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ABSTRACT

DETERMINATION OF THE COULOMB CORRECTION AND ISOVECTOR TERMS
OF THE NUCLEON-NUCLEUS OPTICAL MODEL POTENTIAIL FROM

NEUTRON ELASTIC SCATTERING AT 30.3 AND 40 MEV

BY
Raymond Peter DeVito

Elastic scattering angular distributions (15956 <130°)

=" lakr
scattered from targets of l2C, 28Si,328 40C 208Pb

’ a and
for 30.3 and 40 MeV neutrons have been measured using the
MSU beam swinger TOF system. The 7Li(p,n)7Be reaction
served as a neutron source. Overall energy resolution

was typically 500~1000 keV FWHM. Relative uncertainties
are typically <3% while normalization errors are typical-
ly <3%. Optical Model potentials are deduced by comparing
the observed cross sections with Optical Model predictions
smeared to account for the effects of multiple scattering,
attenuation, and finite angular resolution.

Comparison of deduced neutron potentials with existing
proton potentials at the same incident energy for N=Z%
nuclei yields directly the Coulomb correction term. The
magnitude and energy dependence of the isovector part of
the nucleon-nucleus potential is deduced by comparison
of neutron and proton potentials for N#Z nuclei. Compari-

sons are made both in terms of volume integrals and fixed

potential geometry.
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I. Introduction

A. Nuclear Optical Model

The nucleon-nucleus interaction is a complex many body
process that can not be solved exactly. 1In order to begin
to understand the physics of the atomic nucleus, approxima-
tions and simplifications must be employed. As more and
more information and experience is gained these simplifi-
cations and approximations will possibly lead us toward a
more accurate and complete knowledge of the nucleus. It is
the aim of this present work to add to that experience.

Nucleons incident upon an atomic nucleus may be scatter-
ed elastically, leaving the nucleus unchanged except for
some translational energy, or it may react with the nucleus,
altering its internal structure in some way. Thus the in-
cident wave packet may be scattered or absorbed. In optics,
light incident on some medium may undergo refraction and
absorption. This process for light is described by the
complex index of refraction of the medium. The actual micro-
scopic interaction of the incident photons with the material
is very complicated. In describing the nucleon scattering,
we can think of the incident particle being scattered by a
complex potential well. The imaginary part would account
for all nonelastic reactions. By analogy to the case in optics

we call this potential the Optical Model Potential (OMP).



This idea was applied semi-classically by Fernbach et al.
(Fed49) in 1949. They treated the scattering and absorption
of 90 MeV neutrons by a range of nuclei. The elastic and
inelastic total cross sections could be accounted for by their
process. Later, in 1952, LeLevier and Saxon (Le52) did a full
quantum mechanical calculation for 17 MeV protons on Aluminum.
In 1954 Feshbach (Fe54) showed that the energy averaged varia-
tion of low energy neutron cross sections with atomic weight
could be represented by a complex neutron-nucleus potential.
With the advent of electronic computers, wave functions could
easily be calculated from the Schroedinger equation for ar-
bitrary potentials. As the precision of the data increased the
model was refined to a point where it can account for differ-
ential and reaction cross sections as well as polarization
to a high degree of accuracy.

The study of the Nuclear Optical Model involves two
categories of work. One is phenomenological, whereby one
empirically determines the parameters of an OMP by fitting
experimental elastic scattering data. The other is theoret-
ical in nature and involves computing the effective potential
from considerations of the many-body problem(Je77, Br77).

Aside from its intrinsic interest the study of the OMP
is motivated by the important role it plays in the interpre-
tation of many nuclear reactions (Au70). The calculated
incident and outgoing waves in a reaction undergo reflections

and absorptions due to the potential determined by elastic

scattering.
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Consider the system comprised of A+l nucleons (Pe74),
where there is a nucleon incident on a target nucleus, de-
scribed by a wave function ¥. The wave function for a
state i of the target nucleus is described by ¢i(rl,...,rA)
with corresponding energy €5 The wvariables Ty indicate

position, spin and isospin of the nucleons. We expand using

the complete orthonormal set ¢i with amplitudes X4

Y = JZ- 5 (Tyrenerry) x5 (xgy) . (I-1)
The Schroedinger equation that describes this system is

Hy = EY . (I-2)
where
H= Hpa(ry,.eeo,ry) + Ty + Viry,r

r (I-3)

A IRAREE, A).
HA is the Hamiltonian for the A particles of the target
nucleus, TO is the kinetic energy for the incident nucleon
while V is the potential energy of that nucleon in the

field of the target nucleus. We note that ¢ satisfies

(I-4)

Thus using the orthonormal properties of the set b; we

obtain a set of coupled equations for the amplitudes

(T +e;=E) Xy = =] VigXy (I-5)
i#]
where
*
V.. = V., . (I-6)

ij ji



We define the matrices

X1
E = X2 (1‘7)
X3
and
Vo = (VoprVggre=t)

The matrix operator H is defined by

Eij = Todij + vij + eisij i,3#0 . (I-8)

In matrix notation equation I-5 becomes

(Tog + Voo = BlXg = VX

(1-9)
(- B)X = -V

Solving formally we find

X = 1 vy (I-10)

where E(+)=E+in with n>+0. Within the Green's function

in specifies that only outgoing waves are present in X3
for i>0. Using equation I-10 in equation I-9 we obtain

the one body Schroedinger equation

-[- - -
Ty Vo0V 1 V4 E Xo=0 - (I-11)
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We therefore obtain the "generalized Optical Model Potential™

V=v,, + v, _1 vg . (I-12)

20 ————

gt g

The potential V is not the optical model potential,
it is the exact potential operator for elastic scattering.
The OMP is the simple effective potential that replaces
the true potential operator®. With an appropiate choice
of replacement for ¥ the Schroedinger equation becomes more
simply solvable. The new wave function is not exactly‘x0
since the replacement potential does not exactly represent
Y. 1In elastic scattering the details of the wavefunction
are not important, but rather the asympototic behavior ‘of
Xg is important, i.e. the potentials must be phase equivalent.

The choice of an OMP is guided by intuitive physical
ideas, but must incorporate some of the properties that can
be deduced from equation I-12. The potential operator ¥
is not Hermitian, due to the imaginary term in the Green's
function. The second term in I-12 is responsible for the
imaginary part of the OMP, but it also contributes to the
real part. This term is nonlocal and explicitly energy
dependent. The spacial nonlocality in this term arises
physically by removal of flux from the entrance channel
due to yg. This flux can propogate in reaction channels,
then some flux will reappear in the entrance channel at some
other point by the ZO interaction. The term VOO also yields

& nonlocal potential due to explicit exchange forces in the
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two body interaction and from antisymmetrization. The spa-
tial nonlocality of the generalized OMP appears as a momen-
tum dependence if a local replacement potential is used.
It is not possible to distinguish between the explicit energy
dependence and the energy dependence due to the spatial
nonlocality of the potential operator when ¥ is replaced
by a local potential.

Recent theoretical analyses have yielded good calcul-
ations of the basic properties of the nucleon-nucleus OMP
(Je77, Ma79, Br77, Br78) starting from the nucleon-nucleon
interaction. Within the framework of Brueckners theory a
density dependent potential is derived from an effective
interaction e.g. Reid hard core (Re68) or Hamada-Johnston
(Ha62). The simple radial shape of the phenomenological OMP
suggests that it is mainly dependent on the matter density
of the nucleus. Thus it is feasible to study the OMP in a
finite nucleus by studying nuclear matter at various densi-
ties and applying a Local Density Approximation (LDA). A
simple LDA, one that assumes that the OMP at a given loca-
tion in the nucleus is equal to the same value as in a uni-
form medium with the same local density, is able to yield
semi-quantitative conclusions on the global properties of
the OMP: depth, energy dependence, non-locality, small
components and main features of the form factors. Good agree-
ment between volume integrals calculated using a simple LA and those
observed experimentally is achieved. However root-mean-square

(rms) radii are in general too small. An improved LDA,
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which takes into account the finite range of the effective
interaction yields improved agreement between calculated
and phenomenological rms radii without affecting volume
integrals.

Theoretical OMP are able to render properties of the
observed average OMP with an accuracy of about 10%. Agree-
ment between the calculated and observed imaginary potentials
is worse, about 30%, due to the inability of the LDA to take

into account shell effects.

B. Phenomenological Optical Model Potentials

There is no apriori reason to believe that the general-
ized OMP admits any equivalent simple local potentials of the
type typically used to analyze data. But, from the great body
of data analyzed over the past 25 years there exists a simple
potential which describes very well most of the features of
elastic scattering of nucleons and other projectiles. It is
the purpose of OM analysis to determine the various terms of
this potential and to study their behavior as a function of
energy and target nucleus.

A typical phenomenological OMP is a local multi-para-

meter potential usually written as

-U(E,r) = V(E,r) + iW(E,r) (I-13)

In the present analysis, the real part of the potential

is written as 2
V(E,r)=VC(r)+V(E)f(xR)—VSO(G'I) mc) rdr

(I-14)
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The form factor f(xi) is taken to be Woods-Saxon shape

defined as

-1

f(xi)=(l+exi) ; xi=(r-riAl/3)/ai .

This shape is chosen for convenience and because nuclear
matter densities are closely described by such terms (Ne70).
The first term of equation I-14, Vc(r), is the Coulomb

potential due to a uniformly charged sphere of radius Rc’

2 2,.2
(Z2ze /2Rc){3-r /RC} for r<R,

(Zzez/r) for rzR_ (1-13)

where R _=r Al/3
c ¢C

+ Z is the target charge and z is the projectile
charge. This term vanishes for the neutron potential since
the neutron charge is zero.

