198 196 3

P 3

IOZE— (2p3/2u|f7/2)__ —E :\ 'l(.p;?% P' :

- 1 [ (@p3p*if75) — 7]

J; =102 .2 -

/F 4 £ \(O'II’:/Z) T S

— ~ 0.355 3

'03':r|u.:102:— . 4 F - 35 .

~ . '2%Pt(p,1)!92py 1 F g0 ]
: L e - "lOI:—
102 n

L1 dnnl
L1t

DNURBREI

A

3 E L 1.606
J; - JorL -:
102 o' 4 F ]
3 o6i3 o F 3 [ ]
i 0e® %0% - J; f 1ot = =
. . f 1 E 3
10" ¢ 102 JZ ]
= .

1.378 3° o
1.366 6* )

Lo Ll

LR AR |
L ]
L ]
*

e lanl

1 1 ) 1 ] 1 [
20 40 60 10

T T TTTI

£l

O

T 1 el

T ll|||l|l

Lol

(o]
ny
O
B
(o)

60

Figure V-2,




145

seen at 2.55 MeV in the 195Pt(d,t) data and 2.56 MeV in the

l'94Pt(d,d') study [Mu 65]. As in the 194Pt(p,t) reaction,
several known 2+ levels were only weakly populated and
angular distributions were not obtained for these.

In addition to the first (0.355 MeV) and second
(0.690 MeV) 2+ levels, two higher lying levels were populated

198Pt(p,t)l%Pt reaction. These levels are at 1.606

in the
and 1.848 MeV and have been assigned as 2+. They have been

confirmed in a recent (n,y) experiment [Ci 78].

E. L = 3 Transitions

The 3 octupole vibrational state was populated in each
of the three (p,t) reactions, as shown in Figure V-2, In
1925t the 37 state at 1.378 MeV and the 6" state at 1.366 MeV
were not completely resolved, although the contribution to
the cross section from the L = 6 transfer is thought to be
small. As shown in Figure V-2, the L = 3 DWBA fits are quite
poor, missing the first maxima by as much as 10°. This may be
the result of multistep effects, because the 3 state is
strongly populated in scattering studies [Mu 65, Ro 77]. 1In
fact, this rather strong population of the 3 levels is
somewhat unexpected. Such states are very weak in the
Pb(p,t) reactions [La 731, which is understood because the 3
state is basically particle-hole in nature, while (p,t)

excites 2-particle, 2-hole states.
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F. L = 4 Transitions

The spin assignments from L = 4 transitions required
special attention in this study, due to the seemingly
uncharacteristic shape of the angular distribution populating
the well-known first 4" level in all three reactions. This
shape differs from the shape seen in both the simple two-
neutron DWBA calculations of L = 4 transfers, and the Pt(p,t)
data of Lanford [La 73, La 77]. As shown in Figure V-3, the
angular distributions for the first 4+ levels have no
distinct maximum at 150, but continue to rise toward forward
angles and also show a pronounced minimum at 30°. The
angular distribution for the other known at levels (1.229 MeV
in 194Pt and 1.201 MeV in 192Pt) is characterized by a
distinct maximum near 150, more closely resembling that
calculated in DWBA and in the Pb(p,t) reactions. It was the
latter shape that was used to make spin assignments for
possible high-lying at levels.

In addition to the first 4+ state, at least two more
excited 4+ states were seen in each reaction, and in the

196Pt(p,t) reaction six more 4+ states have been tentatively

identified. The 1.201 MeV level in +22p

t, a known 4+ state,
was not resolved from the weakly populated 1.195 MeV 0+
level, although the 4+ angular distribution should be only
slightly affected by the ot level. The plate data, in which
the 4+ and 0+ are nearly resolved, support this. A possible

third 4+ level in 192Pt was seen at 1.937 MeV, although its
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interpretation as a 37 state cannot be ruled out, as the DWBA
calculations for L =4 and L = 3 are quite similar. The
assignment is tentatively made as a* because of the

appearance of possible a*t levels near this energy in 194Pt

and 196Pt. Also, the empirical shape of the L = 3 angular
distributions for the three known 3~ levels is considerably
flatter at forward angles (see Figure V-2).

In addition to the known 4% levels at 0.811 and
1.229 Mev, five new levels were populated in 194Pt with L = 4
shapes, at energies of 1.911, 2.125, 2.246, 2.353, and
2.638 MeV, and thus have been tentatively assigned as 4+

levels.

In 196Pt two levels were populated by transitions whose

angular distribution shape is that of an L = 4 transfer. The
level at 1.293 MeV may have been observed in inelastic alpha
scattering (1.290 Mev) [Ba 76], but was not assigned a spin
or parity. An L = 4 fit is not very good, but this deficiency
is partially due to unfolding the contribution of the nearby
5 1level at 1.271 MeV. The trend in the other two Pt nuclei
studied would suggest this is the second 4+ level. The level
at 1.884 MeV in 196Pt was populated very strongly with the
shape of an L = 4 transfer, and completes a series of new,
strongly populated 4+ levels seen at = 1.9 MeV in ali three

(p,t) reactions. This level may be the same one seen in the

(d,d') study [Mu 651 at 1.88 MeV.
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G. L > 5 Transitions

Only limited success was achieved with assigning J"
values to states populated by L transfers greater than 4.
Although the DWBA calculations showed the first maximum
shifting approximately 5°-10° towards backward angles as the
transferred angular momentum increased by one unit, there was
only one known higher spin state populated with a complete
angular distribution for comparison. This was the 6" level
in 194Pt at 1.414 MeV. The other known levels with spins
greater than 4 were either unresolved from other levels

194 196

(1.486 MeV 7 in Pt and 1.271 MeV 5 in Pt), or too

weakly populated for a complete angular distribution

(1.517 MeV 7 and 2.019 Mev 8% in 192Pt). Never theless,
several spin assignments have been proposed for levels in
194Pt and 196Pt as shown in Figure V-3.

In 194Pt a level at 1.374 MeV was populated, which has

been assigned as a 5 level in (o,xn) reactions [Ya 74,
Hj 76] and as (67) or (4,57) in ‘°%au decay [Be 70] and
triple neutron capture [Su 68]. From the present (p,t)
results a clear distinction cannot be made between L = 4 and
L = 5 transfer. As a result, the state has been assigned
(4+,5_) from the natural parity selection rule.

The level at 1.414 MeV, a known 6+ state, is reproduced
by the L = 6 calculation, particularly in the angular region

about the maximum. This leads us to propose two additional

levels to be assigned at 6+, at 2.566 and 2.700 MeV, as shown
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iﬁ Figure v-3. Levels at 1.990° and 2.296 MeV have been
assigned J1T values (6+,7—) and 7_,8+), respectively. A
unique assignment was not possible because of the similarity
of the shapes for the calculated L-transfers involved in each

case.

In the 198Pt(p,t) reaction, two high-spin levels have

been identified, at energies of 1.374 and 2.296 MeV. The

first level was assigned as (6,7) in the decay [Ja 68] of

196Ir, and the (p,t) angular distribution data show it to be

either a 6+ or 7 state. Thus, from the (p,t) natural-parity

selection rule, this is therefore most likely a 7 state and

may be related to the 7  state observed at 1.518 MeV in 122pt

andl.485 MeV 1in 194Pt. The second level, at 2.296 MeV, is

assigned as (77,8%).

H. Relative Reaction Strengths

The triton spectra shown in Figure IV-3 for the three
rections show many of the same overall features. The most

notable are: strong population of the ground state and first

2t level in the residual nucleus; several excited L = 0
transitions; and an increasing population of the 4; and 4;
levels as the mass of the target increases. Table V-5

displays for each reaction the integrated differential cross
section from 7° to 60° for the more strongly populated levels
below 2 MeV. The values for the enhancement factors, €, are

listed in Tables V-1, V-2, and V-3. Since these calculations
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used only a simple 2-neutron wave function, values of ¢
differing from unity suggest the absence of correlations in
the wave function. As expected, the ground state transitions

are the most enhanced with an ¢ of 5.1 in 194Pt(p,t) and 3.7

in 198Pt(p,t). While the ground state population is
decreasing with increasing A, the enhancement of the first 27
level and third 47 is increasing with A from 0.84 to 2.2, and
0.32 to 2.1 respectively. Although ¢ was not calculated for
the 4; level in lgth, Table V-5 shows the total cross
section of this state also increases with A. In addition,
the enhancement of the 41, 2;, 37, and the excited 07 levels
remains relatively constant in all three reactions.

These same general trends, decreasing ground state
population and a general increase in population of excited
states with increasing A, were seen in the (p,t) reactions on
the Pb nuclides [La 73]. This was interpreted as an indica-
tion of an increase in the two-particle coherence of the wave
functions as one moves away from the closed shell. The
decreasing ground state population from 192Pt to 196Pt is not
as dramatic as that seen in the Pb data, but this is under-
standable from a simple pairing-vibration model [Br 73]1. 1If
the creation and annihilation operators for the two-neutron
pickup are treated as boson operators, then the strength of
the transitions is related to the number of pairs of neutrons
(phonons) or holes, in the final state, relative to the

202,204,206

nearest closed shell. For Pb, the strengths of



155

the ground state transitions should be in the ratio 3:2:1,

while for 194,196,198

Pt the ratio would be 6:5:4. This is
consistent with the experimental Pt ratio of 6.1:5.0:4.7,
with 15-20% uncertainties on these numbers. Arima and
Iachello [Ar 77al have noted that both finite dimensionality
effects and an increase in collectivity as one proceeds into
a shell are important and give quantitative predictions for
these effects with the IBA; however, the uncertainties on our

measured ground-state strengths are too large for us to

observe such an effect.

I. General Discussion of (p,t) Results

l. L =0 Transitions

One of the primary reasons for the current reaction
study was to search for any low-1lying 0+ states that could be
interpreted as the "missing" 0+ state of the 2—phonon triplet
in a vibrational model interpretation. Although (p,t)
transitions to 2—phonon states are forbidden in first-order,
these states have been seen [Co 72, Kr 77] in (p,t) reactions
on Cd and Pd, probably due to two-step transfers and/or
anharmonic terms in the vibrational potential. No evidence
for low energy, L = 0 transitions populating a ot level is
seen in any of the three (p,t) reactions. In fact, no new
levels were populated below = 1.5 MeV with a cross section
2 1 ub/sr at forward angles, about 0.1% of the ground state

population. (In Cd, generally considered a good example of a
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vibrational nucleus, the relative (p,t) strength ratio for
05/07 g.s. is =0.25%.)

A second result of the (p,t) experiments is the absence
of any strong L = 0 transitions populating excited of levels.
As mentioned in the Introduction, a strong L = 0 transition
(=50-100% of the ground state strength) might have indicated
a shape-isomeric level in the residual nucleus related to the
Y degree of freedom. The strong transition would occur if
there was a large overlap of the target, ground state wave
function with the wave function of an excited 01 state in the
residual nucleus. For this region of nuclei, this would seem
to imply a stable triaxial minimum in the potential of each
nucleus. Since no transition was observed that was stronger
than 10% of the total ground state cross section, the data
seem to be consistent with an interpretation of these nuclei
as being soft, with shallow minima in the potential surface.

