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ABSTRACT

EXPERIMENTAL AND THEORETICAL MODELING STUDIES OF

THE SIEGFRIED MASS IDENTIFICATION SYSTEM
By
Marcello Michael DiStasio

The electrostatic mass identification system, SIEGFRIED
was used to identify short-lived nuclear reaction products.
A combination of Helium Jet Recoil Transport and Time-of-
Flight methods was employed for Al, KC1, Ti, Sm and NaF
targets. Both B-mass and y-mass coincidence experiments
were performed.

All measurements were made using the 70-MeV *He beam
from the Michigan State University Sector-Focused Cyclo-
tron.

Theoretlcal modeling of the Time-of-Flight system was
accomplished by numerical methods. This modeling was
used to explain observed mass peak broadening in terms of
the recoil nucleus initial kinetic energy which results
from B decay. The possibility of measuring B-decay Q values

from observed peak broadening is demonstrated.
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CHAPTER I
INTRODUCTION

Tﬁe development and refinement of many new and ingenious
instruments for investigations of nuclei from the region
of B-stability has made such endeavors challenging and re-
warding. Experiments that were very difficult ten years
ago are fast becoming relatively easy and almost routine.
Among the new techniques are the Helium Jet Recoil Trans-
poft system (HeJRT), the Rabbit system, and a number of
new time-of-flight (TOF) mass identification systems. The
HedJRT and Rabbit systems were developed to provide a means
of fast tfansport of short-lived products of nuclear re-
actions to a low background counting area. This is a very
important functiqn when one is dealing with reaction
products that have half-lives in the tenths of second range.
Besides their short half-lives, another difficulty one
must deal with is interfering products. Generally the
result of the interaction of a projectile beam with a
chosen target is never exclusively the product of interest.
One is always faced with the problem of differentiating
the species of interest from a crowded field of interfering

reaction products. As a means of separating out and studying



a particular isotape of interest, on-line mass separation
systems have been developed. The time-of-flight spectrom-
eter is a conceptually simple and 1ncreasingiy popular
instrument for isotope identification. Our system, SIEG~-
FRIED, was constructed toward this end.

The basic principle of SIEGFRIED, as of all TOF systems,
is that nuclei of varying masses may be differentiated ac-
cording to the time each mass requires to traverse a given
flight path length. 1In our system each mass is initially
accelerated to a known velocity and then allowed to drift
a known length. Measurement of the time-of-flight yields
the associated mass. In contrast to many other TOF systems,
SIEGFRIED was developed as a means of labeling a B-decay
event with the associated mass resulting from the decay;
it was not orlginally intended to provide highly precise
mass measurements. In this respect SIEGFRIED is analogous
to the fast chemical separation techniques used for the
study of short-lived nucledi. These techniques were in-
valuable in dealing with complex mixtures of radiocactive
reaction products. Serving a similar function SIEGFRIED is
a fast, mass ldentification system.

Our mass identification system is actually a result
of coupling a HeJRT system, for transport, to the TOF system,
for mass identification. Some of the original work along
these lines was accomplished by a group at Texas A & M

(Ju7l). They used their MAGGIE system to analyze recoils



from g-decay. To demonstrate that recolls from B-decays
could be mass analyzed by TOF methods the MSU SIEGFRIED
project was initiated (Ed76). As with so many supposedly
simple instruments unexpected results often manifest them-
selves. Closer inspection of the details of our TOF
spectra leads one to suspect that a great deal of interest-
ing information about the nuclear decay associated with an
‘observed recoill mass, is belng preserved in the observed
mass peaks. In order to confirm or refute such suspicions,
it is necessary to gailn a clear understanding of precisely
how the SIEGFRIED TOF system works. In a large measure,
this will be a main thrust of our discussion. In this thesis
we will attempt to dqvetail experimental results in various
mass reglons with a rigorous theoretical modeling sfudy of
the system. Of course the model will not be an exact simu-
latlon of the system yet we will strive for the most real-
istic-representation possible while still practical.

Before proceeding to the bulk of our presentation I
would like to point out that our system has resulted directly
and indirectly from the work of many researchers in the area
of TOF measurements. As is the case wlith many experimental
systems, SIEGFRIED has provided us with a number of suc-
cesses, a failr share of frustrations, and a plethora of
intriguing potentialities. Among the successes we should
first count the fact that SIEGFRIED has proven that B-recoil

ions can be routinely mass analyzed. This is something that



only a few years -ago was an uncertain hypothesis. Second,
as wlll be shown in later chapters, we have employed
SIEGFRIED for mass identification over a ranée of dif-
ferent mass regions with falr success. These experiments
have been performed, 1n part, to investigate the utility

of, and difficulties associated with our system when applied
to a variety of cases that one would expect to obtain reason-
able results. Third, we will demonstrate in this work

that a prime bit of information that can be obtained from
our mass peaks 1s the initial recoil energy of the observed
B-decay product. This is a quantity that is directly

related to the B-decay energy.



CHAPTER II
DETAILS OF TOF SYSTEM

Since a detailed analysis of our Time-of-Flight (TOF)
system will comprise a éignificant portion of subsequent
discussions it 1s worthwhile at this point to provide a
brief exposition concerning the design and use of the
SIEGFRIED spectrometer. Many aspects of our instrument and
the TOF measurement proceés are not unique fo SIEGFRIED
but are common to many TOF systems. In the followlng
presentation the only details relating to SIEGFRIED that
will be stressed are those that represent changes from the
original construction. They are modifications effected
by the author that should be noted by future users of -
SIEGFRIED. For a full discussion of the design and construc-
tion of SIEGFRIED, see reference (EAT76).

In a "typical" experiment for TOF measurements, nuclear
reaction products are generated with the MSU Sector-Focused
Cyclotron and transported to SIEGFRIED by means of a Helium
Jet Recoil Transport System (HeJRT). 1In this HeJRT system
a gaseous mixture of He, impurities, and reaction products
flow through a capillary tube and info an evacuated chamber

of SIEGFRIED that is called the skimmer chamber. The




gaseous mixture is directed at a conical Skimmer which
acts to remove most of the helium gas (See Figure 2-1).
The reaction products are attached to large ﬁolecular
"clusters" which have a smaller divergence as they flow
from the end of the capillary and so have a higher prob-
abllity of passing through the skimmer assembly and striking
the stainless steel collecting plate in the collection
chamber. These molecuiar clusters stick to the collecting
plate and provide a very thin source; The metallic collect-
ing plate 1s held at a static, positive high voltage, usually
+6 kV with respect to SIEGFRIED ground potential.

A When one of the radiocactive spécies undergoes a B-decay,
a simple sequence of events occurs that is the basis for
our time-of-flight measurements. As the nucleus of interest
emits the B particle, it will recoil to conserve momentum
and leave the surface of the collector. ‘Also, when a
nucleus emits a B particle, there is a resuiting sudden
change 1in the nuqlear charge from Z to Z + 1. This very
fast change causes a pertubation on the electrostatic po-
tential in which the atomic electrons move and often
results in the ejection of an atomic electron. Studies
(Ca63) have shown that in the majority of ionizing events
a +1 charge state results.

The positive lons so created are then accelerated

across a region of nearly uniform electric field, trans-

forming the 6 kV of potential into kinetic energy. The
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acceleratioﬁ zone 1s in effect a circular plate capacitor
with the collector at 6 kV as one plate and a disc formed
of fine wire mesh (90% transmission‘mesh) acfing as the
ground plate.

After passing through the wire mesh disc, which ef-
fectively completes the ion acceleration, the recoiling
ions enter a weak fileld fegion we will refer to as the
"flight tube". In this.portion of the instrument there 1is
a very small diameter (0.005 cm) wire held at a small nega-
tive voltage (-llQ V) concentric with a relatively large
radius (5.25 em) pipe that is held at ground. The result
of this configuration is a region of logarithmic potential:
the wire, commonly cglled an Electrostatic Particle Guide
(ESPG), acts to focus the recoil ions in the radial direc-
tion and onto a set of Channel ELectron Multiplier Arrays
(CEMA) that serves as the ion detector. A set of two
CEMA's is often called a Chevron detector. The CEMA's’
are positioned close to the end of the flight tube, roughly
1 m away from the collector plate and the source.

The electronics necessary for a mass measurement 1s
made up of standard NIM modules that are widely employed
by nuclear experimentalists. The basis of the measurement
1s as follows: (1) a radicactive species emits a g particle
that strikes a plastic scintillator, which provides a start

pulse for a Time to Pulse Height Converter (TAC); (2) the



recoil lon, after acceleration and drift down the length
of the flight tube, strikes the CEMA detector and generates

a pulse that stops the TAC; (3) the TAC then gives a voltage

output that 1s proportional to the recoil ion time of flight.

In Figure 2-2 is shown a minimum electronics block
diagram for a mass TOF measurement. The function of this
set-up is to perform a simple delayed coincidence measure-
ment. The anode output.from the plastic scintillator
photomultipiier tube 1s fed to timing filter amplifier (TFA)
for shaping and amplification. The TFA output 1s then pro-
cessed by a Constant Fraction Timing Discriminator to pro-
vide a very sharp, fast start pulse for the, TAC. The output
from the CEMA preamp_is sent through an identical set of
NIM modules and so generates the stop signal for the TAC.
The output of the TAC is sent to an analog-to-digital con-
verter (ADC); the digitized output of the ADC is then
stored in a computer as the TOF spectrum of interest.

The basic operation of SIEGFRIED has remained virtually
unchanged since the original construction was completed in
1976 by M. Edmiston. Nevertheless, we have made a few
modifications related to the system that are necessary to
document for future use of SIEGFRIED. The two most im-
portant changes are: (1) design and inclusion of a safety
control unit for the power to the CEMA's and (2) a new set
of CEMA detectors.

The CEMA's are a rather delicate set of detectors, and




ANODE

Scintillator
PHOTOMULTIPLIER

OUTPUT

TIMING
FILTER
AMPLIFIER

TIMING

CONSTANT
FRACTION

DISCRIMINATOR

Figure 2-2,

10

CEMA
Preamp

TIMING
FILTER
AMPLIFIER

CONSTANT
FRACTION
TIMING

DISCRIMINATOR

L___\/r*

TIMING TO PULSE

Stop |

HEIGHT

Start.
CONVERTER

ADC

Elect:l““”ics for TOF mass measurement.




11

the manufacturer (Bendix Corporation) warns that they
should not be powered in any vacuum worse than 10"5 torr at
the risk of theilr destruction. In the original operation
mode of SIEGFRIED the only safeguard against the destruc-
tion of the CEMA detectors during an experiment was through
Interlocks between two vacuum valves, V4 and V6 (see Figure
2-3), and the power supply for the detectors. Actually,
these interlocks were nbt meant to serve as a safeguard
system agaihst problems arising during the length of an
experimenf. Originally the interlock system was intended to
ensure only that the CEMA detectors were not powered before
the vacuum in SIEGFRIED was below a level safe for operation
of the detectors. Well, true to form this interlock system
did not function as the failéafe it was never intended to
be, as the old CEMA detectors met with a rather qu;ck and
complete demlse during the course of an early experiment.
This sudden, distasteful development 1s what led to the
second of the aforementioned modifications related to
SIEGFRIED -- acquisition of a new set of CEMA detectors.

The new channel plates were purchased from the Bendix
Corporation, product number 302-B-005-MA. In many respects
the new CEMA's are much the same as the old ones, both sets
functioning according to the same ingenious theory of opera-
tion which 1s well described in the Technical Application
Note provided by the manufacturer. The new CEMA's are

thinner and draw less current than the old set, but a most
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important difference between the old set and the new that
cannot be overemphasized is that the new CEMA detectors
require -2000 V bias. The old set required -2700 V for
operation. This particular difference is especlally im-
portant to note carefully since using the wrong high voltage
setting can easily lead to serious damage of the new CEMA's
— if not their complete destruction as functional detectors.

Another difference between the o0ld and new sets of CEMA
.detectors is of much less importance than the power require-
ments but interesting nonetheless. The bias angle of a CEMA
is the angle that the channels make with the normal to the
detector face. Greater bias angles alleviate a problem that
is known as ion feedback. The new CEMA's héve bias angles
of 8° as compared to 0° and 5° of the old CEMA chevron set,
this means that tﬁe new set will have a better signal-to-
noilse ratio than-the old set.

As a result of our experience of destroying the CEMA's,
it was decided that a fast and reliable means of safeguard-
ing the new set éf detectors was a rather obvious necessity.
A safety-control unit was designed, constructed, and put
into operation as a reliable means of quickly shutting down
power to the CEMA detectors in the event of a sudden bad
vacuum and/or a large current flow through the CEMA's -~ both
of which can damage or destroy the multiplier array detectors
that are vital for the operation of SIEGFRIED and are very

expensive.
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In Figure 2-4’15 shown the circuit schematic for the
safety control unit for the CEMA detectors. Power is from
an ORTEC 459 power supply that has a remote éhutdown feature
and so can be'effectively turned off by the control unit.

The 10 pA meter shown‘monitors the current drawn by the
CEMA's; if this current exceeds the setpoint (usually =3 uA),
the meter will cut off the power to the CEMA's. 1In many
tests of this system, iﬁtentional or not, the failéafe has
been highly successful. The vacuum interlock system was

not so useful as the current interlock portion. There were
two reasons for this. First, the only regilon of vacuum that
is of value to the safeguard system is around 10"5 torr.

Thé only reliable means to monitor the vacuum in that range
is utilizing vacuum gauges that generate ions in such quanti-
tles as to create severe noise problems in the CEMA's.,
Second, the vacuum interlock system only provides a redun-
dancy of the overcurrent safeguard that, in view of the noise

problem, 1is of reduced value.
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CHAPTER III
EXPERIMENTAL RESULTS

An important aspect of any experimental instrument 1is
its range of utility. in order to make the greatest use of
any apparatus it 1s necessary to investigate and define tﬂe
types of systems that are most suited to the capabilities
and limitations of the method of measurement. This is es-
peclally true of the SIEGFRIED, and the following discussion
will attempt to deal'with these aspects in a manner that will
aid in further use of this time-of-flight system.

The results of a number of TOF measurements for several
different targets will be presented and discussed in a manner
that will display the reasoning and logic required to design,
run, and interprqt a mass-identification experiment. In
addition, these measurements will present a survey on the
use of SIEGFRIED in a number of different mass regions.

The coupling of the HeJRT system to SIEGFRIED presents
the experimentalist with a number of advantages that makes
such a combination very well suited %o the study of short-
lived nuclei that fulfill certain criteria. Naturally,
specles that do not have the appropriate characteristics

yileld poor or null results. The aforementioned criteria

16
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are unfortunately nqt quantitative conditions, but the
following discussion should serve as a guldeline for deter-
mining whether a particular TOF measurement is feasible.

The obvious first step 1n designing an experiment with
SIEGFRIED 1s to choose an appropriate target. Because of the
total efficiency of the HeJRT-SIEGFRIED system it 1s im-
portant to select cases with high reaction cross-sections
‘and targets that can wiphstand'maximum beam on target.

Foll targets are well suited to such conditions. 1In a

number of runs with chloride and oxide targets it was found
that a large quantity of powdery substance had been generated
in the target area and had clogged the input end of the
HeJRT capillary, which effectively reduced the transport
efficlency to zero. The nature of this powder and the
mechanism for generating it are both unknown but do consti-
tute a reél problem wilth oxide and chloride targets.

Having decided on the target most suited to the reaction
of interest, it is worthwhile to estimate the products of
the chosen reaction and their relative cross-sections. This
is a task that 1is best accomplished by using the computer
routine called ALICE (B170). ALICE is Fortran code written
by M. Blann and F. Plasil and is avallable on the MSU I7
computer as a user's code. The results of ALICE computa-
tions give the reaction cross-sections as a function of
energy for a number of different reaction products. A

number of figures in this section are the result of such
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computations which provide a convenient tool for estimat-

ing the most probable products from the reaction of interest.

After determining the probable reaction prodﬁcts, one must

conslder the half-lives of these products. The time re-

quired for transport of a product from the target area up

to the collection plate of SIEGFRIED has been estimated to

be on the order of hundreds of milliseconds, so species

with half-lives less thén a few hundred milliseconds will

decay away before reaching SIEGFRIED. Using the HeJRT

system at MSU, Edmiston (Ed76) was able to measure the

half-lives of *’Cr, “®V and S5Ni. He found these to be

460 + 1.5 msec, 420 * 3 msec and 219 + 6 msec, respectively.

These measurements can be used to gain a rough estimate on

the upper 1limit of the transport time. Species with half-

lives greater than a few minutes are also difficult to

measure with SIEGFRIED. In such cases one must optimize

counting and collection intervals as is discussed in this

chapter. ,
The chemical properties of the reaction products and

the associated molecular clusters are an importaﬁt aspect

of the transport and measurement process. Though less under-

stood than many details of the system, these properties

should be considered in designing an experiment. For the

sake of this discussion I will divide the relevant chemical

properties into two categories: (1) fransport efficiency

and (2) sticking efficlency. (This division may well be
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partially artificial but will aid in understanding two
chemlcally related aspects of our system. )

Kosanke (Ko73) studied the efficlency of transporting
a number of different reaction products with the HeJRT
system. It was found that the transport efficiencies varied
from 24% to 60% and was also a function of the type and
concentration of impurity added to the pure He. The situa-
tion now 1s that the acﬁual nature of the recoil-cluster
association has not been elucidated to the point where 1t
1s possible to predict the transport efficiency for a given
species, but it remains an important point.

Once a species has been transported from the target
area to the counting_area, it is sprayed onto a surface and
if the sample adheres to the surface, a thin film source
results. However, it is by no means certain in all cases
that the nucleil of interest will stick well enough to remain
on the surface until they decay. This "sticking efficiency™
was also looked into by Kosanke (Ko73) but only with regard
to varying capillary~collecting surface angles and distances.
No studies thus far have dealt with this efficiency with
respect to differing chemical species, since it has been
assumed that the "clusters" stick to the surface and the
nuclel of interest somehow adhere to the clusters.

