STUDIES OF THE MICROWAVE INSTABILITY IN THE
SMALL ISOCHRONOUS RING

By

Yingjie Li

A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
Physics—Doctor of Philosophy

2015



ABSTRACT

STUDIES OF THE MICROWAVE INSTABILITY IN THE
SMALL ISOCHRONOUS RING

By
Yingjie Li

This dissertation is devoted to deepening our knowledge and understanding of the
hidden physics regarding the microwave instability of the space-charge dominated beams
in the small isochronous ring, which was observed in our previous numerical and
experimental studies.

The dissertation attempts to provide a further exploration and more accurate
description of the microwave instability by focusing on the following topics:

(a) Derivations of the full-spectrum longitudinal space charge (LSC) impedance
formula, which reflects the realistic configurations of the beam-chamber system
more closely than the existing ones.

(b) Landau damping effect. A two-dimensional (2D) dispersion relation is derived in
the dissertation, by which the microwave instability growth rates of a coasting
beam with any energy spread and emittance in the isochronous regime can be
predicted theoretically.

(c) Evolution of the beam profiles in the nonlinear regime of the microwave instability.
For this purpose, various numerical, experimental and theoretical approaches have
been employed in the research, including the simulation and measurement of the

energy spread evolution, simulated corotation of the two-macroparticle and



two-bunch models together with their comparisons with the theoretical predictions.
The simulations, experiments and theoretical predictions on the above three

topics all reach good agreements.
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Chapter 1

INTRODUCTION

Isochronous cyclotron is an important family member of modern particle accelerators,
with a relatively compact structure and ability of being operated in continuous wave (CW)
mode. Using a fixed accelerating frequency, it can accelerate the high intensity hadron
beams to medium energy efficiently, typically ranging from several tens of MeV to
several hundred MeV. Now isochronous cyclotrons are widely used in various fields and
applications, such as research in nuclear physics, medical imaging, radiation therapy and
industry, etc.

Since the 1980’s, the successful operation of the high power Ring Cyclotron (capable
of producing a proton beam of 2.4 mA, 590 MeV with a power of 1.4 MW) at Paul
Sherrer Institute (PSI) in Switzerland has greatly inspired the cyclotron community.
Consequently, the possibility of design and operation of more powerful cyclotrons
(typically, 1 GeV, 10 mA, 10 MW) have been discussed extensively and proposed in
some new applications, such as accelerator driven subcritical reactors (ADSR),
transmutation of nuclear waste and energy production, neutrino Physics [1-5], etc. M.
Seidel provided an excellent review on cyclotrons for high intensity beams [6], their
working principles, limitations in the design and operation were briefly introduced. This
dissertation mainly discusses the microwave instability of low energy, high intensity
beams in isochronous regime induced by space charge effects which is a key issue for the

performance of high power cyclotrons.



1.1 Brief introduction to cyclotrons

The first classical cyclotron was proposed and designed by E. O. Lawrence in the early
1930s, in which charged particles move in a vertically uniform magnetic field with a
constant revolution frequency (cyclotron frequency). An electric field with fixed radio
frequency (RF), which is equal to the cyclotron frequency between two D-shaped
electrodes (the Dees), is utilized to accelerate the particles multiple times resonantly to
high energy. In order to overcome the energy limits posed by the phase slippage due to
relativistic effects and vertical focusing, in 1938, L. H. Thomas proposed the concept of
radial sector focusing isochronous cyclotron of which the radially increasing magnetic
fields provide isochronism, and the azimuthally varying magnetic fields (AVF) provide
vertical focusing (Thomas focusing). In addition, many modern isochronous cyclotrons
adopt spiral-shaped sectors which may enhance the vertical focusing further. The
accelerated beam can be extracted by some popular methods, such as resonance

extraction, stripping extraction for H ions, etc.
1.2 Space charge effects in isochronous cyclotrons

When the beam intensity increases in isochronous cyclotrons, the collective effects of
the repulsive Coulomb force among the charged particles, which are usually termed space
charge effects, become vital factors for the highest intensity attainable in the machine.
Refs. [6-7] provide enlightening reviews and discussions regarding the space charge
effects in isochronous accelerators.

The space charge effects can be classified into two major categories: incoherent

transverse effects and coherent radial-longitudinal ones.



1.2.1 The incoherent transverse space charge field

The incoherent transverse space charge field can decrease the vertical focusing
resulting in negative incoherent tune shifts which are proportional to the beam current
and 1/47 [8], where S and y are the relativistic speed and energy factors, respectively.
Usually, in the central region of isochronous cyclotrons, the vertical focusing force
provided by the azimuthally varying magnetic fields (Thomas force) is weaker, thus a
beam of high intensity and low energy may have a large tune shift and vertical beam size.
The vertical chamber size sets the upper limits for the beam intensity. Higher injection

energy is preferred to mitigate the incoherent transverse space charge effects.
1.2.2 The coherent radial-longitudinal space charge field

Different from the incoherent transverse space charge effects which are common for all
types of accelerators, the coherent radial-longitudinal space charge effects in isochronous
cyclotrons demonstrate some characteristics that are unique in isochronous regime. The
longitudinal space charge (LSC) fields within a bunch of finite length may induce energy
spread among the charged particles. In isochronous regime, since the longitudinal motion
is frozen, particles with higher (or lower) energy must have longer (or shorter) path
lengths and larger (or smaller) gyroradii to maintain a constant revolution frequency. This
may result in the vortex motion and an S-shaped beam, the narrowed turn separation
makes clean extraction difficult. For higher power cyclotrons, considerable number of
particles hitting the extraction deflectors may cause serious beam loss, overheating and
activation of extraction device. The required low extraction loss rate is the limiting factor

for the attainable beam intensity in high power isochronous cyclotrons.



More comprehensive knowledge and deeper understanding of space charge effects are
crucial for the successful design and operation of high power isochronous cyclotrons. In
the past decades, additional extensive studies on this topic have been done through

numerical simulations, experiments and analytical models.
1.2.3 Vortex motion

Gordon is the first researcher who explained that the vortex motion in isochronous

cyclotrons originates from the space charge force eﬁsc [9], which is equal to half of the

Coriolis force seen by a particle in a reference frame rotating with constant angular

frequency @, in the isochronous magnetic field B

ma, xv =qk_, (1.1)
where m and ¢ are the mass and charge of the particle, respectively, v is the speed of
particle in the rotating frame, and ESC is the space charge field, @, is the cyclotron

frequency vector
@, =-"—. (1.2)

Another half of the Coriolis force in the rotating frame cancels the centrifugal force and

Lorentz force on the particle. Cerfon [10] interpreted the vortex motion in isochronous
regime as nonlinear convection of beam density in the Esc X B velocity field

v=Es;;B. (1.3)

Since the cyclotron frequency vector @, is proportional to the isochronous magnetic

field vector B as shown in Eq. (1.2), in fact, the two different interpretations of vortex



motion described in Eqgs. (1.1) and (1.3) are equivalent to each other essentially. It can be

verified easily by plugging Egs. (1.2) and (1.3) into Eq. (1.1).

1.2.4 Space charge effects and stability of short circular bunch

By using a closed set of differential equations for the second-order moments of the
phase space distribution functions, taking into account the space charge effects,
neglecting the force from the image charges and neighboring turns, Kleeven [11] proved
that a single free bunch with a circular horizontal cross-section is stationary in a AVF
isochronous cyclotron; for a beam with non-circular horizontal initial cross-section, it
will not be stable until it evolves to a circular one. This property has been verified and
utilized in the successful operation of PSI Injector II, where a buncher is used to produce
small round bunches with energy of 870 keV before they are injected into and accelerated
in the Injector II. Because the shape of short bunches can barely change during
acceleration, a large enough turn separation can be achieved at extraction energy of 72
MeV with high extraction rate (~99.98%). Cerfon [10] also verified and explained this

phenomenon by both theory and simulations as discussed in Sect. 1.2.3.

1.2.5 Space charge effects of long coasting bunch

The simulation and experimental work done by Pozdeyev and Rodriguez [12-15]
showed that, when a high intensity long bunch with initially uniform longitudinal charge
distribution is injected into the Small Isochronous Ring, it may break up into some small
clusters longitudinally after only several turns of coasting. Later those small clusters

coalesce by consecutive binary cluster merging process. The fast clustering process



observed in simulations and experiments is just the microwave instability of a

space-charge dominated beam.
1.2.6 Space charge effects between neighboring turns

For high intensity cyclotrons, the turn separation decreases at high energy.
Consequently, the space charge effects contributed from the radially neighboring turns
must be considered in the beam dynamics.

Using a 3D parallel Particle-In-Cell (PIC) simulation code OPAL-CYCL, a flavor of
the Object Oriented Parallel Accelerator Library (OPAL) framework developed by
Adelmann of PSI [17], the space charge effects between neighboring turns in the PSI 590
MeV Ring Cyclotron were simulated by Yang adopting a self-consistent algorithm [18].
The simulation results show that there is a considerable difference between single-bunch
and multi-bunch dynamics. The space charge forces contributing from the radially
neighboring turns may ‘squeeze’ the radial beam size to some extents and play a positive
role in maintaining turn separation and reducing the energy spread.

From the above information, we can see it is challenging to design and operate a high
intensity cyclotron keeping a low level of beam loss and activation. The effects of an
incoherent transverse space charge field, a coherent radial-longitudinal space charge field
and neighboring turns are crucial factors thus must be taken into account. This requires a

better understanding and manipulation of the space charge effects in isochronous regime.

1.3 CYCO and Small Isochronous Ring

Usually it is difficult to study analytically the beam dynamics with space charge in



isochronous ring due to complex boundary conditions of the accelerator, nonlinear effects
resulting from beam shape and distributions. Thus, the numerical method using
simulation codes and experimental method utilizing a real isochronous accelerator are
heavily relied upon in the research.

Since the beam dynamics of the existing simulation codes were then simplified in the
treatment of space charge effects, Pozdeyev developed a novel 3D Particle-In-Cell
simulation code named CYCO to study the beam dynamics with space charge in
isochronous regime [12]. In the simulation, at first, an initial distribution of a number of
macroparticles (typically 3 x 10°) representing the real long ion bunch (typically 40 cm
long) needs to be created either by the code with a default distribution or by users’
self-definition. Using the classical 4" order Runge-Kutta method, the code can
numerically solve the complete and self-consistent system of six equations of motion of
the charged macroparticles in a realistic 3D field map including the space charge fields.
Because of the large aspect ratio between the vacuum chamber width and height of the
storage ring, the code only includes the image charge effects in the vertical direction. The
rectangular vacuum chamber is simplified as a pair of infinitely large, ideally conducting
plates parallel to the median ring plane. The beam profiles can be output turn by turn for
post-processing and analysis.

In order to validate the simulation code CYCO and study the space charge effects in
the isochronous regime, a low energy, low beam intensity Small Isochronous Ring (SIR)
was constructed during 2001-2004 at the National Superconducting Cyclotron Laboratory
(NSCL) at Michigan State University (MSU). In addition, two graduate students

Pozdeyev and Rodriguez conducted a thesis project and the SIR has been in operation



until 2010 [12-13]. According to the scaling laws, the space charge regime of the low
energy, low intensity H,” beam in SIR covers a large region in beam dynamics. This
compact accelerator ring can be used to simulate the space charge effects of the large
scale, high power isochronous cyclotrons such as the PSI Injector II cyclotron. Due to the
loose requirements of time resolution and beam power for diagnostic tools, good
availability and flexibility in the operation, the SIR is an ideal experimental facility to
study the space charge effects in the isochronous regime.

The Small Isochronous Ring consists of three main parts: a multi-cusp Hydrogen ion
source, an injection line, and a storage ring as shown in Figure 1.1. Its main parameters

are listed in Table 1.1.
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Figure 1.1: A photograph of the SIR with some key elements indicated.




Table 1.1:

Main parameters of SIR

Ring circumference 6.58 m
Particle species H', H,", H;", mainly use H,"
Kinetic energy 0-30 keV

Peak current

0-40 pA for Hy"

RMS emittance

Typically 2-3 7z mm mrad

Ring lattice

Four 90-degree dipole magnets

Bending radius 0.45m
Dipole pole face angle 26°
Mag. field strength 800 Gauss
Bare horizontal tune v, 1.14
Bare vertical tune v, 1.11
Bare slip factor 7, ~2.0 x 107
Beam life time ~200 turns

The ion source produces three species of Hydrogen ions: H', H,", and H;". An
analyzing dipole magnet under the ion source is used as a magnetic mass separator to
select the H," ions which are usually used in the experiments. The H," ion beam with
proper Courant-Snyder parameters and desired bunch length can be produced by an

electrostatic quadrupole triplet and chopper in the injection line. The storage ring has a
circumference of 6.58 meter. It mainly consists of four identical flat-field 90" bending

magnets with edge focusing. The pole faces of each magnet are rotated by 26 in order to
provide both the vertical focusing and isochronism at the same time. After being injected
to the storage ring by two fast-pulsed electrostatic inflectors (Inflector 1 and Inflector 2 in
Figure 1.1), the bunch may coast in the ring up to 200 turns. There is a Measurement Box
located in the drift line between the 2" and 3™ bending magnets in the ring. A pair of
fast-pulsed electrostatic deflector in the Measurement Box can kick the beam either up to
a phosphor screen above the median ring plane, or down to the fast Faraday cup (FFC)
below the median ring plane. The phosphor screen and fast Faraday cup are used to

monitor the transverse and longitudinal beam profiles, respectively. We can also perform



energy spread measurements if the fast Faraday cup assembly is replaced by an energy

analyzer assembly.

A double-slit emittance measurement assembly is located in the Emittance Box of the
injection line. It is used to measure the RMS emittance in horizontal and vertical phase
space. An Einzel Lenz right under the ion source can focus the divergent beam. Together
with the electrostatic quadrupole triplet in the injection line, users can obtain the proper
Courant-Snyder parameters. A shielded Faraday cup at the end of the injection line is
used to measure the beam current when the Inflector 1 is turned off. Two pairs of
horizontal and vertical scanning wires are installed in the storage ring to monitor the
transverse beam profiles. In order to adjust the betatron tunes and isochronism, four
electrostatic quadrupoles and four gradient correctors are installed in the ring between the

bending magnets and situated in the dipole magnets, respectively.
1.4 Summaries of previous studies of beam instability in SIR

It was observed both in simulations by CYCO and experiments at SIR, a coasting long
bunch with uniform longitudinal charge density may develop a fast growth of density
modulation. The whole bunch breaks up into many small clusters in the longitudinal
direction quickly. Furthermore, the neighboring small clusters may merge together to
form bigger ones by a consecutive binary merging process. Figure 1.2 shows the
measured temporal evolutions of the longitudinal bunch profiles of a coasting beam with
the beam energy of 20.9 MeV and the peak current of 9.3 xA [15]. Figure 1.3 shows the
simulation results of the beam dynamics in SIR for three different peak intensities: 5 yA,
10 A, and 20 A [13].
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Figure 1.2: Longitudinal bunch profiles measured by the fast Faraday cup right after
injection (turn 0), at turn 10 and turn 20. The current profiles measured at turn 10 and
turn 20 are shifted vertically by 0.3 and 0.6, respectively [15].
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Figure 1.3: Simulation results of the beam dynamics in SIR for three different peak
densities: 5 pA, 10 A, and 20 pA [13].
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In order to study the dependence of beam instability on various initial beam parameters,
Rodriguez carried out extensive simulations and experimental studies [13]. He studied the
temporal evolutions of the number of clusters by means of the cluster-counting technique.
The simulation and experimental results agreed to each other quite well. Finally, several
scaling laws of instability growth rates with respect to the various beam parameters (e.g.,
the beam current, energy, emittance and bunch length) were set up empirically. It was
found that the instability growth rates are proportional to the beam current instead of the
square root of beam current. This property contradicts the prediction by the conventional
theory of microwave instability. Rodriguez also counted the decreasing number of
clusters and fit it to an empirical exponential function of turns.

Pozdeyev explained [14-15] that the centroid wiggling of a long bunch in isochronous
ring plays an important role in the microwave instability. It may produce coherent radial
space charge fields, modify the dispersion function and coherent slip factor, raise the
working point above transition and enhance the negative mass instability. Plugging the
modified coherent slip factor into the conventional 1D formula for microwave instability
growth rates, Pozdeyev derived an instability formula which can predict the linear
dependence of instability growth rates on beam current. While this model overestimates
the growth rate of short-wavelength perturbations. Later, Bi [16] proposed another model
consisting of a round perturbed beam inside a round chamber. This model takes into
account the effect of centroid offsets on transition gamma. Bi derived a 1D dispersion
relation that can predict the fastest-growing mode and explain the various scaling laws.
But this model is not consistent with the scaling laws on beam current, since the DC

current component is neglected in calculating the coherent radial space charge field.
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1.5 Major research results and conclusions in this dissertation

In spite of the pioneering work done by Pozdeyev, Rodriguez and Bi [12-16], some
central questions still remain in regard to the more accurate, comprehensive and deeper
understanding of the microwave instability in isochronous regime. For example,

(a) None of Pozdeyev [14-15] and Bi’s theoretical models [16] utilized the longitudinal
space charge (LSC) field and impedance models that exactly match the geometries of the
real beam-chamber system and can work at any perturbation wavelengths. The validity of
their LSC field and impedance models needs to be verified. It is highly desirable for the
beam physicists to obtain the analytical LSC impedances for a round beam with
sinusoidal density modulations inside a rectangular chamber, or between parallel plates
(e.g., in CYCO). Moreover, the derived LSC impedances should be accurate enough at
any perturbation wavelengths.

(b) Is the 1D growth rate formula or dispersion relation adopted by Pozdeyev [14-15]
and Bi [16] accurate enough to predict the instability growth rates at any wavelengths?
How do the energy spread and emittance neglected in their models affect the instability
growth rates? How to introduce the well-known Landau damping effects in the
isochronous regime?

(c) How does the energy spread of clusters evolve? What is the asymptotic behavior of
the energy spread and why? How and why the cluster pair merge?

This dissertation primarily discusses and answers the above questions. To predict the
microwave instability growth rates more accurately, this dissertation

(1) derives the analytical LSC impedances of a rectangular and round beam inside a

rectangular chamber and between parallel plates;
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(2) derives a 2D dispersion relation incorporating the Landau damping effects
contributed from finite energy spread and emittance. It can explain the suppression of
microwave instability growth rates at short perturbation wavelengths and predict the
fastest-growing wavelength;

(3) studies the evolution of energy spread of SIR bunch by both simulation and
experimental methods. We have designed a compact rectangular electrostatic retarding
field analyzer [19] with a large entrance slit. The simulation and experimental studies of
energy spread evolution of a long coasting bunch show that the slice RMS energy spread

of clusters changes slowly at large turn numbers. This may result from nonlinear

advection of the beam in the E X B velocity field [10].

1.6 Brief introduction to contents of the following chapters

Chapter 2 gives a brief introduction to some most important concepts and dynamics
regarding the isochronous ring, including the momentum compaction factor, dispersion
function, slip factor, beam optics of SIR lattice (hard-edge model), microwave instability,
Landau damping, etc.

Chapter 3 derives the analytical LSC fields and impedances of (a) a rectangular beam
and (b) a round beam with planar and rectangular boundary conditions, respectively. The
derived LSC impedances match well with the numerical simulations. We study the effects
of the cross-sectional geometries of both the beam and chambers on the LSC impedances.

Chapter 4 discusses the Landau damping effects of a coasting long bunch in the SIR.
The limits of the conventional 1D formalisms used in the existing models are pointed out;

a modified 2D dispersion relation suitable for the beam dynamics in the isochronous
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regime is derived, by which the Landau damping effects are studied. It can explain the
suppression of instability growth and predict the fastest-growing wavelength.

Chapter 5 introduces the working principles, simulation design, and mechanical
structure of a rectangular retarding field energy analyzer with large entrance slit. The
dissertation provides the tested performance and sensitivity of the analyzer.

Chapter 6 is devoted to studying the nonlinear beam dynamics of the microwave
instability, including (a) energy spread measurements and simulations. First, this chapter
gives a brief introduction to the measurement system, and then the measurement and data
analysis methods. The simulation and experimental results are compared with each other;
their physical meaning is interpreted by simple analysis. (b) verification of Cerfon’s
theory [10] on the vortex motion in E x B field by two-macroparticle model and
two-bunch model.

Chapter 7 summarizes the main research results addressed in this dissertation and

points out some possible research directions in the future.
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Chapter 2

BASIC CONCEPTS AND BEAM DYNAMICS

For the convenience of further discussions on microwave instability in the following
chapters, this chapter briefly summarizes some basic but important concepts that are

essential in understanding the unique beam dynamics in the isochronous regime.

2.1 The accelerator model for the SIR

In this dissertation, the same accelerator model as the one used in Ref. [20] is adopted
for the SIR. Figure 2.1 shows the schematic view of the coordinate system for the

accelerator model.

Figure 2.1: A simplified accelerator model for the SIR, in which x, y, and z denote the
radial, vertical and longitudinal coordinates of the charged particle with respect to the
reference particle O. (Note: the figure is reproduced from Ref. [20]).

The SIR is assumed to be an ideal circular storage ring with a circumference of Cy=27R,
where R is the average ring radius. A beam is coasting in the ring. Assume a hypothetical

reference particle O within the bunch circulates along the design orbit turn after turn with

16



the exact design energy E = 7/mH+c2, where » is the relativistic energy factor of the
on-momentum particle, m, . is the rest mass of the Hydrogen molecular ion H; , c is the

speed of light. The reference particle has a velocity of v=c, where  is the relativistic
speed factor. The distance traveled by the reference particle with respect to a fixed point
of the storage ring is s=vi=fct. For an arbitrary particle in the bunch, x, y, and z denote its
radial, vertical and longitudinal coordinates with respect to the reference particle O,
respectively. Then the motion of an arbitrary particle can be described by a
six-component vector (x, x’, y, /', z, ) in phase space, where x'=dx/ds, and y'=dy/ds are
the radial and vertical velocity slopes relative to the ideal orbit, =Ap/p is the fractional
momentum deviation. For a coasting SIR beam, we can choose a hypothetical
on-momentum particle at the bunch center as the reference particle. For those
off-momentum particles in a circular accelerator, there are three important parameters
describing their motions: momentum compaction factor «, dispersion function D(s) and

phase slip factor n.
2.2 Momentum compaction factor

In a circular accelerator, the particles of different energy circulate around different
closed orbits resulting in different path length C and different equilibrium radius. In beam
dynamics, the ratio between the fractional path length deviation AC/Cy (or fractional
equilibrium radius deviation AR/R) and the fractional momentum deviation 6=Ap/p is
customarily defined as the momentum compaction factor:

_AC/C, AR/R
Aplp  Aplp

2.1)
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It is a measure for the change in equilibrium radius due to the change in momentum.
2.3 Dispersion function

The off-momentum particles with 6=Ap/p may have different closed (equilibrium)
orbits from that of the on-momentum reference particle, yielding a horizontal (radial)
displacement x(s) in x-coordinate. Then the periodic dispersion function in a circular

accelerator is defined as
D(s)= % (2.2)

Both the momentum compaction factor @ and the periodic dispersion function D(s)
reflect the radial-longitudinal coupling of circular accelerators, which is an intrinsic
property of the circular accelerators resulting from the guiding magnetic fields. Moreover,

@ and D(s) are related to each other by (Eq. (3.136) of Ref. [21])

D(s) ;0 _ (D)

, 2.3
p(s) p(s)> 23

a- CL §
where p(s) is the local radius of the curvature of trajectory, (---) stands for the average
value over the accelerator circumference. Let us assume all the bending magnets in the
storage ring are identical to each other with bending radius po. Since a straight section has

a bending radius of p(s)=co, only the dispersion function in the bending magnets

contributes to @, then Eq. (2.3) can be written as
a=—t [ D(s)ds (2.4)
Cop bend ’ ’

If the total length of bending magnets is Lp.n=27p0, the average value of dispersion

function in the bending magnet is
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1
<D(s)>,,,= e Lend D(s)ds. (2.5)

Then Eq. (2.4) reduces to

o= 272.p0 < D(S) >bend _ < D(S) >bend

(2.6)
Copy R
where R=Cy/2r is the average ring radius.
2.4 Transition gamma
The transition gamma vy, in circular accelerators is defined as
»_Aplp
== 2.7
Y = R/R 2.7)
It is easy to learn from Eq. (2.1) and Eq. (2.7) that
o= iz (2.8)
e

The total energy of a particle with transition gamma is just the transition energy which is

equal to E, = y,mc”.
2.5 Slip factor

The revolution period of a particle is 7'=2aR/fc, the fractional deviations of the

relativistic speed and momentum are related by AB/ f=5/y, then with Eq. (2.7),

AT Ao AR A 1 1
AL _ Ao _AR_AS_ (115 s, (2.9)
TO CUO R ﬂ 7t Y

where Ty and wy are the revolution period and angular revolution frequency of the

on-momentum reference particles, respectively, 1 is the phase slip factor defined as
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Ve oV /4

For the SIR, the bare slip factor without the space charge effect is noz2><10_4.

The revolution time and frequency of an off-momentum particle is determined by its
changes in both velocity and path length. A particle with higher energy (6>0) has a faster
velocity and travels along a longer path length compared with the on-momentum
reference particle (0=0). For the case of y<y,, below the transition, n<0, the faster speed
of the higher energy particle (6>0) may compensate for the longer path, this will result in
a shorter revolution period (A7<0 in Eq. (2.9)) or higher revolution frequency (Aw>0 in
Eq. (2.9)) compared with the on-momentum reference particle. While for the case of y>v,,
above the transition, 17>0, the increase of path length of the higher energy particle (6>0)
may dominate over the increase of velocity. This will result in a longer revolution period
(AT>0 in Eq. (2.9)) or lower revolution frequency (Aw<0 in Eq. (2.9)) compared with the
on-momentum reference particle.

At transition, y=y;, n=0, the revolution period (or frequency) of the particle is
independent of its energy (or momentum). For a coasting bunch, if the space charge
effects among the particles are excluded, all the particles with different energy will
circulate along the accelerator rigidly with the same period (or frequency). This is the
isochronous regime, in which the Small Isochronous Ring (SIR) is designed to be
operated. Unfortunately, this is a regime which is most vulnerable to the perturbations

and prone to beam instability for a space-charge dominated beam.
2.6 Beam optics for hard-edge model of SIR

Figure 2.2 depicts the layout of the SIR lattice. In consists of four 90-degree bending

20



magnets (B1-B4) connected by four straight drift sections (S1-S4). The pole face of each

bending magnet is rotated by an angle ¢ for isochronism and vertical focusing.
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Figure 2.2: Layout of the SIR lattice.

