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ABSTRACT 

STUDIES OF THE MICROWAVE INSTABILITY IN THE 
SMALL ISOCHRONOUS RING 

By 

Yingjie Li 

This dissertation is devoted to deepening our knowledge and understanding of the 

hidden physics regarding the microwave instability of the space-charge dominated beams 

in the small isochronous ring, which was observed in our previous numerical and 

experimental studies.  

The dissertation attempts to provide a further exploration and more accurate 

description of the microwave instability by focusing on the following topics:  

(a) Derivations of the full-spectrum longitudinal space charge (LSC) impedance 

formula, which reflects the realistic configurations of the beam-chamber system 

more closely than the existing ones.  

(b) Landau damping effect. A two-dimensional (2D) dispersion relation is derived in 

the dissertation, by which the microwave instability growth rates of a coasting 

beam with any energy spread and emittance in the isochronous regime can be 

predicted theoretically. 

(c) Evolution of the beam profiles in the nonlinear regime of the microwave instability. 

For this purpose, various numerical, experimental and theoretical approaches have 

been employed in the research, including the simulation and measurement of the 

energy spread evolution, simulated corotation of the two-macroparticle and 



 
 

two-bunch models together with their comparisons with the theoretical predictions.  

The simulations, experiments and theoretical predictions on the above three 

topics all reach good agreements. 
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Chapter 1 

INTRODUCTION 

   Isochronous cyclotron is an important family member of modern particle accelerators, 

with a relatively compact structure and ability of being operated in continuous wave (CW) 

mode. Using a fixed accelerating frequency, it can accelerate the high intensity hadron 

beams to medium energy efficiently, typically ranging from several tens of MeV to 

several hundred MeV. Now isochronous cyclotrons are widely used in various fields and 

applications, such as research in nuclear physics, medical imaging, radiation therapy and 

industry, etc.  

Since the 1980’s, the successful operation of the high power Ring Cyclotron (capable 

of producing a proton beam of 2.4 mA, 590 MeV with a power of 1.4 MW) at Paul 

Sherrer Institute (PSI) in Switzerland has greatly inspired the cyclotron community. 

Consequently, the possibility of design and operation of more powerful cyclotrons 

(typically, 1 GeV, 10 mA, 10 MW) have been discussed extensively and proposed in 

some new applications, such as accelerator driven subcritical reactors (ADSR), 

transmutation of nuclear waste and energy production, neutrino Physics [1-5], etc. M. 

Seidel provided an excellent review on cyclotrons for high intensity beams [6], their 

working principles, limitations in the design and operation were briefly introduced. This 

dissertation mainly discusses the microwave instability of low energy, high intensity 

beams in isochronous regime induced by space charge effects which is a key issue for the 

performance of high power cyclotrons. 
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1.1 Brief introduction to cyclotrons 

The first classical cyclotron was proposed and designed by E. O. Lawrence in the early 

1930s, in which charged particles move in a vertically uniform magnetic field with a 

constant revolution frequency (cyclotron frequency). An electric field with fixed radio 

frequency (RF), which is equal to the cyclotron frequency between two D-shaped 

electrodes (the Dees), is utilized to accelerate the particles multiple times resonantly to 

high energy. In order to overcome the energy limits posed by the phase slippage due to 

relativistic effects and vertical focusing, in 1938, L. H. Thomas proposed the concept of 

radial sector focusing isochronous cyclotron of which the radially increasing magnetic 

fields provide isochronism, and the azimuthally varying magnetic fields (AVF) provide 

vertical focusing (Thomas focusing). In addition, many modern isochronous cyclotrons 

adopt spiral-shaped sectors which may enhance the vertical focusing further. The 

accelerated beam can be extracted by some popular methods, such as resonance 

extraction, stripping extraction for H- ions, etc. 

1.2 Space charge effects in isochronous cyclotrons 

  When the beam intensity increases in isochronous cyclotrons, the collective effects of 

the repulsive Coulomb force among the charged particles, which are usually termed space 

charge effects, become vital factors for the highest intensity attainable in the machine. 

Refs. [6-7] provide enlightening reviews and discussions regarding the space charge 

effects in isochronous accelerators.  

  The space charge effects can be classified into two major categories: incoherent 

transverse effects and coherent radial-longitudinal ones. 
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1.2.1 The incoherent transverse space charge field 

  The incoherent transverse space charge field can decrease the vertical focusing 

resulting in negative incoherent tune shifts which are proportional to the beam current 

and 1/23 [8], where  and  are the relativistic speed and energy factors, respectively. 

Usually, in the central region of isochronous cyclotrons, the vertical focusing force 

provided by the azimuthally varying magnetic fields (Thomas force) is weaker, thus a 

beam of high intensity and low energy may have a large tune shift and vertical beam size. 

The vertical chamber size sets the upper limits for the beam intensity. Higher injection 

energy is preferred to mitigate the incoherent transverse space charge effects.  

1.2.2 The coherent radial-longitudinal space charge field 

Different from the incoherent transverse space charge effects which are common for all 

types of accelerators, the coherent radial-longitudinal space charge effects in isochronous 

cyclotrons demonstrate some characteristics that are unique in isochronous regime. The 

longitudinal space charge (LSC) fields within a bunch of finite length may induce energy 

spread among the charged particles. In isochronous regime, since the longitudinal motion 

is frozen, particles with higher (or lower) energy must have longer (or shorter) path 

lengths and larger (or smaller) gyroradii to maintain a constant revolution frequency. This 

may result in the vortex motion and an S-shaped beam, the narrowed turn separation 

makes clean extraction difficult. For higher power cyclotrons, considerable number of 

particles hitting the extraction deflectors may cause serious beam loss, overheating and 

activation of extraction device. The required low extraction loss rate is the limiting factor 

for the attainable beam intensity in high power isochronous cyclotrons. 
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More comprehensive knowledge and deeper understanding of space charge effects are 

crucial for the successful design and operation of high power isochronous cyclotrons. In 

the past decades, additional extensive studies on this topic have been done through 

numerical simulations, experiments and analytical models. 

1.2.3 Vortex motion 

  Gordon is the first researcher who explained that the vortex motion in isochronous 

cyclotrons originates from the space charge force ݁ࡱሬሬԦ[9] ࢉ࢙, which is equal to half of the 

Coriolis force seen by a particle in a reference frame rotating with constant angular 

frequency c


in the isochronous magnetic field ࡮ሬሬԦ 

                     ，scc Eqvm


                           (1.1) 

where m and q are the mass and charge of the particle, respectively, v


is the speed of 

particle in the rotating frame, and scE


is the space charge field, c


is the cyclotron 

frequency vector 

.
m

Bq
c



                             (1.2) 

Another half of the Coriolis force in the rotating frame cancels the centrifugal force and 

Lorentz force on the particle. Cerfon [10] interpreted the vortex motion in isochronous 

regime as nonlinear convection of beam density in the ࡱሬሬԦࢉ࢙ ×  ሬሬԦ velocity field࡮

.
2B

BE
v sc


 
                            (1.3) 

Since the cyclotron frequency vector c


is proportional to the isochronous magnetic 

field vector ࡮ሬሬԦ as shown in Eq. (1.2), in fact, the two different interpretations of vortex 
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motion described in Eqs. (1.1) and (1.3) are equivalent to each other essentially. It can be 

verified easily by plugging Eqs. (1.2) and (1.3) into Eq. (1.1). 

1.2.4 Space charge effects and stability of short circular bunch 

By using a closed set of differential equations for the second-order moments of the 

phase space distribution functions, taking into account the space charge effects, 

neglecting the force from the image charges and neighboring turns, Kleeven [11] proved 

that a single free bunch with a circular horizontal cross-section is stationary in a AVF 

isochronous cyclotron; for a beam with non-circular horizontal initial cross-section, it 

will not be stable until it evolves to a circular one. This property has been verified and 

utilized in the successful operation of PSI Injector II, where a buncher is used to produce 

small round bunches with energy of 870 keV before they are injected into and accelerated 

in the Injector II. Because the shape of short bunches can barely change during 

acceleration, a large enough turn separation can be achieved at extraction energy of 72 

MeV with high extraction rate (~99.98%). Cerfon [10] also verified and explained this 

phenomenon by both theory and simulations as discussed in Sect. 1.2.3. 

1.2.5 Space charge effects of long coasting bunch 

  The simulation and experimental work done by Pozdeyev and Rodriguez  [12-15] 

showed that, when a high intensity long bunch with initially uniform longitudinal charge 

distribution is injected into the Small Isochronous Ring, it may break up into some small 

clusters longitudinally after only several turns of coasting. Later those small clusters 

coalesce by consecutive binary cluster merging process. The fast clustering process 



6 
 

observed in simulations and experiments is just the microwave instability of a 

space-charge dominated beam.  

1.2.6 Space charge effects between neighboring turns 

  For high intensity cyclotrons, the turn separation decreases at high energy. 

Consequently, the space charge effects contributed from the radially neighboring turns 

must be considered in the beam dynamics. 

  Using a 3D parallel Particle-In-Cell (PIC) simulation code OPAL-CYCL, a flavor of 

the Object Oriented Parallel Accelerator Library (OPAL) framework developed by 

Adelmann of PSI [17], the space charge effects between neighboring turns in the PSI 590 

MeV Ring Cyclotron were simulated by Yang adopting a self-consistent algorithm [18]. 

The simulation results show that there is a considerable difference between single-bunch 

and multi-bunch dynamics. The space charge forces contributing from the radially 

neighboring turns may ‘squeeze’ the radial beam size to some extents and play a positive 

role in maintaining turn separation and reducing the energy spread. 

  From the above information, we can see it is challenging to design and operate a high 

intensity cyclotron keeping a low level of beam loss and activation. The effects of an 

incoherent transverse space charge field, a coherent radial-longitudinal space charge field 

and neighboring turns are crucial factors thus must be taken into account. This requires a 

better understanding and manipulation of the space charge effects in isochronous regime. 

1.3 CYCO and Small Isochronous Ring 

Usually it is difficult to study analytically the beam dynamics with space charge in 
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isochronous ring due to complex boundary conditions of the accelerator, nonlinear effects 

resulting from beam shape and distributions. Thus, the numerical method using 

simulation codes and experimental method utilizing a real isochronous accelerator are 

heavily relied upon in the research. 

Since the beam dynamics of the existing simulation codes were then simplified in the 

treatment of space charge effects, Pozdeyev developed a novel 3D Particle-In-Cell 

simulation code named CYCO to study the beam dynamics with space charge in 

isochronous regime [12]. In the simulation, at first, an initial distribution of a number of 

macroparticles (typically 3 ä 105) representing the real long ion bunch (typically 40 cm 

long) needs to be created either by the code with a default distribution or by users’ 

self-definition. Using the classical 4th order Runge-Kutta method, the code can 

numerically solve the complete and self-consistent system of six equations of motion of 

the charged macroparticles in a realistic 3D field map including the space charge fields.  

Because of the large aspect ratio between the vacuum chamber width and height of the 

storage ring, the code only includes the image charge effects in the vertical direction. The 

rectangular vacuum chamber is simplified as a pair of infinitely large, ideally conducting 

plates parallel to the median ring plane. The beam profiles can be output turn by turn for 

post-processing and analysis. 

   In order to validate the simulation code CYCO and study the space charge effects in 

the isochronous regime, a low energy, low beam intensity Small Isochronous Ring (SIR) 

was constructed during 2001-2004 at the National Superconducting Cyclotron Laboratory 

(NSCL) at Michigan State University (MSU). In addition, two graduate students 

Pozdeyev and Rodriguez conducted a thesis project and the SIR has been in operation 
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Table 1.1: Main parameters of SIR 

Ring circumference 6.58 m 
Particle species H+, H2

+, H3
+, mainly use H2

+ 
Kinetic energy 0 -30 keV 
Peak current 0-40 mA for H2

+ 
RMS emittance Typically 2-3 mm mrad 

Ring lattice Four 90-degree dipole magnets 
Bending radius 0.45 m 

Dipole pole face angle 26o 
Mag. field strength 800 Gauss 

Bare horizontal tune nx 1.14 
Bare vertical tune  ny 1.11 

Bare slip factor 0 ~2.0 ä 10-4 
Beam life time ~200 turns 

The ion source produces three species of Hydrogen ions: H+, H2
+, and H3

+. An 

analyzing dipole magnet under the ion source is used as a magnetic mass separator to 

select the H2
+ ions which are usually used in the experiments. The H2

+ ion beam with 

proper Courant-Snyder parameters and desired bunch length can be produced by an 

electrostatic quadrupole triplet and chopper in the injection line. The storage ring has a 

circumference of 6.58 meter. It mainly consists of four identical flat-field 90
o
 bending 

magnets with edge focusing. The pole faces of each magnet are rotated by 26
o in order to 

provide both the vertical focusing and isochronism at the same time. After being injected 

to the storage ring by two fast-pulsed electrostatic inflectors (Inflector 1 and Inflector 2 in 

Figure 1.1), the bunch may coast in the ring up to 200 turns. There is a Measurement Box 

located in the drift line between the 2nd and 3rd bending magnets in the ring. A pair of 

fast-pulsed electrostatic deflector in the Measurement Box can kick the beam either up to 

a phosphor screen above the median ring plane, or down to the fast Faraday cup (FFC) 

below the median ring plane. The phosphor screen and fast Faraday cup are used to 

monitor the transverse and longitudinal beam profiles, respectively. We can also perform 
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energy spread measurements if the fast Faraday cup assembly is replaced by an energy 

analyzer assembly. 

  A double-slit emittance measurement assembly is located in the Emittance Box of the 

injection line. It is used to measure the RMS emittance in horizontal and vertical phase 

space. An Einzel Lenz right under the ion source can focus the divergent beam. Together 

with the electrostatic quadrupole triplet in the injection line, users can obtain the proper 

Courant-Snyder parameters. A shielded Faraday cup at the end of the injection line is 

used to measure the beam current when the Inflector 1 is turned off. Two pairs of 

horizontal and vertical scanning wires are installed in the storage ring to monitor the 

transverse beam profiles. In order to adjust the betatron tunes and isochronism, four 

electrostatic quadrupoles and four gradient correctors are installed in the ring between the 

bending magnets and situated in the dipole magnets, respectively. 

1.4 Summaries of previous studies of beam instability in SIR 

It was observed both in simulations by CYCO and experiments at SIR, a coasting long 

bunch with uniform longitudinal charge density may develop a fast growth of density 

modulation. The whole bunch breaks up into many small clusters in the longitudinal 

direction quickly. Furthermore, the neighboring small clusters may merge together to 

form bigger ones by a consecutive binary merging process. Figure 1.2 shows the 

measured temporal evolutions of the longitudinal bunch profiles of a coasting beam with 

the beam energy of 20.9 MeV and the peak current of 9.3 A [15]. Figure 1.3 shows the 

simulation results of the beam dynamics in SIR for three different peak intensities: 5 A, 

10 A, and 20 A [13]. 
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In order to study the dependence of beam instability on various initial beam parameters, 

Rodriguez carried out extensive simulations and experimental studies [13]. He studied the 

temporal evolutions of the number of clusters by means of the cluster-counting technique. 

The simulation and experimental results agreed to each other quite well. Finally, several 

scaling laws of instability growth rates with respect to the various beam parameters (e.g., 

the beam current, energy, emittance and bunch length) were set up empirically. It was 

found that the instability growth rates are proportional to the beam current instead of the 

square root of beam current. This property contradicts the prediction by the conventional 

theory of microwave instability. Rodriguez also counted the decreasing number of 

clusters and fit it to an empirical exponential function of turns. 

Pozdeyev explained [14-15] that the centroid wiggling of a long bunch in isochronous 

ring plays an important role in the microwave instability. It may produce coherent radial 

space charge fields, modify the dispersion function and coherent slip factor, raise the 

working point above transition and enhance the negative mass instability. Plugging the 

modified coherent slip factor into the conventional 1D formula for microwave instability 

growth rates, Pozdeyev derived an instability formula which can predict the linear 

dependence of instability growth rates on beam current. While this model overestimates 

the growth rate of short-wavelength perturbations. Later, Bi [16] proposed another model 

consisting of a round perturbed beam inside a round chamber. This model takes into 

account the effect of centroid offsets on transition gamma. Bi derived a 1D dispersion 

relation that can predict the fastest-growing mode and explain the various scaling laws. 

But this model is not consistent with the scaling laws on beam current, since the DC 

current component is neglected in calculating the coherent radial space charge field. 
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1.5 Major research results and conclusions in this dissertation 

In spite of the pioneering work done by Pozdeyev, Rodriguez and Bi [12-16], some 

central questions still remain in regard to the more accurate, comprehensive and deeper 

understanding of the microwave instability in isochronous regime. For example,  

(a) None of Pozdeyev [14-15] and Bi’s theoretical models [16] utilized the longitudinal 

space charge (LSC) field and impedance models that exactly match the geometries of the 

real beam-chamber system and can work at any perturbation wavelengths. The validity of 

their LSC field and impedance models needs to be verified. It is highly desirable for the 

beam physicists to obtain the analytical LSC impedances for a round beam with 

sinusoidal density modulations inside a rectangular chamber, or between parallel plates 

(e.g., in CYCO). Moreover, the derived LSC impedances should be accurate enough at 

any perturbation wavelengths.  

(b) Is the 1D growth rate formula or dispersion relation adopted by Pozdeyev [14-15] 

and Bi [16] accurate enough to predict the instability growth rates at any wavelengths? 

How do the energy spread and emittance neglected in their models affect the instability 

growth rates? How to introduce the well-known Landau damping effects in the 

isochronous regime?  

(c) How does the energy spread of clusters evolve? What is the asymptotic behavior of 

the energy spread and why? How and why the cluster pair merge? 

This dissertation primarily discusses and answers the above questions. To predict the 

microwave instability growth rates more accurately, this dissertation 

(1) derives the analytical LSC impedances of a rectangular and round beam inside a 

rectangular chamber and between parallel plates;  
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(2) derives a 2D dispersion relation incorporating the Landau damping effects 

contributed from finite energy spread and emittance. It can explain the suppression of 

microwave instability growth rates at short perturbation wavelengths and predict the 

fastest-growing wavelength;  

(3) studies the evolution of energy spread of SIR bunch by both simulation and 

experimental methods. We have designed a compact rectangular electrostatic retarding 

field analyzer [19] with a large entrance slit. The simulation and experimental studies of 

energy spread evolution of a long coasting bunch show that the slice RMS energy spread 

of clusters changes slowly at large turn numbers. This may result from nonlinear 

advection of the beam in the ࡱሬሬԦ ×  .ሬሬԦ velocity field [10]࡮

1.6 Brief introduction to contents of the following chapters 

Chapter 2 gives a brief introduction to some most important concepts and dynamics 

regarding the isochronous ring, including the momentum compaction factor, dispersion 

function, slip factor, beam optics of SIR lattice (hard-edge model), microwave instability, 

Landau damping, etc. 

Chapter 3 derives the analytical LSC fields and impedances of (a) a rectangular beam 

and (b) a round beam with planar and rectangular boundary conditions, respectively. The 

derived LSC impedances match well with the numerical simulations. We study the effects 

of the cross-sectional geometries of both the beam and chambers on the LSC impedances. 

Chapter 4 discusses the Landau damping effects of a coasting long bunch in the SIR. 

The limits of the conventional 1D formalisms used in the existing models are pointed out; 

a modified 2D dispersion relation suitable for the beam dynamics in the isochronous 
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regime is derived, by which the Landau damping effects are studied. It can explain the 

suppression of instability growth and predict the fastest-growing wavelength.  

Chapter 5 introduces the working principles, simulation design, and mechanical 

structure of a rectangular retarding field energy analyzer with large entrance slit. The 

dissertation provides the tested performance and sensitivity of the analyzer. 

Chapter 6 is devoted to studying the nonlinear beam dynamics of the microwave 

instability, including (a) energy spread measurements and simulations. First, this chapter 

gives a brief introduction to the measurement system, and then the measurement and data 

analysis methods. The simulation and experimental results are compared with each other; 

their physical meaning is interpreted by simple analysis. (b) verification of Cerfon’s 

theory [10] on the vortex motion in ࡱሬሬԦ ×  ሬሬԦ field by two-macroparticle model and࡮

two-bunch model.  