Whatever the actual chemical nature of the transport and
sticking process, a few practical observations have been

made. In no instances have any noble gases (i.e., He, Ne,
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Ar, Xe) been obsepved even when the appropriate reaction
cross-section 1s fairly high. This seems to be a rather
obvious chemical effect, since the noble gasés are known to be
relatively chemically inert. 1In a number of experiments per-
formed it has been noted that chlorine and fluorine products
had very reasonable cross-sections but were not observed.
This may suggest a poor transport and/or sticking'efficiency
for halide ions. |

Once a set of reasonable reaction products have been
predicted, one should calculate the time of fiight for the
heaviest mass expected. This 1s necessary in order to choose
the appropriate TAC scale to be used in the measurement. The
time of flight for a nucleus of mass number A for our system

can be calculated from the formula

TOF (usec) = 2.536 /A/AV. (3-1)

where HV, the voltage applied to the collector plate is in
kiloVolts. For a more complete discussion of this equation,
see Appendix I.

Having chosen the appropriate time scale for the TAC,
it 1s very important to calibrate the TAC. A convenilent
method of calibration is to use the Tennelec Model 1030
Time Calibrator, a NIM module that generates start and stop
slgnals suited for most TAC's. & second means of calibration

1s to use some standard target with a well-known TOF spectrum.
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In all of our experiments an Al foll target was used for
calibration, since it gives high statistics, well separated
peaks, and 1s simple to construct. This latfer method is
actually preferable to the former, since it gives a calibra-
tion for the system -- not just the TAC. It has been found
that a combination of the two calibration procedures is
preferred in most cases. (The Time Calibrator allows deter-
mination of a precise nﬁmber of nsec per channel.)

After completion of the data acquisition, one uses the
time calibration to extract the measured time of flight;
that 1is, transform channel number to time units. This trans-
formation is a simple linear one. Once the TOF's for each
peak are known, the mass number can be extracted by the

simple relationship
A = 0.155 (HV)(TOF)? (3-2)

After determining the mass number corresponding to each
peak, one must determine the particular isotope that 1is
associated with the known mass number. If a yY-mass coinci-
dence has been run, it may be possible to associate a par-
ticular y ray with a kﬁown mass, thus specifying the
particular decay. Unfortunately, in our experiments it
has been found that the majority of y rays is annihilation
radlation, which, of course, is of little use in character-

izing a decay -- except to show it occurs via positron
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emlssion.

For most of our runs we have used B-mass coincidence,
recording the TOF and the B energy. For decays with
highly different B-endpoint energies one can determine the
correct species straightforwardly, However, in many cases
the B energies are not greatly different, and because of
the poor energy resolution of plastic scintillator no
unique characterization‘is possible,

In the absence of direct measurements uniquely de-
termining Z, one must rely on reasonable deductions. Com-
parison of the observed masses with the predictions from
ALICE calculations often narrows the possible isotopes to
oné or two choices. After choosing a number of potential
candidates, one must consider the relative half-lives and
reaction cross-sections to characterize finally the decay

that gives rise to the observed TOF peak.

27701 + 3He

¥

Al folls were the first and most frequent targets used
for our experiments. The material is readily available in
varying thicknesses and the 2741 i1sotope comprises 100% of
the material, so there are no interfering contaminants.

In addition, the 2741 (p,xnyﬁ) and *7A1 (%He,xnyp) reactions
give products that are very well suited for measurements

by SIEGFRIED. 1In the developmental stages of our TOF
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system, these reactions were used almost exclusively to
provide simple and familiar spectra. Another advantage

of these reactions was that an identifiable ﬁass TOF spec-
trum would result from an hour's worth of counting time with
a beam current of roughly 1/2 uA of 70-MeV *He on target.
Also, the decays that give rise to the observed TOF spectra
are stralghtforward ground-state to ground-state decays 1in
.most cases. The resulfant peaks have a shape that is
prototypical of the mass peaks we obtain with SIEGFRIED.

In 1ight of the aforementioned advantages of using Al
foll targets, 1t 1s natural that this target has come to
be used as a source for a standard spectrum for many of
our runs. This 1is e;pecially true in the mass region
20-50 amu.

Using a TAC calibration from the Tennelec Time cali-
brator, the first peak in Figure 3-1 is found to occur at ‘
a TOF of 4.915 usec. Then, using Equation (3-2) the mass ?
number 1is found to be 23. Mass 24 does not appear in the |
spectrum, but, following the same procedure, we assign
A = 25-29 successively. As a double check, a linear least
squares {1t to the TOF's as a function of centroid was
performed. The results are given in Table ITI-1; x? for
the fit was 8.0 x 10°°.

In Figure 3-2 the theoretical excitation functions for

27A1 + %He are plotted. These curves are the result of

an ALICE calculation. The plots do not include stable
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Table III-1. LSQ Fit to Al TOF Spectrum.

Centroid .
A TOF (Channel L3Q A A
(AMU) (usec) number) (usec) (usec) L3Q
23 h.915 5087 4,914 0.001 22.99
25 5.127 5288 5.126 0.001 25.00
26 5.229 5387 5.231 0.002 26.02
27 5.330 5484 5.334 0.004 27.04

28 5.428 5569 5.420 0.004 27.95
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products or species'with half-lives greater than a few hours,
since these products will not be measurable with our system.
The spectrum shown in Figure 3-1 is the resuit of 70-MeV

*He on 27p1. TFor this experiment we collected and counted
for roughly two hours with 1 pA of beam target. In Table
III-2 are the integrated areas and the theoretical cross-
sections for 70-MeV 3He.

Now that we have the mass number for each of the peaks
we must assign an atomic number Z for complete characteriza-
tion. According to the ALICE calculations (see Figure 3-2)
there are two possible sources of the A = 23 peak. They
are 2°Mg and %3%Ne, with 23Mg having about six times as large
a reaction cross—sec@ion. In addition, 23Ne is a noble gas
and thus known to ha&e very poor transport and sticking
efficiency. ?*3Mg is well-suited for SIEGFRIED; studies by
Kosanke (Ko73) showed it has good transport and sticking
properties. On this basis we have assigned the mass 23
peak to 23Mg. For mass 25, the %%Al 1is the only possibility
with a reasonable half-life (7.2 sec) and reaction cross-
section (11.5 mb). 25Na has a suitable half-life (60 sec)
but very small cross-section (1.5 mb). The mass 25 peak
was assigned to %2%5Al1. In the case of the A = 26 peak, we
have two good candidates, 2®A1 and 26Si. The 28Al1 has a
very large cross-section (117 mb) according to the ALICE
calcuiation, while the 26Si has a croés—section of 3.8 mb.

However, the difficulty with the 28A1 species is that its
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Table III-2. Predicted Cross-sections and Integrated
Areas for Al Peaks.

(SL) Area
23Mg b1 68683
25m 11 6423
2671 120 54897
2731 28 21139

2871 3 6605
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ground state (5+) has a very long half-life (7.2 x 105y)
but its first excited state (07) has a half-life of 6.4
sec. Obviously SIEGFRIED will "see" only thé decay of the
ot state. The problem lies in deciding what fraction of
the cross-section results in populating the 0+ state. Yet
even if only 10% of the cross section leads to the O+ state,
the "effective" cross-section for the 07 state of 25A1 is
still roughly 4 times that of the 2631, In light of these
consideratlions, we consider the A = 26 peak to be 26A1
predominantly, with some contribution from 2€Si.

The case of A = 27 is fairly straightforward, since
2781 is the only real possibility. It has a reaction cross-
section at 70-MeV *He of 28 mb and a half-life of M;l
sec. The mass-28 peak has been assigned to the 2%Al species.
The strength of this assignment lies in the absence of
reasonable alternatives. The cross-section for producing
2871 1is only 2.6 mb, which is small compared to the cross-
sections from other members of the spectrum. The half-
life for 28A1 is 2.3 min -- much longer than one might
expect to observe strongly with SIEGFRIED's counting mode
(this counting arrangement will be discussed later in this
chapter). However, among the members of A = 28 isobars
there are no other reasonable candidates. The 28P has
neglligible cross-section and a half-life (270 msec) far too
short to be feasible for méasurement by SIEGFRIED. 1In view

of the relative strength of the A = 28 peak, it may be that
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the ALICE calculation has underestimated 0.y for 2°A1,

For the small A = 29 peak, the ALICE calculation sug-
gests that nothing should be there -- an obvious under-
estimate. 2°P has a half-life of 4.1 sec and a moderately
larger 3+ energy (4.94 MeV). This is also the result of a
f;Al(3He,n)f:P reaction, which, while not highly favorable
wilth 70-MeV 3He, is the only reasonable means of 6btaining

a mass 29 from 27A1 + 3He.

SIEGFRIED Kinetics

During the collection interval we spray activity onto
a collection plate'continuously so that the;amount of fresh
source accumulated would be linearly proportional to the
collection time if the specles were stable. The deposited
activity 1s radlioactive; it has a characteristic half—
life and associated decay constant. Therefore, durihg the
collection interval some of the source decays. We will
assume that the kinetic equation describing the change in

the number of species per unit time is
dg = - AN+ 8 (3-3)

S 1s the source term, assumed to be constant during the col-
lectlon interval. The solution to this equation is
-\t

N(t) = Ny e 4 B 172y (3-1)




31

where t 1is the time measured from the start of the interval
and N, is the number of atoms at t = 0. During the counting
interval there 1s no source term and we have the simple ex-

ponential relation,
N =N, e (3-5)

where Ni 1s the number of atoms present at the time ti.
In effect, the source term turns on and off at regular inter-
vals, as shown schematically below. This corresponds to a

slightly different kinetic behavior for successive "bins."

Collection Count Collection Count

(1) (1) (2) (2) e
N _ dN _ AN _ N _
it = -AN+8 3t = -AN 3T = -AN+S 3t - -AN

ct
e
ct
t

(o]
—
Ny
w
t
=

Since we have regular intervals, by taking ty = 0, we have
ty = 1At. We are interested in the numbers present at the
endpoints of the intervals.

At the start of the first collection interval, NO = 0,
there are no species present. Defining g(At) = % (l-e—xAt),

we have the following sequences:
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N(At) = g(Aat)

N(2At) = N(at)e ?At
= g(At)e AT
N(3at) = (N(28t)e A8yt 4 pat)
N(3at) = g(at) (1 + e2rAt)
N(4At) = N(3at)e™ Dt
N(4At) = g(at) (e_>‘At + e_3AAt)

J=1 ~k(2x4t)
N((2j-1)at) = g(at) o

N(2jAt) = N((2j-1) t) e~ At

We count the number of dlsintegrations in each count

interval,

D(2jAat) = N((2j—1)At)(1-e‘AAt) (3-6)

The total number of disintegrations counted after M counting

intervals is D:

DM=

Dy

Ce
et =2
(]

(1-e2TyN(2(5-1)a8)
1..

D(2jat) =
J

e =

_ Moj-1
g(at) (1-e Mty 5 937 ~k(2xat)
i=1 k=0
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So we see that the total number of possible disintegra-
tions counted is a double sum of decreasing exponentials --
a rather inconvenient form to evaluate, since both sums
are finite. Normally one might choose some sufficiently
small number to be the truncation limit and use that trun-
cated sum. But careful inspection shows that the sum is

actually a geometric progression, which turns out 'to reduce

to much simpler form: (Gr65)

So we have succeeded 1n collapsing a finite double sum
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to a simple algegraic form. Taking x = 2At, we have

= S q_.=AAt\2 - a. '
Dy = ¥ (1-e )T Iy = S-Fy(r,at)

S (l_e-AAtl2 e-2AAt(l_e—2AAt)
DM X M -

(l_e—ZAAt) (l—e-ngt)

A much more concise form than the double sum.

Turning to the mechanistic side, we see that the total
number of disintegrations is linearly proportional to the
source term S, which is intuitively reassuring. If we wish
to compare calculatidns with observed results, a model of
S myst be hypothesized. This is very difficult, since the
source term S, representing the mechanism for adding fresh
sample to the collection plate, is an unkﬁgwn but ceftainly
complicated quahtity! Realistically, it should be funetion
of the relevant feaction cross-section, transport ef-
ficlency, transport time, and sticking efficiency. We
can use the ALICE calculations to provide reaction cross-
sections. 1In order to take the transport time into account,
we' suppose that the radiocactive specles with a decay constant
A will decay during the totai transport time t; thus, a
factor exp(-iAt) reduces the source term from the start of

transport. Different specles might have different transport
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times, but if we accept a molecular cluster transport mechan-
ism, we would expect T to be species independent, since the
massive clusters should have roughly the same T. To compare

with the observed peak areas, Ai we will assume:
Ay = DX = €S, F,(A,,At)
i M i "ML

where ¢ 1s the efficiency of SIEGFRIED itself, which should.
be 1independent of species. For source term we use the

form

Yy is the transport efficiency for species i, 0y is the
reaction cross-section, I is the beam current on target,
and N is the number of target atoms. We are actually in-
terested in relative quantities, so we will normalize to a
specific case. For the case of the Al spectrum I used the
largest peak 23Mg for the normalization. If we take ay

= Ai/A23 and n; = Yi/Y23

RERVLIT M p3-rgdt Fy(ry)
a; = (—)(=—) e

Y
'._l
}
=
'_l.
<
H’
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From the last form we can estimate the relative trans-
port efficiency ny from 84, an experimental quantity, and
by, @ calculated parameter. For the spectruﬁ of Figure 3-1
we collected for two hours with l4-sec counting intervals,
so At = 4.0 and M = 900. The results of this calculation
are given in Table ITI-3. All parameters have been normalized
to the 23Mg peak, the largest in the spectrum. The last
column gives the relative transport efficiency according to.
our model. The values for the 25A1, 2871, and 2781 cases
appear reasonable in the absence of any corraborative fig-.
ures. The value for the 2841 is excessively high, perhaps
reflecting an unusually low value for the reaction cross-
sectlon (2.6 mb). This dependence on the calculated cross-
sectlon may also expiain the difference in the transport co-
efficients for the 25A1 and 26a1 cases. Since both are
aluminum isotopes, and so chemically equivélent, their

transport coefficients should be the same,

H

NaF + 3He

In an attempt to observe some light mass TOF spectra
and to obtain a high multiplicity of pPeaks it was deemed
worthwhile to use targets made up of binary compounds. We
wanted to use compounds whose components both seemed likely
to result in products that wouid be suited to measurement

by SIEGFRIED.
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Our first choice was a NaF pressed powder target. The
excitation functions resulting from ALICE calculations for
?3Na + *He ang 9F + ‘He are shown in Flgures 3-3 and 3- b,
respectively. In Table IIT-4a and TTI-Up are given the
eéxpected products, their associated half-lives, calculated
cross-sections, B decay energies, and associated recoil
energies for 23Na + 70-MeV 3He and '°F + 70-Mev %He, respec-
tively. All the cases tabulated possess a number_of attrac-
tive characteristics that make them well suited for TOF
measurements by SIEGFRIED. The majority of half-lives are
on the order of tens of seconds. The decay energles are
large enough to result in large recoil energies. In the
cases of '8N and 2°F the very large decay energies give
rise to huge recoil energies -- 4 keV and 1. 5 keV, respec-
tively. Such recoil energles are quite appreciable fractions
of the usual 6-kV accelerating voltage employed in our
system.

As will be shown in following discussions, the broaden-
ing effects from such large initial kinetic energies would
be very pronounced in the resulting TOF spectrum. This
would provide us with a highly graphic demonstration of |
the dependence of TOF peak widths on the initial recoil
energy. Furthermore, the NaF target should provide us with
a real multiplicity of TOF peaks with very little inter-
ference from recoils with the same A. As a result, we

should obtain a light mass spectrum that is easily
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Properties of Reaction Products from 23Na

+ 70-MeV 3He.

/2 ; £, Recorl
Isotope (s) (mb) (MeV) (eV)
1oy 7.1 7 10.42 4000.
17p 64.5 u7 1.74 152.
1°0 27 4 4.82 795.5
20p 11 42 7.03 1519.3
21Na 3.9 16 2,52 228.2
22Mg 12.1 4 3.77 41,0
23g 7.2 . 37 3.03 280.1
Table III-4b. Properties of Reaction Products from !°F
+ 70-MeV *He.
t1/2 o) EB gigg;;
Isotope (s) (mb) (MeV) (eV)
%0 122 68 1.74 172.0
16N 7.1 23 10. 42 4oo00.
17g 64 22 1.74 152.0
19Ne 17 19 2.22 203.0
20p 11 7 7.03 1519.3
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calibrated and eontains some interesting peaks.

For this experiment we calibrated the system by first
obtaining an 27A1 + 70-MeV 3He spectrum froﬁ two hours of
counting. After cleaning the collection plate, we col-
lected data on the NaF spectrum for 1-1/2 hours with BRTY
of beam current on target. Shown in Figure 3-5 1s the
result of the 1-1/2 h counting from the NaF target. Ob-
viously we didn't need to worry abouﬁ overlapping or inter-
fering TOF peaks! The single mass peak occurring in the
spectrum occurs exactly where the 23Mg peak occurs in the
Al calibration spectrum.

The results of this run are slightly disconcerting, as
we mentlioned that the pertinent characteristics of the
reaction products séem to be almost tailored to SIEGFRIED.
It goes almost without saying that we must have overlooked
somethlng important! In a few cases it might be that the
real cross-section is much smaller than the ALICE predic-
tlons but it 1is very improbable that all but one cross-
section were overestimated. The characteristic that we
did not take into consideration was the transport properties
of the reaction products. Except for the Mg and Na isotopes,
all the reaction products are potentially volatile species
that would have poor transport efficiencies. In studies
using a system very similar to SIEGFRIED, H. Wolnik (Wo76)
foﬁnd that elements like the noble gases, Br, and I are

hardly attached to the molecular clusters but still pass
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through the capillary with reasonable efficiency. Never-
theless, at the collector foll it was found that the total
efficiency is very low. Evidently the same Phenomenon is
occurring for the F, N, 0, and Ne 1sotopes that we expected

to observe.