Table 2.1: Parameters of SIR (hard-edge model)

Number of magnets N 4 Rotation angle of pole face ¢ | 25.159°
Bending radius po 0.45m Horizontal tune v, 1.14
Drift length L 0.79714 m Vertical tune v, 1.17

Table 2.1 lists the main parameters of the hard-edge model of the SIR lattice [12]. Here

the term ‘hard—edge’ means all the fringe magnetic fields are neglected.

Figure 2.3 shows the simulated optical functions B, (s), ,[?y (s), and D,(s) v.s distance

s of a single period of the ring calculated by code DIMAD.
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Figure 2.3: The optical functions v.s distance of a single period of the ring. The black
rectangle schematically shows one of the dipole magnets. The legend items ‘BETX’,
‘BETY’, and ‘DX’ stand for the horizontal beta function f,(s), vertical beta function
By(s), and horizontal dispersion function D,(s), respectively. (Note: The figure is
reproduced from Ref. [12]).

The design of SIR by the hard-edge model is based on the assumption: all the particles
in a bunch with different energy deviations travel along their individual equilibrium
(closed) orbits with the same nominal revolution period 7y. These particles do not
perform betatron oscillations. Let us assume a non-relativistic particle with a positive
fractional momentum deviation 6=Ap/p>0 travels along its equilibrium orbit as indicted
by the red dashed line in Figure 2.2. In order to obtain isochronism, in one period of the
ring, the following equality should hold

L+P L +Ph

\% v

2.11)

where L, P are the straight and curved path length of the on-momentum particle with
velocity v, respectively. L;, P; and v, are the corresponding quantities of the

off-momentum particle. Eq. (2.11) dictates the rotation angle of pole face [12]
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By smooth approximation, the design orbit of SIR lattice can be treated as an ideal
circle with average radius R as indicated by the blue dashed circle in Figure 2.2.
Neglecting the vertical motion, the Hamiltonian of a single particle coasting in SIR

without space charge field and applied electric field is

12 k 2 2
x2 + 2)‘ —%mf—z, (2.13)
y

H =

where k¢ is the radial (horizontal) focusing strength. According to the Hamiltonian

mechanics,
de OH A oM dz_H 45 _OH o
ds ox'’ ds  ox’ ds 05’ ds 0z’ '
the equations of motion of a single particle are
Radial (horizontal): @ _ X', > —k x+ ° , (2.15)
ds ds R
Longitudinal: @ S iz, 49 =0. (2.16)
ds R y ds
The two radial equations of motion in Eq. (2.15) can also be combined as
Cx_ 4048 (2.17)
ds’ R '

2
X

Using smooth approximation, k =

where vy is the radial (horizontal) betatron tune,

R*’
Eq. (2.17) can be rewritten as
2 2
Zsf ;«; x=%. 2.18)
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Its general solution is

xX(s) = 4 cos(%‘s) +B sin(%‘s) R (2.19)

2
X

V. .V 1% 1%
xX'(s) = -A—=sin(—=s) + B—*cos(—s), 2.20
(s) 2 (R ) 2 (R ) (2.20)

where the coefficients 4 and B depend on the initial conditions of the particle.
In smooth approximation, the dispersion function is D(s)=R/v,’, the motion of an
off-momentum particle travelling along the equilibrium orbit can be analyzed

conveniently using the above equations. Assume at s=0, a particle’s initial radial offset,
slope and fractional momentum deviation are x(0)=DJ = RS /v?, x'(0)=0,and & # 0,
respectively. From Eqgs. (2.19) and (2.20), it is easy to obtain A=B=0, then the radial

equation of motion is simplified as

x(s) zi—f. (2.21)

Substituting Eq. (2.21) into Eq. (2.16), the longitudinal equation of motion becomes

R A (2.22)

The longitudinal coordinate z(s) can be solved by integration as

2(s) = 2(0) - (% - %)d& (2.23)

X

The one-turn slip factor at s=0 can be calculated as

__1z2CG)-z0) _ T

1
= — _2.

C, ) vy

(2.24)

Note that for an isochronous ring, the term 1/v>in Eq. (2.24) should be replaced by
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1/y?, where v, is the transition gamma defined in Eq. (2.7). Then the slip factor in Eq.

(2.24) becomes
n=—7==—"—"72=1 (2.25)
4
where 7 is the bare slip factor.

The slip factor in Eq. (2.25) is derived for an off-momentum particle without betatron
oscillation. Here comes a question, if a particle performs radial (horizontal) betatron
oscillation around its equilibrium orbit, how does the slip factor change? Let us study the

motion of a particle with the initial condition of x(0)=0, x'(0)=0, and 6 #0. The

particle will perform betatron oscillation around its equilibrium orbit with radial offset

x,, =Do = R—f From Egs. (2.19) and (2.20), the radial equation of motion is solved as

eq
X

X(s) = R—f[l - cos(%“ 9], (2.26)

X

which yields the longitudinal equation of motion

dz o v )
© O -cos(Zx5)]+-2. 227
PRI [1—cos( 2 s)] ? (2.27)

Then the longitudinal coordinate z(s) is obtained by integration as

1 1 RO . v,
Z(S) =Z,- (V—z - —2)55‘ + V—iSIH(ES), (228)

The last term in Eq. (2.28) is an oscillatory function of s. The 1-turn slip factor at s=0 is

12C)-20) 11
C, ) vyt 2av)

M- (0) == sin(2zv ). (2.29)

Replacing the term 1/v2 by 1/y7, then the 1-turn slip factor at s=0 in Eq. (2.29) for
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the isochronous ring becomes

1 | |
D (0) = (= = 7) - 270 sin(2zv,). (2.30)

t

The comparison between Egs. (2.25) and (2.30) indicates that, for an off-momentum

particle performing betatron oscillation around its equilibrium orbit, there is an extra term

Py sin(2zv ) in the slip factor. A similar extra term also appears in the 2D dispersion
v,

relation Eq. (4.41) derived in Chapter 4. For the hard-edge model of SIR lattice, the two
terms in Eq. (2.30) are

11
———=1,=0 and -
yiogr M 27V

sin(2zzv ) = -0.083, (2.31)

respectively. Then the total slip factor taking into account betatron oscillation effect
becomes negative (below transition). Note that in the conventional definitions of the
momentum compaction factor a and slip factor 7, the effects of betatron oscillation are all
neglected. For conventional circular accelerators whose working points are far from
transition, the extra term in the new slip factor can be neglected. While in the isochronous
ring, due to smallness of the bare slip factor 1, this extra term should be taken into
account in the instability analysis. The above discussions show that the betatron
oscillation may destroy the isochronism.

Assume an on-momentum particle coasts along the design trajectory of SIR with

x(s)=0, x'(s)=0, O(s)=0. The particle may maintain its isochronous motion for ever

if there are no external perturbing forces. At a given position s;, for some reasons (e.g.,
LSC field, RF electric field), the particle receives a sudden longitudinal kick, so that x(s;)

and x'(s;) are not changed butd(s,)#0. Then according to the above analysis, the
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particle will perform betatron oscillation and lose its isochronism.

We can see that, even if in an ideal isochronous ring, not all the particles can keep the
isochronous motion. Only those particles whose radial offset, radial slope and momentum
deviation satisfy the closed orbit condition can maintain the isochronous motion.

Appendix A provides more studies on the beam optics of the SIR lattice (hard-edge

model) using the standard matrix formalism.

2.7 Negative mass instability (microwave instability)

Figure 2.4: Mechanism of negative mass instability or microwave instability (The figure
is reproduced from Ref. [8]).

Assume at a given time, there are small longitudinal charge density perturbations in a
bunch circulating in an accelerator above transition as shown in Figure 2.4. The charge
density variations will produce a self-field (or space charge field) directing from the
density peak region to the density valley region. The particles on the forward side of the
density bump such as P, will see a pushing force F and gain energy, while the particles on
the trailing side of the density bump such as P; will see a pulling self-force F and lose
energy. The on-momentum reference particle located right at the density peak sees zero
self-force and keeps a constant energy. The discussion in Sect. 2.5 tells us that, above

transition, the higher energy particle like P, has a lower revolution frequency than the
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on-momentum reference particle, while the lower energy particle like P, has a higher
revolution frequency than the on-momentum reference particle. This may result in an
enhancement of the azimuthal density modulation amplitude. In beam instability analysis,
this self-bunching phenomenon is usually termed the negative mass instability. The term
comes from the illusion that the particles seem to move in the opposite directions from
the self-force or space charge force exerting on them. Usually the space—charge driven
negative mass instability is characterized by density perturbation wavelengths which are
much shorter than the bunch length. For this reason, it is also named microwave

instability in modern literature.

2.8 Microwave instability in the isochronous regime

The microwave instability in the isochronous regime is the main topic of this
dissertation. It demonstrates some unique features that cannot be explained by the
conventional theory of microwave instability. For example, the instability growth rate is
proportional to the unperturbed beam intensity /y instead of the square root of /. This
confusing phenomenon is first explained by Pozdeyev in Refs. [14-15]. He pointed out
that, in a circular accelerator, the longitudinal density modulation produces the
longitudinal space charge (LSC) field modulation and the coherent energy modulation
along the beam. In consequence, the local beam centroid wiggling takes place due to
dispersion function as shown in Figure 2.5. The coherent radial space charge field on the
local centroid is proportional to the local centroid offset, which in turn will modify the
dispersion function D, momentum compaction factor a and produce a positive increment

of the coherent slip factor An., of the local centroid. For a space-charge dominated beam,
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Aneon 1s proportional to /y and dominates over the vanishingly small bare slip factor 7.
Therefore, the working point of the nominal isochronous ring turns out to be raised above
transition where the microwave instability may take place with a growth rate proportional

to /.

Figure 2.5: Schematic drawing of beam centroid wiggling and the associated coherent
space charge fields (The figure is reproduced from Ref. [15]).

Pozdeyev’s theory clearly shows that the radial-longitudinal coupling and centroid
wiggling play a key role in the mechanism of the microwave instability in the

isochronous regime.
2.9 Landau damping

As discussed in Sects. 2.6 and 2.8, the betatron motion, the space charge field and
centroid wiggling may destroy the isochronism. Therefore, an ideal isochronous ring
becomes a quasi-isochronous ring with a non-zero slip factor. For a bunch with given
energy (or momentum) spread and emittance coasting in a quasi-isochronous ring, there

will be a revolution frequency spread among the particles. The resulting revolution

29



frequency spread may tend to counteract and smear out the longitudinal self-bunching,
and then the beam instability will be prevented or suppressed. This mechanism of
instability suppression is termed Landau damping in the literature. Chapter 4 discusses

the Landau damping in the isochronous regime in detail by a 2D dispersion relation.
2.10 Coherent and incoherent motions

The terms of coherent and incoherent are used to describe the properties of a local
beam centroid and a single particle in this dissertation, respectively. The subscripts ‘coh’
and ‘inc’ are added to the corresponding parameters to tell them apart. For example, the

equations of coherent and incoherent radial motions of a SIR beam can be expressed as:

2
W 0. ek
Xy, =y ot (2.32)

R R m P

2

v 5 ; eExmc

L Xy = e e (2.33)
R R ym,,.pre

"
Xﬁ-i-

where v, is the bare radial betatron tune which is the number of betatron oscillations per
revolution without space charge effects; 0., and oy, are the coherent and incoherent
fractional momentum deviations, E, ., and E, ;.. are the coherent and incoherent radial

space charge fields, respectively.
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Chapter 3

STUDY OF LONGITUDINAL SPACE CHARGE
IMPEDANCES'

3.1 Introduction

When a charged beam travels along a surrounding metallic vacuum chamber, the space
charge field inside the beam will perturb the beam resulting in beam instability under
some circumstances. For example, the space charge effect plays an important role in the
microwave instability of low energy beam with high intensity near or above transition
[14-16]. The space charge field is also one of the important reasons causing the
microbunching instability for free-electron lasers (FELs) [22]. An accurate calculation of
the LSC fields and impedances is helpful to explain the beam behavior and predict the
growth rates of the beam instability with a good resolution. Both the direct self-fields of
the beam and its image charge fields due to the conducting chamber wall should be taken
into account in the analysis. The image charges may reduce the LSC fields inside the
beam and the associated LSC impedances compared with a beam in free space. This is the
so-called shielding effect of the vacuum chamber.

The LSC field depends on not only the geometric configurations of the cross-sections
of the beam-chamber system, but also the distributions of the beam profiles. Therefore,
the space charge field models which are either exactly the same as or close to the real

beam-chamber system are preferred in beam instability analysis. It is also highly

" [17Y. Li, L. Wang, Nuclear Instruments and Methods in Physics Research A 747, 30 (2014).
[2]Y. Li, L. Wang, Nuclear Instruments and Methods in Physics Research A 769, 44 (2015).
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desirable that the derived space charge fields and impedances are valid at any
perturbation wavelengths. The coasting SIR beam is typically a long bunch with a
roughly round cross-section; the vacuum chamber is roughly rectangular with large
aspect ratio, which can also be simplified as a pair of infinitely large parallel plates (e.g.,
in the simulation code CYCO [12]). Unfortunately, at present, there are no ready-to-use
LSC impedance formulae available for the SIR beam-chamber system in the existing
literature, which satisfy the requirements of both the geometric configuration and the
range of validity in perturbation wavelength. Beam physicists have to use other field
models to approximate the LSC fields of SIR beam instead. For example, Pozdeyev [15]
and Bi [16] use the LSC impedance formulae of a round beam in free space, and a round
beam inside a round chamber to approximate the LSC impedances of SIR beam,
respectively. The accuracies and range of validity of these models sometimes are
questionable. Hence, derivations of more accurate analytical LSC impedance formulae
for the SIR beam-chamber system become the major pursuits of this chapter.

First, this chapter summarizes the existing LSC field models and some popular
methods for analytical derivations of the LSC impedances. Second, this chapter studies
the LSC impedances of a rectangular beam with sinusoidal line charge density
modulations inside a rectangular chamber, and between a pair of parallel plates as a
limiting case. Third, based on the rectangular beam model, this chapter continues to
derive the approximate analytical LSC impedances of a round beam with sinusoidal line
density modulations under planar and rectangular boundary conditions, respectively. The
derived analytical LSC impedances are valid at any perturbation wavelength and are

consistent well with the numerical simulation results.
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3.2 Asummary of the existing LSC field models

Various space charge field models with different cross-sections of the beam and
chamber have been investigated in existing literatures. For example, a round beam in free
space [23-26], a round beam inside a round chamber [16, 24, 25, 27, 28], a round beam
inside an elliptic chamber [29], a uniformly charged line between two parallel plates [30],
a uniformly charged round beam between two parallel plates [31], a uniformly charged
round beam inside a rectangular chamber [32], a rectangular beam inside a rectangular
chamber [33-34], a rectangular beam between parallel plates [35], a single particle
between parallel plates [36], a line charge inside rectangular chamber and between

parallel plates [37], a vertical ribbon beam between parallel plates [38], etc.

The above-mentioned models are either not for a round beam, or/and not for a
rectangular chamber (or between parallel plates), or/and not valid at any perturbation
wavelengths. To our knowledge, at present, there are no analytical LSC impedance
formulae available in modern publications for a round beam inside a straight rectangular

chamber (or between parallel plates) which are valid in the entire wavelength spectrum.
3.3 Review of analytical methods for derivation of the LSC fields

Some (not all) popular methods are used to calculate the analytical LSC fields.
(a) Faraday’s law and rectangular integration loop [21, 32]. This method is only valid in
the long-wavelength limits. When the charge density modulation wavelength A is small,
the electric fields at the off-axis field points have both normal and skew components with

respect to the beam axis. The three-dimensional (3D) effects of the electric fields become
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important making this method invalid.

(b) Direct integration methods. Usually the direct integration methods are only applicable
to the field models with simple charge distributions in free space. Some literatures use
this method to calculate the LSC fields assuming the gradient of the charge density dA/dz
is independent of the longitudinal coordinate z and is put outside of the integral over z
(e.g., Refs. [21, 35]). In fact, this assumption is invalid for a beam with short-wavelength
density modulations (e.g., A(z) = Aycos(kz), where k=2n/1). Thus the results are only
valid in the long-wavelength limits too.

(c) Separation of variables. In some special cases, the exact analytical 3D space charge
fields of a beam with sinusoidal longitudinal charge density modulations can be solved by
the method of separation of variables, such as a round beam in free space and inside a
round chamber [16, 23, 27]. The 3D space charge fields solved by this method are exact
and valid in the whole spectrum of perturbation wavelengths. But this method is critical
of the configurations of the cross-sectional geometry of the beam-chamber system. Hence,
it is not applicable to all field models.

(d) Image method. According to the superposition theorem of the electric fields, the space
charge field of a beam is equal to the sum of the direct self-field in free space (open
boundary) and its image fields. If these fields can be calculated separately, it is easy to

obtain the total LSC field and impedance.

3.4 LSC impedances of a rectangular beam inside a rectangular
chamber and between parallel plates

By separation of variables technique, this section will derive the LSC impedance for a

field model consisting of a rectangular beam with sinusoidal line charge density
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modulations under two boundary conditions: (a) inside a rectangular vacuum chamber,

and (b) between parallel plates. The results are valid at any perturbation wavelengths.
3.4.1 Field model of a rectangular beam inside a rectangular chamber

The geometry of the cross-section of the field model is shown in Figure 3.1. The beam
and the chamber are coaxial with the axes located at (w, 0). The full width and height of
the inner boundary of the chamber are 2w and 24, respectively. The full width and height
of the beam are 2a and 2b, respectively. The horizontal beam dimension 2a is variable

and can be as wide as the full chamber width 2w.

N
h
b II (free space)
0 I (beam) 2n s
1 | D e e e
-h

Figure 3.1: A rectangular beam inside a rectangular chamber.

Assume the vertical particle distribution is uniform in the region of —b <y < b. For the
longitudinal charge distributions along z-axis, since the unperturbed charge density Ay
does not affect the LSC fields, we can neglect this DC component.

In the lab frame, let us assume that the line charge density and beam current have
sinusoidal modulations along the longitudinal coordinate z, and can be written in the form

of propagating waves as
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A(z,t) = A, expli(kz— o)), 1(z,t) = I, expli(kz — o)), (3.1)
respectively, where A, and [, are the amplitudes, I, = A, fic, [ is the relativistic speed of

the beam, c¢ is the speed of light in free space, @ is the angular frequency of the
perturbations, k is the wave number of the line charge density modulations. In order to
calculate the LSC fields inside the beam in the lab frame, first, we can calculate the
electrostatic potentials and fields in the rest frame of the beam, and then convert them
into the lab frame by Lorentz transformation.

In the rest frame, the line charge density of a beam can be simplified as
A'(z") = A}, cos(k'’z"), (3.2)
where the symbol prime stands for the rest frame.

For general purpose, we assume there are no restrictions for the horizontal beam
distributions within the chamber. If the dependence of the perturbed volume charge

density p'(x',y',z") onx’in the rest frame can be described by a function of G(x”), then

A A N MC;(.)C’) |y'|£b
p(x,y,z)— Zb s ' (33)
0, b<|y'|<h.
where G(x") satisfies the normalization condition of
2w
jo G(xX')dx' =1, (3.4)
and the volume charge density correlates with the line charge density
h 2w
jdy'jp'(x',y',z’)dx’ = A'(z). (3.5)

—h 0

In order to solve the Poisson equation in the Cartesian coordinate system analytically
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and conveniently using the method of separation of variables, the normalized horizontal
distribution function G(x”) can be written as a Fourier series. Since the charge must
vanish on the chamber side walls at x” = 0 and x” = 2w, we can expand G(x") to a

sinusoidal series

G(x')= ﬁni:g; sin(r,x"), (3.6)
_nr 3.7
m= (3.7

The dimensionless Fourier coefficient g,, can be calculated by

2w
g, =2 [ G(x')sin(y,x)dx" (3.8)

0

From Eq. (3.3) and Eq. (3.6), the volume charge density in the rest frame can be

expressed as

MZ&, sin(n7,x"), |V €D,

3.9
0 b<|y'[£h. (39

p(x,y,z") =

3.4.2 Calculation of the space charge potentials and fields

In Region I (charge region) and Region II (charge free region), the electrostatic space
charge potentials ¢;(x',y’,z") and ¢ (x',y',z") in the rest frame satisfy the Poisson

equation and Laplace equation, respectively. Then we have

o o ., ., ,, A cosZ') <
ax!2 + ay!Z + 6272 )qol(x’y’z)__ 4 b ;gn Sln(ﬂnx) (310)

(
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o0 o 0

+ +
(axrz ayrZ 82!2

You (x',y',2) =0, (3.11)

where &= 8.85x10""* F/m is the permittivity in free space.

The basic components of the solutions to Eq. (3.11) and the homogeneous form of Eq.

(3.10) can be written as
@, = X(xX"Y(y')cos(k’z). (3.12)
The possible configurations of the solutions to X(x”) and ¥()") may have the forms of

X(x") ~ cos(n,x"),sin(r7,)") or their combinations, (3.13)

and
Y(y") ~ cosh(v! y"),sinh(V/ y") or their combinations, (3.14)
respectively, where

VEoptek?, neL 23 ... (3.15)

Considering the boundary conditions (a) ¢” =0, E;,=0 at x"=0, 2w; (b) 9" =0, Ex=0
at y’=+h, and the potential ¢(x”, )", z) should be even functions of y’, the basic

components of solutions to Eq. (3.11) and the homogeneous form of Eq. (3.10) may have

the following forms:

In region I (charge region): @}, ; ~ sin(z,x")cosh(v, y") cos(k'’z"), (3.16)
In region II (charge free region): ¢, , ~ sin(z,x")sinh[v, (h—|y'[)]cos(kz").  (3.17)

The particular solution to the inhomogeneous Eq. (3.10) can be written as

38



oL, (x',y,2) = cos(k’z')z C! sin(7,x). (3.18)

Plugging Eq. (3.18) into Eq. (3.10) and comparing the coefficients of the like terms of the
two sides gives the coefficients Cj,
A! !
DL . (3.19)
4e,bw,
Then in region I (charge region), the field potentials in the rest frame are
0(X,',2') = @), + ¢l = cos(k=)Y sin(n,¥)[ 4, cosh(v,y) + C1. (3.20)
n=1

In region II (charge free region), the field potentials in the rest frame are

0} (x',y',2) = cos(k'2')Y. B, sin(,x")sinh[ v, (h—| y' ). (3.21)
n=1

The boundary conditions between Region I and Region II are: at y'=+b, ¢@; = ¢y,

0¢@;/0y" = 0¢;;/dy'. Then the coefficients Apand By, can be determined as

cosh[v! (h—b)] c’ B - sinh(v;b) .,

A =— i -
! cosh(v' h) ! " cosh(V h)

(3.22)

Finally, the space charge potentials in the rest frame are
(a) In region I (charge region), 0 <|)’| <b,

d (x',y',z')_A coch )Z sing, )1 — coshp/ (h—b)]

cosh¢/ )L 3.23
— Vn cosh{/ /) L) (23

(b) In region II (charge free region), b<|y’| <h,

A cos(k R gn s1nh(v b)

——Zgin(n, x")sinh[V. (h—| y')].  (3.24
4"("Obw n=1 V'2 COSh( h) (77” ) [ n( |y |)] ( )

[ C -
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For a beam with rectangular cross-section and uniform transverse charge density, the

volume charge density in the rest frame can be expressed as

!
A cos(k’2'), w—a<x <w+aly [<b.

P, ¥, 2) =1 4ab (3.25)

0 X <w—ax >w+a,b<y) Kh
Comparing Eq. (3.25) with Eq. (3.3) gives G(x) is equal to 1/2a inside the beam and 0
outside of the beam, respectively. Then g;, can be calculated from Eq. (3.8) as

2 . )
g =——sin(n,w)sin(n,a) (3.26)

n

inside the beam and 0 outside of the beam, respectively.

According to Eq. (3.23), the LSC field inside the beam in the rest frame can be

calculated as

dN' (2"
' v aq’,(x’:y”z’) dZ, = g, . ’ COShE/(h_b)] ror
E (X, ), 2)=—" = 21 gingy ) l—————cosh¢/ ), (3.27)
z,]( y ) &' 4€0bW = 1/:12 (’711 ){ COShQ’:h) (/ny)}

According to the theory of relativity, the relations of parameters between the rest

frame and the /ab frame are

(a) The longitudinal electric field is invariant, i.e.,

El,=E,, (3.28)
(b) The wave number k'=kly, (3.29)
(¢) The coordinates xX'=x, Y=y, <z =y(z-pet), (3.30)

(d) The line charge density amplitude

A=A, /7, (3.31)
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2
() vii=nl+k?=n s

n

(3.32)

0 WD e sinhs) = -
zZ

sin(kz — o). (3.33)

If we choose exponential representation as used in Eq. (3.1), then Eq. (3.33) can also

be expressed as

dN'(z) 1 0A(z,0)

3.34
dz' y: oz (3:34)
where y is the relativistic factor. Then the LSC field in the /ab frame becomes
OA(z,1)
6Z . gn o COSh[Vn (h - b)] 3 3 5
E =— 13 1 -2 2 cosh(v, )}, :
ey D D S Loy et el (3.35)
where
, 2 . .
g, =g, =——sin(n,w)sin(n,a), (3.36)
.4
2 2 2 :
— 12 — _l_ku — +
vn vn nn 77)1 72 (337)
3.4.3 LSC impedances
The average LSC field over the cross-section of the beam at z and time ¢ is
1 b wta
<E,,(z1) >=@7 _v[dyvaEL (6, z,t)dx
OA(z,1)
—_ oz . 8. : 1— COSh[Vn (h _b)] h (338)
4gObW72 - VnZ < Sln(nnx) > { COSh(Vnh) <cos (Vny) >}9
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where

w+a

1 1
< sin >=— | sin dx=—g , 3.39
(1,)>=— J () =g, (3.39)
1% 1
< Cos >=— | cosh dy = ——sinh(v b). 3.40
() >=— j (,)dy = sinh(v,b) (3.40)

Finally, the average LSC fields in the beam region can be expressed as

<E_ (z,t)>= k)
z,I ( ) 480 bWz //{rect( ) az

where

_cosh[v,(h-D)]
v,bcosh(v, h)

© 2
Lo ()= 2g” 1 sinh(v, b)}. (3.42)
n=1 V,,

The sum of the infinite series in Eq. (3.42) can be evaluated by truncating it to a finite

number of terms, as long as the sum converges well.