The last term in equation I-14 is the spin-orbit poten-
tial. The explicit Thomas form of the potential was chosen
by analogy to the atomic spin-orbit potential and has been
substantiated experimentally.

The central real term from equation I-14 can be written,
following the suggestion of Lane (La62), as

V(E) = V,(E) + %VI(E) €T+ av, . (I-16)
Here VO(E) is the isoscalar part of the potential and Vl(E)
the isovector part; t and T are the isospins of the incident
nucleon and target, respectively. The isovector interaction

%-%, splits the central part of the potential into diagonal

terms which are responsible for proton and neutron scattering
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and a non-diagonal term that mediates the (p,n) or (n,p)
quasi-elastic scattering. For nucleon scattering we can

> o ,
evaluate t*T to give
V(E) = VO(E) + eVl(E) + Avc . (I1-17)

Where e€=(N-Z)/A represents the nuclear asymmetry. The +
sign applies for protons and the - sign for neutrons.

The isovector strength Vl(E) comes about because of the
properties of nucleon-nucleon interactions, Vpp=vnn¢vpn.
This effect comes about because the Pauli exclusion
principle restricts states between like nucleons but not
states between unlike nucleons. The term AVC is the Coulomb
correction term, first suggested by Lane (La57), and is

usually paramerized by

AVC=BZZ/A1/3 .

In addition to the Coulomb potential (equation I-15) the
charge of the nucleus has the effect of reducing the mean
kinetic energy of incident charged particles interacting
with the nucleus. This effect is accounted for by adding
to the proton potential the Coulomb correction term.

The imaginary part of the OMP is not expected to have
the same shape as the real part. Absorption takes place
throughout the nucleus, but especially at low energies
various factors such as the Pauli principle and surface

excitations should enhance surface contributions. As the
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incident energy increases, both these effects should decrease
causing the absorption to be distributed more uniformly
throughout the nucleus. OM analysis confirms this and in

the present analysis a Woods-Saxon form factor together

with a derivative Woods-Saxon form factor are used. As
energy increases the strength of the surface potential de-
creases and that of the volume absorption increases. We
therefore write the imaginary part of the phenomenological

potential as

W(E,r)=WV(E)f(xv)—4WD(E)g___f(xD) ) (I-18)
*D

Just as for the real part, the imaginary part can be
parameterized by Coulomb correction, isovector and spin-orbit
terms. Jeukenne et al. (Je77) have calculated the imaginary
Coulomb correction and isovector terms starting from the
Brueckner-Hartree~-Fock approximation and Reid's hard core
nucleon-nucleon interaction. The imaginary spin-orbit term
is calculated by Brieva and Rook (Br78) to be substantially
smaller than the real spin-orbit term (WSO/VSO~—O.05 for

20 MeV nucleons) and is set equal to zero in the present

analysis.

C. Present Work

A large collection of precision proton scattering data
already exists in the literature. There is a lack however,
of precision neutron data, expecially for incident neutron
energies greater than 15 MeV. The extensive neutron scatter-

ing program of Rapaport et al. at Ohio University has con-
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tributed good neutron data at 11, 20 and 26 MeV for a wide
range of nuclei (Ra77, Fe77, Ra78). Most of the best
proton scattering data are for incident proton energies
greater than 26 MeV, notably at 30.3 MeV (Ri64) and at
40 MeV (B1l66). The isovector strength of the nucleon-
nucleus OMP can be extracted by comparison of proton and
neutron potentials. There are two ways to compare these
potentials, at the same energies or at energies shifted to
account for the Coulomb correction. The former method
yields the Coulomb correction from comparison of N=Z nuclei
while the latter method requires either prior knowledge of
the Coulomb correction or the measurement of angular distri-
butions over a range of energies. The Coulomb correction is
not known very precisely and due to the amount of cyclotron
time required to complete one angular distribution, measuring
several angular distributions for each nucleus was impracti-
cal. Thus we have measured neutron elastic scattering angu-
lar distributions at incident energies of 30.3 and 40 MeV

on targets of lzc (40 MeV only), 28 325, 40Ca, 208Pb,

209Bi. Comparison between N=Z nuclei yields the Coulomb

si,
and
correction term and then comparison between N#Z nuclei yields
the isovector term.

Since neutrons have no net charge and all particle
accelerators use electromagnetic forces, no direct beam of
monoenergetic neutrons exists. To produce a monoenergetic
neutron flux at our scattering target a charge exchange re-

action is used. A proton beam accelerated by the MSU cyclotron
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strikes a target of 7Li and the reaction 7Li(p,n)7Be is’
used as the neutron source. This reaction is strongly for-
ward peaked which reduces background. High energy neutrons
are produced that are well separated in energy from
neutrons produced by other reactions. To produce a neutron
flux large enough to complete an angular distribution measure-
ment in about 1-2 days an energy loss due to Li target thick-
ness of about 500 keV was used.

To achieve a large enough counting rate large scatter-
ing samples (-1 mole) of cylindrical geometry are used.

Since the neutrons will not interact with the Coulomb field
within the target, a large scattering sample could be
tolerated.

To detect the scattered neutrons another nuclear inter-
action must take place in the form of (n,p) scattering within
an organic scintillator. The energy of the neutron cannot
be directly determined since directional information on the
(n,p) scattering angle is not available. The neutron velocity
can be determined however, by measuring its time-of-flight
(TOF) over a fixed flight path. Once the velocity is known
the energy can be calculated.

One advantage of the neutron scattering measurements
compared to charged particle work is that absolute cross
sections can be measured with little uncertainty. After
measuring the sequence: source reaction-scattering-detection
reaction, one can remove the scattering sample and look at

o . , .
0~ to measure the sequence: source reaction-detection reaction.
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By comparison of these two measurements the majority of the
uncertainty in the 7Li;(p,n) cross section, Li target thick-
ness, detector efficiency, neutron attenuation along the
flight path and solid angle of the detector are removed.
\ The beam swinger built at MSU and used in these
experiments simplified the shielding and detector position-
ing requirements. The incident proton beam is rotated to
vary the scattering angle instead of moving the neutron
detector. For long flight paths this is an important ad-

vantage.



IT. Neutron Scattering Apparatus

A. Beam and Beam Transport

A beam of nearly nonenergetic neutrons is produced
by bombarding a thin foil of metallic 7Li. The 7Li(p,n)7Be
(g.s.) and 7Li(p,n)7Be(0.429 MeV) reactions at zero degrees
are used to generate the neutron beam. The scattering tar-
get is located on the swinger axis thereby allowing
neutron elastic scattering angular distributions to be
measured by rotating the beam swinger.

The particle beams produced by the Michigan State
University Cyclotron are very well suited for time-of-
flight (TOF) experiments. The beam is sharply bunched in
time, with a typical burst width of =300ps and a burst
interval between 50 and 67 ns depending upon particle energy.
For the experiments described herein the cyclotron was used
to produce 32 and 42 MeV proton beams. The energy resolution
AE/E of the cyclotron beam is 510-3; compared to the overall
energy resolution of this experiment, this energy spread is
negligible.

After extraction from the cyclotron, the transport of
the beam to the experimental area is controlled by a series
of bending magnets, focusing magnets (quadrupoles) and position
defining slits. The beam is defined spatially by slits 1,

3 and 4 (see Figure 1). After being focused at slit 3 by a
quadrupole doublet Q1 and 02, the beam passes through slit 4

and undeflected through M3 into the neutron TOF beam line.

14




15 |

In vault 5 the beam is refocused at a point just before the
Navy magnet by a quadrupole triplet Q7 and Q8. Beam position
is checked here by using a TV monitored scintillator. The
beam is centered through the quads by requiring that there
is only focusing and no net translation when the setting of
Q7 and Q8 are changed.

The layout of the beam swinger is shown in Figure 2.
The beam is deflected through 90° by the Navy magnet prior
to entering the swinger. 1In addition to the focus at the

entrance to the Navy magnet, the system has a focus near

the entrance to the swinger and at the target position.

B. Scattering Apparatus
1) Beam Swinger
The swinger consists of two magnets capable of rotating
about the incident beam axis (Bh77). The beam is first
deflected -45° and then deflected +135° with the net effect
that the beam is perpendicular to its original direction.
The swinger magnets, of fully annealed 1010 steel,
are of a H design with a bending radius of 76 cm. The
poles are 10.2 cm wide with a 3.2 cm gap. A 36 minute
taper on each pole tip makes the swinger magnets double focus-
ing (n=%). The overall magnification of the swinger system
is about one. The current carrying coils are flat pancakes,
three to a pole, of 1.2 cm square hollow copper conductor
wrapped in fiberglass and vacumn potted in epoxy. Current

and power consumption at a field of 1.4 Tesla is 450 Amps
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and 22 Kilowatts. An additional power supply was connected
to the 135° magnet to balance the two swinger magnets.
The swinger's usable angular range was from 0° to

160°

for the neutron scattering experiments. In general
the angular distributions were measured out to 1300, beyond
which point the cross sections become too small to measure
in the available time.

The shielding walls of the swinger vault were stacked
concrete blocks 1.8 meters thick. The wall, 2.15 meters
from the scattering target, provides good isolation of the
detectors from the high neutron and gamma-ray flux in the
swinger vault. A hole along the target to the detector
flight path allows transmission of the scattered neutrons.
This hole is filled with steel bars and lead bricks except
for an opening just sufficient to allow both detectors an
unobstructed view of the scattering target. A 300 kg iron
shadow bar is positioned so as to attenuate the direct flux

of neutrons to the detector from the 7Li(p,n) reaction.