Tables V-1, V-2, and V-3 show three or four excited 0+
levels weakly populated in each of the (p,t) reactions
studied. Most of these 0+ states are not easily interpreted
within current models for this region. The energy is too
high in the Pt region (= 1.2 MeV) for the first excited 0+
state to be a member of the 2-phonon triplet in a strict
vibrational sense, although the pairing-plus-quadrupole
model predictions of Kumar and Baranger [Ku 68] are quite
reasonable: 1.207, 1.101, and 1.018 MeV for the first

192,194, 196

excited 0% states in Pt respectively. The cross
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section for populating the first excited 0+ state in (p,t) is
2—-3% of the ground state in each reaction, rather weak for it
to be considered the so-called "B-vibrational" state of a
symmetric rotor; the typical cross section for the first
excited 0t levels in deformed nuclei is approximately 5-10%
of the ground state. Some of the higher enerqgy ot states may
carry more of the B-vibrational strength, as they are
populated by stronger L = 0 transitions.

One interpretation of the o* levels may be that they are
the K = 0, two Y-—phonon bandhead of a symmetric rotor, as
possibly seen [Ya 63, Sh 76] in 188'190'1920s. The energy of
these 02 levels is quite close to the Bohr-Mottelson predic-
tion of twice the single y—phonon bandhead ( = 625 keV in Pt).
Existing branching data for the decay of the first excited 0+

state in 190_196Pt also supports this phonon interpretation

with the ratio
+ + + +
(B(E2)02 > 22)/(B(E2)02 > 21) > > 1.

2. L = 4 Transitions

The new 4% states near 1.9 MeV in excitation warrant
particular attention because of their possible similarities
to the third 4% states seen in the neighboring Os isotopes.
There have been two explanations offered for these states in
Os. One possible explanation for these 4; levels may be that
they are the bandheads for the K = 4 component of the

2—phonon y-vibrations of the symmetric rotor. These states
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are seen in the Os(p,t) studies [Sh 76] at an energy near
1.2 MeV. There are problems with this interpretation for the
Pt isotopes from an energy standpoint, however, as their
energy (= 1.9 MeV) is much too high in the vibrational model,
which predicts the energy to be about twice the energy of the
1-y phonon bandhead (2;), or about 1.2 MeV for Os and Pt. The
energies are too low for the triaxial rotor model [Da 581.

Here, the energies can be determined from the sum rule

3
z

E(47) =5 g3t , (V-2)
i=]1 o

giving E(4;) = 2.5 MeV in the Pt nuclides.

On the other hand, the decay properties of these 4;
levels in the Os region [Ca 78] tend to support a 2—phonon
interpretation as each level primarily decays to the second
2* state rather than the first 2%. However, additional
problems arise from this interpretation due to the strength

of the 4+ transitions in 196,198

Pt(p,t). Because (p,t)
transitions to 2-—phonon states are forbidden to first order
in a pure vibrational model, such states should be only
weakly populated as a result of multistep effects and anhar-
monicities in the vibrational potential. In the Cd region,

the population of 2-phonon states is typically 1-5% of the

ground state population. Similarly, in Os(p,t) the strength

+

3
196,198

of the transition populating the 4. level is =~ 1-2% of the

ground state. However, in Pt(p,t) the strength of

this transition is = 15% of the ground state while only in

194Pt(p,t) is it as low as 1% of the ground state strength.
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Thus, a uniformly simple interpretation of the K" = 4
192,194,196

3

bandheads as vibrational states in the Pt isotopes

is doubtful.

Recently, Bagnell et al. [Ba 77] have argued from the

calculations explaining the strength of the 4; states in the

191’193Ir(t,a)190’192

Os reactions that these states could be
described as single phonon, hexadecapole vibrations. This
interpretation was also presented in a recent (a,a‘') study
[Bu 78]. These 4; states may then be a mixture of both the
2y-phonon and the hexadecapole-type vibrations. If an
attempt is made to extend this interpretation to the Pt
isotopes, one must take into account the varying strength
that is seen in populating these states in both the (p,t) and

194Pt(p,t),(p,p') reactions, the

(p,p') studies. In the
population of the 4; state is comparable to that seen in the
analogous Os experiments. However, in the
196’198Pt(p,t),(p,p') reactions, the additional strength of
these states indicates a change in their structure. Since to
first order (p,t) reactions should populate only one-phonon
states, the fact that the 4; states are populated very
strongly indicates only a small 2-phonon component. In
addition, a large E4 component is needed to account for the
4+ strengths seen in the (p,p') reactions (see next Chapter).
These observations seem to indicate that as the mass

increases in the Pt isotopes, the 4; seem to be exhibiting a

larger hexadecapole component in their wave functions.
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In the 204Hg(p,t)zozHg reaction at Ep = 17 MeV, a strong

L = 4 transition was also seen with 40% of the ground state
transition strength [Ma 74]. It was noted by Breity et al.
[Br 75] that DWBA calculations for this seem to indicate
large in-phase (2p3/2 ® 1f 5/2) and (lf7/2 ® 2pl/2) neutron
components in the transfer form factor. By using the 206Pb
4; wave function of Vary and Ginocchio [Va 71] with the
(lf7/2 ® 2pl/2) amplitude enhanced by a factor of 2 to 3, the
cross section for the 4; state surpasses that of the first
4+. In the present study, these same two configurations
provided the greatest calculated strengths for all L = 4
transitions and the (2p3/2 ® lf5/2) configuration was used in
calculating the enhancement factors. The suggestion that the
lack of large 4+ cross sections in the lighter Hg isotopes
may be due to a depletion of the 2p1/2 orbital [Br 75] may
apply to the 1lighter Pt nuclides as well. Since these
nuclides are farther away from the N = 126 shell closure,
decreasing occupancy of the lf5/2 orbital now becomes a
factor rather than the 2p3/2 orbital. Thus, this same effect

+

may explain the generally decreasing strength of the 4

levels as A decreases (see Table V-5),.

3. L =0, 2 Transitions in the

Interacting Boson Approximation

It has been shown by Arima and Iachello [Ar 77a] that
the IBA model provides a natural framework for a unified

description of 2—nucleon transfer reactions across a complete
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shell. The ease of associating the IBA with 2-nucleon
transfer reactions is due to the inherent coupling in this
model of pairs of fermions to bosons with angular momentum O
and 2, or s and d bosons. It is also possible to treat higher
L—transfers by coupling the bosons to form higher order
operators, or alternatively by adding g bosons (L = 4). This
discussion is restricted to the L =0, 2 transitions.
Reference [Ar 77al investigates 2-nucleon transfer reactions
in the SU(5) (vibrational) and SU(3) (rotational) 1limits,
while this study presents features of (p,t) reactions near
the 0(6) limit.

The operators for the (p,t) reaction can be expressed in
terms of creation and annihilation operators for the s and
d bosons, sT(dT) or s(d), depending on whether one is near
the end or beginning of a shell. This change of operators is
due to a change from particles to holes in describing the
system. For the L = 0 transitions in (p,t) reactions the

operator, to first order, has the form [FIac]

r ()

= t - - 172 -
+y avs (Qv Nv Ndv) . (Vv-3)

In this notation a distinction is made between boson
operators for neutrons (si) and protons, as the calculations
discussed below have been performed [0Sch] using a code which
allows for both neutron and proton bosons. Other quantities
in the operator are a strength factor,av : the effective

neutron degeneracies for the sub-shell in question, Qv7 the
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neutron pair number, Nv’ and the neutron 4 boson number, Ngy *

The factor

_ - 1/2
[Qv Nv ndv]

is a result of the finite dimensionality of the shells. The
eigenfunctions in the 0(6) limit are denoted by three primary
quantum numbers, o, T , and Vpr which were discussed in
Chapter II.E.4. The quantum number T is related to the

expectation value of the number of 4 boson, Ngyr

_ N(N - 1) tl{t + 3)
N> Taw+n tozwF D) !

(V-4)

where N is the number of bosons in the nucleus. Table V—6
shows the relationship between t and ng for the low-lying 0+
and 2% levels in 194Pt. This analogy between Tt and the number
of d bosons is made to show the correspondence between the
change in 1t (or nd) in the 0(6) limit for a (p,t) reaction
versus the "change in phonons" terminology of the more common
pairing vibration model [Br 73]. There is no one-to-one
correspondence of the two descriptions due to the inclusion
of finite dimensionality of the IBA.

For L = 0 transitions there is a At = 0 selection rule
which requires that the average number of d bosons does not
change. Thus, the relative strengths of these transitions
can be predicted by a check of the 0(6) wave functions for the

196 4

0+ states. For example, in the Pt(p,t)19 Pt reaction, the

ground states for both nuclei have T = 0 or <ng> = 2, while
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Table V-6. Relationship Between the ng and Tt Quantum
Numbers for States in the SU(5) Limit (Harmonic
Vibrator) and O0(6) Limit of the IBA.

SU(5) 0(6)
State a _.n9.8. a
N4 Ex/E2+ T <ng> <ng>-<ni"”" Ex/E2+
1 1
+
0] (g.s.) 0 0 0 15/7 0 0
21 1 1 1 17,7 2/7 1
2’1', 4’1r 2 2 2 20/7 5/7 2.5
3’{, 4‘2“ 3 3 3 24/7 9/7 4.5

qFor SU(5) the energies are given by eng, and for 0O(6) they
are (<nd>—<ng's'>). Values taken from [Ca 78].
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the first and second excited 0+ states in 194Pt have 1 = 3

(<nd> ~3) and 1 = 0 (<nd> =~ 2) respectively. Thus, in the
O0(6) limit the strongest L = 0 transitions would be the ones
populating the ground state and second excited 0+. This is
indeed what is observed experimentally as shown in Table V-5.
For two of the three reactions in this study, the second
excited 0+ state is more strongly populated. The exception

is the 1479 keV level in 194Pt. However, it is believed that

the 1479 KeV level in 194Pt may not be a collective state,
but single-particle in nature [FIacl, since it lies near the
pairing gap for the Pt nuclides. The cross sections reported
in Table V-5 have not been corrected for Q-value differences
since this has been shown to be a small effect for (p,t)
reactions with outgoing triton energies greater than 20 MeV
[sa 79].

The stronger population of the second excited 0+ state
relative to the first in Pt(p,t) reactions has not been
satisfactorily explained by any other model. The results of
calculations using the Ti%) operator given above are shown in
Table V-5. The strengths are calculated in the 0(6) limit
with a small quadrupole-quadrupole boson interaction which
breaks the pure 0(6) symmetry and accounts for the changing
properties of these nuclei as the 0(6) to rotor transition
progresses. These calculations also reproduce the increasing
strengths for the ground state to ground state transitions as

190

A decreases, a trend which extends to the Pt(p,t)lSSPt

reaction as well [Ve 76].



165

For the L = 2 transitions the operator becomes somewhat
more complex as a change in seniority of 0, * 2 is allowed.

The L = 2 operator can be expressed as [FIac]

2(2) .

t.L=2 ¥ L=2
v sv] a.d.]