The average energy loss per turn of a unit charge in a storage ring due to the average

LSC field is

—<E. (z,0)>C, =7, (k)] expli(kz—ax)], (3.43)

where Cy is the circumference of the storage ring, Z! (k)is the LSC impedance of the

0,s¢
rectangular beam inside the rectangular chamber. It is easy to obtain from Egs. (3.1),

(3.41) and (3.43) that the LSC impedance () is

Z,Cok

I _
Zosecryee () =1 45bwy’

0,rect,rect

/{recty rect (k)5 (3 '44)

where Z, = 377 Q is the impedance of free space, R is the average radius of the storage
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ring. If the impedance is evaluated by the LSC fields on the beam axis (w, 0), since in Eq.
(3.35), sin(7,x)= sin(n2), cosh(v,y)=1, then Zrectrec(k) in Eq. (3.42) should be replaced

by

axis S g . niw COSh[V (h_b)]
oS & o coshly, (h=b)], 3.45
lre(t,rect( ) ; v 2 Sln( 2 ){ COSh(Vﬂh) } ( )

n

For a special case of infinite 4, i.e., the rectangular chamber becomes a pair of vertical

parallel plates separated by 2w, since when /s—oo, the limit of cosh[v, (h—b)]/cosh(v,h)
approaches cosh(v b)—sin(v,b), the parameter e rec(k) in Eq. (3.42) can be simplified

as

2 .
= g cosh(v, b)—sinh(v b)
. k — § n 1— n n
Zrec ,pp( ) et 2V 2 [ v b

n n

sinh(v,b)]. (3.46)

Egs. (3.44) and (3.46) give the LSC impedances of a rectangular beam between a pair of
vertical parallel plates separated by 2w. In Eq. (3.46), if b is infinite, i.e. a rectangular
beam with infinite height between two vertical parallel plates, since the last part in the

right hand side of Eq. (3.46) becomes zero, then
2 g2
Zrec[,vpp (k) |b=00= Z_nz' (3'47)
n=1 2V

For a special case of w—og i.e., the rectangular chamber becomes a pair of horizontal

parallel plates separated by 24, if we make exchanges a«»b, w<h, it is easy to obtain its

impedances from Egs. (3.44) and (3.46) that

{ ) Zocok
Z (k)_z%h "

Zrect,hpp(k)’ (3 48)

0,recthpp
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: - cosh, @) —sinh,, )

~ gn,hpp .

Zrec (k) = Slnhﬁ/n A a)l (349)
o ;2‘/11,11;7172 Vn,hppa hop
where Wn,hppzz—za (3.50)
i+ =1,2,3 351
Vn,hpp _77}1,/1pp +7a n=i, 2, 5 ...... B ( . )
2. )
Gy =—SIn(7, ,,h)sin(n,, ;. D). (3.52)
n,hpp

Egs. (3.48)-(3.52) give the LSC impedances of a rectangular beam between a pair of
horizontal parallel plates separated by 24. In Eq. (3.49), if a — oo i.e. a rectangular beam
with infinite width between two horizontal parallel plates, since the limit of

[cosh(Vy, nppa@)-sinh(v,, yypa)]sinh(vy, iyp @)V mppa — 0, then

2
S gn, )
Zrect,hpp (k) |a:oo: Z% (3.53)
n=lI

Vﬂ,hpp
3.4.4 Case studies of the LSC impedances

In this subsection, we will calculate the LSC impedances of SIR beam by both

analytical formulae and numerical method.

Lanfa Wang of Stanford Linear Accelerator Center (SLAC) developed a simulation
code that can solve the Poisson equation numerically based on the Finite Element Method
(FEM) [39]. The code can be used to calculate the space charge potentials, fields and
impedances of the beam-chamber system with any configurations of the charge
distributions and boundary shapes. In the rest frame, assume the harmonic volume charge

density can be written as product of the transverse and longitudinal components
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Py, 2) = pl (XN = pl (X, y)Ae™, (3.54)
where I o, (x',y")dx'dy’ =1. Similarly, the potential due to the harmonic charge density
is written as

P, y,2) =gl (x,))e" . (3.55)

The Poisson equation with Egs. (3.54) and (3.55) becomes

(Vf—k'z)(oi:—/\;( Pl(an’)’ (356)

€y
where V7 =0>/0x">+0°/0y* and ¢ =0 on the metal boundary. The potentials given
by Eq. (3.56) with arbitrary beam and chamber shapes can be solved using the FEM. The

whole domain is first divided into many small element regions (finite element). For each

element, the strong form of the Poisson equation Eq. (3.56) can be rewritten as the FEM

equation
M¢| +k""B=Q, (3.57)
where
aN ON .
”( ON, ON, dex’dy', (3.58)
w \ ox' ox' 6y oy
= [[ N.N b dy, (3.59)
0
O° = i (3.60)
&y

Here N(x’, y') is called the shape function in FEM, by which the potentials at a field point
P(x’, y") within an element can be interpolated by the potentials of its neighboring nodes.

N(x’, ") is related to the coordinates of the field point P(x”, y”) and the nodes of the
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element region. M is the stiffness matrix with matrix element M, i and j are the node

indices of the finite element, S° is the integration boundary of the finite element, g; is the
charge at the node i, which is proportional to the harmonic line charge density amplitude
A). The ¢ of Eq. (3.57) at all nodes satisfying equations Egs. (3.57)-(3.60) and the
boundary condition ¢ = 0 on the chamber wall can be solved numerically. Then the
total potentials in the rest frame can be calculated from Eq. (3.55), the corresponding
LSC fields and impedances in the /ab frame can be calculated using the similar
procedures in Sect. 3.4.3.

Now we can use the rectangular beam and chamber model to estimate the LSC
impedances of the coasting H; beam in the Small Isochronous Ring (SIR) at Michigan
State University (MSU) [12]. The ring circumference is Cyp= 6.58 m, the kinetic energy of
the beam is £;=20 keV (£ = 0.0046, y = 1.0), the cross-section of the vacuum chamber is
rectangular with w=5.7 cm, 4=2.4 cm, the real beam is approximately round with radius
ro=0.5 cm. We can use a square beam model with a=b=ry=0.5 cm to mimic the round
beam.

Figure 3.2 shows the comparisons of the on-axis and average LSC impedances of SIR
beam between the theoretical calculations and numerical simulations using a square beam
model. We can see that the theoretical and simulated impedances match quite well. Note
that the omn-axis LSC impedances are higher than the averaged ones. The former may
overestimate the LSC effects. For this reason, we only plot the average LSC impedances

in Figures 3.3-3.9.
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Figure 3.2: Comparisons of the on-axis and average LSC impedances between the
theoretical calculations and numerical simulations for a beam model of square
cross-section inside rectangular chamber with w =5.7 cm, 4 =2.4 cm,a=b =0.5 cm.
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Figure 3.3: Comparisons of the LSC impedances between the square and round models
(w=h =r,,=3.0 cm, a=b=r,=0.5 cm).

Figure 3.3 shows the comparisons of the LSC impedances between the square and
round field models. The LSC impedances of a round beam of radius 7y inside a round

chamber of radius 7, can be derived from Ref. [16] as
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Z,Cok

Zround,round (];)’ (3 6 l )
pry

‘ 7 .
Z()‘,round,round (k) =1

1 <Iy(kr)>
(l;’b)z lgrolo(l;’lv)

where Zromtrond) = (K, (kry) o (kr, )+ K (ke )1, (k). (3.62)

Io(x), I1(x), Ko(x), and K;(x) are the modified Bessel functions, k =k/y and

— _ 1 27 ) - _ 2]1 (EFO)
<1,(kr)>= p jo do jo 1, (kryrdr = e (3.63)

The parameters used in the calculations are w=h=r,,=3.0 cm, a=b=ry=0.5 cm. We can
observe that the model with square beam and chamber shapes has lower LSC impedances
compared with the round ones. At large perturbation wavelengths, the impedances of the

two field models are close to each other.

1277

1Z) .| @)

=== Round beam inside square chamber ||
== Square beam inside square chamber ||
0 5 10 15 20 25 30 35
A (cm)

Figure 3.4: Simulated LSC impedances of the square and round beam models in a square
chamber (w =/ =3.0 cm, a = b = ry= 0.5 cm), respectively.
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Figure 3.4 shows the simulated LSC impedances of the square and round H," beam of
20 keV inside a same square chamber. The parameters used in the calculations are w=h
=3.0 cm, a=b=r(y=0.5 cm. We can observe that the square beam has relatively lower LSC
impedances than the round beam. The difference of impedances is caused by the different
beam shapes. At large perturbation wavelengths, the LSC impedances of the two field

models are close to each other.

x 10°

12

Il @

===Round beam inside square chamber
= Round beam inside round chamber
0 5 10 15 20 25 30 35
A (cm)

Figure 3.5: Simulated LSC impedances of a round beam inside square and round
chambers (w=h =r,, = 3.0 cm, o= 0.5 cm), respectively.

Figure 3.5 shows the simulated LSC impedances of a round HJ beam of 20 keV inside
the round and square chambers, respectively. The parameters used in the calculations are
w=h=r,=3.0 cm, ry=0.5 cm. We can observe that the two curves are close to each other,
and the square chamber model has relatively higher LSC impedances than the round
chamber model. The reason for this tiny difference is that the four corners of the square
chamber are relatively farther away from the beam axis compared with a round chamber

inscribing the square chamber, thus the shielding effects of the square chamber due to
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image charges are weaker, and therefore the LSC field becomes stronger. At large
perturbation wavelengths, the impedances of the two field models are close to each other.
Figures 3.3-3.5 show that the lower impedances of the rectangular beam and chamber
model in Figure 3.3 mainly originate from the different beam shapes rather than the

chamber shapes.

x 10
14 : : 1
_Alzl.Ocm
12} \ - 42=2.0cm B
1ol “‘ i 13:5.Ocm
_ \“ i4= 10.0cm ]
g 8 ]
_U
_Vl
=
4t
2,
o 1
0 1 2 3 4 5 6

Figure 3.6: LSC impedances of rectangular beam model with different half widths a
inside a rectangular chamber (w = 5.7 cm, & = 2.4 cm, a is variable, b = 0.5 cm).

Figure 3.6 shows the calculated LSC impedances of four perturbation wavelengths for a
20 keV HY beam model with rectangular cross-section inside the rectangular chamber
of SIR. The parameters used in the calculations are w = 5.7 cm, 4 = 2.4 cm, b = 0.5 cm,
the half beam width a is variable. We can see the LSC impedances decrease with beam
width 2a for a fixed beam height 2b.

Figure 3.7 shows the calculated LSC impedances of four perturbation wavelengths for
a20 keV HJ beam model with rectangular cross-section inside a rectangular chamber of

SIR. The parameters used in the calculations are w = 5.7 cm, A = 2.4 cm, a = 0.5 cm, the
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half beam height b is variable. We can see the LSC impedances decrease with beam

height 26 for a fixed beam width 2a.
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14x10‘ ‘
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Figure 3.7: LSC impedances of a rectangular beam model with different half heights b
inside rectangular chamber (w = 5.7 cm, h = 2.4 cm, a = 0.5 cm, b is variable).
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Figure 3.8: LSC impedances of square beam model inside rectangular chamber (w = 5.7
cm, 4 is variable, a = b = 0.5 cm).
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Figure 3.8 shows the calculated LSC impedances of a 20 keV H; beam model with
square cross-section inside a rectangular chamber of SIR. The parameters used in the
calculations are w = 5.7 cm, a = b = 0.5 cm, the half chamber height % is variable. For
short wavelengths 4 < 5.0 cm, the LSC impedances are almost independent of the
changes of 4. For longer wavelengths A > 5.0 cm, when 4 > 5.0 cm, the impedances are
insensitive to the changes of 4 and are close to the limiting case of # = oo (vertical parallel

plates).

0,sc

1zl @)

o 5 10 15 20 25 30 35
A (cm)

Figure 3.9: LSC impedances of a square beam model inside a rectangular chamber (w is
variable, #=2.4 cm,a=b=0.5 cm).

Figure 3.9 shows the calculated LSC impedances of a 20 keV HJ beam model with
square cross-section inside a rectangular chamber of SIR. The parameters used in the
calculations are & = 2.4 cm, a = b = 0.5 cm, the half chamber width w is variable. For
short wavelengths 4<5.0 cm, the LSC impedances are almost independent of the changes
of w. For longer wavelengths £>5.0 cm, when w > 3.0 cm, the impedances are insensitive

to the changes of w and are close to the limiting case of w = oo (horizontal parallel plates).

52



3.4.5 Conclusions for the rectangular beam model

We introduced a 3D space charge field model of rectangular cross-section to calculate
the perturbed potentials, fields and the associated LSC impedances. The calculated LSC
impedances are consistent well with the numerical simulation results. A rectangular beam
shape with a=b=ry may help to reduce the LSC impedances compared with the
conventional round beam with radius »y. This result is consistent with Ref. [35] in which
a planar geometry was investigated. For fixed b(or a), when a(or b) increases, the LSC
impedance will decrease. The LSC impedances of a rectangular beam inside a pair of
infinitely large parallel plates are also derived in this paper. Theoretical calculations
demonstrate that, when the transverse chamber dimensions are approximately more than
five times of the transverse beam dimensions, the rectangular chamber of the Small
Isochronous Ring (SIR) can be approximated by a pair of parallel plates. This result
validates the simplified boundary model of parallel plates used in the Particle-In-Cell

(PIC) simulation code CYCO to simulate the rectangular chamber of SIR [12].

3.5 LSC impedances of a round beam inside a rectangular chamber
and between parallel plates
This section presents the approximate analytical solutions to the LSC impedances of a
round beam with uniform transverse distribution and sinusoidal line density modulations
under two boundary conditions: (a) between parallel plates (b) inside a rectangular
chamber, respectively. Since the transverse dimensions of almost all the beam chambers
are much larger than the transverse beam size, the image charge fields of a round beam

can be approximated by those of a line charge. Then the approximate LSC fields and
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impedances of the two models in discussion can be calculated by image method.
In order to obtain the approximate analytical LSC impedances of a round beam with
planar and rectangular boundary conditions, first, we need to know the LSC fields E. of

the following four component field models:

(a) A round beam in free space, E. yound -

(b) A line charge in free space, E. jine -

(c) A line charge between two parallel plates, E. jine pp-

(d) A line charge inside a rectangular chamber E. ;e ecr.

For a round beam between a pair of parallel plates, when the separation between the

plates is much larger than the beam diameter, its image LSC fields can be approximated

. image ~ [image __ _
by those of a line charge between the parallel plates as ET )V ~E5°5 =E . —FE .

E + Eimage

'z roundfs 'z roundpp

its total LSC fields are approximately equal to

'z,roundpp =

S E, s TEE =E

'z roundfs 'z linepp z,round.fs + Ez,lim;pp -

E

-iness » Similarly, for —a round beam inside a

rectangular chamber, when the full chamber height is much larger than the beam

diameter, its image LSC fields E"®‘, = and total LSC fields E_,,, ., can be
: image ~ _ ~ _
apprOXImated as Ez,roundrect ~ Ez,line;rect Ez,lians and Ez,mundrect ~ Ez,rouméﬁ + Ez,line,rect Ez,line,ﬁ

respectively. Next, we will derive the LSC fields of the four component field models

listed in (a)-(d).
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3.5.1 A round beam in free space

In the lab frame, assume there is an infinitely long round beam of radius r, with

sinusoidal line density A and beam intensity modulations / of
A(z,t)=A, expli(kz— )], and  [(z,t) =1, expli(kz — art)], (3.64)

respectively. According to Ref. [26], its LSC field in the /ab frame is

1 OA(z,t)

E =
mey kit oz

z,round,fs(rﬂz,t) == [1-K, (EFO)[O(EV)]' (3.65)

where &= 8.85x10"?F m™ is the permittivity in free space, k = k/y, yis the relativistic
factor, Ip(x) and K,(x) are the modified Bessel functions of the first and second kinds,

respectively.

3.5.2 Alline charge in free space

In the lab frame, assume there is an infinitely long line charge in free space with
sinusoidal line charge density and beam intensity modulations described in Eq. (3.64).
First, we can calculate its potentials and fields in the rest frame of the beam, and then
convert them into the /ab frame by Lorentz transformation. In the rest frame of the beam,
the line charge density is

N'(z") = A, cos(k'Z"), (3.66)
where the parameters with primes stand for those in the rest frame. The electrostatic
potentials can be calculated easily in cylindrical coordinate system by direct integration

as
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!

AN'(Z")

' ' A ® COS k'E' , '
¢zme,fs(”az): L J: ( —dz' = K, (k7).
4'7Z-‘90 Py "2 1212 72
[(Z'=z)" +r"]?
The LSC field in the rest frame is
, . 1 dA'(Z .,
Ez,line,fs‘(raz):_ ( )Ko(kl”)

27, dz'

In the /ab frame, according to the theory of relativity, we have

E =E,
r'=r,
z' = y(z - fct),
AN, =N, 1y,
p=F_F,
4
d/:; ;Z ) _ —k'A! sin(k’z") = — kAzk sin(kz — ax).

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

If we choose exponential representation as used in Eq. (3.64), then Eq. (3.74) can also be

expressed as

dN(Z) 1 0A(z,)
dz' yo ooz

From Egs. (3.68)-(3.75), the LSC fields in the /ab frame become

1 0A(z,0)

K, (kr).
2re,yt Oz o(&7)

Ez,line,_ﬁv (V,Z, t) =
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3.5.3 Alline charge between parallel plates

The schematic view of an infinitely long line charge between two infinitely large,
perfectly conducting parallel plates is shown in Figure 3.10. Its sinusoidal line charge

density and beam intensity modulations are described by Eq. (3.64).

/
p=b ~
P, 6)
0; Xi
\ —
H
A~ .
r T I,=h=H/2
\ < N
p=10 7] %

Figure 3.10: A line charge with sinusoidal density modulations between parallel plates.

Assume the two plates are separated by a distance H, the line charge is parallel to the
plates and its distance to the lower plate is /, the potentials on the two plates are all 0.
Though Ref. [37] provided solutions to the LSC fields and impedances of a line charge
between parallel plates and inside a rectangular chamber, the field potential is solved by
2D Green function neglecting the 3D effects caused by the line density modulations.
Hence, the results are only valid in the long-wavelength limits. Ref. [40] solved the 2D
electrostatic potentials of a uniform line charge between two parallel plates using the
method of separation of variables. We can use the same method and similar procedures to
solve the 3D fields of our model. We choose the Cartesian coordinate xoy with o as the

origin. Assume in the rest frame of the beam, the basic harmonic component of the space
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charge potential can be written in the form
¢line,pp(x »VHZ ) :X(X )Y(y )COS(kZ )a (377)

which satisfies the Laplace equation

2 2 2 1
8 %inepp +a ¢11716:1!71!7 +a ¢11716:1!71!7 _

o 5" P 0. (3.78)
Plugging Eq. (3.77) into Eq. (3.78) results in
2 2
1dX 1dY _.n» (3.79)
X dx"” Y dy”

Considering the boundary conditions @jinep (V' =0) = @linepp 0 '= H) = @ iine pp (x'= 10)

= (0, we can choose

Y _ > (3.80)

where > 0. Then the solutions to Eq. (3.80) can be written as

X(x/) — Alremx' + Azrefx/k’zﬂzzx', (381)
Y(y") = B/sin(ay") + B; cos(ay’). (3.82)

The boundary conditions ¢y, ,, (/=0)=¢},, ,, (/=H)=0 give B} =0,a=nmw/H, then Y()/)~sin(nz

y/H). Because at x'=0, there is a line charge which produces singularity, we should

calculate the electrostatic potentials ¢y, . forx’>0and ¢,  _forx" <0 separately.
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In Eq. (3.81), when x'—> +oo, @, —0, then the coefficient A4, =0; when x" —-oo,

Dline pp— —0, then the coefficient 4] =0. The solutions of X can be written as

X, (x) = AleTHTrey (3.83)

where ‘+ 7 and ‘-~ stand for x>0 and x<O0, respectively.

The potentials including all harmonic components can be expressed as
, S CIL L o
¢line,pp,i = z Cnie Sln(?)} )COS(kZ )9 (384)

where C;+ and C',',_ are the coefficients to be determined by the boundary conditions for
x>0 and x<0, respectively. At x=0, y'#I; @}, ,, . =@}, Which gives C,, =C,_=C,.

n+

If the line charge is rewritten in the form of surface charge density

o'=N(z)8(y' -T), (3.85)
where &x) is the Dirac Delta function, then on the plane x" = 0, the boundary condition

D,,/— D, = o gives

’ /
6galine,pp,- _ 6%in@,pp,+
ox' ox'

&) )p-a= A, cosk=)S(y' ~T). (3.86)

Egs. (3.84) and (3.86) give

ZzC'\/"'z [ ) m<—y>—g;‘5<y'—r>. (3.87)

Multiplying the two sides of Eq. (3.87) by sin(nzy/H) and integrating y" from 0 to H
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gives the coefficient C,

, A’ .
C' = k - s1n(%l“). (3.88)

Then the potentials in Eq. (3.84) can be expressed as

() i ! sin(ﬂ F)ei"k +(?)2M

oo (x 'z’)—A' s1n(ﬂ ")
linepp (X5 V' el "‘J N I, V) (389

Let’s consider a special case of /=/=h=H/2, i.e., the line charge is on the median
plane of the two plates as shown in Figure 3.10, if we choose a new coordinate system
x,0,y, with o, as the origin (see Figure 3.10), according to x" =x;, )= y; +h, the potentials

in the rest frame of the beam become

’ ' ro_r A' z 1 Y/ K24 ‘XI‘
Dhepp (X1 V1,2") = ( )Z sm(T)e [2") sm[—(y1 +h)] (3.90)

2
k12 + nﬂ-j
2h

If we use cylindrical coordinate system, x;= r'cos(d), y;=r'sin(d), Eq. (3.90) becomes

Dhnep 15 0,2") = A'(Z )S z s1n(n )e “ { j e s1n[;—z ('sin@)+h)]. (3.91)

2 nrw

2h

The LSC field in the rest frame is
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1 AN N I T
Sinep (7> 05,2) = 2o & ; — ZSIH(]'?)e # sm[g—h(r sin@)+h)]. (3.92)

Using the Lorentz transformation of Egs. (3.69) - (3.75), and §'=6, the LSC field in the

lab frame becomes

G — aA(Z’t)i ! sm(” X! e ]mw)mn[’z’;:(rsin(a)Jrh)]. (3.93)

280h7/2 oz o k2+(n”]
2h

3.5.4 Alline charge inside a rectangular chamber

11 ne,pp

In the /ab frame, assume there is an infinitely long line charge centered inside a
rectangular chamber, the sinusoidal line charge density and beam intensity modulations
are described in Eq. (3.64). The full chamber width and height are W=2w and H=2h,
respectively. Sect. 3.4.2 derives the potential of an infinitely long beam with rectangular
cross-section and uniform transverse charge density inside a rectangular chamber. In the
rest frame of beam, in the charge-free region inside the chamber (b<[y’| <h), the potentials
are

= A, cos(k'z )Z g s1nh(v b)

——"—sin "y sinh[ V' (h—| ' )],
4ebw SV cosh(vih) [77, (x"+ w)]sinh[v, (=] y'])]

¢;l,rect,rect (x" y'a 4
(3.94)

2 . .
where g; =g, = —sm(77nw) sln(nna), (3.95)
a

n

and n,=n22w, v,/*=n,’+k* n=1, 2, 3,.... In the limiting case of a=b=0, the rectangular
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beam shrinks to a line charge. Because a=0, g4’ =g»=2sin(n,w) and b=0, sinh(v;’ by/b=v;,,

then Eq. (3.94) becomes

A (z') & sin(n,w)
C 2ew z

sin[7. (x'+ w)]sinh[V' (h—| ' D].
oW n=1. V COSh(V;h) [77"( )] [ n( |y |)]

qDH line ,rect (X y

(3.96)

Using the Lorentz transformation of x'= x, y’ = y, and Egs. (3.69), (3.71)-(3.75), the LSC

field in the lab frame becomes

sin[r, (x+w)]sinh[v, (h—| y )}

1 OA(z,t sin(r7,w
Ez,line,rect('x’ y’ Z, t) == ( ) Z (77” )

2e,wy’ 0z S'v,cosh,h)
(3.97)

) _
where v =V =’ +k>=n +k’/y’.

3.5.5 Approximate LSC impedances of a round beam between parallel
plates and inside a rectangular chamber

The average longitudinal wake potential (or energy loss per turn of a unit charge) in a

circular accelerator due to the LSC field is
V(z,t)=—<E, >C, = Z)(k)I, expli(kz— ax)], (3.98)

where <E_> is the LSC field averaged over the cross-section of the round beam and can

be calculated using the formula
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< f(r0) 5= [“ao[" r(r.0)rdr. (3.99)
727/0 0 0

(a) For a round beam midway between parallel plates, the average LSC impedance can

be calculated by Egs. (3.65), (3.76), (3.92), and (3.98) with E =F

z,round, pp
Ez,roundfs + EZ,lin&pp - Ez,ling,fs as
Z, 21
0 roundpp C (k) CO K (kT' )[ (kr ) (3 . 1 OO)
Zﬂﬂl B, kr,

where

2
1+(2]\71 j krlcos(0)|

Ziney () = Z%sin(%) <e s1n[%(r sin(6)+ )] >. (3.101)

(b) For a round beam inside and coaxial with a rectangular chamber, the approximate

average LSC impedance can be calculated by Egs. (3.65), (3.76), (3.97), and (3.98)

WIth E Ez Jroundyrect ™ Ez,mund,_ﬁv + Ez,line,rect - Ez,line,fs‘ as
Z(! round ,rect (k) = l ZOCO Zline rect (E) + l ZOCO Kl (EFO)[I - M]’ (3'102)
2 Byw ’ nPyr, kr,

where

ksm(nnw) ) ) o
Kiinareci(k k)= Zv osh 6/h)<s1n[77n(rcos(¢9)+w)]s1nh[vn(h risin@)|)]>. (3.103)

In the derivations of Egs. (3.100) and (3.102), two identities of integrals
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¢ ¢
IxKO (x)dx =1-¢K,(&)and J xI,(x)dx = &I, (&) are used. Note that the first terms on the

0 0
right hand side of Egs. (3.100) and (3.102) are contributed from the average LSC fields
of a line charge midway between parallel plates and inside a rectangular chamber,
respectively; the second terms are contributed from the differences of the average LSC
fields within beam radius r( between a round beam and a line charge in free space. Eqgs.
(3.101) and (3.103) can be evaluated by truncating the infinite series to a finite number of

terms, as long as the sum converges well.
3.5.6 Summary of some LSC impedances formulae

For the purpose of comparisons in Sect. 3.5.7, here we would like to summarize some
LSC impedance formulae in both the long-wavelength and short-wavelength limits,

which are often used in literatures.
3.5.6.1 A round beam inside a round chamber

For a round beam with radius ry and uniform transverse distribution centered inside a

round chamber with inner chamber wall radius ry, the LSC impedance is repeated here as

2RZ, . ],

Z! Uy (A
ﬂykroz 1 (kr,)

b round youna (K) = 0 [K, (kry)1, (kr,)+ K, (kr, )T, (kn,)]3. (3.104)

where f, = kr, for the on-axis impedance [24, 25] and f; = 2I,(kr,) for the average

one (see Egs. (3.61)-(3.63)), respectively.

