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ABSTRACT

TOWARDS A MICROSCOPIC ENERGY DENSITY FUNCTIONAL
FOR NUCLEI

By

Biruk B. Gebremariam

In spite of their tremendous success, the limitations of current nuclear energy density
functionals (EDFs), all parameterized empirically in the form of the local Skyrme,
the nonlocal Gogny or relativistic functionals, have become apparent in the past sev-
eral years. In order to address these deficiencies, a current objective of low-energy
nuclear theory is to build non-empirical nuclear EDF's from underlying two-, three-
and possibly four-nucleon interactions and many-body perturbation theory (MBPT).
In this work, the first step towards that goal is taken by calculating the HF contri-
bution from the chiral EFT two- and three-nucleon interaction at N2LO. The density
matrix expansion (DME) of Negele and Vautherin is a convenient method to map
the highly non-local Hartree-Fock expression into the form of a quasi-local Skyrme-
like functional with density dependent couplings. Reformulating the DME in terms
of phase space averaging (PSA) techniques, we show that the resulting DME, PSA-
DME, is more general and has a significantly better accuracy for spin-unsaturated
systems than the original DME of Negele and Vautherin. This is achieved without
compromising the accuracy of PSA-DME for spin-saturated ones. Imposing the as-
sumption of time-reversal invariance, we apply PSA-DME to the HF energy from the
chiral EFT two- and three-nucleon interaction (at N2LO) and calculate the couplings
of the emerging EDF analytically using a combination of analytical and symbolic
approaches. Subsequently, we perform preliminary analysis of these couplings and
show that their density dependence is driven by the long-range (pion-exchange) part
of the interaction. Finally, we discuss the UNEDF semi-phenomenological approach

that is attempting to utilize the results of this work.
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Chapter 1

Low-energy Nuclear Physics

1.1 Introduction

Problems in physics are characterized by different energy or length scales as depicted
in Fig. 1.1. Low-energy nuclear physics lies well below the energy scale for quantum
chromodynamics (QCD), Agep v 1GeV, and aims at describing nuclear phenomena
that occur in the energy scale of a few tens of MeV, as characterized by the typical
Fermi energy, £r. Even though QCD establishes that nucleons, viz, protons and
neutrons have a complex structure in terms of quarks and gluons, low-energy nuclear
physics never attempts to resolve their structure as justified by £p/Agep < 1. Its
ultimate goal is the proper description of ground- and excited-state properties of
nuclei and nuclear matter in terms of the interaction between and among the relevant
low-energy degrees of freedom: protons and neutrons. Fig. 1.2 presents the diversity

of nuclear properties one is looking after in the realm of low-energy nuclear physics.

There are several size-dependent and size-independent factors that complexify
the coherent solution of the nuclear-many body problem. For infinite nuclear mat-

ter (INM) and finite-nuclei, the existence of the so-called Coester [[1]-[7]] and Tjon

1



Higgs ;------ i---------y

] .
L] i

Vv iNuclear [Atomic | 0 __________ Cosmology |

QCD ! Neutrinos |  ---:--- i Astronomy i ;

l i . i Geophysics i '

GUT Z Nuclear | Ly i P

atio LHC| fission | QHLE‘E P P

poenpatond |t ooy P | Somr P

; pr;on : const ! ' } 1 system ' i

' ' 4 ) ' '

' ! B H ] ' H

-32 ! : " 1] : i 1 : H
107" ¢m ,lfm‘ : lm ils pc : 0% m

1 l : I P

4 | IR UNLRIE ! T
10 Gev 17 1GeV | | :‘CVIK, ' | 101 yrs

; .. i ; Pl
Planck lll---- h‘_’;??le pérsoh ; r-Hubble
len uarks e oo oae - length

gt:h N ¥ e Y H Earth Galaxy |

L leptons 1 oers | Classical Mechanics

String Theory  Particle Condensed Matter
AdS/CFT- RHIC

Figure 1.1: (Color online) A selection of energy/length scales in physics.

lines [8] respectively, point to the fact that the nuclear-many body problem cannot
be solved successfully without allowing for many-body forces. In addition, in a sys-
tem of interacting nucleons, there exist both single-particle and collective excitations,
such as sound waves in nuclear matter and rotational/vibrational modes in finite-
nuclei, at about the same energy scale. At the same time, most nuclei (i.e. nuclei
with masses typically between 40 and 350) are intermediate between few-body and
statistical systems. This renders ab-initio techniques impractical due to computa-
tional complexity especially for systematic studies which involve hundreds of nuclei.
It also prevents the application of statistical approaches due to the smallness of the
number of constituents. Furthermore, the need to describe structure and reaction
interfaces (fission, fusion, nucleon emission at the drip-line...), the existence of a large
isospin asymmetry, and the essential role of superfluidity adds to the complexity of

the problem.

Due to these factors, a coherent understanding and description of nuclear phe-
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Figure 1.2: (Color online) Low energy static and and dynamical nuclear properties.

nomena remains elusive, in spite of several decades of theoretical and experimental -
investigations. Still, in the last decade, theoretical nuclear physics has seen significant
progress from several fronts. Some of the main ones that are relevant to this work are
the construction of nuclear interactions within the frame of chiral effective field the-
ory (EFT) [9][[10]-[12]], the application of renormalization group techniques to soften
two- and many-nucleon interactions [[13]-[15]], the use of ab-initio approaches to cal-
culate the properties of increasingly heavier mass nuclei [23], and phenomenological
energy density functional (EDF) approaches to computationally intensive calculations
thanks to advances in computing power and numerical algorithms.

Although high-precision phenomenological two- (NN) and three-nucleon (NNN)
interactions have existed for some time [[16]-[21]] and have been successfully used
in nuclear structure and reaction calculations [23], they are inconvenient from both
theoretical and practical points of view. These interactions lack a controlled expan-
sion scheme that would provide a meaningful estimate of theoretical error bars, and
there is no clear relation between their NN and NNN parts. Additionally, these phe-

nomenological interactions lack a connection to the underlying low-energy QCD. As
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a result, the role of chiral symmetry breaking of QCD which plays a crucial role in
determining the long-range part of nuclear interactions is not consistently treated in

such potential models [22].

From the viewpoint of nuclear structure calculations, phenomenological interac-
tions contain a strong short-range repulsive core, thereby making the nuclear many-
body problem highly non-perturbative. In general, the latter statement also holds
for chiral EFT interactions which are built with a rather high intrinsic resolution
scale, A, as this significantly couples low and high momenta [27]. Historically and in
the context of infinite nuclear matter (INM) calculation, this necessitates an infinite
re-summation of ladder diagrams, i.e. compute the Brueckner G-matrix, to obtain
a meaningful starting point for more advanced calculations based on the hole-line
expansion [[74],[30]]. The hole-line expansion method, usually at the lowest order,
has been applied to closed-shell medium to heavy nuclei but with little success [38].
In the case of light nuclei with A < 12, state of the art Green’s function Monte-
Carlo (GFMC) and no-core shell model (NCSM) calculations can be performed with
impressive results [23]. However, their large computational cost makes them inap-
plicable for beyond A > 12 region. Most recently, CC (coupled-cluster), IT-NCSM
(importance-truncated no-core shell model) and IT-CI (importance-truncated con-
figuration interaction) have been used to extend the applicability of ab-initio meth-
ods [24, 25].

Eventually, nuclear interactions necessarily depend on the resolution scale [27].
The realization of low-momentum interactions characterized by a low momentum
cut-off, A, through renormalization group techniques results in the elimination of the
non-perturbative aspects, viz, short-range repulsion and tensor forces of conventional
nuclear interactions [27]. The analysis of Weinberg eigenvalues and the calculations
of INM equation of state as well as the calculation of a selected set of finite nuclei

confirm the perturbativeness of low-momentum interactions. As a matter of fact, INM
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shows saturation already at the HF level, while the empirical saturation properties
are reproduced satisfactorily at second-order in MBPT [28]. For finite nuclei, the
energies and radii of a select set of nuclei seem to be remarkably converged at second
order with good systematics and relatively small corrections coming from particle-hole
states in the RPA [29]. Still, the application of these ab-initio methods for medium
to heavy mass nuclei involves considerable numerical complexity. In addition, the
accuracy of these methods is not on par with the current tool of choice for calculating
ground- and excited-state properties of medium to heavy mass nuclei, namely, energy
density functional (EDF) methods [26]. Fig. 1.3 shows the domains of application of

the standard nuclear structure methods.

-120

-100

N

0 50 100 150 200 250

Figure 1.3: (Color online) The chart of nuclide and the domains of applications of
the standard nuclear structure method. The black region shows the stable nuclei,

the green lines show the traditional magic numbers and the red curve delimits the
experimentally known nuclei. From Ref. [81].

Currently, EDFs are completely phenomenological by construction. Modern pa-
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rameterizations of these empirical EDFs such as the Skyrme, Gogny and their rela-
tivistic counterparts provide a fair description of bulk properties and certain spectro-
scopic features of known nuclei [26]. However, such empirical EDFs lack predictive
power away from the valley of stability or known data. In addition, the objective of
having spectroscopic quality EDFs does not seem to be attainable with current energy
functionals [26]. Consequently, an intense on-going effort is dedicated to empirically
fitting EDFs possessing more complex analytical forms and/or enriched density de-

pendent couplings [[31]-[36]].

Along with such phenomenological approach, the quest for predictive EDFs can
be complemented by constraining the analytical form of the functional and the value
of the couplings from MBPT and the underlying low-momentum two- and three-
nucleon (NN and NNN) interactions. The present work is a step towards that goal.
In CHAP. 1, we present a brief discussion of nuclear interaction models with special
emphasis on chiral EFT. CHAP. 2 introduces the nuclear many-body problem and
the diagrammatic approaches that rely on summing a selected set of diagrams. This
is followed by CHAP. 3 where we deal with the formalism and performance of phe-
nomenological EDFs. CHAP. 4 lays out the philosophy, goals and limitations of our
approach for constructing a non-empirical EDF. After introducing the density ma-
trix expansion (DME) as the mathematical technique to make an explicit connection
between MBPT and quasi-local EDFs, we describe a new formulation of the DME
based on phase space averaging (PSA). In addition, non-self-consistent and prelim-
inary self-consistent performance tests of this newly formulated DME are given. In
the subsequent chapter, CHAP. 5, we give details of the derivation of non-empirical
EDF from a generic NN interaction, at the lowest order in MBPT (Hartree-Fock) and
the application of the result to the chiral EFT NN interaction at N°LO. CHAP. 6 dis-
cusses the contribution to the non-empirical EDF from chiral EFT NNN interactions

at N2LO at the HF level. In addition, an on-going effort to build a universal energy
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density functional (UNEDF) that incorporates the results of this work, as well as pos-
sible extensions and conclusions are discussed in the last chapter, CHAP. 7. Finally,
all relevant definitions, formulae and derivations, both analytical and symbolic, are

presented in a set of detailed appendices.

1.2 Conventions and Notations

The acronyms, notations and definitions used throughout the thesis are listed below.

Table 1.1: Acronyms used in this work.

OBDM One-body density matrix
EDF Energy density functional
DFT Density functional theory
NN interaction two-nucleon interaction

NNN interaction || three-nucleon interaction

HF Hartree-Fock

HFB Hartree-Fock-Bogoliubov

INM Symmetric and unpolarized infinite nuclear matter
PNM Unpolarized pure neutron matter

EFT Effective field theory

RG Renormalization group

DME Density matrix expansion

MBPT Many-body perturbation theory

RPA Random phase approximation



Table 1.2: Definitions and conventions used in this work.

® Denotes cross product

a7 Pauli vectors: (o, 0y, 0;), (s, Ty, T2)

A Unit vector along vector /—1', or operator Ain case A is an operator
dQ z The differential solid angle with respect to A

Pz Exchanges the spin coordinates of the i** and j** particles.

L

It is given by P = 1/2(1+ 3, - &5)

Py Exchanges the iso—spin coordinates of the ** and j** particles.
It is given by Pl = 1/2(1+ 7 - T5)

P Exchanges the spatial coordinates of the i** and j** particles

P The particle exchange operator given by P; = FJ; P P,

I,; The spin singlet (¢ = 0) and triplet (i = 1) projectors.

These are given by ;o1 = 1/2(1 F 61 - 02)

11, The isospin singlet (i = 0) and triplet (¢ = 1) projectors.
These are given by Il,gy = 1/2(1F 7 - 72)

VAT NN interaction vertex of type I where I can be C-central
LS-spin orbit or T-tensor and ST can take the values
10,01,11, 00 where the first 1/0 refers to spin

and the second 1/0 refers to isospin triplet/singlet

b/SI1Pl d i" m—function associated with local densities such as
p(R)/S(R) [ J(R)...

I /518/5 ith m—function associated with non-local densities
p(F1,72) [ 8(r1,72) / p(F1,72) / §(F1,72) ...

fST(wf"" nf PV R) || aIST(wt" ") (R) = am [ drr? VIS(r) [nf/ " nf"]

abST[a?* w5 1(R) | STt /5 Y(R) = 4 [ drr* VIS (r) (/% nl/]

aéST[Wf/ng(’/g](R') IST[T‘_P/S /¥ R’ ) = fd % p/é‘mp/s?]


file:///nfnf

Chapter 2

Nuclear Interactions

2.1 Historical highlights

The theory of nuclear forces started in the 1930s when Yukawa introduced the idea
that the nuclear strong force is carried by a particle with a mass approximately 200
times that of an electron [37]. Table 2.1 summarizes the major developments of the
past seven decades in the attempt to derive NN interactions from first principles.
With the conception of effective field theory (EFT)[9], it has become clear that
pion-based theories of the fifties, this time with an explicit connection with low-
energy quantum chromodynamics (QCD) [[10]-[12]], should be revived. In the last
decade, EF'T has been applied successfully to the consistent derivation of NN, NNN
and many-nucleon interactions at various orders in the low-momentum expansion
scale, Q/A,, where @) is the energy scale of the low-energy physics and A, ~ 1GeV
refers to the chiral symmetry breaking scale. Details relevant to the present work
are given in section 2.4. In parallel with these efforts to derive nucleon-nucleon
and many-nucleon interactions starting from field-theoretic approaches, various high-
precision phenomenological NN and NNN interactions have been parameterized [[16]-

[21]]. These efforts have been guided by requiring the interactions to satisfy a number

9



Table 2.1: Seven Decades of Struggle: The Theory of Nuclear Forces from Ref. [22].

1935 Yukawa: Meson Theory

The “Pion Theories”
1950’s One-Pion Exchange: o.k.
Multi-Pion Exchange: disaster

Many pions = multi-pion resonances:
1960’s o, p,w, ..
The One-Boson-Exchange Model: success

Refined meson exchange models, including
1970’s sophisticated 2@ exchange contributions
(Stony Brook, Paris, Bonn)

Nuclear physicists discover
1980’s QCD
Quark Cluster Models
Nuclear physicists discover EFT
1990’s Weinberg, van Kolck
and beyond Back to Pion Theory!
But, constrained by Chiral Symmetry Breaking: success

of symmetries. In the following, we discuss the symmetries that are used to constrain

the form of NN interactions.

2.2 Symmetry Properties of Nuclear Interactions

While the derivation of the strong NN and many-nucleon interactions is an ongoing
effort, there are a number of symmetries that a given nucleon-nucleon interaction
should satisfy. Since one can denote the most general nucleon-nucleon interaction by

its matrix element between two-body states, we use

’U(l, 2) = (F{O’llqll ’FQIO‘QIQQI |’5| Flolql ’I—"Qo‘gqg = U(f‘iiﬁ’lalql, FQEQO‘Q(]Q) y (21)
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to discuss the action of the various symmetries. In Eq.(2.1), the dependence on the
momentum of the interacting particles is to allow for nonlocality of the interaction.
The following are the basic symmetry properties that a given NN interaction needs

to satisfy [38].

Hermiticity.

e Invariance under an exchange of coordinates

v(1,2) = v(2,1), (2.2)
e Translational invariance
v(1,2) = o(7, lgl 0141, EZ 02G2) (2.3)
e Galilean invariance
v(1,2) = U(FE; o191, 0202) (2.4)

e Invariance under space reflection

o(FE, o1qu, 02g2) = V(=7 — K, ovq1, o) , (2.5)

Time reversal invariance

U(FE, T1q, 02g2) = V(7 — K, —01q1, —0203) (2.6)

Rotational invariance in coordinate space implies that the interaction is a scalar.
Additionally,

—

U(F/; 0141, 02Q2) = U(—T - E, 0242, 01(12); (2~7)

11



which is due to Egs. (2.2) and (2.5). Hence, terms in the interaction which are

linear in o; and ¢; depend only on o = (01 + 02)/2 and q = (¢ + ¢2)/2.

e Rotational invariance in isospin space which is an approximate symmetry broken
by the coulomb interaction and other isospin-breaking effects. If assumed to

hold, then

’U(Fii;, J14q1, O'QQQ) = Uo('F’Z, g9, 01) + ’Ul(’FE, O9, 0'1)’/"1 cTo. (28)

Even after correcting for electromagnetic effects, there is a strong experimental evi-
dence that the nucleon-nucleon interaction breaks charge symmetry [39] and charge
independence [[40], [41]]. The experimental evidence comes from the difference in the
scattering lengths of pp, nn and pn systems. These values read ap, = —17.3 £ 0.4fm,
Qn, = —18.8 £ 0.5fm and a,, = —23.74 £ 0.02fm. In general, nucleon-nucleon in-
teractions can be classified into four classes according allowed isospin operators [42],

i.e.

e Class I forces have only dependencies on [1, (71 - 73)], and do not break either

charge symmetry or independence,

e Class II forces maintain charge symmetry but are charge-independence-breaking
(CIB). They are characterized by the isotensor 7}, defined by analogy to the

usual tensor Sy given in Eq. (2.10), and vanish for T, = +1 (nn or pp) systems,

e Class III forces are both charge-symmetry-breaking (CSB) and CIB, but remain
invariant under the exchange of the two nucleons, and are thus proportional to
(T2 + Ta2). They do not cause isospin mixing since T, commutes with 72, and

vanish for T, = 0 (np) systems,

e Class IV forces are both CSB and CIB, and are antisymmetric under the ex-

12



change of the two nucleons, which causes isospin mixing. They are proportional

to (7,1 — Ty2) or (1 ® 7). , and vanish for T, = %1 systems.