+ Yv[dv AVARY) A

¥ t
(0,87 + B Ld d,

where the change in seniority for each term is +2, 0, -2

respectively. Here a B

v v’ and Y, are relative strength
factors for each coupling of s and d bosons and A is a finite
dimensionality factor similar to that for Tiﬂ}. The brackets
represent angular momentum couplings. Calculations have been
carried out [0Sch] using only the first and second terms of
this operator with Bv chosen to be 0.08. The results are
shown in Table V-5. The governing selection rule is AT = +1,
which would allow only the population of the lowest of the
first three 2+ levels in the strict 0O(6) limit, since the
ground state wave function has T = 0 and the first 2+ state
has 1T = 1, while the 2; state has T = 2 and the 2;, T = 4.
The addition of the small symmetry breaking term will allow
some population of the other 2t levels as well, due to the
mixing of the wave functions.

For relative populations within a nucleus, the general
agreement of the IBA model calculations for the L = 2 transi-
tions is very reasonable, but the calculations do not predict
the proper trends from one nucleus to the next. For example,
the model predicts a virtually constant 2{ population, while

+

experimentally the population of the 2l state increases
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almost twofold from 192Pt to 196Pt. The calculations also

predict a decrease in strength for populating the second 2t
as A increases, while experimentally one observes a constant
strength. It is possible that the calculations could be
improved with a more judicious choice of the relative phases
and magnitudes for the coefficients in the L = 2 operator, as
well as investigating the effects of the third term of
Equation (V-5). It should be noted that the smaller wvalues
calculated for both the L = 0 and L = 2 transitions (i.e.

192Pt(OZ):0.0004) may have large uncertainties, as higher

(0,2)

order terms not included in T+v

may provide a significant

contribution to these small values.



CHAPTER VI

194,196,198

RESULTS FOR THE Pt(p,p') REACTIONS

A. General Analysis

Approximately 45-50 levels were populated in each of the
three reactions up to =~ 3.0 MeV in excitation energy. 1In the
case of 198Pt(p,p'), 38 of the 44 1levels observed are
reported for the first time. Only the energy of the first 2t
state was accurately known before this study. Tables V-2,
V-3, and VI-1 summarize the excitation energies, cross

sections (8 = 30°) and assignments of J" in the

194’196'198Pt(p,p') reactions. The results from previous

studies of these nuclei are included in addition to the
194,196

results of the (p,t) reaction studies of Pt for
comparison. The energy measurements for levels in 198Pt and
196Pt were made from plate data taken at eLab = 43°,

20

Accurately known levels from the 6Pt(p,p') reaction,

recorded on the same plate, were used as additional calibra-
tion lines. The energy measurements for levels in 194Pt were
taken from plate data (eLab = 250) using internal, well-known
level energies. Some levels do not have values for the cross
section because these states were generally too weak to

obtain a complete angular distribution.

167



Table VI-1.
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States Populated in the

198

Pt(p,p') Reaction.

Present Experiment

. a
Previous Results

1985t (p,p")

E" g" 7 (30°) E " g"

(MeV) (ub/sr) (MeV)
0.0 ot 4.92x10° 0.0 ot
0.407° 2t 3.24x10° 0.4072 2t
0.775 2t 55.1(40°) 0.775 2t
0.984 a* 1.05x10° 0.991 at
1.246(3) 3 21.9
1.287 a* 252 1.305
1.367 (57) 142
1.445(3) 56.6
1.502(3) (77) 82.8
1.657 119
1.682 3 845 _
1.722(3) 25.5(40°) b 1.722 (3
1.785 ) 150
1.827(4)
1.900 113
1.949
1.971(4)
2.000
2.070 46.6(40°)
2.100 74.9
2.120 57.9
2.155 137
2.178 52.7
2.319

2.339




Table VI-1 (cont'd.)
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Present Experiment

. a
Previous Results

1985t (p,p")
Exb g" 0 (30°) Exb g"
(MeV) (ub/sr) (MeV)
2.356
2.387
2.441 369
2.469 49.9
2.514 108
2.573 36.3 } 2.53
2.611 762
2.633
2.666 96.5
2.726 62.3
2.782
2.796 325
2.826 385
2.884 38.4
2.910 38.0
3.005
3.018
3.170(5)
3.197(5)

8References [Mu 65, Br 70, Ba 761].

Uncertainties in the excitation energies are approximately
2 keV below 2.5 MeV and 0.1% above 2.5 MeV, except where
indicated.

CUsed as calibration point along with the 0.80310, 6.68408,

2.20023, and 2.64790 MeV levels from 20

6pp.
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An attempt was made to assign spin and parity to many of
the states seen in each reaction using the DWBA code DWUCK
[PDKW and standard, collective model form factors (see
Chapter II.B.4). Except for the‘ground state, and to some
extent the first 27 level, the DWBA calculations provided
very poor fits to the data. The few spin assignments made
relied on empirical shapes of angular distributions for
states with well-known J™. This method, in addition to
energy and spin systematics in the Pt nuclei, has allowed
several new spins to be proposed and a few assignments to be
confirmed. These techniques were particularly successful for
198Pt since the spin and parity of only three levels had been
previously determined. The following sections will discuss
many of the levels populated in all three reactions according

to the particular L—transfer.

l. Elastic Scattering and L = 0 Transitions

The shape of the elastic angular distributions
(Figure VI—-1) is virtually the same in each reaction. The
most notable features at this energy are the "plateau" around
400, a decrease in cross section of three orders of magnitude
within the angular range studied, and three distinct minima
between 50° and 1000. The ratio of the elastic scattering to
the classical, Rutherford scattering is shown in Fiqure VI-1

194

for Pt(p,p'). The Rutherford differential cross section

is given by

4o C*M-  B1Z, 1

(55) = )
d2’R 4Ec.m. sin4(9/2)




Figure VI-1.
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Elastic Scattering and L = 0, 2 Angular Dis-
tributions Seen in the 1947196/198p¢ (p,p')
Reactions. The curves are the results of DWBA
calculations wusing a collective model form
factor. Energies are given in keV.



do,/dQ(mb, sr)

172

1.0||||||[||l§ ET T [ T 1T 7T 17
194 3 3
Pt 3 o Jﬁ=2+
3 ] R
10 E 01 00‘; 194p,
3 - o o 622
] ET T T T T T T T 173 y 7 oo
) e+ 3 °
2 — - Jm=2 ] | i %0
10 194p, 3 - 7% E N o® o
elastic 3 o L - = R 196p, °
= E py 3 N »689
- 328 7 ® o®
103 E N . 0.01 oo" o
= E 00%
41 L0 E 3 # %
] = 3 A
102 = 4 J o1 |k
E E N, i
4 10 - = f 775
1%6py E 196p, 3 | ° .
102 - — 356 3 o.01 E ® ¢¢°
= - - A ®
- / o %
<1 L0 = = N oo
102 o= /E E 0.01 & L 19%p,
" T ] E o 1670
— @ —
: 10 g" —g : 000 o°
= 198 =
10} - - Pt n K [
E - oy 0.0 . ,{
1 10 = ¢
] E 3 ISSP*
0.1 A 2 - 1 001 % ¢ 1603
} 196p, ? [T I I I I ® oo ¢
k} 1826(0*) ] 20 40 60 80 100 { ’
¢
0.01 f *f " E ec_m,[deg] 0.001 0*
L4 o 3
’o,o#:
| I T A | T Y N
20 40 60 80 100 20 40 60 80 100
6¢.m.(deg] O¢.m.(deg]

Figure VI-1.



173

where Zl and Z

projectile, E is the energy of the projectile, and & is the

, are the atomic masses of the target and

center of mass scattering angle. The large deviation from
unity is evidence for the influence of nuclear forces in the
scattering process, which produce an optical-like diffraction

pattern.

In 194Pt the two states at 1.547 and 1.892 MeV may be

the well-known 07 states seen in several decay studies and in
the (p,t) reaction study described in Chapter V. Unfor-
tunately these states are only weakly populated, and are not
clearly resolved from nearby states in the wire counter data,
sO0 no angular distributions could be extracted. A level is
seen at 1.826(3) MeV in 196Pt which may be the known [Ci 79,
De 79] 0+ state at 1.823 MeV. An angular distribution was
extracted for this 1level (see Figure VI-1), however no

definite spin assignment could be made due to a lack of any

characteristic L = 0 shape.

2. L = 2 Transitions

A total of eight known 2+ levels were populated in the
three reactions, and in each case an angular distribution was

obtained. Two different shapes were seen for the L 2

angular distributions in the (p,p') reactions: one for
transitions populating the first 2+ level (K = 0), and
another, having more structure, for the second 2+ (K = 2) and
higher-1lying 2+ levels. The angular distributions

194P

(Figure VI—1) of the 0.328 MeV level in t, the 0.355 MeV
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196 198

level in Pt, and the 0.407 MeV level in Pt all display

only a mildly oscillatory shape, while the 0.622 MeV level in

194Pt, the 0.689 MeV level in 196Pt, and the 0.775 MeV level

in 198Pt exhibit more pronounced oscillations. However, the

shape of the transition populating the 0.775 MeV level in

198Pt shows substantially fewer oscillations than those for

194Pt or 196Pt. This may be the result of the decreasing
deformation as A increases. This 1is observable in the
angular distributions for the first 27 states populated in
(p,p') scattering at 35 MeV on rare-earth nuclei [RKi 7817.
There, 32 > 0.23, and the shapes display even more
diffractive shapes than the 2; states seen here.

The assignment of a spin and parity of 2t for the
1.603 MeV level in 196Pt supports the assignment made in the

(p,t) study discussed in Chapter V.

3. L = 3 Transitions

States with J7" = 3" yere very strongly excited at

194P 196

1.433 MeV in t, 1.447 MeV in Pt, and 1.682 MeV in

198Pt. The shape of the angular distributions for these

states is very characteristic (see Figure VI-2) and thus

enabled the assignment of the 1.682 MeV level in 198Pt as the

3 state. A state has been reported [Ba 761 at 1.722 MeV in
l98Pt(a,a') and tentatively assigned as 37, however the

energies determined in [Ba 76] are systematically too high

for most of the levels populated in 198Pt as well as in

194’196Pt. This is particularly true for the 3 states in
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FigureVi-2. L = 3, 4 Angular Distributions Seen 1in the

194'196’198Pt(p,p') Reactions. Energies are
given in kevV.
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each reaction. Figure VI-2 includes the angular distribution
for a 1.722 MeV level only weakly populated in the (p,p')
reaction. The difference in strength of this level and the

known 3~ states in L0%r196

Pt is a factor of 20. Although a
definite assignment cannot be made for the 1.722 MeV level,
the shape of the angular distribution for the 1.682 MeV level
supports its assignment as the lowest 3 state.