(a) In the long-wavelength limits
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The total LSC impedance of a uniform disk beam with radius 7y inside a round

chamber with radius ry in the long-wavelength limits is [20, 25]

0,round ,roun

y(ﬂ+m%n (3.105)
0

where f, =1/2 for the on-axis impedance and f, = 1/4 for the average one,

respectively.
(b) In the short-wavelength limits

If r,>>r, the image charge effects of the chamber wall can be neglected in the
short-wavelength limits, the LSC impedance of a round beam is approximately equal to
that in free space. Refs. [22, 23] give the on-axis LSC impedance of a round beam in the

short-wavelength limits as

, — A — 2RZ
Z”,axls,SW k — ZH,axts ' k =i - 0
( ) O,round,_/‘s( ) ,8 k 2

0,round ,round
I

[1—kr, K, (kry)). (3.106)

The LSC impedances in Eq. (3.106) are derived from the on-axis LSC fields of the 1D
space charge field model. While Ref. [25] pointed out that the 1D field model does not
hold any more for A<4nry/y or kro/y >0.5. In addition, the off-axis LSC fields always
decrease from the beam axis =0 to the beam edge r=r(. Ref. [41] studied these 3D space
charge effects analytically and made a conclusion that, if the LSC fields were averaged
over the beam cross-section, the 1D and 3D field models predict almost the identical LSC

fields. The average LSC impedance is given in Refs. [24, 26] as
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2RZ,
k)= —[1-21, kr)K, (ki 1
Oround fs( ) lﬂ}/k 2[ ( VO) ( I"O)] (3 07)

5

3.5.6.2 A round beam inside a rectangular chamber in the long-wavelength limits

Let’s assume an infinitely long, transversely uniform round beam with radius ry is
inside and coaxial with a rectangular chamber. The full chamber width and height are
W=2w and H=2h, respectively. Then according to Eq. (23) of Ref. [32], the LSC

impedance of an accelerator ring in the long-wavelength limits is

kRZ
HLW k _ 0
(k)=i B

0 round ,rect

(f,+ tanh(%)]}, (3.108)

Ty

where f; =1/2 for the om-axis impedance and f; = 1/4 for the average one,

respectively.
3.5.6.3 A round beam between parallel plates in the long-wavelength limits

In the limiting case of W— oo, the rectangular chamber becomes a pair of parallel plates,
according to Eq. (3.108), Egs. (A6) and (A7) in Appendix of Ref. [31], its LSC

impedance becomes

0 round ,pp

[f4 +1In (—)] (3.109)

7y

where f, =1/2 for the om-axis impedance and f, =1/4 for the average one,

respectively.
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3.5.7 Case study and comparisons of LSC impedances

In this section, as a case study, we will calculate the approximate LSC impedances of a
coasting Hj beam in the SIR, compare them with the simulation results and the
theoretical values predicted by other models. The kinetic energy of the beam is £} = 20
keV (B = 0.0046, ¥ = 1), the beam radius 7, is variable. Since w>>h, the rectangular
chamber can also be simplified as a pair of infinitely large parallel plates. The LSC
impedances are calculated by both theoretical and numerical methods using the Finite

Element Method (FEM) code.

x10°
14

—6—Free space

Round chamber, LW limits
Parallel plates, LW limits
=== Parallel plates(simulation)
O Parallel plates(approximation) i

12}

10f

0,sc

PASREG)

0 5 10 15 20 25 30 35
A (cm)

Figure 3.11: Comparisons of the average LSC impedances of a round SIR beam with

beam radius 7y=0.5 cm under different boundary conditions and in different wavelength
limits. A is the perturbation wavelength, [ZJ)I’SCJ is the modulus of LSC impedance. In the

legend, ‘Free space’, ‘Round chamber’, and ‘Parallel plates’ are boundary conditions;
‘LW limits’ stands for the long-wavelength limits; ‘(approximation)’ and ‘(simulation)’
stand for the theoretical approximation and simulation (FEM) methods, respectively.

67



x 10

9 : : ‘
—e— Free space
8 Round chamber, LW limits
ras — Parallel plates, LW limits i
=== Parallel plates(simulation)
— 61 o Parallel plates(approximation) |
& 5l \
i
=0o 4r
|
2 L
l [ 4
O 1 1 1 1

0 5 10 15 20 25 30 35
A (cm)

Figure 3.12: Comparisons of the average LSC impedances of a round SIR beam with
beam radius 7y=1.0 cm under different boundary conditions and in different wavelength
limits.
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Figure 3.13: Comparisons of the average LSC impedances of a round SIR beam with
beam radius ry=1.5 cm under different boundary conditions and in different wavelength
limits.
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Figure 3.14: Comparisons of the average LSC impedances of a round SIR beam with
beam radius 7=2.0 cm under different boundary conditions and in different wavelength
limits.

Figures 3.11- 3.14 show the simulated (blue dashes) and theoretically approximated
(Egs. (3.100) and (3.101), red circles) average LSC impedances of a round SIR beam
with radii 79=0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm midway between the parallel plates with
h=2.4 cm. For the purpose of comparisons, the theoretical average LSC impedances of
the round beam predicted by three existing models are also plotted. (a) In free space (Eq.
(3.107), black lines with circles). (b) Inside a round chamber with r,=h=2.4 cm, in the
long-wavelength limits (Eq. (3.105), green lines). (c) Between parallel plates with 4=2.4
cm, in the long-wavelength limits (Eq. (3.109), magenta lines). For a small beam size, for
instance 7p<1.0 cm, the theoretical approximations are consistent well with the
simulations in all the wavelengths. A small discrepancy appears for large beam size case
when the image charge effect becomes large, for instance 7y=2.0 cm. The
long-wavelength model with a round chamber gives smaller impedance as expected
because of the larger shielding effect compared with a pairs of parallel plates. The
difference of the impedance between a round chamber and a pairs of parallel plates

becomes larger when the beam size increases.
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Figures 3.15-3.18 show the simulated (blue dashes) and theoretically approximated
(Egs. (3.102) and (3.103), red circles) average LSC impedances of a round SIR beam
with radii 79=0.5 cm, 1.0 cm, 1.5 cm and 2.0 cm inside and coaxial with a rectangular
chamber with w=5.7 cm, h=2.4 cm. For the purpose of comparisons, the theoretical
average LSC impedances predicted by three existing models are also plotted. (a) In free
space (Eq. (3.107), black lines with circles). (b) Inside a round chamber with r,=h=2.4
cm, in the long-wavelength limits (Eq. (3.105), green lines). (c) Inside a rectangular
chamber with w=5.7 cm, h=2.4 cm, in the long-wavelength limits (Eq. (3.108), magenta

lines).

Figures 3.11-3.18 show that, for both the parallel plates and rectangular chamber
models, the simulated (blue dashes) and theoretical (red circles) average LSC
impedances match quite well for the cases o= 0.5 cm, 1.0 cm and 1.5 cm (ry/h=~0.21,
0.42, and 0.63). For the case of y=2.0 cm (r¢/h ~ 0.83), the relative errors between the
theoretical and simulated peak LSC impedances are about 3.8% and 4.0% for the parallel
plates and rectangular chamber models, respectively. This shows the line charge
approximation in calculation of the image fields of a round beam is valid. Only at ry= 2.0
cm may this assumption underestimate the shielding effects of the image fields resulting
in overestimation of the LSC impedances to some small noticeable extents. When the
transverse beam dimension approaches the chamber height, the line charge assumption
for the image charge fields of a round beam may induce bigger but still acceptable errors.
For the wavelengths in the range of 0<A<5 cm, the theoretical (red circles) and simulated
(blue dashes) average LSC impedance curves overlap the impedance curves for a beam

in free space (black lines with circles) predicted by Eq. (3.107). It denotes that the
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shielding effects due to the image charges are on a negligible level, it is valid to calculate
the average LSC impedances by Eq. (3.107) directly for the parallel plates and
rectangular chamber models. For £>5 cm, the average LSC impedances predicted by the
model of a round beam in free space (black lines with circles) gradually deviate from and
are larger than the theoretical (red circles) and simulated (blue dashes) LSC impedances
of the two models discussed in this paper. This is caused by the neglect of the important
shielding effects of beam chambers at large wavelengths. When A approaches 35 cm, the
theoretical (red circles) and simulated (blue dashes) average LSC impedance curves
approach the magenta curves predicted by Eq. (3.109) in Figures 3.11-3.14 and Eq.
(3.108) in Figures 3.15-3.18 in the long-wavelength limits, respectively. These
comparison results indicate the derived average LSC impedance formulae Egs.
(3.100)-(3.103) are consistent well with the simulations and the existing LSC impedance
models in both the short-wavelength and long-wavelength limits. In the long-wavelength
limits, for 7y<<h, the average LSC impedances of the round chamber model (green lines)
are consistent with the ones predicted by the parallel plates and rectangular models (see
the red circles and blue dashes in Figure 3.11 and Figure 3.15); while as ry increases and
approaches 4, the round chamber model (green lines) predicts smaller LSC impedances
gradually than the parallel plates and rectangular chamber models (red circles and blue
dashes) at large wavelengths (see Figures 3.12-3.14 and Figures 3.16-3.18). This result
indicates that, at large perturbation wavelengths, the round chamber model has larger
shielding effects on the LSC fields than the models with planar and rectangular
boundaries, and the shielding effects of the round chamber become more significant

when ro/h—1.

71



14y —e— Free space

Round chamber, LW limits
Rect. chamber, LW limits
10L === Rect. chamber(simulation)

o Rect. chamber(approximation)

12¢

g g
i
=ﬁo 6,
[
4,
2, i
O L L L L L L
0 5 10 15 20 25 30 35

A (cm)

Figure 3.15: Comparisons of the average LSC impedances of a round SIR beam with
beam radius 7y=0.5 cm under different boundary conditions and in different wavelength
limits. In the legend, ‘Free space’, ‘Round chamber’, and ‘Rect. chamber’ are boundary
conditions, where ‘Rect.” is the abbreviation for ‘Rectangular’; The other symbols and
abbreviations are the same as those in Figure 3.11.
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Figure 3.16: Comparisons of the average LSC impedances of a round SIR beam with
beam radius 7=1.0 cm under different boundary conditions and in different wavelength
limits.
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Figure 3.17: Comparisons of the average LSC impedances of a round SIR beam with
beam radius #p=1.5 cm under different boundary conditions and in different wavelength
limits.
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Figure 3.18: Comparisons of the average LSC impedances of a round SIR beam with

beam radius 7p=2.0 cm under different boundary conditions and in different wavelength
limits.
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Figure 3.19: Comparisons of the average LSC impedances between the round beam and
square beam for a parallel plate field model. For a round beam, 7 is the beam radius; for
a square beam, ry is the half length of the side. The square beam model underestimates

the LSC impedances.
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Figure 3.20: Comparisons of the average LSC impedances of a round beam between
parallel plates and a round beam inside a round chamber. The round chamber model

underestimates the LSC impedances at larger A.

Figure 3.19 shows the average LSC impedances of a SIR beam with beam radii 7,=0.5
cm and 2.0 cm midway between a pair of parallel plates with #=2.4 cm. The theoretical
impedances are calculated by both the round beam model using Eq. (3.100) and square

beam model (a=b=ry), respectively. For a round beam, the square beam model with
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length of side a=b=ry, may underestimate the average LSC impedances compared with

the round beam model with radius r.

Figure 3.20 shows the average LSC impedances of a round SIR beam with beam radii
ro=0.5 cm and 2.0 cm midway between a pair of parallel plates with h=2.4 cm and
inside a round chamber with r,=h=2.4 cm. The theoretical impedances of the parallel-
plate model and round chamber model are calculated by Eq. (3.100) and Eq. (3.104),
respectively. For a round beam with fixed radius and energy, the round chamber model
may underestimate the average LSC impedances compared with the parallel plates model
with radius 4=r,,. This difference is caused by the stronger shielding effects of the image
fields produced by the round chamber compared with the parallel plates. Some literatures
use the round chamber model to approximate the LSC field and impedance of a round
beam between parallel plates or inside a rectangular chamber (e.g., Ref. [16]). Figure 3.20
clearly indicates that this approximation only holds when A is small, where the shielding
effect is negligible. For a 20 keV SIR beam with 7 =0.5 cm inside a rectangular chamber
with w=5.7 cm and #=2.4 cm, the round chamber approximation for the LSC impedance
is only accurate for A< 5 cm. For A> 5 cm, the round chamber approximation will induce
larger errors.

In summary, Figures 3.11-3.20 show that, for a typical 20 keV SIR beam with r,=0.5
cm inside a rectangular chamber, when A< 5 cm, the image charge effects are negligible.
In this case, for simplicity, we can use the LSC impedance formula for a round beam in
free space (Eq. (3.107)) to calculate the LSC impedance with a good accuracy; For A=35
cm, we can use the impedance formulae in the long-wavelength limits Eq. (3.108) for a

rectangular chamber model or Eq. (3.109) for a parallel plates model to estimate the LSC
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impedance. While for 5 cm<A<35 cm, none of the existing models and formulae can be
used to evaluate the LSC impedance accurately. In this case, we have to use the
approximate theoretical impedance formulae Egs. (3.102) and (3.103) for a rectangular-
chamber model or Egs. (3.100) and (3.101) for a parallel-plate model. This is the merit of

the approximate analytical LSC impedance formulae derived in this chapter.

3.5.8 Conclusions for the model of a round beam inside rectangular
chamber (between parallel plates)

In this subsection, we mainly derive the approximate average LSC impedance
formulae for a round beam under two boundary conditions: (a) Midway between a pair of
infinitely large, perfectly conducting parallel plates. (b) Inside and coaxial with a
perfectly conducting rectangular chamber. In most accelerators, since w>>ry h>>r, the
image charge fields of a round beam can be treated as those of a line charge in calculation
of the LSC fields inside the beam. Consequently, the associated LSC impedances can be
approximated by means of image methods based on the superposition theorem of the
electric fields. The approximate theoretical average LSC impedances of the parallel-plate
model and the rectangular-chamber model are consistent well with the numerical
simulation results in a wide range of the radios of ry/A. In addition, the theoretical LSC
impedances predicted by the two field models also match well with the existing field
models in both the short-wavelength (A<5 cm) and the long-wavelength (A—35 cm)
limits. In particular, for 5 cm<A<35 cm, the approximate theoretical LSC impedances
formulae have better accuracies than the existing models and formulae. Hence, they are
valid at any perturbation wavelengths and can be used as general expressions of the

average LSC impedances in the future research work on space-charge induced
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instabilities, even for large ratios of ro/h. At last, the image method together with the line
charge approximation employed in this paper can also be used to derive the LSC

impedances of field models with other cross-sectional geometries.
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Chapter 4

MICROWAVE INSTABILITY AND LANDAU DAMPING
EFFECTS

4.1 Introduction

Our previous simulation and experimental results indicated that the instability growth
rates of SIR beam are proportional to the unperturbed beam intensity /y instead of the
square root of /y [13]. Pozdeyev [14, 15] and Bi [16] developed their own models and
theories separately to explain the mechanisms of microwave instability in the isochronous
regime, respectively. Pozdeyev pointed out that, in the isochronous regime, the radial
coherent space charge fields of a coasting bunch with centroid wiggling may modify the
slip factor, raise the working point above transition and enhance the microwave instability.
This makes the instability growth rates linearly dependent on the beam intensity [14, 15].
While Bi’s model [16] is not consistent with the scaling law on beam intensity, since the
unperturbed beam density component is neglected in calculation of the coherent radial
space charge force of the perturbed local centroid.

It is also found in the simulations that the spectral evolutions of the line charge
densities are not pure exponential functions of time, instead, they are often characterized
by the betatron oscillations superimposed on the exponential growth curves. These
betatron oscillations are the dipole modes in the longitudinal structure of the beam due to

dipole moment of the centroid offsets [20].

2 Y. Li, L. Wang, F. Lin, Nuclear Instruments and Methods in Physics Research A 763, 674 (2014).
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In the isochronous regime, the longitudinal motion of particles was usually thought to
be frozen. If and how the Landau damping affects the instability growth rates in the
isochronous regime is still unknown for beam physicists. The theoretical and simulation
studies in this chapter demonstrate that the Landau damping mechanism can also take
effect and suppress the microwave instability for a beam with space charge in the
isochronous regime.

Both Pozdeyev and Bi’s models use the 1D (longitudinal) conventional instability
growth rates formula derived exclusively for a monoenergetic beam and neglects the
emittance effect. As a result, the radial-longitudinal coupling effects in an isochronous
ring are not included completely. This may overestimate the instability growth rates,
especially for the short-wavelength perturbations, because the Landau damping effects
caused by the finite energy spread and the emittance are all neglected. Though Pozdeyev
explained the suppression of the instability growth of short-wavelength perturbations by
the radial-longitudinal coupling effects qualitatively [15], till now, no quantitative
discussions on the Landau damping effects are available for a coasting bunch with space
charge in the isochronous regime.

To predict the microwave instability growth rates more accurately than the existing
conventional 1D formula, this chapter introduces and derives a 2D dispersion relation
with Landau damping effects considering the contributions from both the finite energy
spread and emittance. By doing this, it can explain the suppression of the microwave
instability growth rates of the short-wavelength perturbations and predict the
fastest-growing wavelength.

This chapter is organized as follows. Sect. 4.2 discusses the limitations of the
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conventional 1D growth rates formula and presents a modified 2D dispersion relation.
Sect. 4.3 discusses the Landau damping effects in the isochronous ring by 2D dispersion
relation. Sect. 4.4 carries out the simulation study of microwave instability in SIR and
provides benchmarking of the 2D dispersion relation with different initial beam

parameters.

4.2 2D dispersion relation

4.2.1 A brief review of the 1D growth rates formula

The conventional 1D growth rates formula for the microwave instability of a

monoenergetic and laminar beam used in Ref. [15] is:

() = o, /_i’%’iZE("), (4.1)

where ay is the angular revolution frequency of the on-momentum particles, n=c—1/y is
the slip factor, « is the momentum compaction factor, yis the relativistic energy factor of
the on-momentum particle, e is the electron charge, /j is the unperturbed beam intensity, £
is the perturbation wavenumber of the longitudinal charge density, R is the average ring
radius, Z(k) is the longitudinal space charge (LSC) impedance, f is the relativistic speed
factor, £ is the total energy of the on-momentum charged particle. Essentially, the 1D
dispersion relation Eq. (23) of Ref. [16] is the same as the 1D growth rates formula Eq.
(4.1), if we express the LSC field by the LSC impedance.

For the circular SIR beam with radius ry, the transverse dimension of the vacuum
chamber is much greater than the beam diameter. Hence, Ref. [15] neglects the image

charge effects of the chamber in the short-wavelength limits, and chooses Z(k) is equal to
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the on-axis LSC impedance of the monopole mode [15]:

Z(k) =20 (k) =i 2R Ko g (o 4.2)
' kpr, 4 4

where Z;, = 377 Ohm (Q) is the impedance of free space, K,(x) is the modified Bessel
function of the second kind.

For a coasting long bunch with strong space charge effects in the isochronous ring, the
LSC fields may induce the coherent energy deviations and the associated radial offsets of
the local centroids. Consequently, there is centroid wiggling along the bunch. Ref. [15]
assumed that the longitudinal distribution of the radial centroid offsets is a sinusoidal
function of the longitudinal coordinate z with a wavenumber k.. In the first-order
approximation, we can choose k ~ k. and use the same k in the expressions of 7(k) and
Z(k) in Eq. (4.1) just as treated in Ref. [15] (please check Egs. (2), (12), (13), and (14) in
Ref. [15]).

Ref. [15] uses the following formalism to derive the space-charge modified coherent
slip factor of a local centroid: due to centroid wiggling, there will be coherent radial

space charge field E, . It produces positive increments in the dispersion function D

(which is approximated by D ~1/v}), the momentum compaction factor ¢, and the

coherent slip factor 7(k). Finally, the space-charge modified coherent slip factor 7,.(k) can
be determined, i.e., E,;—>ADs—>Ac—>An(k)—>ns(k). In the end, 7(k) may be
approximated as [14, 15]

el ry

[I-—"K(

0=, (k) = T» (4.3)

32
2”‘907'"11;“)0 7, R

Note the relativistic factor y is introduced in Eq. (4.3) to make the original expressions of
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nsc(k) in Refs. [14, 15] compatible with the high energy beams. Plugging Egs. (4.2) and

(4.3) into Eq. (4.1) gives the instability growth rates 1/t o« Ij[1 — ?Kl (?)]

4.2.2 Limitations of 1D growth rates formula

Though the above formalism adopted in Ref. [15] may explain the origin of the
microwave instability of SIR beam and is consistent with the scaling law on beam
intensity, it is not accurate enough and still has some limitations.

First, the LSC impedance in Eq. (4.2) is evaluated from the on-axis LSC field of a 1D
space charge field model. As discussed in Chapter 3, due to the 3D effects on the LSC
fields, Eq. (4.2) should be replaced by the average LSC impedance formula to account
for the LSC field more accurately in the short-wavelength limits:

Z() =2}, (6) = 120 121

0,sc

kn,

kry ]. (4.4)

Kl
b y) (y

Second, the space-charge modified coherent slip factor is not accurate enough since it
does not include the betatron oscillation effect of the local centroid (please refer to Eq.
(2.30) of Sect. 2.6). In Ref. [42], the transformation of the longitudinal coordinate z with

respect to the bunch center is

z=2zy+ R, x, + Ry, X, + R, O, 4.5)

where xy and x; = dxy/ds are the initial radial betatron motion amplitude and velocity

slope at s=0, respectively, d=Ap/p is the fractional momentum deviation, Rs;(s), Rsa(s),
and Rse(s) are the transfer matrix elements and depend on the path length s. Note that in

Ref. [42], 0 was defined differently as the fractional energy deviation 6=AE/E of an
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ultra-relativistic electron particle with S=1, since S=Ap/p~(AE/E)/[F ~AE/E; in addition,
the definition of Rs;(s), Rsa(s), and Rse(s) in Eq. (4.5) and Ref. [42] are different from the
standard ones (please refer to Appendices A and B for details). For a coasting beam with
space charge in the isochronous ring, in the conventional 1D (longitudinal) beam
dynamics, the space—charge modified parameters of the slip factor 7., the momentum
compaction factor a,., the transition gamma j;,., the element Rss,, and the local
dispersion function D;.(s) are related to each other by:

11 1 R(G)

nsc :axc__:___: P (46)
7/2 7/tz,sc 7/2 CO
R, (C
aso = 1 =— 56’50( 0) + Lz = ij DSC (S)ds =< DSC (S) >9 (47)
7[,50 CO 7 CO L p(S) p(S)

where p(s) is the local radius of curvature of trajectory, <---> denotes the average value
over the ring circumference Cy. From Egs. (4.6), (4.7) and the formalism used in Ref.
[15], we can see that only the contribution of the momentum compaction factor ¢ or the
element Rse . 1s considered in the modification of 7,.(k). While Eq. (4.5) shows Az =z-z,
is determined by Rs; Rsy, and Rse, the ring is isochronous if Az=0 after one revolution.
The space-charge modified coherent slip factor of a local centroid should be dependent
on both Rsc and Rs; Rsy. In Ref. [42], where the method of characteristics is employed,

the parameters xo, x;, and z at s=0 are regarded as constants of motion, they are related

to the current coordinates of the particle x, x' and z at position s by a canonical

transformation

x,(x,x',8,5) = ; (x—D&)cosy —+ B, f[x'—D'5 + 2()6 —D&)]siny,
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' ' -Ds . ﬂA ' ' a
xo(x,x,é',s):x — — siny + . |LZ—[x'-D'S + >(x - D) cos v, (4.8)
\/ﬂﬂo ﬂo ﬂ

/ !
z,(x,x',0,8) =z — R0 — X Ry, — X\ Ry,

where a, ,5’0, and ﬁ’ are the Courant-Snyder parameters, ¥ is the phase advance. Their

derivatives with respect to J are

?E:—\/éDcosw-kW(D'-i-;D)Sin‘//’

%y sin iy — é) (D'+ ;:D) cos i, (4.9)

D
o5 \/7% B,

Oy _ o, 0%, Ox
o5 R a&R“ o5

Ry

which usually are non-zero parameters. Accordingly, the exact expression of the slip
factor at s can be calculated as 7(s, k)=-(dA4z/do)/Cy= -[Rs1(s, s+Cp)0xo/00+Rsx(s, s+Cop)
0xy /00 +Rse(s, s+Cp)]/Co, and it also depends on Rsi(s, s+Cp), Rsa(s, s+Co) if 0x¢/0 520
and 0x(/05#£0. Here Rsi(s, s+Cp), Rsa(s, s+Cp) and Rse(s, s+Cp) are the transfer matrix
elements between s and s+Cj. The space—charge modified slip factor expressed in Eq.
(4.6) is only a special case at s=0, dxo/00=0, and dx,/05=0. The contributions of Rs; s
and Rs; s to the coherent slip factor are related to the betatron motion of the centroid and
should not be neglected in the isochronous regime.

Third, Ref. [15] only takes into account the coherent motion of the local beam centroid
neglecting the incoherent motions of individual particles in the beam slices. In fact, a
local beam slice usually has a finite energy spread and emittance. Eq. (4.5) and the above

analysis indicate that, the betatron motions of particles in a beam slice with different 6, xo,
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and x; may have different longitudinal path length differences Az which are not the
same as that of the local centroid. This may cause smearing of the beam intensity

perturbations and is the very reason of Landau damping.