Chapter 7 summarizes the main research results addressed in this dissertation and 

points out some possible research directions in the future. 
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the exact design energy 2

2
cmE

H   , where g is the relativistic energy factor of the 

on-momentum particle, 
2H

m is the rest mass of the Hydrogen molecular ion 
2H , c is the 

speed of light. The reference particle has a velocity of v=bc, where b is the relativistic 

speed factor. The distance traveled by the reference particle with respect to a fixed point 

of the storage ring is s=vt=bct. For an arbitrary particle in the bunch, x, y, and z denote its 

radial, vertical and longitudinal coordinates with respect to the reference particle O, 

respectively. Then the motion of an arbitrary particle can be described by a 

six-component vector (x, x£, y, y£, z, d) in phase space, where x£=dx/ds, and y£=dy/ds are 

the radial and vertical velocity slopes relative to the ideal orbit, d=Dp/p is the fractional 

momentum deviation. For a coasting SIR beam, we can choose a hypothetical 

on-momentum particle at the bunch center as the reference particle. For those 

off-momentum particles in a circular accelerator, there are three important parameters 

describing their motions: momentum compaction factor a, dispersion function D(s) and 

phase slip factor h. 

2.2 Momentum compaction factor 

In a circular accelerator, the particles of different energy circulate around different 

closed orbits resulting in different path length C and different equilibrium radius. In beam 

dynamics, the ratio between the fractional path length deviation DC/C0 (or fractional 

equilibrium radius deviation DR/R) and the fractional momentum deviation d=Dp/p is 

customarily defined as the momentum compaction factor: 

  .
/

/

/

/ 0

pp

RR

pp

CC








                        (2.1) 
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It is a measure for the change in equilibrium radius due to the change in momentum. 

2.3 Dispersion function 

  The off-momentum particles with d=Dp/p may have different closed (equilibrium) 

orbits from that of the on-momentum reference particle, yielding a horizontal (radial) 

displacement x(s) in x-coordinate. Then the periodic dispersion function in a circular 

accelerator is defined as  

.
)(

)(

sx

sD                            (2.2) 

Both the momentum compaction factor a and the periodic dispersion function D(s) 

reflect the radial-longitudinal coupling of circular accelerators, which is an intrinsic 

property of the circular accelerators resulting from the guiding magnetic fields. Moreover, 

a and D(s) are related to each other by (Eq. (3.136) of Ref. [21]) 

,
)(

)(

)(

)(1

0

  s

sD
ds

s

sD

C 
                      (2.3) 

where r(s) is the local radius of the curvature of trajectory, ‚ÿÿÿÚ stands for the average 

value over the accelerator circumference. Let us assume all the bending magnets in the 

storage ring are identical to each other with bending radius r0. Since a straight section has 

a bending radius of r(s)=¶, only the dispersion function in the bending magnets 

contributes to a, then Eq. (2.3) can be written as 

.)(
1

00


bend
dssD

C 
                        (2.4) 

If the total length of bending magnets is Lbend=2pr0, the average value of dispersion 

function in the bending magnet is 
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.)(
2

1
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0


bendbend dssDsD


                   (2.5) 

Then Eq. (2.4) reduces to  

.
)()(2

00

0

R

sD

C

sD bendbend 






                  (2.6) 

where R=C0/2p is the average ring radius. 

2.4 Transition gamma 

The transition gamma gt in circular accelerators is defined as 

.
/

/2

RR

pp
t 


                            (2.7) 

It is easy to learn from Eq. (2.1) and Eq. (2.7) that 

.
1

2
t

                               (2.8) 

The total energy of a particle with transition gamma is just the transition energy which is 

equal to .2mcE tt   

2.5 Slip factor 

The revolution period of a particle is cRT  /2 , the fractional deviations of the 

relativistic speed and momentum are related by 2//   , then with Eq. (2.7), 
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tR

R

T

T
               (2.9) 

where T0 and w0 are the revolution period and angular revolution frequency of the 

on-momentum reference particles, respectively, h is the phase slip factor defined as  
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                      (2.10) 

For the SIR, the bare slip factor without the space charge effect is h0º2ä10
-4

. 

The revolution time and frequency of an off-momentum particle is determined by its 

changes in both velocity and path length. A particle with higher energy (d>0) has a faster 

velocity and travels along a longer path length compared with the on-momentum 

reference particle (d=0). For the case of g<gt, below the transition, h<0, the faster speed 

of the higher energy particle (d>0) may compensate for the longer path, this will result in 

a shorter revolution period (DT<0 in Eq. (2.9)) or higher revolution frequency (Dw>0 in 

Eq. (2.9)) compared with the on-momentum reference particle. While for the case of g>gt, 

above the transition, h>0, the increase of path length of the higher energy particle (d>0) 

may dominate over the increase of velocity. This will result in a longer revolution period 

(DT>0 in Eq. (2.9)) or lower revolution frequency (Dw<0 in Eq. (2.9)) compared with the 

on-momentum reference particle.  

At transition, g=gt, h=0, the revolution period (or frequency) of the particle is 

independent of its energy (or momentum). For a coasting bunch, if the space charge 

effects among the particles are excluded, all the particles with different energy will 

circulate along the accelerator rigidly with the same period (or frequency). This is the 

isochronous regime, in which the Small Isochronous Ring (SIR) is designed to be 

operated. Unfortunately, this is a regime which is most vulnerable to the perturbations 

and prone to beam instability for a space-charge dominated beam. 

2.6 Beam optics for hard-edge model of SIR 

Figure 2.2 depicts the layout of the SIR lattice. In consists of four 90-degree bending 
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
                       (2.12) 

By smooth approximation, the design orbit of SIR lattice can be treated as an ideal 

circle with average radius R as indicated by the blue dashed circle in Figure 2.2. 

Neglecting the vertical motion, the Hamiltonian of a single particle coasting in SIR 

without space charge field and applied electric field is 

,
222 2

222


 




R

xxkx
H x                    (2.13) 

where kx is the radial (horizontal) focusing strength. According to the Hamiltonian 

mechanics, 
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    (2.14) 

the equations of motion of a single particle are 

Radial (horizontal):       ,x
ds

dx        ,
'

R
xk

ds

dx
x


                  (2.15) 

Longitudinal:         ,
2



R

x

ds

dz
       .0

ds

d
                    (2.16) 

The two radial equations of motion in Eq. (2.15) can also be combined as 

                 .
2

2

R
xk

ds

xd
x


                         (2.17) 

Using smooth approximation,
2

2

R
k x

x


 , where nx is the radial (horizontal) betatron tune, 

Eq. (2.17) can be rewritten as 

       .
2

2

2

2

R
x

Rds

xd x 
                         (2.18) 
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Its general solution is 

       ,)sin()cos()(
2





x

xx R
s

R
Bs

R

v
Asx                  (2.19) 

       ),cos()sin(-)( s
RR

Bs
R

v

R
Asx xxxx 

                 (2.20) 

where the coefficients A and B depend on the initial conditions of the particle. 

In smooth approximation, the dispersion function is D(s)=R/nx
2, the motion of an 

off-momentum particle travelling along the equilibrium orbit can be analyzed 

conveniently using the above equations. Assume at s=0, a particle’s initial radial offset, 

slope and fractional momentum deviation are ,/)0( 2
xRDx   ,0)0( x and ,0

respectively. From Eqs. (2.19) and (2.20), it is easy to obtain A=B=0, then the radial 

equation of motion is simplified as 

                 .)(
2
x

R
sx




                           (2.21) 

Substituting Eq. (2.21) into Eq. (2.16), the longitudinal equation of motion becomes 

   .
22 






xds

dz
                        (2.22) 

The longitudinal coordinate z(s) can be solved by integration as 

.)
1

-
1

(-)0()(
22

szsz
x




                      (2.23) 

The one-turn slip factor at s=0 can be calculated as 

.
11)0()(1

22
0

0 
 




x

zCz

C
                 (2.24) 

Note that for an isochronous ring, the term 2/1 x in Eq. (2.24) should be replaced by
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,/1 2
t  where gt is the transition gamma defined in Eq. (2.7). Then the slip factor in Eq. 

(2.24) becomes 

,
11

022 


 
t

                        (2.25) 

where h0 is the bare slip factor. 

The slip factor in Eq. (2.25) is derived for an off-momentum particle without betatron 

oscillation. Here comes a question, if a particle performs radial (horizontal) betatron 

oscillation around its equilibrium orbit, how does the slip factor change? Let us study the 

motion of a particle with the initial condition of ,0)0( x ,0)0( x  and .0  The 

particle will perform betatron oscillation around its equilibrium orbit with radial offset

2
x

eq

R
Dx


  . From Eqs. (2.19) and (2.20), the radial equation of motion is solved as 

                 )],cos(1[)(
2

s
R

R
sx x

x





                     (2.26) 

which yields the longitudinal equation of motion 

   .)]cos(1[
22 





 s
Rds

dz x

x

                  (2.27) 

Then the longitudinal coordinate z(s) is obtained by integration as 
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-
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(-)(
3220 s

R

R
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
                 (2.28) 

The last term in Eq. (2.28) is an oscillatory function of s. The 1-turn slip factor at s=0 is 

).2sin(
2

111)0()(1
)0(

322
0

0
1 x

xx
turn

zCz

C



 


 ）（        (2.29) 

Replacing the term 2/1 xv  by 2/1 t , then the 1-turn slip factor at s=0 in Eq. (2.29) for 
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the isochronous ring becomes 

).2sin(
2

111
)0(

3221 x
xt

turn 


  ）（                 (2.30) 

The comparison between Eqs. (2.25) and (2.30) indicates that, for an off-momentum 

particle performing betatron oscillation around its equilibrium orbit, there is an extra term 

)2sin(
2

1
3 x
x




 in the slip factor. A similar extra term also appears in the 2D dispersion 

relation Eq. (4.41) derived in Chapter 4. For the hard-edge model of SIR lattice, the two 

terms in Eq. (2.30) are 

，0
11

022
 

 t

    and     ,083.0-)2sin(
2

1
-

3
x

x




      (2.31) 

respectively. Then the total slip factor taking into account betatron oscillation effect 

becomes negative (below transition). Note that in the conventional definitions of the 

momentum compaction factor a and slip factor h, the effects of betatron oscillation are all 

neglected. For conventional circular accelerators whose working points are far from 

transition, the extra term in the new slip factor can be neglected. While in the isochronous 

ring, due to smallness of the bare slip factor h0, this extra term should be taken into 

account in the instability analysis. The above discussions show that the betatron 

oscillation may destroy the isochronism. 

Assume an on-momentum particle coasts along the design trajectory of SIR with 

.0)(0)(0)(  ssxsx ，，  The particle may maintain its isochronous motion for ever 

if there are no external perturbing forces. At a given position s1, for some reasons (e.g., 

LSC field, RF electric field), the particle receives a sudden longitudinal kick, so that x(s1) 

and x£(s1) are not changed but .0)( 1 s  Then according to the above analysis, the 
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on-momentum reference particle, while the lower energy particle like P1 has a higher 

revolution frequency than the on-momentum reference particle. This may result in an 

enhancement of the azimuthal density modulation amplitude. In beam instability analysis, 

this self-bunching phenomenon is usually termed the negative mass instability. The term 

comes from the illusion that the particles seem to move in the opposite directions from 

the self-force or space charge force exerting on them. Usually the space–charge driven 

negative mass instability is characterized by density perturbation wavelengths which are 

much shorter than the bunch length. For this reason, it is also named microwave 

instability in modern literature.  

2.8 Microwave instability in the isochronous regime 

The microwave instability in the isochronous regime is the main topic of this 

dissertation. It demonstrates some unique features that cannot be explained by the 

conventional theory of microwave instability. For example, the instability growth rate is 

proportional to the unperturbed beam intensity I0 instead of the square root of I0. This 

confusing phenomenon is first explained by Pozdeyev in Refs. [14-15]. He pointed out 

that, in a circular accelerator, the longitudinal density modulation produces the 

longitudinal space charge (LSC) field modulation and the coherent energy modulation 

along the beam. In consequence, the local beam centroid wiggling takes place due to 

dispersion function as shown in Figure 2.5. The coherent radial space charge field on the 

local centroid is proportional to the local centroid offset, which in turn will modify the 

dispersion function D, momentum compaction factor a and produce a positive increment 

of the coherent slip factor Dhcoh of the local centroid. For a space-charge dominated beam, 
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frequency spread may tend to counteract and smear out the longitudinal self-bunching, 

and then the beam instability will be prevented or suppressed. This mechanism of 

instability suppression is termed Landau damping in the literature. Chapter 4 discusses 

the Landau damping in the isochronous regime in detail by a 2D dispersion relation. 

2.10 Coherent and incoherent motions 

The terms of coherent and incoherent are used to describe the properties of a local 

beam centroid and a single particle in this dissertation, respectively. The subscripts ‘coh’ 

and ‘inc’ are added to the corresponding parameters to tell them apart. For example, the 

equations of coherent and incoherent radial motions of a SIR beam can be expressed as:  

,
22
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where nx is the bare radial betatron tune which is the number of betatron oscillations per 

revolution without space charge effects; coh and inc are the coherent and incoherent 

fractional momentum deviations, Ex,coh and Ex,inc are the coherent and incoherent radial 

space charge fields, respectively.  
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Chapter 3 

STUDY OF LONGITUDINAL SPACE CHARGE 
IMPEDANCES

1
 

3.1 Introduction 

When a charged beam travels along a surrounding metallic vacuum chamber, the space 

charge field inside the beam will perturb the beam resulting in beam instability under 

some circumstances. For example, the space charge effect plays an important role in the 

microwave instability of low energy beam with high intensity near or above transition 

[14-16]. The space charge field is also one of the important reasons causing the 

microbunching instability for free-electron lasers (FELs) [22]. An accurate calculation of 

the LSC fields and impedances is helpful to explain the beam behavior and predict the 

growth rates of the beam instability with a good resolution. Both the direct self-fields of 

the beam and its image charge fields due to the conducting chamber wall should be taken 

into account in the analysis. The image charges may reduce the LSC fields inside the 

beam and the associated LSC impedances compared with a beam in free space. This is the 

so-called shielding effect of the vacuum chamber. 

The LSC field depends on not only the geometric configurations of the cross-sections 

of the beam-chamber system, but also the distributions of the beam profiles. Therefore, 

the space charge field models which are either exactly the same as or close to the real 

beam-chamber system are preferred in beam instability analysis. It is also highly 
                                                              
1 [1] Y. Li, L. Wang, Nuclear Instruments and Methods in Physics Research A 747, 30 (2014). 

[2] Y. Li, L. Wang, Nuclear Instruments and Methods in Physics Research A 769, 44 (2015). 
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desirable that the derived space charge fields and impedances are valid at any 

perturbation wavelengths. The coasting SIR beam is typically a long bunch with a 

roughly round cross-section; the vacuum chamber is roughly rectangular with large 

aspect ratio, which can also be simplified as a pair of infinitely large parallel plates (e.g., 

in the simulation code CYCO [12]). Unfortunately, at present, there are no ready-to-use 

LSC impedance formulae available for the SIR beam-chamber system in the existing 

literature, which satisfy the requirements of both the geometric configuration and the 

range of validity in perturbation wavelength. Beam physicists have to use other field 

models to approximate the LSC fields of SIR beam instead. For example, Pozdeyev [15] 

and Bi [16] use the LSC impedance formulae of a round beam in free space, and a round 

beam inside a round chamber to approximate the LSC impedances of SIR beam, 

respectively. The accuracies and range of validity of these models sometimes are 

questionable. Hence, derivations of more accurate analytical LSC impedance formulae 

for the SIR beam-chamber system become the major pursuits of this chapter. 

First, this chapter summarizes the existing LSC field models and some popular 

methods for analytical derivations of the LSC impedances. Second, this chapter studies 

the LSC impedances of a rectangular beam with sinusoidal line charge density 

modulations inside a rectangular chamber, and between a pair of parallel plates as a 

limiting case. Third, based on the rectangular beam model, this chapter continues to 

derive the approximate analytical LSC impedances of a round beam with sinusoidal line 

density modulations under planar and rectangular boundary conditions, respectively. The 

derived analytical LSC impedances are valid at any perturbation wavelength and are 

consistent well with the numerical simulation results. 
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3.2 A summary of the existing LSC field models 

Various space charge field models with different cross-sections of the beam and 

chamber have been investigated in existing literatures. For example, a round beam in free 

space [23-26], a round beam inside a round chamber [16, 24, 25, 27, 28], a round beam 

inside an elliptic chamber [29], a uniformly charged line between two parallel plates [30], 

a uniformly charged round beam between two parallel plates [31], a uniformly charged 

round beam inside a rectangular chamber [32], a rectangular beam inside a rectangular 

chamber [33-34], a rectangular beam between parallel plates [35], a single particle 

between parallel plates [36], a line charge inside rectangular chamber and between 

parallel plates [37], a vertical ribbon beam between parallel plates [38], etc.  

The above-mentioned models are either not for a round beam, or/and not for a 

rectangular chamber (or between parallel plates), or/and not valid at any perturbation 

wavelengths. To our knowledge, at present, there are no analytical LSC impedance 

formulae available in modern publications for a round beam inside a straight rectangular 

chamber (or between parallel plates) which are valid in the entire wavelength spectrum. 

3.3 Review of analytical methods for derivation of the LSC fields 

Some (not all) popular methods are used to calculate the analytical LSC fields. 

(a) Faraday’s law and rectangular integration loop [21, 32]. This method is only valid in 

the long-wavelength limits. When the charge density modulation wavelength l is small, 

the electric fields at the off-axis field points have both normal and skew components with 

respect to the beam axis. The three-dimensional (3D) effects of the electric fields become 
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important making this method invalid.  

(b) Direct integration methods. Usually the direct integration methods are only applicable 

to the field models with simple charge distributions in free space. Some literatures use 

this method to calculate the LSC fields assuming the gradient of the charge density d/dz 

is independent of the longitudinal coordinate z and is put outside of the integral over z 

(e.g., Refs. [21, 35]). In fact, this assumption is invalid for a beam with short-wavelength 

density modulations (e.g., (z) = kcos(kz), where k=2p/l). Thus the results are only 

valid in the long-wavelength limits too. 

(c) Separation of variables. In some special cases, the exact analytical 3D space charge 

fields of a beam with sinusoidal longitudinal charge density modulations can be solved by 

the method of separation of variables, such as a round beam in free space and inside a 

round chamber [16, 23, 27]. The 3D space charge fields solved by this method are exact 

and valid in the whole spectrum of perturbation wavelengths. But this method is critical 

of the configurations of the cross-sectional geometry of the beam-chamber system. Hence, 

it is not applicable to all field models.  

(d) Image method. According to the superposition theorem of the electric fields, the space 

charge field of a beam is equal to the sum of the direct self-field in free space (open 

boundary) and its image fields. If these fields can be calculated separately, it is easy to 

obtain the total LSC field and impedance. 

3.4 LSC impedances of a rectangular beam inside a rectangular 
chamber and between parallel plates 

By separation of variables technique, this section will derive the LSC impedance for a 

field model consisting of a rectangular beam with sinusoidal line charge density 
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)],(exp[),( tkzitz k        ，)](exp[),( tkziItzI k          (3.1) 

respectively, where k and kI are the amplitudes, cI kk  , β is the relativistic speed of 

the beam, c is the speed of light in free space, ω is the angular frequency of the 

perturbations, k is the wave number of the line charge density modulations. In order to 

calculate the LSC fields inside the beam in the lab frame, first, we can calculate the 

electrostatic potentials and fields in the rest frame of the beam, and then convert them 

into the lab frame by Lorentz transformation. 

In the rest frame, the line charge density of a beam can be simplified as 

),cos()( zkz k                        
(3.2)

 

where the symbol prime stands for the rest frame.  