2. Neutron Production

To obtain a mean energy of 30.3 and 40.0 MeV for the
neutron beam, proton beams of 32.2 and 41.9 MeV respectively
were used. In practice proton beam energies were slightly
different for each run on the cyclotron. The mean neutron
energies, along with the spread due to production target
thickness are presented in Table 1 for 30 MeV and Table 2
for 40.0 MeV. The effect on the cross sections of the energy

variation and the energy spread due to the production target
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thickness was estimated by OM calculation to be <0.1%.

The lithium targets used in the (p,n) reaction were
made from high purity lithium enriched to 99.99% 7Li.
The lithium was pressed into disks about 1 cm diameter
by a hydraulic press. The target thicknesses used in this
experiment were 0.64 and 0.76 mm at 32 and 42 MeV proton

energy respectively, corresponding to a total energy spread..

due to energy loss in the Li target of 500 kev. This energy
spread had to be tolerated to obtain count rates sufficiently
high to make the experiment practical. The contribution

from the 7Li(p,n)7Be(O.429 MeV) reaction was included in

the neutron elastic scattering peak. The first excited state
contribution was about 25% and 30% at 32 and 42 MeV proton
energy respectively. The second excited state of 7Be is at
4.57 MeV excitation, well removed from the high energy elastic
peak. The neutron yield from three body final states (Q=
-3.24 MeV) is measured to be very small in the energy range
of interest (see Figure 28). The 7Li(p,n)7Be (g.s.) reaction
has a Q value of -1.644 MevV.

Following the Li target is a 0.127 mm thick aluminum
foil. The 27Al(p,n) reaction has a Q value of -5.592 MeV,
thus contributing no background at the elastic peak. This
aluninum foil isolates the vacumn chamber from a water
faraday cup, consisting of an aluminum chamber through
which distilled water is constantly pumped. This provides

cooling to the lithium target as well as a beam dump with
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a large negative Q value (Qpn=-16.2 MeV) for neutron
production. The high energy neutron flux from the 0.2%

18 e 17 = -
0] (Qpn— 2.4 MeV) and 0.04% 0 (Qpn— 3.5 MeV) con

of
tributed negligibly to the measured spectra.
The neutron flux at the scattering target could be
adjusted by varing the distance between the Li target and
the scattering sample (see figures 3 and 4). This was done
by changing the length of the plexiglass pipe that makes up
part of the vacumn chamber. The Li target to scattering
sample distance (d) could be set at 24.4, 18.4, or 11.0
cm. This range allowed beam intensities to vary by 1:1.76:
4.9. The largest practical distance was chosen for any given
angular range since the closer is the neutron source to
the scatterer, the larger is the angle subtended by the
sample and thus the larger the finite angle correction to
be made. The angular ranges are tabulated in Tables 1 and 2.
Two proton beam collimators were machined from graphite
since 12C has a large negative Q value for neutron production
(Qpn=—l8.l MeV). The high energy neutron flux from the’

1.11 13

C (Qpn=—3.0 MeV) was neglible. Beam current on
the collimators was monitored during the experiment and
was usually negligable (<1 nA). In all cases the collimator
current was kept to <0.1% of the target current.

The mean scattering geometry for the neutron scattering
is determined by the position of the Li target, the posi-

tion of the scattering sample and the position of the detec-

tor. The detector is never moved, the sample was repositioned
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to better than 1.0 mm and the Li £arget was rigidly held to
the swinger. Thus the mean scattering angle was well known,
and did not depend on the angle that the proton beam hit
the Li target. The cross section for neutrons scattered
in the direction of the target however does depend on the
angle the proton beam hits the Li target. The 7Li(p,n)
cross section is forward peaked with a slight flat region
around 0°. The proton beam was collimated to +2.50° FW for
C, Si, S and Ca and *1.0° FW for Pb. Figure 5 shows the
angular distribution of 7Li(p,n)7Be(g.s.+0.429 MeV)

for scattering angles from 0° to 15°.

3. Scattering Targets

All scattering targets used were formed in solid right
circular cylinders. The dimensions, mass, chemical purity
and isotopic enrichment of these targets are listed in Table 3.

The best shape for each scattering target was determined
by computer calculation of multiple scattering and finite
angle effects. The sample must have a symmetry axis perpen-
dicular to the beam direction. The multiple scattering effects
-are reduced as the target is elongated, but then the finite
angle effects are increased As the target is made more
spherical finite angle effects are reduced bﬁt multiple scat-
tering is increased. The best target shape was calculated
for the various targets. Small variations about the best
shape caused little increase in finite geometry effects.
The actual target shape was not necessarily the calculated

best shape but depended upon what materials were available.
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Table 3. Scattering Sample Dimensions

27

Dimensions Chemical Isotopic

Height x diam. Purity Mass Enrichment
Sample (cm) (%) (gm) (%)
12, 3.40 x 2.64 98. + 33.077 natural(98.89)
28351 3.69 x 2.36 99.+ 37.777 natural(92.2)
2851 7.09 x 2.36 99.+ 72.559  natural(92.2)
324 2.86 x 3.17 99.9 42.417 natural(95.0)
0ca  4.36 x 1.90 99.0 18.697 natural (96.94)
0ca  4.80 x 2.30 99.0 27.200 natural(96.94)
2085, 3.90 x 2.40 99.7+  200.640 98.69 (@)

a) Borrowed from Darrell Drake, Los Alamos Scientific

Laboratory



Nuclei
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Table 4. Target Nuclei

lst excited state

2nd excited
state (MeV)

Remarks

lZC

2855

32S

40Ca

208Pb

Energy (Mev) Spinparity
4.44 2t
1.78 2*
2.23 2t
3.35 ot
2.61 3

a) reference (St65)

7.66
4.62
3.78

8(27)=0.602
s(21)=0.4o(a)
+, _ (a)
8(21)—0.37
*spherical

zgspherical
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The 208Pb target was prefabricated by Los Alamos to
our specifications. The Si target was received as a cylinder
of appropriate diameter and only needed to be cut by diamond
saw to the desired length. The C and Ca targets were machin-
ed on a lathe from ingots.

The calcium targets were sealed inside thin aluminum
cans as calcium is reactive in air. The cans were fabri-
cated from 0.05 mm thick foil held together with epoxy. For
each target can an identical empty can‘was fabricated from
the same size and weight pieces of aluminum. The weight of
the target can and the empty can were the same to <1%.

An estimate of the oxygen contamination in the calcium
target was made by measuring the neutron scattering from
the sample with sufficient energy resolution to separate
the neutron groups elastically scattered from 40Ca and l60
at a few angles around 70°. an estimate of the cross section
ratio combined with the ratio of scattered neutrons indicated
the 16O contamination to be 2%:1%.

The sulfur target fabrication was more difficult than
the others. Molten sulfur was poured in layers into a pyrex
beaker. The layers were thin enough so the solidification
could be monitored to ensure no holes were being formed in
the target. When the desired amount of material was solidi-
fied the glass was heated just enough to melt the outer sur-
face of the sulfur target and then cooled. Best results

were achieved with fast cooling in a water bath, with care

taken to be sure no water splashed into the beaker. The
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glass beaker usually had to be broken away from the sulfur
target. Once the technique was mastered several targets
were produced, all of which appeared to be of the same
quality. All but two were then broken open and checkéd for
voids. No voids were discovered. The target used in the
experiment was broken open after the experiment was complete
and no voids were discovered. The outer shell of sulfur
was hard and did not rub off. Due to these farication pro-
cedures, the sulfur target was the only target where the
diameter exceeded the height.

The scattering targets were all mounted with the sym-
metry axis along the swinger rotation axis. The targets
rested on thin aluminum trays supported by thin stainless
steel rods. The trays were made with the smallest amount
of material that still gave rigid support. The rod, tray
and target assembly was then supported from beneath by one
of four rotatable arms of the target changer. These four
arms allowed three targets to be mounted for one run. The
fourth position was taken by a blank target, i.e. a tray
and rod only. A Geneva device was used to accurately rotate
the target assembly thereby changing the scattering target.
The targets were aligned by using a survey telescope and
survey markings on the wall and swinger. Due to the magni-
fication of the telescope, alignment with the survey mark-
ings could be done to within 1 mm. Accuracy of the survey
markings was checked and found to be consistant with the

swinger rotation axis. The Geneva device was rotated in
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one direction only. The reproducability checked to within

the accuracy of the survey scope.

C. Detectors

1. Neutron detectors

Unlike charged particle detection, neutrons are not
detected directly, but rather, the recoil of a charged parti-
cle is detected if the neutron undergoes an appropriate 4
nuclear scattering within the detector. The charged recoil
causes the detector material to scintillate and this light
is detected by a photomultiplier.

We used two 12.7 cm diameter x 7.62 cm thick NE213
liquid organic scintillator detectors, produced by Nuclear
Enterprises. These detectors each contain 965 cm3 of
scintillator. The liquid is encapsulated in a glass cylinder
painted with white reflective paint. Each has a teflon ex-
pansion chamber to relieve pressure caused by temperature
variations. The light is carried to the photo multiplier by
a conical light pipe 7 cm thick, one end 12.7 cm diameter
and the other 5.08 cm diameter. The light pipe is coupled
to the scintillator and the photomultiplier by Dow Corning
Optical Silicon grease.

Either a RCA 8575 or a RCA 8850 phototube was used in
an Ortec 265 phototube base. These phototubes contain 12
dynodes and the base provides signals from the 9th dynode
and the anode. The amplified signal from the 9th dynode pro-

vides a measure of the total light produced by an event.
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The scintillator Ne2l3 was chosen because it allows one
to distinguish between events caused by neutrons and gamma rays.
This discrimination is possible because the recoils for neutrons
are mostly protons while the recoils for gamma rays are electrons.
The shape of the light pulse for protons and electrons is differ-
ent and can be distinguished. This Pulse-Shape Discrimination
(PSD) is very important in eliminating gamma ray background.