KCl Target

The next bilnary compound used as target material for
a possible TOF measurement was potassium chloride (KC1).
For these experiments pressed powder targets on a thin Al
backing were used. Figure 3-6 gives the calculated excita-
tion functions for the 9K + 3He reaction for the energy
range 20 - 75 MeV. The excitation functions for 35C1 + 3He
are gilven in Figure 3=7. As can be seen from these plots
Wwe can expect a fair number of suitable reaction products
especially at the higher energies for the incident 3He
Another consideration favoring higher energies 1is the
transport efficiencies of the products. The excitation
functions for the *°K + 3He reaction show that at the lower
energies (EaHe < 50 MeV) two chloride isotopes account for
the majority of the reaction cross-section. If our ex-
perience with the NaF target taught us anything, poor
transport efficiency should.be expected with potentially
volatile species such as chlorides. 1In view of these
facts, we ran the KC1 experiments with a beam energy of

70 MeV. Since the heaviest possible product would have a
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time of flight of about 6.8 usec we used an 8 usec TAC
range. Thls 1s also a convenient range for the Al Cali-
bration spectrum.

We collected data on the KC1l target for approximately
ten hours. The count rate with luA of 70 MeV 3He on target
was decidedly lower than the Al calibration. Nonetheless
after an hour of counting, a multiplicity of TOF peaks was
observed. Using the Al calibration we determined the slope,
K and the intercept, t. for the relation:

o)

TOF(CN) + K « CN + t_ (3.3)

Tﬁis allows one to qalculate the time-of-flight as a

function of channel number (CN). From the TOF(CN) we are

able to determine the corresponding mass number from Equation

3.2, with HV = 6 kV. The accumulated spectrum is shown

in Figure 3-8. Using the X and to from the Al spectrum

and Equation 3.3 we determine the correct mass numbers.

The fact that masses 26 and 27 occur at precisely the same

position on both the calibration and KC1 spectfum streng-

thens these assignments. Finally as a double check, a

linear least squares fit to the assigned TOF's, as a func-

tion of channel number, was run. The results of this fit

are given in Table III-5. They? for the fit was 2.3 x 107,
Assignment of the correct Z corresponding to each peak

in the KC1 spectrum is more difficult than in the previous
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Table III-5. LSQ Fit for KCl Spectrum.

L9

A TP (ohanme: TLsq A Arsq
(amu) (usec) number) (usec) (usec) (amu)
26 5.279 5515 5.278 0.001 25.00
27 5.380 5619 5.385 -0.005" 27.00
28 5.478 5?04 5. U437 -0.005 28.00
29 5.575 5809 5.581 -0.006 29.00
30 5.671 5892 5.667 -0.006 30.00
31 5.764 5983 5.671 -0.003 31.00
6.466 6668 6.467 -0.001 39.00

39




50

two cases analyzed. However, conspicuous by their ab-
sence are masses 33 and 34 which, according to the ALICE
predictions, would correspond to the chloride isotopes
goy] and *°Cl. This may be due to the poor transport and/or
sticking efficiencies of chlorides. Recalling the results
of the NaF experiment and those of H. Wolnik (Wo76) 1t
appears that F, Cl, Br and I isotopes display similar trans-
port properties. This‘chemical equivalence shown by this
set of elements 1s not too surprising when one notes that
this group makes up the halogen family. As is known from
elementary chemical principles the halogens all act chemi-
cally similar in many reactions.

The mass 39 peak 1is fairly simple to assign since
*%Ca 1is the only possibility at that mass. The only other
members, *°Cl and *°Ar, have poor transport efficiency,
little of no cross sections and half-lives that are much
too long (60 m and 269 y respectively). 3°Cl has a half-
life of 0.86 éeq and a calculated cross-section of 5 milli-
barns. However, the 3°%Ca peak 1s easily the largest single
feature in the spectrum. The collection-counting inter-
vals used for this run were U sec, which may favor such
half-lives but not to the extent that it would make up for
‘such a relatively small cross-section. It seems that the
ALICE calculation may well be underestimating the actual
cross—-section. Another intriguing point is that in the

KC1l spectrum it appears that 3°%Ca has a very good transport
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efficiency while in the Al and NaF spectrum 23Mg has ex-
cellent transport broperties. Noting that both Mg and Ca
belong to the same chemical family -- the chalogens, it 1is
intriguing to hypothesize a potential correlation between
transport efficienclies and chemical families.

The peak for mass 31 1s also easily identified by
elimination. Among the A = 31 isobars 3135 1s the only
choice, i1t has a half-1life of 2.7 s and a calculated cross-
section of 27 millibars. The only other unstable mass 31
1s 3!81 with a half-1life of 2.6 hr which immedlately
eliminates it as a possible contribution.

The two mass peaks corresponding to A = 26 and 30
répresent a bit more difficult task to assign. For the
mass 26 we have alréady mentioned in the section dealing
with the standard Al target that this mass may arise from
either 26MAl and/or 28Si. The assignment of 283i is tenta-
tive at thls point although evidence presented in the. next
chapter seems to lend weight to the assignment. The poten-
tial contributién from 2%A1 cannot be determined at this
point. A similar problem exists for the mass 30 peak.

The possible candidates for this mass are *°S or *°P.

The 3°P has a half-life of 3 m while the *°S has a half-
1ife of 1.4 s which is more favored by our short-time count-
ing arrangement. On this basis the mass 30 is tentatively
assigned to 3*%S. 2°P has been assigned to the A = 29. It

has a calculated cross-section of 28 millibarns and a
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half-life of 4.4 s. The only other A = 29 isobar that is
unstable 1is ngi which has a 6.6 m half-1ife and a very
small reaction cross-section. 2°9P is a 1/2+ * 1/2+
(ground state to ground state) transition by positron emis-
sion.
As in the 27A1 + 3He TOF spectra, we find that 28A1

1s the only reasonable contribution for the A = 28 peak.
The 2°Al1 has a fairly iarge cross section (¢ = 50 mb) from
the 35C1 + *He (70 MeV) reaction and a small contribution
(0 = 6 mb) from the *°K + ®He. Again it should be pointed
out that 28A1 differs from the majority of specles observed
in that it decays by B~ decay rather than positron emission.

| The small peak gt the position of A = 25 is due to the
decay of %%Al. This isotope has a half-1ife of 7.2 s and
a calculated reaction cross-section of 10 millibarns from
the 35C1 + 3He reaction at 70 MeV. Comparison of the cross—
section and the half-life with other members of the spectrum
would lead one @o expect this peak to be much larger. The
fault cannot lie with transport efficiency since the 284731
seems to be transported very well. It may be that the cal-
culated cross-section is too large. In studies of “%Ap
on 89Dy 164py apg 17%Yb, Y. LeBeyec et al. (LeB76) has
found systematic discrepancies in comparisons of ALICE
predictions and experimental results. The origin of these

discrepancies is not well understood.
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“6my Target

Towards the end of the experiment using the KCl target
the count rate dropped gradually but continuously until
there was no rate at all! After checking the obvious things
such as the cyclotron, we opened the target chamber. A
large quantity of yello&ish—white powder was found to coat
much of the thermalizer chamber. There was enough of an
accumulation on the walls of the chamber to plug up the
capillary tube. This served to block the transport of re-
coll products and so the count rate drop-off occurred. The
origin of this powder is not known.

For our next experiment we decided to use a natural Ti
foil target as a possible means of avoiding the aforemen-
tioned problem with the powder generated in the thermalizer
chamber. Although the *8Ti isotope accounts for part of
the target material ALICE calculations indicate that this
1sotope would not give rise to any species that would‘be
measurable by SIEGFRIED. This is also true for the *7Ti
and *°T1 isotopes. Shown in Figure 3-9, are the calculated
cross-sections for the reaction products for *°®Ti + 3He.

In Table III-6 are given the assoclated half-lives and
cross-sections for production with a 70-MeV 3He beam. The
“sTi, wlth a half-1life of 3-hr, is included because the
other mass 45 predicted is *3V which is so far unknown.

If we see a peak corresponding to mass 45 in our TOF
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Figure 3-9. ALICE predictions for “®Ti + 3He.



55

Table III-6. Properties of Products of “®Ti + 70-MeV

SHe.
t g
1/2 (mb )
“2g3¢ 0.7 s 50
“3my 0.6 s 1.1
Sy 3.0 h 110.
¥ Sy Unknown 5.5
4oy 0.4 s 3.0

vy 33 m 0.0
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from a combination of two masses, 45 and 46. The mass U4l
should occur in the valley between the *3*Ti shoulder and
this broad distribution. A mass 47 recoil would occur at
7.1 s which 1is slightly above the mass conglomerate. Since 1
the two masses peaks are so poorly resolved we have no
informétion on the strengths of the individual peaks but
there are two mass peaks in the wide distribution. 8V

is the most probable séurce of the mass 46 contribution to
the broad peak. Among the A = 46 isobars it is the only

one with a sultable half-life and ALICE predictions indicate
that 1t has a 3 mb production cross-section. As for the

A = L5 contribution there are no convincing prospects.
According to the ALICE calculations *°Ti should be produced
in relatively large amounts. However, the 3 hr half-life

of this 1sotope is very unfavorable. The other potential
candidaté, *3V has a cross-section of roughly 6 mb but the
half-1life of this isotope 1s unknown. %5V has so far only

been observed in charged-particle measurements (Mu76).

Nickel + 3He

A natural nickel foil was used as the targét for our
next experiment. This represents a step of about ten
to twelve amu from the titanium foil target previously
employed. This allows us to investigaée the performance
of our system in a slightly heavier mass region. The

isotopic composition of the target is as follows:
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N1 (68%), °°Ni (20%), S!ni (1.25%), ®2Ni (8.7%) and
S%Ni (1.1%). ALICE calculations were performed for all
the constituents. The main contribution to the reaction
cross-section was from the 58Ni isotope. The results of
the ALICE calculations for 58Ni + %He are shown in Figure
3-12. Note that the SSN1 isotope has a reasonable pro-
duction cross-~section between-35 and 60 MeV. This particu-
lar isotope is as yet poorly known but the ALICE calculations
predict a 7 mb production cross-section at 45 MeV. Also
at this energy wé might expect a fairly strong $%Co peak
to appear in our TOF spectrum, _

| For our first run with the N1 target, a 45-MeV 3He
beam was used. Sinée the recoil mass products were in the
range of 50-60 amu, the TAC was run on the 10 usec range.
For the COunting arrangement it was decided to collect
activity and then count for twenty-second intervals since
the predicted products have half-lives in the tens of
seconds to minutes range. We collected statistics for
approximately four hours. This was interrupted by frequent
problems with the cyclotron. For the start detector we used
a NaI(T1l) detector, which for annihilation radiation is
as efficlent as the plastic.scintillator. Shown in
Figure 3-13 is the TOF spectrum resulting from the
*®Ni + 45 MeV 3*He run. As was expected, a large peak
occurs for 5*Co. At slightly earlier TOF's there appears

to be a triplet of peaks centered on A = 53, We have
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tentatively assigned this group to °*Fe which decays to
states in 33Mn which immediately y-decay to the ground
state. The effect of the y-decay on the reéoil TOF may be
reflected in this splitting. Just beyond the °“Co there
is a fairly large peak at the position of A = 55. We have
tentatively identified this as 55Ni. However, this cannot
be taken as an unequivocal assignment, fromour experience
- with the ALICE calculations it would seem rash to place
too much confildence in the predictions. The 5°Cr isotope
has a very small production cross-section according to cal-
culations but 1t has a reasonable half-life (3.5 m) and
may be a possible source of the mass 55 peak. The assign-
mént of 55Ni to thi§ peak should be taken as tentative at
this point.

The next feature in the TOF spectrum of Figure 3-13
is a smaller, broad peak whose centroid corresponds to mass

57.5. The peak probably has two components: A =.57 and

58. However it is not really possible to resolve this peak.

From the ALICE calculations we would expect some produc-
tion of the %%Cu isotope which has a very large decay
energy, (QEC = 8,57 MeV) and positron decays to various
levels in *®Ni with a half-life of 3.2 s. The large decay
energy results in a maximum -recoll energy of 600 eV, which
is 10% of the 6 kV acceleration voltage and may explain
the distinct broadening seen in this peak. If there is

an A = 57 component to this peak it is very difficult to
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rationalize. The only possibility amoung the A = 57 iso-
bars is *’Mn but there 1s no reasonable reaction of
’8N1 + %He to produce 5’Mn at these energies,

After a day of running we were forced to stop due to
difflculties with the cyclotron. When we came on-line again
it was declded to run at 70-MeV He on the same N1 target.
The TOF spectrum shown in Figure 3-14 1is the result of ap-
proximately 8 hrs of counting; As expected from the ALICE
predictions the mass 53 peak is now the largest feature due
to the appreciable increase in cross-section for 53Fe and
the onset of production of %3Co. The %“Co peak is cor-
respondingly reduced as suggested by calculations. At
thepositionof A = 55 there is a small peak on the shoulder
of the 5Co peak. On the basis of the previous run with
the N1 target we assign S°Ni to this weak peak but again
urge caution in this assignment. Rather unexpected is
the smaller, partially resolved doublet at the position of
A = 58 and 59. The ALICE calculation for S58Ni + 3He
indlcate both 58Cu and 59Cu to have appreclable cross-
section at much lower energies. However, ¢2Ni, (4% of
natural) may be a potential source for these species.

In the absence of any other reasonable species we tenta-

tively assign *8%Cu and 5°Cu to this doublet.
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Al y-Mass Coincidence

The use of a y ray detector for the start signal of a
TOF event 1is an attractive alternative to the plastic
scintillator used heretofore. As 1is well-known, y transi-
tions are discrete as compared to the continuum resulting
from g transitions. It is much easier to determine the
energy of a y transition than. it 1is to measure the end-
point energy of a B decay. As a result it is more useful
to label a mass peak with a given y ray energy.

In order to demonstrate the feasibility of such experi~
ments, we decided to use a Nal (T1) scintillator as the
start detector for an 2741 + 70 Mev $He exberiment. As
discussed earlier, this particular reaction and the result-
ing TOF spectrum‘are familiar and well understood from many
earlier experiments. Since the majority of decay products
we see 1n the spectrum result from positron emission,_an—
nihilation radiation will provide effective start signals
for any ground étate to ground state transitions.

The 27A1 target was the same one used for the experi-
ments described in Section I, as were the beam enérgy (70
MeV) and TAC scale (8 usec). The amount of beam on tar-
get was roughly 0.5 HA and data were collected for 2.5
hrs. The resulting TOF spectrum is shown in Figure 3-15.
The two most striking features of this spectrum are the

background and the peak distribution as compared to the
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same spectrum uslng a plastic scintillator for the start
detector. This is especially noticeable in-the‘case of the
23Mg peak which in all spectra resulting ffom plastic
scintillator start signals is easily the largest peak in
the set by a factor of two. In the Y-mass spectrum of
Figure 3-15, this is obviously not the case. Actually the
mass 26 peak is now the larger peak. This is not well
understood at this poiﬁt. One would expect the only dif-
ferences in distributions to occur as a result of large
differences 1n positron energies. The NaI(Tl) scintillator
will detect positrons by thelr annihilation radiation which
occurs once the positrons have been stopped and the scin- |
tillator should be more effective stopping lower energy
positrons. Accordingly we would expect NaI(T1) scintillator
to be more sensitive to lower energy positron. However,

in the case of the 23Mg and 2°Al1, thepositron energies are
about the same. If the 2681 is the main component its
positron energy is 0.8 MeV greater than the 23Mg which is
in conflict with the efficiency argument,

The highest background observed is probably due to the
large number of random start signals resulting from brems-
strahlung and Compton scattering. For a 3 MeV electron
passing through stainless steel, energy losses due to
bremsstrahlung is about 11% of the loss due to lonization
(S166). Since there are always somé residual gas mole-

cules in the TOF chamber striking the CEMA's and the



69

NaI(T1l) scintillator is very efficient for low energy radia-
tlon such as bremsstrahlung the higher background is ex-
pected.

Figure 3-16a is the NaI(Tl) spectrum associated with the
TOF spectrum of Figure 3-15. Figure 3-16b is the spectrum
after a 3-channel smoothing was performed to accentuate
details of the spectrum. Since the majority of decays are
positron emitting ground state to ground state transitions
the very large 511 keV peak is an expected feature. The
large "hump" preceding the 511 keV peak is due to a combina-
tlon of Compton scattering events and bremsstrahlung. The
small peak at 1780 keV is due to the y-transition following
the decay of 28a1,

lv%sm + 3He

As an example of a heafier mass TOF spectrum, we decided
to use a 1"“szoa target. This was available in the
separated isotope form (99%). The ALICE calculations
for the products of '**Sm + 3He are given in Figure 3-17.
The predicted cross-sections are much larger than any of
the previous experiments discussed here. Since we expect
recoils 1n the region of 150 amu, the minimum TAC range,
with 6 kV acceleration, 1s 13 usec. To be safe we used
a 20 usec TAC range. One difficulty with such a long TAC
range 1s that we have cut down on our resolution -- there

areé more nsec per channel in this case. Also working
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against us in the heavier mass region 1s the fact that the
differences in TOF's for Successive masses are decreasing

SO the peaks will tend to bunch together, making it dif-
ficult to resolve adjacent mass peaks, Normally one way

to alleviate this problem is to use g very precise delay
for the start signal for the TAC. Thlo allows one to use

a shorter TAC range and thereby expand the region of
interest. This effectively increases the resolution sub-
stantially. 1In light of these considerations the Precision
Digital Delay Model 7030 was bought from Berkeley Nucleonics
Corporation. Thisg module is essentially a sophisticated,
highly stable delay line. Unfortunately, the reliability or
the box is significantly lower than its other qualities,

It was malfunctibning before this run and was not used.