4.2.3 Space-charge modified tunes and transition gammas in the
isochronous regime

The radial space charge fields may modify the radial tunes and transition gammas in
the isochronous regime [14-16]. Due to the large ratios between the full chamber width
(~11.4 cm), full chamber gap (~4.8 cm) and the beam diameter (~1 cm), the image
charge effects caused by the vacuum chamber are small for perturbation wavelength A< 5
cm as shown in Chapter 3. Then Pozdeyev’s model [14, 15] of a uniform circular beam
with centroid wiggling in free space can be used to calculate the radial space charge fields
and modified tunes. Assuming the total radial offset of a particle is x=x.+xs, where x. is
the beam centroid offset x.=a.cos(kz), k is the wavenumber of radial offset perturbations
of local beam centroids with respect to the design orbit along z, x5 is the radial offset of a
single particle due to the betatron oscillation. The equations of coherent and incoherent

radial motions can be expressed as:

2
E..
x:,'+ vxz x, = é‘coh + e x,wzh =, (410)
R R ;/mH;ﬂ c

2
14 5 eExinc
X+ —5 X, =00 —0 (4.11)
R R ym,,.pc

where v, is the bare radial betatron tune, J..,, and J;,. are the coherent and incoherent
fractional momentum deviations, E, ., and E\ ;. are the coherent and incoherent radial

space charge fields [15, 16], respectively, and can be expressed as
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Ex,eoh = feohml_ﬁ a)Ozxe /e’ Ex,inc = égincy,/nﬁ* a)Ozxﬂ /e‘ (4 12)

Here

el,

32
27z,907/mH2+ w, 1, R

kr, kr, el
OKI( O)]> é‘nc= : 3 254
I3 v 2re, 1 R

gcoh = [1 B

(4.13)

are two unitless parameters. For a typical SIR beam with 0 < &.,, << 1 and 0 < &, <<1,

the coherent and incoherent radial tunes can be easily obtained from Egs. (4.10)-(4.13) as

Seol
~v (1—=2), v
( 5 )

2 x,inc
X

~ vx(l—@)- (4.14)

1%
2
2v;

x,coh

Here the coherent radial tune v;.,, and incoherent radial tune 4 ;- stand for the number
of betatron oscillations per revolution of a local centroid and a single particle,
respectively. According to Ref. [16], the space-charge modified coherent and incoherent

transition gammas in an isochronous accelerator are

2 _ép/PZI 2 _@/pzl

oh —N =G inc — —n— incs 415
]/t,coh 5R/R é:coh ]/t, &Q/R g ( )

where n= -(r/B)(0B/0r) is the magnetic field index. For the SIR with n <0, |n|<<I, if the
space charge effects are negligible (i.e., &op=Eine =0, 7/20 =1-n), the bare slip factor is 7y
=1/ny —1/y*~1+n—-1/y*~2x 10" Then

1 1 1 1
yicah _7 ~ 770 + écoh’ ytz’inc - 7 ~ 770 + ginc' (416)

4.2.4 2D dispersion relation

For a hot beam with large energy spread and emittance in an isochronous ring, the

Landau damping effects are important due to the strong radial-longitudinal coupling.
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Hence, a multi-dimensional dispersion relation including both the longitudinal and radial
dynamics is needed. Usually the vertical motions of particles can be regarded as
decoupled from their radial and longitudinal motions. In this section, first, we would like
to summarize and comment the main procedures and definitions used in Ref. [42], where
a 2D (longitudinal and radial) dispersion relation was derived for the coherent
synchrotron radiation (CSR) instability of an ultra-relativistic electron beam in a
conventional storage ring. Based on this model, we can derive a 2D dispersion relation

for the microwave instability of the non-relativistic H; beam in an isochronous ring.

4.2.4.1 Review of the 2D dispersion relation for CSR instability of ultra-relativistic
electron beams in non-isochronous regime

First, Ref. [42] defined a 2D Gaussian beam model with an initial equilibrium beam

distribution function

2 P "2
S = expp R AN o5, (4.17)
27[8)(,0 gx,o 0
1 o°
where g2(0) = exp(——), (4.18)

N2roy 20,

np is the linear number density of the beam, &, is the initial radial emittance, xo is the
initial radial offset, x,=dxy/ds is the initial radial velocity slope, ,30 is the betatron
function at s=0, § is the uncorrelated fractional momentum deviation, uis the chirp
parameter which accounts for the correlation between the longitudinal position z of the
particle in the bunch and its fractional momentum deviation 8, oy is the uncorrelated
fractional RMS momentum spread (Note in Ref. [42], o5 was defined differently as the

uncorrelated fractional RMS energy spread for an ultra-relativistic electron beam with
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P~1). Then the perturbed distribution function f; is assumed to have a sinusoidal

dependence on zj as
' _ ’ ikz,
ﬁ(xo,xo,zo,d),s)—fk(xo,xo,d),s)e > (4.19)
where ¢J,=0+iiz, is the total fractional momentum deviation including both the

uncorrelated and correlated fractional momentum deviation. Plugging the distribution
function of f=fo+f; into the linearized Vlasov equation, after lengthy derivations, a

Volterra integral equation is derived as

g,(s)=gl" () + [ K(s',)g,(s")ds" (4.20)
where

g (s)= deodx6d5oﬁc (x4, X9 0y 8) €Xp{—ikC(s)[ 0y R4 (5) + X Ry, () + Xy Rs, ()]}, (4.21)
g/(cO) (s)= J. dx,dxyd 6, 1, (xy, X5 64,0) exp{—ikC(s)[ S, Rss (5) + X, Rs, () + Xy Rs, ()]} (4.22)

1

R E)

(4.23)

is the bunch length compression factor, K(s, s) is the kernel of integration. The perturbed

harmonic line density with wave number £ at (z, 5) is

n 4 (2,5) = [ dxydxydd, f; = C(s)g, (s)e " (4.24)
We can see that |C(s)gi(s)| is just the amplitude of the perturbed line density at s. For
storage rings, the linear chirp factor #=0, the compression factor C(s) =1. By smooth
approximations of &,=c’v./R, =R/ v, w=vs/R, D=RV, ¢=0,D'=0, the integral
kernel in Eq. (4.20) is simplified as

K(s',5) =K, (%)
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= _ﬂ kZ(k) [—ESIH(%) + Z]e—(kax /v )Pl=cos(v,y / R)}-(kos /v.2 )212/2’ (425)

2

v, m_cC, v,
where Ap=eny, is the unperturbed line charge density, m __is the rest mass of electron, Z(k)

is the CSR impedance in unit of Ohm, o; is the RMS beam radius, y=s-s” is the relative
path length difference between two positions at s and s”, specifically, if we choose s”=0,
then y=s. Note that the Eq. (4.25) uses the SI instead of CGS system of units as in Ref.
[42]. By smooth approximation, the kernel K(s’, s) is only dependent on the parameter
y=s-s” and radial tunev;. Applying Laplace transform to the two sides of Eq. (4.20) yields

an algebraic equation

0)
8 (u) = lg" K((‘Z) (4.26)

where 4 1s the complex Laplace variable and

&)= dsgi(s)e”, (4.27)
g ()= dsgi” (s)e™, (4.28)
K(w) = dxK (p)e™, (4.29)

are the Laplace images of gu(s), g'”(s) and K,(), respectively. The relation of
1-K(x)=0 for the denominator of Eq. (4.26) determines the dispersion relation.

Finally the 2D dispersion relation for the CSR instability of an ultra-relativistic electron

beam in a non-isochronous storage ring is derived in Appendix B of Ref. [42] as

1 __ leA kZ(k)J' dZB #Z[Z _ R ;el] —(ko-x /VX)Z[I—cos(vx)(/R)]—(kO'E /vaz)zj(2 /2. (430)

2

vy/mcC0 v,

Note 0,~0 /E has been used in Eq. (4.30), where o is the RMS energy spread, and the
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SI system of units is used in Eq. (4.30). Eq. (4.30) is an integral equation which
determines the relations between the wavenumber & and the complex Laplace variable .
For a fixed £, the values of & can be solved numerically.

Ref. [42] did not explicitly interpret the CSR instability growth rates from the solutions
to Eq. (4.30). Theoretically speaking, gi(s) can be calculated by inverse Laplace

transform (Fourier-Mellin transform)

1 forie . 8O0
§)=—o- du—=t-"—e", 4.31
a@=>[. o (4.31)

where o is a positive real number. The integration is along the Bromwich contour, which
is a line parallel to the imaginary p-axis and to the right of all the singularities satisfying
1-K(u)=0 in the complex g-plane. In practice, the integral in Eq. (4.31) poses a great

difficulty in mathematics due to complexity of the integrand. A popular method dealing
with this difficulty is widely used in the Plasma Physics [43-46] by applying Cauchy’s
residue theory to an equivalent Bromwich contour. First, the Bromwich contour is
deformed by analytic continuation, and then the solutions of g(s) can be evaluated by the

residues of the poles using Cauchy’s residue theorem as
2u(s) > 2 Red[ & (w)e” 1= 2 im[(u = p1)@, (1)e"* 1= D " Rsd[2, (1), ;) (4.32)
j P J

where Rsd[g, (1), 1] stands for the residue of g, () at the pole 4. Using the relation s
= fct, where ¢ is the time, the temporal evolution of gi(s) becomes

ge(n) = X " Rsd[g, (10).11,]. (4.33)

For a storage ring, C(s)=1, Eq. (4.24) gives the amplitude of perturbed harmonic line

density with wavenumber £ as
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[, (2.0 = g (D] (4.34)

Egs. (4.33) and (4.34) show that, for a pole at 4, (a) if Re(z4)<0, the k-th Fourier
component of the line density damps exponentially at a rate of 7' =Re(s)pfc; (b) if
Re(14)>0, this pole may induce the CSR instability which grows exponentially at a rate of

v =Re(1y)fc. The total instability growth rates are dominated by the pole g which has

the greatest positive real part.

4.2.4.2 2D dispersion relation for microwave instability of low energy beam in
isochronous regime

The 2D dispersion relation Eq. (4.30) can be modified to study the space-charge
induced microwave instability of a low energy coasting HJ bunch in the SIR. In the
derivation of Eq. (4.30), the term which is proportional to /// is neglected in the
longitudinal equation of motion due to y >>1. In addition, in Eq. (4.30), the method of
smooth approximation is used to express all the beam optics parameters, such as the
betatron function, phase advance, dispersion function, Rs;, Rsy, and Rse as functions of
radial tune v,. Because the space charge effects are also neglected, the radial betatron tune
vy in Eq. (4.30) is a k-independent constant. While for a coasting beam with space charge
in the SIR, the space charge fields may modify the radial tunes and beam optics
parameters. These neglected terms and space charge effects should be considered in the
2D dispersion relation for the SIR beam. Hence Eq. (1) and Eq. (4) of Ref. [42] should be
modified as

dz X X o
A N 435
s p(s) p(s) 7’ (4.33)
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SD(s) . iD.(s), . s
R56 = - d - = — - 4.36
() {p(s') o I p(sh Ty (436)

Consequently, using relative path length difference y=s-s’, the increment of Rs¢ from s”
to s in Eq. (B4) of Ref. [42] should be modified as

, 1 11
ARSG(S,S)Z—FZ—)—(T——Z)Z. (437)

x t,sc
When the elements Rs; and Rs; are included, the corresponding modified increment of
Rs6 becomes

~ 1. Ry 1 1. R . VX
AR (59)=—5 = sintE) | oo =) —sinE L),
Vx Vx R ytz,sc }/2 Vi,sc R ( 4 . 3 8)

where 14 ;. 1s the space-charge modified radial tune.
Note that:

(a) In Eq. (4.37), for the longitudinal dynamics in the isochronous regime, we cannot

use the method of smooth approximation to express ARsq(s’, s) by -(1/ Vf,sc—l/}/z))(

directly due to smallness of the slip factor, otherwise it will induce considerable errors.

We may use ARsq(s’, s) = -(1/ 7’;2,50* 1/)X instead. While the sinusoidal function term in

Eq. (4.38) is contributed from R, and R;,, and it can be estimated as a function of the

radial betatron tune 14 using the smooth approximation.
(b) In Egs. (4.36)-(4.38), Rs¢(s)= 0z/00 is the linear correlation coefficient between the
longitudinal coordinate z at s and the fractional momentum deviation & at s=0. ARs¢ (s, 5)

is the increment of Rs¢ between s” and s without the effects of Rs; and Rs,

AR (s',5) = Ry (5) — Ry (s7). (4.39)
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AR, (s',s) differs from Rse(s) and ARss(s”, s) by including the effects of Rs; and Rs,.

According to Appendix A of Ref. [42], for a coasting beam in the SIR, A§56(s', §) can

be simplified as

AR, (5',5) = ARy (',5) |, +AR,\(5',5) %0 AR (s s)ax°| (4.40)

Now we can substitute Eqs. (4.37) and (4.38) into Eq. (4.30) to obtain the 2D
dispersion relation for the SIR beam. In the substitution, in the square bracket of the
integrand between the two exponential functions of Eq. (4.30), the space-charge modified
transition gamma . and the radial tune v, ;. should be replaced by the coherent ones of
Y.con AN Vy con, Tespectively. While 7. and v, in the last exponential function of Eq.
(4.30) should be replaced by the incoherent ones of y . and vy .., respectively. If the
uncorrelated fractional RMS momentum spread o is replaced by the RMS energy spread
or using the relation o5 =0 z/(8°E), where E is the total energy of the on-momentum
particle, finally, the 2D dispersion relation for a low energy SIR beam in the SI system of

units becomes

. v
1 = &kz() SCH (k).[dze*/ll[ iz Z _ 3R Sin x,cahZ]
ﬂmH + 7/t coh Y vx,coh R (4'41)
-(ko, /V,\—,;m-)'[I*COS(VX,,,,LZ/R)]*E[/Bzé(l/?{,,-m -1yl

e

Note that the 2D dispersion relation Eq. (4.41) is derived for a Gaussian beam model
without the coherent radial centroid offsets and energy deviations. Therefore it is only
valid for predictions of the long-term microwave instability growth rates in an

1sochronous ring neglecting the line charge density oscillations due to dipole moments of
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the centroid offsets. Here the term ‘long-term’ stands for multi-periods of betatron
oscillations in the time scale. When the dispersion relation Eq. (4.41) is to be solved
numerically, a large but finite real number can be set as the upper limit of y instead of

infinity to calculate the integral.

4.3 Landau damping effects in isochronous ring

4.3.1 Space-charge modified coherent slip factors

For the SIR beam with typical beam intensities, usually |70 << &1, when the space
charge effects are considered. Then in the first-order approximation, according to Eq.
(4.16), the space-charge modified coherent slip factor without the effects of Rs; and Rs;
(e.g., neglect the betatron motion effects) may be estimated as

1 1
ncoh = 77R56 = 2 - 2 ~ 770 + écoh ~ §COh7 (442)
YV t,coh 4

which is essentially the same as Eq. (12) in Ref. [15].
For a ring lattice with average radius R and space-charge modified radial tune » ., by

smooth approximation of ,B:R/Vx, w=vs/R, D=RV, a=0,D =0, the increments of

Rs; and Rs; between s”and s can be calculated from Eq. (B2) and Eq. (4) of Ref. [42] as

’ 1 : VX SC : V.X SC r

AR, (s,s)=- » [sm(T’e s) —sm(T’e s, (4.43)
' 1 Vx,sc vx,sc ’

ARy, (s',5) = T[COS(T s)— 005(?3 )] (4.44)

X,s¢

According to Eq. (4.9) (i.e., Eq. (20) of Ref. [42]),
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@C() R vxsc ’

o ly=-—5—Cost——s), 4.45
Y l v HR ) (4.45)
ax, | %

| =-——sin== ). 4.46
25 , HR ) (4.46)

x,s¢

Then by Egs. (4.40), (4.43)-(4.46), in the second-order approximation, taking into

account the contributions from the matrix elements Rs; and Rs; (e.g., the betatron motion
effects) to the longitudinal beam dynamics, the space-charge modified coherent slip

factor can be calculated as

~ _ MRs5+G) a, &,

um C = AR(5,5+C)|, +AR; (5,5 +Q)$ | FAR(s,s +(%)$ VG
1 .
= Trse +1Trs1(8) + 75> (8) = x5 _T sin@Qr Vx,coh)’ (4.47)
x,coh
where
— C &CO / C _ 1 . Vx,coh C : Vx,mh Vx,mh 4 4 8
Tps (8) =—AR;, (5,5 + 0)5 |, /G, _-ZﬂV;wh [sm% (s+ 0))—s1n%s)]cos(7s), (4.48)
_ +C % /C _ l Vx,coh +C _ Vx,mh . Vx,mh (4 49)
M2 (8) =—ARs, (5,5 + ) 25 /G = Zﬂviwh [COS%(S o) COS%S)]SH'I%S)’ .
=R 55+ G/ G = (4.50)
6 6 ’ }{YC }/z '

are the slip factors contributed from the matrix elements Rs;, Rs; and Rsg, respectively. We
can see 1. and 7, are functions of s, while 7, 1s independent of s. The last term of Eq.
(4.47) 1s contributed from the combined effects of Rs; and Rs; and is independent of s. In
fact, Eq. (4.47) is the same as Eq. (2.30) which describes an off-momentum particle
performing betatron oscillation around a closed orbit.

Assuming a SIR bunch has beam intensity /o= 1.0 uA, kinetic Energy E= 19.9 keV,
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radial and vertical emittance & 0=¢,0=50mr mm mrad, the calculated slip factors by Eqgs.
(4.47)-(4.50) as functions of the line charge perturbation wavelength A at s= Cy and s=10
Cy are shown in Figure 4.1. If we increase the beam intensity to 10 pA, the calculated slip

factors at s= Cj and s= 10 Cj are shown in Figure 4.2.

=== MRrs6 -
=== TNrs51(5=Co)
----- TIRSZ(S:CQ)
= N5 (s=10C)) =

-0.03- NRs2(s=10C¢)
= -0.04f >< Nrs1MRs2
.05} = Mrs1 Mrs2 MRs6

o —

0 0.5 1 15 2 25 3 35 4 45 5
A (cm)

Figure 4.1: Slip factors for /o= 1.0 uA at s=Cpand s=10 C.

—_——

=== Mrse
===+ NRs1(s=Cop)

= nrs1(s=10Co)
NRs2(s=10Co)

NRs1ITMRS2

NRs1ITMRs2 MR S6

L L L N L L L L ! i
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Figure 4.2: Slip factors for /= 10 uA at s=Cjand s=10 C.

Figure 4.1 and Figure 4.2 demonstrate that, for a beam in an isochronous ring, because
of smallness of 7nrs, the component of the space-charge modified slip factor ngrs+nrs
contributed from the elements of Rs; and Rs, plays an important role in the longitudinal
beam dynamics and cannot be neglected. The situation is different from a storage ring

working far from transition. Note that in Figure 4.1 and Figure 4.2, the total slip factor
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Nrs+Mr=HRss Can be negative for some given perturbations wavelengths and beam

parameters.
4.3.2 Exponential suppression factor

We can define the exponential function of the integrand in Eq. (4.41) as exponential
suppression factor (E.S.F.)

1 kog

OB e =V )21

_ 321 ) 2 ol
ESF.= e (ko /Vipe ) [1=cos(Vyye x / R)] X e 2 B°E ) (451)

The first exponential function in Eq. (4.51) originates from the smooth approximation
of ARs1(s", §)=Rs1(s)—Rs1(s"), ARsa(s’, s)=Rs2(s) —Rs2 (s”) and the emitttance &, 0 =0;" Vyin/R.
While the second exponential function in Eq. (4.51) originates only from the RMS energy
spread and ARse(s”, s)=Rse(s)—Rs6(s”) without the contributions of Rs; and Rsy. The E.S.F.
is a measure of Landau damping effects for the microwave instability of SIR beam.

For a SIR beam with the current of 1.0 uA, mean kinetic energy of 19.9 keV, Figure 4.3(a)

shows the calculated E.S.F at ¥=C, with 0z=0 and variable emittance. Figure 4.3(b)

shows the calculated E.S.F at =Cywith &,0=50r mm mrad and variable oz. Note for a
beam without uncorrelated energy spread (oz=0 eV), the E.S.F. in the short-wavelength
limits is still small due to the finite beam emittance effect. Since the E.S.F. is related to
exp[-A(koy) 1=exp[-4(2 no/2)’] and exp[-B(kor)’]=exp[-B(2oi/A)’], where A and B are
coefficients which are independent of oy, oz and A, then the Landau damping effects are
more effective for a beam with large uncorrelated RMS energy spread and emittance at

the shortest perturbation wavelengths. Figure 4.4(a) and Figure 4.4(b) show the

calculated E.S.F. at ¥=10C,. Comparison between Figure 4.3(b) and Figure 4.4(b)
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indicates the E.S.F. decreases significantly with larger relative path length difference ¥

due to the finite uncorrelated energy spread effect.
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Figure 4.3: The E.S.F. at
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Figure 4.4: The E.S.F. at ¥*=10Cy for a 1.0 uA, 19.9 keV SIR beam. (a) 0z=0, and variable
emittance. (b) &= 507 mm mrad, and variable og.

The radial-longitudinal coupling matrix elements Rs; and Rs; may affect the microwave
instability in an isochronous ring in two ways. (a) Eqs. (4.47)-(4.50) show Rs; and Rs;
may modify the coherent space-charge modified slip factor for a beam with coherent
energy deviations and the associated radial centroid offsets. (b) Eq. (4.51) shows, if a

coasting beam has finite energy spread and emittance, the incoherent motions of charged
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particles under the effects of matrix elements Rs; Rs; and Rse may produce a finite spread
in the longitudinal motion spectrum around the revolution frequency. The revolution
frequency spread can help to smear out the longitudinal charge density modulations and
suppress the microwave instability growth rates, especially for the short-wavelength
perturbations. This is the origin of the Landau damping effects in the isochronous regime.
Since the matrix elements Rs;, Rs; and Rss may affect the beam instability in such a
complicated way, it is difficult to predict how the instability growth rates will change if

only one of these elements is increased or decreased.

4.3.3 Relations between the 1D growth rates formula and 2D dispersion
relation

In the 2D dispersion relation Eq. (4.41), if we neglect the E.S.F. (incoherent motion
effects of single particle) and the sinusoidal term in the square bracket of the integrand
which originates from the coupling matrix elements Rs;(s) and Rsy(s) (coherent betatron

motion effects of the local centroids), the 2D dispersion relation is reduced to

ieA K 1 1
1=- O kz) (k)| dye ™ —— 7. (4.52)
ﬂ}/mH2+CC0 " -([ ytz,coh 72
With Eq. (4.42) and the equality of
Idse e = Lz, (4.53)
0 H

the simplified 2D dispersion relation Eq. (4.52) can be reduced further as

. ncz)heIOkRZ(l)‘,\c

T_l(k):/u/&j:wo\/_lw. (4.54)

Eq. (4.54) is just the Eq. (4.1) for a 1D monoenergetic beam.
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Though the model and the 1D dispersion relation in Ref. [16] can predict the
fastest-growing wavelength, the predicted growth rates are not proportional to the
unperturbed beam intensity /o. In Ref. [16], the longitudinal line density is
N(z)=Njcos(kz), and the radial coherent space charge field factor « calculated in Eq. (12)
of Ref. [16] is proportional to N(z). In Eq. (23) of Ref. [16], the constant parameter is
proportional to the unperturbed line density Ny which is from Eq. (18) for the longitudinal
beam dynamics. Considering Eq. (24) of the same paper, since the instability growth rates
a; predicted by Eq. (23) are proportional to [N()Nk(z)]l/2 instead of Ny or [y, then the
predicted instability growth rates of this model and theory violate the scaling law with
respect to the unperturbed beam intensity I, observed in our experiments and simulations.
In reality, the longitudinal line density should be N(z)=Ny+Nicos(kz), the above
discrepancy results from the missing of Nyin the model in calculation of the radial space

charge field factor . Note that the parameter y,(k) in Eqgs. (17) and (23) of Ref. [16]

has a similar behavior to 1-kr-K ,(kro) plotted in Fig. 5 of Ref. [15], which peaks at
wavelength /=0 and decreases monotonically with A. If Ny were included in this model,
this model would be similar to the one in Refs. [14, 15]. It can neither explain the
suppression of the short-wavelength perturbations nor predict the fastest-growing

wavelengths properly.

4.4 Simulation study of the microwave instability in SIR

4.4.1 Simulated growth rates of microwave instability

In this section, we will study the simulated spectral evolutions of the microwave
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instability using the fast Fourier transform (FFT) technique and compare with the
theoretical calculations. Studies of the long-term microwave instability are carried out by
running CYCO up to 100 turns for a macro-particle bunch to mimic a real HS bunch in
SIR. The bunch has an initial beam intensity /o =1.0 uA, monoenergetic kinetic energy
E=19.9 keV, radial and vertical emittance & 0=¢g,0=50r mm mrad. The initial
distributions are uniform in both the 4-D transverse phase space (x, x’, ), V") and the
longitudinal charge density. A total of 300000 macroparticles are used in the simulation.
Considering both the curvature effects on the space charge fields when a long bunch
enters the bending magnets, and the edge field effects of a short bunch, a bunch length of
7, =300 ns (L, ~40 cm) is selected in the simulation. Due to the strong nonlinear edge
effects in the bunch head and tail, only the beam profiles of the central part of the bunch
with longitudinal coordinates -10 cm < z < 10 cm are analyzed by FFT. At each turn, the
density profiles of the coasting bunch with coordinates of -10 cm < z < 10 cm are sliced
into 512 small bins along z-coordinate, the number of macroparticles in each bin is
counted, and the 512-point FFT analysis is performed with respect to z. The microwave
instability of SIR beam is a phenomenon of line charge density perturbations with typical
wavelengths of only several centimeters. The full chamber height is about 4.8 cm, which
gives the approximate upper limit of the perturbation wavelengths in the simulation study.
According to the Nyquist-Shannon sampling theorem, the shortest wavelength which can
be analyzed by the 512-point FFT is 2x20 cm/512~0.078 cm. Since the beam diameter is
about 1.0 cm, the simulation results for the shorter wavelengths of 4=1.0 cm, 0.5 cm and
0.25 cm may give us some insights on the instabilities of short wavelengths comparable

to or less than the transverse beam size. A series of mode number of 4, 5, 7, 10, 20, 40
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and 80 are selected for the 20-cm-long beam profiles, which give the corresponding line
charge density perturbation wavelengths of 4=5 cm, 4 cm, 2.857 cm, 2 cm, 1 cm, 0.5 cm
and 0.25 cm. The growth rates of these wavelengths are fitted numerically and studied in
the analysis. In order to minimize the effects of randomness in the initial beam
micro-distribution on the simulation results, for each setting of beam parameters, the code
CYCO is run five times for five different initial micro-distributions, and the average
growth rates of the five runs for each given perturbation wavelength are used as the
simulated growth rates in the analysis work.