The most general class-I two-body potential invariant under the fundamental sym-

metries recalled above can be decoupled into [43]

1
(01 02)
Sia.7
v(1,2) = Y vy(r) o
P (L-S)
G2

(T1 . 7'2)

where the various operators are the so-called central 1, tensor Si2 7, spin-orbit (Eg )

quadratic spin-orbit Qi,, and S, ; components. The operators Sia 7, S}, ; and Q1o

are given by

3

812,; - ﬁ(al'f)(dz'f)—Ul'Ug, (29)
Sui = (o Ber B =01 o, (2.10)
Qu = sl Doz ) + (0 D)o - D), @.1)

where all operators in (2.2) have radial prefactors, v,(r), that can be constrained from

microscopy or experimental data.
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2.3 Remarks on high-Precision Phenomenological

Models

The construction of phenomenological models for nucleon-nucleon interactions pro-
ceeds by parameterizing the radial prefactors v,(r). It is well known that the long-

range (r > 1/m;) part of the interaction is given by one-pion exchange, thereby

—mrgr

fixing the radial form factor to the usual Yukawa form, ¢ . The phenomenolog-
ical models that have been parameterized in the last two decades [[16]-][21]] are said
to be high-precision as they are able to fit low-energy (< 350MeV) nucleon-nucleon
scattering data with a chi square per degree of freedom, x?/Nyata, close to one. Ad-
ditionally, all currently available high-precision phenomenological models are charge
dependent (CIB and CSB) and use about 40-50 parameters. The main difference
among the various phenomenological models lies in the way they attempt to capture
the intermediate- and short-range parts of the interaction.

The need to include many-body forces has been suggested by discrepancies be-
tween low-energy properties computed with two-body forces only and experimental
data, such as differential nucleon-deuteron cross-sections [[44]-[46]], triton and other
light nuclei binding energies [47], and the violation of the Koltun sum rule [48]. For
instance, the binding energies of 3H versus *He computed with all available NN models
align on a so-called Tjon line that excludes the experimental point [8]. This is seen as
a necessity to use consistent NNN forces to sneak away from this Tjon line. Likewise,
the Coester line on which lies the saturation point of INM computed with NN forces

only [[1]-[7]], is another indication that NNN forces are essential to reproduce bulk

properties of nuclear matter([49], [50]].

Phenomenological NNN potentials are available [[51]-[54]], based on mesons ex-
changes plus empirical short-range components. Using the same philosophy as phe-

nomenological NN forces, they are adjusted on binding energies and scattering observ-
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ables of three- (and four-) body systems such as proton/nucleon-deuteron diffusion
data [[55]-[57]]. In the following section, it will be seen that chiral EFT, NNN inter-

actions appear naturally which is one of the main advantages of the EF'T approach.

2.4 Chiral EFT Models

Potentials based on chiral EFT [9] exploit the separation of scales between the chiral
symmetry-breaking scale, A, ~ 1 GeV, and typical momenta of low-energy processes
at play in the nuclear structure context, @, usually about m, = 140 MeV [[10]-[12]].
In that respect, few-nucleon processes can be treated using only nucleons and pions
as degrees of freedom, the m7—N interaction being governed by the spontaneously
broken chiral symmetry of QCD. All other heavy mesons and nucleon resonances are
integrated out of the theory, and their effects are contained inside scale-dependent
couplings. The effective Lagrangian only depends, in this approximation, on a finite
number of low-energy constants (LECs), and can be classified using a systematic
expansion based on a power counting in terms of (Q/A,)”, where v is called the
chiral order. At a given accuracy (Q/A,)”, only a finite number of terms in the
Lagrangian are needed in the low-momentum regime.

The leading order interaction corresponding to v = 0 is denoted by LO. There is
no contribution for » = 1, and following terms v > 1 are called (next-to-)*~! leading-
orders (NY~'LO). This framework includes effects beyond the NN force, since three-,
four-... body interactions appear naturally in the perturbative expansion, and the
hierarchy vyy > vnnN > Unnany is a direct consequence of the power counting, as
shown in Fig. 2.1.

At this point, chiral interactions exist up to N®LO [[58],[59]], where most of the
NN and one-pion, two-pion and three-pion (OPE/2PE/3PE) diagrams have been

computed using various approaches [58, 59]. Improvements of such approaches may
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consist in (i) increasing the chiral order v of the perturbative expansion, although
_power counting implies that higher contributions will be substantially smaller, as al-
ready observed in the case of OPE/2PE [62], (ii) the introduction of four-nucleon
forces arising naturally at N3LO [63], (iii) treating extra degrees of freedom explic-
itly, such as nucleon A excitations that play a role in three-body forces [[66],[68]] and
isospin breaking NN forces [68], or (iv) refining the short range phenomenological
cutoff schemes. Finally, since chiral perturbation theory is a low-momentum expan-
sion, its predictions are by essence only valid for momenta @ < A,. Several families
of chiral forces are defined depending on the values of the intrinsic high-momentum
cutoff up to which they are defined, whose values typically range between 450 and
750 MeVs. This makes chiral potentials significantly softer than phenomenological

hard-core interactions. In general, chiral EF'T potentials have the general structure
Verr = Var + Va(A), (2.12)

where V), are due to n pion-exchanges and V.:(A) refers to the contact parts which

depend on the high-momentum cutoff scale, A.

In chapter 6 and 7, we calculate the HF energy from chiral EFT NN and NNN
interactions at N2LO, with emphasis on the contribution from the finite-range parts
of the interaction V,,,. Hence, we now describe the chiral EFT interaction at N2LO

in some detail.

2.4.1 NN part at N’LO

At N2LO in the low-momentum expansion @, the pion-exchange (finite-range) part

of the NN interaction can be written as

Vie = V@ +v2 +v®,
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NN diagrams NNN diagrams
LO (¥ =0) -
(v =1)
NLO (v =12)
S I [C] ¢--3--¢ (D]
N2LO (v =3)
K e [E]

Figure 2.1: Hierarchy of nuclear forces from Chiral Perturbation Theory, classified
according to a power counting (Q/A,)Y, and restricted to v < 3 for simplicity.
Three-body forces appears at next-to-next-to-leading order (N2LO), but some of the
associated low-energy constants are already constrained by the two-body domain
(black symbols) while others (gray symbols) are to be adjusted on three-body

Nucleon line

7 line

observables. From ref. [81].

® ;A = pterm (no field derivatives)

B /A = 1 term (one field derivatives)

® VA =2 term (two field derivatives)
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Vor = V& 4+ v, 2.13
27 27

Here the superscripts denote the corresponding chiral order and the ellipses refer to
the Q*and higher order terms which are not considered in the present work. As
can be seen, contributions due to the exchange of three-and more pions are further

suppressed. In |k) ®|F) ® |T) space, the finite-range (pion-exchange) part of the chiral

NN interaction through N?LO takes the form!

(kiE V| Baky) = ( [Velg) + 71 2 We()] + [ Vs(g) + 71 - 2 Ws(q)] 61 - G2

- s - 1
+[Vr(Q) + 1 - Wr(q) ] 61-§02- 7 + 3 [Vis(q)

R Wis(q)] By + F2) - (@ k)) SRR, (214)

where ¢ = k' — k is the momentum transfer, with the relative momenta being k=
ky —ky and k' = ki —kj. K = (ky+ k3)/2 and K’ = (k] + kj)/2 are center
of mass momenta of incoming and outgoing interacting particles respectively. The
requirement of Galilean invariance is enforced by 5(12' — K’ ). In passing, we remark
that the the contact part of the interaction contains terms that depend on p =
(E ! +l€) /2 and/or ¢. The subscripts C, S, T, LS label the form factors of central, spin-
spin, tensor and spin-orbit components of the interaction. The form factors are scalar
functions of the momentum transfer g and are such that (i) only Wy gets contribution
from one pion-exchange (ii) V¢, ,W¢, ,Vp, Wp, Vig, Wrs get contribution from two-
pion exchange. Actual expressions and details on the contact parts of the interaction

are given in Ref. [59].

1The finite-range NN spin-orbit piece is actually zero-range up to N°LO.
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2.4.2 NNN part at N2LO

From a general standpoint, three-body forces can be characterized by

(krkoks [Van| Biksks) = =5

0z 08y +iy+E3, k] -k)-F}  Van (Krkakes |y Eykes) (2.15)

LW~

where €2 is the volume used in the box-normalization of the momentum basis states,

- = =

5k1 g +Rg—El—F]-F] is the Kronecker delta and V (k; kaglkI’EQIEé) is a matrix element
in momentum space and an operator in spin-isospin space whose dependence on spin
and isospin degrees of freedom is not displayed. The NNN x—EFT interaction first
appears at N?2LO where it is composed of three components [69] (i) the E-term (ii)

the D-term and (iii) the C-term.

The E-term

The E-term, which is a three-nucleon contact interaction, is the simplest part of the

x—EFT 3NF at N2LO. Its expression reads

Vi (R1kaks| ki k)

E(A-H+% B+5-7), (2.16)

where

o
1
o

(2.17)

The D-term

The D-term involves one-pion exchange plus contact interaction. Its analytical reads

N T T ga Cp o1 Q02 G 02 @303 (3
Up (Rl BIRRD = — ( Ty 4 e By
273 412 f2A, g5 +m2 Q@ +m2
03- Q101 Q1
AN IRV 2.18
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where ¢ = k; — k/.

The C-term

The C-term of the interaction involves two-pion exchange. Its analytic form reads

2 — —
Velkkakslkikshs) = (ﬁﬁ Qﬁ+%8@+m%F%wb

02 q‘é 03 Q:S Faﬁ a
%+mﬁ%+W)%”

03 Q301 Q1 aﬁ o ﬂ
F , 2.19
@ +m) (@ + m) 2T ) (2.19)

with

2
,clm,,+203_,

—o i -
f2 f2

q; ] + FGQMT G - (@ X @) - (2.20)

Low energy constants and parameters of the NNN interaction at N2LO

Values of the various coupling constants appearing in Eqs.(2.16)-(2.20) can be found in
Table 2.2. There are several ways to extract fix the Cp and Cg low-energy constants,
one of which is adjusting these constants such that the binding energies of *H and
‘He from ab-initio calculations with NN and NNN interactions match experimental
values. The above statements also hold for ¢;. On the other hand, there is still some
controversy over which set of values is “right” for c3 and ¢, with extractions from 7—N
scattering and NN begin different with large uncertainties. Resolving these differences

is important as many quantities are sensitive to the values of ¢3 and ¢4 [60].
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Table 2.2: Parameters for chiral EFT NNN interaction at N°LO, with
A, = 700 [MeV]. Note that the values for c3 and ¢, are from Ref. [61].

ga 1.29
fr [MeV] 92.400
me [MeV] 138.040
c1 [ GeV™) -0.760
c3 [ GeV™Y -4.780
cs [ GeVT 3.960
Cp -2.062
E -0.625
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Chapter 3

The Nuclear Many-Body Problem

3.1 Remark on ab-initio/MBPT-based methods

Ab-initio methods for the nuclear many-body problem such as no-core shell model
(NCSM) solve the A-body problem in a given model space while quantum Monte-
Carlo methods such as Green’s function Monte-Carlo (GFMC) rely on stochastic
integration of the many-body Schrodinger equation [23]. Currently, they are able to
incorporate both NN and NNN interactions. However such methods show exponen-
tial scaling with A, thus limiting their applicability to only A < 12 [23] due to their
computation costs. In this regard, CC (coupled-cluster), IT-NCSM (importance-
truncated no-core shell model) and I'T-CI (importance-truncated configuration inter-
action) should be mentioned as ab-initio methods that solve the A-body problem
approximately in the given model space. They have lower computational complexity
and thus extend the applicability of ab-initio methods to heavier nuclei [24, 25].

In contrast, MBPT-based methods rely on partial finite/infinite-order summation
of MBPT diagrams according to some organizing principle. Infinite-order summation
may be necessitated by the non-perturbativeness of the starting interaction, and may

not be necessary if one starts from perturbative low-momentum interactions [27]. The
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non-perturbative behavior of conventional phenomenological interaction models can
be traced to [27] i.e. (i) the hard-core repulsion that makes nucleons scatter up to
very high energies and requires large basis sets, (ii) the tensor force coming from OPE
which is singular at short distances, and (iii) the presence or virtual (di-neutron) or

bound (deuteron) states.

On the other hand, vacuum nuclear interactions are strongly renormalized in the
nuclear medium. This suggests that expressing the many-body energy in terms of
an unperturbed Slater determinant coupled to an effective in-medium interac-
tion that already includes many-body correlations might be possible. That is, the
minimal set of in-medium correlations that have to be included to reach a reasonable
description of the system, i.e. infinite nuclear matter or finite nuclei, need to be in-
corporated in the definition of the in-medium interaction. This can be achieved for

simple systems in the context of Goldstone-Brueckner theory [70].

3.2 Goldstone-Brueckner formalism

As long as pairing is not explicitly included, the Hamiltonian H = t + v can be
decomposed in terms of a one-body hamiltonian hgy that has Slater determinants |®;)

as eigenstates, and a perturbation h,, i.e.

H = ho+h, (3.1)

ho = t+T =) ti+» Tyala; =) eéhén, (3.2)
i ij n

hl = v-—1TI. (33)

The quantities ¢, are the eigenenergies of hy corresponding to single-particle states ¢,

whereas ¢; will denote many-body eigenenergies of hy associated with unperturbed
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Slater determinants, i.e.

A A
&= €p ;) =[] 10} (3.4)
p=1 p=1

According to Gell-Mann-Low’s adiabatic theorem [71], the true ground state |©j)
of H can be obtained from the adiabatic evolution of the ground state of hy from

t = —o0 to t = 0 by gradually turning on the residual interaction [72], i.e.

(3.5)

160) = lim,_o ( Ue(0, —00)|Po) ) ,

(@o|Ue (0, —00)|®o)
where the adiabatic evolution operator U.(¢, to) from t to ¢y is defined in the interaction
representation starting from the Hamiltonian in the Shrédinger representation H (e, t—

t()) as

Ult.ty) = exp [

] U.(t,to) exp [-i hot]

(3.6)

Ut tg) = exp [—%/ TH(G,T)] . (3.7)
‘0

From an expansion of U, in powers of the residual interaction and integrations over

time in Eq. (3.5), a series expansion of the ground state |Gy) is obtained [73], i.e.

1 n
80y =) (50 . hl) |Po tinked ; (3.8)

n

where the sum runs only over linked diagrams, i.e. where |®g) does not appear as
an intermediate state. The latter is enforced at the level of (3.5) where the denomi-

nator fixes the normalization of |©y) by eliminating disconnected vacuum-to-vacuum
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diagrams [79]. Likewise, a similar expansion of the ground-state energy Ey reads

1 n
Ey= Gplh h Do) connected 3.9
0 60-!-%:( of 1(50-h0 1) |Po) ted s (3.9)

where the sums now only runs over connected diagrams.

However, if the expansions of Eqgs. (3.8) and (3.9) are truncated at a given order,
non-converging results arise if the vacuum interaction contains a non-perturbative
hard core. On the other hand, it is possible to extract a series of ladder diagrams where
a succession of interactions v scatters nucleons into particle states. This series can
be replaced by a reaction matrix G which resums those Brueckner’s particle-particle
ladders and can be represented by the self-consistent Bethe-Goldstone equation [[75]-

[78]]
Q

G(w) =v+vw_h0

G(w), (3.10)

where w is the starting energy that corresponds to the in-medium energy of the
nucleons at the location where G is inserted, whereas the Pauli operator @) excludes
occupied states, i.e. those below the Fermi level er associated with the unperturbed

vacuum |®g), that is

Q= Y |pp)prl. (3.11)

6p,ep,>€ Ia
The replacement of the initial interaction by the re-summed G-matrix modifies the
short-range part of the in-medium two-body wave function, such that it is strongly
suppressed over a distance of the order of the range of the repulsive core, that is the

healing distance, or wound [70].
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3.2.1 Expansion of the ground-state wave-function and en-
ergy

The general idea consists in regrouping, if necessary, clusters of diagrams under G in
such a way that a converging series is obtained, i.e. a truncation at a given order
provides a result of a given precision [74]. Once the G-matrix has been computed, it
replaces all instances of v in diagrams, excluding those where successive G-matrices
are connected by a two-particle intermediate state, that is no particle-particle ladder

connecting two G-matrices must be written.