It was deemed worthwhile to do the experiment for a number
of reasons. First, in a number of runs the coincidence
rates were very low making complex experiments of interest
impossible. To have a rough idea of the collection rate
would be very helpfui for planning further experlments

Also of interest was how serious is the problem of mass
peak bunching; possibly the adjacent peaks "ride" on one
another's'tails yet are still resolvable. Lastly, in view
of the importance of the transport and sticking efficiencies
as established earlier it seemed worthwhile to find out if
we would "see" anything in reasonable quantities.

Shown in Figure 3-18 isg the TOF spectrum resulting
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from two hours of counting of the products from the

1%%Sm + 3He. At the long TOF end of the spectrum are two
large, very broad peaks. The first of these two peaks
occurs at the position of A = 141 but, as expected it is
broad enough to encompass masses 138-14l. Obviously it is
impossible to resolve meaningfully the individual mass com-
ponents of this peak. The only thing one can surmise from
this feature of the spectrum is that we have measured the
TOF's of a number of species with masses between A = 138
and 144, The second large peak shown in the spectrum seems
to allow some resolving of the individual components. The
masses most prominent in the peak correspond to 155, 158
and 159. Yet how can such masses result from a compound
nucleus of maximum mass of 1472 A number of experimenters
(Ne78), (Ne79), (Wo77) have observed very similar phenomena |
in their TOF spectra and attribute the heavy mass peaks to
molecular species that are somehow volatilized from the col-
lector surface.‘ The fact that the second large mass peak
corresponds to the earlier masses + 16 amu, which is the
mass of '%0, suggests that the components of this peak are
the same as the lighter masses except there is an attached
oxygen (A = 16).

In the remainder of this spectrum can be found a large
number of small TOF peaks that are not explained as simply
as the peak centered around A = 158. They may correspond to
radicals (CnHmOk’ etc.) that have been ionized by collision

with the primary recoils.



CHAPTER IV

RECOIL ENERGY FITTING

A close inspection'of the mass time-of-flight peaks
acquired with SIEGFRIED reveals a number of phenomena
that are not exactly what one would expect for simple
measurement of an ion flight time. Referring to Figures
4-1, 3-1, and 3-5, it 1s easy to notice that the peaks are
ail rather wide -- much wider than any electronic timing
contributions might.account for, as will be shown. Per-
haps more Strikiﬁg to the eye 1s the very peculiar shapes
exhibited in the spectra; all have long nearly exponential
talls on the low time side, implying some mechanism that

suppresses higher energy events and favors longer TOF

L}

events.

It seems reasonable to view the source of the recoils
as a thin film deposited on the collecting plate, since
massive clusters provide the means of transport of the
product nuclei from the target area. A simple picture of
recolls passing through a surface layer of cluster deposit
seems to favor a higher probability of escape for high

energy recoils than for low energy recoils. However, higher
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energy recoils should transform into shorter TOF events,
and this is not what one observes in the accumulated TOF
spectra; in fact, the converse seems to be true. That is,
the low energy events seem to be the more probable events
to be detected. The entire puzzle 1s especilally intriguing,
since 1in the early days of development of SIEGFRIED and its
forerunners it was not known for sure whether recoils from
B decays would be energetic enough to escape the surface on
which they were deposited (Ed76), (Ma74). It appears,
however, that not only are the recoils energetic enough to
free themselves, but also the recoil energy 1s a significant
contribution to the peak broadening.

Just how importqnt are broadening effects such as
electronic timing contributions in our measurements is a
reasonable concern that we will deal with briefly here.

A very rough argument for nanosecond range precision can

be made by consideration of the performance specifications
for the various.NIM modules used for the TOF measurements.
This 1is not quite so convincing as an internal measure or
upper bound on intrinsic broadening. Happily, nature sees
fit to provide us with just such a means to estimate an

order of magnitude figure of merit. Referring to Figure

4-1, 1t is found that a narrow peak occurs at exactly the
posltion predicted for an H+ ion. Obviously, a proton is
the result of a neutron undergoing é B decay and it seems

a blt far-fetched to hypothesize neutrons being transported
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and deposited'on the collection plate; however, the cluster
molecules are somehow formed from saturated hydrocarbons
(e.g., CGHG), so there is certainly an abundant source of
hydrogen atoms at the collection site. The exact mechanism
for how the H+ lons result from decay-related events is
certainly not clear. However, the recoil energies involved
in a "typical" g decay of medium-light nuclei are on the
order of a few hundred electron volts. When ;ne compares
such recoil energies with typical carbon-hydrogen bond
energies, which are roughtly 5 electron volts, the dis-
sociation and lonization of a hydrogen atom from a recoil-
bearing cluster is 3 plausible occurrence. Furthermore, in
a.number of spectra taken by a group at Orsay on a TOF
system much 1like SIﬁGFRIED (Be78) a large, prominent spike
is also assigned to the gt ion,

Accepting this assignment we can use the full width
at half maximum (FWHM) to obtain an estimate of the intrinsic
broadening effeqts due to the electronics. As shown, the
H+ ion has a FWHM of § nsec which represents a real limit
on the peak broadening. 1In compérison, the mass groups at
longer times of flight have FWHM's of about 4-5 times that
of the H' peak. As we intend to show, the peak widths
result from the spread in recoil énergy that the daughter
nucleus has after the g decay.

Another aspect of the TOF spectra that is especially
intriguing is the overall shape of the peaks. This is
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most easlly seen in the large, isolated peaks correspond-
ing to *’Ca in Figure 4-1 and ?°Mg in Pigure 3-1 and 3-5.
All exhibit a long, exponential-type tailing on the short
TOF slde with a very sharp drop-off on the higher channel
side. This distinctive feature seems to just elicit further
investigation.

As a first step in the analysis, we decided to attempt
to fit the TOF spectra.with the program SAMPO, since 1t is
a falrly flexible and easily run data analysis routine.
SAMPO is a Fortran routine written and developed by J. T.
Routtl and S. G. Prussin (Ro69) to perform automatic data-
analysls of y-ray spectra. The routine is familiar to
spectroscopists invqlved in Ge(L1i) work but is probably
rather foreign to mass spectroscopists in general. In
order to elucidate our fitting results, a brief description
of the analysils routine and the associated terminology will
be given here.

In SAMPO thg peak shape 1s approximated by a function
that 1s basically a Gaussian with possible high- and/or
low-channel talling that "goes" as exponentials. The
amount of tailing is determined by the distance in channel
number from the centroid to the points at which the Gaus-
slan is joined to the appropriate exponential. At these
Junctions the function and its first derivatives are con-
tinuous; as a result, the complete peak shape, aside from

the normalization, 1s specified by three parameters:
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(1) CW, the width of the Gaussian, (2) CL, the slope param-
eter of the low-channel exponential tail and (3) CH, the
parameter of the high-channel tail. The significance of
the magnitudes of these shape parameters is very straight-
forward: (1) a large CW means a wide Gaussign contribu-
tion, (2) a large CL yields a fast rise on the low-channel
side, and (3) a large CH gives a rapid fall-off of the
peak on the high-channel side.

Shown 1in Table IV-1 are the results of a SAMPO fit for
the KCl spectrum of Figure 4-1. As indicated by the
x? for each, the fitting routine has proved to be well
sulted to deal with the rather asymmetric shapes. The
CW's for all the ldentifled species except the 28A] case
are very large. (CW as was discussed eariier, is the width
parameter for the Gaussian contribution to the peak shape.)
The magnitudes of the CW's shows a significant broadening
effect in the TOF peaks. The low-channel tail parameter
(CL) for the peaks are generally small and reflect a long,
slow drop-off on the shorter TOF side. Especially striking
.is the size of CH for masses 26 through 39, excluding the
28A1. All the CH's for this set are greater than 5; in
fact, all except the 27Si case are greater than 10!
This indicates that the exponential fall-off on the high-
channel side of the peak is very, very rapid. In fact,
the large size of the CH's implies some type of cutoff —-

a limit on the maximum time-of-flight allowed. If we
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equate the time of flight with the total energy of the
recoil ion, as shown in Appendix I, the TOF 1s inversely
proportional to the kinetic energy of the ion. 1In light

of this, 1t 1is easily seen that thé maximum TOF corresponds
to a minimum allowed kinetic energy, that acquired by ac-
celeration across the gap region.

To sum up the results of the fitting briefly, the peak
shapes predicted by SAMPO will display a long tailing for
the shorter TOF's, a wide Gaussian portion and a very fast
fall-off on the high time side. A glance at the KC1l
spectrum readily exhibits this predicted behavior. Ob-
viously there must be a reason for these asymmetric peak
shapes, although the causes may not be immediately pin-
pointed. Nonetheless, the simplest hypothesis concerning
the TOF peaks seems to be that the initial recoil energy
of the daughter nucleus 1is somehow related to the observed
spectral shapes. If this is SO0, then we can develop a
quantitative relationship between the observed peak shape
parameters and the recoil eriergy of the daughter nuclei.

Obviously, the broadening of the mass peaks is not an
electronic effect. Is it reasonable to attribute the effect
to the initial recoil energy of the daughter nuclei? As
1s shown in Appendix I, using a gross model of the SIEG-
FRIED system, we can estimate the time-of-flight of a
singly charged ion of mass number A and initial recoil

energy R by the expression:
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T0F = ml/? {[2(Eil;(§]l/2 ¢ L84 /R - RY2)) (4-1)

Rigorously R = l/2MV§-where V, 1s the initial velocity
in the z direction, that is, in the direction of the
flight tube axis. In Table IV-2 are the results of times
of flight calculated for the mass set observed 1n the KC1
spectrum. R 1s the maximum initial recoll energy, T(R)
the corresponding TOF, T(0) the TOF for zero initlal recoil,
and AT the difference between T(0) and T(R). The TOF dif-
ferences are all in the neighborhood of a few hundred nano-
.seconds. Considering our timing resolution to be of the
order of nanoseconds, it is imminently plausible that the
recoll energy effect is a significant contribution to the
broadening.

We have argued that the peak shape, especially the
broadening 1s because of the initial recoll energy of the
measured mass species; 1f that is so, then 1t seems reason-
able to attempt to develop a quantitative relationship
between some measured peak shape parameters and the recoil
energy of the ion. First, we need to have some rough form
of the parameterization. If we consider the ions drifting
along the flight tube, with negligible time of acceleration

(correct to ~3%, see Appendix I) then we can write:
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Table IV-2. Calculated TOF's for KCl Spectrum (in nsec).

A R TOF (R) TOF (0) AT AT/T o
26 381 5055 5244 189 . 036
27 362 5160 5344 184 .034
28 213 5323 5442 119 .022
29 359 5349 5539 190 . 034
30 434 5406 5633 o227 .0b0
31 409 5507 5726 219 .038

39 Lol 6134 6423 289 . 045
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2 22
E=1/2mv = 1/2m 5 . (4=2)

t

E is the ion kinetic energy, v its velocity, m the mass,
2, the flight length and t the time of flight.
Now suppose an ion starts with zero recoil energy,

then E = qV = E_ = 1/2mv§, where V 1s the electrostatic

0

- potential on the collection plate and g is the charge on
the recoil ion. If the ion starts out with the maximum

recoll energy, with zero transverse momentum (p§/2m = R,

R the maximum recoll energy), then E = Eo + R = l/2mv2

x l/2m22/ti.

So we have

_ 5.2
E, = 1/2my /tO (4-3)
. 2.2 .
B, = 1/2m?/t2 (=1}
E-E_ = R = 1/2m22<51§ - 1:1—2) (4=5)
1 o}

If we make the assumption that the measured TOF is linear
in channel number and the spread is proportional to the
FWHM (or equivalently to CW from SAMPO fitting), we can

write:
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t, = K(CP + CW) | (4-6)
t; = K(CP - CW) (4=7)
tg = K2(CP2 + 2CP CW + CW2) (4-8)
= k2%CcP?(1 + 2cW/CP + cwl/cp?) (4_9)'
Similarly,
ti = K2CP2(1 - 2CW/CP + Cw2/CP2) (4-10)

Since typical values of CW/CP are on the order of 10-3,

we can drop the (CW/CP)2 terms.

Using the binomial theorem and retaining terms to first

order, we have

1~ 1 I
=5 ¥ =5 (1 + 2cw/cp) (4-11)
t;  K°CP
L = o 5 (1 - 2cW/CP) (4-12)
t; KCP
2 2
m 1 1 mi 1 beow
R=F%5 [ - =] = (=57) (4-13)
2 :12 tg 2 g2cp2 CP
R = qgo W (U-14)
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This last expression 1s the form that wlll be used to re-
late the recoll energy to the TOF peaks parameters CW
and CP.

We now have a parametric form to test, Next we need
some experimental cases to apply it to. Since we are
really working in a new area, it is obvious that there
are certain criteria for the spectra we will attempt to
fit. We require fairly high statistics 1n each peak and
that the decays be fairly simple; alsc we prefer as high
a multiplicity of peaks 1n the spectrum as is obtainable.
The reasons for these conditions are fairly obvious; we
are In the position of hypothesizing a relationshlp that we
bélieve can be expressed by a simple functional relation-
ship. Now, in order to prove or, at least further, this
view, we must start with the most reasonable set of tests
avallable. The KC1l and Al spectra come closest to ful-
filling our rather loose conditions. The Al target has
been the.standaqd for our runs and is well understood,
whlle the KCl spectrum has a fair multiplicity of single
specles, peaks, good statistics and the "characteristic"
shapes of TOF peaks occurring in a number of instances.

The actual form of the equation used for the fitting

was

yy = axy +b (4-15)
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Xy = CW/(CP)3 « A (CP in kilochannels) (4-16)
yiv= Recoil energy of species 1

A linear least squares fit was performed on three
known cases, and the resulting parameters.were used to
predict the recoil energy of the members of the set not
included in the least squares fitting. The predicted
values were then compared with the known values.

The maximum recoll energy of a daughter nucleus with

mass number A was calculated using the following equation:

R = 53T (g

2 + 1.022)) (4-17)

0

where

E 1s the maximum kinetic energy of the B8
particle in MeV

A 1is the mass of the recoil in amu
R 1s the maximum energy of the recoil in eV

(For the derivation see Appendix II.)

The first example of the fitting is for the KCl spectrum
Our procedure was to choose two sets of three peaks as the
"known" energles and predict energies for the remaining

peaks in the spectra. The first set chosen for the



89

calibration corresponds to 26351, 2731 and *°S. 1In Table
IV-3 are the results of a linear least squares fit to the
recoll and decay éenergies for thils set. The predicted
decay energiles are calculated from the fitted recoil

energles according to the formula

) IR ' )
E, = ﬁ.261 + 22 - 0511 (4-18)

(with R in eV and E0 in MeV)

The fit for this set is fairly good, x? for the standards
is 1.1, and the largest deviation is 4%. The results of
applying the equatibn Ri = axy + b to the remaining peaks
in the spectrum are given in Table IV-3: the errors in
the recoil energy are all in the neighborhood of 15%,

the fit to the decay energies closer to 10%. The worst
fit is for the {9P case, which is not well separated from
the tail of the 3°3.

The mass-28 peak actually gives a somewhat better fit
than was expected, considering the decay scheme of 28Al,
shown in Figure U4-2. The g decay of 28Al 1s to the ot
excited state of 2831 which decays via a y ray to the ot
state. Also the decay of the 2®Al is by negatron (B=)

decay whereas the rest of the decays we observe are by

positron decays. Since the collector plate is 10-mil
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Table IV-3. Fit to KC1 Spectra Recoil Energies (no F-GT
Correction).

Callbrated

R o1t o E, pfit
A (eV) (eV) % Error (MeV) (MeV) % Error
26 380. 4o7. 4.5 3.81 3.90 2.4
27 362. 355. 1.8 3.79 3.74 1.3
30 43y, bok, 2.4 b .4y 4,38 1.3

= 1,1

Predicted

R yfit Eo Efit
A (eV) (eV) % Error (MeV) (MeV) % Error
28 273. 302. 11. 2.86  3.08 7.7
29 359. 428. 19. 3.92 4.32 10.
31 §10. 473, 15. 4,37 4,74 8.5
39 baly, 423, 14, 5.5 5.05 8.2




Figure U-2..
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stainless steel, 1t will stop B's of an energy of less

than about 1 MeV, which means that the lower energy events
are discriminated against; however, the plastlic (NE-102)

has roughly a 30% efficiency for detection of y rays of
energy 1.8 MeV, so that if the y ray is emitted in the
"right" direction, 1t has some probability for serving as

a valld start signal and can result in a detectable TOF
event. The estimation of the y detection efficiency was
accomplished 5y using a nomogram developed by Roulstan

and Naqul (Ro57). 1In the case of the positron-emitters,

even if the low-energy BR's are stopped by the collector
plate, the accompanying annihilation radiation is sultable
for serving as a start event. Using the same procedure .
mentioned earlier, fhe gamma efficiency for 511-keV annihila-
tlon radiation is about 50%.

The second case we attempted to fit with our recoil
energy parameterlzation was the TOF spectrum resulting from
70-MeV 3He on a pure aluminum target. Unfortunately there
are only four peaks with reasonable statistics and shape.
The 2°Al peak is very broad and shaped distinctly dif-
ferently from the common TOF peaks, and the 2°P peak has
very poor statistics. The peaks chosen for the "known"
energies are the three corresponding to masses 23, 25,
and 27, respectively; the results of these fits are gilven
in Table IV-4., The x? for this fit was 7.4, and, as shown,

the fit errors are in the neighborhood of a few percent.
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Table IV-4., Fit for Al Spectrum -- No F-GT Correction.

R yfit EO Efit
A (eV) (eV) % Error (MeV) (MeV) % Error
23 287. 286. 0.3 3.0 3.03 1.0
25  299. 331. 11.0 3.26 3.45 6.0

27 362. 325. 10.0 3.79 3.56 6.0
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Fermi and Gamow-Teller Distributions

One assumption that 1is implicit in the parametric treat-
ment of the recoil energy is that all allowable energies
are equally probable and all the various decays have the
same 1nitial energy distributions. This is not actually
true, for, as 1s known from B-decay theory, the distribu-
tion function for the recoil energy 1s dependent upon the ’
"type" of decay the parent nucleus undergoes. I will not
endeavor to present a full treatment of g-decay theory
here, there being a large number of well-known and more
appropriate texts for such a task. However, I will give
a somewhat pedestrian and brief discussion of general
results and terminology from what is called allowed g-decay
theory.