Two unnatural parity 3t states are also seen in two of

the reactions studied. Both states, 0.922 MeV in 194Pt and

1.014 MeV in 196Pt, are populated very weakly and thus
complete angular distributions were not possible due to
background from large impurity peaks (oxygen, carbon, and
silicon). The partial angular distributions have been
included in Figure VI-2 to illustrate their 1low cross
section. A possible 3t level was also seen in 198Pt at
1.246 MeV, however, this assignment is based on systematics
and tentative agreement with recent (n,n') data [Ya 79] since
a full angular distribution was not obtained. Unnatural
parity states have no direct excitation mechanism via
inelastic scattering unless a tensor component is included in
the nuclear potential, but may be populated by several

multiple excitation routes, which explains the weak cross

section.

4, L = 4 Transitions

At least three states with J" = 4t were populated in

each reaction. Each displays a similar although rather
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structureless angular distribution. The various transitions
are shown in Figure VI-2. The major characteristics of the
L = 4 transitions are a gradual decrease in strength towards
backward angles, a slight plateau at 600, and a forward peak
near 35°. 1In 194Pt four 4% states are seen and identified.
Two of these, at 0.811 MeV and 1.229 MeV, were known from
previous studies, while the level at 1.911 MeV was first seen
in the (p,t) study (Chapter V). The state at 2.126 MeV is
tentatively assigned a*t and agrees with the assignment made
in the (p,t) study.

In 196Pt, five states with J" = 4+ were observed,
including two previously known at 0.876 and 1.293 MeV. A
third, at 1.887 MeV, may be the same state seen in the
198Pt(p,t)lgGPt reaction (see Table V-3) although the energy
is 3 keV higher for the state seen in the proton scattering
(the energy uncertainties are about 2 keV for each level).
Two additional 4t states have been tentatively assigned at
2.008 and 2.280 MeVv. These states may also have been
observed in the (p,t) study.

Three states in 198Pt have been assigned J" = 4+,
including the one known a* seen at 0.984 MeV in this study
and at 0.991 MeVv in (a,a') [Ba 767. A state seen at
1.287 MeV is also assigned as 4+ and is probably the same
state seen at 1.305 MeV in the (a,a') study [Ba 76]. The
third 4% in 198Pt is at 1.785 MeV excitation. This state
completes a series of at states seen at =~ 1.8 to 1.9 MeV in

192-198p¢ in both the (p,t) and (p,p') reactions. The nature
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of these states 1is unknown, but their strength in the
inelastic proton scattering may indicate a considerable

hexédecapole component (see Chapter V).

5. Transitions with L 2 5

Five L = 5 transitions have been assigned on the basis
of the empirical shape (Figure VI-3) for the angular

distribution populating the probable 5 state at 1.374 MeV in

194 - . 196Pt

Pt. The 5 state seen in at 1.270 MeV was

previously assigned [Ja 68] as (4,5) but the (p,t) study

(Chapter V) prefers 5 . A new level at 1.367 MeV in 198Pt,

seen for the first time, is assigned as (5 ) on the basis of

its shape and level energy systematics. The remaining two

assignments (both tentative) were made in 194Pt for levels at

1.932 and 2.165 MeV.

Only one angular distribution (Figure VI-3) was obtained

for a level known to have J" = 6+, the 1.412 MeV level in

194Pt. The error bars are quite large at most angles because

of the weak population of the 6" state and the proximity of
the very strongly populated 3 level at 1.432 MeV. No

attempt was made to extract an angular distribution for the

+ 196

6 level in Pt because the strongly populated 3 level is

only 17 keV away.

Angular distributions are obtained for levels seen at

1.485 MeV in 24Pt and 1.374 Mev in 1%®pt (Figure VI-3). The

level at 1.485 MeV in 194Pt was previously known from in-beam

yY—decay studies [Ya 74] to have J" = 7, thus affording an
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empirical shape for comparison in the 1°°r198

Pt(p,p")
reactions. The level at 1.374 MeV in 196Pt had been
previously assigned as (6+,7—), but its angular distribution
has the shape for J" = 7. A tentative assignment of (61,77
has also been made for the level at 1.502 MeV in 198Pt. The
level at 1.722 MeV in 198Pt oculd not be given a definite
assignment because of its weak population and uncharac-
teristic shape.

Figure VI-3 includes twelve seemingly unique angular

194P 196

distributions, three from t, four from Pt, and five

from 198Pt, all with essentially the same distinctive
features. The most prominent of these is a peak at 50° on a
gradually sloping curve. This shape is seen for transitions
populating various new levels from 2.1 to 2.8 MeV of
excitation, and in each case the transition is one of the
strongest in the reaction. Unfortunately there are no known
levels in any of the reactions with a similar shape, so no
spin information can be obtained. However, the strength of
these transitions and their high excitation energy (approxi-
mately 1 MeV above the pairing gap, = 1.4 MeV) may indicate
these states are composed of highly correlated, particle-hole
configurations. Further investigation is needed, though,
before a definite characterization of these states can be
made.

Several additional angular distributions are shown in
Figure VI—4. No spin assignments were made for these

transitions due to the lack of any similar empirical shape or
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because of large uncertainties in the angular distribution

data.

B. Coupled Channel Analysis of the

Inelastic Scattering Data

1. 1Introduction

Attempts to describe the inelastic scattering data with
the one-step DWBA were not very successful. Only the shape
of the first 27 angular distribution for the three reactions
could be reproduced by the DWBA calculations (see
Figure VI-1). Since there is only one form factor for a
given L—transfer in the collective model approach, there is
no means to account for the dramatically different 2; angular
distribution. Hence, these limitations of the DWBA formalism
suggest that a more complete and complex coupled channels
approach is necessary if one is interested in studying the
higher energy states of the Pt nuclides.

The procedures used in this study for the coupled
channel analysis are very similar to those employed for the
analysis of proton scattering from well-deformed nuclei
[Ki 79]. Basically this method involves an iterative
searching procedure to determine the best set of optical
model parameters for reproducing the elastic scattering data.
Next the deformation parameters, Bk' are determined for the
ground band by a similar searching procedure, where a "best

fit" is obtained for the inelastic data as well as the
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elastic. Both of these searches are performed with the
coupled channel code ECIS [Ra 73], which is capable of
carrying out a grid or gradient-type search.

Additionally, the effects of several other features of
the data and theory were investigated, such as spin-orbit
effects, the coupling of the "y—band", the choice of matrix
elements, and the effect of Bg ON the extraction of 85 and Byg*
The details of these effects will be discussed later in this
chapter. Two additional aspects of this analysis will be
addressed: the use of matrix elements derived from the IBA
model to describe the coupling between the nuclear states,
and a comparison of the charge component of the nuclear
moments extracted in the analysis with those previously

determined by other methods.

2. The Optical Model Analysis

The usual starting point of a DWBA or full coupled
channel calculation is the determination of the best set of
parameters for the optical potential which will reproduce the
experimental elastic scattering. 1In this study the shape of
the potential was assumed to be the standard Woods-Saxon form
(as described 1in Chapter III.B.3) with the deformation

parameterized via the expansion

R

[}

o
Ry 1 +;:\ By Yy (8r¢) - (VI-1)

and the Coulomb part of the potential is derived from a

deformed uniform charge distribution with a sharp cutoff
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VC = ZlZ2 e“/r for r » Rc
2 2 (VI-2)
2 e
_ 4172 _r .2
Vc = 2Rc [3 (Rc) ] for r <« R,/

where Rc’ the Coulomb radius, is expressed in terms of the
charge deformation parameters (Bf) and spherical harmonics
shown above. Thus, in practice, for proton scattering there
are eleven optical model parameters that could be included in

a search: V, W, W

r a and a

D’ Vso’ 'R’ F1’ Tgso’ Ter ¥R’ 2p S0’
plus several deformation parameters, BE and B:. The
procedure used in this study for determining the optical
parameters limited the number of parameters to be varied to
vV, W

a and a. (defined in Table V-4 and listed in

D’ VSO' R’ I

Table VI-2), to simplify the searching process and avoid
well-known ambiguities [Au 70]. However, the parameters held
constant throughout the searches were not chosen arbitrarily.
The radius parameters were not included since in this
deformed optical model potential (DOMP) they enter the
potential as a product with their respective deformation
parameters. The Coulomb parameters, ror Bg, Bz, were taken
from Reference [Ba 76]. The imaginary well depth was held
constant primarily for simplification.

The optimum parameters were determined by use of the

automatic searching features in ECIS by minimizing

N
2 - _ 2
where cexp(ei) is the measured, and cth(ei) the calculated

differential cross section at angle Gi, and Aoexp is the
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Table VI-2. Optical Model Parameters Used in E.C.I.S.

Calculations.
Nuclide ve a W a v xz/N
R D I SO
(MeV) (fm) (MeV) (£m) (MeV) (ground
state)
194PE
L*S:

k=0.0375 keV  53.40 0.712 4.70  0.663 6.497 7.0
k=0.5375 keV  53.12 0.723 4.82 0.658 6.466 8.6
L*S = 0:

k=0.0375 keV  51.84 0.659 8.13 0.594 0.0 14.3
k=0.5375 keV  51.64 0.656 7.99 0.604 0.0 15.1
196Pt

L*S 51.78 .786 5.46 0.666 6.551 17.1
L*S = 0 50.79 .734 7.86 0.644 0.0 29.9
198Pt

L*S 53.35 0.709 4.72 0.667 6.475 5.5
L*S =0 52.53 0.624 7.60 0.611 0.0 10.2

4The Bf and rc values are taken from [Ba 76]. All radii were
held constant, rg = 1.17 fm, ry = 1.32 fm, rgp = 1.01 fm,
and Lo = 1.2 fm. Also, the spin-orbit and diffuseness, agor
was held constant (1.0l fm), and W retained the Becchetti-
Greenlees value, 5.1 MeV for 194pt and 5.0 MeV for
1967198p¢ .
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error associated with Oexp' An error of * 3% was added in
quadrature with the statistical errors from the peak fitting
routine to account for uncertainties in relative normaliza-
tion. The overall normalization of the data, N, was also
varied to minimize x2 where

N

- 2 X X _2
= I [(Noth - oexp)/Acexp] + [(N - NT)ANTT° ,

g.s' l

(VI-4)
where N* and AN® are the estimated value for the normaliza-
tion and the approximate error in N* to reduce the range of
variation of N. Since the absolute normalization was not
known (an approximate value was obtained from target
thickness values determined‘ from the (p,t) study), this
feature of ECIS was used during the optical model parameter
searches and the final value was used in computing the cross
sections for the (p,p') reactions in Tables V-2, V-3, and
VIi-1l. ECIS was used for these searches because of the need to
include inelastic channels for non-spherical nuclei when
calculating the elastic scattering. This allows one to
account for flux usually absorbed by the imaginary part of
the potential. 1In these searches a 0+—2+~4+ level space was
used which includes the couplings shown in Figure VI-5a.