Hole-line expansion for non-perturbative potentials

While the G-matrix regularizes the hard-core repulsion, an expansion in terms of G
for the ground-state and single-particle energies remains non-perturbative, in such
a way that the proper expansion parameter is the number of hole lines [80]. At
lowest order in the hole-line expansion, the ground-state energy E is given by the
Bruckener-Hartree-Fock (BHF) approximation. The BHF approximation consists of

a self-consistent solution of the equations

g g ] y 1
Ey ~ (ij|Gw)|ij) = (zg]v]zy)+§mnz>:EF(ZJ]v|mn)w_€m_en+m
x (mn|G(w)|ij), (3.12)

where ¢; are the on-shell single-particle energies that are obtained by a functional
derivative of the ground-state energy and the two-body matrix elements of G(w) and v
are anti-symmetrized. Thus, the lowest order in hole lines for Ey (two hole lines) leads
not only to a term with one line in the self energy but also to a rearrangement term
containing two hole lines and coming from the functional derivative of the particle-

particle ladder propagator.
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Perturbative expansion

If the starting interaction is in fact perturbative, as it will be the case for low-
momentum interactions, in-medium corrclations can be treated through converging
perturbative series in powers of v for Ey and ¢;. Indeed, the ladder series from (3.10)
becomes perturbative, such that it can be truncated at a given order in intermediate
ladders. For instance, the ladder series for v« is almost converged at second order
in MBPT [81]. For the relevant diagrams that appear at second order from NN and

NNN interactions, refer to Table 5.1 in section 5.1.1.

3.2.2 Choice of the one-body potential I'

The proper choice of the unperturbed hamiltonian hy is crucial to have a rapidly
convergent series [82]. Several choices for the one-body field I' are possible, among
which (i) a phenomenological expression that is fixed a priori, (ii) the Hartree-Fock
approximation where € are eigenenergies of the Schrédinger equation associated with
the vacuum force, or (iii) a more involved approach necessary for non-perturbative
potentials, e.g. where the one-body field I" is constructed at lowest order in the on-
shell G-matrix or includes rearrangement terms (extended Brueckner-Hartree-Fock

calculations) [[83]-[86]].

Note that the truncation orders can be different in the series for the energy Ey
and the self-energy ¢;, e.g. Ey can be computed at second order while single-particle
energies are derived from a more simple (Woods-Saxon...) potential or only at first
order in v. Still, adding more orders in the expansion of the single-particle energies
adds extra diagrams in the series for Ey such that it converges faster. Finally we
remark that description of pairing within a diagrammatic framework is possible by

defining anomalous propagators and allowing for anomalous contractions in addition
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to the normal contractions. Refer to [87] for details.
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Chapter 4

Phenomenological Energy Density

Functionals

4.1 Phenomenological Nuclear Energy Density

Functionals

The nuclear energy density functional (EDF) approach, due to its computational
tractability, is the many-body method of choice to study medium- and heavy-mass
nuclei in a systematic manner [26]. The central element of EDF approach is the
energy density functional. Currently available realizations of the EDF approach, all
empirically constructed, vary in the way they parameterize this energy density func-
tional [26]. These include the quasi-local Skyrme, the nonlocal Gogny and relativistic

models.

4.1.1 Motivation from density functional theory

Historically, nuclear EDF based approaches were motivated by starting from effec-

tive interactions in the particle-hole and particle-particle channels and solving the
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self-consistent mean-field equations [26]. Recently, the focus has shifted towards
considering the energy density functional approach as motivated from effective field
theory where the various densities of the system are the basic low-energy degrees of
freedom [35].

In parallel, the development of density functional theory (DFT) [[88]-[91]] in quan-
tum chemistry and condensed matter physics seems to have given nuclear energy den-
sity functional approaches a starting theoretical basis. DFT has been applied success-
fully to the structure of quantum many-body electronic systems (atoms, molecules,
solids...). The comparatively small computational cost of the approach makes DFT
the only feasible solution for systems with large number of electrons [92]. Instead of
the many-body wave-function, DFT takes the fermion density as the “fundamental”
variable.

The two building blocks of DFT are

e The Hohenberg-Kohn theorem [95], which states the existence of a functional
Fp] such that the ground-state energy of a system of N particles in a one-body

external potential u(r) can be written as

) = Flo + / &7 () p(7) (4.1)

where F[p] only depends on the Hamiltonian of the interacting system, thus
is independent of the external potential u(7). The ground- state density po(7)
and energy Ey = FE,[po] are then obtained by minimizing E,[p] with respect
to a variation of the density p(7) under the constraints that p is positive and
J dFp(F) = N. It should be noted that this existence theorem does not imply
that all the information about the ground state is contained in the electron

density p(7) [93].

e Due to its practical difficulties, DFT is not implemented as a pure functional
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of the density, a la Thomas-Fermi theory [94]. Rather, one makes use of the
Kohn-Sham implementation [97], which asserts that for any interacting system,
there exists a unique local single-particle potential us(7) such that the ground-
state density of the interacting system equals the ground-state density of the
auxiliary non-interacting system in the external potential ugs(7), that is

2

¢(7) (4.2)

p(r) = prs(F) = Z

expressed using the lowest N single-particle orbitals, ¢;(7), which are solutions
of the one-body Kohn-Sham equation
v2
5+ ()| 60) = 6, (43)

where ¢; are the Kohn-Sham eigenvalues.

In the Kohn-Sham scheme, F' is split into
Flpl = Tlp] + Ulp] + Exclp], (4.4)

where (i) T'[p] is the universal (kinetic) energy functional of the non-interacting sys-
tem, (il) Ul[p] is the Hartree functional depending on the two-body interaction po-
tential V(|7 — 7}|), and (iii) E..[p] is the so-called exchange-correlation functional,
including the Fock term and all remaining many-body correlations. When E,.[p] is ne-
glected, the Kohn-Sham equations reduce to the standard self-consistent Hartree ones.
Additionally, the Kohn-Sham potential is given through the condition that ground-
state energies of the interacting and non-interacting problem (U[p] = Ezc[p] = 0) are

met for the same density p(7), i.e.

0 Eqc|p]
op(F)

ugs(T) = u(F) +
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While the Kohn-Sham potential is local/multiplicative, the exchange-correlation func-
tional might be highly non-local. The main difficulty for DFT practitioners lies in
the fact that no prescription is given to construct F|p], i.e. the universal exchange-

correlation part E,.[p]. Several levels of realization exist to construct

E.[p) = /di"sm(f'), (4.6)

and they correspond to adding more complex dependencies in the functional E,.[p].
The standard classification separates, from the most simple to the most involved level

of description [89)]:

e The local density approximation (LDA), where E,.[p] only depends on the local
density, p(7) and is matched onto the energy per unit volume of the correspond-

ing infinite homogenous system,

o The generalized gradient approximation (GGA), where additional specific de-

pendencies on the gradient Vp(7) are added to E.[p],

e The meta-GGA, which introduces as an additional degree of freedom the kinetic

energy density of occupied Kohn-Sham orbitals

2

Vi (7) (4.7)

UEDY

e The hyper-GGA, which takes also into account dependencies of E,.[p] on single-

particle energies ¢; and occupations p; ,

o The generalized random phase approximation (RPA) which involves unoccupied
Kohn-Sham orbitals, and can be seen as the ultimate goal in terms of global

accuracy.
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However, in spite of several recent developments, a rigorous connection between
nuclear EDF and DFT approaches is yet to be found [[98]-[103]]. The key aspect of
this problem is the fact that unlike the systems that are studied in condensed matter
physics and quantum chemistry (bound by external potentials), the nuclear many-
body problem involves a self-bound system. In contrast to the standard Hohenberg-
Kohn theorem which is symmetry-conserving, the nuclear Kohn-Sham potential im-
plementation 0f EDF approaches breaks symmetries of the Hamiltonian such as trans-
lational and rotational symmetries. Even though projection techniques can be used
to restore these symmetries, understanding its implications for DF'T requires further
theoretical development. Additionally, the presence of both spin and isospin degrees
of freedom and the importance of pairing correlations need to be considered in nuclear
EDF approaches. For a related formulation of pairing within the DFT framework,
refer to Ref. [104] although the formulation corresponds to a system coupled to a

particle reservoir.

4.1.2 Single- and multi-reference EDF formulations

As mentioned in section 1.1, the fact that nuclei are self-bound fermionic systems
with both collective modes and individual excitations existing on the same energy
scale make the nuclear many-body problem a complex one. In order to handle this
problem, nuclear EDFs incorporate the assumption that these correlations can be
divided into two different classes that can be incorporated in two different steps (i)
short-range in-medium correlations which are recovered at the level of single-reference
energy density functional (SR-EDF) calculations and commonly referred to as mean-
field calculations (ii) long-range correlations that originate from collective modes and
symmetry restoration. These are handled by multi-reference energy density functional
(MR-EDF) calculations.

In SR-EDF calculations, the EDF is a functional of the normal, p;;, and anoma-
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lous, ;j, parts of the OBDM defined in appendix 9.2.2 and 9.2.5. In general, the

energy density in SR-EDF is given by [105]

Esr[®o] = Esrlpij, ks, K
1 1 i
= tijpsu+ > Z VP Pik P1j + 1 Z Uik Kkik Kij
ikl ijkl

1 1
PP x + PR L
+g § : Vi jkimn Pli Pmj Pk + 1 E : Vi iklmn Pli Kjk Fmn s
ijklmn ijklmn

(4.8)

where v denotes the effective interaction in the respective channel. Traditionally, SR-
EDF calculations have been referred to as self-consistent mean-field theory where one
starts from an effective two- and three-body interaction and calculates the Hartree-
Fock (HF) or Hartree-Fock-Bogoliubov (HFB) energy density. However, SR-EDF
calculations are distinctly different from mean-field calculations in that specific prop-

erties of the interaction vertices, e.g. v/}, = vjj}, are not satisfied [105].

SR-EDF calculations can reproduce static collective correlations such as pairing
and deformation through the symmetry breaking of the auxiliary state |®y) with
respect to which the OBDM is defined. This does not hold for collective modes and
dynamical correlations, which require Multi-Reference (MR) calculations. Motivating
from Hamiltonian-based generator coordinate method (GCM) calculations [105], MR-
EDF is formulated as

_ 2oaemr Jo f1Emr[®o, P1] (Po|P1)

£ = 7 19
M Sorentr F3 1 (®o]®1) (4.9)

where Epg[Po, P4] is the MR-EDF and the weight functions fo, fi are determined
by symmetry consideration and/or diagonalization. If one follows the Hamiltonian
formalism, the most natural guidance for the construction of eg[®, ®;] is pro-

vided by the generalized Wick theorem (GWT) [105] which asserts that one obtains
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Enr|Po, 1] by replacing the SR density matrices by transition densities [105]. Nev-
ertheless, the application of this prescription to currently available EDFs encounters
several pathologies which have been traced to the occurrence of non-integer pow-
ers of the density matrix in the functional. One proposed solution [105] is the re-

parameterization of EDFs in terms of only integer-powers of the density matrix.

4.2 Skyrme energy density functionals

In the Skyrme-EDF model [26, 106], the energy density functional £ is given as the
sum of kinetic, particle-hole, particle-particle (pairing), Coulomb and center-of-mass

correction terms, i.e.

8[,0, K, K/*] = gkin. [P] + Sph [p] + gpp[pv R, Ii*] + gCoul. [p] + gc.o.m. [,0] . (410)

£ is quasi-local and is expressed as the single integral in coordinate space of a local
energy density. The expressions for &Exin, Ecou., and & om. can be found in the lit-
erature [26]. They are also discussed in section 6.1.4 in relation to the application
of the density matrix expansion [[107],[170]] to the HF energy from a generic NN

interaction.

4.2.1 Particle-hole functional

The particle-hole part of the Skyrme-EDF resembles meta-GGA functionals in a DFT
context as it uses explicit dependencies on several local densities and currents, includ-
ing spin-orbit densities. This is crucial for the proper treatment of finite nuclei. The
functional is the most general bilinear combination of all local densities, built from
the density matrix up to second order derivatives, in such a way that & remains

invariant under the transformations associated with all symmetries of the nuclear
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Hamiltonian, i.e. parity, time-reversal, rotation, translation, gauge and isospin trans-

formations [126]. The functional reads
Epnlp] =Eseyrmel ]
= Z /dFA”” p7 p? + APPP pIApT + APT <quq Sy .jq)
q
+ AP .54 A FT AT+ APV (;N T4 79.V % gq)
p gy
JJ Q0. F
+4 [(Z‘Jgu) (ZJZH) +Z'ngjgu - 231 'Fq]
2 [z pv

+ Z /df'Bp” pqpq’ 4+ BPAe qupq’ + BFT (quQ’ _ 5’!1 .j'q’)

a#qd

+B=51.57 4+ Bdg1. A5 4 BeYY (pﬂ? ARSI DL

+ AVsVs (V . gq)(v . gq) +AJJ(Z J9eJa gqq . qu)
f124

+ BYVs (V. 59 (V - 57) + BT ( N g, g - 50T q’)

s
m
+ B [(Y ) (X 98) + X Jada — 251 F, (4.11)
# © 7

where the coupling constants AX /BX refer to the interaction between particles with
identical /different isospins, respectively. The densities that occur in Eq. (4.11) are
given in appendix 9.2.3. The coupling constants AX/BX may further depend on
densities that do not involve spatial derivatives. Historically, Eq. (4.11) was derived
starting from the HF expectation value of a Skyrme interaction [108] which contains
zero-range terms plus gradient corrections to encode finite-range effects, and is a sum

of central, spin-orbit and tensor terms, i.e.

Uskyrme (By ™) = Veent. (R, 7) + vis(R, 7) + Veens. (B, 7) (4.12)
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Veent (B, 7) = to(1+20P5) 6(F) + ét;; (1+ 23P,)
+%t1 (1 + 2 B [R26(7) + 6(7) K2 + 1y (1 + waBy) K - 6(7) K
L7 (F)8(F) (4.13)
ws(F) = W (61 +62) - k' x 8(F) K (4.14)

— -

vans 1) = 5t B -F) (@ F) — (31 3R] 6(7)

+t, {3 (G1- B O(7) (Go - B) — (G1 - Go) K- 8(F) 1'5] . (4.15)

In this context of viewing &,,[p] as the HF energy from a zero-range Skyrme
force, the time-even and time-odd terms of the coupling constants of the Skyrme
energy functional are related through the underlying parameters of the Skyrme inter-
action [106]. However, in the general EDF formulation, the time-even and time-odd
couplings are independent of each other, aside from relations dictated by local gauge
invariance. Even though this most general second-order particle-hole functional has
been known for quite some time, traditional studies concentrated only on those terms
which were deemed most important. Recently, the impact of all couplings is being

analyzed in various studies [[26], [159], [158]].

4.2.2 Particle-particle functional

Neutron-neutron and proton-proton pairing acts mostly in the spin-singlet channel
S = 0 of the nuclear interaction, as shown by the properties of the bare NN force [117].
At the same time, it occurs mainly in the s wave, that is a local pairing functional.

This is usually used to justify the expression of the particle-particle functional £, as

Ennlps i K] = / a7 47 3|2 (4.16)
q
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where usually

55 _ Lo ( Po )a}
AP = = |1 — . 4.17
4 l: 7 Psat ( )

The latter expression derives from a density-dependent delta interaction (DDDI) [127,

1—7 (Po(é)>a
psat

It is bilinear in the pair density 59, defined in Eq. (9.99), whereas the strength £,

128, 129, 130, 131]

(7, R) = vP(R) (7)) =t (1 E P0>

5F).  (4.18)

is taken to be the same for neutron-neutron and proton-proton pairing. &,[p, g, §*]
enforces pairing correlations only in the T' = 1 channel, as proton-neutron pairing
is usually neglected. The introduction of T = 0 pairing requires a more involved
formalism, since pairing correlations can now couple between superblocks of different
signature in the HFB equations [118, 119]. Two parameters  and « control the spatial
dependence of the coupling constant through the overall isoscalar density-dependent
coupling. A zero value of 7 corresponds to a pairing strength that is uniform over
the nuclear volume (“volume pairing”) while 7 = 1 corresponds to pairing strength
which is stronger in the vicinity of the nuclear surface (“surface pairing”). A value
n = 1/2 corresponds to an intermediate situation (“mixed-type pairing”). Values

a < 1 correspond to stronger pairing correlations at low density.

4.2.3 Self-consistent solution

After the construction of the densities p;; and x;; from an auxiliary |®), the variation
of the EDF (Skyrme-EDF) with respect to these densities results in Hartree-Fock
Bogoliubov (HFB) equations. Refer to appendix 9.7 for a brief discussions of these
equations. One solves these equations self-consistently. For detailed discussion on

this, refer to Ref. [81].
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| psat fm™°] K [MeV] (m*/m); &, EJA[MeV]| Ref |

SLy4 0.160 229.9 0.70 025 —15.97 |[135, 145]
SIII 0.145 355.4 0.76 053  —15.85 [146]
m*1 0.162 230.0 1.00 025 —16.07 [144]
oL, 0.145 230.0 070 025  —15.69 [144)
o, 0.160 230.0 070 025 —15.99 [144]
o 0.175 230.0 0.70 025  —16.22 [144]
T6 0.161 235.6 100 000 —1593 [147)
SKa 0.155 263.1 061 094 —15.99 [148]
T21-T26 || 0.161 230.0 0.70 025  —16.00 [142]

Table 4.1: INM properties of Skyrme functionals (from Ref. [81]): saturation
density pg,, bulk compressibility K, isoscalar effective mass (m*/m)s,
Thomas-Reiche-Kuhn enhancement factor «, and energy per particle at saturation
E/A.

4.2.4 Existing parameterizations

About 150 parameterizations of the Skyrme EDF have been defined so far and ad-
justed for various purposes (see [120] and references therein for the most common
parameterizations). Sample parameterizations and associated properties of INM are
shown in Table 4.1. These functionals differ in what quantities were emphasized dur-
ing the fits. For instance, T6 has an isoscalar effective nucleon mass (m*/m), =1,
providing a denser single-particle spectrum, while SKa has a different isoscalar effec-
tive mass, but also a different density dependence (density-dependent term with an
exponent of y = 1/3 instead of v = 1/6). T21 to T26 incorporate tensor terms that

differ by their neutron-neutron couplings [142].