In the B-decay of a nucleus, an electron and an anti-
neutrino are emitted, and each of these pérticles has a
spin 1/2. If the total spin of the decaying nucleus is
unchanged, then, 1n order to conserve total angular momentum
the electron and antineutrino must have antiparallel spins.
This type of decay is often called a "Fermi" decay. If
the total spln of the parent changes by 1 (in units of h),
then the electron and antineutrino must carry off one unit
of angular momentum, l.e., they have parallel spins. This
type of decay is known as "Gamow-Teller" decay. Common

terminology in B-decay theory attributes Fermi decay solely
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to a "vector" interaction and Gamow Teller to an "axial-

vector interactién." Because these two interactions are

"effectively" different, the probabllity that a recoiling
nucleus has a given energy 1s dependent upon the type of

interactlion that gives rise to the decay.

In Figure 4-3 are shown the distribution functions for
the recoll energiles corresponding to the two types of decay
considered here. The distribution functions for both cases
are skewed towards higher energies, but the one correspond-
ing to the so-called Ferml decay 1s obviously more sharply
peaked, favoring higher-energy recoils. When one takes into
conslderation these two distributions, it becomes reason-
able to ask whether_the effects of the initial energy
distribution are in'some way contained in the observed peak
shapes. If that is the case, then, even if there 1s only
a gross relationship, 1t is very useful ahd highly intriguing.
Assuming the 1initial energy distribution effects are .some-
how preserved, we need to quantify the influence of the
distribution upon the TOF peak shapes. The majorlty of
decays observed are actually mixed, that 1s, they result
from a combination of the Ferml and Gamow-Teller decay
modes. In an attempt to take thils account, we havé included
as a multiplicative fixed parameter the quantity, D
= (fp + chT) where fp and fyq are the fractions of transi-
tion probability due to the Fermi and Gamow-Teller modes,

respectively. The factor « is a strength parameter that
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Figure 4-3. Fermi-Gamow-Teller recoil energy distribu-

tions.
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1s a measure of the relative contribution of the Gamow-
Teller mode to the FWHM of a composite energy distribution.
(It 1is estimated by taking the ratio of FWHM's for the two
distributions shown in Figure 4-3. A rough estimate in
most cases glves « = 0.5,) The quantities fr and fGT can
be found if the ft value of the decay is known.

If we define |Mp| and |Map| as the matrix elements
for the vector and axial vector interaction, and CV and CA'

as dimensionless coupling constants for the vector and

axlal vector Interactions, then

_ 6143 _
£6 = ———7 (4-19)
IMF| + (@‘Z) lM

l2
GT

(with C, Cc = 1.25)

Now, fF and fGT are defined as

f = ('4-20)

(with fgm = 1 - fp)

SO0 1n order to obtain fF and fGT’ we need the ft value for

2 2
the decay and a value for either IMFI or 1MGT| . In
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most cases of interest-to us, the decays will be simple
mirror transitions or at most decays that are classified
as allowed, 1in which instances there are simple rules to
calculate [Mp|. The £t values can be calculated, (see
(Wub66)) or obtained from the literature. The combination
ft and |Mp| allow one to calculate fp and faon, which repre-
sent the fraction of decay strength due to the Fermi and
Gamow-Teller decay modes, respectively.

In Table IV-5 are given the ft values and calculated
values of |Mgp|, fp, fqrs and D for all the known decays

observed as described earlier in this chapter 1s followed,
CW
L]
cp3
where DA is totally determined by the particular decay.

except now the independent variable is DA + A .

The results of this'new parameterization applied to the
KCl spectrum are given in Table IV-6. X2 for the linear
least squares fit to the "known" cases was 1.8, not sig-
nificantly different from the simpler initial parameteriza-
tion, perhaps a_little worse. The same seems to hold true
for the fit to the "unknowns." However, referring to
Table IV-7 where the results of the new parametric fit for
the Al spectrum are given, a very obvious improvement in
the fit to the "known" peaks is evidenced. 1In fact, x?
for this fit is 0.04, a very large and significant reduc-
tion from the X2 of 7.4 for the simpler parametric form.

But the fit to the 27Si "unknown" 1s very poor in this

instance.



99

Table IV~-5. Fermi-Gamow-Teller Parameters for Peaks in KC1

Speétrum.

A £t |Mp | 2 £q far D X"

26 3162 2 1.0 0.0 1.0 0.97
27 3981 1 0.65 0.35 0.85 0.61 .
28 7943 0 0.0 1.0 0.58 0.26
29 5012 1 0.82 0.18 0.92 1.05
30 3162 2 1.0 0.0 1.0 1.12
31 5012 1 0.82 0.18 0.92 1.28
39 3981 1 0.65 0.35 0.85 0.94
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Table IV-6. Recoil Fit for KC1 Spectrum (With F-GT Cor-
rection).

Calibrated ‘

R Rfit Eo Efit
A (eV) (ev) % Error)  (MeV) (MeV) % Error
26 381. boi, 5. 3.81 3.92 3.0
27 362, 356. 1.6 3.79 3.75 1.0
30 43y, 420, 3.4 h,uh 4,36 1.8
Predicted
28 273. 308. 13, 2.87 3.53 23.
29 360. 411, 14.0 3.92 4,23 8.0
31 4og, 4ho, 8.0 4,37 4,55 4.0
39 4oy, 397. . 20.0 5.5 4,88 11.0
Table IV-7. Fit to Al Spectrum Recoil Energies (With F-GT

Correction).

R Rfit Eo Efit
A (eV) (eV) % Error (MeV) (MeV) % Error
23 287. 284, T 3.0 3.01 .48
25 299, 297. .8 3.26 3.24 .61
27 362. 362. .1 3.79 3.788 .05




CHAPTER V

MODELING THE TOF SYSTEM

I. Introduction

The results of the empirical fitting to the observed
recoll energiles in the previous section were encouraging
enough to elicit further investigation. As a means of
theoretically justifying our assumption about the recoil
energy contribution to the peak broadening; we declded to
mathematically model our TOF system and the resulting
particle trajectories.

The first step in modeling our TOF system was to
obtain a reasonable set of electric fields. The system
is made up of elements of finite lengths and edges whése
effects should not be totally ignored. As with most
practical problems, analytic solutions exist only for
idealized cases. For real geometries we often have to
settle for approximate solutions. To this end numerical
methods are especlally well-suited. To obtain the electro-
static potentials for our system we have to solve Laplace's
equation subject to the appropriate boundary conditions.

The 1terative technique of relaxation is a standard method

101
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for obtaining approximate solutions to Laplace's equation,
Once we have g reasonable set of flelds, we can calculate
particle trajectories. This means that we have to inte-
grate equations of motion for charged particles. To ge-
complish this we used g combilnation of Runge-Kutta and
Predictor—Corrector algorithms, Since these numericgl
methods are an integral part of our modeling study, we

will present g discussion of them in some depth. This is
especlally true for the relaxation methods we employed
because of what we feel i1s their growing importance 1in this

age of digital computers.,

IT. Relaxation Techniques

A, Preliminary

The solution of Laplace's equation for g system of
conductors 1s one of the most common problems in electro-
statics. Students are often taught the usual analytic
methods of solution: images, Green's functions, and ex-
pansions in orthogonal functions. The powerful yet in-
elegant numerical techniques are rarely presented as alter-
nate approaches. For the more complicated numerical tech-
niques, this exclusion 1s understandable. However, the
relaxation technique, which we shall discuss here, 1s so
simple and well-suited to boundary-value problems, that

once learned, it provides a valuable tool for constructing
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solutions for many common and specific. problems. When
used in conjunction with digital computers available today,
relaxation techniques are able to handle problems that are
beyond the scope of practical analytic solution.

In this section we present a straightforward discussion
and derlvation of relaxation and the related over-relaxation
techniques. We then apply these techniques, both to simple
problems such as would arise in g classroom and also to
slightly more complicated problems such as have arisen
from our own experimental work.

Occaslonally, in discussions of Laplace's equation,
students are told that it implies that the potential at a
given point is the average of the potential on a surface
enclosing the point; Then, to demonstrate this, the poten-
tlal at the center of a charged, hollow, spherical conductor
is shown to be the same as the average on the surface. Such
an example serves the purpose well enough for the specific
case of spherical symmetry, but the implications of Laplace's
equation need not be so restricted. We feel that it is
reasonable to demonstrate to students that the general

equation
V2 = 0, (5-1)

can be interpreted as a differential statement of the fact

that the solution at a specific point 1s Jjust the average
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of the solutions over a surface of any shape surrounding

the point of interest. 1If such a demonstration can be easily
given, 1t will greatly enhance and supplement specific
examples. (As will be shown, application of relaxation
techniques to boundary-value problems in electrostatics

is intimately and obviously dependent upon the differential
valldity of the averaged nature of solutions to Laplace's .
equation.)

The presentation of relaxation methods in electricity
and magnetism texts is nearly nonexistent. A notable ex-
ception 1s the introductory text, Volume II of the Berkeley
Physics Course. Yet even here the student must delve into
the recesses of an appendix on advanced problems. There
a recipe, applicable only to a two dimensional Cartesian
problem,‘is given. The basis for the prescription and its
extension to other orthogonal systems is not discussed.
With a few elementary preliminaries we will attempt to
correct such exclusions and present relaxation techniques
in a manner that students of electrostatics can appreciate

and employ, having access to only modest siged computer.

B. Mathematical Preliminaries

To those of us who worked our way through differential
calculus with mild chagrin, the definition of a derivative
1s perhaps familiar yet seldom used. However, for numerical

solutions the finite divided-differences that define a
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derivative as a limit are essential to replacing a dif-
ferentlal equation by an analog algebraic expression.

Recalling the definition of the derivative at a point

Xos We have

f(x_+Ax) - £(x.)
df;ixx) = 1im 0 - o) (5-2).

= Ax~>
X XO o]

This expression gives an approximation to the deriva-

tive when Ax 1s small; that 1s,

df(x)l - ) f(x +ax) - £(x,) i
T = % . (5-3)

Of course, this 1s an approximation and the associated
error 1s on the order of Ax. As shown in the Appendix Iv,

a better approximation is given by

af (x) f(xo+Ax) - f(xo—AX). (5-4)
2AX ?

and for the second derivative,
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a®r(x)| £(xo*+A%) = 2£(x,) + f(x,-Ax)
. X=X (ax)

These last two expressions have associated‘errors-on the
order of (Ax)2, which shows the advantages of choosing ax
small. The extension of these expresslons to partial deriva-
tives 1s straightforward and glven in Appendix IV.

Now let us consider Laplace's equation for a two-

dimensional Cartesian system, at the point (xo,yo):

2 2
) q>(x2,x) - d <I>(x2,y) = 0. (5-6)
9x X=X 3y X=X
[e] (e}
Yo Y=¥o

The analogous expression in terms of finite differences 1is

¢(xo+Ax,yo) - 20(x_,y,) + Q(XO-AXO,yO)
(Ay)2

+

?(xg5y,+y) - 20(x535,) + ®(x,y_-Ay) )

0. (5=-7)
(ax)2

Rearranging this 1last expression, we have
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‘D(Xosyo) = 1 > {@(X0+Ax,yo) + @(XO_AX,YO)
AX .
2(1+(H) )
+ (%%)2 (@ (x ,y,+Ay) + ¢(x_,y -Ay))}. (5-8)

If we choose AX = Ay = h we obtain the simple expression,

o (x,,y,) = llT {i(xo+h,yo>+<b(xo—h,yo)+®(xo,yo+h)+¢(xo,yo—h)}
(5-9)

thlis makes 1t clear that the potential at x ) is équal

0°Y0

to the average of the potentials at points around (xo,yo).
Furthermore, it is simple to obtain equivalent expres-

sions when we need to deal with different coordinate systems.

Consider the Laplace equation for an axisymmetric system

in cylindrical coordinates, ¢ = ¢(p,z):

2 V2

2, _ 3 1 36 320 .
Voo = ;;g ®(p,z) + T (p,z) + ;;5 (p,z) = 0. (5-10)

At the point (po,zo) the equivalent finite-difference

expression is
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@(po+Ap,zO)+¢(po-Ap,zO)—2¢(p

(Ap)2

0°%o)

@(po+Ap,zo)=®(po=Ap,zo)

1
+—h
p 2Ap

¢(oo,zo+Az)+¢(p »25=0z)- 2®(po,z )
(az)?

il
O

(5-11)

Rearrangement vields

®(py,2z,) = :Z ;
2(1+(32)°)

{¢(po+Ap,zo)(1+Ap/2po)+¢(po—Ap,zo)(l~Ap/2oo)

+ (Aey2

i (@(po,zo+Az)+¢(po,zo—Az))}.

(5=-12)

In this last equation 1t appears that we have g singular-

1ty for Py = 0, but for axial symmetry,

g;g- ,= 0 (5-13)
p:

Therefore, by L'Hopital's rule,
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2
R L] (5-14)
p,*0 p, 9P 3p2
° ° o Po
At p = 0, LaPlace's equatlon is
2 2
2 3—% + @—% =0, (5 15)
ap 3z
and since (from Equation 5-4),
2 =0, (5-16)
Plo=0
5(0+h0,2,) = 2(0-8ps2Zg) -+ (5-17)

3

Rearrangement of the finite-difference equation equivalent

to Equation 5-15 gives, for Py = 0.

1
¢(0,z,) =

{MQ(Ap,zo)+(%%)2(¢(O,ZO+AZ)
C2(2+(58)%)

+ ¢(0,2z,-42))} , (5-18)
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C. Techniques for Calculation

If one employs the apbropriate expressions for the
potential given in the preceding section, boundary-value
problems become very amenable to iterative techniques of
solution such as relaxation and its extension, overrelaxa--
tion. To employ either of these, our first step is to
replace the continuous region of interest with a grid net;
work as shown in Figure 5-1. For convenience we set up the
grid so that conductor and boundary surfacés lie along grid
lines. Next we make guesses for the value of the potential
at every point that 1is not fixed by the problem. Such points
will be called "free" points. A convenient initial guess
for the free points would be all zeroes;lélthough this will
work, it 1s very inefficient. Intuitively, it seems fhat
an initialization of the free points based on the analytic
solution to a similar but less difficult problem is a
reasonable first guess.

Relaxation consists of replacing the value of the
potentlal at a particular free point by the average of its
neighboring points according to Equation 5-8, or 5-12 and
5-18, whichever is appropriate to the coordinate-system.

This procedure is applied to each free point in the network,
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Figure 5-1. Two-dimensional X-y grid with ¢;:'s at free
points after one iterations. Tég grid spacing
1s the same in the x and y directions.

x = 1A, y = jA, where 1, J are integers.
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constituting one iteration,. Iterations are continued until

& reasonable convergence criterion is met. We have monitored

the maximum bercent change effected through one iteration,
For the Laplace problenm it has been found that g modi-
fication of relaxation, called successive éver-relaxation
(SOR), may significantly accelerate convergence (Am69),
(Fo60). Here the change in the distribution of values ob-
tained from each iteration of relaxation is similar to g
diffusion process; i.e., SOR acts to enhance the diffusing
corrections by "amplifying" the averaging process.
To utilize SOR one must choose a relaxation factor,
1l <w < 2. For the case of equal p and z mesh steps, an
estimate of the optimum w can be obtained from the expres-

sion

2

Wopt ® 1+|sinA] ’ (5-19)

where A 1s the mesh step sigze.
Denoting Qij as the value at (1,j) obtained from the
2th iteration of ordinary relaxation, we get an "over-

relaxed" value of @f?R by applying

L

SOR _ (l—w)¢2_l + inj

13 13 (5-20)

o
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Then we replace ?ij by @??R. Choosing w = 1, reduces over-
relaxation to relaxation.

Perhaps an e%ample will more fully dehonstrate. Ref-
ererring to Flgure 5-1, suppose the values shown at each
point were obtained after five iterations. Consider the
point, (1 = 2, §J = 2); @22 = 6.2, and using Equation 5-8,
we obtailn

Relaxation Step:

ng = 1/4(L.0T+7.3+45.2+47.2) = 5.925 . (5-21)

If we are using only relaxation, we would move to the next
point and compute the average of its neighbors. However,
if we are using SOR with w = 1.5, our next step is

Over-Relaxation Step:

SOR

6
®55

5

-.56.2 + 1.55.925

I

5.7875 . (5-22)

Next we take ng to be 5.7875 and move on to the

next polint to repeat the procedure.
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D. Applying Relaxation and Successive Over-Relaxation

A typical problem in electrostatics that is easily
solved'analytically is the case of two coaxlal infinitely
long cylinders held at different potentials. Referring to

Figure 5-2, the closed form of the solution is found to
be

2(p) = (aV/&n(a/b))+n(p/b) . (5-23)

This case provides an instructive application of the tech-
niques and a simple means of comparing the convergence
rates of relaxation and SOR. |

We mock-up the infinite length by fixing the potential,
at both ends of a finite coaxlal length, to be the analytic
solution. An equal p and z mesh size of 0.25 was employed.
One hundred iterations were performed wiﬁh a Xerox f—?
computer, first using ordinary relaxation and then SOR
wilth w = 1.75. 'In both cases an initialization of ¢ (p) =
50/(1+p) was used. The results for each, with their
respective errors, at representative p points are given in
Table V-1, after 10, 50, and 100 iterations. 1In the right-
hand column the exact values from an analytic solution are
gilven for comparison. Inspection of the table makes it
apparent that the SOR method converges much more rapidly
than the relaxation technique (w = 1.0). The time saved

in computing can be significant.
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Table V-1. Comparison of Relaxation and SOR Results for
Infinite Coaxial Conductors.