Figures 4.5- 4.7 show the simulated beam profiles and line density spectra at turn 0,
turn 60, and turn 100 for a single run of CYCO, respectively. In each of these figures, the
left graph displays the top view of the beam distributions (blue dots) superimposed by the
number of macroparticles per bin (red curve); the right graph displays the spectrum of the
line charge density analyzed by FFT. We can see the line density modulation amplitudes
increase with turn numbers, and the peaks of the line density spectra shift to the

frequencies around 1/4 ~ 0.5 cm™ or the wavelength A ~ 2.0 cm at large turn number.

104

: 400 35 : ;
Turn0 (b) Turn0
50 3r

R

102}

96

Spectrum

200
[-T]! }

Horizontal coordinate x (cm)
Number of macro-particles/bin

ol 1150

10 5 0 5 10"
Longitudinal coordinate z (cm) 1/ cm™)

Figure 4.5: (a) Beam profiles and (b) line density spectrum at turn 0.
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Horizontal coordinate x {em)

Figure 4.8 shows the FFT analysis results of the temporal evolutions of the normalized
line charge densities Ak /A, for the seven chosen line charge density perturbation

wavelengths A up to turn 100 for a single run of CYCO. We can see there are some
oscillations superimposed on the exponential growth curves.

Figure 4.9 shows the temporal evolutions of the normalized line charge densities
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Figure 4.6: (a) Beam profiles and (b) line density spectrum at turn 60.
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Figure 4.7: (a) Beam profiles and (b) line density spectrum at turn 100.

spectra of six given wavelengths and the fitting results using proper fitting functions.

103



0.1

2=5.0cm
——1=4.0cm
0.08( %1=2.857 cm
——1=2.0cm
——2=1.0cm
0.06| ——2=0.5cm
——3%=0.25cm

$k=$0

0.04¢

0.021

Figure 4.8: Evolutions of harmonic amplitudes of the normalized line charge densities.
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Figure 4.9 (cont’d)
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For the cases of A=0.25 cm and A=0.5 cm, since the oscillations are irregular, we

choose the fitting function as

A @)= Ae”. (4.55)
For the cases of A =1 c¢cm, 2 cm, 2.857 cm, 4 cm, and 5 cm, since there are obvious
sinusoidal oscillations in line charge densities superimposed on exponential growths, we

choose the fitting function as

t

|A(6) = Ae” + Pe?'™ cos(ar + D), (4.56)
where A, P O, @, @, and 1 are the fit coefficients, 7 is the revolution period of Hj ion,
t=NTy, N; is the turn number, z'o'l is just the long-term instability growth rate. Note for
beam energy of 19.9 keV, the nominal angular betatron frequency is @wz~1.499x 10° rad/s.
The fitting results show the oscillations in the curves for A =1.0 cm, 2.0 cm, 2.857 cm,

and 5.0 cm are just the betatron oscillations, they are the dipole modes in the longitudinal

structure of the beam due to dipole moment of the centroid offsets [20].
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Figure 4.10: Comparison of the instability growth rates between theory and simulations
for five runs of CYCO.

Figure 4.10 shows the comparison of the microwave instability growth rates between
the theoretical values and the average simulation results for five runs of CYCO. Note that
the theoretical values are predicted by the 1D formula of Eq. (4.1) with the slip factor
expressed in Eq. (4.4) plus 70, and the 2D dispersion relation of Eq. (4.41) with the
space-charge modified tunes and transition gammas expressed in Egs. (4.13)-(4.16). For
both the 1D and 2D formalisms, the LSC impedances are calculated by Eq. (4.3), and the
beam radii ry are calculated from the solution to the algebraic matched-beam envelope
Egs. (4.93) of Ref. [47]. Note that in Figure 4.10, the 1D formalism used in Refs. [14, 15]
and the 2D dispersion relation have similar performance in prediction of the growth rates
of the long-wavelength perturbations (1=4 cm), which are all consistent with the
simulation results. For A<2 cm, the 1D formalism significantly overestimates the
instability growth rates as A -0 and cannot predict the fastest-growing wavelength (A~ 2
cm) correctly, because Eq. (4.1) neglects the Landau damping effects of finite emittance

and energy spread; while the 2D dispersion relation, with the Landau damping effects
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taken into account, has a much better performance than the conventional 1D formula in
prediction of instability growth rates in the short-wavelength limits (A<2 cm) and the
fastest-growing wavelength, though there still exist some bigger discrepancies between
the simulations and theory for very short wavelength A<1 cm. Therefore we can see the
Landau damping is a necessary mechanism to explain the low instability growth rates of
the short-wavelength perturbations (A is less than or comparable to r(), which cannot be
explained by the conventional 1D formalisms. Only at larger wavelengths (A >> rj) will

the 1D and 2D dispersion relations have the similar performance.

4.4.2 Growth rates of instability with variable beam intensities

In order to study the dependence of microwave instability growth rates on initial beam
intensities, simulations using CYCO are carried out for SIR beams with Ex= 19.9 keV,
o= 0eV, 5= 300 ns (L,~40 cm), &,0=&,0=50mr mm mrad, /,=0.1, 0.3, 0.5, 5.0, and 20
1A, respectively. The initial distributions are uniform in both the 4-D transverse phase
space (x, x’, y, ") and the longitudinal charge density. The simulation for each intensity
level is performed five times using five different initial micro-distributions, and the
average simulated growth rates of the selected perturbation wavelengths of the five runs
are used in analysis. For /p>20 uA, due to fast development of beam instability, the beam
dynamics may enter the nonlinear regime only after several turns of coasting. This makes
the fitting work difficult and inaccurate, therefore the simulation results for the intensities

of [p>20 uA are not available in this paper.
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Figure 4.11: Comparisons between the simulated and theoretical normalized instability
growth rates for different beam intensities.

Figure 4.11 shows the comparisons between the simulated and theoretical normalized
instability growth rates for beam intensities ranging from 0.1 yA to 20 uA. We can see,
except for [p=0.1 uA, the theoretical normalized growth rate curves roughly overlap each
other within a region. The theory and simulations are roughly consistent to each other for
A>2 cm and 0.3 uA< 1y <20 pA. For A <2 cm, the discrepancies between the simulation

and theory become bigger.

4.4.3 Growth rates of instability with variable beam emittance

In order to study the dependence of microwave instability growth rates on initial beam
emittance, simulations using CYCO are carried out for SIR beams with Ejy=19.9 keV,
o=0 eV, 7,=300 ns (Ly~ 40 cm), [;=1.0 yA, & 0=&,0=301r mm mrad, 507 mm mrad and
1007 mm mrad, respectively. The code CYCO is run up to 100 turns and the growth rates
are fitted by proper functions. For each initial emittance, the average growth rates of five
runs with different initial micro-distributions are used in the analysis. Figure 4.12 shows

the comparisons of growth rates between theory and simulations. We can see for A>1.0
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cm, the simulated and theoretical instability growth rates are consistent with each other,
the larger emittance may help to suppress the instability growth rates. While for A<1.0 cm,

the discrepancies between the simulation and theory become bigger.
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Figure 4.12: Comparisons of microwave instability growth rates between theory and
simulations for variable initial emittance.

4.4.4 Growth rates of instability with variable beam energy spread

Figure 4.13 shows the comparisons of growth rates between theory and simulations for
SIR beams with Ex=19.9 keV, 7,=300 ns (L, ~40 cm), Ip=1.0 uA, & 0=¢,0=50 mm mrad,
o=0, 50, and 75 eV, respectively. The code CYCO is run up to 100 turns and the growth
rates are fitted by proper functions. For each initial RMS energy spread o, the average
growth rates of five runs with different initial micro-distributions are used in the analysis.
We can see for A>2.0 cm, the simulated and theoretical instability growth rates are
consistent with each other, the larger energy spread may help to suppress the instability
growth rates. While for A<2.0 cm, the discrepancies between the simulation and theory

become bigger.
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Figure 4.13: Comparisons of microwave instability growth rates between theory and
simulations for variable uncorrelated RMS energy spread.

4.4.5 Possible reasons for the discrepancies between simulations and
theory in the short-wavelength limits

Figures 4.10- 4.13 show there exist bigger discrepancies between the theoretical and
simulated instability growth rates in the short-wavelength limits (especially for A< 1.0
cm), they may be caused by one or some of the following reasons:

(a) Deviation from the beam model.

The 2D dispersion relations Egs. (4.30) and (4.41) are derived from the unperturbed
Gaussian beam distribution described in Eqgs. (4.17) and (4.18), which can be rewritten as

product of three Gaussian distribution functions

2 r\2
fo= :l” exp(—— exp[- ()

2¢.0Bs 220

(S+iz,)’

2
2075

Jexp| ] (4.57)

(2”)56},005
0

The model assumes the transverse phase space (xo, x;) is centered at (<xp>=0, <x;>=0).
For storage rings, the assumption of the linear chirp factor #=0, the compression factor

C(s)=1 are also used in the derivations. Therefore the coherent fractional momentum
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deviation <g, >=<J+1iz, >=<5>=0, and there is no correlation between the transverse

and longitudinal distributions. The initial unperturbed distribution function described in
Eq. (4.57) is just the product of three normal distribution functions with zero-mean.
While as the beam coasts in the ring, there will be local centroid offset <xo> induced by
the coherent fractional momentum deviation <6p> due to dispersion function D:
<x,>=D<¢,>. (4.58)
In addition, when sinusoidal centroid wiggling takes place due to space charge force, the

correlated fractional moment deviation #z, should be replaced by a sinusoidal function

of zy, then the compression factor C(s)#1 and will be dependent on s or z. The non-zero
<X¢>, <0p> and non-constant, s-dependent compression factor C(s) will shift the centers
of beam distributions in the longitudinal and transverse phase space, produce a
radial-longitudinal correlation in distribution function. Consequently, the 2D dispersion
relations (4.30) and (4.41) will be modified, the amplitude of perturbed harmonic line

density |m,(z,2)|= g, (t)| described in Eq. (4.34) should be replaced by
|n,,(z,t) |7 C(¢)g,(t)| too. This may cause the bigger discrepancies between the

theoretical and simulated instability growth rates in the short-wavelength limits.
(b) Curvature effects
The LSC impedance, space-charge modified betatron tunes and transition gammas
are all derived for an infinite long, straight beam model, while the SIR consists of four
90° bending magnets which account for about 43% of the ring circumference. When the
beam enters these bends, the curvature effects on the longitudinal and transverse beam
dynamics are not taken into account in the theoretical analysis.

(c) LSC fields of the dipole mode
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The centroid wiggling may induce the LSC fields of the dipole mode which are

neglected in the theoretical analysis.

(d) Spectral leakages

In the data analysis, the line charge density perturbations around the fastest-growing
wavelength (A=2.0 cm) have larger amplitudes comparing to the modes with smaller
growth rates, and the FFT analysis is applied to a bunch with finite length using
rectangular window. The fastest-growing modes may inevitably create the new frequency
components (false spectrum) spreading in the whole frequency domain, namely, the
so-called spectral leakages. The leaked spectra from the faster-growing modes may mix
with and mask the real spectra of the slower-growing modes, therefore lower the
resolutions of the FFT analysis results.

(e) Initial distribution

In Figures 4.12 and 4.13, because the beams with uniform longitudinal charge density
are used in the simulations, their residual line charge modulation amplitudes are
vanishingly small (theoretically speaking, they should be 0 in ideal conditions). When the
growth rates in short-wavelength limits are negative due to larger beam emittance and
energy spread, they can hardly be detected since the initial density modulation amplitudes
have reached minima already.

In summary, the bigger discrepancies between the theoretical and simulated instability
growth rates in the short-wavelength limits may be caused by various reasons. Due to
complexity of the problem, for the time being, further discussions are not available in this

dissertation.
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4.5 Conclusions

Due to space charge effects and radial-longitudinal coupling, an ideally isochronous
ring becomes a quasi-isochronous ring, which may result in the microwave instability and
a finite revolution frequency spread. The relative motions among particles along the
azimuthal direction are not frozen completely. The Landau damping mechanism still
takes effect and may suppress the microwave instability in the isochronous regime.

A modified 2D dispersion relation is introduced to discuss the Landau damping effects
for a coasting beam in the isochronous regime. The radial-longitudinal coupling transfer
matrix elements Rs; and Rs; are included in the 2D dispersion relation. These elements
can modify the coherent slip factor, together with Rs¢ they also provide an exponential
suppression for the instability growth rates of a beam with finite energy spread and
emittance by Landau damping effects. The 2D dispersion relation is benchmarked by
simulation code CYCO for bunches with variable initial beam intensities, energy spread
and emittance. The theory agrees well with the numerical simulations for perturbation
wavelengths of 1>2.0 cm. While for A<2.0 cm, the discrepancies between simulations
and theoretical predictions become larger. The possible reasons for the discrepancies are
pointed out and discussed. By comparisons, the 2D dispersion relation has a better
performance than the conventional 1D growth rate formula; the latter significantly
overestimates the growth rates in the short—-wavelength limit A—0 and is incapable of
predicting the correct fastest-growing wavelength.

In summary, the Landau damping effect is a necessary and important mechanism for an
accurate prediction of the instability growth rates of the short-wavelength perturbations

and the fastest-growing wavelength.
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Chapter 5

DESIGN AND TEST OF ENERGY ANALYZER’

5.1 Introduction

Due to the repulsive space charge force, an initially monoenergetic bunch will develop
energy spread among the beam particles when the bunch coasts in a storage ring. For the
evolutions of the microwave instability and beam distribution, the development of the
energy spread plays an important role and need to be measured accurately. For this
purpose, SIR Lab has constructed a compact, high resolution electrostatic retarding field
energy analyzer (RFA) with rectangular electrodes and a large entrance slit. This chapter

will present the design and test of the energy analyzer.
5.2 Working principles and design considerations of the RFA

Because of the simple structure and high signal-to-noise ratios, an electrostatic RFA
was chosen as the energy measurement device for the low energy SIR beam. The working
principles of the generic electrostatic RFAs are simple: there is an electrode biased to a
variable retarding voltage inside the analyzer (see Figure 5.1(a)), if the longitudinal
component of the kinetic energy of an incident particle is no less than the peak of the
retarding potential barrier, the particle can overcome the barrier and reach the current
collector to form collector current. The energy profiles within the beam can be deciphered

by analyzing the collector current as a function of the scanning retarding voltages V.

® The contents related to design and testing of energy analyzer of this chapter is written based on Ref. [19].
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There are several types of RFA which are commonly used in the energy measurements,
for example, the parallel-plate analyzer, spherical condenser, Faraday cage, etc., for

which Ref. [48] provided an excellent review.

,,
1L
\

= — Vv 1 A%
V=V, Vo
(a) (b) ©

Figure 5.1: (a) Schematic of a basic parallel-plate RFA. (b) Ideal /-V characteristic curve
with V,=V}, for monoenergetic particles (c) Usual I-V characteristic cutoff curve. The
slope between V=V-AV and V=V is due to the trajectory effect. The effect of secondary
electron emission is shown in the dotted curve. (Note: the figure is reproduced from Ref.

[48]).

In the design and operation of a RFA, special attention needs to be paid to some
effects which may affect its resolution.
(a) Aperture lens effect
Let us assume a beam enters a decelerating field through an entrance aperture. The
charge and kinetic energy of a single beam particle are e and eV, respectively. Due to the
different field strengths before and after the aperture, the electric field lines in the vicinity
of the aperture are bent towards the aperture. The particle with a radial offset with respect
to the aperture axis sees a radial focusing force before the aperture and a defocusing one
after the aperture. Since the particle’s energy after the aperture is smaller than that before
the aperture, the net effect is defocusing resulting in an increase of the divergence angle.

This aperture lens effect can be characterized by a focal power [48] as
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1/ f=(E,-E,)/4V,, (5.1)

where E; and E, are the field strength before and after the entrance aperture. Ref. [47]
provides a detailed derivation for Eq. (5.1).

(b) Trajectory effect

Only the longitudinal component of the kinetic energy is effective to overcome the
retarding potential. For example, among the existing analyzers, the simplest one is the
primitive two-element parallel-plate analyzer (see Figure 5.1(a)). This type of RFA has a
good resolution only when the trajectories of the beam are parallel to the analyzer axis. In
this case, for a monoenergetic beam with initial kinetic energy eV, the ideal /-} (current
signal v.s regarding voltage) characteristic curve of the analyzer is similar to a step
function with a sharp cutoff at V,=V} (see Figure 5.1(b)). In reality, due to the initial beam
emittance, the aperture lens effect, space charge effect and misalignment, the moving
directions of the particles inside the analyzer usually have finite nonzero slopes with
respect to the analyzer axis. Then the actual /-V curve for a monoenergetic beam may
look like that in Figure 5.1(c), where the curve begins to drop at V=V\-AV. This may
result in a poor resolution of the parallel-plate analyzer AV/V; typically in the range of
107-10%. In order to suppress this trajectory effect and expansion of beamlet due to space
charge effect, a focusing electrode is usually introduced in the analyzer between the
entrance aperture and the retarding electrode; another option is to choose a special
multifunctional retarding/focusing electrode that can decelerate and focus the sampled
beamlet at the same time.

(c) Secondary electron emission

When the charged particles bombard the metal current collector, a fraction of the
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kinetic energy of the incident particles will transfer to the electrons of the collector
surface. Hence, some electrons will be knocked out of the metal surface. This
phenomenon is termed secondary electron emission. This effect may cause a deformation
of the plateau of /-V characteristic curve as shown by the dotted line in Figure 5.1(c), if
the primary particles are negatively charged. For positive primary particles, the ascending
dotted curve in Figure 5.1(c) should be replaced by a descending one. These secondary
electrons may yield false current signals and resolution degradation, thus must be
suppressed. According to Ref. [49], when a positive ion with mass M and kinetic energy
eV hits a metal surface of work function ¢, the maximum kinetic energy of the secondary

electron is
E.__=d@m/ M4V +V ), (5-2)

where V; is the ionization potential of the neutral atom of the ion species. Usually the
initial kinetic energy of the secondary electrons is low. Hence, introduction of an electron
suppressor biased to a low voltage can suppress the secondary electron emission
effectively.

(d) Elastic reflection

Even if the kinetic energy of the beam particles hitting the collector is high, not all of
them can be captured by the collector to form current signals. After collisions with the
metal surface, some ‘naughty’ particles will be reflected backward elastically with almost
the same energies as those of the primary particles. These rebounded particles usually
have a cosine angular distribution about the normal direction of the collector surface. In

order to suppress this effect, a Faraday cage or a C-shaped collector with an opening
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facing the incident particles can be adopted in the design. The rebounded particles may
experience several collisions on the collector surface with grazing incidence and
reflection before final capture.

(e) Space charge effect

When the intensity of the sampled negative (positive) particles inside the analyzer is
higher than a critical value, the induced space charge effect is so strong that a potential
dip (bump) can be formed which can reflect the incident particles. The measured energy
spectrum will have a long tail at the higher energy side with the mean energy shifting
toward the low energy side. This effect is shown in Figure 5.2 for the energy
measurement results of electron beamlets with different currents obtained at the
University of Maryland Electron Ring (UMER) [50]. In order to avoid this space charge

effect, the energy measurement should always be performed below the critical intensity.
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Figure 5.2: Comparison of the measured energy spectra for electron beamlet with two
different currents inside the analyzer. Curve I is for the current of 0.2 mA, the RMS
energy spread is 2.2 eV; Curve II is for the current of 2.6 mA, the RMS energy spread is
3.2 eV. (Note: the figure is cited from Ref. [50]).
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5.3 Design requirements for the SIR energy analyzer

The SIR energy analyzer is required to be able to scan across the beam horizontally
(radially), so that the radial distribution of the energy spread of a deflected bunch at a
chosen number of turns after injection can be measured. It is installed under the median

plane in the Extraction Box or Measurement Box (see Figure 5.3) to replace the Sector

Fast Faraday Cup. The entrance plate of the analyzer is tilted at an angle (about 100) with
respect to the vertical plane to align the analyzer axis parallel to that of the deflected

beam. The design parameters of the SIR energy analyzer are shown in Table 5.1.

1

'\ Measurement Phos.
box Screen

Beam /

Mid. Plane

Deflector EA

Figure 5.3: A Schematic of the Measurement Box. ‘Phos. Screen’, ‘E. A’ and ‘Med.
Plane’ stand for the ‘Phosphor Screen’, ‘Energy Analyzer’ and ‘Median Plane’,
respectively.

Table 5.1: Design parameters of the SIR Energy Analyzer

Ton species H,"
Beam energy 20 keV
Beam current 0-30uA
Beam emittance 10r mm*mrad
Energy change (due to space charge)/turn 7-8 eV
Beam radius 5 mm
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Figure 5.4: A schematic of the SIR energy analyzer with a horizontally (radially)
expanded beam. The beam (green oval) is moving towards the analyzer (into the paper).
The analyzer can scan back and forth along the ring radius. The thin yellow rectangle in
the middle of the analyzer depicts a sampled beam slice or beamlet.

Figure 5.4 depicts the schematic of the SIR energy analyzer. A horizontally (radially)
expanded beam (green oval) due to space charge effect and dispersion function is also
shown in the plot. The beam is moving into the paper. This figure shows a scenario of the
spatial relation between the energy analyzer and the beam in the measurement, if we
follow behind the beam and watch along its moving direction towards the analyzer. The
beam size of SIR is about 10 mm in diameter and the beam peak current is only on about
10 pA level (outside the analyzer for a DC beam). In order to sample as much beam as
possible, we adopted a 14 mm (vertical) X 1 mm (horizontal) rectangular slit as the
entrance aperture instead of a conventional small hole (Figure 5.4). This asymmetric,

large entrance aperture makes the design work more challenging.
5.4 A brief introduction to the UMER analyzer

The University of Maryland has designed the 2" and 3™ generation compact, high
p g

resolution cylindrical RFAs to measure the energy spread of the electron beam in UMER.
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Figure 5.5: Schematic of the 2" generation UMER energy analyzer. (a) Field model and
simulated trajectories (left). (b) Mechanical structure (right). (Note: the figures are cited
from Ref. [51]).
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Figure 5.6: Schematic of the 3" generation UMER energy analyzer. (a) Field model and
simulated trajectories (left). (b) Electronic circuit (right). (Note: the figures are cited from
Ref. [52]).
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Figure 5.5 illustrates the diagram of the 2" generation UMER analyzer [51]. The left
plot shows the field model, equipotential lines, and beam trajectories simulated by the
code SIMION [53]; the right plot depicts its mechanical structure. Figure 5.6 illustrates
the diagram of the 3 generation UMER analyzer [52]. The left plot shows the field
model, equipotential lines, and beam trajectories simulated by the code SIMION; the
right plot depicts its electronic circuit. Both analyzers have cylindrical housing tube,
entrance plate with a circular entrance hole, focusing cylinder, retarding mesh, and
current collector in common. The only difference is that in the 2" generation analyzer,
the retarding fine mesh is soldered to the focusing cylinder and they always keep the
same retarding voltage; while in the 3™ generation analyzer, the retarding mesh is shifted
away from the focusing cylinder’s end plane by several millimeters, and an extra low
voltage power supply is employed to produce a variable focusing voltage between them.

The working principles of the two analyzers are similar: if an electron beam enters the
analyzer through the entrance aperture, it will be decelerated and focused by the retarding
field produced by the focusing cylinder and the retarding mesh. The curved equipotential
lines can decelerate and focus the beamlet at the same time. Only those electrons whose
kinetic energies are higher than the retarding voltage can pass through the retarding mesh
to form current on the collector. By changing the retarding voltage on the mesh and
analyzing the change of collector current as a function of retarding voltage, the energy
profile of the primary beam can be obtained. The 3™ generation analyzer has a better
resolution, because it can minimize the coherent errors further by providing an extra
focusing for the electrons in the vicinity of the retarding mesh, where they have

exhausted most of their kinetic energies. Note that in the 2" generation UMER analyzer,
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for an ideal retarding mesh consisting of infinitely thin wires with an infinitely large wire
density (number of wires in a unit length) and 100% transmission rate, the retarding point
(position where the retarding potential has maximum magnitude) of the analyzer should
be on the plane of the retarding mesh; while in reality, due to the finite wire density and
the difference of the longitudinal potential gradients in the vicinity of the mesh plane, the
potential distribution on the mesh plane is not uniform. The potentials in the void region
enclosed by the mesh wires are different from the retarding voltages applied on the wires.
Therefore, the actual resolution of the 2" generation UMER analyzer should be
dependent on the wire density. While for the 3™ generation UMER analyzer, due to the
low focusing voltage applied between the focusing cylinder and the retarding mesh, the
retarding point is located at several millimeters before the mesh plane. Hence, the actual
resolution of the 3™ generation analyzer is not sensitive to the wire density. For the
UMER analyzers, because the electric field between the retarding mesh and the collector
is a natural decelerating field for the possible secondary electrons emitting from the

collector, it is not necessary to adopt the secondary electron suppressors.

5.5 Design of the SIR energy analyzer

A thin 14 mm X 1 mm rectangular slit has been chosen as the entrance aperture for the
SIR analyzer for the sake of better signal-to-noise ratio. Due to the large aspect ratio of
the beamlet sampled by the SIR analyzer, it is impossible to apply an extra focusing
voltage between the retarding/focusing tube and the retarding mesh to fine-tune the
focusing strength in both the horizontal and vertical planes at the same time like the 3™

generation UMER analyzer. In the end, we use the 2"/ generation UMER analyzer as the
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main design reference for the SIR analyzer.

From emittance measurement, the divergence angles of the primary SIR beam in the
horizontal and vertical planes are found to be roughly the same. In order to focus the
particles at the edges of the sampled beamlet inside the analyzer with the same focusing
strength in both planes for optimum resolution, the contour of the equipotential lines in
any planes normal to the analyzer axis must be a family of concentric rectangles, of
which the aspect ratios should be similar to that of the sampled beamlet in the
retarding/focusing region. This requires both the retarding/focusing electrodes and the
housing of SIR analyzer must have rectangular cross-section.