4.2.5 Predictive power of empirical EDFs

The discussions in the previous several sections were for the Skyrme EDF. Even
though we have not discussed Gogny and relativistic [26] realizations of the EDF, the
key points of this section regarding the predictive power of currently available EDFs

holds for all three implementations. This is due to the fact that these EDFs generally
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provide comparable predictions, in spite of some variations for particular observables
[[26], [106]].

The application of phenomenological EDFs for a broad range of nuclear structure
problems has been a success story in the past few decades [26]. Recently, the growth
of available computational power has allowed large-scale projects, such as deformed
calculations of ground-state properties over the nuclear chart. Systematic calcula-
tions of ground-state properties, as well as some collective excitations, for all known
and theoretically predicted nuclei, are now available. Mass residuals over about two
thousand known nuclei obtained at the SR-EDF level are of the order of one MeV,
which is an accuracy sufficient for a direct comparison with experimental data [[121]
-[123]]. Such calculations also provide a reasonably good description of static proper-
ties beyond the ground-state energy, e.g. shell structure, pairing gaps, charge radii,

individual excitations or deformation.

Likewise, MR-EDF calculations have already met a lot of success, in particular
regarding the description of dynamical correlation energies, vibrational/rotational
excitations and super-deformed bands or shape transitions [[124], [125]]. Among
other challenging areas of interest, extensive studies have for instance been dedi-
cated to [106] (i) (asymmetric) fission properties of heavy elements, (ii) the forma-
tion of superheavy nuclei, (iii) the application of dynamical approaéhes based on the
time-dependent HF /HFB formalism to describe nuclear fission/fusion, and (iv) collec-
tive motions through the self-consistent (quasiparticle) random phase approximation
((QRPA).

However, many challenges are still ahead in order to (i) further increase the overall
precision of EDF-based methods, e.g. decrease mass residuals, (ii) describe excited
states with spectroscopic accuracy (of the order of 300 keVs), as it is achieved for
sd-shell nuclei using the Shell Model [[132]-[134]], (iii) control spin and ferromagnetic

instabilities and (iv) improve the predictive power of EDFs in the unknown region
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Figure 4.1: Illustration of the asymptotic freedom of phenomenological EDF
models in the case of two-neutron separation energies. In the major shell where
empirical EDFs are adjusted on experimental data, the agreement between all
relativistic and non-relativistic calculations is clearly seen. In the next major shell
where no data exist, discrepancies between these models become more apparent
(from J. Dobaczewski et al. [150]).
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of the nuclear chart. Indeed, while all empirical models constrained by experimental
data mostly agree with each other within the major shell they are adjusted in, extrap-
olations towards the nucleon drip-line do not agree with each other. This divergence
in the next major shell is seen for most standard observables such as the two-nucleon
separation energy or the pairing gap and is exemplified by Fig. 4.1.

Furthermore, empirical EDF models give rise to spurious effects. For instance,
the particle-hole effective vertex extracted from typical empirical functionals is rarely
fully antisymmetric (e.g. fractional density-dependencies). This leads to a series
of difficulties in SR~ (self-interaction and self-pairing) and MR- (poles and spurious
steps) EDF calculations. Some of these issues have been identified and practical cures
have been proposed [105]. However further developments are required in order to

develop a fully satisfactory theory.

4.2.6 Outlook

Various groups are pursuing different strategies to overcome the deficiencies of phe-
nomenological EDF's and make them of spectroscopic quality. In this context, spectro-
scopic quality refers to the ability to describe and predict not only the bulk properties
such as mass and radii but also low-energy spectroscopy and collective states of nu-
clear systems far below the MeV accuracy. On the one hand is the effort to empirically

improve the analytical form and couplings of the EDFs [[31]-[36]]. This includes

e The construction of EDFs containing beyond second order derivatives [35]. Re-
cently, the authors of Ref. [35] undertook the construction of nuclear EDF with
up to sixth order in gradients. It is possible to reduce the large number of cou-
plings significantly by the successive application of symmetry constraints such
as Galilean (gauge) invariance. Further reduction can be accomplished due if

one requires time-reversal and spherical symmetries. Furthermore, the number

42



of couplings also depends on whether one incorporates density dependencies on

all or some of the couplings.

Approaches that rely on the pseudo-potential perspective, start by selectively
enriching various parts of the effective interaction. There have been several
suggestions to augment the traditional Skyrme interaction given in Eq. (4.12),

e.g. adding a spin-density dependent term [33]
1 . 1 L
V = S0+ aRREN) 60 + g8 1+SPEE 6, (419

where the exponents 7, and v, are even integers in order for the EDF to remain
time-even. The contribution of these terms vanish in even-even nuclei. These
additions seem to remove spin and ferromagnetic instabilities [33] from conven-
tional EDFs, an improvement that must be seen in light of the fact that the
spin-isospin components of nuclear EDF's are less understood/constrained than

their scalar/isoscalar counterparts.

Systematic fitting of the nuclear EDF. This does not necessarily imply improv-
ing the form of the functional. Rather, it focuses on the application of advanced
algorithms to explore the manifold of permissible parameterizations with the use
of a large set of experimental data as a reference [106]. Traditionally, practition-
ers have taken the easier route of only using ground state properties of magic
and semi-magic nuclei to constrain the couplings. The availability of data on
nuclei far from the valley of stability have provided more stringent constraints
on the couplings, with special emphasis on the isovector properties [106] that
are less understood. The experimental data identified for this purpose include
(i) bulk properties such as binding energy and charge radii (ii) spin-orbit split-

ting in nuclei for which accurate data exists such as 4°Ca, 4Ca, %°Zr or 13?Sn
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in addition to 0 and 2°*Pb which are usually employed (iii) neutron radii (iv)
odd-even staggering of binding energies in medium to heavy nuclei (v) isotopic
shifts, deformations, excitation properties and (vi) nuclear matter saturation
properties and the equation of state of pure neutron matter. While no definite
proof exists that one can not obtain significant improvement by following this
method, recent results [109] indicate that the form of both the functional and

couplings might be too limiting to obtain predictive EDFs.

A complementary approach is one that relies less on fitting empirical functionals
to known data, but rather attempts to constrain the analytical form of the functional
and that values of its couplings from many-body perturbation theory (MBPT), based
on realistic two- and three-nucleon (NN and NNN) interactions [[110]-[154]]. This is
the path followed in this work, which is similar in spirit to OEP (orbital-dependent
energy potential or ab-initio DFT ) [115, 116]. The main techniques, results, possible

future extensions and outlooks are presented in the next several chapters.
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Chapter 5

Constructing Non-Empirical

Energy Density Functionals

5.1 Constructing Non-Empirical Energy Density

Functional

It is commonly asserted that the nuclear many-body problem is intrinsically non-
perturbative [38]. The strong short-range repulsion, the strong tensor force from iter-
ated pion-exchange, and the presence of nearly bound states in the S-wave constitute
the main reasons as to why the nuclear many-body problem is non-perturbative [27].
However, this argument relies on the assumption that the nuclear many-body problem
is driven by an absolute, unique Hamiltonian, without making explicit reference to the

intrinsic energy or resolution scale that underlies the modeling of such a Hamiltonian.

However, recent studies have shown that the above statements need qualifica-
tion as the nuclear Hamiltonian depends on the energy resolution scale [27]. In this
context, an important recent development is the construction of low-momentum in-

teractions starting from chiral effective field theory (EFT) interactions and using
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renormalization group (RG) methods. Even though these methods can be applied to
any interaction that originally couples low and high momentum states, chiral EFT
interactions are preferable starting points because of the consistency that character-
izes their many body-forces forces and operators as well as because of the possibility
to systematically improve their precision by going to higher chiral orders. Refer to
section 2.4 for details.

The use of low-momentum interactions simplifies the nuclear many-body problem
as it eliminates, or at least weakens, the main origins of non-perturbativeness [27].
In particular, the consistent three-nucleon interactions become perturbative as one
lowers the intrinsic momentum scale of the two-nucleon piece [28]. Calculations of in-
finite nuclear matter using MBPT in terms of low-momentum two- and three-nucleon
interactions show convergence, at least in the particle-particle channel. As Fig. 5.1
shows, including the second-order contribution from the two- and three-nucleon inter-
actions, one obtains reasonable saturation properties of infinite nuclear matter, with
weak dependence on the resolution scale [28]. Moreover, the freedom to vary the
order of the input EFT interactions and the cutoff via RG provide a powerful tool to
assess theoretical errors arising from truncations in the Hamiltonian and the chosen
many-body approximations.

All these features point to the fact that it may be possible to construct non-
empirical energy density functionals. Indeed, Hartree-Fock becomes reasonable, if not
quantitative, starting point [28], which suggests that the theoretical developments and
phenomenological successes of EDF methods for Coulomb systems may be applicable

to the nuclear case for low-momentum interactions.

5.1.1 Philosophy, Goals and Limitations

Calculations in INM [28] and the binding energies and radii of finite nuclei [29] show

that at least second-order contributions from MBPT have to be incorporated to ob-
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Figure 5.1: (Color online) Nuclear matter energy per particle as a function of Fermi
momentum kg at the Hartree-Fock level (left) and including second-order (middle)
and particle-particle-ladder contributions (right), based on evolved N®*LO NN
potentials and 3N F fit to E3,, and 74, . Theoretical uncertainties are estimated by
the NN (lines) and NNN (band) cutoff variations (from Bogner et. al. [28]).

tain quantitative success. Likewise, first-order treatment of pairing correlations using
low-momentum two-nucleon interaction show good agreement with experimental re-
sults [112]. On the side of the interaction (chiral EFT interactions in this case), one
needs to go up to N3LO in the chiral expansion in order to describe elastic scattering
phase shifts in the two-nucleon sector with x?/data close to one [12]. In addition,
these interactions still contain significant coupling of low and high momentum modes
which necessitates their consistent evolution to low-momentum to make HF a rea-
sonable starting point and obtain a convergent MBPT. Hence, a microscopic/non-
empirical calculation of the nuclear many-body problem should incorporate at least
the contribution of the diagrams shown in table 5.1 for the normal and table 5.2 for
the anomalous/pairing contributions, starting from low-momentum interactions.
Though the perturbativeness of the nuclear many-body problem when using low-
momentum interactions is quite comforting, MBPT is still numerically too expensive
for a systematic calculation of hundreds of heavy open-shell nuclei. Additionally,
the accuracy of currently favored approaches such as empirical EDF's cannot be met,

at this point, with completely non-empirical MBPT calculations. Hence, a method
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Table 5.1: MBPT contributions from NN and NNN interactions up to second-order
(Normal contractions) in Hugenholtz representation.

MBPT Order NN-interaction | NNN-interaction

(> O

First Order in MBPT

Second order in MBPT @

Table 5.2: The first-order anomalous/pairing diagrams, otherwise called Bogoliubov
contributions, from the NN and NNN interactions in Hugenholtz represenation.

D

from NN: from NNN:
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is sought to map MBPT contributions to numerically tractable forms, such as local
EDFs, with the aim of refitting some parts of the functional in a controlled and
theoretically motivated way.

In this work, we do not attempt to derive a completely non-empirical EDF. Rather,
we have a more pragmatic goal of enriching and improving current phenomenological
Skyrme EDFs by identifying and incorporating novel density dependencies arising
from missing pion physics. We further restrict the work in that only the first-order
(HF) contributions from the un-evolved chiral EFT NN + NNN interactions at N2LO
have been calculated. Subsequently, we apply the DME to the resulting nonlocal
energy functional to obtain a quasi-local Skyrme-like EDF. In practical implemen-
tations, this is to be followed by refit of the couplings, which has the added benefit
that the whole scheme can be implemented in existing codes with minimal modifi-
cation. Refer to section 8.1 for more details. With the goals and limitations of the
work in perspective, the justifications to concentrate only on the HF contribution
from non-evolved chiral interactions and subsequent application of the DME are as

follows:

e First, it is well known that RG evolution of interactions to low-momentum
modifies only their short distance structure [15]. The input chiral interaction has
both contact and finite-range pion exchange parts, as given by Eq. (2.12). The
RG evolution modifies mostly V,,(A). However, the energy contribution from
Vct(A), at least at the HF level, is of the same form as conventional Skyrme
EDFs. Thus, refit of the Skyrme parameters should compensate for the RG
evolution of this part of the interaction. As we are primarily interested in
identifying the dominant density dependencies arising from finite-range physics,

it is justifiable to apply the DME to the energy contribution from V.

e Second, inclusion of second-order contributions necessitates the development of
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non-trivial extensions of the DME technique, as those expressions involve non-
localities both in space and in time [166], while the currently available DMEs
can only treat nonlocalities in space [[170],[107]]. This can be illustrated by
contrasting the contributions to the energy from the HF and second-order di-
agrams. Discarding all spin and isospin coordinates for the sake of simplicity

and considering only NN interaction, V¥V,

EHF /df'l diy VN (|7 — 7)) p(, 72) p(7a, 71) (5.1)
e o« Y [dndndnadn [cb;(ﬁ) F5(7) VIV (17 — i2l) 6y () ()
afBvyé
X 5 (75) 63(7) VN (7 — 7al) @a(7s) a(72)

% Pac P88 (1 - p‘/”y) (1 - p55)
€a + €3 — €4 — €5

: (5.2)

where p,o is the density matrix, defined in Eq. (9.70), in the canonical single-
particle basis of the reference HF reference state and ¢, is the energy of the
single-particle level. While the HF contribution, £7F, can be expressed as a
functional of p(7), 75) only, the same cannot be said about the second-order con-
tribution, 82"d7 or any beyond-HF contribution. This is due to the occurrence
of energy-denominators. A satisfactory extension of the DME that can properly
handle beyond-HF contributions and in particular the energy-denominators is

yet to be invented [166].

Third, it is well known that the dominant contributions to bulk nuclear proper-
ties are of Brueckner-Hartree-Fock (BHF) type [38]. Operationally, this amounts
to replacing the vacuum interactions in the HF expression by a Brueckner G-
matrix, which is discussed in section 3.2. But, the G-matrix “heals” to the bare
interaction at long distances. This is usually demonstrated by studying the

behavior of the S—wave in-medium pair wave-function (at zero center of mass
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momentum) of the Bethe-Goldstone equation in a repulsive hard-core spherical

potential [38]

, sin(kr) sin(kr.) g(r,rc)
= =5 IEASALL TR .
o(r) kr kre  g(re,re)’ T=Te (5.3)

¢(r) = 0, r <, (5.4)

where r. is the radius of the hard-core, k is the relative momentum of the

two-particles and

o0 : / : !
o) = 11 Ak’ sin(k’r) sin(k'r)

e (5.5)

Figure 5.2 shows the solution of Bethe-Goldstone S-wave solution for rela-
tive momentum, kK = kp/2, and the uncorrelated two-body wavefunction,

¢o(r) = sin(kr)/(kr). Simple analysis shows that g(r,r’) decreases rapidly
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Figure 5.2: (Color online) The S-wave solution of the Bethe-Goldsone equation and
the uncorrelated S-wave function.
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with increasing 7, with a distance scale of 1/kp. One defines the healing dis-
tance, 7, which refers to the distance beyond which the the wave-function
effectively attains the unperturbed value. This is given by the approximate re-
lation kpr, =~ 1.9, more or less independent of the relative and center of mass
momenta [38]. Then, one can use Eq. (3.10) to show that G—matrix heals to
the bare interaction in the same manner. Hence, applying the DME to the
finite-range part of the interaction, viz, V. at the HF level will capture the
same contributions to the density-dependent couplings as given by the finite-
range part of thve G-matrix in a more sophisticated BHF calculation. In this
way, the dominant density-dependence that arises ffom the finite-range of the

interactions is accounted for.

e Finally, the algebra required to obtain even the starting point for the DME (viz,
DME on the HF energy from chiral EFT NN + NNN interactions at N2LO)
is so tremendous that most of the work can be done only using some form of
automation [[156], [161]]. This is especially the case if one wants to have the
complete form of the functional without any restricting assumptions regarding

time-reversal invariance and/or spherical symmetry.

This work is just the first step in the long-term project of building non-empirical
nuclear EDF. There are several possible extensions that can be made in the future.

Refer to section 8.2 for a related discussion.

5.2 The Density Matrix Expansion (DME)

The DME was originally proposed by Negele and Vautherin [170] to derive an ef-
fective nuclear Hamiltonian. In the first paragraph of their paper [170], Negele and

Vautherin note that the purpose of the density matriz expansion is to relate the compu-
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tationally simple effective interactions of & and Skyrme forces to the computationally

cumbersome theory derived directly from the nucleon-nucleon force.

In deriving an effective nuclear Hamiltonian. Negele and Vautherin avoided fol-
lowing the moment based expansion which were considered in earlier works [167] in
which one considers expansions of the fourier transform of a short-range interaction.
Their rational for doing that was the fact that the long range part of the nuclear
G-matrix heals to the bare one-pion-exchange-potential (OPEP), which causes con-
vergence problems for moment based expansions. Hence, they invented an expansion,
the density matrix expansion, that exactly includes the long-range OPEP tail for the

nuclear density matrix [170].