The parameter search was conducted by simultaneously
varying either the three potential depths or both the

diffuseness parameters. This avoided well-known ambiguities

such as WD - aj. The sequence of searches used for each
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Figure VI-5. Coupling Schemes Used in the Coupled Channels
Calculations.
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nucleus typically involved two iterations of a potential
search followed by a search on the diffuseness parameters,
one search on the deformation parameter, 82, while minimizing
x§+, then two more iterations on (V, WD’ VSO) and (aR, aI).
The search methods employed in ECIS are a "grid search" for a
one variable search and a "gradient search" for two or more
variables [Be 69a, Ra 72]. For 196Pt the starting Bf values
have been er-scaled from values in [Ba 76], while for
194’198Pt the initial values for the B;q are those which
produce the same quadrupole and hexadecapole moment as the
Bg's of Reference [Ba 76]. The initial relative values for
the matrix elements used for the optical model searches are
shown in Table VI-3. The Coulomb and nuclear matrix elements
are assumed to have the smae relative values, although each

+ and 0+-+ 4+ matrix

set is normalized to a different 0+ > 2
element. These values are determined in ECIS from the

deformation parameters by evaluating the integral

L
L 3ZR o,L+3. .0
m f (1L + i: B)\Y)\) YLdQ ’

M(Ex, 07 » 1) = 3

(VI-5)
where R and Bxican be the nuclear or Coulomb values. For each
nucleus, previously measured matrix elements were used when
available, otherwise values were taken from the axially
symmetric rotational model for a K = 0 band. All the
calculations described in this and the following sections

have been performed using 25 partial waves, an integration
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Table VI-3. Relative Matrix Elements, <f||M(EA)||i>, Used
for Initial Optical Model Searches.

194 196 198

Pt Pt Pt
li> | £ E2 E4? E2 E4? E2 E4?
ot 2t -1.0 ~1.0 1.0
ot a* 1.0 1.0 1.0
2¥ 2t -0.637°  1.195 -0.657° 1.195 -1.49C 1.195
2¥ 4% -1.518  -1.140 -1.5709 -1.140 -1.604 -1.140
at gt 0.815  1.207 1.529  1.207 1.529 1.207

8r4 values are from symmetric rotational model.
bReference [Ba 761].
CReference [Gl 69].

dReference [Mi 71]; remaining E2 values are from symmetric
rotational model.
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step size of = 0.33 fm, and a matching radius of 20.0 fm.
The multipole expansion (Equation (III-53)) included
couplings of A = 2 and A = 4 terms to L = 8. For simplicity,
the nuclear deformations were equal for each portion of the
potential.

The results of the optical model parameter searches are
given in Table VI-2 for a potential with a full Thomas form
[Au 70] for the spin-orbit term (L*S), and one without
(L*S = 0). Also reported are the values of chi-squared-per-
point for the ground state, XZ/N, which is a measure of the
"goodness of the fit", and is used for comparison purposes.
The changes in the parameters from the initial Becchetti-

Greenlees parameters are relatively small except for the real

diffuseness, a

and the imaginary surface term, W which

R’ D’
decreases = 7% and =12%, respectively. There do appear to

196

be some problems with the parameters for Pt with spin-

orbit as the changes in V, aR, and WD do not follow the trends

194’198Pt. This is also reflected in the X2/N value,

17.1, which is almost three times the value for 194Pt and

198Pt. The cause for this apparent discrepancy is unknown,

seen in

although a more detailed grid search on V and a_, may be

R
necessary to bring the values more in line with the other two
nuclides. The overall effect of these difficulties has a
very minor influence on the moments extracted as noted in a
later section. Changes 1in the optical model parameters

should be expected, because the Becchetti-Greenlees

parameters are an averadge set of parameters for spherical
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nuclei. However, since the Pt nuclei are only slightly
deformed (82 * —.15), the <couplings introduced in the
searching procedure should result in only minor adjustments

of the values, as was seen for most of the paraemters.

3. The Extraction of Deformation Parameters

Once a set of "best fit" optical model parameters is
obtained, attention can be focused on the extraction of
deformation parameters of the nuclear potential. At this
juncture one may input all previously measured matrix
elements, with the remaining values taken from a collective
model, then vary the BA'S and several of the more crucial,
previously unmeasured matrix elements to fit the inelastic
data, or, one may use a complete set of matrix elements taken
from some nuclear model and fit the data by varying only the
BA'S' This study follows the second approach for several
reasons. Since relatively little is known about the matrix
elements which connect the low-lying states of the Pt
nuclides (except 194Pt [Ba 78al]), one is forced to work with
some model to make predictions for these matrix elements.
This provides a special opportunity to stringently test the
predictive qualities of a model rather than comparing energy
levels and a few E2 matrix elements. With the recent success
of the 0(6) limit of the IBA in the Pt-Os region for energy
levels, E2 branching ratios [Ci 78, Ca 78], and (p,t)
strengths (Chapter V) [De 79], the CC-analysis would provide

a natural framework for further testing the E2 and E4 matrix
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elements. This approach may not result in the best overall
fit to the data, but one can judge the effectiveness of a
complete set of matrix elements in describing the data rather
than a partial set with uncertain significance.

The matrix elements used in the following analysis were
obtained from the IBA code, PHINT [Sc 771, which was modified
to output matrix elements rather than B(EA) values. The 0(6)
parameters used as input to PHINT (see Equation (II—42)) are
taken from Reference [Ca 78] and listed in Table VI-4. The
values used in the 198Pt calculation have been extrapolated
by extending the prescribed [Ca 78] relationships: A is held
constant, B and C are varied linearly with mass, and k, the
strength of the quadrupole-quadrupole interaction between the
bosons, is varied logarithmically with mass. Casten and
Cizewski [Ca 78] point out that the transition rates are
really only sensitive to the ratio k/B, which specifies the
location of the nucleus relative to the 0(6) or rotor limits,
so the actual value of the individual parameters is not
critical. The calculated matrix elements are shown in
Tables VI-5, 6, 7, and 8. The values listed in Table VI—6
were calculated with a larger value of « (= 0.5375 keV).
Calculations using these matrix elements will be discussed in
the next section.

The results of the CC-analysis of the states in the
ground band (up to the 6" state) for 194’196’196Pt are shown

in Fiqures VI-6, VI-7, and VI-8 as the solid line fits.
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Table VI-4. IBA Parameters Used in the Perturbed 0(6) Cal-
culations. A, B, and C are the coefficients of
Equation (II-40) and k is the strength of the
quadrupole-quadrupole interaction. N is the
total number of bosons for each nucleus.
Nucleus A B C K K/B
(keV) (keV) (keV) (keV)
194Pt
Set 1 186 42.0 17.5 0.0375 0.0009
Set 2 186 42.0 17.5 0.5375 0.0128
196Pt 186 43.0 19.0 0.025 0.0006
198, 186 43.5 20.5 0.016 0.0004
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Table VI-5. Relative E A IBA Matrix Elements for 194Pt Cal-
culated Using O(6) Symmetry and k = 0.0375 keV.

|i> | £> <g|Im(E2) | ]1>23 <¢|IM(E4)|]i>®

o* 2t -1.0

of 25 0.0046

ot at 1.0

o* 4 ~0.00267

2" 2t ~0.0142 1.380

2* 2) ~1.156 -0.00370

2t at 1.551 -0.0152

2t 3t ~0.0061 0.559

2t 4 0.0011 0.818

2t 6" ~1.426

23 23 0.0142 0.656

2; at ~0.0029 ~1.721

2; 3t ~1.186 ~0.00359

2; 4; ~1.152 -0.0152

a”t at ~0.0127 0.0878

a”t 3t 0.750 ~0.00399

a2t 4 1.098 ~0.00572

2t 6" ~1.913 0.0130

at gt -1.622

3t 3t ~1.767

3t at 0.00742 ~0.748 |
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Table VI-5. (cont'd.).

|i> | £> <f||M(E2)||1i>® <f||M(E4) || i>?
3t 6t -1.452

+ +

43 4 0.00694 1.525

6t 6t ~0.0101 0.965

6" gt 2.120 ~0.011

gt gt -0.00752 1.133

®Matrix elements calculated with program PHINT [Sc 77].
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Table VI-6. Relative E) IBA Matrix Elements for 194Pt Cal-

culated Using O(6) Symmetry and k = 0.5375 keV.

|i> | £> <£||M(E2) |]i>® <f||M(E4)[] i>?
ot 2* ~1.0

ot 23 0.0627

ot a4t 1.0

o* 4 0.0369
2t 2t ~0.196 1.376
2" 23 ~1.142 -0.0508
2* 4t 1.552 ~0.209
2t 3t -0.0838 0.557
2t 43 ~0.0155 ~0.802
2t 6" ~1.425
2; 2; 0.196 0.659
25 at -0.0397 1.269
25 3t ~1.186 ~0.0494
25 45 1.155 0.210
st a4t ~0.175 0.883
a4t 3t 0.0748 0.0551
at 45 ~1.090 0.0787
at 6" ~1.914 0.180
3t 3% ~1.765
3t 4 0.103 0.744
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Table VI-6 (cont'd.).

|i> |£> <f|[M(E2)||i>? <f||M(E4)|]i>®
3t 6" ~1.446

+ +

4 4 0.0949 1.512

6t 6t ~0.141 0.969

Matrix elements calculated with program PHINT [Sc 771].
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Table VI-7. Relative E IBA Matrix Elements for 196Pt Cal-

culated Using O(6) Symmetry and k = 0.025 keV.

|i> | £> <f|| (ME2) || i> <elIMmEl) || 1>
ot 2t ~1.0

ot 25 0.00242

o* at 1.0
ot 45 ~0.00131
2t 2t ~0.0073 1.436
2t 23 ~1.144 ~0.0020
2t at ~1.535 0.0081
2t 3t 0.00314 ~0.544
2t 4 0.0006 0.797
2t 6t ~1.388
25 25 0.0073 0.694
25 a4t 0.0016 1.818
25 3t 1.155 0.0017
23 47 ~1.121 ~0.00795
a*t at ~0.0063 0.927
at 3t 0.730 ~0.0023
a* 4 ~1.069 0.0030
4t 6" 1.862 0.0069
3t 3t 1.901
3t 43 ~0.0064 0.804
3t 6" 1.564
4 43 0.0036 1.641

+ +

6 6 -0.0048 1.038
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Table VI-S8. Relative EA IBA Matrix Elements for 198Pt Cal~-

culated Using O(6) Symmetry and x = 0.016 keV.

| i> | £> <f||M(E2) || i>2 <f||M(E4)]|]|i>?
ot 2t 1.0

o* 25 -0.00123

ot at 1.0

ot 4 ~0.00060
2t 2t ~0.0035 1.521
2" 23 ~1.127 ~0.0011
2* at ~1.512 0.00415
2t 5 ~0.00036 -0.763
2t 6" -1.329
23 23 0.00353 0.751
23 gt 0.00085 1.970
25 43 1.073 0.00398
a”* st -0.00295 1.004
2t 4 1.024 ~0.00156
st 6" 1.783 ~0.00346
43 75 0.00179 1.820
6" 6" ~0.00204 1.152

8Matrix elements calculated with program PHINT [sc 771.
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These calculations used the optical model parameters of
Table VI-2 and the IBA matrix elements of Tables VI-5, 7, and
8. Figure VI-5b schematically shows all the couplings
included in the calculations. These fits to the data were
obtained by wvarying 32 and 84 simultaneously, while
minimizing the total chi-squared Xi, defined as the sum of
the chi-squared for the ground state, 2+, and 4+. The X2 for
the 6F angular distribution was not included in the
calculations since the effect of the 8 couplings was not
accounted for due to computer limitations. The absence of
the 66 term in the expansion of the nuclear surface has
consequences for the determination of 82 and 34 that will be

discussed in a later section.