For general purpose, we assume there are no restrictions for the horizontal beam 

distributions within the chamber. If the dependence of the perturbed volume charge 

density ),,( zyx   on x£ in the rest frame can be described by a function of G(x£), then  

,
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             (3.3) 

where G(x£) satisfies the normalization condition of 

  ,1)(
2

0
 xdxG

w
                         (3.4) 

and the volume charge density correlates with the line charge density 
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2
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h

h

w
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


                  

 (3.5)
 

In order to solve the Poisson equation in the Cartesian coordinate system analytically 
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and conveniently using the method of separation of variables, the normalized horizontal 

distribution function G(x£) can be written as a Fourier series. Since the charge must 

vanish on the chamber side walls at x£ = 0 and x£ = 2w, we can expand G(x£) to a 

sinusoidal series 

,)sin(
2

1
)(

1






n

nn xg
w

xG                        (3.6) 

     .
2w

n
n

                               (3.7) 

The dimensionless Fourier coefficient ݃௡ᇱ  can be calculated by 

             .)sin()(2
2

0
 
w

nn xdxxGg                       (3.8) 

From Eq. (3.3) and Eq. (3.6), the volume charge density in the rest frame can be 

expressed as 
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          (3.9) 

3.4.2 Calculation of the space charge potentials and fields 

In Region I (charge region) and Region II (charge free region), the electrostatic space 

charge potentials ߮ூᇱ(ݔᇱ, ,ᇱݕ ᇱ) and ߮ூூᇱݖ ,ᇱݔ) ,ᇱݕ  ᇱ) in the rest frame satisfy the Poissonݖ

equation and Laplace equation, respectively. Then we have 
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zyx

zyx
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where 0 = 8.8510-12
 F/m is the permittivity in free space. 

The basic components of the solutions to Eq. (3.11) and the homogeneous form of Eq. 

(3.10) can be written as 

      ).cos()()( zkyYxXh                       (3.12) 

The possible configurations of the solutions to X(x£) and Y(y£) may have the forms of 

)sin(),cos(~)( yxxX nn    or their combinations,            (3.13) 

and 

)sinh(),cosh(~)( yvyvyY nn   or their combinations,            (3.14) 

respectively, where 

,222 kv nn       n=1, 2, 3 ……                  (3.15) 

Considering the boundary conditions (a)  £ = 0, ܧ௬ᇱ = 0 at x£ = 0, 2w; (b)  £ = 0, ܧ௫ᇱ = 0 

at y£=≤h, and the potential £(x£, y£, z£) should be even functions of y£, the basic 

components of solutions to Eq. (3.11) and the homogeneous form of Eq. (3.10) may have 

the following forms: 

In region I (charge region):      ),cos()cosh()sin(~, zkyvx nnIh           (3.16) 

In region II (charge free region): ).cos(|)]|(sinh[)sin(~, zkyhvx nnIIh      (3.17) 

The particular solution to the inhomogeneous Eq. (3.10) can be written as  
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Plugging Eq. (3.18) into Eq. (3.10) and comparing the coefficients of the like terms of the 

two sides gives the coefficients ܥ௡ᇱ  
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                         (3.19) 

Then in region I (charge region), the field potentials in the rest frame are 
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In region II (charge free region), the field potentials in the rest frame are 
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The boundary conditions between Region I and Region II are: at y£=≤b, ߮ூᇱ = ߮ூூᇱ , ߲߮ூᇱ/߲ݕ′ = ߲߮ூூᇱ ௡ᇱܣ Then the coefficients .′ݕ߲/ and ܤ௡ᇱ  can be determined as 
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Finally, the space charge potentials in the rest frame are 

(a) In region I (charge region), 0  |y£| b, 
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(b) In region II (charge free region), b<|y£|h, 
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For a beam with rectangular cross-section and uniform transverse charge density, the 

volume charge density in the rest frame can be expressed as 
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     (3.25) 

Comparing Eq. (3.25) with Eq. (3.3) gives G(x£) is equal to 1/2a inside the beam and 0 

outside of the beam, respectively. Then ݃௡ᇱ  can be calculated from Eq. (3.8) as 
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                    (3.26) 

inside the beam and 0 outside of the beam, respectively. 

According to Eq. (3.23), the LSC field inside the beam in the rest frame can be 

calculated as 
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According to the theory of relativity, the relations of parameters between the rest 

frame and the lab frame are 

(a) The longitudinal electric field is invariant, i.e., 

,,, IzIz EE                             (3.28) 

(b) The wave number            ,/kk                              (3.29) 

(c) The coordinates      ,xx     ,yy    ),( ctzz                    (3.30) 

(d) The line charge density amplitude 

    ,/kk                            (3.31) 
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If we choose exponential representation as used in Eq. (3.1), then Eq. (3.33) can also 

be expressed as 
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where    is the relativistic factor. Then the LSC field in the lab frame becomes 
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where 
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3.4.3 LSC impedances 

  The average LSC field over the cross-section of the beam at z and time t is 
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Finally, the average LSC fields in the beam region can be expressed as 
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The sum of the infinite series in Eq. (3.42) can be evaluated by truncating it to a finite 

number of terms, as long as the sum converges well. 

The average energy loss per turn of a unit charge in a storage ring due to the average 

LSC field is 

)],(exp[)(),( ||
,00, tkziIkZCtzE kscIz                   (3.43) 

where C0 is the circumference of the storage ring, )(||
,0 kZ sc is the LSC impedance of the 

rectangular beam inside the rectangular chamber. It is easy to obtain from Eqs. (3.1), 

(3.41) and (3.43) that the LSC impedance (Ω) is 
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where Z0 = 377 Ω is the impedance of free space, R is the average radius of the storage 
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ring. If the impedance is evaluated by the LSC fields on the beam axis (w, 0), since in Eq. 

(3.35), sin(nx)= sin(n/2), cosh(ny)=1, then rect,rect(k) in Eq. (3.42) should be replaced 

by 
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For a special case of infinite h, i.e., the rectangular chamber becomes a pair of vertical 

parallel plates separated by 2w, since when hØ¶, the limit of )cosh(/)](cosh[ hvbhv nn   

approaches )sin()cosh( bvbv nn  , the parameter rect,rect(k) in Eq. (3.42) can be simplified 

as  
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Eqs. (3.44) and (3.46) give the LSC impedances of a rectangular beam between a pair of 

vertical parallel plates separated by 2w. In Eq. (3.46), if b is infinite, i.e. a rectangular 

beam with infinite height between two vertical parallel plates, since the last part in the 

right hand side of Eq. (3.46) becomes zero, then 
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  For a special case of w, i.e., the rectangular chamber becomes a pair of horizontal 

parallel plates separated by 2h, if we make exchanges a↔b, w↔h, it is easy to obtain its 

impedances from Eqs. (3.44) and (3.46) that 
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  Eqs. (3.48)-(3.52) give the LSC impedances of a rectangular beam between a pair of 

horizontal parallel plates separated by 2h. In Eq. (3.49), if a  , i.e. a rectangular beam 

with infinite width between two horizontal parallel plates, since the limit of 

[cosh(vn,hppa)-sinh(vn,hppa)]sinh(vn,hpp a)/vn,hppa  0, then 
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3.4.4 Case studies of the LSC impedances 

In this subsection, we will calculate the LSC impedances of SIR beam by both 

analytical formulae and numerical method.  

Lanfa Wang of Stanford Linear Accelerator Center (SLAC) developed a simulation 

code that can solve the Poisson equation numerically based on the Finite Element Method 

(FEM) [39]. The code can be used to calculate the space charge potentials, fields and 

impedances of the beam-chamber system with any configurations of the charge 

distributions and boundary shapes. In the rest frame, assume the harmonic volume charge 

density can be written as product of the transverse and longitudinal components  
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where .1),(   ydxdyx  Similarly, the potential due to the harmonic charge density 

is written as  
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The Poisson equation with Eqs. (3.54) and (3.55) becomes 
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where 22222 // yx   and 0  on the metal boundary. The potentials given 

by Eq. (3.56) with arbitrary beam and chamber shapes can be solved using the FEM. The 

whole domain is first divided into many small element regions (finite element). For each 

element, the strong form of the Poisson equation Eq. (3.56) can be rewritten as the FEM 

equation 

,2 QBM  k                         (3.57) 
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0
ie

i

q
Q  .                          (3.60) 

Here N(x£, y£) is called the shape function in FEM, by which the potentials at a field point 

P(x£, y£) within an element can be interpolated by the potentials of its neighboring nodes. 

N(x£, y£) is related to the coordinates of the field point P(x£, y£) and the nodes of the 
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element region. M is the stiffness matrix with matrix element e
jiM , , i and j are the node 

indices of the finite element, Se is the integration boundary of the finite element, qi is the 

charge at the node i, which is proportional to the harmonic line charge density amplitude Λ௞ᇱ . The ߮ୄ  ᇱ of Eq. (3.57) at all nodes satisfying equations Eqs. (3.57)-(3.60) and the 

boundary condition ߮ୄ  ᇱ = 0 on the chamber wall can be solved numerically. Then the 

total potentials in the rest frame can be calculated from Eq. (3.55), the corresponding 

LSC fields and impedances in the lab frame can be calculated using the similar 

procedures in Sect. 3.4.3. 

Now we can use the rectangular beam and chamber model to estimate the LSC 

impedances of the coasting ܪଶା beam in the Small Isochronous Ring (SIR) at Michigan 

State University (MSU) [12]. The ring circumference is C0 = 6.58 m, the kinetic energy of 

the beam is Ek=20 keV (  0.0046,   1.0), the cross-section of the vacuum chamber is 

rectangular with w=5.7 cm, h=2.4 cm, the real beam is approximately round with radius 

r0 =0.5 cm. We can use a square beam model with a=b=r0=0.5 cm to mimic the round 

beam. 

Figure 3.2 shows the comparisons of the on-axis and average LSC impedances of SIR 

beam between the theoretical calculations and numerical simulations using a square beam 

model. We can see that the theoretical and simulated impedances match quite well. Note 

that the on-axis LSC impedances are higher than the averaged ones. The former may 

overestimate the LSC effects. For this reason, we only plot the average LSC impedances 

in Figures 3.3-3.9. 
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Figure 3.2: Comparisons of the on-axis and average LSC impedances between the 
theoretical calculations and numerical simulations for a beam model of square 
cross-section inside rectangular chamber with w = 5.7 cm, h =2.4 cm, a = b = 0.5 cm. 

 

Figure 3.3: Comparisons of the LSC impedances between the square and round models 
(w=h =rw =3.0 cm, a=b=r0 =0.5 cm). 

  Figure 3.3 shows the comparisons of the LSC impedances between the square and 

round field models. The LSC impedances of a round beam of radius r0 inside a round 

chamber of radius rw can be derived from Ref. [16] as  
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I0(x), I1(x), K0(x), and K1(x) are the modified Bessel functions, /kk   and 
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The parameters used in the calculations are w=h=rw =3.0 cm, a=b=r0 =0.5 cm. We can 

observe that the model with square beam and chamber shapes has lower LSC impedances 

compared with the round ones. At large perturbation wavelengths, the impedances of the 

two field models are close to each other.  

 

Figure 3.4: Simulated LSC impedances of the square and round beam models in a square 
chamber (w = h =3.0 cm, a = b = r0 = 0.5 cm), respectively. 
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Figure 3.4 shows the simulated LSC impedances of the square and round H2
+ beam of 

20 keV inside a same square chamber. The parameters used in the calculations are w=h 

=3.0 cm, a=b=r0 =0.5 cm. We can observe that the square beam has relatively lower LSC 

impedances than the round beam. The difference of impedances is caused by the different 

beam shapes. At large perturbation wavelengths, the LSC impedances of the two field 

models are close to each other.  

 

Figure 3.5: Simulated LSC impedances of a round beam inside square and round 
chambers (w = h = rw = 3.0 cm, r0 = 0.5 cm), respectively. 

Figure 3.5 shows the simulated LSC impedances of a round ܪଶା beam of 20 keV inside 

the round and square chambers, respectively. The parameters used in the calculations are 

w=h=rw=3.0 cm, r0 =0.5 cm. We can observe that the two curves are close to each other, 

and the square chamber model has relatively higher LSC impedances than the round 

chamber model. The reason for this tiny difference is that the four corners of the square 

chamber are relatively farther away from the beam axis compared with a round chamber 
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image charges are weaker, and therefore the LSC field becomes stronger. At large 

perturbation wavelengths, the impedances of the two field models are close to each other. 

Figures 3.3-3.5 show that the lower impedances of the rectangular beam and chamber 

model in Figure 3.3 mainly originate from the different beam shapes rather than the 

chamber shapes. 

 

Figure 3.6: LSC impedances of rectangular beam model with different half widths a 
inside a rectangular chamber (w = 5.7 cm, h = 2.4 cm, a is variable, b = 0.5 cm). 

Figure 3.6 shows the calculated LSC impedances of four perturbation wavelengths for a 

20 keV ܪଶା beam model with rectangular cross-section inside the rectangular chamber 

of SIR. The parameters used in the calculations are w = 5.7 cm, h = 2.4 cm, b = 0.5 cm, 

the half beam width a is variable. We can see the LSC impedances decrease with beam 

width 2a for a fixed beam height 2b. 
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half beam height b is variable. We can see the LSC impedances decrease with beam 

height 2b for a fixed beam width 2a. 

 

Figure 3.7: LSC impedances of a rectangular beam model with different half heights b 
inside rectangular chamber (w = 5.7 cm, h = 2.4 cm, a = 0.5 cm, b is variable). 

 

Figure 3.8: LSC impedances of square beam model inside rectangular chamber (w = 5.7 
cm, h is variable, a = b = 0.5 cm). 
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Figure 3.8 shows the calculated LSC impedances of a 20 keV ܪଶା beam model with 

square cross-section inside a rectangular chamber of SIR. The parameters used in the 

calculations are w = 5.7 cm, a = b = 0.5 cm, the half chamber height h is variable. For 

short wavelengths  < 5.0 cm, the LSC impedances are almost independent of the 

changes of h. For longer wavelengths  > 5.0 cm, when h > 5.0 cm, the impedances are 

insensitive to the changes of h and are close to the limiting case of h =  (vertical parallel 

plates). 

 

Figure 3.9: LSC impedances of a square beam model inside a rectangular chamber (w is 
variable, h = 2.4 cm, a = b = 0.5 cm). 

Figure 3.9 shows the calculated LSC impedances of a 20 keV ܪଶା beam model with 

square cross-section inside a rectangular chamber of SIR. The parameters used in the 

calculations are h = 2.4 cm, a = b = 0.5 cm, the half chamber width w is variable. For 

short wavelengths <5.0 cm, the LSC impedances are almost independent of the changes 

of w. For longer wavelengths >5.0 cm, when w > 3.0 cm, the impedances are insensitive 

to the changes of w and are close to the limiting case of w =  (horizontal parallel plates). 
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3.4.5 Conclusions for the rectangular beam model 

  We introduced a 3D space charge field model of rectangular cross-section to calculate 

the perturbed potentials, fields and the associated LSC impedances. The calculated LSC 

impedances are consistent well with the numerical simulation results. A rectangular beam 

shape with a=b=r0 may help to reduce the LSC impedances compared with the 

conventional round beam with radius r0. This result is consistent with Ref. [35] in which 

a planar geometry was investigated. For fixed b(or a), when a(or b) increases, the LSC 

impedance will decrease. The LSC impedances of a rectangular beam inside a pair of 

infinitely large parallel plates are also derived in this paper. Theoretical calculations 

demonstrate that, when the transverse chamber dimensions are approximately more than 

five times of the transverse beam dimensions, the rectangular chamber of the Small 

Isochronous Ring (SIR) can be approximated by a pair of parallel plates. This result 

validates the simplified boundary model of parallel plates used in the Particle-In-Cell 

(PIC) simulation code CYCO to simulate the rectangular chamber of SIR [12].    

3.5 LSC impedances of a round beam inside a rectangular chamber 
and between parallel plates 

This section presents the approximate analytical solutions to the LSC impedances of a 

round beam with uniform transverse distribution and sinusoidal line density modulations 

under two boundary conditions: (a) between parallel plates (b) inside a rectangular 

chamber, respectively. Since the transverse dimensions of almost all the beam chambers 

are much larger than the transverse beam size, the image charge fields of a round beam 

can be approximated by those of a line charge. Then the approximate LSC fields and 



54 

impedances of the two models in discussion can be calculated by image method.  

   In order to obtain the approximate analytical LSC impedances of a round beam with 

planar and rectangular boundary conditions, first, we need to know the LSC fields Ez of 

the following four component field models:  

(a) A round beam in free space, Ez,round,fs.  

(b) A line charge in free space, Ez,line,fs.  

(c) A line charge between two parallel plates, Ez,line,pp.  

(d) A line charge inside a rectangular chamber Ez,line,rect.  

For a round beam between a pair of parallel plates, when the separation between the 

plates is much larger than the beam diameter, its image LSC fields can be approximated 

by those of a line charge between the parallel plates as image
pplinez

image
pproundz EE ,,,,  fslinezpplinez EE ,,,,  , 

its total LSC fields are approximately equal to image
pproundzfsroundzpproundz EEE ,,,,,, 

image
pplinezfsroundz EE ,,,,  fslinezpplinezfsroundz EEE ,,,,,,  ; similarly, for  a round beam inside a 

rectangular chamber, when the full chamber height is much larger than the beam 

diameter, its image LSC fields image
rectroundzE ,,  and total LSC fields rectroundzE ,,  can be 

approximated as image
rectroundzE ,, fslinezrectlinez EE ,,,,  and rectroundzE ,, fslinezrectlinezfsroundz EEE ,,,,,,   

respectively. Next, we will derive the LSC fields of the four component field models 

listed in (a)-(d). 
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3.5.1 A round beam in free space 

In the lab frame, assume there is an infinitely long round beam of radius r0 with 

sinusoidal line density L and beam intensity modulations I of  

)],(exp[),( tkzitz k   and   )],(exp[),( tkziItzI k 
  

     (3.64) 

respectively. According to Ref. [26], its LSC field in the lab frame is 

 )].()(1[
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),,( 001222
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,, rkIrkK
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tzrE fsroundz 


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

         (3.65) 

where 0 = 8.8510-12
 F m-1 is the permittivity in free space, ത݇ =   is the relativistic ,ߛ/݇

factor, I0(x) and K1(x) are the modified Bessel functions of the first and second kinds, 

respectively. 

3.5.2 A line charge in free space 

In the lab frame, assume there is an infinitely long line charge in free space with 

sinusoidal line charge density and beam intensity modulations described in Eq. (3.64). 

First, we can calculate its potentials and fields in the rest frame of the beam, and then 

convert them into the lab frame by Lorentz transformation. In the rest frame of the beam, 

the line charge density is 

                            ),cos()( zkz k 
                           

(3.66) 

where the parameters with primes stand for those in the rest frame. The electrostatic 

potentials can be calculated easily in cylindrical coordinate system by direct integration 

as 
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The LSC field in the rest frame is 
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In the lab frame, according to the theory of relativity, we have 

,zz EE                                   (3.69) 
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If we choose exponential representation as used in Eq. (3.64), then Eq. (3.74) can also be 

expressed as 
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From Eqs. (3.68)-(3.75), the LSC fields in the lab frame become 
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charge potential can be written in the form  

),cos()()(),,(, zkyYxXzyxppline 
                (3.77) 

which satisfies the Laplace equation 
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                     (3.78) 

Plugging Eq. (3.77) into Eq. (3.78) results in 
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Considering the boundary conditions £
line,pp (y £ = 0) = £

line,pp (y £= H) = £
line,pp (x

£= ) 

= 0, we can choose 
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where  > 0. Then the solutions to Eq. (3.80) can be written as 

,)(
2222

21
xkxk eAeAxX   

                 
(3.81)

 

).cos()sin()( 21 yByByY                     (3.82) 

The boundary conditions ppline, (y£=0)= ppline, (y£=H)=0 give 2B =0,=n/H, then Y(y£)sin(n 

y£/H). Because at x£=0, there is a line charge which produces singularity, we should 

calculate the electrostatic potentials  ,, ppline  for x£ > 0 and  ,, ppline for x£ < 0 separately. 
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In Eq. (3.81), when x£ +,  ,, ppline 0, then the coefficient 1A =0; when x£ -, 

 ,, ppline 0, then the coefficient 2A =0. The solutions of X can be written as 

xkeAxX 
 

22

)( 
                      (3.83) 

where‘+ ’and ‘–’stand for x>0 and x<0, respectively. 