5.2.1 Basics of the DME

The central idea of the DME is to factorize a local or nonlocal density obtained from
the one-body density matrix (OBDM) by expanding it into a finite sum of terms that
are separable, usually, in the relative and center of mass coordinates, (7, ﬁ) There
are a few exceptions to the (7, ﬁ) choice as the DME-coordinates. These exceptions
are mostly relevant to the the application of the DME to the HF energy from the
chiral EFT NNN interaction at N2LO. Refer to section 7.2 for details. Adopting
(7, ﬁ) as our DME-coordinates and the notation introduced in Ref. [168], one writes

the general DME formulae

lmax

p(F1,72) ~ > Tf(kr) PuR) (5.6)
=0

mmax
(M, 7)) = Y T5(kr) Qu(R) | (5.7)

m=0
nmax

i)~ (k) Pu(R) | (5.8)
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omax

S~ Y TE(kr) Qu(R) (5.9)
0=0

GolFiy) ~ Y wS(kr) Hu(R) | (5.10)
u=0

where £ is a momentum scale to be determined that sets the scale for the decay in
the direction of the relative coordinate 7, I (k) are the so-called 7—functions that

remain to be specified, and

{PI(E)’ Qm(é)} € {pq(ﬁ), Tq(ﬁ)a Jq,uu(é)a 6pq(ﬁ)v qu(é)a §’q(§),

Fy(R), T,(R)}, (5.11)

denote the local normal densities

{Pa(B), Qo(R)} € {Bo(R), Ty(R), Joun(R), Vig(R), Apy(R), 5,(R),

-

Fy(R), T(R)}, (5.12)

refer to the local anomalous densities, while G,(7/2) and Hu(ﬁ) are from the set of

local normal or anomalous densities.

The DME emphasizes separability of the expansion in the relevant expansion-
coordinates above the approximation of nonlocality. That is, even for local densities
that depend on a single coordinate and hence with no nonlocality, one can talk about
an expansion in terms of the DME-coordinates as stated by Eq. (5.10). In a sense,
one is approximating the nonlocality in one of the DME-coordinates. For exam-
ple, p(7) = pq(ﬁ + 7/2) can be expanded in terms of quantities that depend on
R and 7 separately. In practice, however, the emphasis on separability above the
approximation of nonlocality is of limited use as most DME approaches rely on an-

alytical techniques that fail to work when there is a long-range of nonlocality in the
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expansion-coordinate.

This work concentrates mainly on the expansion of the nonlocal scalar and vector
components of the normal part of the density matrix, viz, p,(71,72) and 5,(71, 7).
The extension of the approach to non time-reversal invariant systems is important
for constraining the nuclear EDF for those systems. This is discussed in section 5.3.6.
The apparent need for the DME of the local densities (pq(7/2) and J,;('Fl /2)) that
appear in the exact HF energy of time-reversal invariant systems, justifications for
why one should avoid expanding these densities and related technical problems and
their possible solutions are discussed in section 5.3.7. The expansion of the nonlocal
anomalous densities, especially p(7, ™), has drawn some interest due to the need to
enrich the pairing part of the nuclear EDF. Nevertheless, unlike the nonlocal normal
densities, there are some conceptual and technical difficulties to be overcome. These
are discussed in section 5.3.8. We gauge and compare the accuracy of the various
DME approaches using non self-consistent measures. Finally, we augment this with

preliminary self-consistent tests. These tests are discussed in section 5.4.

5.2.2 Existing variants of the DME

The main problem to be solved in constructing a viable DME technique is the deter-
mination and optimization of the various m—functions and the identification of which
local densities occur in the expansion of the given density. The currently available
DME techniques [[170]-[173]] approach this problem in two distinct ways. On the one
hand are those methods that resum infinite order “Taylor-series” expansion terms
in a clever way, while on the other are those that start with an inspired ansatz and
paramterize and optimize the the 7—functions phenomenologically. In the first group,
we have the original DME of Negele and Vautherin and its variants [170, 171, 173],
while in the second group we have those that are mostly based on gaussian approxi-

mations of the scalar part of the OBDM [172]. In the phenomenological optimization
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of the m—functions, the parameters are optimized to recover various properties of the
OBDM such as the correct local semiclassical kinetic energy density and integrated
projector identity of the OBDM (see Eq. (5.50)).

In addition, there is yet another classification based on whether the techniques
approximate the full quantal or semi-classical approximations of the density matrix.
While most of the existing DME techniques approximate the full quantal OBDM, the
ones that are based on Wigner-Kirkwood expansion of the single-particle propagator
fall into the second/semi-classical category [173]. Further differences appear with
regards to the choice made to fix the momentum scale k. In fact, the DME of Ref. [171]
is a variant of the original one proposed by Negele and Vautherin (NV-DME) [170]
that improves the accuracy of the expansion obtained at first order (ngmax = 0) by
optimizing the momentum scale k.

In appendix 9.5.3, we recover the original DME of Negele and Vautherin using
the PSA-DME discussed in the next section and the generalized PSA-DME, while
appendix 9.5.2 contains the key points of the semi-classical Wigner-Kirkwood based

expansion of the density matrix.

5.3 PSA-DME

5.3.1 Motivation for a PSA reformulation of the DME

One of the main shortcomings of all existing DME formulations is that they are
mostly focused on the scalar part of the OBDM. For instance, Negele and Vautherin
acknowledge in their seminal paper that they were not able to design an approximation
of the vector part of the OBDM on the same level, and thus with the same accuracy,
as the one they obtained for the scalar part. This is an essential problem in view
of constraining the nuclear EDF non-empirically. Indeed, the vector part of the

OBDM is non zero in spin-unsaturated nuclei, i.e. in almost all nuclei. Moreover,
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all available DME techniques hold only for time-reversal invariant systems, with no
apparent extension to non time-reversal invariant systems.

These problems convinced us to formulate a DME approach that has the following
qualities: (i) the accuracy for the scalar part of the OBDM should be comparable to,
if not better than, the existing DME techniques. It should be mentioned that the
percentage error of existing DME techniques for the scalar part of the OBDM is quite
small for various measures, which should be enough to capture the correct density
dependence of the couplings in the resulting EDF. (ii) The DME of the vector part
of the OBDM should have a comparable accuracy to that of the scalar part. Except
for the DME of Negele and Vautherin [170] which performs badly for the vector part
of the OBDM!, the other techniques either do not refer to the vector part at all or
their accuracies are not gauged properly. (iii) It should readily be extended to non
time-reversal invariant systems.

Hence, we formulated a new DME technique which we call PSA-DME where PSA
stands for phase space averaging. Note that the PSA formulation of the DME is
not completely new. In fact, Negele and Vautherin start using the “local energy
approximation” technique of Ref. [174] and mention the possibility of phase space
averaging in infinite nuclear matter. For the actual derivation, they revert to a formal
Bessel-function plane-wave expansion. From a formal point of view, the PSA approach
developed below differs from that mentioned in Ref. [170] and is applied consistently
to both the scalar and the vector parts of the OBDM. For instance, in spite of the
weak angular dependence of the scalar part of the OBDM [176], the inconsistency
in the order of application of the angle-averaging and series expansion that exists in
Ref. [170] is not an issue in the present case. Still, it is shown in appendix 9.5.3 that

our PSA-DME approach can be used to recover the original DME.

In the following, some of the key properties of the momentum phase space of

tRefer to section 5.4 for actual percentage errors of the various DMEs.
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finite Fermi systems are identified with the aim of incorporating these features into
the m—functions with the PSA-DME approach. We implement two different strategies
to incorporate these phase space features: analytical derivation and phenomenological

optimization.

5.3.2 Momentum phase-space of finite Fermi systems

The momentum phase-space distribution of quantum systems can be studied via a
multitude of quantum phase-space distribution functions [169]. Studies using the
Wigner distribution in Ref. [177] and the Husimi distribution in Ref. [178] show that
the local single-particle momentum distribution displays a diffuse and anisotropic
Fermi surface at the (spatial) surface of the finite system. These are peculiar features
of the momentum phase-space distribution that are not present for homogeneous

systems.

The Wigner distribution function [175] is often used to approximate the phase
space distribution of nuclei. It has been studied both analytically and phenomeno-
logically for various models applicable to nuclei (see Refs. [176], [179] , [180]). The
models include pure harmonic oscillator with sharp and smeared occupations, har-
monic oscillator with orbital occupation from DDHF and meanfield calculations with

a Woods-Saxon potential.

The analytical calculations of the various models give the same general form for
the Wigner distribution function. For the case of magic nuclei and in the absence
of spin-orbit interaction, the distribution function fq(é, P) in a harmonic oscillator
potential depends solely on the dimensionless parameter & [180]

h 5 mw
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and is given by

~ gef & ’
K=0
where hw = 41A7'/3 is the oscillator size parameter, K is the principal quantum

number and L¢ is the associated Laguerre polynomial, given in appendix 9.1.1, and
nk is the occupation probability. In Ref. [177], the authors parameterize the Wigner
distribution using the Fermi distribution function. All these studies indicate a diffuse
fermi-surface for the local momentum distribution with the diffuseness being much

pronounced around the nuclear surface.

The above model calculations are able to capture the diffuseness, but they do not
show anisotropy /deformation of the local fermi surface. In Refs. [178] and [177], the
authors solve for the single particle wave functions in spherical Woods-Saxon potential
with no spin-orbit interaction and show that the local fermi surface is anisotropic.
This has no counterpart in the phase space distribution of infinite-fermi systems
(INM). The anisotropy of the local single particle momentum phase space distribu-
tion can be quantified with the lowest order deformation of a spherical phase space
distribution, viz, quadrupolar deformation. In Ref. [178], the local quadrupolar de-

formation of the momentum Fermi surface (for a given isospin) is given by?
J dp3(& - §)° — P°] Hy(7, P)
[ dpp*H,(7, )
3 - ~ —
= [ > 1@ Vg pf — 1] + O((kEro)?) (5.15)

PP =

74(7)

where H,(7,p) is the Husimi distribution, 7o is a length scale used in the Husimi

distribution and k% is a short-hand notation for the local Fermi momentum k‘l’,(ﬁ)

2As the anisotropy is usually not large, it is not necessary (at least in this work) to go to higher
multipoles to quantify the deformation.



defined in a local density approximation through
-, - 11/3
KL(R) = kY = [371'2 pq(R)] . (5.16)

In subsequent formulae, the R dependence of k;’,(ﬁ) is mostly not shown explicitly
for notational simplicity, except in formulae/places where we have to remind its R
dependence. Equation 5.15 is computed in the basis ¢;(Fg) that diagonalizes p;;,
i.e. the basis from which the Slater determinant |®) is built. Details on the Husimi
distribution and simplified expression of P#(7) in spherical symmetry suitable for

semi-magic nuclei is provided in the appendix 9.5.1.

Fig. 5.3 shows the quadrupole anisotropy of the local neutron momentum distri-
bution calculated for a selection of semi-magic nuclei. Single-particle wave-functions
are obtained from a Skyrme-EDF calculation performed with the BSLHFB code [181]
using the SLy4 parametrization of the Skyrme EDF. The pairing terms in the EDF
were switched off. Fig. 5.3 also displays the local neutron Fermi momentum (Eq. 5.16)
in order to locate the position of the nuclear surface. In spite of pronounced shell fluc-
tuations, the result corroborates the conclusions drawn in Ref. [178]; P}(R) becomes
negative just inside the surface, denoting an oblate momentum Fermi surface while,
outside this region, the local momentum Fermi surface becomes strongly prolate. In
both cases, we have taken an axis normal to the nuclear surface as the reference axis.
The next two sections show how we make use of these properties of the phase-space
distribution of finite Fermi systems to design our PSA-DME of both the scalar and
vector parts of the OBDM.
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R [fm]

Figure 5.3: The quadrupole anisotropy Pé"(ﬁ) of the local neutron momentum
distribution in a selected set of semi-magic nuclei. The black, red and blue vertical
lines indicate the approximate half-radii (where the density becomes half of the
density at the origin).
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5.3.3 PSA-DME for the scalar part of the OBDM of time-

reversal invariant systems

In PSA-DME, there are three key steps that are used to determine the local den-
sities that occur in the expansion of the given nonlocal density and optimize the
m—functions. These are: (i) Identifying of the nonlocality operator as an exponential
derivative operator acting on the OBDM. (ii) Performing a Taylor series expansion of
the operator about some momentum scale k. This is the point at which a momentum
scale is introduced in the DME, though the actual form of k is not fixed yet. (iii)
Averaging the momentum scale over the local momentum distribution of the system

of interest.

Applying the first step, viz, extraction of the exponential nonlocality operator of

the scalar part of the OBDM, one writes

r = T /o L,
pq(R + 5, R - 5) =Z¢i (7'20'(1) ‘pi(TIUQ) pgi
V-V

= eF'(ALQ_Z) Z ©; (rhoq) wi(Tioq) pi;

0

(5.17)

F=rp=F

In the next step, one extracts a phase factor ei™k in order to perform a Taylor series

expansion of the non-locality about the momentum scale k. Hence,
T ‘—7.1—62 _ik
) = (T2 -8 S o 0) i)

io

7R_

Do 3y
[N T]

pq(ﬁ+

b

7| =fg=R

—

V-V, 2\ 1 V.-V, A\
~ ATk > (YL— Y2 e XA Y2
~e {1+r ( 5 zk)+2{r ( 5 zk)]}

x> @1 (Faoq) pi(Froq) : (5.18)

i

41:1"2:1}‘
where we truncated the expansion at second order. In principle, nothing prevents to

one from including higher order terms. This is especially true in light of recent empha-
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sis on the inclusion of beyond-second-order gradient terms in Skyrme like EDFs [35].
In that case, one needs to define additional local densities in addition to the ones

given in section 9.2.3.

Noting that the derivation is restricted to time-reversal invariant systems, the
next step consists of angle averaging over the orientation of 7, which is a reasonable
step as the scalar part of the OBDM has negligible dependence on the orientation of
7 [176]. The final step involves averaging the dependence on the momentum scale k
over a model phase space that characterizes the system under study. As mentioned
in section 5.3.1, we make two different choices. First, we perform the PSA with
the phase space of the locally-equivalent pure isospin infinite matter. Denoting the

function to to be averaged as g,(k), this operation amounts to setting the local phase

space distribution, fq(ﬁ, k), as

foB k) = Ok — kL(R)), (5.19)
and thus
. 3 L
G,(k%L) = / 1k g,(k), 5.20
q( F) 47r3k%3 IElskq( gq( ) ( )

where Gq(IZ‘I’,) is the final result of the PSA. Prior to the application of the PSA,
Eq. (5.18) is angle averaged with respect the orientation of 7. This is a valid ap-
proximation as the scalar part of the normal component of the OBDM has a weak
dependence on the orientation of ¥ [176]. The subsequent application of the PSA as
defined by Egs. (5.19) and (5.20) on the resulting expression yields the DME of the
scalar part of the OBDM as

= 7T o T . 1 - -
puB+ D R=T) o Tgr) py(B) + S Iker) [zAf’q(R) —r(B)
3 -
+gkqupq(3)] , (5.21)
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with

(kL) = 3 2EE(B)T) , 5.22
(kbr) . (5.22)
p qr — jl(k%'(ﬁ)r)

(ki) = i (5.23)

The details of the derivation can be found in appendix 9.5.3, where we perform the
derivation in a more general context and recover specific cases. The reason why we do
not have II{ in the above expression is because the time-odd density, fq(ﬁ), vanishes
for time-reversal invariant systems. Note that the m—functions given in Egs. (5.22)-

(5.23) are completely analytical with no fit parameters.

However, the PSA did not invoke the diffuseness and anisotropy of the the phase
space of finite Fermi systems discussed in the previous section. With the step of angle
averaging over the orientation of 7, the orientations of 7~ and k are decoupled, implying
that the anisotropy is not going to play a key role in the subsequent approximations.

Hence, we concentrate only on the incorporation of the diffuseness.

Unfortunately, we could not find completely analytical ways of characterizing the
diffuseness. Thus, we parameterize fq(ﬁ, l:) Inspired by the nature of the Wigner-
distribution of the phase space distribution as discussed in the previous, we use the

following ansatz to model the local momentum distribution

k2. _5.2,492
e Bk /kF

f,(Bk)=C(1l+a— ,
K

(5.24)

where o and [ are parameters to be optimized, k. is the local Fermi momentum and
C is a constants determined from normalization i.e. volume integral of the momentum

distribution should give 4/37k%’. Hence, C reads

8/85/2
3T (3a+28)°
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Since it is of interest for later use, the average local RMS momentum is given by

3(5a+28) .,
28 (3 +23) F’

]VCq, = v <l€2> =

(5.26)

where the average is calculated taking Eq.(5.24) for the local momentum distribution.
To finalize the determination of the scalar part m—functions, the following steps are
applied to Eq. (5.18): (i) Average the leading term over the local momentum distribu-
tion given in Eq.(5.24). (ii) Since the next-to-leading order term is a small correction,
it is simply evaluated at the RMS momentum given in Eq.(5.26). Applying the above

prescription, one obtains the m—functions

(a k%2T2 —-28(28+ 3@)) Y 2r2/(4ﬁ)

P~ F 2

o 28 (3a + 20) ¢ (5.27)
3

m = e (kLY (5.28)
F T

where the actual values of the parameters a and 3 are obtained from numerical fits to
data obtained from converged self-consistent calculations of a selected set of isotopic
chains. For the optimization of these parameters and the results on the accuracies of

PSA-DME of the scalar part of the OBDM, refer to section 5.4.

Several comments are in order regarding the PSA-DME of the scalar part of the
OBDME and the 7—functions given in Eqs. (5.22)-(5.23) and (5.27)-(5.28). To start
with, even though the phase space of finite nuclei has a marked difference from that of
INM, the accuracy obtained using the two sets of 7—functions is different at most by
a few percentage points, with the 7—functions given by Eqs.(5.27)-(5.28) being the
better ones. This is apparent from the results of section 5.4. The reason being, unlike
the vector part of the OBDM discussed below, the scalar part is a bulk quantity with
most of its contribution coming from the interior of the nucleus where, to a good

approximation, the momentum distribution resembles the one of INM [176]. Hence,
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this is the main reason for the comparable accuracies obtained using the two sets of

7m—functions.