Table VI-9 summarizes the deformation parameters and

corresponding moments determined for 194’196'198Pt

. These
moments have been calculated using the methods described in
Section C of Chapter III. The negative values for both 82
and By are consistent with previous measurements [Ba 76] for
the Pt nuclides and are in qualitative agreement with
theoretical predictions of Reference [Go 72]. A negative
value for Bo also implies an oblate shape for the nucleus,
which is consistent with the quadrupole measurements from
Coulomb excitation studies.

The overall quality of the fits 1is quite good
considering no matrix elements were varied in the search.

196

The major problem appears in Pt between 70° and 90° in the
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Data and Coupled Channels Calculations for

Pt(p,p') With and Without the Spin-Orbit
Interaction. The calculations included the
couplings shown in Figure VI-5b, the matrix

elements of Table VI—5, and DOMP parameters
from Tables VI-2 and 9.
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Data and Coupled Channels Calculations for
196pt (p,p') With and Without the Spin-Orbit
Interaction. The calculations included the
couplings shown in Figure VI-5b, the matrix
elements of Table VI-7, and DOMP parameters
from Tables VI—-2 and 9.
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Data and Coupled Channels Calculations for

8pt(p,p') With and wWithout the Spin-Orbit
Interaction. The calculations included the
couplings shown in Figure VI-5b, the matrix

elements of Table VI-8, and DOMP parameters
from Tables VI-2 and 9.
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Table VI-9. Deformation Parameters and Potential Moments
Obtained from 0-2-4-6 Coupled Channel Calcula-
tions for 194+196 /198 pt. ~vyalues from calcula-
tions with and without a spin-orbit (L*S)
interaction are included.

Nucleus 82 84 q2 q4
(b) (b?)
194PE

k = 0.0375%

L*S -0.154(2) -0.0455(10 -1.32(2) ~0.156(7)

L*S = -0.168(3) -0.0566(17) -1.40(2) -0.184(12)
k = 0.5375

L*S -0.151(2) -0.0453(10) -1.30(2) ~-0.160(6)

L*S = -0.164(3) -0.0550(20) -1.37(3) -0.181(12)
196Pt

k = 0,025

L*S -0.142(3) -0.0485(13) -1.25(3) -0.202(1L)
L*S = -0.152(5) -0.0573(21) -1.31(5) -0.226(16)
lgBPE

k = 0.016

L*S -0.119(2) -0.0422(20) -1.05(2) -0.177(7)
L*S = -0.128(4) -0.0479(30) =-1.09(4) -0.181(18)

aThe units for k are keV.



212

ground state angular distribution and near 50° in the 2+

angular distribution. The ratio-to-Rutherford calculation
seems to be out of phase a few degrees between 70° and 900,
while the 27 shape exhibits a pronounced minimum at 50°

194,198

unlike the shape calculated in Pt(p,p'). These

discrepancies may be the result of the problems with the
optical model parameters for 196Pt mentioned above.
Additional calculations were performed for each nucleus
to investigate the effects of the spin-orbit interaction.
Searches were performed on the optical model parameters with
a spin of zero for the proton and with zero spin-orbit well
depths. The major change in the parameters was in WD’ which
increased significantly to decrease the depths of the minima
(increase absorption) from the deep ones which result if the
average parameters are used with spin-orbit effects turned
off. Table VI-2 1lists the results of these parameter
searches for each nucleus. One can see the comparison of the
spin-orbit versus non-spin-orbit (L*S) = 0) calculation in
Figures VI—6, 7, and 8. The most obvious difference in each
figure is the more pronounced oscillations in the L*S = 0
calculations. Each calculated shape displays this
characteristic, with the at shapes the most obvious. The
poorer quality of these fits is borne out by chi-squared
values which are nearly twice as large for each level as

values from the calculations with spin-orbit. However, even

though the L*S = 0 Bx's values are significantly different
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from the spin-orbit ones, the moments calculated in each case
are comparable.

Although these calculations have shown the importance of
spin-orbit effects in reproducing the data, there are still
some practical advantages to investigating calculations
without spin-orbit as long as one realizes their limitations.
The major advantage of L*S = 0 calculations is the immense
savings in computer time. As pointed out in Chapter III, the
inclusion of a non-zero spin projectile in the CC calcula-
tions can more than double the number of coupled equations
that must be solved. For proton scattering this translates
into calculations that will require ten times as much
computer time as the same calculation with a spin-zero
projectile. With fewer coupled equations in an L*S = 0
calculation, the effective size of the computer is also
increased. For example, on the Xerox »-7 computer at this
laboratory, a 0-2-4-6—-8-10 calculation is possible, while
with spin-orbit included only a 2—-2—4—6 calculation space can
be used. The following section has capitalized on the
advantages of calculations without spin-orbit to investigate
the effect of a variety of couplings (some not possible with
the inclusion of spin-orbit terms) and matrix elements on the
quality of the fits and ultimately the extraction of the

deformation parameters.
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4. Sensitivity of CC Calculations to Higher Order

Couplings and Selected Matrix Elements

a. The Sign of 84

Earlier theoretical calculations [Ge 72] and experi-
ments [Ba 76]have indicated the need for a negative value of
84 to account for certain features of the Pt nuclides. A
series of calculations were performed to investigate the
sensitivity of the (p,p') data to the sign of 84.
Figure VI-9 compares the result of a 0—2-4-6 calculation for
194Pt (without spin-orbit) with a positive, negative, and
zero value for 84. The X2 values for the 2 and 47 angular
distributions are also given. Although the fit to the 4+
level with a negative 84 value is quite poor (mostly due to
exclusion of spin-orbit effects), the overall slope and the
fit to the first maximum are in agreement with the data.
However, in the case of a positive 84 (dashed line fit in
Figure VI-9) the oscillations are almost completely out of
phase with the example for 84 < 0, and the cross section is
overestimated at backward angles. Also, the value of x§+
increases by a factor of 2. The calculation with 84 =0
clearly fails to reproduce the data. The necessity of
including a 84 component 1is discussed further in a later
section concerning the second at level. The present results

seem to support earlier findings of a negative value of 84 in

the shape of the Pt isotopes.
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Data and Coupled Channels Calculations in a
0—2-4-6 Space for 19‘]'Pt(p,p') With Positive,
Negative, and Zero Values for 84. These cal-
culations used the IBA matrix elements of
Table VI-5 and the DOMP parameters of

Table VI-2. No spin-orbit interaction was

included. 62 = —0.172.
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b. Investigation of a 66 Deformation

Several calculations have been performed to examine the
need for a 86 component in the nuclear shape of the Pt
nuclides. Figure VI-10 shows three situations for

194Pt(p,p') with 86 = —-0.01, 86 = 0.0, and 86 = +0.01. These

. . . + .+
calculations were carried out in a 0 —2

—4+—6+—8+ level space
using the couplings shown in Figure VI-5c¢, with no spin-orbit
potential, and all angular momentum couplings up to L = 10.
Although there does seem to be evidence in the rare-earth
nuclei for a small B shape component [He 681, the data for
the 6+ angular distribution for 194Pt do not indicate any
preference for a nonzero value. Even with improved data for
the 6% state, it is doubtful whether any more information
could be gained due to the similarities of each calculated 6+
shape. As Figure VI-10 shows, the inclusion of a 86 term
also has very little effect on the shapes of the 2+ and 4+
angular distributions. A calculation was also performed
allowing 82, 84, and 86 to vary simultaneously to study the
effects of 86 on determining 82 and 84 values. Figure VI-11
compares this calculation with the final calculation of a 82,
84 search for 194Pt with the same initial Bx's and no spin-
orbit potential. Although the deformation parameters have
changed significantly, and the fit to the 4+ is improved (at
the expense of the 2t fit), this is the result of a final

value for 86 of +0.067, which seems physically unlikely (see
e.g. [He 68]).




Figure VI-10.
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Comparison of Data and Coupled Channels Cal-
culations for 194Pt(p p') With the Couplings
of Figure VI-5C, and Three Values for Be The
calculations included the matrix elements of
Table VI-5, and the DOMP parameters of
Table VI-2 with no spin-orbit interaction.

82 = -0.172, 84 = —0.0567.
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Data and Coupled Channels Calculations for
94Pt(p,p') With Search on Bor Byr and With
86 = 0 (Dashed Curve) and for Search on Boy
B4» and Bg (Solid Curve). No spin-orbit
interaction was included. Both calculations
had the same initial values for Bo(= —0.172)
and By (-0.0567). The matrix elements were
taken from Table VI-5 and DOMP parameters from
Table VI-2.
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c. The Effect of y-band Couplings

In order to test further the O0(6) IBA matrix elements,
calculations were initiated to include the lowest states of
the y-band, whose bandhead is the second 2+ state. Three
previous inelastic scattering studies of the Pt nuclei have
included results for the y—band. Only the 2% state of the
y-band in 1945, was studied in References [Ba 76, Ba 79].
The former investigation used a combination of empirical and
rotational matrix elements, while the later analysis was
performed within a triaxial rotor framework.
Reference [Ba 78] included both the 2% and 4% members of the
Y-band for 192Pt and also used empirical and rotational
matrix elements. The later two studies also seemed to
indicate that the inclusion of 84 deformations was important

in obtaining a more thorough understanding of these nuclei.

In the present study, data were obtained for the 2+, 3+
194,196

’

!
and 4% states of the y-band in Pt and for the 2% and

1
4+ states 1in 198Pt. The calculations included both 82 and
84 deformations, and initially, a full set of IBA matrix

elements. As discussed 1later in this Chapter, the 1IBA
1
0 » at matrix element was extremely small and a larger value

was necessary to reproduce the data.
The results of these calculations for 194Pt are shown in
Figure VI-12 for two different sets of matrix elements. Both

calculations included the couplings of Figure VI-5e with the

L*S interaction and the appropriate deformation parameters



Figure VI-12.
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Data and 0-2-4-2'-3-4" Calculations for
194pt (p,p') With the Spin-Orbit Interaction
and Two Sets of IBA Matrix Elements,
Table VI—-6 (Solid Curve), and Table VI-5
(Dashed Curve). The couplings included those
of Figure VI-be. The appropriate DOMP
parameters were taken from Tables VI-2 and 9.
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from Table VI-9. One set (kx = 0.0375 keV) 1is the set
mentioned earlier, which was derived from the parameters of
[Ca 78]. The second set was obtained from PHINT by
increasing the strength 6f the quadrupole force between the
bosons (x = 0.5375 keV) while the remaining 0O(6) parameters
retained their previous values (see Table VI-4). The two
calculations provide nearly identical fits to the ground band
states (comparable fits to those shown in Figure VI-6 with no
y—band couplings). The y—band fits, however, show distinct
differences. The calculation with k= 0.5375 (solid 1line)
yields a definite improvement in the fit of the 2+' state,
both in strength and the depth of the minima. However, even
though both calculations underestimate the strengths of the
3+l and 4+' angular distributions, the solid line fit for
Kk = 0.5375 introduces far more structure into the shapes of
both angular distributions. This may be due to the order of
magnitude differences in the matrix elements between the
levels of the y—band, as well as between the 3+', 4+|, and the
first 2+ state. This changes the interference between the
many coupling paths, and thus the shape of the angular
distributions.