The potentials including all harmonic components can be expressed as 
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where nC  and -nC are the coefficients to be determined by the boundary conditions for 

x>0 and x<0, respectively. At x£=0, y£,  ,, ppline =  ,, ppline which gives nC = nC = nC . 

If the line charge is rewritten in the form of surface charge density 

),()(  yz                         (3.85) 

where (x) is the Dirac Delta function, then on the plane x£ = 0, the boundary condition 

D2n
£– D1n

£
 = £ gives 
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Eqs. (3.84) and (3.86) give 
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Multiplying the two sides of Eq. (3.87) by sin(ny£/H) and integrating y£ from 0 to H 
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gives the coefficient ܥ௡ᇱ  
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Then the potentials in Eq. (3.84) can be expressed as 
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Let’s consider a special case of =1=h=H/2, i.e., the line charge is on the median 

plane of the two plates as shown in Figure 3.10, if we choose a new coordinate system 

x1o1y1 with o1 as the origin (see Figure 3.10), according to x£ =ݔଵᇱ , y£= ݕଵᇱ +h, the potentials 

in the rest frame of the beam become 
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If we use cylindrical coordinate system, ݔଵᇱ = r£cos(£), ݕଵᇱ =r£sin(£), Eq. (3.90) becomes 
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The LSC field in the rest frame is 
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Using the Lorentz transformation of Eqs. (3.69) - (3.75), and £=, the LSC field in the 

lab frame becomes 
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3.5.4 A line charge inside a rectangular chamber 

In the lab frame, assume there is an infinitely long line charge centered inside a 

rectangular chamber, the sinusoidal line charge density and beam intensity modulations 

are described in Eq. (3.64). The full chamber width and height are W=2w and H=2h, 

respectively. Sect. 3.4.2 derives the potential of an infinitely long beam with rectangular 

cross-section and uniform transverse charge density inside a rectangular chamber. In the 

rest frame of beam, in the charge-free region inside the chamber (b|y£|h), the potentials 

are 
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where           ，)sin()sin(
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and n=n/2w, n
£2=n

2+k£2, n=1, 2, 3,…. In the limiting case of a=b=0, the rectangular 
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beam shrinks to a line charge. Because a=0, gn
£=gn=2sin(nw) and b=0, sinh(n

£
 b)/b=n

£, 

then Eq. (3.94) becomes 
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Using the Lorentz transformation of x£= x, y£
 = y, and Eqs. (3.69), (3.71)-(3.75), the LSC 

field in the lab frame becomes 
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where ./ 2222222  kkvv nnnn   

3.5.5 Approximate LSC impedances of a round beam between parallel 
plates and inside a rectangular chamber 

The average longitudinal wake potential (or energy loss per turn of a unit charge) in a 

circular accelerator due to the LSC field is 

)],(exp[)(),(V ||
00 tkziIkZCEtz kz              (3.98) 

where <Ez> is the LSC field averaged over the cross-section of the round beam and can 

be calculated using the formula 
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(a) For a round beam midway between parallel plates, the average LSC impedance can 

be calculated by Eqs. (3.65), (3.76), (3.92), and (3.98) with  pproundzz EE ,,  

fslinezpplinezfsroundz EEE ,,,,,,    as 
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(b) For a round beam inside and coaxial with a rectangular chamber, the approximate 

average LSC impedance can be calculated by Eqs. (3.65), (3.76), (3.97), and (3.98) 

with fslinezrectlinezfsroundzrectroundzz EEEEE ,,,,,,,,   as 
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In the derivations of Eqs. (3.100) and (3.102), two identities of integrals 
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10 )()( IdxxxI are used. Note that the first terms on the 

right hand side of Eqs. (3.100) and (3.102) are contributed from the average LSC fields 

of a line charge midway between parallel plates and inside a rectangular chamber, 

respectively; the second terms are contributed from the differences of the average LSC 

fields within beam radius r0 between a round beam and a line charge in free space. Eqs. 

(3.101) and (3.103) can be evaluated by truncating the infinite series to a finite number of 

terms, as long as the sum converges well.  

3.5.6 Summary of some LSC impedances formulae 

For the purpose of comparisons in Sect. 3.5.7, here we would like to summarize some 

LSC impedance formulae in both the long-wavelength and short-wavelength limits, 

which are often used in literatures. 

3.5.6.1 A round beam inside a round chamber 

For a round beam with radius r0 and uniform transverse distribution centered inside a 

round chamber with inner chamber wall radius rw, the LSC impedance is repeated here as 
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where ଵ݂ = ത݇ݎ଴ for the on-axis impedance [24, 25] and ଵ݂ =  for the average (଴ݎത݇)ଵܫ2

one (see Eqs. (3.61)-(3.63)), respectively.  

(a) In the long-wavelength limits 
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The total LSC impedance of a uniform disk beam with radius r0 inside a round 

chamber with radius rw in the long-wavelength limits is [20, 25] 
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where ଶ݂ = 1/2  for the on-axis impedance and ଶ݂ = 1/4  for the average one, 

respectively. 

 (b) In the short-wavelength limits 

If rw>>r0, the image charge effects of the chamber wall can be neglected in the 

short-wavelength limits, the LSC impedance of a round beam is approximately equal to 

that in free space. Refs. [22, 23] give the on-axis LSC impedance of a round beam in the 

short-wavelength limits as 
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       (3.106) 

The LSC impedances in Eq. (3.106) are derived from the on-axis LSC fields of the 1D 

space charge field model. While Ref. [25] pointed out that the 1D field model does not 

hold any more for l<4pr0/g or kr0/g >0.5. In addition, the off-axis LSC fields always 

decrease from the beam axis r=0 to the beam edge r=r0. Ref. [41] studied these 3D space 

charge effects analytically and made a conclusion that, if the LSC fields were averaged 

over the beam cross-section, the 1D and 3D field models predict almost the identical LSC 

fields. The average LSC impedance is given in Refs. [24, 26] as 
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3.5.6.2 A round beam inside a rectangular chamber in the long-wavelength limits 

Let’s assume an infinitely long, transversely uniform round beam with radius r0 is 

inside and coaxial with a rectangular chamber. The full chamber width and height are 

W=2w and H=2h, respectively. Then according to Eq. (23) of Ref. [32], the LSC 

impedance of an accelerator ring in the long-wavelength limits is 
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where ଷ݂ = 1/2  for the on-axis impedance and ଷ݂ = 1/4  for the average one, 

respectively. 

3.5.6.3 A round beam between parallel plates in the long-wavelength limits 

In the limiting case of WØ¶, the rectangular chamber becomes a pair of parallel plates, 

according to Eq. (3.108), Eqs. (A6) and (A7) in Appendix of Ref. [31], its LSC 

impedance becomes 
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where ସ݂ = 1/2  for the on-axis impedance and ସ݂ = 1/4  for the average one, 

respectively. 
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3.5.7 Case study and comparisons of LSC impedances 

In this section, as a case study, we will calculate the approximate LSC impedances of a 

coasting ܪଶା beam in the SIR, compare them with the simulation results and the 

theoretical values predicted by other models. The kinetic energy of the beam is Ek = 20 

keV (  0.0046,   1), the beam radius r0 is variable. Since w>>h, the rectangular 

chamber can also be simplified as a pair of infinitely large parallel plates. The LSC 

impedances are calculated by both theoretical and numerical methods using the Finite 

Element Method (FEM) code.  

 

Figure 3.11: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=0.5 cm under different boundary conditions and in different wavelength 
limits. l is the perturbation wavelength, උܼ଴,௦௖|| ඏ is the modulus of LSC impedance. In the 
legend, ‘Free space’, ‘Round chamber’, and ‘Parallel plates’ are boundary conditions; 
‘LW limits’ stands for the long-wavelength limits; ‘(approximation)’ and ‘(simulation)’ 
stand for the theoretical approximation and simulation (FEM) methods, respectively. 
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Figure 3.12: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=1.0 cm under different boundary conditions and in different wavelength 
limits. 

 

 

Figure 3.13: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=1.5 cm under different boundary conditions and in different wavelength 
limits.  
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Figure 3.14: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=2.0 cm under different boundary conditions and in different wavelength 
limits.  

Figures 3.11- 3.14 show the simulated (blue dashes) and theoretically approximated 

(Eqs. (3.100) and (3.101), red circles) average LSC impedances of a round SIR beam 

with radii r0 =0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm midway between the parallel plates with 

h=2.4 cm. For the purpose of comparisons, the theoretical average LSC impedances of 

the round beam predicted by three existing models are also plotted. (a) In free space (Eq. 

(3.107), black lines with circles). (b) Inside a round chamber with rw=h=2.4 cm, in the 

long-wavelength limits (Eq. (3.105), green lines). (c) Between parallel plates with h=2.4 

cm, in the long-wavelength limits (Eq. (3.109), magenta lines). For a small beam size, for 

instance r0<1.0 cm, the theoretical approximations are consistent well with the 

simulations in all the wavelengths. A small discrepancy appears for large beam size case 

when the image charge effect becomes large, for instance r0=2.0 cm. The 

long-wavelength model with a round chamber gives smaller impedance as expected 

because of the larger shielding effect compared with a pairs of parallel plates. The 

difference of the impedance between a round chamber and a pairs of parallel plates 

becomes larger when the beam size increases.  
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    Figures 3.15-3.18 show the simulated (blue dashes) and theoretically approximated 

(Eqs. (3.102) and (3.103), red circles) average LSC impedances of a round SIR beam 

with radii r0 =0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm inside and coaxial with a rectangular 

chamber with w=5.7 cm, h=2.4 cm. For the purpose of comparisons, the theoretical 

average LSC impedances predicted by three existing models are also plotted. (a) In free 

space (Eq. (3.107), black lines with circles). (b) Inside a round chamber with rw=h=2.4 

cm, in the long-wavelength limits (Eq. (3.105), green lines). (c) Inside a rectangular 

chamber with w=5.7 cm, h=2.4 cm, in the long-wavelength limits (Eq. (3.108), magenta 

lines). 

Figures 3.11-3.18 show that, for both the parallel plates and rectangular chamber 

models, the simulated (blue dashes) and theoretical (red circles) average LSC 

impedances match quite well for the cases r0 = 0.5 cm, 1.0 cm and 1.5 cm (r0/hº0.21, 

0.42, and 0.63). For the case of r0=2.0 cm (r0/h º 0.83), the relative errors between the 

theoretical and simulated peak LSC impedances are about 3.8% and 4.0% for the parallel 

plates and rectangular chamber models, respectively. This shows the line charge 

approximation in calculation of the image fields of a round beam is valid. Only at r0 = 2.0 

cm may this assumption underestimate the shielding effects of the image fields resulting 

in overestimation of the LSC impedances to some small noticeable extents. When the 

transverse beam dimension approaches the chamber height, the line charge assumption 

for the image charge fields of a round beam may induce bigger but still acceptable errors. 

For the wavelengths in the range of 0<§5 cm, the theoretical (red circles) and simulated 

(blue dashes) average LSC impedance curves overlap the impedance curves for a beam 

in free space (black lines with circles) predicted by Eq. (3.107). It denotes that the 
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shielding effects due to the image charges are on a negligible level, it is valid to calculate 

the average LSC impedances by Eq. (3.107) directly for the parallel plates and 

rectangular chamber models. For >5 cm, the average LSC impedances predicted by the 

model of a round beam in free space (black lines with circles) gradually deviate from and 

are larger than the theoretical (red circles) and simulated (blue dashes) LSC impedances 

of the two models discussed in this paper. This is caused by the neglect of the important 

shielding effects of beam chambers at large wavelengths. When  approaches 35 cm, the 

theoretical (red circles) and simulated (blue dashes) average LSC impedance curves 

approach the magenta curves predicted by Eq. (3.109) in Figures 3.11-3.14 and Eq. 

(3.108) in Figures 3.15-3.18 in the long-wavelength limits, respectively. These 

comparison results indicate the derived average LSC impedance formulae Eqs. 

(3.100)-(3.103) are consistent well with the simulations and the existing LSC impedance 

models in both the short-wavelength and long-wavelength limits. In the long-wavelength 

limits, for r0<<h, the average LSC impedances of the round chamber model (green lines) 

are consistent with the ones predicted by the parallel plates and rectangular models (see 

the red circles and blue dashes in Figure 3.11 and Figure 3.15); while as r0 increases and 

approaches h, the round chamber model (green lines) predicts smaller LSC impedances 

gradually than the parallel plates and rectangular chamber models (red circles and blue 

dashes) at large wavelengths (see Figures 3.12-3.14 and Figures 3.16-3.18). This result 

indicates that, at large perturbation wavelengths, the round chamber model has larger 

shielding effects on the LSC fields than the models with planar and rectangular 

boundaries, and the shielding effects of the round chamber become more significant 

when r0/hØ1. 
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Figure 3.15: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=0.5 cm under different boundary conditions and in different wavelength 
limits. In the legend, ‘Free space’, ‘Round chamber’, and ‘Rect. chamber’ are boundary 
conditions, where ‘Rect.’ is the abbreviation for ‘Rectangular’; The other symbols and 
abbreviations are the same as those in Figure 3.11. 

 

 

Figure 3.16: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=1.0 cm under different boundary conditions and in different wavelength 
limits. 
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Figure 3.17: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0=1.5 cm under different boundary conditions and in different wavelength 
limits. 

 

Figure 3.18: Comparisons of the average LSC impedances of a round SIR beam with 
beam radius r0 =2.0 cm under different boundary conditions and in different wavelength 
limits.  
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Figure 3.19: Comparisons of the average LSC impedances between the round beam and 
square beam for a parallel plate field model. For a round beam, r0 is the beam radius; for 
a square beam, r0 is the half length of the side. The square beam model underestimates 
the LSC impedances. 

 

Figure 3.20: Comparisons of the average LSC impedances of a round beam between 
parallel plates and a round beam inside a round chamber. The round chamber model 
underestimates the LSC impedances at larger l. 

Figure 3.19 shows the average LSC impedances of a SIR beam with beam radii r0=0.5 

cm and 2.0 cm midway between a pair of parallel plates with h=2.4 cm. The theoretical 

impedances are calculated by both the round beam model using Eq. (3.100) and square 
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length of side a=b=r0 may underestimate the average LSC impedances compared with 

the round beam model with radius r0. 

Figure 3.20 shows the average LSC impedances of a round SIR beam with beam radii 

r0 =0.5 cm and 2.0 cm midway between a pair of parallel plates with h=2.4 cm and 

inside a round chamber with rw=h=2.4 cm. The theoretical impedances of the parallel- 

plate model and round chamber model are calculated by Eq. (3.100) and Eq. (3.104), 

respectively. For a round beam with fixed radius and energy, the round chamber model 

may underestimate the average LSC impedances compared with the parallel plates model 

with radius h=rw. This difference is caused by the stronger shielding effects of the image 

fields produced by the round chamber compared with the parallel plates. Some literatures 

use the round chamber model to approximate the LSC field and impedance of a round 

beam between parallel plates or inside a rectangular chamber (e.g., Ref. [16]). Figure 3.20 

clearly indicates that this approximation only holds when l is small, where the shielding 

effect is negligible. For a 20 keV SIR beam with r0 =0.5 cm inside a rectangular chamber 

with w=5.7 cm and h=2.4 cm, the round chamber approximation for the LSC impedance 

is only accurate for l§ 5 cm. For l> 5 cm, the round chamber approximation will induce 

larger errors. 

In summary, Figures 3.11-3.20 show that, for a typical 20 keV SIR beam with r0 =0.5 

cm inside a rectangular chamber, when l§ 5 cm, the image charge effects are negligible. 

In this case, for simplicity, we can use the LSC impedance formula for a round beam in 

free space (Eq. (3.107)) to calculate the LSC impedance with a good accuracy; For l¥35 

cm, we can use the impedance formulae in the long-wavelength limits Eq. (3.108) for a 

rectangular chamber model or Eq. (3.109) for a parallel plates model to estimate the LSC 
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impedance. While for 5 cm<l<35 cm, none of the existing models and formulae can be 

used to evaluate the LSC impedance accurately. In this case, we have to use the 

approximate theoretical impedance formulae Eqs. (3.102) and (3.103) for a rectangular- 

chamber model or Eqs. (3.100) and (3.101) for a parallel-plate model. This is the merit of 

the approximate analytical LSC impedance formulae derived in this chapter. 

3.5.8 Conclusions for the model of a round beam inside rectangular 
chamber (between parallel plates) 

In this subsection, we mainly derive the approximate average LSC impedance 

formulae for a round beam under two boundary conditions: (a) Midway between a pair of 

infinitely large, perfectly conducting parallel plates. (b) Inside and coaxial with a 

perfectly conducting rectangular chamber. In most accelerators, since w>>r0, h>>r0, the 

image charge fields of a round beam can be treated as those of a line charge in calculation 

of the LSC fields inside the beam. Consequently, the associated LSC impedances can be 

approximated by means of image methods based on the superposition theorem of the 

electric fields. The approximate theoretical average LSC impedances of the parallel-plate 

model and the rectangular-chamber model are consistent well with the numerical 

simulation results in a wide range of the radios of r0/h. In addition, the theoretical LSC 

impedances predicted by the two field models also match well with the existing field 

models in both the short-wavelength (l§5 cm) and the long-wavelength (lØ35 cm) 

limits. In particular, for 5 cm<l<35 cm, the approximate theoretical LSC impedances 

formulae have better accuracies than the existing models and formulae. Hence, they are 

valid at any perturbation wavelengths and can be used as general expressions of the 

average LSC impedances in the future research work on space-charge induced 
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instabilities, even for large ratios of r0/h. At last, the image method together with the line 

charge approximation employed in this paper can also be used to derive the LSC 

impedances of field models with other cross-sectional geometries. 



78 

Chapter 4 

MICROWAVE INSTABILITY AND LANDAU DAMPING 
EFFECTS

2 

4.1 Introduction 

Our previous simulation and experimental results indicated that the instability growth 

rates of SIR beam are proportional to the unperturbed beam intensity I0 instead of the 

square root of I0 [13]. Pozdeyev [14, 15] and Bi [16] developed their own models and 

theories separately to explain the mechanisms of microwave instability in the isochronous 

regime, respectively. Pozdeyev pointed out that, in the isochronous regime, the radial 

coherent space charge fields of a coasting bunch with centroid wiggling may modify the 

slip factor, raise the working point above transition and enhance the microwave instability. 

This makes the instability growth rates linearly dependent on the beam intensity [14, 15].  

While Bi’s model [16] is not consistent with the scaling law on beam intensity, since the 

unperturbed beam density component is neglected in calculation of the coherent radial 

space charge force of the perturbed local centroid. 

It is also found in the simulations that the spectral evolutions of the line charge 

densities are not pure exponential functions of time, instead, they are often characterized 

by the betatron oscillations superimposed on the exponential growth curves. These 

betatron oscillations are the dipole modes in the longitudinal structure of the beam due to 

dipole moment of the centroid offsets [20]. 

                                                              
2 Y. Li, L. Wang, F. Lin, Nuclear Instruments and Methods in Physics Research A 763, 674 (2014). 
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In the isochronous regime, the longitudinal motion of particles was usually thought to 

be frozen. If and how the Landau damping affects the instability growth rates in the 

isochronous regime is still unknown for beam physicists. The theoretical and simulation 

studies in this chapter demonstrate that the Landau damping mechanism can also take 

effect and suppress the microwave instability for a beam with space charge in the 

isochronous regime. 

Both Pozdeyev and Bi’s models use the 1D (longitudinal) conventional instability 

growth rates formula derived exclusively for a monoenergetic beam and neglects the 

emittance effect. As a result, the radial-longitudinal coupling effects in an isochronous 

ring are not included completely. This may overestimate the instability growth rates, 

especially for the short-wavelength perturbations, because the Landau damping effects 

caused by the finite energy spread and the emittance are all neglected. Though Pozdeyev 

explained the suppression of the instability growth of short-wavelength perturbations by 

the radial-longitudinal coupling effects qualitatively [15], till now, no quantitative 

discussions on the Landau damping effects are available for a coasting bunch with space 

charge in the isochronous regime. 