Numerical % Numerical %
Value Error Value Error
: Exact
Solution
w=1.,0 w=1.75
After 10 Iterations
1.5 53.67 34.9 72.92 11.5 82.334"
5.5 7.74 70.2 13.30 48.8 25.964
9.5 2.36 6.1 1.40 36.9 2.228
After 50 Iterations
1.5 69.90 15.1 81.31 1.3 82.334
5.5 " 8.92 "~ 65.6 23.92 7.9 25.964
9.5 1.2 be,2 2.05 7.9 2.228
After 100 Iterations
1.5 75.09 8.9 82.33 0.069  82.334
5.5 12.40 - 52.3 25.80 0.62 25.964

9.5 1.08 51.6 2.21 0.64 2.228
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As an example of the usefulness of the SOR technique :
the example of a finite cylindrical conductor coaxial with
a larger radius and longer closed cylinder held at a dif-
ferent potential has been solved. This geometry is showh
in Figure 5-3. Such a deceptively simple looking problem_
is beyond closed form solution, but by employing SOR methods
(Equation 5-12 and 5-18) the problem can be solved in short
order. The matrix map of solutions results in the equi-
potentlals plotted in Figure 5-4.

In Figure 5-5 we show a second cylindrically symmetric
system that is intractable by analytic methods, yet presents
no real difficultles for an SOR treatment. (This particular
case 1s actually a prototype of an electrostatic particle
focusing system thaf we employ in a recoil-mass time-of-
flight spectrometer.) The potentials obtained from an
SOR treatment of the appropriately scaled system will be
used in calculating trajectories in such a region. The
equipotentials that result from an SOR solution of this
electrostatic problem are shown in Figure 5-6.

After gaining some experience in field calculations and
the estimation of the best relaxation factor to use, we
began the calculation of the potentials that correspond
to our TOF system. The calculations were accomplished in
two parts: . (1) the acceleration zone and (2) the drift zone.
This was possible because the grognded mesh separating the

acceleration zone provides a natural boundary surface for
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both regions. This allows us to use the mesh plane as a

boundary surface for both portions of the calculation.

Acceleration Zone

‘The acceleration region consists of a circular stain-
less steel plate held at 6 kV, a fine wire mesh disc at
ground and a boron nitride (BN3) insulating support connect-
ing the two plates. Basically it is a cylindrical capacitor
with a dlelectric "ring" connecting the two plates. The
radiil of the charges plate and the mesh disc were both 1.83
cm. The length of the dielectric and therefore, the separa-
tion of theplates was 1.67 ecm. The thickness of the insulat-
ing supporc was 0.47 cm. The inclusion of the eielectric
in our model complicates the calculation somewhat since we
no longer have pure Dirichlet boundary conditions on all
surfaces. At the surface of the dielectric we have
Neumann boundary conditions. Dirichlet boundary condi—
tions mean that the value of the function 1s specified on
la particular surface while Neumann boundary conditions
mean that a condition on the derivatives of the function
are specified. 1In electrostatics the relevant Neumann
boundary condition is that the normal component of the
electric displacement vector, Dn must be continuous. As
a result the averaging equation for the potential presented

in the previous secfion 1s not valid at the surface of the
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dielectric. However the continuity of the normal component
of the electric displacement can be translated into an
equlvalent expression using the finite divided differences
of the potentials. Using this method one cén then.obtain
a new expression for the potential at the surface of the

dlelectric. The relevant equation is

1,5 = o,y *8p ¢ 0yyy y)/ (0 + ep) (5-24)

where €, and €p are the dielectric constants for vécuum

(eg = 1) and BN (gD = 4.08), respectively. This expres-
sion was used at the inner and outer surfaces of the di-
electric. A further complication in this freatment was
that the Neumann condition on the outer surface leaves the
potential unfixed on any surface in the rho direction which
1s an unstable situation. There are a number of ways to
deal with this problem (see (Ac70)), the easiest and most
straightforward is to "enclose" the entire acceleration
zone in a large cylindrical box at a fixed potential.
Physically this is very reasonable since in actuality the
acceleration zone is encased in a vacuum chamber that is
held at ground. This was the approach we chose to utilize.
Our mesh step was .0235 cm enabling us to place 20 nodes
in the insulator along the p direction. Two hundred
lterations were performed until the maximum fractional

change in the mesh was less than a part in 10“. Shown in



124

Figure 5-7 is the equipotentials resulting from the over-
relaxation calculations for the acceleration zone. The
first nine lines represent drops in potential of 0.6 kV

as one moves from left to right -- the direction of motion
for a positively charged species. The spacing of these
equipotentials is fairly regular which indicates the
electric fileld strength is uniform. This is especially
true along the axis of symmetry (0 = 0) as can be seen from
Figure 5-8. The top curve is a plot of the 7 component of
the electric field (at o = 0) as a function of distance
from the charged plate. ‘This component 1is relatively
constant throughout the acceleration zone, the total drop
in fleld strength 1s about 5% of the maximum. From these
conslderations one would expect a positively charged ion

to undergo a uniform acceleration in the Z direction. Now
1f we follow one of the equipotentials in the first half of
thls zone it begins to bow slightly as we move away from

P = 0. This indicates the presence of a p component of the
electric field. The lower curve 1n Figure 5-8 shows the

p component of B as a function of the distance from the
symmetry axis. This particular curve was calculated at

Z = .,5cm. As required by the Neumann boundary conditions
the electric displacement normal to the surface is con-
tinuous at the interface of facuum and the dielectric.
However, the électric field component normal to the surface

has a discontinuity at this interface. This implies the
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presence of a surface charge. There is indeed a surface
charge, it is the induced polarization charge résulting from
the external applied E field.

The p component of the field is much weaker than the
Z component, its maximum value is about .08 times the Z
part. Nonetheless it is a defocusing mechanism through
much of the acceleration zone. This effect is most pro-
nounced 1in the first three quarters of the region. Also
the fleld in the p direction increases as the distance from
the center increases. Therefore particles starting out
far from the center of the collection plate should be most
strongly affected. This is one reason for focusing the

spray on center as pest as possible.

Drift Zone

Once the recoill ions have passed through the wire mesh
disc it enters the drift zone reglon. The region 1s made
up of a small radius wire (0.0025 cm) concentric with a
much larger radius pipe. Ideally this was meant to provide
a logarithmic potential to focus the recoils onto the CEMA
detectors at the end of the flight path. It was hoped that
only an electric field in the p direction would result from
thls conflguration. Unfortunately the wire can't be in-
finitely lohg so it has to start and end somewhere. This
means that near the end of the wire the field are not purely

functions of p, they have a dependence on Z that 1is very
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difficult, if not impossible, to determine analytically.
Another nonideal aspect to the real geometry is a sudden
expansion in the radius of the outer conductor. This ex-
pansion, which occurs about 1/3 m from the acceleration
reglon, results in a change in radius from 1.83 cm to 5.2
cm. This discontinuity preserves the symmetry 1n the

p direction but definitely destroys the % symmetry in the .
area of the expansion.. Hereafter I will refer to the area
of the radius change as the expansion reglon., Obviously

we must again employ numerical methods to solve Laplace's
equation for the potentials in the flight tube. 1In setting
up the problem there are immediate differences from the
calculation on the acceleration zone. The first difference
i1s an advantage. In the flight tube region there are only
conducting boundaries to deal with, so only Dirichlet condi-
tions aré relevant. This means the relaxation codes are a
bit simpler. The second difference is a practical dis-
advantage. As we pointed out earlier the step A should be
scaled to characteristic linear dimension of the problem
geometry. However in the flight tube region the most
obvlous scale 1s the radius of the wire —- 0.0025 ecm. But
if we used a A = 0.0025 em for our .5 cm x 100 cm system

we would require an array of nearly 80 million elements --
totally unrealistic for our computer. Increasing the step
size alleviates the problem of array size only at the ex-

pense of potentially large errors creeping into the
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calculation since the error goes as the square of the step
size. In our studies on the relaxation technique applied
to the geometry of Figure 5-3 we found thét the potentials
approached the idealized infinite wire case as we moved
away from the wire end. At a distance on the order of the
separatlon of the wire from the ground plane the potentials
calculated are well approximated by a logarithmic form.- In
the flight tube the separation of the wire and the ground
disc 1s about 7 cm so after roughly 10 cm down the wire we
thought that the use of a logarithm in p would sufficiently
describe the potential field distribution. This effectively
reduced the number of array elements required for the 2
direction. We still had to contend with the problem of

the small radius of the wire for the remaining regions.
Following a more intuitive than rigorous argument we decided
to use the actual wire voltage as the boundary value for
the approprlate p = 0 points (i.e., points in the wire)

and to use a bogndary at one small step size from the p = 0
points. The fixed value of the potential on this surface
was obtained from the logarithmic form discussed previously.
Basically we replaced the "real" wire with a "pseudo"-wire
of a mére manageable radius. This final approximation
allows us to reduce our array size to a realistic number
for computation. The final mesh step size was 0.0235 cm.
In the expansion region we again used the method of employ-

ing the logarithmic form for the potential at a reasonable
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distance from the radius expansion. The results of the
calculations are shown in Figure 5-9 as a number of equi-
potentials. The effect of the wire ends are clearly dis-
played at both ends. At the end nearest the acceleration
zone the equipotentials resemble cylindrical waves, the cor-
responding electric fields will have both P and z components.
So in this region the ESPG is not focusing only in the radial
direction. 1In fact, néar the axis of the wire the effect

of the particle guide 1s to accelerate predominately in the
z direction. At the other end the field acts to focus the
particles on the CEMA detectors and also to deaccelerate
them in the z direction. At the expansion region we can
easily see the field "response" to the sudden radius change,
the equipotentials seem to "expand" to fill the suddenly
enlarged region of space available. The effect of this

part of the fields will be 3 perturbation on particle tra-
Jectories that had been established as stable by the time
thej reach this part of the system. In a sense we can view
the expansion as resulting in an easing of the attractive
force that a charge particle "feels" as it passes through
thls region. The net effect is a defocusing of partiéles
that had made it down a third of the flight path length.

In the remaining regions the equipotentials are parallel to
the wire with no real z dependence as we should expect.
These regions, away from the dlscontinuities, make up about
80% of the system length and act to focus in the radial

direction only.
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Calculation of Particle Trajectories

The relaxation calculations Just described allow us to
obtain the electrostatic forces acting on a charged particle
passing through our system. We are now in a position to
calculate particle trajectories. This means‘we will inte-
grate an appropriate set of equations of motion. For our
case this set will be the Lagrange equations for a charged’

particle 1n an external electric field. 1In cylindrical co-

ordinates we have

mSb - gp2oq 20 | (5-25)
m = (0%) = —q 2 | - (5-26)
m=—s=-q5, : (5-27)

For our case the electrostatic potential, ¢ is independent
of the angle ¢ so the quantity mp2$ is a constant of the
motlon. Actually this quantity represents the angular

momentum of the particle about the z axls, so we have

L = mp24 (5-28)
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Thls constant reduces the number of equations to be solved
to two and allows us to eliminate the variable 6 from the

remalning set. The resulting equations, after some simple

algebraics are:

QE& = L2 - a32 (5-29)
dt2 m2p3 m 3p -
2
dz _ _q23% : -
dt2 - m a3z (5-30)

The electrostatic potentials and their derivatives are
obtained from our célculated potentials by interpolation.
We have used a Lagrange double 3-point form which is dis-
cussed in more detail in Appendix III.

Now ‘we must choose a method for integrating the equations
of motion. The)most common numerical algorithms are the
Runge-Kutta and the Predictor-Corrector methods. FEach of
these are prototypes of a general class of integrators.

Even though these approaches are well documented and
developed, the treatments are all in numerical analysis
texts. For the sake of clarity I will gilve a brief descrip-
tlon and comparison of the Runge Kutta and Predictor-Cor-
rector algorithms.

For this discussion we will restrict ourselves to first
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order equation§ since the extension to higher order equa-

tlons 1s straightforward. By definition a first order equa-

tion has the form

¥ = rix,y) (5-31)

We want to obtain a solution y(x) that satisfies (5-31)
and a specified initial condition. Since we can't solve
for y(x) analytically, we approximate the true solution
at discrete subintervals of the independent variable x.

Consildering equal sized sublntervals the step size, A is

A = - (5-32)

where n is the number of subintervals and [a,b] is the range
of the integration. With this defintion of the step size,
our problem is to obtain approximations, ¥4 to y(x) at a

set of base points, X; where

Xy = x  + 1A (5-33)
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and

yi = v(xg) (5-34)

The various procedures to accomplish this goal can be
divided into two groups, one step and multistep methods.
Runge-Kutta methods are a common example of one step
methods. These allow bne to calculate Y4471 using only the
differential equation and information at the point Xy
(1.e., ¥y1). Multistep methods require values of yi and
f(xi, yi) for several different points, earlier and possibly
later points. The predictor-corrector methods are a class

of multistep methods.

All Runge-Kutta methods have the form

Vi41 = V1.7 A c g(xy, vy, A) (5-35)

Here g is simplx an approximation to f(x,y) on the sub-
interval Xy £ x< X141+ The usual procedure is to express
g as a linear combination of derivative evaluations on the
integration interval. Each evaluation is used to predict

a better estimate of Y41 which will then be used to obtain
an improved derivative estimate. For our calculations

we started with a fourth order method due to S. Gill (Ca69).

The algorithm is
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= A
Y141 T V1 * g (K +ay Ky 4 a, - K3 4Ky (5-36)

with

a; = 201 - 1//5) (5-37)
a, = 2(1 ; 1//2) (5-38)
Ki = (x4, ¥q) (5-39)
Ky = fxg + A,y5 + AK,/2) (5-40)
Ky = £(x;+8/2,5;+(- 2 + 1//2) 8K, ) (5-41)

Ky = f(xi+A,yi-A°K2//§+(1+1//5)A°K3) (5-142)

3

The K's are evaluated successively in ascending order.
Although the formulas appear a bit long when translated
into a computer code the algorithm is very simple and com-
pact.

The predictor-corrector algorithms are more complex
than the corresponding Runge-Kutta routines. For the sake
of brevity, we will present a cursory description. For a

fuller and more rigorous discussion see (Hab62). The
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first step 1n the predictor-corrector method is to fit a
polynomial to the three most recent points of the deriva-
tive then extrapolating this polynomial to the next step
and integrating the fitted polynomial to obtain an'incrément
that gives yp. This Yp i1s the predicted value. This value
1s then used in the original differential equation to ob-
tain a better estimate of the derivative at the point we
previously extrapolated to, i.e., Xy41° Now we again fit
a polynomial but this time to our new derivative estimate
and the derivative at earlier points. We integraté under
this new polynomial to obtain a second estimate of y at
the next x sﬁep. This second estimate 1s called the cor-
rected value, Yo- Next we check the difference between

Yp and Vo If it 1s too large we can repeat the procedure
wlth a smaller step size. If too small we can proceed
with a larger step size. The most important point to note
i1s that at each step forward we have available an internal
measure of the accuracy of the integration. The measure
is the difference between the predicted value and the cor-
rected value. One dlsadvantage of the multistep method

is that one must use another method to start the integra-
tion. This 1s because in the very flrst part of the
algorithm a polynomial is fitted to earlier polints that
are not available at the outset. For our computations

we started with the Gill form of the Runge-Kutta routine.

After advancing three steps with the Runge~Kutta routine
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we then switched over to Hamming's Predictor-Corrector

method (Ca69). The form of this algorithm is

Predictor

Pitr = ¥y 3+ 3 (Fy - £y o +2F, 5) (5-43)

Modifiler

M141 = Piyy * 57 (eg - py) (5-44)

Corrector

Cy41 = 1/8 Oy - yy o+ 3A(f(xi+l,mi+1) +2fy - £, )

(5-45)
Error
e = o (cy, - ) © (5-16)
1+1 7 T2T ‘%141 T Pipy
Final Value
Y141 T %441 " Pyp (5-57)

The term €441 the truncation error, is checked at each step
to determine whether the step size should be changed.
If we dompare the two algorithms just presented it can

be seen that the Runge-Xutta routine requires four separate
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evaluations of the derivative term while the Hamming pre-
dictor—corrector only needs two evaluations of f(x,y).
Generally this difference willl mean that the predictor-
corrector algorithm should be faster than the Rungé—Kutta.
In an attempt to see how significant the difference in speed
of the two algorithms, we ran our computer routines for each
algorithm on a number of different analytical functions.

In Table V-2 are the results of the comparison, in
every case the Runge-Kutta algorithm required at least 40%
more time than the predictor-corrector routine. This is a
significant difference. When we begin calculating tra-
Jectoriés in our calculated fields the derivative evalua-
tions involve a number of interpolations in the field map.

" These interpolations can be very time-consuming so we want
to keep these derivative evaluations to a minimum. This 1is
another advantage of the predictor-corrector method.

For the actual trajectory calculations we used the Hamming
method wlth a variable step size. Whenever the truncation
error term was greater than 1 x 10_5 the integration step
size was cut in half and the procedure continued. If the
error term was less than 1/50 of the upper 1limit on the
error then the integration step size was doubled. This
was very useful for our problem since the particle traverses
long regions of slowly varying potentials on much of its
flight path so the step size can be very large. In the

more rapidly changing regions the step size reduces in
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Table V-2. Comparison of Speeds for Runge-Kutta vs.
Predictor-Corrector Routines.

Time of Calculation
for 5000 Steps (in seconds)

Functilon Predlctor-Corrector Runge-Kutta RK/PC
tanh(x) - x 15 23 1.5
exp(x) - x - 1. 15 21 1.4
sech(x) - 1. 16 22 1.4
cosech(x) + 1 19 31 1.6
cosh(x) - 1. 15 21 1.4
sinh(x) - x ‘ 15 21 1.4
log(x) - x + 1. . 16 22 1.4
x + 1/x 16 22 1.4
cos(x) 15 21 1.4

sin(x) 15 ‘ 20 1.3
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response. In addition to the error monitor we.checked the
constancy of the part;cle's totél energy. Since we have an
electrostatic problem the sum of the kinetic and potential
-energy should be a constant. This was true for our calcula-
tions to one part in 105. Special care had to be taken in
crossing from the accelefation zone 1into thé drift zone. If
one does not insure that one of the integration steps
"lands" on the grounded disc position then it appears that
the electric field in the acéeleration région continues to
act on the particie a short distance into the weak field
zone. The result of this 1s strong nonconservation of
energy and very incorrect results. After integrating dowﬁ
the length of the flight tube the particle's p position was
" checked to determine whether it was within the radius of
the CEMA detectors (pCEMA = 1.25 cm). If 1t was, then the
time, p position and velocities are recorded and the event

1s considered a successful hit.