The photomultiplier assembly for each detector was wrap-
ped in several layers of magnetic shielding. This magnetic
shielding was necessary because fringe fields from the
Superconducting Cyclotron magnet being built at MSU were
sometimes present during experimental runs.

To have a continuous check on the gain of the detectors a pul-
sed light-emitting-dynode (LED) giving a constant number of
photons was fed into the photamultiplier during data collection.
The position of this LED peak thus gave an on-line gain stabil-
ity check.

The detector and associated electronics provide a timing
pulse with a finite uncertainty. The detector thickness
provides a time spread due to the uncertainty in where the
event took place in the detector. The transit time for the
7.62 cm thick detector is 0.9 ns for 40 MeV neutrons and
1.0 ns for 30 MeV neutrons. The energy uncertainty due to
time uncertainty is given by the nonrelativistic equation

AE=(.0277)E> %at (11-1)
3

where E is in MeV, At is in nsec, and d is in meters.
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The energy resolution for each run is tabulated in Table 1
and Table 2. The time resolution At for all runs was about

1 ns.

2. Monitor Detector

A detector is mounted rigidly to the swinger to monitor
the neutron flux from the 7Li(p,n) reaction at a scattering
angle ranging from 21° to 24° depending on production target
to scattering target distance. A flight path of 140.0 cm
provided sufficient energy resolution to separate the
7Li(p,n)(g.s.+0.429)7Be neutrons from the neutrons produced
by 27Al(p,n) and other background sources.

The detector consisted of a cylinder of NE1l02 plastic
scintillator 2.54 cm diameter by 1.9 cm height coupled direct-
ly to a RCA 8575 phototube and Ortec 265 base by Dow Corning
Optical grease. The detector was wrapped in several layers
of magnetic shielding and then mounted inside a soft iron
cylinder with 1.75 cm thick walls. Since this detector was
rotated in the fringe field from the Navy magnet located 4 m
away, extra magnetic shielding was necessary.

A stability check of the monitor detector gain was made
by measuring the Compton edge for gamma rays from 228Th at
several swinger angles with full current in the Navy magnet.
The detector was stable to better than 1%.

Lead shielding 10.0 cm thick was placed between the

detector and the source. The Pb attenuates gamma rays, es-

pecially those of low energy (<l MeV) more than high energy
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neutrons, thus reducing the overall count rate to a manage-
able level.

The anode signal was fed into a constant fraction dis-
criminator (CFD) whose output was used for the timing signal
(see Figure 6). The dynode signal was fed into a preamp and
then to a Spectroscopy Amplifier. The NE102 does not produce
PSD information therefore a Spectroscopy Amp was used for its:
convenience. The monitor detector also had an LED pulser
fed directly to the phototube to monitor possible gain shifts.

Due to the mounting position of the monitor it had to be
removed and repositioned on the opposite side of the swinger

when the swinger was rotated through 90°.

D. Electronics

l. Time of Flight Signal

The anode of the photomultiplier produces a fast nega-
tive voltage pulse when a neutron event occurs in the scin-

tillator. This pulse is fed into a CFD from which a fast

negative pulse is produced that is timed from the point where
the leading edge reaches 50% of the maximum pulse height (see
Figure 6). This method provides minimal variation of trigger-
ing time for pulses covering a wide dynamic range. The neg-
ative output of the CFD was used to start a Time to Amplitude
Converter (TAC) (see Figure 7). The stop signal originates
from the zero crossing of the Cyclotron RF, which is detected
by a Zero Crossing Discriminator. The TAC provides a voltage
pulse whose height is proportional to the time between start

and stop. Since we start with the event pulse and stop with
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the cyclotron pulse we get a time spectra that gives a "normal"

spectrum with increasing energy going from left to right.

2. Pulse Shape Discrimination Signal

The decay of the light pulse from electrons, protons
or heavier charged particles is different in a way that
allows us to distinguish these events. Proton (neutron)
events have a longer decay time than electron (gamma) events:

A signal from the fast negative output of the CFD is
delayed for about lusec either by a long length of cable

Oor a Gate and Delay generator and then starts a TAC (see

Figure 6). The double delay line output from the DDL is

fed into a Timing Single Channel Analyser (TSCA) run in

the zero crossing mode. A signal timed from the zero cross-
ing is then sent to stop the TAC.

The zero crossing of the DDL output from neutron events
will be delayed longer relative to that for electrons because
of the longer decay time. A typical PSD spectrum is shown in
Figure 8. A gate can be set around the neutron events so
only neutron events are recorded in the TOF spectra. This
PSD system is based on the technique of Alexander and Goulding
(Al6l).

3. Light Pulsers

A temperature compensating current pump to drive an LED
was built, based on the design by Hagen and Eklund (Ha76).
This LED pulser gave a stable source of photons to act as a

gain drift monitor. By comparison with a monoenergetic gamma
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ray source the LED light signal was found to drift <1% over
a temperature range of +10° ¢ from room temperature and over
many hours. The LED was mounted on the current pump circuit
board next to the thermistor thét gives the device its
temperature stability. A small light pipe consisting of
a bundle of fiber optics was then used to transport the light
to the photocathode. The light pipe of the neutron detector -
prevented direct access to the photocathode so the LED pulse
was directed into the detector light pipe. This caused the
signal to be greatly attenuated but was still usable in the

low light region of the spectra.
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drive CFD Amp
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Figure 6., Vault Electronics
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time #1 time #2 l time MON
start TOF start TOF start TOF
TAC TAC TAC
stop $#1 stop #2 stop MON
Delay
Quad light #1
z.C. PSD #1 Octal PDP
disc TOF #1 ADC 11/45
computer
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logic #2 OR
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Figure 7.

Data Room Electronics
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ITI. Data Acquisition Procedure

A. Computer and Spectra Accumulation

The TAC, light and PSD signals from both neutron detec-
tors along with TAC and light signals from the monitor detec-
tor are fed into an EG&G AD81l octal Amplitude to Digital
Converter (ADC) as shown in Figure 7. The signals of each
detector arrive at the ADC in coincidence with a strobe
signal generated by the logic output of the relevent CFD.
This Strobe activates the ADC which converts the voltage
pulse height into digital format. This ADC is linked to
a PDP 11/45 computer which reads the digitized values
of the event and then performs the defined gating and data
storage. Up to 8 spectra can be stored using the data

taking program BKNTOF, which was used in all data runs.

This program allows up to two gates on each spectrum. For
example one could record the TOF spectra for a detector
gated by PSD to require a neutron event and light to esta-
blish a known threshold.

The strobes from each detector were ORed in a Universal
Coincidence box. The output of this Coincidence box was
sent to a 4-Fold Logic Gate where it was transformed to the
proper negative voltage to act as a strobe for the ADC.

The program records nine scalers; one internal that
counted the number of processed ADC strobes and 8 more read
from two quad scalers‘were used to record the total number

of strobes sent to the ADC, the charge accumulated, the total

40
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active time of the run, and number of LED events for each
detector.

During the time the computer is processing an event
it is not sensitive to any other events that might reach
the ADC. A measure of the computer dead time is achieved
by comparing the number of events recorded by the ADC to
the number of strobes recorded by the scaler for the same
time span. For comparison of neutron detector yvield to
monitor yield the computer dead times for each detector
are the same. The dead time due to the reset time of the
electronics, with the TACs being the dominant source,
was measured to be usually <0.1%. This agrees with dead
times calculated from the reset time of the TACs. The
0° normalization runs had the largest dead time uncertain-

ties, introducing a normalizaion error of <1%.

B. Time of Flight Spectrum

For both main detectors and the monitor a TOF spectrum
is recorded. This spectrum is gated by the light signal,
accumulating only those events that produce a recoil in the
scintillator with energy above a certain threshold. These
thresholds are listed in Tables 1 and 2. 1In all but a few
cases the main detector TOF spectra are also gated by the
neutron part of the PSD spectrum. The monitor TOF spectrum
is never gated by PSD as no PSD information is available

for it. Figure 9 shows a typical TOF spectrum for 40 MeV

neutrons scattered from silicon at 06=65°. The target~in,
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target-out and subtracted spectra are shown. The first ex-

cited state of 288i at 1.76 MeV can be seen next to the

larger elastic peak. Aadditional target-in TOF spectra are
shown in Figure 37 thru Figure 43. Figure 10 shows the mon-

itor TOF spectrum for a 40 MeV run. Spectra with the lithium

target in place and without the lithium target are shown.
The monitor spectrum for a 30 MeV run with the lithium target

in place is shown in Figure 44.

C. Normalization Procedure

The absolute normalization of the neutron elastic scat-
tering cross sections was obtained by a ratio technique that
removes dependence on some of the least well known gquanti-
ties in the cross section calculation. This procedure in-
volved measuring the yield of the 7Li(p,n) reaction at 0°

with the same parameters as the scattering runs for each

source to scatterer distance and each monitor position.

The yield formula for the normalization run is discussed
below (IV-B).

The experimental system was designed to accomodate the
104 difference in counts/charge experienced in the normali-
zation runs compared to the angular distribution runs. The
data acquisition program generated unacceptable dead times
when the data rate above the electronic threshold was greater

than about 700/sec. The computer count rate is the sum of

the strobe rates from both detectors and the monitor. During
the angular distribution measurements, the strobe rate in

the monitor was prescaled by a factor of 10 and the detectors
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were not prescaled. During a Oonormalization run, the beam
current was reduced to a few nA. The prescaler was removed
from the monitor and the strobes for the two detectors were
prescaled by a factor of 10. This procedure bridges the'
count rate gap between these two measurements, allowing the
0° runs to be done in an hour or two with 1.7% statistics.