  To predict the microwave instability growth rates more accurately than the existing 

conventional 1D formula, this chapter introduces and derives a 2D dispersion relation 

with Landau damping effects considering the contributions from both the finite energy 

spread and emittance. By doing this, it can explain the suppression of the microwave 

instability growth rates of the short-wavelength perturbations and predict the 

fastest-growing wavelength. 

This chapter is organized as follows. Sect. 4.2 discusses the limitations of the 
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conventional 1D growth rates formula and presents a modified 2D dispersion relation. 

Sect. 4.3 discusses the Landau damping effects in the isochronous ring by 2D dispersion 

relation. Sect. 4.4 carries out the simulation study of microwave instability in SIR and 

provides benchmarking of the 2D dispersion relation with different initial beam 

parameters.  

4.2 2D dispersion relation 

4.2.1 A brief review of the 1D growth rates formula 

The conventional 1D growth rates formula for the microwave instability of a 

monoenergetic and laminar beam used in Ref. [15] is: 

           
,
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(4.1) 

where 0 is the angular revolution frequency of the on-momentum particles, =–1/2 is 

the slip factor,  is the momentum compaction factor,  is the relativistic energy factor of 

the on-momentum particle, e is the electron charge, I0 is the unperturbed beam intensity, k 

is the perturbation wavenumber of the longitudinal charge density, R is the average ring 

radius, Z(k) is the longitudinal space charge (LSC) impedance,  is the relativistic speed 

factor, E is the total energy of the on-momentum charged particle. Essentially, the 1D 

dispersion relation Eq. (23) of Ref. [16] is the same as the 1D growth rates formula Eq. 

(4.1), if we express the LSC field by the LSC impedance. 

For the circular SIR beam with radius r0, the transverse dimension of the vacuum 

chamber is much greater than the beam diameter. Hence, Ref. [15] neglects the image 

charge effects of the chamber in the short-wavelength limits, and chooses Z(k) is equal to 
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the on-axis LSC impedance of the monopole mode [15]: 
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where Z0 = 377 Ohm () is the impedance of free space, K1(x) is the modified Bessel 

function of the second kind. 

For a coasting long bunch with strong space charge effects in the isochronous ring, the 

LSC fields may induce the coherent energy deviations and the associated radial offsets of 

the local centroids. Consequently, there is centroid wiggling along the bunch. Ref. [15] 

assumed that the longitudinal distribution of the radial centroid offsets is a sinusoidal 

function of the longitudinal coordinate z with a wavenumber kc. In the first-order 

approximation, we can choose k  kc and use the same k in the expressions of (k) and 

Z(k) in Eq. (4.1) just as treated in Ref. [15] (please check Eqs. (2), (12), (13), and (14) in 

Ref. [15]).  

Ref. [15] uses the following formalism to derive the space-charge modified coherent 

slip factor of a local centroid: due to centroid wiggling, there will be coherent radial 

space charge field Ex,sc. It produces positive increments in the dispersion function D 

(which is approximated by 2/1 xD  ), the momentum compaction factor , and the 

coherent slip factor (k). Finally, the space-charge modified coherent slip factor sc(k) can 

be determined, i.e., Ex,scDscscsc(k)sc(k). In the end, sc(k) may be 

approximated as [14, 15] 
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Note the relativistic factor
 
 is introduced in Eq. (4.3) to make the original expressions of 
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sc(k) in Refs. [14, 15] compatible with the high energy beams. Plugging Eqs. (4.2) and 

(4.3) into Eq. (4.1) gives the instability growth rates 1/߬ ∝ ଴[1ܫ − ௞௥బఊ ଵܭ ቀ௞௥బఊ ቁ].  

4.2.2 Limitations of 1D growth rates formula 

Though the above formalism adopted in Ref. [15] may explain the origin of the 

microwave instability of SIR beam and is consistent with the scaling law on beam 

intensity, it is not accurate enough and still has some limitations.  

First, the LSC impedance in Eq. (4.2) is evaluated from the on-axis LSC field of a 1D 

space charge field model. As discussed in Chapter 3, due to the 3D effects on the LSC 

fields, Eq. (4.2) should be replaced by the average LSC impedance formula to account 

for the LSC field more accurately in the short-wavelength limits:  
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Second, the space-charge modified coherent slip factor is not accurate enough since it 

does not include the betatron oscillation effect of the local centroid (please refer to Eq. 

(2.30) of Sect. 2.6). In Ref. [42], the transformation of the longitudinal coordinate z with 

respect to the bunch center is 

,560520510 RxRxRzz                       (4.5) 

where x0 and 0x = dx0/ds are the initial radial betatron motion amplitude and velocity 

slope at s=0, respectively, δ=Δp/p is the fractional momentum deviation, R51(s), R52(s), 

and R56(s) are the transfer matrix elements and depend on the path length s. Note that in 

Ref. [42],  was defined differently as the fractional energy deviation =E/E of an 
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ultra-relativistic electron particle with 1, since =p/p(E/E)/2E/E; in addition, 

the definition of R51(s), R52(s), and R56(s) in Eq. (4.5) and Ref. [42] are different from the 

standard ones (please refer to Appendices A and B for details). For a coasting beam with 

space charge in the isochronous ring, in the conventional 1D (longitudinal) beam 

dynamics, the space–charge modified parameters of the slip factor sc, the momentum 

compaction factor αsc, the transition gamma t,sc, the element R56,sc, and the local 

dispersion function Dsc(s) are related to each other by:  
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where (s) is the local radius of curvature of trajectory, <ÿÿÿ> denotes the average value 

over the ring circumference C0. From Eqs. (4.6), (4.7) and the formalism used in Ref. 

[15], we can see that only the contribution of the momentum compaction factor sc or the 

element R56,sc is considered in the modification of sc(k). While Eq. (4.5) shows z =z-z0 

is determined by R51, R52, and R56, the ring is isochronous if z=0 after one revolution. 

The space-charge modified coherent slip factor of a local centroid should be dependent 

on both R56 and R51, R52. In Ref. [42], where the method of characteristics is employed, 

the parameters x0, 0x , and z0, at s=0 are regarded as constants of motion, they are related 

to the current coordinates of the particle x, x  and z at position s by a canonical 

transformation 
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which usually are non-zero parameters. Accordingly, the exact expression of the slip 

factor at s can be calculated as (s, k)=-(dDz/d)/C0= -[R51(s, s+C0)∑x0/∑+R52(s, s+C0) 

଴ᇱݔ∑ /∑ +R56(s, s+C0)]/C0, and it also depends on R51(s, s+C0), R52(s, s+C0) if ∑x0/∑0 

and ∑ݔ଴ᇱ /∑0. Here R51(s, s+C0), R52(s, s+C0) and R56(s, s+C0) are the transfer matrix 

elements between s and s+C0. The space–charge modified slip factor expressed in Eq. 

(4.6) is only a special case at s=0, ∑ x0/∑ =0, and ∑ݔ଴ᇱ /∑=0. The contributions of R51,sc 

and R52,sc to the coherent slip factor are related to the betatron motion of the centroid and 

should not be neglected in the isochronous regime. 

Third, Ref. [15] only takes into account the coherent motion of the local beam centroid 

neglecting the incoherent motions of individual particles in the beam slices. In fact, a 

local beam slice usually has a finite energy spread and emittance. Eq. (4.5) and the above 

analysis indicate that, the betatron motions of particles in a beam slice with different d, x0, 
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and ݔ଴ᇱ  may have different longitudinal path length differences Dz which are not the 

same as that of the local centroid. This may cause smearing of the beam intensity 

perturbations and is the very reason of Landau damping. 

4.2.3 Space-charge modified tunes and transition gammas in the 
isochronous regime 

  The radial space charge fields may modify the radial tunes and transition gammas in 

the isochronous regime [14-16]. Due to the large ratios between the full chamber width 

(~11.4 cm), full chamber gap (~4.8 cm) and the beam diameter (~1 cm), the image 

charge effects caused by the vacuum chamber are small for perturbation wavelength l§ 5 

cm as shown in Chapter 3. Then Pozdeyev’s model [14, 15] of a uniform circular beam 

with centroid wiggling in free space can be used to calculate the radial space charge fields 

and modified tunes. Assuming the total radial offset of a particle is x=xc +xβ, where xc is 

the beam centroid offset xc=accos(kz), k is the wavenumber of radial offset perturbations 

of local beam centroids with respect to the design orbit along z, xβ  is the radial offset of a 

single particle due to the betatron oscillation. The equations of coherent and incoherent 

radial motions can be expressed as: 
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where nx is the bare radial betatron tune, coh and inc are the coherent and incoherent 

fractional momentum deviations, Ex,coh and Ex,inc are the coherent and incoherent radial 

space charge fields [15, 16], respectively, and can be expressed as 
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are two unitless parameters. For a typical SIR beam with 0 < coh << 1 and 0 < inc << 1, 

the coherent and incoherent radial tunes can be easily obtained from Eqs. (4.10)-(4.13) as 
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Here the coherent radial tune x,coh and incoherent radial tune x,inc stand for the number 

of betatron oscillations per revolution of a local centroid and a single particle, 

respectively. According to Ref. [16], the space-charge modified coherent and incoherent 

transition gammas in an isochronous accelerator are 
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where n= -(r/B)(∑B/∑r) is the magnetic field index. For the SIR with n < 0, |n|<<1, if the 

space charge effects are negligible (i.e., coh=inc =0, nt 12
0, ), the bare slip factor is 0 

= 22
0, /1/1  t

2/11  n  2  10-4. Then 
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4.2.4 2D dispersion relation 

For a hot beam with large energy spread and emittance in an isochronous ring, the 

Landau damping effects are important due to the strong radial-longitudinal coupling. 
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Hence, a multi-dimensional dispersion relation including both the longitudinal and radial 

dynamics is needed. Usually the vertical motions of particles can be regarded as 

decoupled from their radial and longitudinal motions. In this section, first, we would like 

to summarize and comment the main procedures and definitions used in Ref. [42], where 

a 2D (longitudinal and radial) dispersion relation was derived for the coherent 

synchrotron radiation (CSR) instability of an ultra-relativistic electron beam in a 

conventional storage ring. Based on this model, we can derive a 2D dispersion relation 

for the microwave instability of the non-relativistic ܪଶା beam in an isochronous ring. 

4.2.4.1 Review of the 2D dispersion relation for CSR instability of ultra-relativistic 
electron beams in non-isochronous regime 

  First, Ref. [42] defined a 2D Gaussian beam model with an initial equilibrium beam 

distribution function  
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nb is the linear number density of the beam, εx,0 is the initial radial emittance, x0 is the 

initial radial offset, 0x =dx0/ds is the initial radial velocity slope, 0̂ is the betatron 

function at s=0, d is the uncorrelated fractional momentum deviation, û is the chirp 

parameter which accounts for the correlation between the longitudinal position z of the 

particle in the bunch and its fractional momentum deviation d, δ is the uncorrelated 

fractional RMS momentum spread (Note in Ref. [42], δ was defined differently as the 

uncorrelated fractional RMS energy spread for an ultra-relativistic electron beam with 
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1). Then the perturbed distribution function f1 is assumed to have a sinusoidal 

dependence on z0 as 
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where 00 ˆzu  is the total fractional momentum deviation including both the 

uncorrelated and correlated fractional momentum deviation. Plugging the distribution 

function of f=f0+f1 into the linearized Vlasov equation, after lengthy derivations, a 

Volterra integral equation is derived as 
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is the bunch length compression factor, K(s£, s) is the kernel of integration. The perturbed 

harmonic line density with wave number k at (z, s) is 

.)()(),( )(C
1000,1

zsik
kk esgsCfdxddxszn                 (4.24) 

We can see that |C(s)gk(s)| is just the amplitude of the perturbed line density at s. For 

storage rings, the linear chirp factor 0ˆ u , the compression factor C(s) =1. By smooth 

approximations of Rxxx /2
0,   , xR  /ˆ , Rsx /  , 2/ xRD  , 0ˆ  , 0D , the integral 

kernel in Eq. (4.20) is simplified as 

)(),( 1 KssK                           
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where 0=enb is the unperturbed line charge density, e
m is the rest mass of electron, Z(k) 

is the CSR impedance in unit of Ohm, x is the RMS beam radius, =s-s£  is the relative 

path length difference between two positions at s and s£, specifically, if we choose s£ =0, 

then =s. Note that the Eq. (4.25) uses the SI instead of CGS system of units as in Ref. 

[42]. By smooth approximation, the kernel K(s£, s) is only dependent on the parameter 

=s-s£ and radial tunex. Applying Laplace transform to the two sides of Eq. (4.20) yields 

an algebraic equation 
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where  is the complex Laplace variable and 
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are the Laplace images of gk(s), gk
(0)(s) and K1(), respectively. The relation of 

0)(ˆ1  K  for the denominator of Eq. (4.26) determines the dispersion relation. 

Finally the 2D dispersion relation for the CSR instability of an ultra-relativistic electron 

beam in a non-isochronous storage ring is derived in Appendix B of Ref. [42] as 
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Note sdºsE/E has been used in Eq. (4.30), where sE is the RMS energy spread, and the 
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SI system of units is used in Eq. (4.30). Eq. (4.30) is an integral equation which 

determines the relations between the wavenumber k and the complex Laplace variable . 

For a fixed k, the values of  can be solved numerically.  

  Ref. [42] did not explicitly interpret the CSR instability growth rates from the solutions 

to Eq. (4.30). Theoretically speaking, gk(s) can be calculated by inverse Laplace 

transform (Fourier-Mellin transform) 
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where  is a positive real number. The integration is along the Bromwich contour, which 

is a line parallel to the imaginary -axis and to the right of all the singularities satisfying

0)(ˆ1  K  in the complex -plane. In practice, the integral in Eq. (4.31) poses a great 

difficulty in mathematics due to complexity of the integrand. A popular method dealing 

with this difficulty is widely used in the Plasma Physics [43-46] by applying Cauchy’s 

residue theory to an equivalent Bromwich contour. First, the Bromwich contour is 

deformed by analytic continuation, and then the solutions of gk(s) can be evaluated by the 

residues of the poles using Cauchy’s residue theorem as  
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where ]),(ˆ[ jkgRsd  stands for the residue of )(ˆ kg at the pole j. Using the relation s 

= ct, where t is the time, the temporal evolution of gk(s) becomes 


j

jk
ct

k gRsdetg j ].),(ˆ[)( 
                  (4.33) 

For a storage ring, C(s)=1, Eq. (4.24) gives the amplitude of perturbed harmonic line 

density with wavenumber k as 
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Eqs. (4.33) and (4.34) show that, for a pole at j, (a) if Re(j)<0, the k-th Fourier 

component of the line density damps exponentially at a rate of 1- =Re(j)c; (b) if 

Re(j)>0, this pole may induce the CSR instability which grows exponentially at a rate of 

1- =Re(j)c. The total instability growth rates are dominated by the pole j which has 

the greatest positive real part.  

 4.2.4.2 2D dispersion relation for microwave instability of low energy beam in 
isochronous regime 

The 2D dispersion relation Eq. (4.30) can be modified to study the space-charge 

induced microwave instability of a low energy coasting ܪଶା bunch in the SIR. In the 

derivation of Eq. (4.30), the term which is proportional to 1/2 is neglected in the 

longitudinal equation of motion due to  >>1. In addition, in Eq. (4.30), the method of 

smooth approximation is used to express all the beam optics parameters, such as the 

betatron function, phase advance, dispersion function, R51, R52, and R56 as functions of 

radial tune νx. Because the space charge effects are also neglected, the radial betatron tune 

νx in Eq. (4.30) is a k-independent constant. While for a coasting beam with space charge 

in the SIR, the space charge fields may modify the radial tunes and beam optics 

parameters. These neglected terms and space charge effects should be considered in the 

2D dispersion relation for the SIR beam. Hence Eq. (1) and Eq. (4) of Ref. [42] should be 

modified as 

,
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Consequently, using relative path length difference =s-s£, the increment of R56 from s£  

to s in Eq. (B4) of Ref. [42] should be modified as 
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When the elements R51 and R52 are included, the corresponding modified increment of 

R56 becomes 
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where x,sc is the space-charge modified radial tune.  

Note that: 

(a) In Eq. (4.37), for the longitudinal dynamics in the isochronous regime, we cannot 

use the method of smooth approximation to express R56(s
£, s) by -( 2

,/1 scx –1/2) 

directly due to smallness of the slip factor, otherwise it will induce considerable errors. 

We may use R56(s
£, s) = -( 2

,/1 sct – 1/2) instead. While the sinusoidal function term in 

Eq. (4.38) is contributed from R51 and R52, and it can be estimated as a function of the 

radial betatron tune x,sc using the smooth approximation. 

(b) In Eqs. (4.36)-(4.38), R56(s)= ∑z/∑ is the linear correlation coefficient between the 

longitudinal coordinate z at s and the fractional momentum deviation  at s=0. R56 (s
£, s) 

is the increment of R56 between s£ and s without the effects of R51 and R52 

).()(),( 565656 sRsRssR                      (4.39) 
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56 ssR   differs from R56(s) and R56(s
£, s) by including the effects of R51 and R52. 

According to Appendix A of Ref. [42], for a coasting beam in the SIR, ),(
~

56 ssR   can 

be simplified as 
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Now we can substitute Eqs. (4.37) and (4.38) into Eq. (4.30) to obtain the 2D 

dispersion relation for the SIR beam. In the substitution, in the square bracket of the 

integrand between the two exponential functions of Eq. (4.30), the space-charge modified 

transition gamma t,sc and the radial tune νx,sc should be replaced by the coherent ones of 

t,coh and νx,coh, respectively. While t,sc and νx,sc in the last exponential function of Eq. 

(4.30) should be replaced by the incoherent ones of t,inc and νx,inc, respectively. If the 

uncorrelated fractional RMS momentum spread sd is replaced by the RMS energy spread 

sE using the relation sd =sE/(b2E), where E is the total energy of the on-momentum 

particle, finally, the 2D dispersion relation for a low energy SIR beam in the SI system of 

units becomes  
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(4.41)  

Note that the 2D dispersion relation Eq. (4.41) is derived for a Gaussian beam model 

without the coherent radial centroid offsets and energy deviations. Therefore it is only 

valid for predictions of the long-term microwave instability growth rates in an 

isochronous ring neglecting the line charge density oscillations due to dipole moments of 
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the centroid offsets. Here the term ‘long-term’ stands for multi-periods of betatron 

oscillations in the time scale. When the dispersion relation Eq. (4.41) is to be solved 

numerically, a large but finite real number can be set as the upper limit of c instead of 

infinity to calculate the integral. 

4.3 Landau damping effects in isochronous ring 

4.3.1 Space-charge modified coherent slip factors 

For the SIR beam with typical beam intensities, usually |0| << coh, when the space 

charge effects are considered. Then in the first-order approximation, according to Eq. 

(4.16), the space-charge modified coherent slip factor without the effects of R51 and R52 

(e.g., neglect the betatron motion effects) may be estimated as 
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which is essentially the same as Eq. (12) in Ref. [15]. 

For a ring lattice with average radius R and space-charge modified radial tune nx,sc, by 

smooth approximation of xR  /ˆ , Rsx /  , 2/ xRD  , 0ˆ  , 0D , the increments of  

R51 and R52 between s£ and s can be calculated from Eq. (B2) and Eq. (4) of Ref. [42] as  
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According to Eq. (4.9) (i.e., Eq. (20) of Ref. [42]),                                               
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Then by Eqs. (4.40)，(4.43)-(4.46), in the second-order approximation, taking into 

account the contributions from the matrix elements R51 and R52 (e.g., the betatron motion 

effects) to the longitudinal beam dynamics, the space-charge modified coherent slip 

factor can be calculated as 
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are the slip factors contributed from the matrix elements R51, R52 and R56, respectively. We 

can see hR51 and hR52 are functions of s, while hR56 is independent of s. The last term of Eq. 