CHAPTER VI

THEORETICAL MODELING RESULTS

In the previous chapter we presented the tools that
wlll be required to model a specific time-~of-flight peak
that has been experimentally observed. In the following
section we shall present the formal aspects of the problem.
This will include clearer definitions of 1) our approach,
2) the particular isotope chosen for study, and 3) the
most effective use of the mathematical tools discussed

previously.

1. Approach

Basically our problem is that we have, as a physiéal
observable, a distribution of events as a function of their
assoclated times-of-flight through the SIEGFRIED system.

Our goal 1s to relate the observed distribution to a reason-
able set of initial conditions that will be related to the
particular 1sotope of interest. Since we are interested

in correlating the particles' initial recoil energy to the
observed peék broadening, the kinetic energy 1s an important
initial parameter that must be specified. Also, the source

of the recoils is a finite size spot, so we should include

142
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this fact in the initial distribution. Fortunately the
source spot 1s approximately circular and well-centered on
the collection plate. After passage through the SIEGFRIED
TOF system the initial particle distribution in position
and energy 1s transformed- into the observed -distribution in
time-of-flight. If we denote the initial distribution as
NO(E,DO) and the final distribution Pf(T), then the process

of measurement can be represented as shown below:
NO(E,po) —— SIEGFRIED —— Pf(T)

Mathematically we will consider the action of SIEGFRIED
on the 1nitial distribution as expressed by an integral

transform of the form:
Pf(T) = fffS(E,DO,T,Df)NO(E,DO)dDOdEde (6"1)

Here S(E,pO,T,pﬂ) represents the transformation of a
particular kinetic energy E and position Po distribution
in the energy and position interval dEdpo. (The effect
due to the finite size of the detector 1s taken into account
by integrating over final positions with Pe less than or
equal to Ry, the radius of the CEMA detectors.)

Ideally S(E,pO,T,pf) and No(E’pQ) would be expressible
in a closed form. Then we could merely integrate and solve

the problem easily. Even more appropriate would be to
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minV??E;?9?¢%PQ?OQQH§7;§HPPOSe we express our integral trans-

-farm, Equation 5-1, as

Pe(T) =N (Eo)  sea

Here izyrepresents the integral transform operator. Now

if an inverse ofwg? exists, then we can invert the problem.

Denoting the inverse bycg?-l we get from Equation 6-2

N, (E,0,) = F71 po(m) (6-3)

This last form says that, by usingcg?-l on the observed
final distribution Pp(T), we can reconstruct the initial
distribution function. That is precisely what we would
like to do -- if we could.

The problem 1s that the kernel of the transform, S
is not expressible in a simple form. We do know that
solying the equations of motion for a set of initial condi-
tions that result from a particular distribution will allow
us to follow the time evolution of the distribution. This
is the functional effect of S on the initial distribution,
but we cannot "find" an inverse, so we are basically solv-
1ng the problem in an unavoidably roundabout manner. We
will assume a given initial distribution, predict a test
distribution F(t) and compare this with P#(T), the ob-

served distribution.
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2. Cholce for the Study

. The particular isotope I have chosen for this modeling
study 1s *°Mg. It is a positron emitter with a half-life
of 12.1 sec. The decay energy 1s typical of isotopes seen
by SIEGFRIED (QEC = 4.056lMeV). 91% of the decay proceeds
from the 3/2+ ground state of 23Mg to the 3/2% ground
state of 2%Na. The decay has 70% Fermi fraction and 30%
Gamow-Teller fraction (as defined in Chapter IV).

Experimentally 23Mg is seen very strongly in the TOF
spectrum resulting from 27Al + 70-MeV *He (See Figure 3-1).
Its TOF peak 1s the largest feature in the spectrum and
1s very well separated from other peaks in the spectrum.
The shape 1s typilcal of TOF peaks we have observed, and
the high number of counts in this peak allows us to fit it
very well with SAMPO. This gives us good estimates of

peak parameters such as the width and the tailing.

Finlte Source

To take account of the finite source size we considered
the source to be made up of 8 concentric rings. Each has

a mean radius of n+*(.075 em) with n = 1,2,...8.
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Initlal Conditions

An important part of our modeling will be the integra-
tion of a large number of particle trajectories. While
the integration codes are fast (roughly six complete
integrations per minute) We want to be as efficient as pos-
sible. A very significant increase in efficiency can be
obtained by eliminating initial conditions that result in’
trajectories that strike the boundaries of the system or
are otherwlse unreasonable. This is an important considera-~
tion and will be the focus of this section.

The maximum initial recoil energy, R is fixed by the
decay energy as shown in Appendix II. If we denote the
maximum kinetic energy of the electron by T, (in MeV)
and the mass of the recoil by A (in amu) then the maximum
-kinetic energy of the recoil R (in eV) can be obtained

by the following equation from Appendix II

- 537
R = =T (T, + 1.022) (6-4)

Thls 1is a bound on the square of the velocitiles. For

2°Mg the maximum kinetic energy of the electron is 3.03

MeV. (For positron emitters Ty = Q¢ - 2mec2). The result-
ing maximum recoil kinetic energy is 290 eV.

By using a gross model of the TOF system and some
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simple energy conservation arguments we were able to ob-
tain rough limits on the transverse velocity and the
angular momentum. To demonstrate this we use the geometry
of Figure 6-1. 1In region I the electric field has'only'a
Z component, at Z = d is a ground plane and region II has
a potential that 1s purely logarithmic in p. This means
that a particle of mass m and charge q starting from Z = 0
experiences only accelérations in the Z direction in region
I and only o accelerations in region II. The system 1is
cylindrically symmetrlc and so the angular momentum about
the Z axis (L) is constant.

Consider a particle of mass m and charge q starting

from Z = 0, p = DO with an initial kinetic energy R. In

cylindrical coordinates
_ + 2 2 2 s 2
R = 1/2m(p + L/ (m p )¢ + Z7) (6-5)
Since 1t starts from the plate held at 6 kV its potential
energy 1s 6 keV. Denoting the potential energy by U, we
have
U =6 keV

The total energy, E of the particle is conserved so

E =R + U, = constant (6-7)
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In crossing the region I only the velocity in the Z direc-
tlon 1s changed. When the particle reaches the ground
plane it has a total Z velocity, Z(d)

7(d) = zg + /20 _/m (6-8)

The time necessary to cross region I is td, which 1s ob-

talned in Appendix I as

2U
= md | 7 V 72 4 0 -9).
= [-z V2l + — .] (6-9)

The p velocity 1s not constant if the angular momentum is

nonzero, at Z = d and t = td we have

5 :
2 ,L° 1 _ 1

: - _\/° t S (- ) (6-10)

p(tg) = pq =¥ 2 o2 2

o] m p

There 1s drift across the region in the direction given by
Equation AI-19, which for t = td gives

‘J[<5§ + (L/moo)2)t + 509032 + (L/m)°
pO

= t = -
P = p(tg) (popo)2 + (L/m)?

(6-11)
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Now we consider the particle to be infinitesimally far
from the ground disc at Z = d but now in region II where
it fields a force due to the logarithmic potential in p.
We assume the p position is given by Equation 6-11 and the
e veloclty by Equation 6-10. Again the total energy is
constant but in addition the velocity in the Z direction

is also constant so defining T as follows:
T = 1/2m (52 + L2/m%p2) (6-12)
Then the quantity
T + W = constant = Eq

where W 1s the potential energy. 1In region II, W is

v :
W= m tn(p/b) (6-13)

VO 1s the potential on the center wire, a is the radius
of the outer conductor. Thus, at the beginning of region

IT

‘2
MPg . mr? Vo _
Ba = =5+ 55+ mmraspy n(eg/b) (6-14)

2pd
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Defining new quantities T¢ and Tp as

2
L .
T (p) = = (6-15)
¢ 202
m.2
T, = —g— (6=16)
we have
VO
E = Tg(d) + Ty(d) + g—r2my n(py/b) (6-17)

If p = b, the particle has struck the outer boundary and

its p velocity 5 and potential energy W are both zero, so:
Ed = T¢(b)P (At p = b) (6-18)
From Equation 6-17 we have
Vo
Eq = Tp(d) + T¢(d) + Tn(a/b) 2n(pd/b) = T¢(b)
(6-19)
From Equations 6-10 and 6-16,

Tp (pd) = Tp(po) + T¢(po)(l"(po/°d)2) (6-20)
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4T¢(b) = Tq)(po)-(po'/b)2 (6-21)

Rearranging Equation 6-19 and substituting, we have

- -V
To(pg) + Ty (o) (1=(00/0)%) = grfes an(og/b)  (6-22)

- which gives bounds on the initial P position and velocity

and angular momentum. Suppose initially the angular momentum

is zero, then

=V
TIS&X (DO) = m ln(pd/b) ‘(fOI’ T¢(po) = 0 (6—23)
with

Pq = 5otd t P (6-21)
This fixes the bound on the maximum initial p velocity.
If L = 0, any initial velocity less than this maximum will
not hit the outer wall. If we want the corresponding
maximum angular momentum for 50 = 0, then Tp(po) =0

For Tp(po) = 0

X (g ) = -V in(pg/b)/{en(a/b)e (1-(o /0)°)}  (6-25)

with
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pg = Py Y1+ E— - (6-26)

Equation 6-25 sets a limit on the maximum angular momentum
for a given initial p value, p,. Actually, Equations 6-23

and 6-25 are transcendental, since T, and Tp enter into the

¢
logarithmlec term through Pg> Nevertheless, they can be:
solved graphically accﬁrately enough for our purposes.

This was done and the results compared with limits on these
quantities obtained from the actual numerilcal integration
of the equations of motion as described in Chapter V.

The results are given in Table VI-1. Tpred are the limits
oﬁtained from our simple argument just presented, and pium
are the corresponding bounds obtained from the numerical
integration. Considering the simplicity of our gross model,
the agreement 1s very good. The most severe deviations occur
for larger values of Py where our assumptions about the
field uniformity (pure Z field in region I, pure log(p)

in region II) are most strained. '

Once a simple form such as Equation 6-23 or 6-25 is
availlable to estimate bounds, we can obtain numerical
bounds, in a much more efficient manner. This 1s how the
bounding curves shown in Figure 6-2 were obtained. To a
precision of less than 1 eV the limits were independent of
the Z velocity over the total range of Uj.

To relterate the function of these limit curves: they
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Table VI-1. Comparison of Bound Values.

Tgax values
pred num
o To T
(cm) (eV) (eV)
.15 26 24
3 21 19
.45 ; 18 14
6 14 10
TI;;Iax values
Tpred ’ pium
Do ¢ .
(cm) (eV) (eV)
.15 31 29
3 27 28

L5 23 26




155

Figure 6-2. Tp - T¢ bound curves for several initial
positions.
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allow one to determine quickly if a set of initial veloci-
ties and position will lead to a trajectory that cannot
span the flight length. For instance, suppose one set of
initial conditions we might choose to integrate cofrespbnds
to Py = 0.15, Tp = 10 eV, and T¢ = 30 eV. Referring to
Figure 6-2, we see that this set determines a point that
lies above the bound curve labeled Po = 0.15. This tells.
- us that the resulting trajectory wiil end up striking the
wall of the outer conductor and thus eliminates considera-
tion of these initial conditions.

The usefulness of these 1limit curves cannot be over-
emphasizéd. They allowed us to eliminate quickly a very
large number of intqgrations and to focus in great depth
on potentially "sucqessful""trajectories. By successful
I mean trajectories that end with the final p position
less than the radius of the CEMA detectors, which was
taken as 1.25 em, and the Z position equal to 110 cm, -
which 1s the length of SIEGFRIED.

When an event was successful, the time, initial and
final positions, and velocities and total energy were
flled. The results are best described graphically as
shown in Figure 6-3. The curves here represent successful
events for various initial p values as functions of the
quantities T¢ and Tp defined earlier. The interpretation

of these curves is that, for a set of initial conditions

corresponding to a point below the curve (for the associated
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Figure 6-3.
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Po value), we will obtain a successful event. In a manner
of speaking, these pPlots represent detector hit'efficiency
curves. Comparison of Figures 6-2 and 6-3 seems to imply
that both the limit curves and the hit efficiency curves
have similar structure or relationships between T¢ and

Tp. If one considers the area bounded by a particular
curve in elther Flgure 6-2 or 6-3, we have a measure of.
the efficlency of the éystem. Comparing equivalent areas
on each graph, it ‘appears that roughly half the particles
that make it down the flight tube without striking the
outer wall, will be detected.

Although our system contains a number of apparently
disruptive elements{ the trajectories seem to have a smooth,
consistent behavior. This i1s borne out by Figures 6-4
and 6-5, which are plots of the final p position (pf)
as a function of the quantity T¢ for various values of the
p velocity. There 1s apparently some type of harmonie
behavior exhibiQed by these curves. Note that the maximum
of each curve appears closer to the origin in Figures
6-4 and 6-5 in a very regular pattern dependent on the
p veloclty. Actually, 1t appears that all the curves
(except Tp = 0) are very similar but differ in some type
of phase factor dependent on Tp. It would be a useful
exerclse to attempt a decomposition of these curves by
Fourler decomposition. The sharp tékeoff in amplitude
shown by the curves in Figure 6-5 suggests some ﬁype of

Bessel functions might be reasonable for the analysis.
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.5

Figure 6-4. Graphs of final p position as function of T¢
(for fixed initial p velocities).
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0.0
o

Figure 6-5. Graphs of final p position as function of T¢
(for fixed initial p velocities).
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Initial Energy Distributions

In our parametric fits to the observed peak wildths
discussed 1in Chapter IV, we assumed various forms for
energy dlstributions for the recoll ions. These forms
included (1) a flat energy distribution, (2) a Fermi distribu-
tion, (3) a Gamow-Teller decay distribution, and (4) mixed
F-GT distributions. To include such distributions in oﬁr'
| modeling study means we will be making a number of different
choices for the term NO(E,DO) in Equation 6-1. The flat
distributlon means that Ny 1s constant. The Fermi and
Gamow-Teller distributions are shown in Figure 6-6. Thesé
plots were obtained from fofmulas_given in (Jo63). The
distribution function for the mixed decay corresponding
to 23Mg 1s shown in Figure 6-7. Even though we will be
using the various distribution functions Jjust mentioned to
approximate the solution of Equation 6-1, this does not mean
that we‘will need to reintegrate the equations of motion
for each distribution. That would be slow, wasteful and
redundant. As stated earlier, our real difficulty lies in
obtalning a means of'evaluating the effect of the kernel
function S(E,pO,T,pf). In plain terms, we need to know

. what Pp and T result from an initial E and p this is

o’
the function of S(E,pO,T,pf). Exactly how often a par-
ticular E and Po must be considered is the functlon of
NO(E,pO). Integration of the equations of motion will

yield the necessary information about S(E,pO,T,pf).
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NO(E,DO) 1s ours'to vary. In representing the distributions,
we divlde the energy range bounded by Equation 5-4 into a
set of ten subintervals of a set length. So, in practice,

our approximation to Equation 6-1 can be expressed'as

10
Po(T) = ¢ S(E;,Ty) N_(E;)(AEs) (6=27)
f =1 ®1°8550%37 Mot J
and
10 ( 628)
P~(T) = I T,) (6=2
£l 3e1 Prity

We have suppressed the p arguments for convenience. The
index 1 refers to the ith bin in the energy interval and
AEi is the width of the ith bin. The term o4 1s a weight

factor. For the flat distribution No(Ei)AEi is constant,

sO we have

flat -
PE1N(T) =4 I q,S, (6-29)
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with
sJ z S(EJ,TJ) | (6-30)

Thus, by evaluating the predicted Pglat for-a flat distribu-
tion, we are able to obtain the elements Sj which are the
most important and elusive quantities.

The combination of Equation 6-27 and 6-28 allow us to

recast our problen in the form of matrix equations.

P = g N, (6—31)_ ‘
We construct the S matrix from Equation 6-29 and then
proceed to apply Equation 6-31 to the various initial

distribution functions of interest.

Results of Modeling

The determination of S was accomplished as just dis-
cussed and led to a number of reasonable conclusions.
First, the TOF of a particle is completely a function of
the Z velocity within a few nanoseconds of the 5 usec TOF.
While not surprising, it is sémething that could not be
stated definitively before the calculations because of
the Pield nonuniformities. Second, the effect of the kernel
function S will not transform the flat energy distribution

into the observed form. The result 1s basically still a
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Square wave as we input. 1In a way, the resolution of the
difficulty seems to be hinted at by the first cbnclusion.
Thils tells us that the TOF 1s dependent on the component
of the momentum in the 7 direction. Instead of using a
flat energy dilstribution,- 1t seemed reasonable to attempt
a flat momentum distribution. Actually we used a flat
distribution in the % component of the momentum since the.
. results are independenﬁ of the other components. In addi-
tion to the independence of the observed distribution on
the transverse components, the initial distribution in
these components are severely restricted by the 1limit curVes
of Figure 6-2 and reduce to a constant, multiplying the
distribution in the Z momentum,

The results of the calculation using the flat momentum
distribution gives a set of functional values of P(Ti)
at unequally spaced values of Ti’ the time-of-flight for
the 1th bin. Treating these as functional values at un-
equally spaced base points (Ti‘s), I used a Newton Divided
Difference Interpolation (See (Cab9)) to generate inter-
polate values at equally spaced time intervals. These
values were then used to generate the plot shown in Figure
6-8. A similar procedure was followed for the other
distribution functions. For the Fermi and Gamow-Teller
initial distributions, the distribution functions that are
the momentum equivalents of Figures 6-2 and 6-3, respec-

>
tively, were used as the NO(P,po). The distribution
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Table VI-2. Comparison of Peak Widths for Various Distribu-

tions.
Cbs. flat Fermi GT mix
Peak No No ' No Nn
Base Width
(nsec) 145 135 13 135 135
Width at : :
1 Max 90 75 120 130 120
(nsec) :
Width at
5 Max 20 16 70 - 105 100

(nsec)
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corresponding to the qorrect admlxture of F and GT decay
for 2°Mg was constructed by a linear combination of the F
and GT distribution. The form used was

P = < PF+ (l - CC)PGT ' (6—32)

mix
here « = .7 for the case of 23Mg.