It was necessary to make a zero degree run whenever the moni-
tor detector was changed or the source target to scattering

target distance was changed.

D. Background

Upon examining the sources of background we found that
the nearby air produced about 90% of the background around
the sample elastic peak. The contributions to air scatter-
ing were mapped using a scattering target of Mylar (C10H804).
This target was positioned at various points in the scatter-
ing area and the yields recorded, thus determining the re-
lative contributions. These measurements indicated that
the air scatter dropped off rapidly as one moves away from
the central scattering region, except for the forward direc-
tion where the fall off was slower. The holder produced the
remaining background apart from a very small residual caused
by many bounce paths.

The background causes a peak in the NTOF spectrum that
lies under the elastic peak at the smallest angles and

shifts to lower energy with increasing scattering angle.

The background yield becomes less intense, relative to target
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yields, with increasing angle. Typically by 80° the air

peak was no longer noticed in the TOF spectrum, except for

12C where the kinematics keeps the air peak and target peak

inseparable. When the scattering sample is in place the
background due to non-sample scattering will be slightly
less than when the sample is removed because of flux

attenuation by the sample. Based on the air scattering

measurements and absorption of the samples this correction
can be estimated. There is <1% effect on the deduced
cross section for all cases except for lead at the forward
angles where there was at most a 3.5% effect on the cross
section.

A Helium bag was used during some of the early runs
in an attempt to reduce this air scattering background.
A large plastic bag that enclosed the scattering targets
was filled with helium to a pressure that expanded the
walls of the bag away from the scattering sample area.
The concept did not work well in practice. Because of
mechanical considerations and leakage problems it was

eventually discarded.



IV. Data Reduction

A. Peak Areas

For all angles and for each run both target in and
target out spectra were measured. To extract the target
yield, the target out run of each detector was normalized
by scaling it according to the ratio of monitor yields.
Then the target out spectrum is subtracted channel by chanﬁél
from the target in spectrum. This defines the elastic peak
very well, and its area is obtained with no additional
background subtracted.

The monitor yield is determined by defining specific
channels around the large peak in the TOF spectrum as seen
in Figure 10. The peak area is extracted with no back-
ground subtracted. From run to run the same limits of
integration are used and a check of the resultant centroid
is made. If the centroid varies by more than *1 channel
the limits are redifined so that the difference, centroid -

lower limit, is constant to *1 channel.

B. Cross Sections

The detector neutron yield: for neutron scattering
is given by
Y a(8)=|do. . (0°)TeON, Ix|do_ (0)NN,e(E)AR| (IV-1)

n,n -A exp A
dq 7d2 dQ D2

where, NA= Avogadro's number

D= scatterer to detector distance

47
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T= 7Li target thickness
Q= number of incident protons ‘
€(E)= detector efficiency at En=E
A= area of detector

p= Li target density

d= Li to scatterer distance

N= moles of scatterer

R= finite angle correction for incident neutron
intensity.

The intensity correction R is given by

R= scatterer dg .

J; do(8) an
detector dg

The detector yield for the 0° (p,n) reaction is

given by
o] o 1 1
Y (07)=do_ . (0")TQ'e (E')ApN (Iv=-2)
7 (d+D)
where, Q'= number of incident protons

E'= energy of 0° neutrons.

Incorporating equation IV~2 into equation IV-1l we find

o
Yn,n(e) = Yp,n(0 ) (d+D)2€(E) NN

do,
Q Q a%p? ¢(g')

p(G)R. (Iv-3)
dQ

A X

Solving for the differential cross section we find
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%%exp(e)=yn,n(e; Q ap? e(E') 1661 , (Iv-4)
Y5,n(070Q" (4ip)2. (k) DR

where the cross section is in mb/sr and the distances D and
d are measured in cm. In terms of monitor yields the cross

section is given by

do__ ()= *n,n'® M(0°) a®p? e(z') 1661 , (Iv-5)
dgcxp ) 2 NR
Yp n(o YM(8) (d+D) “e (E)

where M(0°) is the monitor yield for the Oo(p,n) run and
M(€) the monitor yield for the neutron scattering run.

In this formulation the pairs Yn n(8) with M(8) and Yp

14 14

(0°) with M(0°) can be the raw yields with no computer
dead time correction, as it is the same for Y and M. The
results of equations IV-5 and IV-4 were almost always the
same as the monitor to charge ratio was nearly constant

to *1%. The cross section obtained from equation IV-4

or IV-5 is the experimentally measured cross section,

Oexp’ tabulated in Table 14 as the uncorrected laboratory
cross section. It has not been corrected for finite angle,
multiple scattering or attenuation effects and is not
corrected for these effects prior to optical model searches.
Instead the calculated OM cross sections in the Lab frame
are themselves smeared to mimic the experimentally deter-
mined cross sections by incorporating a Monte-Carlo sub-

routine in the OM search code.
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C. Neutron Detection Efficiency

The efficiency of the neutron detectors has been
calculated using the program TOTEFF as modified by Doering
(Do74). A set of calculated efficiency curves are shown
in Figure 11 for three different thresholds. The light
from the scintillator is calibrated in equivalent electron
energies. These electron energies are measured by Compton
recoil electrons due to gamma ray sources. The maximum
electron energy corresponds to the Compton edge and is ;he
distinguishing feature in these low Z detectors. The
228Th source (EY=2'615 MeV) was our standard and thresholds
were set in terms of the equivalent number of Th Compton
edges. The Compton edge peak and half height were measured
and the edge extracted based on a study of these quantities
in relation to the true edge by Galonsky and Doering (Ga78).

The calculated efficiencies are accurate to about 10%,
but efficiency enters the cross section calculation only
in ratios of efficiencies. The relative effeciencies depend
only weakly on the efficiency curve. For carbon some uncer-
tainty is introduced in the back angles because of the large
kinematic shift of the scattered neutrons. As the targets

get heavier this effect becomes less important.

D. Experimental Errors
The major source of error in the measured experimental
Cross sections is statistics. The fractional error for the

(target in)-(target out) yield is
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)1/

AY=(Y, +Y )

2
7 /(Yin_Y

out out

where AY is the error in the target yield, Yin is the yield
for the target in run (this includes target yield + back-
ground) and Yout is the normalized yield for the target out
run (see Table 5).

Compound nuclear contributions to the cross sections
are not reproduced by simple Optical Model Calculations.
Thus before fitting data with a simple OMP it is necessary
to subtract out any contributions due to compound nuclear
elastic scattering. Rapaport et al. (Ra77) have estimated
this effect by a Hauser-Feshbach calculation for neutron
scattering at lower bombarding energies. They find the
correction to be *1% for 20 and 26 MeV scattering. Since
this contribution to the elastic scattering decreases with
increasing bombarding energy, we did not repeat their
calculation but rather assumed compound nuclear elastic
scattering contributions to be negligible.

Since calcium is reactive in air, during the brief
time it was exposed to air during the canning process it
invariably absorbed some oxygen. Scattering contribution
from this absorbed contaminant would contribute at the
forward angles. Beyond about 60° the neutrons elastic-
ally scattered from oxygen will be shifted in energy away
from the calcium scattered neutrons due to the kinematics.
The oxygen contamination also causes a small uncertainty
in the absolute normalization since the samples composition

was not exactly known.
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The scattering target position is known to +1 mm causing

an error ranging from 2% for d=11.0 cm to <1% for d=24.4 cm.

The

the

combined uncertainty in scattering target position and

angle of the incident proton beam causes an uncertainty

of 1%. The mean scattering angle is known to about #0.3°.

During each run, before the Li target to scattering

target distance was changed the yield measurement at one

or two angles was repeated. After the Li target to scatter-

ing
was
two

the

target distance was changed, or if the monitor position
changed the yield measurement was repeated at one or
angles. These checks gave results consistent within

experimental error.
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Table 5. Experimental Errors

Relative Uncertainties (%)

Statistics in Yields: 150-90°  <1-5
957-160 3-25
Monitor Statistics <1l
Finite Geometry 1—8(a)
Compound Nuclear Contribution <1
Contaminants 1(c)
Background Attenuation Due to Sample <1-3.5
Detector Efficiency <1—2(b)
Incident Angle of Proton Beam ' 1
Scattering Target Position <1-2
Mean Scattering Angle 0.2°-0.5°

Normalization Uncertainties (%)

Statistics in Yields, 0°flux <1
Monitor Statistics, 0° flux 1.7
Dead Time Correction <1
Flux Anisotrophy Correction <1
Number of Target Nuclei <1l
Total 2.6

a) Applicable only to center-of-mass cross sections
b) Applicable only to C, Si, S, and Ca
c) Ca only at forward angles




V. Data Analysis

A. Optical Model Parameter Search Code

The cross section determined by egquation IV-5 is un-
corrected for multiple scattering, finite angle or attenu-
ation effects. The multiple scattering cross section de-
pends on the entire single scattering angular distribution.
The finite angle correction depends on the slope of the
cross section around the mean scattering angle. To treat
these effects we have chosen to smear the predicted Qptical
Model cross sections instead of attempting to correct the
experimental data. Correcting lower energy data (Ki70)
is acceptable because the cross sections do not vary so
fast and smaller samples are used so multiple scattering
effects are not as great. From equation II-1 we see that
as the energy increases, flight paths must become longer
to maintain the same energy resolution. Thus larger tar-
gets are needed to maintain a good data rate. Also, as the
energy increases, the cross section slope tends to increase,
making the finite angle correction larger.