(4.47) is contributed from the combined effects of R51 and R52 and is independent of s. In 

fact, Eq. (4.47) is the same as Eq. (2.30) which describes an off-momentum particle 

performing betatron oscillation around a closed orbit. 

Assuming a SIR bunch has beam intensity I0 = 1.0 mA, kinetic Energy Ek0 = 19.9 keV, 
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radial and vertical emittance x,0=y,0=50p mm mrad, the calculated slip factors by Eqs. 

(4.47)-(4.50) as functions of the line charge perturbation wavelength l at s= C0 and s=10 

C0 are shown in Figure 4.1. If we increase the beam intensity to 10 mA, the calculated slip 

factors at s= C0 and s= 10 C0 are shown in Figure 4.2. 

   

Figure 4.1: Slip factors for I0 = 1.0 mA at s=C0 and s=10 C0. 

  

Figure 4.2: Slip factors for I0 = 10 mA at s=C0 and s=10 C0. 

Figure 4.1 and Figure 4.2 demonstrate that, for a beam in an isochronous ring, because 

of smallness of hR56, the component of the space-charge modified slip factor hR51+hR52 

contributed from the elements of R51 and R52  plays an important role in the longitudinal 

beam dynamics and cannot be neglected. The situation is different from a storage ring 

working far from transition. Note that in Figure 4.1 and Figure 4.2, the total slip factor 
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hR51+hR52+hR56 can be negative for some given perturbations wavelengths and beam 

parameters. 

4.3.2 Exponential suppression factor 

We can define the exponential function of the integrand in Eq. (4.41) as exponential 

suppression factor (E.S.F.) 
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The first exponential function in Eq. (4.51) originates from the smooth approximation 

of R51(s
£, s)=R51(s)–R51(s

£), R52(s
£, s)=R52(s) –R52 (s

£) and the emitttance εx,0 =x
2x,inc/R.  

While the second exponential function in Eq. (4.51) originates only from the RMS energy 

spread and R56(s
£, s)=R56(s)–R56(s

£) without the contributions of R51 and R52. The E.S.F. 

is a measure of Landau damping effects for the microwave instability of SIR beam. 

For a SIR beam with the current of 1.0 mA, mean kinetic energy of 19.9 keV, Figure 4.3(a) 

shows the calculated E.S.F. at =C0 with E=0 and variable emittance. Figure 4.3(b) 

shows the calculated E.S.F. at =C0 with x,0=50π mm mrad and variable E. Note for a 

beam without uncorrelated energy spread (E=0 eV), the E.S.F. in the short-wavelength 

limits is still small due to the finite beam emittance effect. Since the E.S.F. is related to 

exp[-A(kx)
2]=exp[-A(2x/)2] and exp[-B(kE)2]=exp[-B(2E/)2], where A and B are 

coefficients which are independent of x, E and , then the Landau damping effects are 

more effective for a beam with large uncorrelated RMS energy spread and emittance at 

the shortest perturbation wavelengths.  Figure 4.4(a) and Figure 4.4(b) show the 

calculated E.S.F. at =10C0. Comparison between Figure 4.3(b) and Figure 4.4(b) 
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indicates the E.S.F. decreases significantly with larger relative path length difference  

due to the finite uncorrelated energy spread effect.  

 

Figure 4.3: The E.S.F. at   = C0 for a 1.0 mA, 19.9 keV SIR beam. (a) E = 0, and 
variable emittance. (b) x,0= 50π mm mrad, and variable E.  

    

Figure 4.4: The E.S.F. at =10C0 for a 1.0 mA, 19.9 keV SIR beam. (a) E=0, and variable 
emittance. (b) x,0= 50π mm mrad, and variable E.  

 The radial-longitudinal coupling matrix elements R51 and R52 may affect the microwave 

instability in an isochronous ring in two ways. (a) Eqs. (4.47)-(4.50) show R51 and R52 

may modify the coherent space-charge modified slip factor for a beam with coherent 

energy deviations and the associated radial centroid offsets. (b) Eq. (4.51) shows, if a 

coasting beam has finite energy spread and emittance, the incoherent motions of charged 
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particles under the effects of matrix elements R51, R52 and R56 may produce a finite spread 

in the longitudinal motion spectrum around the revolution frequency. The revolution 

frequency spread can help to smear out the longitudinal charge density modulations and 

suppress the microwave instability growth rates, especially for the short-wavelength 

perturbations. This is the origin of the Landau damping effects in the isochronous regime. 

Since the matrix elements R51, R52 and R56 may affect the beam instability in such a 

complicated way, it is difficult to predict how the instability growth rates will change if 

only one of these elements is increased or decreased. 

4.3.3 Relations between the 1D growth rates formula and 2D dispersion 
relation

  

In the 2D dispersion relation Eq. (4.41), if we neglect the E.S.F. (incoherent motion 

effects of single particle) and the sinusoidal term in the square bracket of the integrand 

which originates from the coupling matrix elements R51(s) and R52(s) (coherent betatron 

motion effects of the local centroids), the 2D dispersion relation is reduced to 
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With Eq. (4.42) and the equality of    
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the simplified 2D dispersion relation Eq. (4.52) can be reduced further as 
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Eq. (4.54) is just the Eq. (4.1) for a 1D monoenergetic beam.  
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Though the model and the 1D dispersion relation in Ref. [16] can predict the 

fastest-growing wavelength, the predicted growth rates are not proportional to the 

unperturbed beam intensity I0. In Ref. [16], the longitudinal line density is 

N(z)=Nkcos(kz), and the radial coherent space charge field factor  calculated in Eq. (12) 

of Ref. [16] is proportional to N(z). In Eq. (23) of Ref. [16], the constant parameter is 

proportional to the unperturbed line density N0 which is from Eq. (18) for the longitudinal 

beam dynamics. Considering Eq. (24) of the same paper, since the instability growth rates 

i predicted by Eq. (23) are proportional to [N0Nk(z)]1/2 instead of N0 or I0, then the 

predicted instability growth rates of this model and theory violate the scaling law with 

respect to the unperturbed beam intensity I0 observed in our experiments and simulations. 

In reality, the longitudinal line density should be N(z)=N0+Nkcos(kz), the above 

discrepancy results from the missing of N0 in the model in calculation of the radial space 

charge field factor . Note that the parameter )(2 k  in Eqs. (17) and (23) of Ref. [16] 

has a similar behavior to 1–kr0K1(kr0) plotted in Fig. 5 of Ref. [15], which peaks at 

wavelength =0 and decreases monotonically with . If N0 were included in this model, 

this model would be similar to the one in Refs. [14, 15]. It can neither explain the 

suppression of the short-wavelength perturbations nor predict the fastest-growing 

wavelengths properly. 

4.4 Simulation study of the microwave instability in SIR  

4.4.1 Simulated growth rates of microwave instability 

In this section, we will study the simulated spectral evolutions of the microwave 
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instability using the fast Fourier transform (FFT) technique and compare with the 

theoretical calculations. Studies of the long-term microwave instability are carried out by 

running CYCO up to 100 turns for a macro-particle bunch to mimic a real ܪଶା bunch in 

SIR. The bunch has an initial beam intensity I0 =1.0 mA, monoenergetic kinetic energy 

Ek0=19.9 keV, radial and vertical emittance x,0=y,0=50p mm mrad. The initial 

distributions are uniform in both the 4-D transverse phase space (x, x£, y, y£) and the 

longitudinal charge density. A total of 300000 macroparticles are used in the simulation. 

Considering both the curvature effects on the space charge fields when a long bunch 

enters the bending magnets, and the edge field effects of a short bunch, a bunch length of 

b =300 ns (Lb 40 cm) is selected in the simulation. Due to the strong nonlinear edge 

effects in the bunch head and tail, only the beam profiles of the central part of the bunch 

with longitudinal coordinates -10 cm § z § 10 cm are analyzed by FFT. At each turn, the 

density profiles of the coasting bunch with coordinates of -10 cm § z § 10 cm are sliced 

into 512 small bins along z-coordinate, the number of macroparticles in each bin is 

counted, and the 512-point FFT analysis is performed with respect to z. The microwave 

instability of SIR beam is a phenomenon of line charge density perturbations with typical 

wavelengths of only several centimeters. The full chamber height is about 4.8 cm, which 

gives the approximate upper limit of the perturbation wavelengths in the simulation study. 

According to the Nyquist-Shannon sampling theorem, the shortest wavelength which can 

be analyzed by the 512-point FFT is 2ä20 cm/512º0.078 cm. Since the beam diameter is 

about 1.0 cm, the simulation results for the shorter wavelengths of l =1.0 cm, 0.5 cm and 

0.25 cm may give us some insights on the instabilities of short wavelengths comparable 

to or less than the transverse beam size. A series of mode number of 4, 5, 7, 10, 20, 40 
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and 80 are selected for the 20-cm-long beam profiles, which give the corresponding line 

charge density perturbation wavelengths of l=5 cm, 4 cm, 2.857 cm, 2 cm, 1 cm, 0.5 cm 

and 0.25 cm. The growth rates of these wavelengths are fitted numerically and studied in 

the analysis. In order to minimize the effects of randomness in the initial beam 

micro-distribution on the simulation results, for each setting of beam parameters, the code 

CYCO is run five times for five different initial micro-distributions, and the average 

growth rates of the five runs for each given perturbation wavelength are used as the 

simulated growth rates in the analysis work. 

Figures 4.5- 4.7 show the simulated beam profiles and line density spectra at turn 0, 

turn 60, and turn 100 for a single run of CYCO, respectively. In each of these figures, the 

left graph displays the top view of the beam distributions (blue dots) superimposed by the 

number of macroparticles per bin (red curve); the right graph displays the spectrum of the 

line charge density analyzed by FFT. We can see the line density modulation amplitudes 

increase with turn numbers, and the peaks of the line density spectra shift to the 

frequencies around 1/l º 0.5 cm-1 or the wavelength l º 2.0 cm at large turn number.  

 

Figure 4.5: (a) Beam profiles and (b) line density spectrum at turn 0. 

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

1/ (cm-1)

S
p

ec
tr

u
m

Turn0(b)



103 

   

Figure 4.6: (a) Beam profiles and (b) line density spectrum at turn 60. 

 

Figure 4.7: (a) Beam profiles and (b) line density spectrum at turn 100. 
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Figure 4.8: Evolutions of harmonic amplitudes of the normalized line charge densities. 

 

 

Figure 4.9: Curve fitting results for the growth rates of the normalized line charge 
densities for a single run of CYCO. (a) λ = 0.25 cm; (b) λ = 0.5 cm; (c) λ = 1.0 cm; (d) λ = 
2.0 cm; (e) λ = 2.857 cm; (f) λ = 5.0 cm. 
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Figure 4.9 (cont’d) 
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choose the fitting function as 
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For the cases of l =1 cm, 2 cm, 2.857 cm, 4 cm, and 5 cm, since there are obvious 
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choose the fitting function as 
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where ̂ , P, Q, , , and 0 are the fit coefficients, T0 is the revolution period of ܪଶା ion, 

t=NtT0, Nt is the turn number, 0
-1 is just the long-term instability growth rate. Note for 

beam energy of 19.9 keV, the nominal angular betatron frequency is =1.499106 rad/s. 

The fitting results show the oscillations in the curves for l =1.0 cm, 2.0 cm, 2.857 cm, 

and 5.0 cm are just the betatron oscillations, they are the dipole modes in the longitudinal 

structure of the beam due to dipole moment of the centroid offsets [20]. 
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Figure 4.10: Comparison of the instability growth rates between theory and simulations 
for five runs of CYCO. 

Figure 4.10 shows the comparison of the microwave instability growth rates between 

the theoretical values and the average simulation results for five runs of CYCO. Note that 

the theoretical values are predicted by the 1D formula of Eq. (4.1) with the slip factor 

expressed in Eq. (4.4) plus 0, and the 2D dispersion relation of Eq. (4.41) with the 

space-charge modified tunes and transition gammas expressed in Eqs. (4.13)-(4.16). For 

both the 1D and 2D formalisms, the LSC impedances are calculated by Eq. (4.3), and the 

beam radii r0 are calculated from the solution to the algebraic matched-beam envelope 

Eqs. (4.93) of Ref. [47]. Note that in Figure 4.10, the 1D formalism used in Refs. [14, 15] 

and the 2D dispersion relation have similar performance in prediction of the growth rates 

of the long-wavelength perturbations (l¥4 cm), which are all consistent with the 

simulation results. For l<2 cm, the 1D formalism significantly overestimates the 
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taken into account, has a much better performance than the conventional 1D formula in 

prediction of instability growth rates in the short-wavelength limits (l<2 cm) and the 

fastest-growing wavelength, though there still exist some bigger discrepancies between 

the simulations and theory for very short wavelength l<1 cm. Therefore we can see the 

Landau damping is a necessary mechanism to explain the low instability growth rates of 

the short-wavelength perturbations ( is less than or comparable to r0), which cannot be 

explained by the conventional 1D formalisms. Only at larger wavelengths ( >> r0) will 

the 1D and 2D dispersion relations have the similar performance. 

4.4.2 Growth rates of instability with variable beam intensities 

In order to study the dependence of microwave instability growth rates on initial beam 

intensities, simulations using CYCO are carried out for SIR beams with Ek0 = 19.9 keV, 

sE= 0 eV, b = 300 ns (Lb 40 cm), x,0=y,0=50p mm mrad, I0 =0.1, 0.3, 0.5, 5.0, and 20 

mA, respectively. The initial distributions are uniform in both the 4-D transverse phase 

space (x, x£, y, y£) and the longitudinal charge density. The simulation for each intensity 

level is performed five times using five different initial micro-distributions, and the 

average simulated growth rates of the selected perturbation wavelengths of the five runs 

are used in analysis. For I0 >20 mA, due to fast development of beam instability, the beam 

dynamics may enter the nonlinear regime only after several turns of coasting. This makes 

the fitting work difficult and inaccurate, therefore the simulation results for the intensities 

of I0 >20 mA are not available in this paper.  
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Figure 4.11: Comparisons between the simulated and theoretical normalized instability 
growth rates for different beam intensities. 

Figure 4.11 shows the comparisons between the simulated and theoretical normalized 

instability growth rates for beam intensities ranging from 0.1 mA to 20 mA. We can see, 

except for I0 =0.1 mA, the theoretical normalized growth rate curves roughly overlap each 

other within a region. The theory and simulations are roughly consistent to each other for 

l >2 cm and 0.3 mA§ I0 § 20 mA. For l < 2 cm, the discrepancies between the simulation 

and theory become bigger. 
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cm, the simulated and theoretical instability growth rates are consistent with each other, 

the larger emittance may help to suppress the instability growth rates. While for l<1.0 cm, 

the discrepancies between the simulation and theory become bigger.  

 

Figure 4.12: Comparisons of microwave instability growth rates between theory and 
simulations for variable initial emittance. 

4.4.4 Growth rates of instability with variable beam energy spread 

Figure 4.13 shows the comparisons of growth rates between theory and simulations for 
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sE=0, 50, and 75 eV, respectively. The code CYCO is run up to 100 turns and the growth 

rates are fitted by proper functions. For each initial RMS energy spread sE, the average 

growth rates of five runs with different initial micro-distributions are used in the analysis. 

We can see for l>2.0 cm, the simulated and theoretical instability growth rates are 
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Figure 4.13: Comparisons of microwave instability growth rates between theory and 
simulations for variable uncorrelated RMS energy spread. 
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deviation ,0ˆ 00   zu  and there is no correlation between the transverse 

and longitudinal distributions. The initial unperturbed distribution function described in 

Eq. (4.57) is just the product of three normal distribution functions with zero-mean. 

While as the beam coasts in the ring, there will be local centroid offset <x0> induced by 

the coherent fractional momentum deviation <d0> due to dispersion function D:   

.D 00  x                         (4.58) 

In addition, when sinusoidal centroid wiggling takes place due to space charge force, the 

correlated fractional moment deviation 0ˆzu  should be replaced by a sinusoidal function 

of z0, then the compression factor C(s)∫1 and will be dependent on s or t. The non-zero 

<x0>, <d0> and non-constant, s-dependent compression factor C(s) will shift the centers 

of beam distributions in the longitudinal and transverse phase space, produce a 

radial-longitudinal correlation in distribution function. Consequently, the 2D dispersion 

relations (4.30) and (4.41) will be modified, the amplitude of perturbed harmonic line 

density |)(||),(| ,1 tgtzn kk  described in Eq. (4.34) should be replaced by 

|)()(||),(| ,1 tgtCtzn kk  too. This may cause the bigger discrepancies between the 

theoretical and simulated instability growth rates in the short-wavelength limits.  

(b) Curvature effects 

The LSC impedance, space-charge modified betatron tunes and transition gammas 

are all derived for an infinite long, straight beam model, while the SIR consists of four 

90o bending magnets which account for about 43% of the ring circumference. When the 

beam enters these bends, the curvature effects on the longitudinal and transverse beam 

dynamics are not taken into account in the theoretical analysis.  

(c) LSC fields of the dipole mode 
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The centroid wiggling may induce the LSC fields of the dipole mode which are 

neglected in the theoretical analysis. 

(d) Spectral leakages 

In the data analysis, the line charge density perturbations around the fastest-growing 

wavelength (2.0 cm) have larger amplitudes comparing to the modes with smaller 

growth rates, and the FFT analysis is applied to a bunch with finite length using 

rectangular window. The fastest-growing modes may inevitably create the new frequency 

components (false spectrum) spreading in the whole frequency domain, namely, the 

so-called spectral leakages. The leaked spectra from the faster-growing modes may mix 

with and mask the real spectra of the slower-growing modes, therefore lower the 

resolutions of the FFT analysis results. 

(e) Initial distribution 

In Figures 4.12 and 4.13, because the beams with uniform longitudinal charge density 

are used in the simulations, their residual line charge modulation amplitudes are 

vanishingly small (theoretically speaking, they should be 0 in ideal conditions). When the 

growth rates in short-wavelength limits are negative due to larger beam emittance and 

energy spread, they can hardly be detected since the initial density modulation amplitudes 

have reached minima already. 

In summary, the bigger discrepancies between the theoretical and simulated instability 

growth rates in the short-wavelength limits may be caused by various reasons. Due to 

complexity of the problem, for the time being, further discussions are not available in this 

dissertation. 
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4.5 Conclusions 

Due to space charge effects and radial-longitudinal coupling, an ideally isochronous 

ring becomes a quasi-isochronous ring, which may result in the microwave instability and 

a finite revolution frequency spread. The relative motions among particles along the 

azimuthal direction are not frozen completely. The Landau damping mechanism still 

takes effect and may suppress the microwave instability in the isochronous regime.  

A modified 2D dispersion relation is introduced to discuss the Landau damping effects 

for a coasting beam in the isochronous regime. The radial-longitudinal coupling transfer 

matrix elements R51 and R52 are included in the 2D dispersion relation. These elements 

can modify the coherent slip factor, together with R56, they also provide an exponential 

suppression for the instability growth rates of a beam with finite energy spread and 

emittance by Landau damping effects. The 2D dispersion relation is benchmarked by 

simulation code CYCO for bunches with variable initial beam intensities, energy spread 

and emittance. The theory agrees well with the numerical simulations for perturbation 

wavelengths of l>2.0 cm. While for l<2.0 cm, the discrepancies between simulations 

and theoretical predictions become larger. The possible reasons for the discrepancies are 

pointed out and discussed. By comparisons, the 2D dispersion relation has a better 

performance than the conventional 1D growth rate formula; the latter significantly 

overestimates the growth rates in the short–wavelength limit lØ0 and is incapable of 

predicting the correct fastest-growing wavelength.  

In summary, the Landau damping effect is a necessary and important mechanism for an 

accurate prediction of the instability growth rates of the short-wavelength perturbations 

and the fastest-growing wavelength.
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Chapter 5 

DESIGN AND TEST OF ENERGY ANALYZER3 

5.1 Introduction 

Due to the repulsive space charge force, an initially monoenergetic bunch will develop 

energy spread among the beam particles when the bunch coasts in a storage ring. For the 

evolutions of the microwave instability and beam distribution, the development of the 

energy spread plays an important role and need to be measured accurately. For this 

purpose, SIR Lab has constructed a compact, high resolution electrostatic retarding field 

energy analyzer (RFA) with rectangular electrodes and a large entrance slit. This chapter 

will present the design and test of the energy analyzer. 