From the form of the #—functions, it can be seen that the DME is not a naive Tay-
lor expansion of the OBDM with respect to the non-locality in 7. The m—functions
resum dependencies on r to all orders in some of the leading terms, such that the long
distance limit of the OBDM is reproduced. In the approach followed in Ref. [170], the
truncation of the expansion about k to second order leaves I15 indeteminate. Specifi-
cally, the values of the coeflicients of terms beyond k%r in the Taylor series expansion
of I15 are undetermined. This indeterminateness gives one the freedom to optimize
I15, which can be viewed as selecting a different rearrangement and truncation of the

expansion [170].

Furthermore, the zeroth-order 7—function ITj(k%r) given in Eq. (5.22) is exactly
the one found in the original NV-DME of Ref. [170]. Just as in the DME of Negele and
Vautherin, this particular PSA reduces to the first term in symmetric INM, thereby
reproducing the exact OBDM of INM. The second order m—function I[I5(k%r) given
in Eq. (5.23) is different from

Ja(kgr)

Iy = 105
S ToN

(5.29)

which was obtained in Ref. [170]. However, this relates to the previous remark that
emphasized the freedom in choosing the second-order w-function. In conclusion, our
PSA-DME of the scalar part of the OBDM is essentially equivalent to the DME of
Ref. [170] if we choose fq(ﬁ, E) to be the phase space of locally equivalent neutron
or proton infinite matter. As a final remark, note that the phenomenological PSA
whose m—functions are given in Egs. (5.27) and (5.28) does not reproduce the exact
OBDM of INM. This should not be surprising as the model fq(ﬁ, E) used in that

case, Eq. (5.24), has a completely different analytical structure from that of the
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corresponding f, (R, k) of INM (Eq. (5.19)).

5.3.4 PSA-DME for the vector part of the OBDM in time-

reversal invariant systems

Again, restricting the discussion to time-reversal invariant systems and applying the
same set of steps as for the scalar part of the OBDM, the vector part of the OBDM

can be approximated by

— > F D T_" * (5 ~ ™
A (R+ o R = 5) = > i (Fa02q) (02|5l01) 0i(Fio1q) o

- 61—62_'7
e E () S o 0g)
10'10'2

X (02|d|o1) i (Fro1q) p5;

F]=fo=R
- VAR v/ .
~ ek {1 + 7 (VI : - zk)} Z @; (T202q)
i0'102
X (0235101) %’(ﬁﬁ@ P;'Ii ; (5-30)
7} =fg=R

where only the first order term in the expansion of the non-locality operator is kept.
The zero-order term in the above expansion provides the local spin density §q(é)
which is zero for the time-reversal invariant systems. In fact, for time-reversal invari-
ant systems, the cartesian spin-current pseudotensor density qu(ﬁ) and its gradients
are the only standard local densities at hand to express the DME of the vector part of
the OBDM. Consequently, we could not express the higher-order (beyond first-order)
terms in the above expansion in a closed form in terms of the cartesian spin-current
pseudotensor density and its gradients. Nevertheless, section 5.4 shows that PSA-

DME attains a high accuracy even at this level of approximation. Still, there is a

possibility of studying higher-order terms in the context of the generalized Skyrme
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EDF discussed in Ref. [35].

Here also we carry out the two strategies of incorporating the phase space infor-
mation: analytically and phenomenologically (parameterically). We start with the
analytical procedure which was also discussed in Ref. [170], though with no reference
to phase space of finite systems. Sticking with the first term, the authors in Ref. [170]
argued that averaging over the orientation of k and setting k = k% should be sufficient

to provide a reasonable account of the vector part of the exact OBDM. This gives

L (s T o5 T\ . : ~
Sqw (R+ §,R— 5) ~ ¢ M5 (kEr) I;rqu,u,,(R), (5.31)
where
M(kfr) = Go(kE(B)r) - (5.32)

If instead one applies the same procedure as for the scalar part of the OBDM, i.e. one
performs the PSA over the locally-equivalent pure-isospin infinite matter phase-space,

as given in Eq. (5.19), one rather obtains

h(ER(R)r)

5 (kir) = 3 Ry
F

(5.33)

However, and as mentioned in section 5.3.2, the local momentum phase-space
distribution of finite nuclei has a markedly different behavior than that of INM around
the nuclear (spatial) surface. Given that the vector part of the density matrix peaks
around the nuclear surface, it seems more appropriate to perform the PSA over a
diffuse and anisotropic phase space. Given that we do not have a parameter free
way of introducing the diffuseness and the primary quantity to be averaged, e”";,

couples the orientation of 7 and E, we limit ourselves to invoking the anisotropy of

the phase space. As a completely analytical approach, we perform the PSA over a
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deformed Fermi sphere that incorporates the information contained in the function
P{(R) discussed in section 5.3.2. We do this by averaging over a spheroidal local

momentum distribution given by
fo(R, k) = (k' — k}) (5.34)

where

k2
k! = k T -y =z 5.35
‘ F\/a(m? a(R)?  ¢(R)? (5:35)

with a(R) and c(R) being position dependent quantities that relate to PJ(R). The
specific relations and various details of the derivation are given in appendix 9.5.3.
The final result differs from that in Ref. [170] only in the analytical form of 115, The

result reads

I3 (kjr) = 3]1](;;%(1_{@” , (5.36)
where
o (2+2P(RN\Y
kS (Q_Pg(é)> kL (R) (5.37)

The PSA over the locally-equivalent neutron or proton infinite matter modifies
the analytical form of II{ compared to NV-DME, i.e. compare Eqgs. (5.32) against
( (5.36) and (5.39)). In addition, and contrary to the scalar part of the OBDM for
which it is unimportant, taking into account the deformation of the local momentum
distribution of the finite system leads to a modification of the relevant momentum
scale l?;}’?. In view of isolating the significance of such an effect, while preserving the

benefit of using PSA, one can set PY(R) = 0 in Eq. 5.37.

In the second strategy, we incorporate the phase space information by parameter-
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izing the anisotropy of the Fermi surface. In leading order, one talks about quadrupo-
lar deformation of the Fermi Surface. Thus, the PSA is performed in a phase space

distribution with
fa(R. k) = Ok — k%) (1 +a(3Cos*(9) — 1)), (5.38)

where a is a quadrupolar deformation parameter to be optimized, 6 is the angle
between R and k and Si is the SinIntegral function. Even though the deformation
actually couples R and E, we approximate this as a coupling between 7 and k to
actually obtain the final form of the 7—function. Thus, II{(R, r) reads

_ 351(kEr) a

W) =~y Gy |

—18Si(kr) — 6kfr cos(kfr) + 24sin(kfr)) . (5.39)

To parameterize the deformation parameter a, we take hint from Wigner-Kirkwood
expansion of the scalar part of one-body density matrix. As explained in appendix 9.5.2,
the h? Wigner-Kirkwood expansion of the Wigner transform of the scalar part of one-
body density matrix reads
~ h? , 2
pwicalR7) = OO hiy) = S AV A= Hly) + 5

x 8"\ — hi,) + O(RY), (5.40)

1 .
(V) + — (5 V),

where h{, = H, = % + V4(R) is the single particle Hamiltonian and A is the
chemical potential. The origin of the deformation at this order is the (p'- V)2V (R)
term. It is well known that close to the nuclear surface, the self-consistent potential
that acts on the nucleons, V,(R), and the density, p,(R), have similar profiles. Both

are usually approximated by the Woods-Saxon shape, of course with opposite signs.

Hence, we make the series of approximation WPVQ(R) R A%(ﬁ) x qu(ﬁ), with
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our final parametrization being
a = mAp,(R) + b (5.41)

where m and b are constants to be fit. If one sets @ = 0, the II5(k}%r) given in
Eq. (5.39) is recovered. In Sec. 5.4, we discuss and compare the accuracy obtained

using all of the preceding DME variants for the vector part of the OBDM.

5.3.5 k. and isospin invariance of the resulting EDF

Dealing separately with the neutron or proton OBDM in a finite nucleus, it is natural
to perform the corresponding PSA over the phase space of neutrons or protons of
the system. However, this provides m—functions with an explicit isospin dependence.
Even though this does not have any implication at this point, it does when we apply
the DME to the HF energy of two- and three-nucleon interactions as discussed in
the next two chapters. This is because the EDF that results from the application of
the DME breaks isospin invariance (but not its isospin symmetry). As mentioned in
section 2.2, there are isospin-breaking parts of the nuclear interaction, still the fact
that we get an EDF that breaks isospin invariance even when we start from one that
has that symmetry might not be a welcome feature. A simple prescription to recover
symmetry of isospin invariance is to replace all k% with the isoscalar kr which is

defined through
1/3

2
3T : (5.42)

where p(R) = pn(R) + pp(ﬁ). Fig. 5.4 shows kf., k} and the isoscalar kp extracted
from a converged self-consistent calculation of 2*4Pb. This is a neutron rich nucleus
and thus, the difference between the three momentum scales should be maximized.

Considering the small difference between k%(R), k(R) and the isoscalar kr(R) that
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Figure 5.4: (Color online) k%, k% and the isoscalar kr extracted from a converged
self-consistent calculation of 2'4Pb, a neutron rich nucleus.

we see in Fig. 5.4, the prescription of replacing k¥ with kr in the 7—functions might

be a satisfactory method to recover isospin invariance in the resulting EDF.

5.3.6 Extension to non-time-reversal invariant systems

The PSA-DME approach has enabled us to obtain both analytical and parametrized
forms of the various m—functions that occur in the expansion of the scalar and vector
parts of the OBDM in time-reversal invariant systems. However, from a formal point
of view, PSA-DME uses the assumption of time-reversal invariance only to turn off
the time-odd densities. Thus, one can envision direct extension of PSA-DME to non-
time reversal invariant systems, where the time-odd densities such as jq(é) in the
case of py(71,7) and 5,(R), T,(R), F,(R) in the case of 5(7, 7) start playing a vital
role.

Nevertheless, it will be clear from the subsequent discussions that the appearance
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of time-odd densities gives rise to various constraints that the = —functions have to
satisfy in order for the EDF (that results from the application of the DME to the
starting HF energy) to respect certain global and local symmetries. This requires
a systematic study of the problem. We tackle this by formulating a generic DME,
which we call the modified-Taylor series, and using it to perform a formal study of
the issues related to the extension of the DME to non-time reversal invariant systems.
The complete development of a DME for non-time reversal invariant systems with

specific analytical/parameterical m—functions is outside the domain of this work.

The modified-Taylor series approach was introduced in Ref. [168] and expanded
in this work. It consists of replacing the numerical coefficients in the Taylor series
expansion of the density being expanded with m—functions which are yet to be deter-
mined. These m—functions can depend on one or several variables. Illustrating the

expansion with the nonlocal scalar density and the nonlocal vector density, we have

-+ §H2(Q) I:(g Vl) + (g Vz) :] pq(T‘l, 7‘2) (543)
i1 =Fy=R
1=72
i A .
- I3(Q2) (5 : V1> (5 'Vz) Ppq(T1, 72) ;
7y =fo=R
1772
and
—_ s d 7‘? ~ F 5' - - § F o4 e d - —_
Sq(R + 5, R F 5) = HO(Q)SQ(R) + HI(Q)—Q_ (V1 — V2>Sq('l'1, 7'2)
1 . 7o\’ P\
i@ (5 9) + (5-9) [aam]
F1=r9=
—IE) =V = - Vo | §,(71, T2) (5.44)
2 2 F=rg=£

where the 7—functions are to be found analytically or optimized phenomenologically.
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Q) represents the variable on which the 7 functions depend. Requiring €2 to be scalar,
dimensionless and depend on r implies that 2 = rk. In case where 2 is assumed
to depend on 7, then = h(7,k) for some scalar function h. Here, we assume the
m—functions to be independent of the orientation of #. The choice of having four
w—functions instead of five in Egs. (5.43) and (5.44) is motivated by the need to get
a symmetric expansion in R+ g and R — g

Even though a definite approach with which to constrain € and the w—functions
is be discussed, it should be mentioned that the modified-Taylor series approach is
formally applicable to all local/nonlocal and/or normal/anomalous densities in both
time-reversal and non time-reversal invariant systems. In line with this, the modified-
Taylor series expansion for all the densities defined in section 9.2.3 and 9.2.5 is given
in appendix 9.5.7. In the construction of this expansion for the various densities,
we have not made any reference to a constructive way of fixing the basic expansion
variable, 2, and the m—functions. This is where explicit connection is realized between
the modified-Taylor series and PSA-DME (and/or other DME variants) discussed in
the previous few sections. In other words, the modified-Taylor series can be seen as a
template which can be adapted to various DMEs which in turn can be considered as
as approaches to fix 2 and the m—functions. However, there is a technical problem
in that one cannot, at this point, fully express the modified-Taylor series expansion
in terms of standard local densities. Hence, we need one more layer of assumptions

to realize the explicit connection.

Both problems are solved at once by realizing that the basic quantity that one is re-
ally interested in approximating is the energy density (or energy) at the Hartree-Fock-
Bogoliubov level instead of the local densities. One starts from the exact expression
for the energy, and approximates it by replacing the exact densities (local/nonlocal)
with their counterparts as given by the modified-Taylor series expansion. Requiring

the resulting expression to be a local EDF which fulfills various local and global sym-
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metries results in several constraints relating the different 7—functions. The required
local or global symmetries can be rotational invariance, parity, particle number, time-
reversal invariance, isospin invariance and local gauge invariance or its traditional
counterpart, Galilean invariance. Naturally, the validity of some of the symmetries

depends on the starting interaction.

In order to make the procedures clear, these steps are applied to typical terms
from the central and tensor exchange parts of the Hartree-Fock energy (of two nucleon
interaction). Since we are interested only in the form of the expression, numerical
coefficients and spin-isospin labels of the interaction are dropped. As discussed in

section 9.6.1, a typical term from the central part of the interaction takes the form
@el) = 3 [ aR dr Vitr) 3, 7)ol 73) (5.45)
q

where |®) is the slater determinant HF wave function. Next, we apply the modified
Taylor series expansion of the densities, use our assumption that the m—functions
are independent of the orientation of 7 and perform angle integration [ d€2,, thereby

obtaining

—

@ele) = r 3 / dédrmr)[(rls’( 2R + (W) () o)

2

v
+ L TR ) () (0, - 20

- ) W) (B 7D | (546

where we have truncated terms containing beyond-second order derivatives. Applying

the same set of steps to a typical term from the tensor interaction, (®|Vr|®), we obtain

(®|Vr|®) = Z/dR'dFVT(r)é’q(f'l,Fg)-é'q(f'g,ﬂ),
q
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= 4y / dR dr Vi (r) [(ng(ﬂ))zgq(ﬁ)-gq(ﬁ)

— & () T5(r) 5,(R) - q(ﬁ)} : (5.47)

with similar procedures being applicable to the remaining terms in the HFB energy.

In order to make the explicit connection between the modified-Taylor series ex-
pansion and PSA-DME (and/or other DME variants), we make use of the PSA-DME
(and/or other DME variants) to approximate the Fock energy of time-reversal invari-
ant systems and set it equal to the corresponding expression obtained from for the
modified-Taylor series expansion. In this way, the 7—functions and their arguments {2
in Eqgs.(5.46) and (5.47) that multiply the time-even densities can be fixed. Still, the
m—functions that multiply the time-odd, local and anomalous densities are not yet
determined. This is where the relations between the m—functions through symmetry

and other constraints come in to the picture.

Constraints on the 7—functions

Requiring the 7—functions to be independent of the orientation of ¥ and the need to
obtain gauge (Galilean) invariant bilinear combinations of densities in the resulting
EDF impose strong constrains on the 7—functions. The gauge transformation of the
one-body local densities is discussed in appendix 9.3. These constraints are obtained
by applying the modified Taylor series expansion to the various local and nonlocal
densities that occur in the HFB energy of a finite-range two-body interaction and
requiring the resulting EDF to be gauge invariant. Dropping the arguments of the

w—functions for ease of notation, the resulting constraints read
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(i) I(I5 + 14) =2[105])°  and  T(II + 1) = 2[ 115

- = - -

(i) mhw] = wrf and wiwd = wiw

()L = {113
(iv)II§ = TI§ where v is either j (7, 7) or 5,(F1, 72)
(v) m—functions of the pairing densities have to be real-valued functions.

One of the most important qualities of the original DME of Negele and Vautherin
is its exact treatment of unpolarized, symmetric INM at the Hartree-Fock level. Con-
straining the m—function DME to reproduce INM limit of the direct and exchange
parts of the energy density separately, we obtain the following two constraints on the

m—functions

() = 1 (5.48)

(15)* — (7'1’“0)2 I (I +114) = (3%) : (5.49)

1
where k must reduce to kf, = [37%p,]|3 when one goes to INM. Thus either one
has to use a fixed k = ki or the parameter k should be such that it evolves to

1
k — kf = [3n2p,]3 as one goes to INM.

Further constraint is obtained using the idempotency of the density matrix to
express the particle number. Le. from p, = pg, the particle number can be expressed

as
N, = Trpqz/dﬁdﬂp(ﬁ,m? (5.50)

Thus, a constraint on the 7—functions can be obtained by inserting the DME expres-
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TI2(2) p,(R) + iT8(Q) 7+ j,(R) + L (((9) (Apy(R) — 27,(R))

(5.51)

which is an integral constraint that can be utilized a posteriori to calculate some

parameters. In the original DME and its variants, it can be shown that the num-

ber constraint is satisfied exactly [202], while the PSA-DME breaks this constraint

slightly.