Thus the Optical Model search code GIBELUMP (Peé66)
has been modified and this new version of the code is call-
ed GIBSCAT. The code GIBELUMP calculates the c.m. elastic
scattering cross section from a given set of OM parameters.
It established the relation between a decrease in x2 and

parameter variation where

55
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x2 Z chalc(e )—%%exp(ei)

d 0.
Tero )

5 (v-1)

GIBSCAT differs from GIBELUMP in that prior to comparison
with experimental data the c.m. cross section is converted
into the lab cross section and transformed to include
multiple scattering, finite angle and attenuation effects
by the subroutine MULSCAT. The subroutine MULSCAT is
based on the Monte Carlo code developed by Kinney (Ki70).
This code proceeds as shown in the flow chart in
Figure 12. The initial oM parameters, geometry and experi-
mental cross sections are read in. The code calculates
the center of mass cross sections from the Optical Model
potential then converts these cross sections to the lab
frame. Then the Monte Carlo routine calculates the smear-
ed cross section ocalc(e) that includes multiple scatter-
ing, finite geometry and attenuation. This smeared cross
section is compared to the experimental one by equation
V-1l. The gradient in xz space is determined by first vary-
ing the OM parameters. Then a revised smeared cross section

is calculated by

ghew
calc(e) (6)

="0OM s
old(e) calc

oM

(8) (V-2)

where ocalc(e) is the smeared cross section determined by

Monte Carlo, Ggéd(e) is the laboratory cross section

calculated by the original set of Optical Model parameters,
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cgﬁw(e) is the laboratory cross section calculated by the

varied OM parameters, and o (8) is the revised smeared

2

calc

cross section which is to be used in calculating the ¥
gradient. Then guided by this gradient a new set of OM

parameters is determined. The program then recalculates :

Ocalc(e) from these new OM parameters until the predeter-
mined number of iterations is reached.

Due to the nonexact calculation of X2 gradient, the
procedure did not always converge. In practice the program
was only allowed to proceed a few iterations per run. Then
the best set of OM parameters was used as input for the
next run.

The vast majority of computer time in these searches
is spent in the Monte Carlo routine. The calculation of
cross sections from OM parameters for 21 data points
uses about 0.1 minutes of computer time. To correct these
data points by the Monte Carlo routine using 3000 histories

takes about 11.3 minutes.

B. Center of Mass Cross Sections

The measured cross section Oexp can be divided into

two components, the single scattéring and the multiple

scattering contributions by,

Oexp (8) =015 (8)

ULAB MS

o
S| + g (Vv=3)

OLAB(6)=true laboratory cross sections

oé = single scattering contribution to the
measured cross section
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oﬁs= multiple scattering contribution to the
measured cross section.
The calculated smeared cross section Ccale is also separ-

ated into single and multiple scattering compounds by
o}

Ocalc (®) =gy = *ys (V-4)
oM
where OOM= calculated OM laboratory cross section

0.= single scattering contribution to the
smeared calculated cross section

Oys™ multiple scattering contribution to the
smeared calculated cross section

The multiple scattering contribution depends on the
entire angular distribution and not on the value at one
angle. If local fluctuations between oexp(e) and Ocalc(e)
have random signs and the deviations are small we can
extract GLAB(S). We assume the multiple scattering contri-
bution is determined since, if the fluctuations are random
and small, then the average cross section is well deter-
mined. Also we assume that the finite angle and attenﬁa—

tion effects are accurately determined from the Monte

Carlo routine, i.e.

'
g g
[ S S

. (V=-5)

Then the true cross section OIAB is given by

o] = (g

LAB )

om| Tm (V-6)

g
S

-0
exp calc

From this the true center of mass cross sections are

deduced by directly converting to the center of mass frame.
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In all but one case the conditions leading to equation
V-6 are fulfilled by the final best fit OM prediction.
The deduced center of mass cross sections are tabulated
in Table 14 and shown in Figures 38 to 50.

In the case of 40 MeV scattering on lead the conditions
for equation V-6 break down. As seen in Figure 37 in the
angular range 75° to 115° the smeared calculated cross

section oc

alc(6) 1s larger than cexp(e). In this region

a scale factor seems more appropriate to correct the
difference between Ocalc(e) and Gexp(e). In the region
(810-1100) the true laboratory cross section is determined

by

“taB T YoM

f_e_}_cp__J . (v-7)
calc

For the final determination of the true center of mass
Cross section, the Monte Carlo routine with 10,000
histories was run at least twice. The results were
-compared and found to be in excellent agreement. The
uncertainty in the deduced center of mass cross sections
due to the finite geometry correction is estimated to be
between 1 to 8% depending on the target. The largest
correction errors are for Pb near the first cross section
minimum. All other targets had correction errors <2%.
The corrected center of mass cross sections are tabulated

in Table 14 under the heading Corrected Center of Mass.
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C. Parameter Search Procedure

For each angular distribution a set of OM parameters
was determined. These parameters represent the best fit
in terms of x2 minimization. The search procedure was
guided to help eliminate ambiguities in related parameters.

One search sequence was to vary first VvV, W and

D’ WV
obtain the best fit then V, a., W and then Vv,

R D’ w

v’ frd

Tre ag- The other search sequence used

r

WD, WV,

was to vary only uncoupled parameters such as Vv, ¢

r a

R’ "R’

Ior

s Ty Or aps ar, Or rns WD and not to allow all parameters

to vary at once, except when the fit was very good, to

verify a xz minimum in all variables. Since no polariza-
tion data were available the spin-orbit term was not
varied but was fixed at the best fit value of Becchetti
and Greenlees (Be69). Only relative errors were used in
all the searches and X2 calculations.

Several global OM parameter sets were used for
starting parameters. Namely those of Becchetti and
Greenlees (Be69) (BG); Patterson, Doering and Galonsky
(Pa76) (PDG); Rapaport (Ra79) set A (RAPA) and Rapaport
(Ra79) set B (RAPB). Table 6 lists the y2/N for each of
these parameter sets.

The initial search uses the program GIBSCAT and
searches until a "good" fit to gexp is achieved. A ™good"
fit is one that meets the conditions for applying equation
V-6. From this fit the center of mass cross sections are

determined by equation V-6. GIBELUMP is used to search on



Table 6.

Nuclei
12C

28¢5

2855

32S

3ZS

40Ca

40Ca

208Pb

208Pb
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XZ/N of Global Parameter sets(a)

Neutron
Energy

(MeV)

40.0
30.3
40.0
30.3
40.0
30.3
40.0
30.3

40.0

21.
71.
19.
21.
82.
73.

a) as given by equation v-1

PDG

280.
140.
200.
84.
173.
43.
111.
87.

27.

2 e

Rap A

200.
21.
22,
21.
70.
42.
40.

140.

180.

RaE B

120.
20.
20.
40.
22.
26.
40.

140.

180.
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GCM and a new set of OM parameters are determined. GIBSCAT
is run for 1 iteration using this new OMP. The change in
x2 is then checked compared to the previous run of GIBSCAT.
If the X2 decreases the procedure iterates as shown in
Figure 13. 1If the x2 has increased we go back to searching
on gexp using GIBSCAT. The search procedure is terminated
when no further decrease in xz is achieved and the OM
parameters remain constant. The OMP derived from this
search procedure are tabulated in Table 7 for 30 Mev
neutrons and in Table 8 for 40 MeV neutrons.

The absolute normalizations of the final results
are those values determined experimentally. For each angu-
lar distribution a search on the absolute normalization
was conducted. These searches gave either no improvement
or minimally improved x2 for normalization changes on the
order of a few per cent. For those samples that were of
natural abundance, no correction was introduced for the
small admixture of other isotopes. A calculation assuming
the Becchettiand Greenlees Optical Model potential (Be69)
show that the correction is less than 0.1% in the potential

depths.

D. Volume Integrals

The determination of a set of potential parameters
always entails a certain amount of ambiguity. The nature
of a multiparameter search procedure, the slightly differ-
ent results for various starting values of the potential

parameters and interrelationships between parameters make
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comparison between different nuclei and energies difficult.
Feshbach in 1958 (Fe58) suggested that the volume integral
of the potential,

J=fV(r)d3§ (v-8)

is a better measure of the strength of the potential
and it is now well verified that J is determined better
than Vv, e and ap separately. Another well determined

quantity is the root-mean-square radius defined as

<r2> = fV(r)r2d3

— (V-9)
[Vv(r)ydr

For each nucleus at each energy we have determined the
volume integral per nucleon as well as the root-mean-
square radii for both the real and imaginary potentials.
For the volume terms (VR, WV) in the parameterization

one finds that the volume integral per nucleon is

(approximately)
Jvol _ 4m ved |14(72 : (V-10)
A 3 al/3 '

while the root-mean-square radius is given by

2 _1 ,22/3,.22 _
r o=t (3r°a% +7n%a%). (V-11)

for the derivative Woods-Saxon term the volume integral

is (approximately)

2
EQ - lérr aWD
A

A1/3

ZJ (V-12)
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Table 9. Volume Integrals
Nuclei (MeV) (MeV-fm~™) (£fm) (MeV+£fm™) (£m)
120 40.0 396.4 3.10 152. 3.37
28531 30.3 410.9 3.79 145.4 3.81
2851 40.0 355.6 3.78 121.6 3.96
324 30.3 427.8 3.81 125.2 4.26
325 40.0 383.0 3.91 125.7 4.13
0ca  30.3 412.7 4.17 113.2 5.02
400 2 30,3 395.3 3.99 114.0 4.67
40ca  40.0 348.2 4.14 97.2 4.55
40ca 2 40.0 340.3 3.99 94.5 4.62
208py,  30.3 320.6 5.97 67.3 7.17
2085y, B 39,3 326.6 6.06 68.8 7.14
2085, 40.0 296.4 5.00 74.6 6.88
2085, ® 40,0 303.5 6.06 77.0 6.76

a) fixed geometry(vVa7l)

b) fixed geometry(Va74)
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and the rms radius by

2 C
r2 = lZarAl/3 1+|80 JVol . (V-13)
D 1/3
rA C
JD

Where Jsol and Jg are the volume integrals for the volume

and derivative form, respectively, with Vvol=VD=l'

When a combination volume and surface term is used
the total volume integral is

g— = Yvol + Ip (V-14)
2

while the rms radius is

2. .2 g 2.J
<r >—<rvol> vol + <r>"D . (Vv-15)

J D5
The volume integrals and <r2>l/2 of the present work are

tabulated in Table 9.