Due to the much higher particle energy (which is equal to the retarding/focusing
voltage times unit charge), and the much larger vertical dimensions of the beamlet
sampled by the SIR analyzer than those of the electron beamlet sampled by the UMER
analyzer, the distance between the retarding mesh and the entrance plate of the SIR
analyzer must be much shorter than that of the UMER analyzer to get a proper focusing
for the SIR beamlet, otherwise the particles will be over-focused yielding poor resolution.
In addition, in the SIR analyzer, since the electric field between the retarding mesh and
the collector is an accelerating field for the possible secondary electrons escaping from
the collector surface, a secondary electron suppressor which is biased to a negative
voltage should be introduced between the retarding mesh and the collector. For the above
reasons, the longitudinal potential gradient between the retarding mesh and entrance plate
of the SIR analyzer is much higher than that of the UMER analyzer, especially in the
vicinity of the retarding mesh plane. This makes the resulting analyzer resolution highly

dependent on the mesh wire density. Considering both the transmission rates and wire
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density, finally, we choose a Nickel mesh with 1000 lines per inch (LPI=1000) and 50%
transparency rate in our design.
Though the working principles of the SIR and UMER analyzers (2" generation) are

similar to each other, they differ on many aspects as summarized in Table 5.2.

Table 5.2: Comparisons between the UMER (2™ generation) and SIR Analyzers

UMER Analyzer SIR Analyzer

Extraction Single pass Variable turns
Particles e H,"
Beam energy up to 10 keV up to 20 keV
Entrance aperture 1-mm hole I4mmx1mm slit
Electrodes Cylindrical tubes Rectangular tubes
Secondary e suppressors No Yes
Working mode Static Scanning
Beam current mA nA

Due to the complicated 3D electric field inside the analyzer and the large height of the
beamlet in the vertical plane, it is impossible to perform the theoretical design calculation
accurately using the theory of paraxial beam optics. The physical design of the analyzer
can only be carried out by the numerical methods. We choose to use SIMION 8.0 [53], an
electric field design and simulation code, in our design work.

The SIR analyzer mainly consists of the following parts: (1) a housing box with an
entrance slit on the front plate. (2) retarding/focusing tube and fine mesh. (3) secondary
electron suppressor. (4) current collector. (5) four ceramic insulators between the above
electrodes and housing.

The resolution of the SIR analyzer is highly dependent upon the exact potential
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distribution on and near the retarding mesh plane, which is nonuniform due to the finite
wire density. Because of the high calculation workload, it is impossible to set up a mesh
model containing all the wires of the entire piece of retarding mesh in the simulation. To
deal with this problem, a small sample of the real mesh model with high resolution is set

up as shown in the left plot of Figure 5.7.

Figure 5.7: The movable small mesh model (left) and simulated particle trajectories
(right).

The small mesh model consists of eight crossing wire segments placed midway
between two plane boundaries with proper potentials calculated in advance. The two
plane boundaries are separated by a short distance d. When an ion approaches the
retarding mesh plane at a distance which is close to d/2, a short script written in the
programming language Lua [54] embedded in SIMION can predict the possible
impaction point and move the small mesh model there, so that the particle can pass
though the small mesh model containing an accurate field distribution. In the trajectory
simulation, a group of ions are shot towards the retarding mesh one by one. The small

mesh sample moves along the whole retarding plane back and forth, so that the particles
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can pass through it one by one (right plot of Figure 5.7). By this way, the trajectories near

the whole real mesh can be simulated with a good resolution.

Rectangular Energy Analyzer of SIR
20000 V -300V Housmg

ra

Entrance lee\ I

End Plate

Equipotential Lines

\
Retarding Mesh Retar-ﬁg Tube Collector

Secondary e Suppressor

Figure 5.8: Two schematics of the SIR energy analyzer and particle trajectories simulated
by SIMIOM, where the beam energy is 20.01 keV, the voltages of the regarding mesh and
suppressor are Viewarding=20 kV and Vippressor=-300V, respectively.

The electrodes, equipotential lines (green lines), and the trajectories (black lines) of

some typical ions in the SIR analyzer simulated by SIMION are shown in Figure 5.8.
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The retarding mesh is soldered to the multifunctional retarding/focusing tube. The
electric field formed between the retarding/focusing tube and the entrance plate can focus
and decelerate the beamlet; the thick part of the retarding/focusing tube behind the
retarding plane is designed for two purposes: (a) improve the analyzer resolution by
improving the uniformity of potentials in the vicinity of and right behind the retarding
mesh. (b) focus the beam to counteract the defocusing effects induced by the secondary
electron suppressor downstream, otherwise the transverse beam size will be too big to be
accommodated by the collector. According to Eq. (5.2), the estimated maximum kinetic
energy of the secondary electrons for a 20 keV HJ beam is only several tens of eV. A
suppressor biased to -300 V is enough to repel these electrons back to the collector. The
current collector is a C-shaped stainless steel electrode with a V-shaped grove in the
middle, which is designed to reduce the current loss due to the elastic head-on collisions

between the ions and the collector.
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Figure 5.9: Performance of the SIR analyzer simulated by SIMION 8.0 for a fixed
retarding potential Vieming =20 kV and variable source voltage Vsource.

In the performance test by simulation, it is assumed that the beam particles are
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monoenergetic and have uniform distribution at the entrance slit, and the initial moving
directions of the ions have a uniform distribution within a cone with half angle of 10
mrad. The retarding voltage is fixed to 20 kV, while the source voltage (or kinetic energy
of beam) is variable. The simulation results in Figure 5.9 demonstrate that the simulated
relative energy error or resolution is about 5.0x10™.

We also solve the sheet beam envelope equation [27] to study the resolution of the
analyzer further. The calculation results indicate that the changes of beam current and
emittance inside the analyzer have little effects on the analyzer resolution; this guarantees
an almost constant resolution during the energy measurement.

Figure 5.10 shows the photos of the SIR analyzer with its parts. The analyzer is a 60
mmx60 mmx50 mm box, limited by the space available in the Extraction Box. The four

white pieces are the ceramic insulators.

Figure 5.10: The photos of the SIR energy analyzer.
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5.6 Experimental test of the SIR energy analyzer

We tested the performance of the SIR analyzer by using it to measure the beam energy
at the ARTEMIS-B electron cyclotron resonance (ECR) ion source [55] beam line (see

Figure 5.11) and SIR (DC beam, half a turn from injection to extraction) at NSCL.

Figure 5.11: Schematic of the ARTEMIS-B Ion Source beam line. The performance
test of the SIR analyzer was carried out in the diagnostic chamber indicated by the red
arrow.

The resolution is estimated as the spread in retarding potential to go from 95% to 5%
transmission. The experimental results indicate the overall relative energy errors tested at
the ARTEMIS-B ECR ion source and SIR, including the alignment errors, energy spread
of beam and resolution of the analyzer, are 1.0x10~ and 1.3x107 respectively (see Figure
5.12 and Figure 5.13). The performance of analyzer meets our requirements for the future
energy measurement. When we tested the analyzer by using pulsed beam of SIR
(necessary to follow the temporal evolution of the energy spread), we found the
signal-to-noise ratio is very low. The noise mainly originates from the high-speed,
high-voltage switches used to control the different choppers, inflectors and deflectors.

Finally we decided to use the integrated current signal to measure the energy spread of
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SIR beam, which will be discussed in details in the next chapter.
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Figure 5.12: Performance of the SIR energy analyzer tested at ARTEMIS-B ECR ion
source.
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Figure 5.13: Performance of the SIR energy analyzer tested at SIR by DC beam.
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5.7 Conclusions

A compact, high resolution retarding field energy analyzer has been designed and
tested for SIR of NSCL at MSU to further study the beam instability. Experimental
results indicate the performance of the analyzer meets the requirements for our future

measurement and research work.
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Chapter 6

NONLINEAR BEAM DYNAMICS OF SIR BEAM®

6.1 Introduction

When a high intensity uniform long H5 bunch with a finite length is injected into the
SIR, the nonlinear space charge forces in the beam head and tail are strong and may
deform the beam shape. In addition, as the perturbation amplitude of the line charge
density increases due to microwave instability, the beam dynamics of the central part of
the beam also enters the nonlinear regime soon after injection. The bunch may break up
into many small clusters longitudinally only after several turns of coasting [12, 13]. This
chapter mainly discusses the nonlinear beam dynamics in these cases, including the study
on evolution of energy spread, vortex motion, and merging of cluster pairs by

experimental, simulation and analytical methods.
6.2 Measurement of the energy spread

Among the various beam parameters which govern the evolution of the bunched beam
profiles, the energy spread induced by the space charge field plays an important role in
both the linear and nonlinear regime of beam instability. It may help to suppress the
microwave instability in the linear beam dynamics; in addition, it is also one of the
important measures of the asymptotic bunch behavior in the nonlinear beam dynamics.

For this reason, an accurate knowledge of the energy spread distribution and evolution of

* The contents regarding energy spread measurement and simulation is excerpted from Y. Li, L. Wang, F.
Lin, Nuclear Instruments and Methods in Physics Research A 763, 674 (2014).
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the bunched SIR beam becomes necessary. This section presents the experimental and

simulation results of the energy spread of the SIR bunch and comparisons between them.
6.2.1 Energy spread measurement system

SIR lab has designed a compact electrostatic retarding field energy analyzer (RFA)
which is introduced in Chapter 5. The schematic diagram of the energy spread
measurement system is shown in Figure 6.1. It mainly consists of (a) energy analyzer
with power supplies for the retarding mesh and secondary electron suppressor, (b) step
motor and motor controller, (¢) Preamplifier (model: TENNELEC TC-171), (d) Amplifier
(model: TENNELEC TC-241S), (e) oscilloscope (model: LECROY LC684DXL).

Figures 6.2-6.5 show the photos of the components of the measurement system.

! Motor
Controller

Oscilloscope
Lecroy
LC684DXL

-

Retarding Grid e Suppressor
Power Supply Power Supply

Figure 6.1: Schematic of the energy spread measurement system.
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Figure 6.2: Energy analyzer assembly including the supporting rod, flange, and motor
drive (left) and motor controller (right).

4 W YW
b | Energy Analyzer

s ﬁ e o |

a3
Measurement Box '3

Figure 6.3: Energy analyzer assembly in the SIR (left) and a side view with the
Extraction Box (right).

Figure 6.4: Preamplifier (TENNELEC TC-171) (left) and Amplifier (TENNELEC
TC-241S) (right).
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BENINN HIGH VOLTAGE POWER SUPPLY

M FEE

Figure 6.5: High voltage power supply (BERTAN 225) for the retarding grid (left) and
oscilloscope (LeCroy LC684DXL) (right).

The energy analyzer is installed below the median ring plane in the Extraction Box
(Measurement Box), and a pair of high-voltage pulsed electrostatic deflectors in the

Extraction Box is used to kick the coasting beam down to the energy analyzer at a chosen

turn number. The entrance plate of the analyzer is tilted at an angle (about 10°) with
respect to the vertical plane to align the analyzer axis parallel to the deflected beam (see
Figure 6.3). Before the measurement of energy spread, we need to know the transverse
beam profiles. The motor controller and step motor can drive the energy analyzer to scan
across the beam transversely in the horizontal plane. By setting the retarding voltage of
the analyzer to zero or a low value, most ions of the sampled beamlet can pass through
the retarding mesh to reach the collector. The radial density profiles of the matched SIR
bunch can be obtained. Usually the beam profile scanning is performed from turn 0 to
turn 70 with an interval of five or ten turns. The energy spread measurement is carried out
at three radial positions (measurement points): one is at the location of the peak beam
current, and the other two are close to the beam core edges on each side. During the

experiment, for each fixed radial position (measurement point) of the analyzer, the
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retarding voltage is varied within a range in the vicinity of the nominal beam energy. The
current signals on the current collector of the analyzer are amplified by the Preamplifier
(TENNELEC TC-171) and Amplifier (TENNELEC TC-241S) consecutively. The
amplified signals are sent to the oscilloscope (LeCroy LC684DXL), where the
waveforms and strengths of the signals (in voltages) can be observed and read. After

offline data analysis, the energy spread information of the beam can be obtained.
6.2.2 Data analysis of the energy spread

A HJ ion bunch with the length 600 mm, peak current 8.0 uA, kinetic energy 10.3
keV is used in the energy spread measurements. The measured emittance is about 307
mm mrad. From the measurement, the raw S-V curves at the three radial positions
(measurement points) and various turn numbers are obtained. Here S and V' denote the
signal strength and the retarding voltage, respectively. The top graph of Figure 6.6 shows
an example of the measured raw S-V curve. For each fixed radial measurement point and
turn number, the data analysis for the energy spread measurement is performed by the
following procedure:

1. Subtract the residual noise signal from the raw S-V curve and normalize the adjusted
S-V curve to 1. This procedure yields a transmission rate curve (7-V curve) ranging
from O to 1.

2. Assuming the energy spread has a Gaussian distribution with deviation oz and mean

energy of <E>,

_(E—<E>)2

1 20,%

e >
N27mo,

P(E) = (6.1)
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then the transmission rate 7(¥) at a given retarding voltage V is equal to the integral

of P(F) integrated for E=V i.e.,

_(E'-<E>)*

1 o ol 1
jV dE'e ° = ll-erf(

N2ro,

V—<FE >)]
V2o,

(V)= (6.2)

2 . . . .
where erf(x) = = fox e~t* dt is the error function. If the transmission rate curve is

fitted to Eq. (6.2), the mean energy <E>, root mean square (RMS) energy spread oz

and full width at half maximum FWHM=2v2In20; = 2.3550% of the energy spread
can be obtained.
3. Using the fitted parameters of <E> and o, reconstruct the S-V curve and compare

with the raw S-V curve, plot the fitted Gaussian curve of energy distribution.
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Figure 6.6: A sample of the energy spread analysis at turn 10. The upper graph shows the
comparison between the original and reconstructed S-V curves. The lower graph displays
the fitted Gaussian distribution of beam energy. The mean kinetic energy, RMS and
FWHM energy spreads are 10118.7 eV, 44.75 eV and 105.2 eV, respectively.
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Note that the conventional method of energy spread analysis usually involves
differentiation of the S-V curve dS/dV and fitting it to a Gaussian function. While due to
the discreteness originating from the smaller number of data points in the vicinity of the
mean energy, the data points of dS/dV scatter around the Gaussian function with big
deviation. This makes the fitting work difficult and inaccurate. That is why an integral of
Gaussian function in Eq. (6.2) instead of the Gaussian function itself is chosen as the
curve fitting function in our energy spread analysis.

Figure 6.6 demonstrates a sample of the energy spread analysis results for the SIR
bunch measured at x= -6 mm (beam core edge) and turn 10. The mean kinetic energy,

RMS and FWHM energy spreads are 10118.7 eV, 44.75 eV and 105.2 eV, respectively.

6.2.3 Measurement results and comparisons with simulation

A 600 mm, 8.0 wpA, 103 keV, 30r mm mrad (same parameters as those in
measurements) monoenergetic macroparticle bunch is also used in the simulation study
by the code CYCO. The bunch has a uniform initial distribution in both the longitudinal
line charge density and the 4D transverse phase space. In the analysis of simulation
results, the beam region is cut into several 1-mm-wide thin vertical slices which are
parallel to the design orbit, each thin slice has a fixed radial coordinate. The number of
macroparticles, mean kinetic energy and RMS energy spread in each slice are calculated
and compared with the experimental values.

Figure 6.7 shows the simulated and experimental radial slice beam densities. Figure 6.8
illustrates the simulated top views and slice RMS energy spread at turn 4 and turn 30,

respectively. Figure 6.9 displays the simulated slice RMS energy spread up to turn 8.
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Figure 6.10 depicts the comparison of slice RMS energy spread between simulations and
experiments. Note that in this chapter, the slice energy spread and slice density denote all
the slices are cut parallel to the longitudinal z-coordinate instead of the radial coordinate,
which is conventionally used in free-electron lasers (FELs). The long bunch is a chaotic
system, a small difference in the initial beam distribution may cause a huge beam profile
deviation at large turn numbers. We can see that the simulated radial beam density
profiles and slice RMS energy spread match the experimental values within an acceptable

range.
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Figure 6.7: Evolutions of the radial beam density.
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Figure 6.8: Simulated top views and slice RMS energy spread at (a) turn 4 (b) turn 30.

100
= Turn 0
m—Turn 2
80 = Turn 4
m—Turn 6
= Turn 8
_.  60r
>
2
o 40r
20r
0 i L L L L L
-3 -2 -1 0 1 2
x (cm)

Figure 6.9: Simulated slice RMS energy spread at turns 0-8.
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Figure 6.10: Comparisons of slice RMS energy spread between simulations and
experiments.

Figures 6.8-6.10 show that the space charge fields induce the longitudinal density
modulations and energy spread in an initially monoenergetic and straight coasting bunch
in the isochronous ring. At smaller turn numbers, the energy spread in the beam head and
tail is much greater than that of the beam core around the beam axis. As the turn number
increases, the radial slice RMS energy spread distribution tends to become uniform and
changes slowly. At the same time, the radial beam size increases, and the beam centroids
deviate from the design orbit. The beam centroid wiggling may also cause the differences
in the betatron oscillation phases between the beam clusters (slices). If the beam is long
enough, the distribution of the radial centroid offsets of different clusters (slices) may be
regarded as randomly uniform around the design orbit. The measured slice RMS energy
spread at different radial coordinates is the density-weighted mean slice RMS energy
spread of the beam core of any individual cluster (slice), which is independent of the

radial coordinates. This can be explained below in Figure 6.11.
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Figure 6.11 Sketch of clusters and energy analyzer.

Figure 6.11 shows at a given large turn number, the long bunch has broken up into
many small clusters (the blue ovals) whose centroids distribute randomly and uniformly
around the design orbit (the red dashed line). If we measure the slice RMS energy spread
at a radial position as indicated by the solid black line with arrow, the analyzer will
sample slices of different clusters. Assume there are N, clusters in the whole bunch that
are tagged by ID# 1, 2, 3,....N,, and each cluster has the same number of particles and
radial charge distribution profiles. Assume the slice sampled by the analyzer in each
cluster contains n; (i =1, 2, 3,....N,) charged particles and its RMS energy spread is o,
the mean kinetic energy of all slices at a fixed x is the same as <E(x)> at large turn
numbers, where x is the radial coordinate of the black solid line with respect to the red

dashed line in Figure 6.11. Then the RMS energy spread in the i beam slice is:

o, = \/LZ [E,—< E(x) >, =L 23, N, . (6.3)
n

i Jj=1

The sum of square of Eq. (6.3) gives:

< =< El,2 >—< E(x)>*=0;(x), (6.4)
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If the number of clusters is large enough and the radial centroid offsets of all the
clusters are randomly and uniformly distributed around the design orbit, the RHS of Eq.
(6.5) is the density-weighted mean RMS energy spread of the sampled beam slices of
different cluster cores at a fixed radial coordinate x. The ox(x) of Eq. (6.5) is actually
equal to the density-weighed mean slice RMS energy spread of any given single cluster
core and is independent of the coordinate x. In real measurements, the above ideal
preconditions are not satisfied completely; hence, there are always small energy spread
fluctuations among different radial measurement points.

The equilibrium value of the kinetic energy deviation AE,,(x)=E.,(x)-Ex and the radial

coordinate x of an off-momentum particle satisfy the relation
2F
AE, (x)= Tko X, (6.6)

where E,, (x) is the equilibrium kinetic energy and is equal to <E(x)> of the beam slices
centered at x at large turn numbers. For simplicity, it is assumed that the radial beam
density distribution is uniform. Then the RMS energy spread of the equilibrium particles
measured by the SIR energy analyzer with an entrance slit of width I' = 1 mm centered at
x can be estimated as:

.

ol P22E, o Ell
O, =l [T P ] = S =570 (6.7)

x——

2
This value is proportional to the slit width I' and is independent of x. In addition, it is
much less than the asymptotic energy spread which is about 50 eV at large turn numbers.

This indicates that the number of particles at equilibrium energy only accounts for a small
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fraction of the total particles in a beam slice.

The saturation of the slice RMS energy spread of clusters in the SIR beam is an

indication of formation of the nonlinear advection of the beam in the E X B velocity
field [10]. Assuming an ideal disk-shaped cluster coasts in an isochronous ring with an
effective uniform magnetic field §e 7r> the fsc X §e sr Velocity field at any point on the
median plane inside the cluster is along the azimuthal direction in the rest frame of the
cluster. This will result in no particles staying at the beam head (tail) forever. Accordingly,
the energy spread within a given beam slice of 1-mm width at any coordinate x will not
build up with time significantly. During the binary cluster merging process, the total
charge and size of the new clusters grow at the same time. Hence, the mean charge
density of a single cluster does not change considerably, which may result in the

saturation of the mean slice RMS energy spread averaged over the radial coordinate.
6.3 Corotation of cluster pair inthe E x B field

In the simulated long-term evolution of the space-charge dominated SIR beam, first,
the bunch may break up into many small clusters along z-coordinate. Later, the
neighboring cluster pairs orbit each other in their center of mass frame, which is the
so-called corotation. Finally, the cluster pairs merge together after some turns of
corotation. This section is devoted to study the mechanism of corotation of cluster pair,
which is a characteristic phenomenon of the long-term evolution of beam profiles in the
isochronous regime.

Figure 6.12 illustrates the top views of the relative position of a pair of macroparticles

coasting in the SIR at turns 0, 5, 11, 22, 34, and 46 simulated by code CYCO. The red
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and blue dots stand for the macroparticle pair, each of which has the same charge 0=8.0

-14

x10  Coulomb and kinetic energy E(,=10.3 keV. At turn 0, they are separated by an
initial distance dy=1.5 cm and both are moving along the design orbit. The red
macroparticle is the leading one. Figure 6.12 indicates that the macroparticle pair

performs corotation with a period of about 46 turns. This phenomenon can be explained

and predicted by Cerfon’s theory of the motion in the E x B field [10].

Assuming two identical macroparticles with the same charge O and mass m coast in the
SIR with mean radius R, their trajectories are complicated cycloid-like curves and not
closed. In addition, the distance d(¢f) between them changes with time. By smooth

approximation, i.e., the magnetic field is regarded as uniform along the ring with an
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Figure 6.12: Corotation of two macroparticles with 0=8x10"* Coulomb, Ey = 10.3 keV,
and dy=1.5 cm.

effective strength B.; and average distance <d(f)>=(d, +d,)/2 in one period of

corotation (it is valid if d.y/dmin does not deviate too much from 1), then the amplitudes
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of ﬁe £r and space charge field fsc can be estimated as

_ My F - 0 (6.8)

T eR 4, <d(t) >

where e, and vy stand for the charge and velocity of each macroparticle, respectively.

Since l_i;eff and ﬁsc are perpendicular to each other, each macroparticle has a drift

velocity
e Esc x Ee E .
Viin =] Vs =l 2 7 |=—%= Q > (6.9)
B, B, 4rg,B, <d(t)>
The mean corotation frequency is
%
B,y = — = = Q - (6.10)
- <d> 27B,<d>
2

The left graph of Figure 6.13 shows the simulated distance d(f) between the
macroparticle pair in the first period of corotation. The right graph displays the simulated
corotation angle of a line connecting the macroparticle pair with respect to +z-coordinate;
the corotation frequency is fitted and compares with the theoretical estimation predicted

by Eq. (6.10). We can see the simulation and theory match well.
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glstanco between two particles in the 1st period Rotation angle and freq y in the 1st period
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Distance d (cm)

Figure 6.13: Simulated distance between the two particles (left) and their corotation angle
with respect to the +z-coordinate (right) in the first corotation period. The simulated
corotation frequency wg;, can be fitted from the angle-turn number curve. The theoretical
corotation frequency wy, predicted by Eq. (6.10) is also plotted for comparison.
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Figure 6.14: Simulated corotation frequencies of two macroparticles with different initial
distance dj.

Figure 6.14 displays the good agreement between the simulated and theoretical

corotation frequencies of macroparticle pair with different initial distance d.
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Next, at turn 0, the two macroparticles are replaced by two monoenergetic

macroparticle bunches of 10.3 keV kinetic energy separated by dy =1.5 cm. Each bunch is

10 ns long in time scale (about 1 cm) and has a charge of 8x 10™* Coulomb. The evolution
of their beam profiles in the first 15 turns is shown in Figure 6.15. The left graph of
Figure 6.16 shows the simulated distance d(f) between the centroids of the two short
bunches in the first 1/4 period of corotation; the right graph displays the simulated
corotation frequency and comparison with the theoretical estimation predicted by Eq.
(6.10). We can see the simulation and theory match roughly. Unlike the dimensionless
macroparticles, the short bunches have finite dimension with a certain beam distribution.
They have some new properties which a single macroparticle does not have, for example,
angular momentum of self-spin. When the distance between the bunch centroids is less
than or comparable to the bunch length, the interaction between the bunches is highly

nonlinear, which results in filamentation and cluster merging.

Top view of bunch
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Figure 6.15: Corotation of two short bunches with 7,=10 ns, [;=8.0 uA, Q=8><10'14
Coulomb, dy=1.5 cm, and Eo= 10.3 keV.
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Figure 6.16: Simulated distance between the centroids of two short bunches (left) and
their angle with respect to the z-coordinate (right) in the first 1/4 corotation period. The
simulated corotation frequency wy;, and the theoretical value wy, predicted by Eq. (6.10)
are also provided in the right graph.

In summary, the good agreement between the simulation and theory in Figures 6.13,

6.14 and 6.16 provides a numerical verification for Cerfon’s theory of drift motion in the

E x B field.
6.4 Binary merging of 2D short bunches

This section focuses on the simulation study of the binary cluster merging in the
isochronous ring. Two 2D short sheet bunches lying on the median ring plane are created
and employed in the simulation study. Compared with the conventional 3D bunch pair,
the binary merging process of 2D bunch pair is easier to be observed and understood,
because the macroparticles do not have vertical distribution and motion. Figure 6.17
shows the top view (projection in the z-x plane) and side view (projection in z-y plane) of

the 2D bunch pair. The beam parameters of each 2D bunch are 7,=10 ns (about 1 cm),
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1,=8.0 uA, Q=8><10'14 Coulomb, and £y=10.3 keV. Each bunch has uniform distribution in
both the x-z plane and the x-x’ phase space. At turn 0, the two bunches coast along the

+z-coordinate with an initial separation of dy=1.5 cm.
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Figure 6.17: Initial distribution of 2D bunch pair with 7,=10 ns, /;=8.0 uA, Q=8><10'14
Coulomb, Ey=10.3 keV and dy=1.5 cm. The upper graph shows the top view of the beam
profile in z-x plane; the lower graph shows the side view of the beam in z-y plane.
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Figure 6.18: Beam profiles of 2D bunch pair in the center of mass frame at turn 2.
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Beam profiles of two 2D bunches at turn 5
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Figure 6.19: Beam profiles of 2D bunch pair in the center of mass frame at turn 5.