Finally, constraints on the m—function come from the large and small limits of r.

The m—functions should go to zero for large r and for small r, the modified Taylor

series has to reduce to ordinary Taylor series expansion. In addition, we require the

r—functions to be such that the gradient, V, and the gradient squared, [V:2, of the

densities are reproduced exactly at ¥ = 0. The resulting constraints are

o(0) = I, (0) = Hx(0) = II3(0) =

Mo(0) = M(0) =0,

H,OI(O) = 0,
lim IIg(r) = lim II(r) = lim Is(r) = lim II3(r) = 0,
r—00 r—00 00 =00

(5.52)

(5.53)

where we have dropped the density label on the 7—functions to denote that these

constraints hold for the r—functions of any density. Additionally, we used only II;
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which refers to the i*® 7—function from nonlocal densities, even though the constraints
are valid for 7; (from local densities). The only exception is there is no 73 in the local

case. In the DME of Ref. [172], the authors impose a local constraint

- Aeni || = - o, (5.54)

=0

which is to be satisfied by the DME of p,(71,72). They refer to this constraint as
the local imposition of the correct kinetic energy density. One recovers Eq. 5.54 by
combining Egs. (5.52), (9.108) and (9.109). It can easily be shown that m—functions
satisfying the small r limits given in Eq. (5.52) satisfy this constraint. ILe. this

particular constraint is a subset of the constraints listed in Eq. (5.52).

Concluding, the explicit relationship that we established between the modified-
Taylor series expansion and PSA-DME (and/or other DME variants), together with
the various constraints obtained through symmetry and other subsidiary conditions
enable us to reduce the number of independent unknown m—functions significantly.
Still, the number of unknown w—functions is larger than the number of constraint
relations. Thus, the complete determination of all the m—functions requires further
parametrization of some of the w—functions. In practice, it may not be possible
to satisfy all the relations among the w—functions and at the same time obtain a
reasonable accuracy. In that case, some of the less stringent constraints have to be
relaxed. Since this work is confined to the development of non-empirical EDF for
time-reversal invariant systems, most, if not all, of these constraints are satisfied by
default as one can simply choose the m—functions of the time-odd densities in such a

way that they satisfy the constraints.
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5.3.7 Remarks on the DME of the local densities

The apparent need for the DME of local densities can be seen from the Hartree con-
tribution to the energy originating from the central part of a two-nucleon interaction.

Reproducing the expression derived and discussed in section 9.6.1

(Vo) = / dFsdy pa(74) p1(75) (5.55)

where for simplicity, we have dropped the singlet-triplet label of the interaction and
numerical coefficients. Thus, if one requires a local EDF, one needs to approximate
Eq. (5.55) utilizing a suitable DME expansion for the local densities. Equivalently,

one can approximate the energy density, Ege,, which is defined as

1 _, .
Egen = o /dQFPq(Tl)pq/(Tz), (5.56)

with [ dQy referring to angular integration with respect to the orientation of 7.

In line with this, Negele and Vautherin, in Ref. [170], approximate the energy

density given in Eq. (5.56) as

Tyl Wq/(ﬁ)] , (5.57)

by applying the expansion technique they devised for the nonlocal density, p(7, 72),
to the product of the local densities, py(71) p,(72). However, subsequent numerical
tests [[183],[184]] indicated that the expansion of local densities is at the root of most
of the error propagation and enhancement in self-consistent tests of the DME. This

is discussed in detail in section 5.4.6.

Even though the DME makes no direct reference to the range of nonlocality, as
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mentioned in section 5.2.1, the fact that the range of nonlocality with respect to
7 is very large for the local density, pq(71/2) (where 7/ means the argument can
be 71 or 73), is mentioned to be the main reason why the DME does not work as
accurately as it does for the nonlocal density, p,(71,7). In Ref. Bhaduri78, using
a one-dimensional harmonic oscillator model with partial occupation of the single-
particle states, the authors show that the nonlocality with respect to 7 of the local
nucleon density, p,(71/2), varies on the scale of the whole system, while the scale
of the nonlocal nucleon density, pq(71,72), is set by the local Fermi momentum k(f .
Even in the surface of nuclei, one can see that p2(71,7) falls off much faster than
pq(T1)pg(72) in the relative coordinate, 7, by considering a one-dimensional surface
with an exponential decay [183]. I.e. by modeling the local density with a schematic
exponential decay function. Hence, the fact that both the local density and energy
density involved in Eq. (5.57) have a large nonlocality scale with respect to 7 make

the DME approximation inherently inaccurate, at least in one-dimensional problems.

Nonetheless, in problems with dimensions greater than one, the simple charac-
terization of the failure of the the DME of py(7/2) based on the scale of nonlocality
needs refinement. This becomes obvious when one considers closed-form analytical
expressions for p,(7,73) and py(71/2) in various model systems. In Ref. [208], a closed
form expression for p, (71, 72) is given for the case of an isotropic harmonically trapped
ideal Fermi gas in any dimension. The more relevant expression is the one given in

Ref. [185] for a three-dimensional oscillator with a smeared occupancy

plii) = e~ o] (5.589)
- 203 _ 1+t
po(T1p2) = m(l — %)% exp |:—(l/2’r'%/21 — t] (5.59)

where t = e7#"* 3 is the inverse temperature, a® = mw/h with the energy £ = (N +

3/2) hw. Thus, one can argue that both the local and nonlocal nucleon densities are
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governed by comparable scales, relegating the supposed large scale of the nonlocality

in 7 as an incomplete or limited explanation for the failure of the DME of py(7/2)-

The missing piece of the explanation can be identified once the DME-coordinates
are replaced in Eq.(5.59), viz, 12 = R+1 /2 7. This makes the difference between
the local and the nonlocal densities to be transparent. The nonlocal density falls-
off exponentially (Gaussian fall-off) with respect to r independent of the orientation
of 7, which is also the case for p,(7,73) extracted from a converged self-consistent
calculation of nuclei as shown in section 5.4. In contrast, the local density shows
maximally different behaviors depending on the orientation of 7. In short, sitting
at a particular location in the nucleus, ﬁ, one can go to the surface or deep into
the interior of the nucleus with the same r but different directions of 7. Thus, the
significant dependence of p,(77/2) on the orientation of " is partly responsible for the

failure of the DME of p,(7/2) as DMEs invariably average over the orientation of 7.

In Ref. [183], it is argued that the DME of the Hartree contribution can be avoided
by treating it exactly, especially as the exact Hartree treatment does not result in
a significant increase in numerical complexity. In a related work, Ref. [184], the
authors show that treating the Hartree contribution exactly removes most of the
errors in the self-consistent numerical test of the DME. This and related issues are
discussed in section 5.4.6. Our numerical tests include both expanded and exact
Hartree treatments. In the expanded case, the m—functions of p,(7}/2) are fixed by
equating Eq. (5.57) with the expression obtained from replacing py(71/2) in Eq. (5.56)
with

=

Vi) p(R), (5.60)

(NN ]

palFij2) — 78 py(B) £ Q) L - Fapy(B) + £ 75(0) (
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and truncating at second-order in the gradient

2

Ean ~ [T pu(R)p,1(B) — T [ Vpy(R) - Vo,o(R)
+I—Zw8<mw§<ﬂ) [pq(R’)qu/(fz’) + g (R)Dpy(R) | . (5.61)
which results in the m—functions
() = 1, (5.62)
() = \[ (—%ja(rk%) : (5.63)
Q) = (%j3(rk%‘) : (5.64)

where = rk}..

The parameterized version of the m—functions for p,(7}/,) is inspired by the an-
alytical form of p,(71/2) in the three-dimensional harmonic oscillator with a smeared
occupancy [185] as given in Eq. (5.59). First, we fix the oscillator frequency w and

the oscillator length b according to the Blomqvist-Molinar formula [38]

hw = 45473 — 25473 (5.65)
197.33

where A is the mass number of the nucleon under consideration. The parameterized

w—functions are given by

Q) = [ao + (%)2 + (%ﬂ e (5.67)

2
Q) = e (5.68)

Q) = e (5.69)
(5.70)
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where the gradient corrections are damped with a gaussian of range b. From the short
range limit of the w—functions as given in Eqs. (5.52), the leading parameter ag = 1.
The rest of the parameters, viz, {ag, a4} are fixed by fitting the exact &g, as given by
Eq. (5.56) with Eq. (5.61), with densities extracted from a converged self-consistent

calculation of a selection of nuclear chains.

A direct justification for the form of the 7—functions given in Eqs. (5.67)-(5.69)
comes from the fact that p,(z) of spherical nuclei can be fit to a very good accuracy

with the ansatz

pa(@) = Y po(O) anpre (5.71)

where p,(0) is the value of the central density and z stands for rq, ro, 7 or R. The fact
that p(0) is used instead of an additional free-parameter is due to there being local
densities that play a similar role in the DME. Fig. 5.5 shows the neutron density
obtained from a converged self-consistent calculations of **Cr and 2%®Pb and their
corresponding fit curves. Our extensive tests show that the p,(7i/2) length scale b
given in Eq. (5.66) remains uniformly valid and, perhaps not surprisingly, one can
produce the same high-quality fits to almost all nuclei. However, the parameters show
strong shell fluctuation, as can be seen from Fig. 5.6 which shows the parameters for

Cr and Pb isotopic chains.

The above discussions consider only the local nucleon density, p,(7/2). The strong
fluctuation of the other time-even local density, j;(Fl /2), With respect to 7 due to its
strong dependence on the shell structure of the particular nucleus under study, did
not permit a systematic analytical study. Hence, for the numerical tests carried out
in section 5.4.6, a simple Taylor series approximation is used to fix the m—functions
of j1/2
T nl =af =1, (5.72)

g — T

where the arguments must be extended in non time-reversal invariant systems as the
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Figure 5.5: (Color online) p,(r) for *Cr and 2°Pb from a converged self-consistent
calculation using Sly4 EDF.
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Figure 5.6: (Color online) The parameters for Cr and Pb isotopic chains obtained
after fitting the neutron density, p,(71/2), with the m7—functions as given in
Eqgs. (5.67)-(5.69).
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time-odd local densities jq(71/2), 54(71/2) T;(Fl /2) and F’;(Fl /2) do not vanish. In this
context, the discussion in section 5.3.6 is relevant. Finally, it should be mentioned that
these expansions of the local densities can be avoided once the Hartree contribution
to the HF energy from two-nucleon interaction is treated exactly. The situation is
different and more complex for the HF contribution from the chiral EF'T three-nucleon
interaction at N2LO. However, with a particular choice of DME-coordinates, we avoid

the expansion of local densities altogether. This is discussed in section 7.2.

5.3.8 Remarks on the DME of the anomalous densities

Currently, there are several simple effective interactions that are being used in the
pairing channel to perform HFB and related calculations. From a practical point
of view, the simplicity of the effective interactions is necessitated by the numerical
complexity that one would have to overcome in order to perform a 3D (deformed)
HFB calculation for deformed nuclei. Still, the accuracy of current pairing part of
current functionals calls for further improvements and constraints on the form and
couplings of the functional [26].

Similar to what is being implemented in the case of particle-hole part, two com-
plementary approaches, viz, phenomenological parameterizations and non-empirical
construction of the functional are being undertaken [112]. The non-empirical ap-
proach tries to address the role of the the bare NN + NNN interaction and their
finite-ranges by successive addition of MBPT contributions in the pairing channel.
Recently, the first step towards non-empirical pairing functional for nuclei has been
taken in Ref. [112] where the first systematic calculation of pairing gaps in semi-magic
nuclei is carried out. By fixing the normal self-energy contributions with conventional
Skyrme functionals, using low-momentum NN interaction and accounting only for the
contribution of 1S, partial wave to the pairing gaps, the results show that it is indeed

the leading order (Bogoliubov diagram) that contributes the bulk of the pairing gaps
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in finite nuclei. However, including NNN interaction in the treatment degrades the
agreement between theoretical and experimental results leaving plenty of room for

coupling to collective fluctuations.

One caveat of these works is the fact that they are limited to spherical nuclei, due
to the aforementioned numerical complexity to perform 3D HFB calculations. The
nonlocal contribution to the total energy from the pairing part can be seen from the
form of the leading order (Bogoliubov diagram). Reproducing the expression given
in Eq. (9.272) for the spin-singlet, isospin-triplet channel from the central part of the

interaction,

(B ®)puir ¢ 3 / 4, diy VO (r) 157 7) P (5.73)
q

where one notes that the nonlocal pairing density has the same role as the role of

pq(71, 72) in the particle-hole part of the functional.

From a formal point of view, the modified-Taylor series DME can be directly
applied to the anomalous densities, thereby approximating the exact leading-order
nonlocal pairing functional with a local one. For instance, the nonlocal pairing density

can be expanded as

~ uag F haid 7_" = - — - T — — - R .
x5 BT ~ W@ £ W@ (- 9o )|
F1:F2:R

1 o A ? T & ? o s o
+§H2(Q) E : V1 + 5 VQ pq(Tl,’I’g) B
T =rg=~K

; FoaN(7 =\.. . .

—II5(2) (5 1> (5 - Vg) Po(y 5 T2) ., (574

where the m—functions are yet to be specified.

However, both the technical and conceptual problems that need to be settled in
order to obtain accurate m—functions for the anomalous densities seem to be signifi-

cantly harder than for the normal densities. To start with, the size of the nonlocality
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with regards to 7 of the nonlocal pairing density, ﬁq(ﬁ + '—; . RF g) in finite nuclei
is still under discussion [[186],[187]]. It is commonly characterized by the coherence
length, £, of nucleonic Cooper pairs. Arguments based on infinite nuclear matter and
the local density approximation (LDA) seem to suggest that £ as given by Pippard’s

relation [188]
R kp
Tm* A

§= (5.75)

is of the size of the nucleus. In Eq. (5.75), m* is the effective mass and A is the pairing
gap. If the supposed large spatial extension of the nucleonic Cooper pairs in finite
nuclei were to hold without any modification, a DME approach which does not rely
on any assumed short-range nonlocality needs to be invented. In fact, the stronger
versions of these arguments stipulate that the existence of a small parameter ry/¢,
where rg is the interaction range, implies that pairing in nuclei should be insensitive
to the details of the nuclear interaction. This is supposed to justify phenomenological

parameterizations using a local functional with no derivative corrections [189].

Practical calculations in finite nuclei paint a moderately different and favorable
picture. Indeed, results from the recent non-empirical pairing calculations [112] sug-
gest that some details of the interaction may be important. Furthermore, the intuitive
arguments that one builds starting from INM regarding such quantities as the size
of the nucleon cooper pairs require precise qualification. In Ref. [187], the authors

study the neutron correlation length, &,(R), having defined it as

[dr r“’ﬁn(ﬁ,ﬂf
fdrrZIﬁn(ﬁ,ﬂ’2 ’

&n(R) = (5.76)

where the subscript n denotes that the quantities are extracted for neutrons. The
strong position (density) dependence of the correlation length can be seen from

Fig. 5.7. In addition, the authors extract ]ﬁn(ﬁ,ﬂ |2 which is shown in Fig. 5.8.

88



14

_ .. 22
12— . -
) --- "Ca
10— N N
L /./-'\.\. o 1048n
. \( C . 120
— / RANREN . g
g s .\ |
:" K

Figure 5.7: (Color online) Coherence length £(R) for 220, °Ca, °Ni, 1%4Sn, 1209n,
212 pp (From Pillet et. al. [187]).
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It can be seen that the nonlocality in 7 is in general in the range of 2 — 3fm. In
contrast, the correlation length is much larger except close to surface where it attains
values in the range of 2 — 3fm. Nonetheless, the basic quantity that is approximated
by the DME is | ﬁn(]-:é, T) |2, which reduces the significance of the large values of the
coherence length. In Ref. [190], the authors conduct a related study of a slab of in-
finite nuclear matter, confirming the smallness of the local correlation length at the

surface and its largeness inside the slab.
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Figure 5.8: (Color online) |fn(R, r)|2 calculated with HFB-D1S for %Sn, 1208n,
1289n. Scale has been multiplied by a factor of 10% (From Pillet et. al. [187]).

Hence, these realistic studies of pairing in finite nuclei point to the possibility
of developing a DME for the anomalous densities. In Ref. [191], a leading-order
semi-classical expansion of the anomalous density based on the Thomas-Fermi ap-

proximation is given as
po(7,72) = C jo(KE(R)r) pg(R), (5.77)

where j, denotes the spherical bessel function of order zero and C' stands for constants
characterizing the pairing field strength and the local Fermi momentum. In Ref. [187],

it is shown that even at this level of approximation, there is a qualitative agreement
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between the exact and the corresponding DME approximation. In Ref. [38], the
Wigner-Kirkwood hA—expansion of the Bloch propagator of a superfluid system is
derived (up to A?). Leaving aside any further approximation that might be required,
performing inverse laplace transform of the hi—expanded Bloch propagator should
recover the gradient corrections to the leading-order expression given in Eq. (5.77).
In relation to the DME of anomalous densities, further works along these lines include
working out the analytical expressions for the inverse laplace transform, recovering

the expressions for the m—functions and extensive systematic accuracy tests.