As stated above, the difference between the two sets of
matrix elements is a larger value of k, the strength of the
quadrupole-quadrupole boson force. Small values for this
parameter primarily affect the magnitude of transitions which

were not allowed in the strict 0(6) limit due to the At = + 1
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selection rule. As Figure II-7 shows, the affected transi-

tions are M02' ' M23, M24, ’ M34, , and M2,4 , Where
My = -<k||M(E2) | ]3> .

Also affected are the reorientation matrix elements because
of the increased mixing of the wave functions. Thus, both
sets of matrix elements result in nearly identical fits for
the ground band, since the intraband transitions are
virtually unchanged.

The value of k for the matrix elements of Table Vi-6,
which gives the solid line fit in Figure VI-12, was deter-
mined by varying «k in the IBA code PHINT until the ratio of

[ ] | ]
B(E2; 2t + ot/ B(m2; 27

> 2+) approached the experimental
value of 0.0031 [Ca 78]. This increase in M02' provides the
necessary strength to fit the 2+' state, however, at the
expense of the already poorly fit 3+ and 4+' states. The new
value of k is not an unrealistic value even though it is about
20 times as large as the value taken from [Ca 78]. The larger
value is still an order of magnitude smaller than the values
used in the Os nuclei calculations of Reference [Ca 78],
which show considerably more rotational character, the

feature which k actually represents. A search on M was

02
performed using the couplings of Figure VI-d and the
K = 0.0375 keV matrix elements. The "best fit" value for
M02' was determined to be 0.046, compared to 0.063 from the

PHINT calculations when k = 0.5375 keV.
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The implication for such small values of M is that

02’
the population of the 2+‘ state is achieved primarily through
a two-step process, 0 » 2 » 2+', where the two matrix
elements involved are each two orders of magnitude larger
than M02,.

Another IBA matrix element that is very small compared
to the experimental value is M22 r the reorientation matrix
element. The present calculations are not very sensitive to
this matrix element, because the reorientation effect is
proportional to Z2 of the projectile and produces the largest
effect at backward angles. Thus, the proton scattering data
are a relatively weak probe of this effect. For calculations
involving the scattering of low energy alpha particles, where
this effect is important, significantly larger values would
be needed for g than the values from Casten and Cizewski

[Ca 78].

1)
d. The Effect of the 2° State on the B,'s

To test the influence the 2+ state may have on
extracting the deformation parameters, a simultaneous search
was made on 62 and 84 using a ot—2t gt ot coupling scheme
and the IBA matrix elements with k = 0.5375 keV while
minimizing the chi-squared values for each level.
Table VI-10 compares the results of the above L*S = 0
calculation with those for a similar BA search also

minimizing all four X2 values in a 0+—2+—4+—6+ level space.

Both calculations had the same initial values for Bz and 84
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and in each calculation, x% (= Xg + X%

+ Xi) minimized on the
same final values within statistical uncertainties. However,
the better fit was obtained in the 0+—2+—4+—6+ calculation as
indicated by the total chi-squared, 1267, compared to 1355
for the 0+—2+—4+—-2+ calculation. The relatively weak
coupling of the 2+‘ state, and thus the entire vy-band,
indicates that calculations involving only ground band
couplings are sufficient for determining the deformation

parameters.

e. The Sign of P3

One of the principal motivations for the earlier
inelastic scattering studies on the Pt nuclides [Ba 76,
Ba 78, Ba 79] was to determine the sign of the E2 inter-

ference term P3 = M02'M02M22' ;, where

M. = —<k||M(E2)|]|3F> .

jk
The CC calculations are sensitive to the relative signs of
these matrix elements, because of the interference between
the one-step and two-step paths that can be used to populate
the second 2% state, 0 * 2' and 0 * 2+ 2', respectively.
The studies of Baker et al. indicate that a negative value of
P3 is needed to fit the data. This was an unexpected finding
since both the asymmetric rotor [Ba 58] and pairing-plus-
quadrupole [Ku 69] models predict P3 > 0. These same
experimental studies also conclude that large values of M

04
and M04, are needed to explain the shape and strength of the
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4+ angular distributions. However, in [Ba 79] it was shown
that by including only the symmetric, E4 components to the
usual E2 asymmetric rotor shape (Davydov model [Da 58]) the
fit to the first 4 level was improved and that a negative
value of P3 was now consistent with the predictions of this
"extended" asymmetric rotor model.

In the present study calculations have been performed,
with the L*S interaction, to investigate the sensitivity of
the (p,p') data to the sign of this interference term. Since
the proton scattering also indicates the need for large,
direct E4 matrix elements, the first at state and a 84 defor-
mation were included in the calculations. The couplings used
are shown in Figure VI-54 and the Bk's were those from
Table VI-9. The major differences in these calculations and
those from Reference [Ba 79] are the use of 0(6) IBA matrix
elements and a symmetric parameterization of the shape of the
nucleus having a diffuse cutoff. Figure VI-13 shows the
results of a 0-2-4-2' calculation for 194Pt performed with
the matrix elements of Table VI-6. The sign of P3 was
changed by changing the sign of M02" The data are fit much
better when P3 < 0, in agreement with earlier studies [Ba 76,
Ba 79]. This is also true in similar calculations for 196Pt.
Interestingly, the 0O(6) IBA calculations correctly predict
the sign of P3 in both sets of matrix elements calculated for

194 196Pt

Pt and for . So, the present analysis and that of

Baker et al. [Ba 79] both agree that P3 < 0 and vyield
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Data and Coupled Channels Calculations for
194Pt(p,p’) With Positive (Dashed Curve) and
Negative (Solid Curve) Values for the
Interference Term, P,. Note that the data and
theory for the 2% state have been multiplied

by 2. The couplings of Figure VI-5d were used
with 82 = —0.151 and 84 = —0.0453.
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essentially the same a, and dqy charge moments (see
SectionB.4.g.0f this Chapter) but with each method assuming a
different shape for the nucleus. Thus, the scattering data
analysis, much like the case of odd-A nuclei coupled to a
variety of even-even cores, does not give unambiguous results
as to the shape of these transitional nuclei. The scattering
data predict no apparent distinction between a rigid,
asymmetrically deformed nucleus, and a fy-—unstable (0(6))
nucleus, "frozen" in a symmetric oblate shape.

For 198Pt(p,p') the calculations with P3 > 0 provide
slightly better fits to the data, even though the 0(6)

calculations predict P3 < 0. However, in these calculations,

M02' is a small negative number, —-0.0012. This change of

sign compared to the l94'196Pt 0(6) calculations is under-
standable because in the strict 0(6) limit My, = 0 due to
the At selection rule. With the addition of a small

perturbation (k), the selection rule is broken and small
values of about zero are obtained. The reason P3 remains
negative is because the sign of M02 unexpectedly changes as
well. The cause of this sign change is not understood. To

draw any conclusions about the role of P

3
the data for 198Pt it seems best to secure first a better

in the analysis of

value for k because of its influence on the small matrix
elements.

f. The M04, E4 Matrix Element

The CC calculations obviously fail to reproduce the data

1
for the 4+ angular distribution in 194Pt(p,p') with 0(6)
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matrix elements (see Figure VI-12). This was true in similar

calculations for 196,198

Pt(p,p') (see Figure VI-15, dashed
curves) . The major cause of ‘this failure is the small,
predicted E4 matrix elements between the ground state and
second 47 level, resulting in a calculated cross section
which is more than an order of magnitude weaker than the
data. A similar effect was seen in the (a,a') study of
Reference [Ba 78]. To improve such calculations a search was
performed on the 0—4+' matrix element to fit the 4+' angular
distribution. The remaining matrix elements were the IBA
values of Tables ViI-5, 6, 7, and 8, scaled with the
appropriate L*S = 0 BA'S from Table VI-9. The search was
performed without the spin-orbit term so that a 0—2—-4—2'—3—4"'
level space could be used with the couplings of Figure VI-5e

198Pt where no 3+ couplings were included).

(except for
Computer limitations precluded a search in this level space
with a spin-orbit interaction. However, as shown 1in
Figure VI-l4a, the shape of the 4+' angular distribution with
and without spin-orbit are similar enough that the values of
M04, from these L*S = 0 searches were also used in the cal-
culations with spin-orbit included. The results of these
calculations are shown as the solid curves in Figures VI-14

194,196,198Pt

and 15 for . For comparison the calculations

with the full IBA matrix elements are also shown. The best
fit is obtained in the 198Pt case, with the rather structure-

less shape except for a maximum at 35°, The other three
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calculations show a considerably more diffractive shape for

this angular distribution. Table VI-11 summarizes the M

04:
and B(E4) values as well as these values from 192Pt(u,a')

[Ba 78]. Baker et al. obtained a better fit with the posi-
tive value for M04, » however, the (p,p') results give B(E4)
values that are more comparable to the magnitude for the
negative value for M04| .

It should be noted that the sign of these matrix
elements is relative to the two-step and three-step excita-
tion routes for the 4+' level. The interferences between the
routes may be causing the varying amplitudes of the oscilla-
tions. This wuncertainty in sign can also lead to an
uncertainty in magnitude as is shown in Table VI-11 for
192Pt

. The best fit values from this study are thus relevant

only in regard to the signs and magnitudes of M M

02! 14 22! ’

M2,4, ’ M4, , and M02' .

g. Comparison of Charge and Nuclear Potential Moments

As discussed in Chapter III.C, this study has followed
the suggestion of Mackintosh [Ma 76] and reports the results
of the CC calculations in terms of g, a potential multipole
moment. Mackintosh, using a theorem due to Satchler [Sa 78],
has shown that the multipole moments of the potential, g, are
proportional to moments of the nuclear matter density, if the
deformed optical model potentials (DOMP) for protons are
derivable from a reformulated optical model potential, where

one assumes the nucleon-nucleon interaction is independent of
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Table VI-11. Summary of 0 + 4' Matrix Elements and B(E4)
Values for 192-198p¢,

Nucleus M04, B(E4; 0-4") B(E4; 0-4)

(eb?) (e2bd) (e?b?)

192,.2 +0.34 0.12 0.041
~0.20 0.040 0.041

194,

K = 0.0375 ~0.12 0.014 0.024

c = 0.5375 ~0.11 0.012 0.026

1965, +0.14 0.020 0.041

1985, +0.21 0.043 0.031

8Values from [Ba 781.
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density, and the proton and neutron distributions have the
same deformation. This multipole moment method is used here
because in addition to being a more fundamental approach, it
also facilitates the comparison of results from Coulomb and
nuclear scattering experiments.