5.2 Working principles and design considerations of the RFA 

Because of the simple structure and high signal-to-noise ratios, an electrostatic RFA 

was chosen as the energy measurement device for the low energy SIR beam. The working 

principles of the generic electrostatic RFAs are simple: there is an electrode biased to a 

variable retarding voltage inside the analyzer (see Figure 5.1(a)), if the longitudinal 

component of the kinetic energy of an incident particle is no less than the peak of the 

retarding potential barrier, the particle can overcome the barrier and reach the current 

collector to form collector current. The energy profiles within the beam can be deciphered 

by analyzing the collector current as a function of the scanning retarding voltages V1. 

                                                              
3  The contents related to design and testing of energy analyzer of this chapter is written based on Ref. [19]. 
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,4/)(/1 012 VEEf                         (5.1) 

where E1 and E2 are the field strength before and after the entrance aperture. Ref. [47] 

provides a detailed derivation for Eq. (5.1). 

(b) Trajectory effect 

Only the longitudinal component of the kinetic energy is effective to overcome the 

retarding potential. For example, among the existing analyzers, the simplest one is the 

primitive two-element parallel-plate analyzer (see Figure 5.1(a)). This type of RFA has a 

good resolution only when the trajectories of the beam are parallel to the analyzer axis. In 

this case, for a monoenergetic beam with initial kinetic energy eV0, the ideal I-V (current 

signal v.s regarding voltage) characteristic curve of the analyzer is similar to a step 

function with a sharp cutoff at V2=V0 (see Figure 5.1(b)). In reality, due to the initial beam 

emittance, the aperture lens effect, space charge effect and misalignment, the moving 

directions of the particles inside the analyzer usually have finite nonzero slopes with 

respect to the analyzer axis. Then the actual I-V curve for a monoenergetic beam may 

look like that in Figure 5.1(c), where the curve begins to drop at V=V0-DV. This may 

result in a poor resolution of the parallel-plate analyzer DV/V0 typically in the range of 

10-3-10-2. In order to suppress this trajectory effect and expansion of beamlet due to space 

charge effect, a focusing electrode is usually introduced in the analyzer between the 

entrance aperture and the retarding electrode; another option is to choose a special 

multifunctional retarding/focusing electrode that can decelerate and focus the sampled 

beamlet at the same time. 

(c) Secondary electron emission  

When the charged particles bombard the metal current collector, a fraction of the 
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kinetic energy of the incident particles will transfer to the electrons of the collector 

surface. Hence, some electrons will be knocked out of the metal surface. This 

phenomenon is termed secondary electron emission. This effect may cause a deformation 

of the plateau of I-V characteristic curve as shown by the dotted line in Figure 5.1(c), if 

the primary particles are negatively charged. For positive primary particles, the ascending 

dotted curve in Figure 5.1(c) should be replaced by a descending one. These secondary 

electrons may yield false current signals and resolution degradation, thus must be 

suppressed. According to Ref. [49], when a positive ion with mass M and kinetic energy 

eV hits a metal surface of work function f, the maximum kinetic energy of the secondary 

electron is  

],4)/4[(Emax  iVVMme                     
(5.2)

 

where Vi is the ionization potential of the neutral atom of the ion species. Usually the 

initial kinetic energy of the secondary electrons is low. Hence, introduction of an electron 

suppressor biased to a low voltage can suppress the secondary electron emission 

effectively. 

(d) Elastic reflection 

Even if the kinetic energy of the beam particles hitting the collector is high, not all of 

them can be captured by the collector to form current signals. After collisions with the 

metal surface, some ‘naughty’ particles will be reflected backward elastically with almost 

the same energies as those of the primary particles. These rebounded particles usually 

have a cosine angular distribution about the normal direction of the collector surface. In 

order to suppress this effect, a Faraday cage or a C-shaped collector with an opening 
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Figure 5.5 illustrates the diagram of the 2nd generation UMER analyzer [51]. The left 

plot shows the field model, equipotential lines, and beam trajectories simulated by the 

code SIMION [53]; the right plot depicts its mechanical structure. Figure 5.6 illustrates 

the diagram of the 3rd generation UMER analyzer [52]. The left plot shows the field 

model, equipotential lines, and beam trajectories simulated by the code SIMION; the 

right plot depicts its electronic circuit. Both analyzers have cylindrical housing tube, 

entrance plate with a circular entrance hole, focusing cylinder, retarding mesh, and 

current collector in common. The only difference is that in the 2nd generation analyzer, 

the retarding fine mesh is soldered to the focusing cylinder and they always keep the 

same retarding voltage; while in the 3rd generation analyzer, the retarding mesh is shifted 

away from the focusing cylinder’s end plane by several millimeters, and an extra low 

voltage power supply is employed to produce a variable focusing voltage between them. 

The working principles of the two analyzers are similar: if an electron beam enters the 

analyzer through the entrance aperture, it will be decelerated and focused by the retarding 

field produced by the focusing cylinder and the retarding mesh. The curved equipotential 

lines can decelerate and focus the beamlet at the same time. Only those electrons whose 

kinetic energies are higher than the retarding voltage can pass through the retarding mesh 

to form current on the collector. By changing the retarding voltage on the mesh and 

analyzing the change of collector current as a function of retarding voltage, the energy 

profile of the primary beam can be obtained. The 3rd generation analyzer has a better 

resolution, because it can minimize the coherent errors further by providing an extra 

focusing for the electrons in the vicinity of the retarding mesh, where they have 

exhausted most of their kinetic energies. Note that in the 2nd generation UMER analyzer, 



123 

for an ideal retarding mesh consisting of infinitely thin wires with an infinitely large wire 

density (number of wires in a unit length) and 100% transmission rate, the retarding point 

(position where the retarding potential has maximum magnitude) of the analyzer should 

be on the plane of the retarding mesh; while in reality, due to the finite wire density and 

the difference of the longitudinal potential gradients in the vicinity of the mesh plane, the 

potential distribution on the mesh plane is not uniform. The potentials in the void region 

enclosed by the mesh wires are different from the retarding voltages applied on the wires. 

Therefore, the actual resolution of the 2nd generation UMER analyzer should be 

dependent on the wire density. While for the 3rd generation UMER analyzer, due to the 

low focusing voltage applied between the focusing cylinder and the retarding mesh, the 

retarding point is located at several millimeters before the mesh plane. Hence, the actual 

resolution of the 3rd generation analyzer is not sensitive to the wire density. For the 

UMER analyzers, because the electric field between the retarding mesh and the collector 

is a natural decelerating field for the possible secondary electrons emitting from the 

collector, it is not necessary to adopt the secondary electron suppressors. 

5.5 Design of the SIR energy analyzer 

A thin 14 mm μ 1 mm rectangular slit has been chosen as the entrance aperture for the 

SIR analyzer for the sake of better signal-to-noise ratio. Due to the large aspect ratio of 

the beamlet sampled by the SIR analyzer, it is impossible to apply an extra focusing 

voltage between the retarding/focusing tube and the retarding mesh to fine-tune the 

focusing strength in both the horizontal and vertical planes at the same time like the 3rd 

generation UMER analyzer. In the end, we use the 2nd generation UMER analyzer as the 
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main design reference for the SIR analyzer. 

From emittance measurement, the divergence angles of the primary SIR beam in the 

horizontal and vertical planes are found to be roughly the same. In order to focus the 

particles at the edges of the sampled beamlet inside the analyzer with the same focusing 

strength in both planes for optimum resolution, the contour of the equipotential lines in 

any planes normal to the analyzer axis must be a family of concentric rectangles, of 

which the aspect ratios should be similar to that of the sampled beamlet in the 

retarding/focusing region. This requires both the retarding/focusing electrodes and the 

housing of SIR analyzer must have rectangular cross-section.  

Due to the much higher particle energy (which is equal to the retarding/focusing 

voltage times unit charge), and the much larger vertical dimensions of the beamlet 

sampled by the SIR analyzer than those of the electron beamlet sampled by the UMER 

analyzer, the distance between the retarding mesh and the entrance plate of the SIR 

analyzer must be much shorter than that of the UMER analyzer to get a proper focusing 

for the SIR beamlet, otherwise the particles will be over-focused yielding poor resolution. 

In addition, in the SIR analyzer, since the electric field between the retarding mesh and 

the collector is an accelerating field for the possible secondary electrons escaping from 

the collector surface, a secondary electron suppressor which is biased to a negative 

voltage should be introduced between the retarding mesh and the collector. For the above 

reasons, the longitudinal potential gradient between the retarding mesh and entrance plate 

of the SIR analyzer is much higher than that of the UMER analyzer, especially in the 

vicinity of the retarding mesh plane. This makes the resulting analyzer resolution highly 

dependent on the mesh wire density. Considering both the transmission rates and wire 
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density, finally, we choose a Nickel mesh with 1000 lines per inch (LPI=1000) and 50% 

transparency rate in our design. 

Though the working principles of the SIR and UMER analyzers (2nd generation) are 

similar to each other, they differ on many aspects as summarized in Table 5.2. 

Table 5.2: Comparisons between the UMER (2nd
 generation) and SIR Analyzers 

 UMER Analyzer SIR Analyzer 

Extraction Single pass Variable turns 

Particles e- H2
+ 

Beam energy up to 10 keV up to 20 keV 

Entrance aperture 1-mm hole 14mmμ1mm slit 

Electrodes Cylindrical tubes Rectangular tubes 

Secondary e- suppressors No Yes 

Working mode Static Scanning 

Beam current mA nA 

Due to the complicated 3D electric field inside the analyzer and the large height of the 

beamlet in the vertical plane, it is impossible to perform the theoretical design calculation 

accurately using the theory of paraxial beam optics. The physical design of the analyzer 

can only be carried out by the numerical methods. We choose to use SIMION 8.0 [53], an 

electric field design and simulation code, in our design work.  

The SIR analyzer mainly consists of the following parts: (1) a housing box with an 

entrance slit on the front plate. (2) retarding/focusing tube and fine mesh. (3) secondary 

electron suppressor. (4) current collector. (5) four ceramic insulators between the above 

electrodes and housing. 

The resolution of the SIR analyzer is highly dependent upon the exact potential 
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The retarding mesh is soldered to the multifunctional retarding/focusing tube. The 

electric field formed between the retarding/focusing tube and the entrance plate can focus 

and decelerate the beamlet; the thick part of the retarding/focusing tube behind the 

retarding plane is designed for two purposes: (a) improve the analyzer resolution by 

improving the uniformity of potentials in the vicinity of and right behind the retarding 

mesh. (b) focus the beam to counteract the defocusing effects induced by the secondary 

electron suppressor downstream, otherwise the transverse beam size will be too big to be 

accommodated by the collector. According to Eq. (5.2), the estimated maximum kinetic 

energy of the secondary electrons for a 20 keV ܪଶା beam is only several tens of eV. A 

suppressor biased to -300 V is enough to repel these electrons back to the collector. The 

current collector is a C-shaped stainless steel electrode with a V-shaped grove in the 

middle, which is designed to reduce the current loss due to the elastic head-on collisions 

between the ions and the collector.  

 

Figure 5.9: Performance of the SIR analyzer simulated by SIMION 8.0 for a fixed 
retarding potential Vretarding =20 kV and variable source voltage Vsource. 
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SIR beam, which will be discussed in details in the next chapter. 

 

Figure 5.12:  Performance of the SIR energy analyzer tested at ARTEMIS-B ECR ion 
source.  

 
 

Figure 5.13:  Performance of the SIR energy analyzer tested at SIR by DC beam. 
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5.7 Conclusions 

A compact, high resolution retarding field energy analyzer has been designed and 

tested for SIR of NSCL at MSU to further study the beam instability. Experimental 

results indicate the performance of the analyzer meets the requirements for our future 

measurement and research work. 
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Chapter 6 

NONLINEAR BEAM DYNAMICS OF SIR BEAM
4
 

6.1 Introduction 

When a high intensity uniform long ܪଶା bunch with a finite length is injected into the 

SIR, the nonlinear space charge forces in the beam head and tail are strong and may 

deform the beam shape. In addition, as the perturbation amplitude of the line charge 

density increases due to microwave instability, the beam dynamics of the central part of 

the beam also enters the nonlinear regime soon after injection. The bunch may break up 

into many small clusters longitudinally only after several turns of coasting [12, 13]. This 

chapter mainly discusses the nonlinear beam dynamics in these cases, including the study 

on evolution of energy spread, vortex motion, and merging of cluster pairs by 

experimental, simulation and analytical methods.  

6.2 Measurement of the energy spread 

Among the various beam parameters which govern the evolution of the bunched beam 

profiles, the energy spread induced by the space charge field plays an important role in 

both the linear and nonlinear regime of beam instability. It may help to suppress the 

microwave instability in the linear beam dynamics; in addition, it is also one of the 

important measures of the asymptotic bunch behavior in the nonlinear beam dynamics. 

For this reason, an accurate knowledge of the energy spread distribution and evolution of 
                                                              
4  The contents regarding energy spread measurement and simulation is excerpted from Y. Li, L. Wang, F. 

Lin, Nuclear Instruments and Methods in Physics Research A 763, 674 (2014). 
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retarding voltage is varied within a range in the vicinity of the nominal beam energy. The 

current signals on the current collector of the analyzer are amplified by the Preamplifier 

(TENNELEC TC-171) and Amplifier (TENNELEC TC-241S) consecutively. The 

amplified signals are sent to the oscilloscope (LeCroy LC684DXL), where the 

waveforms and strengths of the signals (in voltages) can be observed and read. After 

offline data analysis, the energy spread information of the beam can be obtained.  

6.2.2 Data analysis of the energy spread 

A ܪଶା ion bunch with the length 600 mm, peak current 8.0 mA, kinetic energy 10.3 

keV is used in the energy spread measurements. The measured emittance is about 30 

mm mrad. From the measurement, the raw S-V curves at the three radial positions 

(measurement points) and various turn numbers are obtained. Here S and V denote the 

signal strength and the retarding voltage, respectively. The top graph of Figure 6.6 shows 

an example of the measured raw S-V curve. For each fixed radial measurement point and 

turn number, the data analysis for the energy spread measurement is performed by the 

following procedure: 

1. Subtract the residual noise signal from the raw S-V curve and normalize the adjusted 

S-V curve to 1. This procedure yields a transmission rate curve (T-V curve) ranging 

from 0 to 1. 

2. Assuming the energy spread has a Gaussian distribution with deviation sE and mean 

energy of <E>,  

,
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Note that the conventional method of energy spread analysis usually involves 

differentiation of the S-V curve dS/dV and fitting it to a Gaussian function. While due to 

the discreteness originating from the smaller number of data points in the vicinity of the 

mean energy, the data points of dS/dV scatter around the Gaussian function with big 

deviation. This makes the fitting work difficult and inaccurate. That is why an integral of 

Gaussian function in Eq. (6.2) instead of the Gaussian function itself is chosen as the 

curve fitting function in our energy spread analysis.  

Figure 6.6 demonstrates a sample of the energy spread analysis results for the SIR 

bunch measured at x= -6 mm (beam core edge) and turn 10. The mean kinetic energy, 

RMS and FWHM energy spreads are 10118.7 eV, 44.75 eV and 105.2 eV, respectively.  

6.2.3 Measurement results and comparisons with simulation 

A 600 mm, 8.0 mA, 10.3 keV, 30 mm mrad (same parameters as those in 

measurements) monoenergetic macroparticle bunch is also used in the simulation study 

by the code CYCO. The bunch has a uniform initial distribution in both the longitudinal 

line charge density and the 4D transverse phase space. In the analysis of simulation 

results, the beam region is cut into several 1-mm-wide thin vertical slices which are 

parallel to the design orbit, each thin slice has a fixed radial coordinate. The number of 

macroparticles, mean kinetic energy and RMS energy spread in each slice are calculated 

and compared with the experimental values. 

Figure 6.7 shows the simulated and experimental radial slice beam densities. Figure 6.8 

illustrates the simulated top views and slice RMS energy spread at turn 4 and turn 30, 

respectively. Figure 6.9 displays the simulated slice RMS energy spread up to turn 8. 
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Figure 6.10 depicts the comparison of slice RMS energy spread between simulations and 

experiments. Note that in this chapter, the slice energy spread and slice density denote all 

the slices are cut parallel to the longitudinal z-coordinate instead of the radial coordinate, 

which is conventionally used in free-electron lasers (FELs). The long bunch is a chaotic 

system, a small difference in the initial beam distribution may cause a huge beam profile 

deviation at large turn numbers. We can see that the simulated radial beam density 

profiles and slice RMS energy spread match the experimental values within an acceptable 

range.  

 

 

Figure 6.7: Evolutions of the radial beam density. 
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Figure 6.8: Simulated top views and slice RMS energy spread at (a) turn 4 (b) turn 30. 

 

 

Figure 6.9: Simulated slice RMS energy spread at turns 0-8. 
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Figure 6.10: Comparisons of slice RMS energy spread between simulations and 
experiments. 
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If the number of clusters is large enough and the radial centroid offsets of all the 

clusters are randomly and uniformly distributed around the design orbit, the RHS of Eq. 

(6.5) is the density-weighted mean RMS energy spread of the sampled beam slices of 

different cluster cores at a fixed radial coordinate x. The sE(x) of Eq. (6.5) is actually 

equal to the density-weighed mean slice RMS energy spread of any given single cluster 

core and is independent of the coordinate x. In real measurements, the above ideal 

preconditions are not satisfied completely; hence, there are always small energy spread 

fluctuations among different radial measurement points. 

  The equilibrium value of the kinetic energy deviation Eeq(x)=Eeq(x)-Ek0 and the radial 

coordinate x of an off-momentum particle satisfy the relation 

,
2

)( 0 x
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where Eeq (x) is the equilibrium kinetic energy and is equal to <E(x)> of the beam slices 

centered at x at large turn numbers. For simplicity, it is assumed that the radial beam 

density distribution is uniform. Then the RMS energy spread of the equilibrium particles 

measured by the SIR energy analyzer with an entrance slit of width  = 1 mm centered at 

x can be estimated as: 
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This value is proportional to the slit width  and is independent of x. In addition, it is 

much less than the asymptotic energy spread which is about 50 eV at large turn numbers. 

This indicates that the number of particles at equilibrium energy only accounts for a small 
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fraction of the total particles in a beam slice.   

The saturation of the slice RMS energy spread of clusters in the SIR beam is an 

indication of formation of the nonlinear advection of the beam in the ࡱሬሬԦ ×  ሬሬԦ  velocity࡮

field [10]. Assuming an ideal disk-shaped cluster coasts in an isochronous ring with an 

effective uniform magnetic field ࡮ሬሬԦ௘௙௙, the ࡱሬሬԦ࢙௖ ×  ሬሬԦ௘௙௙  velocity field at any point on the࡮

median plane inside the cluster is along the azimuthal direction in the rest frame of the 

cluster. This will result in no particles staying at the beam head (tail) forever. Accordingly, 

the energy spread within a given beam slice of 1-mm width at any coordinate x will not 

build up with time significantly. During the binary cluster merging process, the total 

charge and size of the new clusters grow at the same time. Hence, the mean charge 

density of a single cluster does not change considerably, which may result in the 

saturation of the mean slice RMS energy spread averaged over the radial coordinate. 

6.3 Corotation of cluster pair in the ࡱሬሬԦ ×  ሬሬԦ  field࡮

In the simulated long-term evolution of the space-charge dominated SIR beam, first, 

the bunch may break up into many small clusters along z-coordinate. Later, the 

neighboring cluster pairs orbit each other in their center of mass frame, which is the 

so-called corotation. Finally, the cluster pairs merge together after some turns of 

corotation. This section is devoted to study the mechanism of corotation of cluster pair, 

which is a characteristic phenomenon of the long-term evolution of beam profiles in the 

isochronous regime.   

Figure 6.12 illustrates the top views of the relative position of a pair of macroparticles 

coasting in the SIR at turns 0, 5, 11, 22, 34, and 46 simulated by code CYCO. The red 
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of ࡮ሬሬԦ௘௙௙ and space charge field ࡱሬሬԦ௦௖ can be estimated as 
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             (6.8) 

where e, and v0 stand for the charge and velocity of each macroparticle, respectively. 