Beam profiles of two 2D bunches at turn 12
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Figure 6.20: Beam profiles of 2D bunch pair in the center of mass frame at turn 12.
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Beam profiles of two 2D bunches at turn 20
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Figure 6.21: Beam profiles of 2D bunch pair in the center of mass frame at turn 20.

Beam profiles of two 2D bunches at turn 30
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Figure 6.22: Beam profiles of the 2D bunch pair in the center of mass frame at turn 30.
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Figures 6.18-6.22 illustrate the evolution of the beam density, energy deviation
distribution, velocity field and vorticity of the two short 2D bunches at turns 2, 5, 12, 20
and 30. Each figure consists of four graphs: the upper left graph shows the top view of
the beam density distribution on the median ring plane, the red and blue dots with arrows
stand for the centroids of the bunches and their velocity vectors in the center of mass
frame; the upper right graph displays the velocity field in the center of mass frame; the
lower left graph demonstrates the distribution of energy deviation of the 2D bunches; the
lower right graph depicts the distribution of vorticity, which is defined as the curl of the

speed vector # in the center of mass frame:
Q(%,1) =V xii. (6.13)

During the merging process, the two bunches are highly deformed and two filament
tails appear. The two beam cores approach, overlap and collide; at first, the two centroids
corotate in the counter clockwise direction just like two macroparticles. But the repulsive
Coulomb force between two bunches causes dynamical friction, which decreases the
kinetic energy of the two centroids. The relative motion between the two centroids is
suppressed. This is completely different from the two macroparticle model in which each
macroparticle is dimensionless; the dynamic friction between the two macroparticle is

negligible, and the corotation motion can last forever. We can also use the theory of drift

motion in E x B field to explain the merging process. When the two bunch cores

overlap partly, the space charge force on the overlapping parts is cancelled significantly.

In consequence, the drift motion in the E x B ficld will be suppressed considerably. The

overlapping parts of the two bunches will become the cradle of a new beam core.
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6.5 Conclusions

The measured slice RMS energy spread and radial density profiles of a long coasting
bunch agree with the simulation results. At large turn numbers, the randomly distributed
cluster centroid offsets tend to make the radial energy spread distribution of the whole
bunch uniform. The measured energy spread is the density-weighted mean slice RMS

energy spread of any single cluster core. Its saturation behavior indicates the formation of

the nonlinear advection of the particles due to the ExB velocity field in each cluster.

The simulation study of corotation of cluster pair by macroparticle pair model and

short bunch pair model verifies the theory of drift motion in the E x B field. The

corotation and merging of cluster pair in the long-term evolution of beam profiles is a

natural consequence of the drift motion of clusters in the E x B field.
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Chapter 7

CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

This dissertation focuses on the mechanism and evolution of microwave instability of
coasting beams with space charge in the isochronous regime.

Several theoretical LSC impedance models with different cross-sections of the beam
and chamber are studied. The derived LSC impedances are in good agreement with the
numerical simulations. They can be used in instability analysis induced by the LSC field
at any perturbation wavelength A. In particular, for A<Scm, the LSC impedance of SIR
beam can be approximated by that of a round beam in free space.

For a beam with finite energy spread, due to the non-zero transfer matrix element
Rse(s), the particles with the same radial coordinates (x, x') in the radial phase space but
with deferent energies may have different path length difference Az; In addition, due to
the betatron oscillation and radial-longitudinal coupling effect, the particles with the same
energy deviation but with different radial coordinates (x, x") in the radial phase space also
have different path length difference Az via the transfer matrix elements Rs;(s) and Rs(s).
These path length differences are the important source of Landau damping for coasting
beam with finite emittance and energy spread in the isochronous ring. The path length
deviation contributed from the betatron motion in the isochronous rings is also an
important effect that should be considered to realize the coherent terahertz synchrotron

radiation (CSR) [56], in which case the length of an extremely short electron bunch needs
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to be preserved precisely. A 2D dispersion relation taking into account the Landau
damping effects originating from the energy spread and emittance is derived in Chapter 4.
Compared with the conventional 1D growth rate formula, the 2D dispersion relation
provides a more accurate approach to predict the instability growth rates, especially in the
short wavelength limits.

A compact retarding field energy analyzer (RFA) with large entrance slit was designed,
tested and employed in the energy spread measurement. The performance of the RFA
meets our requirement for the experimental study of microwave instability.

The energy spread measurement results of a coasting SIR beam match the simulation
results in the long term evolution of microwave instability. The measured and simulated
saturation of the radial distribution of energy spread at large turn number is caused by the
formation of vortex motion in the bunches’ rest frames. The study using the

two-macroparticle model and the two-bunch model also validate the theory of vortex

motion in the E X B field.

7.2 Future works

Some new research study may be performed in the future, such as:

® In Chapter 4, there exist bigger discrepancies between the theoretical and
simulated instability growth rates for A<l cm. Further research study is needed to
explain the reason for the discrepancies.

® In recent years, a 3D PIC object-oriented parallel simulation code OPAL-CYCL
has been successfully developed by PSI [17]. Being a parallel code, it can

simulate beam dynamics in high intensity cyclotrons including neighboring
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bunch effects. Some interesting results have been obtained by the PSI researchers
[18, 57]. In comparison, CYCO is incapable of parallel computation at present. If
possible, CYCO can be modified to be compatible with parallel computation in
the future. This may greatly enhance its efficiency and functionality.

After years of successful operation with fruitful results, the Small Isochronous
Ring (SIR) was dismantled in 2010. If possible, it may be reassembled and
upgraded in the future (e.g., introduction of RF cavity, flat-top cavity, and new
energy spread measurement system, etc.). After upgrade, more research studies

regarding the space charger effects in isochronous regime can be carried out.
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APPENDIX A

FORMALISM OF THE STANDARD TRANSFER MATRIX
FOR SIR

This note presents the linear beam optics of SIR lattice (hard-edge model) using the

standard transfer matrix formalism.

A.1 Brief review of the standard transfer matrix

The coordinates of a particle in the 6D phase space can be described by a 6-element
vector (x(s), x'(s), ¥(s), ¥'(s), z(s), 6(s))" [58-60]. where x, y and z are the radial
(horizontal), vertical and longitudinal coordinates with respect to a hypothetical
on-momentum particle traveling along the design orbit; x'(s)=dx/ds and y'(s)=dy/ds are
the radial (horizontal) and vertical slopes of velocity; 0=Ap/p is the fractional momentum
deviation compared with the on-momentum particle, the superscript ‘T’ stands for the
transpose of vector or matrix. If there is no electric field and x-y coupling, the standard
transfer matrix M(s) mapping the initial coordinates of a particle (x(0), x'(0), (0), y'(0),
2(0), 6(0))" in the 6D phase space at s=0 to the current ones (x(s), X'(s), ¥(s), ¥'(s), z(s),

8(s))" at s is [58-60]
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(A.1)

The matrix M(s) satisfies the symplectic condition M'SM=S, where S is a 6x6

antisymmetric matrix

The determinant of matrix M(s) is unity, e.g., det(M)=1,

S O O o O =

S O O = O O

S O O o O

S = O O O O

(A.2)

which is required by

Liouville’s theorem. Some elements of the standard matrix M(s) satisfy the following

relations [8, 60, 61]:

M (s)=M (s )I

M ) (s) =M, (s )_[

1;(5)7

)

11(S)]

s')

M51:M16M21

M52:M16M22

M, (s )J' MIZ(S)

b

S— 2]().[ IZ(S){SI’

where p(s) is the local radius of curvature of the orbit.
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A.2 Standard transfer matrices for elements of SIR

The four-fold symmetric SIR lattice mainly consists of four 90° bending magnets with

edge focusing connected by four drifts in between. By thin lens approximation, the
bending magnets with tilted pole faces can be treated as a sector magnet (without pole
face rotation) to which magnetic wedges with edge focusing are attached [8]. According

to the theory of liner beam optics, the transfer matrices M(s) are [58]:

(a) Drift
‘1 7 0 0 0 0]
0 1.0 0 0 O
0o 0 1 7/ 0 O
_ A7
Mow =10 0 0 1 0 o (A7)
0 0 0 0 1 LZ
v
00 0 0 0 I |
with / being the length of the drift.
(b) Sector bending magnet
cos(®@) P, sin@) 0 0 0 Pol1—cos@)]
1 sin(@) cos(@) 0 0 0 sin(@)
0
Mgy = 0 0 Lopg 0 0 ) (A.8)
0 0 0 1 0 0
—sin@) —pll-cos@] 0 0 1 p_of — p,0+ p, sin@)
v
0 0 0 0 0 1 |

where po and 6 are the bending radius and angle of the sector bending magnet,

respectively.

(c) Magnetic wedge with edge focusing
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v 0 0 1 000
Edge = tan(p) )
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0 0 0 010
0 0 0 00 1]

with ¢ being the pole face rotation angle.

A.3 Optic functions of SIR (hard-edge model)

Let us consider the general condition of isochronism of a relativistic particle traveling
along an N-fold symmetric isochronous ring with edge focusing (See Figure A.1). The

transfer matrix of 1/2N period (half-cell) of the ring lattice is

Ml = MSBend .MEdge .M (AIO)

ECezl Dfifi*

Substituting Egs. (A.7), (A.8) and (A.9) into Eq. (A.10) with 8=nr/N yields

8]
[=}

S}
N

[

oogibgoo
ooﬁiwgoo

, (A.11)
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oﬁooﬁﬁ
B

o = o O o ©
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0N

Figure A.1: Schematic of a half cell of an N-fold symmetric isochronous ring. The ring
center is located at point O. py and p; are the bending radii of the on-momentum and
off-momentum particles with their centers of gyration located at points 4 and B,
respectively. The solid line passing points P and U depicts the titled pole face of the
magnet. / and /; are the half drift lengths traveled by the on-momentum and
off-momentum particles, respectively.

where

M, = cos(%) + tan(p) sin(%), (A.12)

. T T . T
M, =p, sm(ﬁ) + l[cos(ﬁ) + tan(¢) sm(ﬁ)], (A.13)
M, = p[1—cos(Z5)] (A.14)

16 = Po N7 :
1 . =« /4

M, = ——0[s1n(ﬁ) — tan(@) cos(ﬁ)], (A.15)

T [ . 7 Vs
M,, = cos(ﬁ) — Z[sm(ﬁ) —tan() cos(ﬁ)], (A.16)
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. T
M, = sm(ﬁ), (A.17)

My =1- %tan(co), (A.18)

M, = % 0o +1[1- % tan(e)], (A.19)

M, = —sin(%) — tan(g)[1 - cos(%)], (A.20)

M, =-1 sin(%) —[p, +1tan(@)][1 - cos(%)], (A21)

M, = HLZPO —Z o+ posin(). (A.22)
N N

Let us assume that an off-momentum particle located at the center point of a drift has
initial coordinates of (x(0), 0, y(0), y'(0), z(0), §)" at s=0 (see Figure A.1). It travels along
the drift section of the deviated equilibrium orbit towards the bending magnet. The
geometric relationship shown in Figure A.1 gives the bending radius of the off-momentum
particle p; as

dl _ p, +x(0)— x(0) tan(¢) .

P =Py +x(0)—AC = p, + x(0) - g p
tan(— tan(—
(N) (N)

(A.23)

Since the bending radius of a particle with charge ¢ and momentum p in a magnetic field

with strength B is

p=L"o p, (A.24)
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then

PP _BP_A_ o (A.25)
Po Po p
5=X0,_tanl), (A.26)
N

According to Eq. (A.11), after traveling a half cell, the longitudinal coordinate of the
off-momentum particle becomes
z =M x(0)+ M,x'(0)+z(0)+ M,0. (A.27)
If the change of longitudinal coordinate z is 0, e.g.,
Az = z—2z(0) = M4, x(0) + M, x'(0)+ M0 =0, (A.28)
then the ring will be isochronous. Since x'(0)=0, Eq. (A.28) reduces to
Az =z—-2z(0)=M,x(0)+ M0 =0. (A.29)

Substituting Egs. (A.20), (A.22) and (A.26) into Eq. (A.29) gives the isochronous

condition
T
[-(7* =1)p, I
tan(p) = ) — (A.30)
R G Ve
Y Pyt p
tan(—
( N)

For the non-relativistic ions coasting in SIR (y=1), if we replace / by L/2, Eq. (A.30)

reduces to

L/2

tan(%)
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Eq. (A.31) is exactly the same as Eq. (B.7) of Ref. [12] which is derived directly using the

isochronous condition Eq. (2.11) in Chapter 2.
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Figure A.2: Schematic of the SIR lattice.

The transfer matrix of a full single cell of the SIR lattice between points 4 and F (see
Figure A.2) can be calculated by multiplication of transfer matrices as

Moy =M i @ M pgpe ® Mgpong ® M g, ® M - (A.32)

For a 20 keV Hj ion (y=1.0000106264), with the ring lattice parameters (hard-edge

model) listed in Table 2.1, e.g., L=0.79714 m, p¢=0.45 m, 6=90°, ¢=25.159°, the transfer

matrix of a single cell can be calculated numerically as
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[—2.220625 0.54927 0 0 0 1.03577
—-1.73198 -0.220625 0 0 0 1.46969
0 0 —-0.262868 0.706585 0 0
M= - (A.33)
0 0 -1.31746 -2.62868 0 0
-1.46969 —1.03577 0 0 1 1.24711
.0 0 0 0 0 1]

For convenience, the upper-left four matrix elements in Eq. (A.33) can be defined as a

2x2 matrix for transfer of the vector (x, x')" of an on-momentum particle

my My, | | cosy, +asiny, Fsiny,
M Cell(xX) — = . A .
my, Ny, —ysiny, cosy, —asiny,

(A.34)

—2.220625 0.54927
~1.73198 —0.220625|

Then the phase advance i, the Courant-Snyder parameters &,, B, and 7, of the
horizontal phase space at points 4 and F can be obtained easily as: y,=1.79325,
Gua=0cp =0, Ba=Prr=0563146, P, 4 = P = 1.775736. Similarly, using the
central four matrix elements in Eq. (A.33), the phase advance i, the Courant-Snyder
parameters @, 3y, and 7, of the vertical phase space at points 4 and F are: ¢,=1.77574,
Qya=08yr =0, Bya=Ppyr=072688, 9,, =7,r = 138564. The horizontal and
vertical betatron tunes are v, = % ~ 1.142, and v, = ?—ny ~ 1.169, respectively,
which are pretty close to the numerically simulated values of v, = 1.14 and v, =
1.17 in Table 2.1 (also in Ref. [12]).

Assuming s=0 at the starting point 4, through piecewise tracking of the Courant-Snyder

parameters using the formula,
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R R 5 R

B my, —=2my,my, m, B

Q|\=|—mymy, My, + 0,y — iy, |, (A.35)
A 2 2 A

4 my, =2my,m,, my, 7o

where my 1, mi2, ma1, may correspond to the matrix elements in Eqgs. (A.7), (A.8), and (A.9)
for the different lattice elements, the horizontal betatron function of a half cell can be

calculated as

- 2 0<s<L/2
{ a,+a,s", (A.36)

Pt a,+a,sinfa,(s—L/2)], L/I2<s<L/2+pm/4

x,—Cell
2

where @1=0.563147, a,=1.775736, a3=0.845237, a4=0.715490, and as=4.444444.
Similarly, the vertical betatron function of a half cell can be calculated as

- 2 0<s<L/2
B (5)= b +bys

A.37
yoaCell {53 +b,(s—L/2)+b(s—L/2?  LI2<s<L/2+pnl/4, ( )

where 5,=0.72688, b,=1.37574, b3=0.945428, bs=-1.130447, and bs=1.3956406. The
horizontal and vertical beta functions in the region of L/2+pon/4<s<L+pon/2 can be
obtained easily by mirror symmetry about s=L/2+pn/4.
The elements My, M2, M6, M1, Mo, Mye of the single cell matrix Mc.; of Eq. (A.33)
form a 3x3 transfer matrix for dispersion function D(s)
D M, M, M,|(D

D| =M, M, M|D]|. (A.38)
1 0 0 1|1

F A

Due to symmetry of lattice, we have
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D'| =|D |, and D, =D, =0. (A.39)

From Egs. (A.38) and (A.39), it is easy to obtain D,=Dr=-M>r¢/M>=0.84856. The
piecewise tracking of the dispersion function D(s) using the transfer matrices of the
accelerator elements yields

dl, OSSSL/Q,
D, (s)=

a7 py b dsfeoslidy (s - DN sinld, (5~ Ny, L2<s<124p04 A

where d,=D,=0.84856, d,=0.39856, and d5=2.22222. The dispersion function in the
region of L/2+pon/4<s< L+pon/2 can be obtained easily by mirror symmetry.

Figure A.3 illustrates the calculated optics functions v.s distance S of a single period of
the SIR lattice by the above transfer matrix formalism. The calculated optics functions are

very similar to the numerically simulated ones by DIMAD shown in Figure 2.3.

—
(@}
T

Optical Functions (m)
<
(@] —_

S (m)

Figure A.3: Schematic of the optics functions v.s distance S of a single period of the SIR
lattice calculated using transfer matrices.

170



Using Egs. (2.5) and (A.40), the average value of dispersion function inside the bending

magnets can be calculated as

1
jb _ D(s)ds =—— J,d D, (s)ds=0.95746.  (A41)

<D(S) >bend: 7P /4
0

27p,

Then Eq. (2.6) gives the momentum compaction factor

a = < D(S) >bend _ < D(S) >bend

= ~ 0.9999868. (A.42)
R (4L +27p,)/ 27

Finally, the slip factor can be calculated as

n,=a —iz ~8.06x10°, (A.43)
4
In principle, the theoretical value of 1y of the SIR lattice (hard-edge model) should be 0,

the small deviation may originate from the rounding errors and neglect of the relativistic

effects in the numerical calculation.
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APPENDIX B

TRANSFER MATRIX USED IN CHAPTER 4 AND REF. [42]

The notations of the transfer matrix elements R;; (7, /=1, 2,...6) adopted in Chapter 4
follow the ones used in Ref. [42], some of which are different from the standard ones M,
defined in Appendix A4 of this dissertation. This section is devoted to the comparison of

the two different notations between the two matrices.

B.1 Relations of Rs;, Rs, and Rsg between two different matrices

According to Ref. [42], the equations of motion of an ultra-relativistic electron are:

Radial (horizontal): @ =x/, @ =—k (s)x+ i, (B.1)
ds ds R(s)
Longitudinal: e__ X 9 _,, (B.2)
ds R(s) ds

where 0=Ap/p is the fractional deviation of momentum. The general solution to the

above equations is [42]:

Xo

x=D5+\/E(\/;cosy/+x(')\/;Osiny/), (B.3)

x':D'§—g:(x—Dp)—LA(x—fsinw—x(')\/,?ocosz//), (B.4)
p VB B
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z=12z,+ R0 + Ry X, + Ry, x;,. (B.5)
The transfer matrix elements Rs;, Rsy, Rs¢ can be obtained from the above equations as

D(s)

; B.6
R(s ) (B.6)

6( )__J‘

R, (s)=— \/7 jo R )cosy/(s')ds', (B.7)

Ro(s) =~ [[ N2 VAE) ) siny(shds', (B.8)

R()

where (B.9)

Oﬂ()

Ref. [42] defined a 2D Gaussian beam model with an initial equilibrium beam

distribution function

2 LINAY
n X, +(fyx, .
j~0 — b eXp[ 0 (IBOA 0) ]g(§+uZO)’ (Blo)
27e, €x0Po
where g2(d) = 1 exp(—5—22), (B.11)
N2rmo; 20

and u is the chirp parameter which accounts for the correlation between z and 6.
(a) For transfer line
At s=0, for a transfer line, the initial values of the dispersion function and its
derivative are D(0)=0, D'(0)=0, the phase advance ¥(0)=0. From Egs. (B.3) and (B.4)

we have
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x(0) = x,, (B.12)

X(0)=—x, =2+ x!. (B.13)

The standard transfer matrix M(s) defined in Appendix A gives the transfer of z
z=zy+ M0+ M, x(0)+M,x'(0). (B.14)
Plugging Egs. (B.12) and (B.13) into Eq. (B.14) and comparing the coefficients of xo, x;,
and ¢ with those of Eq. (B.5) yields the relation

Rig(s) =M (s), Ry, (s)=Mg(s), Ry (s) =M51(S)_M52d(0)/:é(0)- (B.15)

The relation described in Eq. (B.15) repeats that clarified in the reference list of Ref. [42]
for transfer lines.
(b) For storage rings

For the case of storage rings, though Ref. [42] did not explicitly address the difference
and relation between the standard transfer matrix elements and the ones defined in that
paper, it can be inferred from the formalism and context of the paper. We know that the
beam dynamics of storage rings is different from that of the transfer lines. For example,
the dispersion function D(s) and its derivative D'(s) of storage rings are periodic functions
of s and must satisfy the close orbit condition, e.g., D(s)=D(s+Cy), D'(s)=D’(s+Co), where
Cy is the ring circumference. Hence, D(s) and D’(s) of storage rings are self-consistent
solutions of ring lattice optics required by the periodicity. While D(s) and D’(s) of transfer
lines are free from the above restraint.

According to the smooth approximation adopted in Ref. [42] in the derivation of the 2D
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dispersion relation (e.g., f=R/v, w=vs/R, D=RW, ¢=0,D'=0 and £.0=0.V,/R),
at s=0, Egs. (B.3) and (B.4) yield

x(0)=x, + Do, (B.16)

x'(0) = x;. (B.17)

Eq. (B.16) indicates that x, is the initial betatron oscillation amplitude xg(0), which is

not equal to the total initial radial offset x(0), the latter includes a dispersion term D¢.

Consequently, the first exponential function defined in Eq. (B.10) describes the initial

Gaussian distribution of the betatron oscillation amplitudes xo and slopes x;,, not x(0) and

slopes x'(0); moreover, o, =1/5x,0ﬂA’ =& R/v, is the RMS beam radius which only

includes the emittance effect, since the total RMS beam radius with dispersion effect

should be o, =+/0. +(Doy)’ =\/5x,OR/vx +(R0'5 /vf)z. Plugging Egs. (B.16) and

(B.17) into Eq. (B.14) and comparing the coefficients of xo, x;, and & with those of Eq.

(B.5) yields the relation of different matrix elements for storage rings

Ry (s) =My (s)+ D(s)M g, (s), Rs,(s)=Mg,(s), R (s)=Mg(s). (B.18)

B.2 One-turn transfer matrices by smooth approximation

By smooth approximation, the longitudinal and radial equations of motion of a particle

in SIR can be written as

2 2
Radial (horizontal): d—f+  (s)x = o (B.19)
ds> R R(s)
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Longitudinal: —=—— —=0. (B.20)

The solutions are

x(s) = x(0) cos(%xs) 4 x'(O)ﬂsin(%s) AL cos(%s)]é‘,
1% 1%

X X

R

\% R v
=x, cos(—=5)+ x;, —sin(—=s) +— 6, B.21
X, (R 8)+ X y (R §)+— (B.21)

X X

xX'(s) = —x(0) % sin(%s) + x'(0) cos(% )+ Vi sin(%’“ $)5,

X

V. .V v

=—x, —=sin(—=s) + x, cos(—s), B.22
0 R (R )+ X (R ) (B.22)

I . v , R vV, R . v, I 1

Z(S) :—X(O)ZSIH(ES)—X —j[l—COS(?S)]+[?SIH(ES)—(?——2)S]5,
1 . v R v 1 1

=—x,—sin(—=s5) — x, —[1 - cos(—=5)] - (— ——)s0, B.23
X v (RS) X vj[ (RS)] (V)3 yz)s (B.23)

From Egs. (B.21)-(B.23), it is easy to obtain the /-furn standard transfer matrix M_qym(s)

and the non-standard one R;.qm(s) used in Ref. [42] and Chapter 4 of this dissertation as

vV R 1% R
cosE=s —sin(—s 000 —
"R ¥
v v v
——<sin= cos= 000 —sin
sin€ ) €x9) sinGes
M .= 0 0 1 50 0 ) (B.24)
0 0 010 0
1 . v R v, 1 1 .V,
—V—Xsm(;s) —V—i[l—cos%s)] 001 —(—Xz——z)s+—ism( s)
| 0 0 000 1 ]

and
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Vv, R Vv, R
CcoSE= —sin* 0 0 0 —[l-cos
%S) v (RS) f[ ( )]
V. .V
——=sin= CcosE= 000 0
RSNGRY %s)
1—turn = O 1 § 0 0 > (B.25)
0 0 010 0
1 . v R 1 1
——sinEs) —[l-cos=s)] 0 0 1 —(———)s
i) 5l Es)] )
| 0 0 000 1 |

respectively.
According to Ref. [59, 62], the dispersion function D(s) and its derivative D’(s) can be

obtained from the standard matrix Eq. (B.24) as

MIG(I_M22)+M12M26 =£

D(s)= , B.26
© 2-M, -M, v ( )
D'(S)= M16M21 +(1_M11)M26 =0. (B.27)
2- M11 - M22
From Eq. (A.1), the derivative dz/d6 can be calculated as [60]
dz Oz dx(O) o0z dx' (O) oz dZ(O) oz
ds ox(0) do(0) 6x (0) do(0) 62(0) d5(0) 00(0)
, dz(0
=M, (s)D(s)+ M, (s)D'(s)+ d§((0)) + M (s). (B.28)

Since 6=0(0), by moving the term dz(0)/d6(0) of Eq. (B.28) to the left hand side, the
conventional slip factor (evaluated along the equilibrium orbit neglecting betatron

oscillation of trajectory) is [60]

p dAC _ d(z-2(0)
C, dp C,ds

= CL[M 51(8)D(8) + M 5, (5)D'(s) + M 55(s)]. (B.29)

0

It should be noted that Eq. (B.29) is a variant form of the original Eq. (6.22) in Ref.
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[60], which is the expression for momentum faction factor @ in the ultra-relativistic limit
instead of slip factor n; in addition, there is no negative sign on the right hand side of Eq.
(6.22) in Ref. [60], because Ref. [60] uses a different sign convention in definition of slip
factor.
With Egs. (B.24), (B.26) and (B.27) and (B.29), in the end, the slip factor for the
one-turn matrix of a storage ring can be obtained as
L

n=— (B.30)

vi oyt
While for the non-standard /-turn transfer matrix Rjm(s) in Eq. (B.25), the

conventional slip factor (neglecting the betatron oscillation effect) is related to the matrix

element Rsq(s) exclusively by
- (B.31)

Particularly, in the case of isochronous rings, the radial (horizontal) tune v, in Egs. (B.30)

and (B.31) should be replaced by transition gamma v;,.
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