E. Coulomb Correction Term

The charge of the nucleus has the effect of reducing
the mean kinetic energy of incident charged particles in-
teracting with the nucleus. Because the local real poten-
tial increases with decreasing energy, the effective real
potential felt by protons is larger than that for neutrons
of the same bombarding energy. This effect is accounted
for by adding to the proton potential the Coulomb correc-
tion term, AVc(r). The real potentials of the Lane formal-

ism for proton and neutron scattering are

v (x,8)= (v -vE-ev, (B) £ (x)
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vP)(r ) = (Vop~YE+EV) (B)) £(x)+ AV_(z)  (V-16)

where a linear energy dependence is assumed. Assuming

a charge symmetric nucleon-nucleon interaction the terms
Vonand VOp are equal. The subscripts n and p will be
left off from here on. If we compare the potentials
deduced for scattering from N=% nuclei(e=0) at the same

energy we find

V(p)(r,E)—V(n)(r,E)=AVC(r) . (V-17)
The Coulomb correction term can now be obtained directly.
The derived potentials from scattering over a range of
energies can be fitted and these energy dependent poten-
tials are shown. 1In Figure 15 the real well depth from
the average geometry is plotted for both neutrons and
protons (the average potentials and proton data are from
the work of Van Oers, (Va7l) for4OCa and (va74) for 208Pb).
Apart from a dip in the proton potentials near 20 MeV a

linear trend is clearly established. The proton potential

is
V(p)(E)=(59.2—0.35E)MeV

and the neutron potential is

v (g)=(56.5-0.358) Mev
Where the energy dependence of the neutron potential is
constrained to match that of the proton potential. Thus
from equation V-17 the Coulomb correction for calcium is

AVc=2.7iO.3 MeVv

where the form factor is Woods-Saxon shape with R=rOAl/3
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=1.152a/3

fm and ao=0.692fm. The error is estimated by
noting that slope change of *0.02 is about the maximum
allowed by the data. Using the form of Lane (La 57)

AVC=BzZ/Al/3

(V-18)
we establish the Coulomb correction for protons to be

AVC=(0.46i0.05)Z/A1/3MeV )

In terms of volume integrals we need only change scale

since the geometry is fixed. Thus,
3

J/A = (494.5-2.92E)MeV fm®>
J /A = (472.0-2.92E)MeV fm> ,
and ‘
3,/A = (3.86:0.4)2/aY 3uev £ . (V-20)
Jeukenne et al. (Je77) have calculated the Coulomb

correction in the framework of the Brueckner-Hartree-~-Fock

approximation. They conclude that the standard value (Pe63)

avSt=(0.42/a1/3) £ (r)Mev

is an underestimate. They calculate a 25% larger volume

20851 at 25 Mev.

integral than the standard value for
Rapaport et al. (Ra77) deduced the same value for Vc as

this analysis. They compared the proton data of wvan Oers

to their neutron data, which is also used in the present

analysis. Their data covered an energy range of only

15 MeV. The present analysis extends that range to 29 MeV
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with the inclusion of higher energy data.

The determination of the Coulomb correction term from
linear fits to neutron and proton potentials over a range
of energies has certain inherent limitations. A linear
energy dependence is assumed from the very start. This
appears to be a good assumption, but as in the case for
protons on 40Ca large deviations from linearity are observ-
ed. These deviations must be treated individually thus in-
troducing personal judgement errors or bias to the linear
fit. All the potentials considered are not derived from
data of comparable quality, quantity or content. Different
angular ranges are measured for the various angular distri-
butions. Some include polarization while some do not and
the experimental uncertainties of the data are non consis-
tant. Assigning errors to potentials based on the quality
of the data and the quality of fit is not well understood.
It is hoped however that the net effect of all fluctuations
and errors will in some average way become small.

If neutron and protons potentials are compared at
identical energies, no energy dependence needs to be assum-
ed before extraction of specific terms in the potential.
Thus we compared neutron data at 30.3 and 40.0 MeV to
existing proton data at the same lab energies. The proton
data is reanalysed restricting the angular range to match
that of the neutron data. The data of Ridley and Turner
(Ri64) for 40Ca at 30.3 MeV and the data of Blumberg et al.

(B166) at 40.0 MeV are used. A search procedure similiar
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to that used to search on the center of mass neutron data
is used to determine proton potentials. The proton data
are analysed in terms of the average geometry of van Oers
(Va71) and best fit parameters. The volume integrals of
these potentials are then averaged and compared to the
same averaged potential from the appropriate neutron data.
These results are tabulated in Tables 10 and 11 for calcium.

The differences of the volume integrals for calcium

are
J 3
Ai (30.3MeV)=10.7MeV fm
J _ 3
AK (40.0 MeV)=32.5MeV fm
In this case AJ=JA. From the theoretical considera-
tions JA should be energy independent (Je74, Je77). Thus

we take the average value of AJ from the above to give

Ja

.

= (21.6+7)MeV fm°

for 40Ca. Using the form of equation Vv-18

Iy = (3.6920.9)z/aY 3Mev £m3. (V-21)

A

This value is in good agreement with the value extract-
ed from the linear fits. The average of the two determin-

ations yields

Ty

T

3 3

= (3.78+0.4)7/aY 3Mev £m3 . (V=-22)
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Table 10. J/A(a) for protons
and neutrons on Calcium.

Enucleon

Fixed geometry

=30.3 MeV

real 405.1

J

B

A

Jn

i real 395.3
% - 7o

T T real 9.8
J

XP‘ imag 104.3
Jn

7 imag 114.0
I, -3,

KE = imag -9.7

a) all J/A units are MeV fm

R

b) rR=l.152 fm, a,=0.692 fm, rI=l.309 fm, aI=O.549

Best fit Average
424.2 414.7
412.7 404.0

11.5 10.7
103.0 103.7
113.2 113.6
-10.2 -9.9

fm



Table 11. J/A(a) for protons

real

real

o

n
— real

s

imag

imag

P P P P
1

o
o

n .,
+— imag

"o

a) all J/A units are MeV fm

and neutrons for Calcium.

E
nucleon

Fixed Geometry

=40. MeV

374.0

340.3

33.7

102.9

94.5

8.4

Best fit Average
379.4 376.7
348.0 344.2

31.4 32.5
102.2 102.6
97.2 95.9

5.0 6.7

b) rR=l.152 fm, aR=O.692 fm, rI=l.3O9 fm, aI=0.549 fm
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In terms of the average calcium geometry of van Oers this

term is
AV _=(.452%0.05)2/a% 3mev . (V=23)

F. Isovector Term

We have already assumed a charge symmetric nucleon-
nucleon interaction i.e. VPP=y™, However the nucleon-
nucleon interaction is not charge independent i.e.
Vpp#Vpn. This effect is described by the isovector
strength Vl of the Lane Model potential. This term is
important not only in proton and neutron scattering in
terms of a global OMP but also in charge exchange reactions.

If we consider the case for N#Z nuclei, such as
208

Pb, we see from equation V-16 that for the same incident

energy,
v(P%r,E)—v(n)(r,E)=2avl(E)f(r)+Avc(r). (V-24)

The nuclear asymmetry (e) is roughly Z dependent. Since
the Coulomb correction term is also Z dependent, even if
we consider a wide range of nuclei, unless we have prior
knowledge of AVC, the isospin dependence Vl(E) can not be
directly extracted.

In an analysis similar to the one for 4OCa, van Oers
et al. have compiled and analysed proton scattering data

for 208

Pb(Va74). Again best fit and average geometry
potentials are determined. In Figure 16 the real potential
depth with fixed geometry (ro=l.183fm, ao=0.724fm) as well as

the deduced linear fits are plotted for neutron and proton data.
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In terms of volume integrals, the proton potential is

(Ra78)

Ip = (485.7-2.52E)Mev £m>
A

From a linear least squares fit to the neutron data we

find the neutron potential to be

J
I

=2 = (380.2-1.88E)Mev £m°

Writing equation V-24 in terms of volume integrals we

have

-Jn =291 4+98 . (V-25)
A A

A

P

From equation V-22 the volume integral of the Coulomb

208 3

correction term for Pb is 52.3 MeV fm~. Thus

J1 = (125.8-1.51E)Mev fm> . (V-26)

A
In contrast to the calcium case the real volume inte-
grals of the best fit potentials do show a well defined
linear energy dependence as shown in Figure 17. A least

squares fit to the proton data yields

= (516.4-3.28E)MeV fm> .