Since ࡮ሬሬԦ௘௙௙  and ࡱሬሬԦ௦௖  are perpendicular to each other, each macroparticle has a drift 

velocity 
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The mean corotation frequency is 
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The left graph of Figure 6.13 shows the simulated distance d(t) between the 

macroparticle pair in the first period of corotation. The right graph displays the simulated 

corotation angle of a line connecting the macroparticle pair with respect to +z-coordinate; 

the corotation frequency is fitted and compares with the theoretical estimation predicted 

by Eq. (6.10). We can see the simulation and theory match well. 
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Figures 6.18-6.22 illustrate the evolution of the beam density, energy deviation 

distribution, velocity field and vorticity of the two short 2D bunches at turns 2, 5, 12, 20 

and 30. Each figure consists of four graphs: the upper left graph shows the top view of 

the beam density distribution on the median ring plane, the red and blue dots with arrows 

stand for the centroids of the bunches and their velocity vectors in the center of mass 

frame; the upper right graph displays the velocity field in the center of mass frame; the 

lower left graph demonstrates the distribution of energy deviation of the 2D bunches; the 

lower right graph depicts the distribution of vorticity, which is defined as the curl of the 

speed vector u


in the center of mass frame:   

                .),( utx


                                                         (6.13) 

During the merging process, the two bunches are highly deformed and two filament 

tails appear. The two beam cores approach, overlap and collide; at first, the two centroids 

corotate in the counter clockwise direction just like two macroparticles. But the repulsive 

Coulomb force between two bunches causes dynamical friction, which decreases the 

kinetic energy of the two centroids. The relative motion between the two centroids is 

suppressed. This is completely different from the two macroparticle model in which each 

macroparticle is dimensionless; the dynamic friction between the two macroparticle is 

negligible, and the corotation motion can last forever. We can also use the theory of drift 

motion in ࡱሬሬԦ ×  ሬሬԦ field to explain the merging process. When the two bunch cores࡮

overlap partly, the space charge force on the overlapping parts is cancelled significantly. 

In consequence, the drift motion in the ࡱሬሬԦ ×  ሬሬԦ field will be suppressed considerably. The࡮

overlapping parts of the two bunches will become the cradle of a new beam core. 
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6.5 Conclusions 

  The measured slice RMS energy spread and radial density profiles of a long coasting 

bunch agree with the simulation results. At large turn numbers, the randomly distributed 

cluster centroid offsets tend to make the radial energy spread distribution of the whole 

bunch uniform. The measured energy spread is the density-weighted mean slice RMS 

energy spread of any single cluster core. Its saturation behavior indicates the formation of 

the nonlinear advection of the particles due to the ࡱሬሬԦ ×   .ሬሬԦ velocity field in each cluster࡮

  The simulation study of corotation of cluster pair by macroparticle pair model and 

short bunch pair model verifies the theory of drift motion in the ࡱሬሬԦ ×  ሬሬԦ field. The࡮

corotation and merging of cluster pair in the long-term evolution of beam profiles is a 

natural consequence of the drift motion of clusters in the ࡱሬሬԦ ×  .ሬሬԦ field࡮
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Chapter 7 

CONCLUSIONS AND FUTURE WORKS 

7.1 Conclusions 

This dissertation focuses on the mechanism and evolution of microwave instability of 

coasting beams with space charge in the isochronous regime. 

Several theoretical LSC impedance models with different cross-sections of the beam 

and chamber are studied. The derived LSC impedances are in good agreement with the 

numerical simulations. They can be used in instability analysis induced by the LSC field 

at any perturbation wavelength l. In particular, for l<5cm, the LSC impedance of SIR 

beam can be approximated by that of a round beam in free space. 

For a beam with finite energy spread, due to the non-zero transfer matrix element 

R56(s), the particles with the same radial coordinates (x, x£) in the radial phase space but 

with deferent energies may have different path length difference Dz; In addition, due to 

the betatron oscillation and radial-longitudinal coupling effect, the particles with the same 

energy deviation but with different radial coordinates (x, x£) in the radial phase space also 

have different path length difference Dz via the transfer matrix elements R51(s) and R52(s). 

These path length differences are the important source of Landau damping for coasting 

beam with finite emittance and energy spread in the isochronous ring. The path length 

deviation contributed from the betatron motion in the isochronous rings is also an 

important effect that should be considered to realize the coherent terahertz synchrotron 

radiation (CSR) [56], in which case the length of an extremely short electron bunch needs 
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to be preserved precisely. A 2D dispersion relation taking into account the Landau 

damping effects originating from the energy spread and emittance is derived in Chapter 4. 

Compared with the conventional 1D growth rate formula, the 2D dispersion relation 

provides a more accurate approach to predict the instability growth rates, especially in the 

short wavelength limits. 

  A compact retarding field energy analyzer (RFA) with large entrance slit was designed, 

tested and employed in the energy spread measurement. The performance of the RFA 

meets our requirement for the experimental study of microwave instability. 

The energy spread measurement results of a coasting SIR beam match the simulation 

results in the long term evolution of microwave instability. The measured and simulated 

saturation of the radial distribution of energy spread at large turn number is caused by the 

formation of vortex motion in the bunches’ rest frames. The study using the 

two-macroparticle model and the two-bunch model also validate the theory of vortex 

motion in the ࡱሬሬԦ ×  .ሬሬԦ field࡮

7.2 Future works 

Some new research study may be performed in the future, such as: 

 In Chapter 4, there exist bigger discrepancies between the theoretical and 

simulated instability growth rates for l<1 cm. Further research study is needed to 

explain the reason for the discrepancies. 

 In recent years, a 3D PIC object-oriented parallel simulation code OPAL-CYCL 

has been successfully developed by PSI [17]. Being a parallel code, it can 

simulate beam dynamics in high intensity cyclotrons including neighboring 
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bunch effects. Some interesting results have been obtained by the PSI researchers 

[18, 57]. In comparison, CYCO is incapable of parallel computation at present. If 

possible, CYCO can be modified to be compatible with parallel computation in 

the future. This may greatly enhance its efficiency and functionality.  

 After years of successful operation with fruitful results, the Small Isochronous 

Ring (SIR) was dismantled in 2010. If possible, it may be reassembled and 

upgraded in the future (e.g., introduction of RF cavity, flat-top cavity, and new 

energy spread measurement system, etc.). After upgrade, more research studies 

regarding the space charger effects in isochronous regime can be carried out. 
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APPENDIX A 

FORMALISM OF THE STANDARD TRANSFER MATRIX 

FOR SIR 

This note presents the linear beam optics of SIR lattice (hard-edge model) using the 

standard transfer matrix formalism. 

A.1 Brief review of the standard transfer matrix 

The coordinates of a particle in the 6D phase space can be described by a 6-element 

vector (x(s), x£(s), y(s), y£(s), z(s), d(s))T [58-60], where x, y and z are the radial 

(horizontal), vertical and longitudinal coordinates with respect to a hypothetical 

on-momentum particle traveling along the design orbit; x£(s)=dx/ds and y£(s)=dy/ds are 

the radial (horizontal) and vertical slopes of velocity; d=Dp/p is the fractional momentum 

deviation compared with the on-momentum particle, the superscript ‘T’ stands for the 

transpose of vector or matrix. If there is no electric field and x-y coupling, the standard 

transfer matrix M(s) mapping the initial coordinates of a particle (x(0), x£(0), y(0), y£(0), 

z(0), d(0))T in the 6D phase space at s=0 to the current ones (x(s), x£(s), y(s), y£(s), z(s), 

d(s))T at s is [58-60] 
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The matrix M(s) satisfies the symplectic condition MTSM=S, where S is a 6μ6 

antisymmetric matrix 
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The determinant of matrix M(s) is unity, e.g., det(M)=1, which is required by  

Liouville’s theorem. Some elements of the standard matrix M(s) satisfy the following 

relations [8, 60, 61]: 
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,1126211651 MMMMM                     (A.5) 

,1226221652 MMMMM                     (A.6) 

where r(s) is the local radius of curvature of the orbit. 
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A.2 Standard transfer matrices for elements of SIR 

The four-fold symmetric SIR lattice mainly consists of four 90
o
 bending magnets with 

edge focusing connected by four drifts in between. By thin lens approximation, the 

bending magnets with tilted pole faces can be treated as a sector magnet (without pole 

face rotation) to which magnetic wedges with edge focusing are attached [8]. According 

to the theory of liner beam optics, the transfer matrices M(s) are [58]: 
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with l being the length of the drift. 

(b) Sector bending magnet 
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where r0 and q are the bending radius and angle of the sector bending magnet, 

respectively.  

(c) Magnetic wedge with edge focusing 
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with j being the pole face rotation angle. 

A.3 Optic functions of SIR (hard-edge model) 

Let us consider the general condition of isochronism of a relativistic particle traveling 

along an N-fold symmetric isochronous ring with edge focusing (See Figure A.1). The 

transfer matrix of 1/2N period (half-cell) of the ring lattice is 

.
2

1 DfiftEdgeSBend
Cell

MMMM                    (A.10) 

Substituting Eqs. (A.7), (A.8) and (A.9) into Eq. (A.10) with q=p/N yields 
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Let us assume that an off-momentum particle located at the center point of a drift has 

initial coordinates of (x(0), 0, y(0), y£(0), z(0), d)T at s=0 (see Figure A.1). It travels along 

the drift section of the deviated equilibrium orbit towards the bending magnet. The 

geometric relationship shown in Figure A.1 gives the bending radius of the off-momentum 

particle r1 as 
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Since the bending radius of a particle with charge q and momentum p in a magnetic field 

with strength B is 
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According to Eq. (A.11), after traveling a half cell, the longitudinal coordinate of the 

off-momentum particle becomes 

.)0()0()0( 565251 MzxMxMz                  (A.27) 

If the change of longitudinal coordinate z is 0, e.g.,  

，0)0()0()0( 565251  MxMxMzzz             (A.28) 

then the ring will be isochronous. Since x£(0)=0, Eq. (A.28) reduces to  
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Substituting Eqs. (A.20), (A.22) and (A.26) into Eq. (A.29) gives the isochronous 

condition 
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For the non-relativistic ions coasting in SIR (gº1), if we replace l by L/2, Eq. (A.30) 

reduces to 
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For convenience, the upper-left four matrix elements in Eq. (A.33) can be defined as a 

2μ2 matrix for transfer of the vector (x, x£)T of an on-momentum particle 
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Then the phase advance yx, the Courant-Snyder parameters ߙො௫ መ௫ߚ , , and ߛො௫  of the 

horizontal phase space at points A and F can be obtained easily as: yx=1.79325, ߙො௫,஺ = ො௫,ிߙ = መ௫,஺ߚ ,0 = መ௫,ிߚ = ො௫,஺ߛ ,0.563146 = ො௫,ிߛ = 1.775736. Similarly, using the 

central four matrix elements in Eq. (A.33), the phase advance yy, the Courant-Snyder 

parameters ߙො௬, ߚመ௬, and ߛො௬ of the vertical phase space at points A and F are: yy=1.77574, ߙො௬,஺ = ො௬,ிߙ = መ௬,஺ߚ ,0 = መ௬,ிߚ = ො௬,஺ߛ ,0.72688 = ො௬,ிߛ = 1.38564. The horizontal and 

vertical betatron tunes are ߥ௫ = ସటೣଶగ ≈ 1.142,  and ߥ௬ = ସట೤ଶగ ≈ 1.169,  respectively, 

which are pretty close to the numerically simulated values of ߥ௫ = 1.14 and ߥ௬ =1.17  in Table 2.1 (also in Ref. [12]). 

Assuming s=0 at the starting point A, through piecewise tracking of the Courant-Snyder 

parameters using the formula, 
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where m11, m12, m21, m22 correspond to the matrix elements in Eqs. (A.7), (A.8), and (A.9) 

for the different lattice elements, the horizontal betatron function of a half cell can be 

calculated as 
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where a1=0.563147, a2=1.775736, a3=0.845237, a4=0.715490, and a5=4.444444. 

Similarly, the vertical betatron function of a half cell can be calculated as 
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where b1=0.72688, b2=1.37574, b3=0.945428, b4=-1.130447, and b5=1.3956406. The 

horizontal and vertical beta functions in the region of L/2+r0p/4§s§L+r0p/2 can be 

obtained easily by mirror symmetry about s=L/2+r0p/4. 

  The elements M11, M12, M16, M21, M22, M26 of the single cell matrix MCell of Eq. (A.33) 

form a 3μ3 transfer matrix for dispersion function D(s) 
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Due to symmetry of lattice, we have 
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From Eqs. (A.38) and (A.39), it is easy to obtain DA=DF=-M26/M21=0.84856. The 

piecewise tracking of the dispersion function D(s) using the transfer matrices of the 

accelerator elements yields  
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where d1=DA=0.84856, d2=0.39856, and d3=2.22222. The dispersion function in the 

region of L/2+r0p/4§s§ L+r0p/2 can be obtained easily by mirror symmetry.  

Figure A.3 illustrates the calculated optics functions v.s distance S of a single period of 

the SIR lattice by the above transfer matrix formalism. The calculated optics functions are 

very similar to the numerically simulated ones by DIMAD shown in Figure 2.3.  

 

Figure A.3: Schematic of the optics functions v.s distance S of a single period of the SIR 
lattice calculated using transfer matrices. 
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Using Eqs. (2.5) and (A.40), the average value of dispersion function inside the bending 

magnets can be calculated as 
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Then Eq. (2.6) gives the momentum compaction factor 
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Finally, the slip factor can be calculated as 

.1006.8
1

- 6-
20 


                      (A.43) 

In principle, the theoretical value of h0 of the SIR lattice (hard-edge model) should be 0, 

the small deviation may originate from the rounding errors and neglect of the relativistic 

effects in the numerical calculation. 
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APPENDIX B 

TRANSFER MATRIX USED IN CHAPTER 4 AND REF. [42] 

The notations of the transfer matrix elements Ri,j (i, j=1, 2,…6) adopted in Chapter 4 

follow the ones used in Ref. [42], some of which are different from the standard ones Mi,j 

defined in Appendix A of this dissertation. This section is devoted to the comparison of 

the two different notations between the two matrices. 

B.1 Relations of R51, R52 and R56 between two different matrices 

According to Ref. [42], the equations of motion of an ultra-relativistic electron are: 

Radial (horizontal):    ,x
ds

dx    ,
)(

)(
'

sR
xsk

ds

dx
x


          (B.1) 

Longitudinal:        ,
)(sR

x

ds

dz
       .0

ds

d
            (B.2) 

where d=Dp/p is the fractional deviation of momentum. The general solution to the 

above equations is [42]: 

   ),sinˆcos
ˆ

(ˆ
00

0

0 


 x
x

Dx                  (B.3) 

),cosˆsin
ˆ

(
ˆ

1
)

ˆ
ˆ

- 00

0

0 


 x
x

DpxDx  （           (B.4) 

 



173 

   .052051560 xRxRRzz                       (B.5) 

The transfer matrix elements R51, R52, R56 can be obtained from the above equations as 
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Ref. [42] defined a 2D Gaussian beam model with an initial equilibrium beam 

distribution function 
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and û is the chirp parameter which accounts for the correlation between z and d.  

(a) For transfer line 

At s=0, for a transfer line, the initial values of the dispersion function and its 

derivative are D(0)=0, D£(0)=0, the phase advance y(0)=0. From Eqs. (B.3) and (B.4) 

we have 
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,)0( 0xx                             (B.12) 
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

                      (B.13) 

The standard transfer matrix M(s) defined in Appendix A gives the transfer of z 

).0()0( 5251560 xMxMMzz                    (B.14) 

Plugging Eqs. (B.12) and (B.13) into Eq. (B.14) and comparing the coefficients of x0, 0x , 

and d with those of Eq. (B.5) yields the relation 

),()( 5656 sMsR   ),()( 5252 sMsR   ).0(ˆ/)0(ˆ)()( 525151 MsMsR     (B.15) 

The relation described in Eq. (B.15) repeats that clarified in the reference list of Ref. [42] 

for transfer lines.  

(b) For storage rings 

For the case of storage rings, though Ref. [42] did not explicitly address the difference 

and relation between the standard transfer matrix elements and the ones defined in that 

paper, it can be inferred from the formalism and context of the paper. We know that the 

beam dynamics of storage rings is different from that of the transfer lines. For example, 

the dispersion function D(s) and its derivative D£(s) of storage rings are periodic functions 

of s and must satisfy the close orbit condition, e.g., D(s)=D(s+C0), D
£(s)=D£(s+C0), where 

C0 is the ring circumference. Hence, D(s) and D£(s) of storage rings are self-consistent 

solutions of ring lattice optics required by the periodicity. While D(s) and D£(s) of transfer 

lines are free from the above restraint.  

According to the smooth approximation adopted in Ref. [42] in the derivation of the 2D 
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dispersion relation (e.g., xR  /ˆ , Rsx /  , 2/ xRD  , 0ˆ  , 0D  and Rxxx /2
0,   ), 

at s=0, Eqs. (B.3) and (B.4) yield 

                ,)0( 0 Dxx                           (B.16) 

                 .)0( 0xx                             (B.17) 

Eq. (B.16) indicates that x0 is the initial betatron oscillation amplitude xb(0), which is 

not equal to the total initial radial offset x(0), the latter includes a dispersion term Dd. 

Consequently, the first exponential function defined in Eq. (B.10) describes the initial 

Gaussian distribution of the betatron oscillation amplitudes x0 and slopes 0x , not x(0) and 

slopes );0(x  moreover, xxxx R  /ˆ
0,0,   is the RMS beam radius which only 

includes the emittance effect, since the total RMS beam radius with dispersion effect 

should be   .//)(
22

0,
22

, xxxxtotalx RRD     Plugging Eqs. (B.16) and 

(B.17) into Eq. (B.14) and comparing the coefficients of x0, 0x , and d with those of Eq. 

(B.5) yields the relation of different matrix elements for storage rings 

),()()()( 515656 sMsDsMsR   ),()( 5252 sMsR   ).()( 5151 sMsR      (B.18) 

B.2 One-turn transfer matrices by smooth approximation 

By smooth approximation, the longitudinal and radial equations of motion of a particle 

in SIR can be written as 

Radial (horizontal):          ,
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Longitudinal:           ,
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The solutions are  
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From Eqs. (B.21)-(B.23), it is easy to obtain the 1-turn standard transfer matrix M1-turn(s) 

and the non-standard one R1-turn(s) used in Ref. [42] and Chapter 4 of this dissertation as 
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and 
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respectively. 

According to Ref. [59, 62], the dispersion function D(s) and its derivative D£(s) can be 

obtained from the standard matrix Eq. (B.24) as  
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From Eq. (A.1), the derivative dz/dd can be calculated as [60] 
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Since d=d(0), by moving the term dz(0)/dd(0) of Eq. (B.28) to the left hand side, the 

conventional slip factor (evaluated along the equilibrium orbit neglecting betatron 

oscillation of trajectory) is [60] 
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It should be noted that Eq. (B.29) is a variant form of the original Eq. (6.22) in Ref. 
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[60], which is the expression for momentum faction factor a in the ultra-relativistic limit 

instead of slip factor h; in addition, there is no negative sign on the right hand side of Eq. 

(6.22) in Ref. [60], because Ref. [60] uses a different sign convention in definition of slip 

factor. 

With Eqs. (B.24), (B.26) and (B.27) and (B.29), in the end, the slip factor for the 

one-turn matrix of a storage ring can be obtained as 

.
11

22 
 

x

                          (B.30) 

While for the non-standard 1-turn transfer matrix R1-turn(s) in Eq. (B.25), the 

conventional slip factor (neglecting the betatron oscillation effect) is related to the matrix 

element R56(s) exclusively by 

.
11

|
)(

-
22

0

56
0 

  
x

CsC

sR
                    (B.31) 

Particularly, in the case of isochronous rings, the radial (horizontal) tune nx in Eqs. (B.30) 

and (B.31) should be replaced by transition gamma gt. 
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