The predicted TOF distributions corresponding to the
Fermi and Gamow-Teller initial distributions are shown in
Figures 6-9 and 6-10, respectiveiy. In Figure 6-11 1is
shown the observed TOF spectrum resulting from the reactidnv
2?Al + 70-MeV *He which was discussed in Chapter III.

The focus of interest is the largé 23Mg peak that we are
attempting to simulate. On each of the 23Mg peaks in
Figures 6-8, 6-9, 6-10, and 6-11 are given the full widths
at fhe bése, at .1 peak maximum and half maximum, all in
nanoseconds.

A visual comparison of the three predicted TOF dis-
tributions with the experimental 23Mg peak heavily favors
the peak shown in Figure 6-8 as the best reconstruction.
The peak resulting from the Gamow-Teller dis?ribution
(Flgure 6-10) has a tail on the short time side as the
experimental peak, but 1s clearly the wrong shape. In
addltion, this peak is far too broad except at the base,
The Ferml distribution gives rise to a peak (Figure 6-9)

that 1s actually a rough mirror image of the experimental.
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By this I mean that it has a sharp cutoff on the short
TOF side and tailing on the longer TOF side which is the
opposite of the experimental 23Mg peak. The peak in Figure
6-8 results from a flat momentum distrigution and 1s an
excellent reproduction of. the expefimental peak. On the short
TOF side there is the long‘bowed—tailing that 1is so obvious
in Figure 6-11. Then the distribution comes to a sharp-
spike with the sudden dropoff on the long TOF side in the
same manner as the experimental peak. The peak resulting
from the initial distribution from Equation 6-32 has a shape
similar to that of Figure 6-9, except that it 1is broader at
-1 maximum and half maximum (See Table VI-2). |
 Quantitatively the NT12% (flat initial momentum distribu-
tion) gives the best predictions also. Referring to Table
VI-2, the base width predicted is within 6.9% of the experi-
mental width, the width at 0.1 maximum is within 16% and
the full width at half-maximum (FWHM) is 25% off. This com-
pares very well with the various widths predicted from the
Fermi, GT and mixed distributions. These last three
dlstributions result in widths at .1 max and half-max that
are from 50% to 500% in error! The base widths for all
the distributions are all the same since they correspond
to the same definite limiting type events. That is, the
base widthsvare set by the time differences between a
particle starting out with 0.0 initial recoil energy and a

particle starting out with the maximum velocity in the Z
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direction. Both cases can only occur in one way and so
are independent of the initial distributign assumed.

- In many experimental instances, one uses the position
of the peak maximum as the best estimate of the pdsition
of the centroid and then uses the associated time-of-flight
to calculate the mass from Equation 3-2 (in Chapter III).
The position of the peak maximum for the observed 23Mg 1s.
4910 nsec. The "flat momentum" peak has a predicted posi-.
tion of the maximum at 4915 nsec and the Gamow-Teller peak
at 4908 nsec; both are in good agreement with the real peak.
The Fermi distribution peak of Figure 6-9 has its maximum:
at M800'nsec; which 1s well off the correct position. 1In
fact, 1f we use Equation 3-2 with TOF = 4.8 psec and HV
= 6 kV, we get A = é2.0 -- off by one complete mass unit.
This 1s not the case for the observed peak but does demon-
strate the care that should be taken in choosing positions
(on the peak of interest) to calculate the mass.

Although a little surprising, the simple flat distribu-
tion is the most successful in explaining the observed
23Mg peak. The success 1s fairly impressive; (1) the
peak position 1s correct to 5 nsec, which is a .1% error,
(2) the base width is correct to 6%. Thus, theoretical
broadening accounts for nearly 94% of the observed peak
broadening. The simple model demonstrates the importance

of the recoil energy on the observed peak broadening very

clearly.



CHAPTER VII
CONCLUSIONS

In this thesis I have tried to present experimental’
results and theoretical analyses concerning the SEIGFRIED
Recoil Mass Identification system. Before closing, I will
briefly summarize the work presented and the conclﬁsions
drawn throughout this work.

First, 1t was demonstrated that the system works well
in a number of different mass regions, although the chemi-
cal nature of the HéJRT syStem can be a real concern.
Second, the observed TOF peaks were shown to contain in-
formation about the recoil ion's initial kinetic energy,
which 1s a direct measure of the assoclated decay energy.
To demonstrate the relation between the recoil energy and
the peak shapes, I adopted a double-edged approach. First,
I showed that a parameterization of the observed peak
parameters ylelds reasonable predictions of the recoil
energy and the decay energy. Second, I developed a reason-
able theoretical model using numerical methods and used
this model to simulate a theoretical peak corresponding to
23Mg which I observed experimentally. The results of the

modeling study were very successful. Using a simple

175
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distribution, the experimental peak shape is reproduced
very closeiy. The broadening of the peak was shown td be
due to the recoil energy, and the theoretiﬁal broadening
from this was 95% of the Observed broadening. The ‘overall
Success of our study in the experimental and theoretical
studies proves the viability of using TOF system such as
SIEGFRIED to identify mass products (measure A) and measure
decay energiles through the recoil energy.. Combining these
two measurements in g simple system provides the nuclear
experimentalist with very useful and different tool for

the study of nuclei far from stability.



APPENDIX I

As an approximate model of the time-of-flight system,
we will use the geometry shown in Figure AI-1. In region
I, the acceleration zone, there is a uniform electric field
£ with only a Z component. In region II there is a fileld-.
free drift zone of length 2. Thus, a particle of mass m
and charge q 1s uniformly accelerated across regioh I and
then drifts through region II.

Using cylindrical coordinates'(p,¢,Z), the classical

Lagrange equations of motion are:

L mp) = med? - q 2 (AI-1)
ag_t_ (mp23) = 0q %_% (AI—2)l
L ) = -q (AI-3)
In region I
E = % 7 (AI-L)
¢ = V(1 - z/4) (AI-5)
& i) =q3 (AT-6)

177
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Integrating twice with respect to time,

2

= s V t :
2=y ¥ Lt %3 2 (AI-7)

where Z  1s the velocity in the Z direction at t = 0. We
conslder all particles starting from Z - 0 so ZO = 0,
by e al 0 (AI-8)
o] md 2 -
Solving for t, we have
_md 2 2qVZ
t = o -2, + ¥I + 3 (AI-9)

When Z ='d, the end of region I, the particle undergoes no
further acceleration. Defining t = t(z=d), the accelgratioh

time, we have from Equation AI-9

md . 2 2qV
= — {_ + + -
T qv { ZO ZO m (AI-10)

Since ¢ 1s independent of ¢ and p in both regions I

and IT, the remaining equations of motion are simple.
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First, 39/3¢ = 0, so Equation AI-2 tells us that mp2j is
a constant of motion. Actually, this is the angular momentum

about the Z axis. Thus, we have

mp2¢'= constant (AI-11)

-
1

Using L to eliminate ¢ from Equation AI-1, we have for

the p equation

a% _ L2

1 .
—— (AI-12)
dt2 m2 p3 '

Equation AI-12, in épite of its simple form, is an example

of a second-order nonlinear differential equation. While
nonlinear differential equations of any order are notoriously
difficult in general, this particular equation can be ‘solved.
Since appropriate references were not found we will solve
this 1n a step by step manner!

Defining a new independent variable X,

- Lt -
x = = (AI-13)
Equation AI-12 becomes
2
dx p3
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Defining u =,%%, we have

du _ 1
Y3 T 3 (AI-15)
p
Integration gives
2 _ .2 _ 1 1
P P
or
de . 2,1 1 -
dx - U ¥ 5 - (AI-17)
P Y
o}
Integrating from x = 0 to x, we have
p2
X = ° J W2 + L) 21 - up ) (AI-18)
1+(u_p )2 o] o"o
o*o : o
Inverting to solve for p, we get
2 2 2
+ +1
o(x) = \/ L(ug + 1/p,) x+ug0,] (AI-19)
ul + 1/ 2
o} Po

or in terms of t, L, and Po
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p(t) = »p

‘/ [0+ (L/M2) /0245 5 12 + (L/m)2
o}

AI-20
- > ; ( )
(oopo) + (L/m)

In region II there are no external forces acting on
the particle, so the equations of motion are trivial. The
only one we need to look at is Equation AI-3. For a par- .

ticle "starting" from Z = d we have

2 .
g_% = 0 (AT-21)
dt
7 = Vy a constant ' (AI-22)
and
7 = th + d ; . (AI-23)

where t 1s measured from time of passing poind d. From
the discussion concerning region I, we know that when Z = 4

its velocity Zd is

5 2 . 2qV AI-24
Zq = zo + = ( )

Thus
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3

. vi«.;‘:
P g
[ A ,\i‘

We are interested in the time g particle takes to drift

through region IT. Calling this time T from Equation AI-23,

we have

T = (L - d)/v, v (AI-26)
T= (2 - d)/ zg + 331 | (AI-27)

Thils willvbe called the drift time. The total time of

fllght 1s the sum of the drift time and the acceleration

time:

TOF = T + 1 (AI-28)

TOF = —k=d) + 9% {-7_ + V&z + 24V (AI-29)
57 d o) o m

72 4+ 29V -



APPENDIX II

A B decay 1s actually a three-body event, involving
the decaying nucleus, the B particle, and a neutrino. If

we define the following momenta and energles:

; momentum vector of daughter nucleus of mass M
S electron momentum vector

a Neutrino momentum vector

EO 'totél decay energy

E total electron energy

Ev total neutrino enérgy

R recoil energy

then the appropriate conservation laws take the forms:

E, = E+E, +R (AII-1)
q = E,/c | (AII-2)
E2 = p2c2 + 2.4 (AII-3)
R = r2/2M (ATI-1)
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> > >

r=p+q (AII-5)

r2 = p2 + q2 + 2pg cosé (AII-6)

since R << E + EV

E, = E + E, , (AII-7)
, B2 (E-E) A1-8)

q = —- 2 —e . AIT-

o2 52

According to relativistic energy-momentum relation for the

electron,
p? = (82 - m?cu)/c2 (AII-9)
(E.-E) 2 2
r? = (.E2--mzcu)/c2 + (EO-E)2/C2 + i E ;m € cos8
(AII-10)
2
R =L = —;L—-(Ez—mzcu) + (E -E)2 + (E_-E) VEZ-mzci cos
2M 2Mc2 o) o}
: (ATI-11)

We want R 1n terms of the kinetic energy of the electron,

since for B~ decay the QB in the literature represents
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the maximum kinetic energy of the electron. Defining

T as the electron kinetic energy, we have

T=FEF - mc2

R = —2— T(T+2me?) + (T -1)2 + (TO-T)‘V&(T+2m02) coso

2Mc?2
(AII-12)
R 1s a maximum for 6 = 0 and T - Tys so
2
T (T, + 2mc®) )
R = (AII-13
Max A2Mc2
If we have T, and me? 4n units of MeV, we can get RMax
in eV by the formula
$. 68
R = 2322 (p_(1_ + 1.022)) (ATI-14)

where A 1is the mass number of the nucleus.



APPENDIX III

In any interpolation scheme, one starts with values
of a function f(x), that is known (or conveniently ob-
talned) at definite values of the independent variable x.
The actual interpolatidn is estimating the values of the
function for arguments between the base points Xgs X9,
X25+++5 X at which the functional values of f(xo); f(xl),
£(x0)y «uuy f(xn) are known. The most common method used
to solve'suchAproblems is to assume that a polynomial
p(x) 1s a sultable approximation to the function f(x).

This polynomial is forced to agree with the known values
of £(x) and then used to predict an approximation to f(x)
at x values that do not coincide with the base points.

The algorithm used for the field interpolations in
thils thesis was the Lagrangian Double 3-Point Interpolation
scheme. The basis for this algorithm is that a linear
combination of two quadratics is used for the interpolation

polynomlal. Referring to Figure AITI-1, the two quadratic

polynomials are ¢, (x) and ¢,(x).

$1(x) = ax? + bx + ¢ (ATII-1)

kx“ + 1x + m (ATII-2)

¢2(X)
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| ¢, (x)
Ol — — - ¢,(x)
fL-0" ) 2
7
/
-3 -2 -1 O +| +2 +3 X

Figure AIII-1.
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At the points X: =1,0,+1 we have for unit spacing

91(-1) = r£(-1) (AITI-3a)
$,(0) " = £(0) | (AIII-3b)
$1(1) = £(1) (AIII-3c)

and at the points x: 0,1,2 we require

$,(0) = £(0) (AIII-la)
4,(1) = £QQ) (AIII-UD)
$,(2) = £(2) (AIII-lbc)

These sets of simultaneous equations can be solved to
obtain the coefficients a, b, ¢, k, 1, and m in terms of

the f(xi)'s. Now the interpolation polynomials become

(£, 4F_q=2F ) (f=f_1)
¢1(x) = 1 21 O X2 + 12 1 x + fo (AIII—S)

(£ 4+ -2F.) (Uf -£ =37 )
bp(x) = ——= 10,2, 71 =2 x + £, (AIII-6)

with £y = £(x4).
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For the Lagrangian Double 3-Point algorithm we use an

interpolating polynomial, F(x) which has the form
F(x) = (1-x)¢7(x) + x¢,(x) ' (AITI-7)

For our purposes we also need the derivative of F(x).

¢
Q%%}l = -1 (x) + (1-x) %5%-(x)

+9 fx) + X 933 (x) (AIII-8)
2 dx
More convenient forms for use with computer routines
3 2
F(x) = £(0)«{1 + 3x°/2 - 5x°/2}

+ P(1)-{x/2 + 2x° - 3x3/2}

3

+ £(2)-{x3/2 - x%/2}

+ £(-1)-{x% - x/2 - x3/2} (AITII-9)

L) - 0y 19x2/2 = 5x)

+ £(1)-{1/2 + Ux - 9x2/2)
+ f(2)-{3x2/2 - x}

+ £(-1)*{2x - 1/2 - 3x°2/2} (ATII-10)



APPENDIX IV

To obtain approximate expressions for derivatives,

we made use of a Taylor expansion. Consider development

of the series for f(xo + Ax,yo) about the point (xo,yo)f

. 2 .2

- _ of wx)? 3%

f(xo+Ax,yo) = £ (x5,¥5) = flxy,y,) + x T + -
xo’yO ) xo’yo
3 43 . n .n
4 (Bx)° 3°F #..0+x) 3 F Fo.L. (AIV-1)
3! 3%x3 n! 30 ’
Xoo o} %5290

where, [xo,yo means the derivative 1s evaluated at the

point (xo,yo).

Rearranging and dividing by Ax, we have

3f _ f(xo+Ax,yO) - f(Xo’yo) Ax 3°f ,
3x|.. - AX I B
X X, ¥, 3x

X02¥0  (AIV-2)

plus higher terms in ax, or,
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af ~ f(xo+Ax,yO) - flxg55,)

35 2 + 0(Ax) . (AIV-3)
XgsY, AX |

where 0(AXx) represents the order-of-magnitude error gs-
sociated by the given approximation. Equation AIV-3 repre-
sents the "forward-différence" approximation to the deriva-
tive. |

We could also obtain a "backward-difference" approxima-

tion by expansion of f(xo-Ax,yo):

' 2 2
of : Ax)© 3°f
£(xy-8%,54,) = £(x,,y,) - Ax a—‘l Y a2
3 43
- {8x)” 3°f o0+ (-8 ﬁ—AX) i oo
31 543 axn
X02¥s ' RRRAS (AIV-1)
which can be rearranged to yield
f(x ) - £(x - x,y.)
g-f- z 0*7o T 9 4 o( x) . (AIV-5)
x .
xo’yo
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As 1indicated, both the forward- and backward-difference

approximations carry associated errors that are on the order

of Ax. To obtain a better approximation to the derivative,

one can subtract Equation AIV-4 from ATV-1 to obtain

5
f(Xo*8%,3,) = £(x,-0%,5,) = 28x 3%

X
X52Y0
(ax)3 33r -
X X,y
0’7o
plus higher terms.
This can be rearranged‘to yield
f(x +Ax,y,) - £(x_ ~-Ax,y.)
%% o > A% S —-0% 4 0((ax)?) . (ATV-T)

Thls 1s called the "central-difference" approximation.
Comparing tne cutoff errors assoclated with approximations
AIV-3, AIV-5, and AIV-7, it 1is evident that for Ax < 1,
expression AIV-7 carries the smallest error.

To obtain an approximate expression for the second

derivative, add Equation AIV-1 and AIV-4 and divide by
(Ax)2 to obtain
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f(xo+Ax,yo) + f(xo—Ax,yo) - 2(x Ly ) 4 a2f
s =1
(ax)2 07707 T ax2
xo’yo
2 .4
(Ax) 3°f
. + 15 g;ﬁ ’ (ATV-8)
0o ’
plus higher terms, K
or,
2 . f(x_ +Ax,y.) + f(x_-Ax )y - 2f( )
3 ’ y XA sY
45 ~ o] 0 0 2’ 0 0370 + O((Ax)2)
x|, y _ (ax)°
o’Jo ) (AIV-9)

As 1in the "central-difference" approximation to the first
derivative, this expression has an associated error on the

order of (Ax)2.,
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