The d, and d, calculated using Equation (III-71) and the
DOMP parameters of Table VI-2 are listed in Table VI-12 and
displayed schematically in Figure VI-16, along with moments
from Coulomb excitation [Ba 79, Ba 78a, Gl 69], and those
calculated from an (a,a') Coulomb-nuclear interference
experiment [Ba 76], in which both charge and potential
moments can be obtained. Also shown are the moments deduced
from the theoretical predictions of B, and B, from Gotz et
al. [Go 72] determined by a Strutinsky renormalization
method. These moments were calculated using the parameters
of the single particle potential for neutrons. The Coulomb
deformation parameters obtained in [Ba 79] and [Ba 76] used a
uniform charge distribution with a sharp cutoff for
asymmetrically and symmetrically deformed shapes,
respectively. The potential moments in the present study and
in [Ba 76] used a deformed Fermi distribution.

A comparison of the (p,p') results with those from the
previous experiments indicates the d, potential moments from
proton scattering are in much better agreement with the
charge moments from Coulomb excitation values than the

potential moments of Baker et al. [Ba 76] determined by
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Table VI-12. E2 and E4 Moments in 192’196’198Pt.
Nuclide Method qg qz
(b) or (eb)  (b2%) or (eb?)
194,
(P,p") -1.32(2) -0.156(7)
at 35 MeVb
Coulomb excitationC -1.273(6)
(12¢, 1201, d ~1.269 ~0.1486
(a,a0')€ P -1.52 -0.30
c -1.31 -0.12
Theory® ~1.468 ~0.129
196,
(p/p'")
at 35 MevP ~1.25(3) ~0.202(11)
Coulomb excitation? ~-1.22(5)
(a,0')€ P -1.38 -0.24
C -1.17 ~0.097

Theoryt ~1.380 ~0.142
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Table VI-12 (cont'd.).

Nuclide Me thod qg qz

(b) or (eb)  (b%) or (eb?)

198,
(p,p") -1.05(2) ~0.177(7)
at 35 MeVb
Coulomb excitation? -1.00(3)
(0,0")€ P ~1.12 -0.32
C -1.08 -0.14
Theoryt ~0.579 ~0.106

aThe units for the charge component moments are bk, A.= 2 or

4. The units for the electromagnetic moments are eb*,

bThese moments were obtained using the DOMP parameters,

including the spin-orbit interaction, contained in
Tables VI—-2, 9.
CReference [Ba 78al.
dReference [Ba 791].

®Reference [Ba 761. The first value reported is for the
potential moment (P) calculated from Baker et al. and the
second value is for the charge moment (C).

fReference [Go 721.

gReference [Gl 69].
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(a,a'). This is also the trend of the q, moments. In each
nucleus the charge component of the proton potential moment
is in better agreement with the charge moment from [Ba 76,
Ba 79] and also the theoretical values of Gotz et al. These
same theoretical values for the 9, moments, however, are
nearer the values for the potential moments of [Ba 761,
except in 198Pt where the predicted d, value is only one-half
the smallest experimental value.

This discrepancy between a scattering, potential
moments, and Coulomb excitation values has been discussed by
Mackintosh [Ma 76] and is thought to be an indication that
the a scattering potentials cannot be derived from
reformulated optical model potentials. If this is true it
may mean that high energy a—scattering is not a reliable
probe for measuring nuclear shapes. It has long been thought
that a—particles should be an excellent surface probe because
of their strong absorption by the nucleus and the simplifi-
cations resulting from being a spin zero projectile.
However, in most analyses the structure of the a-particle
itself has been ignored. There is less of a problem of this
type with a proton as the projectile.

A fundamental question can now be asked about the data
in Table VI-12. Do the differences between the potential
(matter) moments from Coulomb scattering imply that neutron

and proton distributions are not the same? Calculations by

Hamilton and Mackintosh [Ha 77] indicate that differences of
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20 to 30% could exist between neutron and proton moments in
154Sm. Even though each potential moment calculated in this
study is larger than the charge moment for all three nuclei,
the differences are statistically significant only for the d,
moment of 194Pt and the q, value in 196Pt. This fact, in
addition to questions concerning the strict validity of this
multipole moment procedure, prohibit one from seriously
considering such small differences. Even though this
approach to analyzing Scattering data is believed to be the
most fundamental phenomenological method available, there are
several facets which must be investigated, such as: how
should the imaginary part of the DOMP be included in the
moments; are the DOMP's derivable from a reformulated optical
model potential; are density dependent effects important in
the interaction potentia; how does one scale Bxand ro? Once

these are understood, it may be possible to interpret

extracted moments with more confidence.



CHAPTER VII

CONCLUDING REMARKS

The recent interest in the study of the shape transi-
tional Pt nuclei is because of the key role they possibly
play in understanding collective nuclear behavior. These
nuclei span a region between the relatively well understood
limits of the standard hydrodynamic collective model, and
thus provide an experimental test for new models in this
region or for variations on the simple collective model.
When the present study began most of the data on these nuclei
were from (n,y) experiments or decay studies, except for two
transfer studies [Mu 65, Ma 72]. Thus, the present high-
resolution reaction study has contributed much new data on
the Pt nuclides to aid in distinguishing between the variety
of models applied in this region.

Recently Casten and Cizewski [Ca 78, Ci 78] have shown
that the 0(6) limit of the IBA model does a remarkable job in
explaining the branching ratios and energies of all positive
parity levels below 2 MeV. As shown in this thesis, some of
the features of this model can also be used to interpret
several aspects of the (p,t) and (p,p') data with reasonable

success. In the (p,t) reaction studies, the strengths of the
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L =0 and L = 2 transitions have been compared to the
predictions of the IBA model. This model provides a natural
framework for discussing multi-particle transfer reactions
because of its inherent feature of pairing fermions to form
bosons. The general agreement of these calculations with the
data is quite good, particularly in the trend of ground state
strengths and in the preferential population of the second
excited 07 level over the first. For the L = 2 transitions
the model correctly predicts the relative magnitudes for the
cross section for the first and second 2 levels within a
particular nucleus, although the calculated trends versus
changes in A are not seen in the data. These problems are
possibly related to the choice of the coefficients in the
L = 2 operator. The values used in these calculations
(@ =1, B=0.08, and y= 0) were chosen without any previous
knowledge of the (p,t) data. A more judicious choice of
these parameters may give results in better agreement with
the data. Also, by including some of the smaller terms of the
L =0 and L = 2 operators, some of the very small cross
sections predicted for the third and fourth ot and 2+ states
may be altered.

The O(6) limit of the IBA has also been utilized in
interpreting the inelastic proton scattering data. Speci-
fically, the matrix elements for both E2 and E4 transitions
have been used in a series of coupled channels calculations

to relate the strengths of the various coupling routes
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between levels. These matrix elements were calculated using
the O(6) parameters of Reference [Ca 78]. The resulting fits
to the data are quite good for the angular distributions
populating states in the ground band up to Jg" = 4+ and for
the second 27 level. 1In most of the calculations the full set
of matrix elements was used without any searches on a
particular matrix element. An additional set of matrix
elements was used for 194Pt(p,p') to investigate the sensi-
tivity of the CC calculations to the value of ¢, the strength
of the quadrupole-quadrupole force between bosons. The
primary effect of a larger value of k was to change a few
small matrix elements, particularly the 0 » 2+' value, which
improved the fit to the 2+' angular distribution. It is
important to note that the fits obtained in this study do not
rely on any special "best fit" group of matrix elements from
the 0(6) limit, either from searching on energy levels and
B(EX) values or from the CC searches. The sets used in these
calculations were not determined individually for each
nucleus, but were generated from one set, which is applicable
in the entire Pt region with only a small mass dependence in
the O(6) parameters. It would be worthwhile in the future to
carry out these CC calculations with a better determined set
of matrix elements from the 1IBA, preferably with the
inclusion of neutron and proton bosons.

Nevertheless, the present calculations have provided

sufficient information to confirm the results of earlier
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inelastic scattering experiments, which found a negative
value of P3 is needed to fit the 2+' data in 194Pt. The
present calculations also indicate P3 < 0 for 196Pt(p,p') as
well, but there are some uncertainties in 198Pt(p,p') that
need further study. It is interesting to note that in each
case the 0(6) limit also gives a negative P3 interference
term.

The present study also is in agreement with recent
a—scattering studies [Ba 78] that indicate a strong E4
transition is needed to account for the strength of the 4+'

angular distribution in 192Pt

. Although the magnitude for
this matrix element has been determined, there is still some
uncertainty in its sign due to the competing multistep E2
routes that can populate the 4+' state. This sign dis-
crepancy also results in a factor-of-2 uncertainty in the

192

magnitude of M

for Pt [Ba 78]. It is unfortunate that

04’
the third 4+ level seen in all three (p,p') reactions could
not be included in the CC calculations, for these strongly
excited states may be similar to those populated in 190'19203
[Ba 77, Bu 78], which were interpreted as hexadecapole
vibrational states. Considering the cross section for these
states compared to that for the first and second 4+
(including their rather 1large E4 component), this may
indicate the possibility of a hexadecapole vibrational
component in these states as well.

One question not addressed in this study was the

influence on the CC calculations that would result from
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including the 3~ level in the couplings. This level is one of
the more strongly excited levels in each reaction and thus
might be involved in a number of coupling routes. Since the
IBA code PHINT also can calculate El and E3 matrix elements,
it should be possible to determine B(E3) values for
194,196,198, with a 0T-27-3" coupling scheme and study the
effects of the 3 level in more complex coupling schemes.

An additional feature of the CC calculations was the
determination of moments for the deformed optical model
potential. The method used to extract these values from the
DOMP parameters proved to be most valuable in comparing the
proton scattering values with moments determined by other
methods. Many of the uncertainties and simplifications that
were used in previous studies are overcome by this more
fundamental method. Even though this method facilitates
comparisons with other methods and gives moments that are in
better agreement with the charge moments than an earlier
(a,0') experiment, it is premature to draw any conclusions
from the apparent discrepancies between the charge (proton)
and potential (neutron) moments. More study is needed on the
possible influences of factors mentioned in Chapter VI in
determining the moments, such as Br scaling each potential
and including the imaginary part of the DOMP.

There are also many interesting alternative approaches
to the analysis of the inelastic proton scattering data that

might provide additional insight into the nature of these



252

nuclei. For example, CC calculations could be performed
using form factors from the vibrational model with either IBA
or vibrational matrix elements. This type of analysis would
provide E2 and E4 moments that are uncoupled. It would also
be of interest to analyze the (p,p') data within the extended
triaxial rotor model framework available in ECIS, much like
that carried out in the 12C-scattering study [Ba 79]. 1t is
possible that a comparison of moments calculated from the
same data with differently shaped potentials may provide
information on the equilibrium shapes of these nuclei.

In summary, this study has extended the predictive
properties of the O(6) limit of the IBA model in the Pt region
to interpret the strengths and shapes of transitions seen in
the (p,t) and (p,p') reactions. It is hoped that the success
of the O0(6) limit in the Pt region shown in this work and in
[Ca 78, Ci 78] will spur continued interest in this new
approach, based on the symmetries of collective intrinsic
structure rather than their geometries, in understanding
nuclei in several mass regions. And since this approach
provides a uniform treatment for many aspects of most heavy
even-even nuclei, there seem to be innumerable opportunities

to test and extend this model.
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