B

The neutron volume integrals, which include the present
measurements at 30.3 and 40 MeV, the data of Rapaport
et al. (Ra78) at 7, 9, 11, 20, and 26 MeV and data from

the tabulation of Perey (Pe76) are best fitted by

In = (407.5-2.85E) Mev fm®> .

A
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This yields for the isovector volume integral

J1 = (133.8-1.02E)Mev £n°. (V-27)

A
The density of neutron data points is not uniform but
rather is concentrated at low energies. To make the
neutron potential more dependent on the higher energy data,
the data of Perey is left out. Then a least squares fit

for the real neutron volume integral gives

In = (397.0-2.48E) Mev £m3 .

A
This neutron potential yields an isovector volume integral
of

J1 = (158.6 -1.9E) Mev fmS. (V-28)

A

These three determinations of Jl/A yield different results.

As a compromise we take the average value,

<J1/A> = (139.4-1.48E) MeV fm3 . (V-29)

The proton data on 208

Pb of Ridley and Turner (Ri64)
at 30.3 MeV and the data of Blumberg et zl. (B1l66) at

40 MeV were reanalysed restricting the angular range to
match the neutron data as was done for calcium in section
V-E. The resulﬁs of the proton searches are tabulated

in Table 12 for 30.3 MeV and in Table 13 for 40 MeV. From

this analysis we find the isovector strength at 30.3 and

40 MeV to be
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J1/A(30.3 MeV) = 86.9 MeV fm>

J,/A(40.0 MeV) 3

Il

73.2 MeV fm

Thus if we now assume a linear energy dependence we find

that

J /A = (129.4-1.40F) MeV fm° . (V-30)

This value is in good agreement with the value (equa-
tion V-29) derived from the fitted potentials. Taking the

average (V-29 and V-30) we find
Iy /A = (134.4:13)-(1.44%0.08)E MeV £m>. (v-31)

In terms of the average geometry of van Oers, this isovector

potential strangth is

vy = (17.5-0.19E) MeV . (Vv-32)

The present determination yields a value about 20%
smaller than the values reported by other authors (Ra79,
Pa76, Be69, Ca75). However the energy dependence determined
by Rapaport et al. (Ra79) and by Patterson et al. (Pa7e6)
agrees very well with the energy dependence determined by

the present work.

G. Imaginary Potentials

The imaginary part of the OMP describes the effect
of all the non-elastic interactions of the incident
particle with the target nucleus. This potential requires
& combination of volume and surface form factors as dis-

cussed in section I-B.
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Table 12. (J/A)(a) for protons
and neutrons on Lead.

Enucleon=30‘3 MeV

(b)

Fixed geometry Best fit Average

real 411.4 412.6 412.0
real 326.6 320.6 323.6
. real 84.8 92.0 88.4
imag 110.0 104.2 107.1
imag 68.6 67.3 68.0
T imag 41.4 36.9 39.1

all J/A units are MeV fm3

rR=l.183 fm, aR=O.724 fm, rI=l.273 fm, aI=0.699 fm
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P

a)

b)

real

real

gy

Y

imag

imag

all J/A units are MeV fm
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Table 13. J/A(a) for protons

real

imag

Enucleon

and neutrons on Lead.

=40. MeV

rR=l.183 fm, aR=O.724 fm, rI=l.273 fm, a

I

Fixed geometry(b) Best fit Average
389.9 375.2 382.6
303.5 296.4 300.0

86.4 78.8 82.6
107.8 104.8 106.3
77.0 74.6 75.8
30.8 30.2 30.5
3
=0.699 fm
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The total imaginary volume integrals for scattering
from 40Ca are shown in figure 14 and the surface and vol-
ume potentials of the fixed geometry for 40Ca are shown
in Figure 18. We notice in both Figures that there is no
systematic difference between the proton and neutron
potentials.

The reanalysed proton data yield a negative value
for AJimag(AJ=Jp-Jn) at 30 MeV (Table 10) and a positive
value for AJimag at 40 MeV (Table 11). We conclude that
the imaginary Coulomb correction is very small for Ca.

The van Oers proton data was analysed using a Gaussian
form factor for the imaginary surface term while the
neutron data were analysed using a Woods-Saxon derivative
form factor. The derivative Woods Saxon is chosen to have
the same width at half maximum as the Gaussian. Results
obtained with the Gaussian surface potential replaced by
a derivative Woods-Saxon were determined by van Oers to
be very similiar (va7l). Rapaport et al. find the two
potentials to be not very different (Ra77 and reference
therein).

In the analysis by van Oers et al. for protons on lead
(Va74) a derivative Woods-Saxon form factor is used instead
of a Gaussian. Figure 17 showes the imaginary volume in-
tegral for protons and neutrons. The neutron volume inte-
gral is increasing approximately linearly with increasing

energy. The proton volume integrals are decreasing slightly

with energy. Jeukenne et al. (Je77) have calculated the
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imaginary Coulomb correction for 208

Pb in the energy range
up to 75 MeV. They find this term to be negative, non-
linear with its magnitude approaching zero with increasing
energy. If this term were to be subtracted from the proton
volume integral the trend would be more nearly linear and
decreasing with increasing energy. However untill the imag-
inary Coulomb correction is better known for 208Pb an accur-
ate determination of the imaginary isovector sﬁrength will
not be possible. Shown in Figure 19 are the surface and
volume components of the imaginary potential using the
fixed geometry of van Oers (Va74). Here we see that the
strength of the volume term is nearly the same for protons
and neutrons. The major difference between the proton and
neutron potentials is in the surface contribution. For
energies above 20 MeV there is a linear decrease in surface
strength with protons and neutrons having approximately
the same slope.

For protons and neutrons of the same bombarding energy
incident on 2OSPb there is additional surface absorption of

the protons, perhaps due to the additional reaction mech-

anism (Coulomb excitation) available to protons.
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VI. Summary

Apparatus to accurately measure elastic scattering
angular distributions for 24-42 MeV neutrons is developed.
A monoenergetic neutron beam is produced using the reactioq
7Li(p,n)7Be(g.s.+O.429 MeV). The neutrons are scattered

from targets of 12C, 28Si, 325, 40Ca, and 208P

b. The scat-
tering angle is varied using the MSU beam swinger, thus
allowing production target and beam dump to be in a dif-
ferent room than the neutron detectors. The scattered.
neutrons are detected by liquid organic scintillator detec—
tors and energy analysed by the time-of-flight technique.
Detector gain is monitored during each run by feeding a
constant photon source directly to each detector. A mon-
itor detector measures the direct neutron flux from the
7Li(p,n)7Be reaction. Relative cross section errors range
from 2% to 5% over most of the angular range. Absolute
normalization errors are <3%.

The data are analysed using a standard Optical Model
potential. Calculated cross sections are smeared by a
Monte Carlo routine to account for multiple scattering,
finite angle and attenuation effects and then compared to

40 208

the experimental cross sections. For Ca and Pbh both

best fit and fixed geometry potentials are deduced.

40 208

Already existing proton data on Ca and Pb at 30.0 and
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40 MeV are reanalysed using the same procedure as was used
for the neutron data. The angular range of the proton
data was restricted to match that of the neutron data.

Comparison of proton and neutron potentials for 4OCa,
with the neutron energy dependence constrained to match
that of the proton data, yield the volume integral of the
Coulomb correction term. Comparison of the reanalysed
proton potential to the deduced neutron potentials at
30.3 MeV and at 40 MeV yield an average Coulomb correction
term for 40Ca. Taking the average of these two determina-

tions of the Coulomb correction term and parameterizing in

the standard way we find
3,/ = (3.78 = 0.4)2/aY3 Mev £’ .

In terms of the average geometry of the proton potential

40

for Ca (rR=l.152 fm, aR=0.692 fm) we find

AV, = (0.45 0.05)2/a3 Mev.

Both the fixed geometry and best fit volume integrals

of the proton and neutron potentials for 208

Pb are compared,
each fit with an independent energy dependence. Using the
Coulomb correction term determined above, the isovector
term is deduced. Comparison of the reanalysed proton and
neutron potentials at 30.3 MeV and at 40 MeV yield an

energy dependent isovector strength. The average value

of the volume integral is deduced to be
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J./A = (134.4£13)-(1.44%0.08)E MeV £m

In terms of the average geometry for lead (r.=1.183 fm,

R
aR=0.724 fm) we find the isovector strength to be

Vl = (17.5%1.7)-(0.1920.02)E MeV.




APPENDIX
Tabulated and plotted data.

TOF spectra are target in spectra only. Experimental’
cross sections are uncorrected for multiple scattering,
attenuation and finite angle effects. These are tabulated
under the heading Uncorrected Laboratory in Table 14.

Errors for the experimantal cross sections are relative
errors only. Center of Mass cross sections are corrected
for multiple scattering, attunuation and finite angle
effects. These are tabulated under the heading Corrected
Center of Mass in Table 14. Errors for corrected center

of mass cross sections include relative errors and unfolding

errors.
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Figure 39. Center of Mass Cross Section, 328, 30 Mev
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Figure 40. Center of Mass Cross Section, Best Fit

40Ca, 30 Mev
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Figure 41. Center of Mass Cross Section, Fixed Geometry
4OCa, 30 MeVv
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Figure 42. Center of Mass Cross Section, Best Fit

2085y, 30 Mev
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Figure 43. Center of Mass Cross Section, Fixed Geometry
208py,, 30 Mev
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Figure 44. Center of Mass Cross Section, C, 40 Mev
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Figure 45. Center of Mass Cross Section, 288i, 40 MeV
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Figure 46. Center of Mass Cross Section, S, 40 MeVv
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Figure 48. Center of Mass Cross Section, Fixed

Geometry 40Ca, 40 MeVv
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