5.4 Accuracy of DME

The accuracy of a particular DME can be tested by comparing the exact density
with its DME-approximation. But, our main objective is approximating the HF
energy density and energy from two- and three-nucleon interactions. As discussed in
section 6.1 for the two-nucleon case and section 7.1 for the three nucleon case, the HF
energy expression involves a bilinear or trilinear combination of densities extracted
from the OBDM. The numerical tests we conduct in this work concentrates on how
well the DME approximates various contributions to the two-nucleon HF energy, in
both non self-consistent and self-consistent HF calculations®.

Prior to going in to the details, the following remarks are in order: (i) We consider
only time-reversal invariant systems, (ii) Primarily, we concentrate on the DME of
pq(T1,72) and §y(71,72). In the two-nucleon HF energy, these nonlocal densities oc-
cur in the Fock/exchange contribution from the central, tensor and spin-orbit pieces,
while the picture is both different and significantly more complex in the case of three-
nucleon interaction (refer to section 7.2). The fact that we concentrate mainly on the

Fock contributions is because the DME is inherently inaccurate for the Hartree con-

3In this section, we make repeated references to the HF energy from the generic two-nucleon
interaction derived in the next chapter.
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tribution from NN interactions [[183],[184]]. This is indeed confirmed in section 5.4.6,
where we advocate treating the Hartree terms exactly. (iii) In a related note, the
accuracy of the DME in reproducing the various contributions to the HF energy from
three-nucleon interaction (chiral EFT three-nucleon interaction at N2LO) has not
been tested. However, we use analytical approaches that ensure that the approxima-
tions used in those calculations are exactly the same as the ones we use for the HF
energy from NN interactions. (iv) Besides the two PSA-DMEs (the analytical and
parameterized), we include the original DME of Ref. [170] for the accuracy test, as
all the other DMEs [ [171]- [173]] concentrate only on p4(71,72) and give comparable

accuracy.

The three DMEs that we test in the following several sections are labeled as PSA-
DME, PSA-DME-II and NV-DME. For PSA-DME, the 7—functions are given in
Egs. (5.22), (5.23) and (5.36), PSA-DME-II (the parameterized version) is the one
with m—functions as given in Eqgs. (5.27), (5.28) and (5.39) and NV-DME refers to
the original DME of Negele and Vautherin with m—functions as given in Egs. (5.22)
(the same as PSA), (5.29) and (5.32).

5.4.1 Inputs to non-self-consistent tests

The generic form of the central, spin-orbit and tensor interactions in the different
spin-isospin channels are discussed in section 9.6.1, 9.6.2 and 9.6.3. The radial form
factors in the present calculations are either a gaussian or a renormalized Yukawa

(according to Ref. [192]). Specifically we use

v (r) = (5.78)

gl[e‘m“erfc(% — r/\) - (7‘ — —1“)] ,
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independently of the spin/isospin-singlet/triplet channel, (S,7T), and with vp = 50
MeV, a = 1.5 fm, m, = 0.7 fm~!. The momentum cut-off X is set equal to 2.1 fm™!

while erfc is the complementary error function which is defined as

erfe(z) = % /oo dte (5.79)

It must be stressed that none of these interactions are realistic two-nucleon interac-
tions, but rather schematic representatives. Still, they are reasonable form factors as
the objective of this section is to gauge the accuracy of the DME variants against a
reasonable reference point that is not itself meant to provide useful or realistic results.
Finally, note that neutron density matrices and local densities used in the following
sections have been obtained, for all semi-magic nuclei of interest, through spherical
self-consistent EDF calculations employing the SLy4 EDF parameterizations with no

pairing.

5.4.2 Fock contribution from Vg

In time-reversal invariant systems, the expression of the Fock contribution to the
energy from the central part of the two-nucleon interaction contains a bilinear product
of non-local matter densities as well as a bilinear product of non-local spin densities.
Since the latter also appears as part of the tensor contribution to the Fock energy,

we postpone the discussion regarding the spin-density product to section 5.4.3.

Before comparing the Fock energy to its DME counterpart, we first conduct a
more stringent test on the energy density in which the integration over the angle of

7 has already been performed, i.e. we compare the integrand

- 1 oL oo
Cfn(Rar) = E/dﬂrpn(rl:r2)pn(r2arl) ) (580)
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to its DME counterpart

-

" DM o3 n 2 %) 3 r’ n n 5[ 1
CEPMER ) = [T BB + ) k) om0

—Tu(R) + gkﬁﬁpn(ﬁ)) (5.81)

where the latter depends on which variant of the DME has been adopted. We de-
note such integrands as energy densities throughout this section. Strictly speaking,
it is necessary to multiply them by the interaction to obtain the dimension of an
energy density. Still, we postpone the folding with the interaction to the second mea-

sure introduced below. In the definition of CEPME(R 1), we have truncated terms

nn
with beyond-second order gradients, in line with current phenomenological imple-
mentations of Skyrme EDF. In addition, a consistent account of such fourth-order
derivatives in the EDF would require to go also to fourth order in the DME itself,
which is not addressed in this work. This is an important point that underlines our
philosophy that the primary purpose of the DME method is not to reproduce the fine
details of the OBDM, but rather to reproduce as best as possible the energy density
and the total energy at a given order in the expansion. The latter two are precisely

what are gauged in this work, whereas no tests dedicated to the reproduction of the

OBDM by itself are performed.
The parameters of PSA-DME-II 7—functions of the nonlocal matter density, as
defined by Eq. (5.27), read
a = —0.4130, 8 = 1.2430. (5.82)

We obtained these values fitting Eq. (5.80) with Eq. (5.81) using densities extracted

from a converged self-consistent calculations of a selected set of nuclei.
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Figure 5.9: (Color online) Comparison of CE (R, r) and CEPME (R r) where the
latter is computed from the m—functions of one of the three DMEs: NV-DME,
PSA-DME or PSA-DME-II. Upper panels: two-dimensional integrands. Lower
panels: ratios of CEPME(R 1) over CF (R, ) for fixed values of R. Densities are
obtained from a self-consistent EDF calculation of 2°Pb with the SLy4 Skyrme
EDF in the particle-hole part and no pairing.
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Figure 5.9 shows ¢ that all the three DMEs provide comparably good profile-

reproduction of the integrand CF (ﬁ, r) within the typical range of nuclear inter-

‘nn
actions (r ~ 2 fm). Beyond such a non locality, the quality of the reproduction
deteriorates significantly, with that of PSA-DME deteriorating slightly faster. In ad-
dition, one sees from the lower panels of Fig. 5.9 that the quality of the reproduction
decreases as one goes to the nuclear surface, i.e. for R 2 4 fm. This is slightly
improved by taking into account the diffusivity of the local momentum distribution
when designing the PSA-DME for the scalar part of the OBDM, as shown by the
better accuracy of PSA-DME-II. In general, PSA-DME-II stays much more close to
one than the other two DMEs, with slight overestimation in the range of nuclear inter-
actions. Note also that, although the plots are provided for two sample nuclei, more

systematic tests have been performed over several semi-magic isotonic and isotopic

chains that support such conclusions.

Coming to the energy itself, i.e. to the integrated product of the interaction ve(r)
with the central energy density, we compare

(R,7), (5.83)

nn

Ef[nn] = 47r/d1§drr2vc('r) ck

Eg’DME[nn] = 47r/dé dr T2 Uc(T) CSADAIE(R’, T). (584)

Figure 5.10 shows the relative error obtained from the three DME variants com-
pared to the exact Fock contribution for both the Gaussian and the renormalized-

Yukawa radial form factors and for three semi-magic isotopic chains.
Let us start with Fig. 5.11 that shows that the dependence of the accuracy on
the range of the (Gaussian) interaction used is significant, i.e. about a factor of 1.5

between ¢ = 1.0 fm and a = 1.5 fm. As can be expected from the two-dimensional

“Note that for semi-magic spherical nuclei used in this work, the energy densities C’fn(ﬁ, r) and
CEDME(R ) only depend on the magnitude of R.
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Figure 5.10: (Color online) Percentage error of EZME[nn] compared to E£[nn),
where the former is computed from: NV-DME, PSA-DME or PSA-DME-II
II—functions. Densities are obtained from self-consistent EDF calculations using the
SLy4 Skyrme EDF in the particle-hole channel and no pairing.
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Figure 5.11: (Color online) The same as Figure 5.10 but for two different values of
the range of the Gaussian interaction.
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density profiles in Fig. 5.9, the accuracy decreases as the range of interaction increases,
which holds for all available DME techniques [[170]-[173]]. This stresses that the local
quasi-separability of the OBDM with respect to 7 and R underlining the DME, which
is exact in INM, deteriorates with increasing non-locality r in finite nuclei. As long as
the hypothesis of quasi-separability is well realized within the range of the interaction,

the DME can be quantitatively successful.

On average, the error obtained with PSA-DME and NV-DME are similar as can
be seen in Fig. 5.10, i.e. about 6 —8% for the three isotopic chains and for both for
the Gaussian and the renormalized-Yukawa interactions. While PSA-DME-II gives a
better accuracy with a percentage error between —0.5 and 2. Similar improvement
over that of Ref. [170] is reported in Refs.[[171],[172]]. PSA-DME-II, while it is much
better than PSA-DME and NV-DME, it shows a gradual drift of the sign of the error,
from overestimatidn to underestimation of the exact value, as the interaction range

increases.

5.4.3 Fock contribution from V7

We now turn to the Fock contribution coming from the tensor part of the NN inter-
action. Such a contribution involves bilinear products of non-local spin densities. As
a matter of fact, two terms with different analytical structures emerge such that the

exchange tensor energy-density reads

Th(R.r) = T (Rr) + Tho(R,r) (5.85)
- 1
Toa(Bor) = — [ A 5.(7, %) - 5u(7, ) (5.86)
_ 1 Ty o .
TnFn,z(Rar) = ar de%{E‘Sn.p(Thﬁ)
Xs‘n,l/(’f’Qa’F’l) 9 (5.87)
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where T,f;lyl(ﬁ, r) also appear in the central contribution to the Fock energy. The two
DME counterparts, which eventually depend on which variants of the DME is being

adopted, read

2 z
CME, = r 3/7n — -
T "E(Rr) = —5 [MED] D7 T (B) Juu(R),

M=
A 23 r? §n : 5] 23 D D
TESVE(Rr) = =32 ) 3 (sl B) )+ g ) B

Hy=x

o B ) ).

and reduce for spherical systems to

- T Fin 2 = - -
ToOME(R,r) = ~& [T (k)] “Jn(R) - Ju(R), (5.88)
TEOME(R, 1) = 0. (5.89)

One recovers a pattern which is seen when deriving the empirical Skyrme EDF from
an auxiliary Skyrme effective interaction. That is, the central part of the inter-
action only produces the so-called symmetric bilinear tensor terms proportional to
I (R) Jn,w(é) while T:;’,g‘w (R,7) that contains asymmetric bilinear tensor terms
proportional to Jn,u,,(l;’:) Jn,,,u(ﬁ) solely comes from the tensor interaction [196]. This
can be easily traced back to the spin-space coupling that characterizes the tensor
operator. Since the numerical tests are presently carried out for spherical systems,
F.DME

we are only concerned with T, ,ﬁl,l(é, r) and T, 3 (R,r). For spin-unsaturated nu-

clei, TF (ﬁ r) is highly localized around the nuclear surface as seen in Fig. 5.12 for

nn,l
208Ph. The same figure shows the progressive and significant improvement that the
PSA approach brings to the DME of the vector part of the OBDM. This is realized

in both PSA-DME and PSA-DME-II. The optimal parameters that we obtained for
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Figure 5.12: (Color online) Comparison of 7, 751,1([2" r) and T,DME (R, r) where the
latter is computed from NV-DME, PSA-DME, PSA-DME-II or from PSA-DME
with Pg(ﬁ) = 0 which we denote as INM-DME. Upper panels: two-dimensional
integrands. Lower panels: ratios of T2ME (R, r) over T, ; (R, ) for fixed values of
R. Densities are obtained from a converged self-consistent calculation of 2%Pb with

the SLy4 Skyrme EDF in the particle-hole channel and no pairing.
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PSA-DME-II of s,(71,72), as defined by Eq. (5.39), read
m = 2.543, b= —0.0799. (5.90)

Within the typical range of nuclear-interactions, NV-DME falls off much faster than
both PSA-DMEs. Less importantly, NV-DME also introduces artificial and pro-
nounced structures in a region that corresponds to the tail of the interaction. Both of
these drawbacks are rectified progressively by the PSA-DME approach. While most
of the improvement is already brought by the spherical PSA (Pz(ﬁ) = 0, which is
the same for both PSA-DME and PSA-DME-II), an even better accuracy is obtained
by incorporating the quadrupolar deformation Pg(ﬁ) of the local momentum Fermi
distribution. The overestimation of T,f’;’l(fm”, r) at very small r seen for all DMEs in
the lower panels of Fig. 5.12 corresponds to a region where the integrand is small and

where its weight is further reduced in the integrated energy by the r? phase-space

factor.

Coming to the energy itself, i.e. to the integrated product of the interaction vr(r)

with the tensor energy density, we compare

i

Ef[nn] 47r/d1§dr rop(r) TE (R, 7), (5.91)

E?DME[nn] = 47r/dﬁdr r? vr(r) T,g,ME(ﬁ, ), (5.92)

which for spherical nuclei reduce to the contribution from T,f;l’l and T,f;;gME. Figure 5.13
shows the relative error of the three DMEs compared to the exact Fock contribution,
for both the Gaussian and the renormalized-Yukawa radial form factors and for three
semi-magic isotopic chains. For both types of interaction, the percentage error of NV-

DME easily reaches 40%. This is in contrast to PSA-DME and PSA-DME-II whose

percentage errors are typically within £10% for most parts of the three isotopic
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Figure 5.13: (Color online) Percentage error of EZME[nn] compared to EL[nn]
where the former is either computed from: NV-DME, from PSA-DME or
PSA-DME-II. Densities are obtained from self-consistent EDF calculations using
the SLy4 Skyrme EDF in the particle-hole channel and no pairing. Notice the
different vertical scale compared to Fig. 5.10.

103



chains. This can be traced to the fact that, while both NV-DME and PSA-DMEs
overestimate the reference quantity for small r (typically less than 1 fm}), NV-DME
decreases much faster with r, thereby overcompensating for its initial overestimation.
In contrast, PSA-DMEs stays close to the exact value for a much larger range of r

values.

There exist short sequences of isotopes for which the percentage error shows a
considerable increase. The fact that all three DMEs display such a feature suggests
that the problem is independent of the specific form of the II function used. To iden-
tify the source of the problem, Fig. 5.14 shows T,f;l’l(ﬁ, r) for three nuclei displaying
a sudden loss of accuracy. One notices that Tﬂ’l(ﬁ, r) extends over larger intervals
in R and r than for 2%®Pb (see Fig. 5.12). This corresponds to the fact that the
selected nuclei are nearly spin-saturated and generate very small EX[nn] in absolute
value, as seen from the lower panels of Fig. 5.14. As a result, the relative inaccuracy
of any DME becomes large and the percentage error increases suddenly. Of course,
the resulting error in the total EDF remains very small as the corresponding tensor
contribution is anyway negligible, i.e. the local spin-orbit density j(;(ﬁ) is close to
zero in nearly spin-saturated nuclei. Therefore the sudden losses of relative accuracy

are not as worrying as Fig. 5.13 initially suggests.

In conclusion, the use of PSA techniques has allowed us to bring the DME appli-
cable to the bilinear product of non-local spin densities on the same level of accuracy
as for terms depending on the scalar part of the OBDM. One could certainly work
even harder to bring down the overall DME percentage error. This could be achieved
by (i) allowing for additional parameters in the II—functions to be optimized on a set
of reference calculations. However, our extensive optimization of the two-parameters
of IT{ have convinced us that one cannot remove the sudden loss of relative accuracy
discussed above for spin-saturated nuclei. As already stated, this is not a problem in

the end as the corresponding contribution to the energy is negligible anyway. (ii) One
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can go to higher orders in the DME, consistently for both the scalar and the vector
parts of the OBDM. This should however be done within the frame of the generalized

Skyrme EDF proposed in Ref. [35].

5.4.4 Fock contribution from V;g
Basic analysis

We now turn to the spin-orbit contribution to the Fock energy. Unlike for the central
and tensor forces, such a contribution involves both the scalar and the vector parts

of the OBDM. In this case, we first compare the spin-orbit energy density
LSL(R,r) = ;f; / A2 5, (7, 72) - 7 % Vapa (2, 71) (5.93)

to its DME counterpart

z

T k)2 S P () vi;(m;(k%r)pn(ﬁ)),

v, B=x

E R 1
LSEPVE(R,r) = <
which eventually depends on which variants of the DME is being adopted and that

reduces for spherical systems to
— ]_ — - . — —
LSEPME( 7y = 5 I (kpr) r* Ju(R) - V5 (H’O’( ;,ir)pn(R)) X (5.94)

Note that we have truncated terms with more than two gradients in LS2ME (R,7).

The numerical tests shown in the present section actually use PSA-DME only (no
PSA-DME-II) with the quadrupolar deformation parameter set to zero (PP(R) = 0).
We still label the results as PSA-DME. It will be seen that these simplifying choices

have no bearing on the discussion at hand.

Figure 5.15 shows that PSA-DME significantly overestimates (in absolute values)
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the maximum peak of LSSH(R’,T‘) at the nuclear surface. In addition, oscillations
at larger r, i.e. in the tail of the two-nucleon interaction, are not captured by PSA-
DME. In contrast, NV-DME reproduces relatively well the density profile LS fn(ﬁ, T),
in particular as for the main peak at the nuclear surface. This suggests that the
significant improvement for PSA-DME over NV-DME as to reproducing the tensor
energy density does not carry over to the spin-orbit energy density. The previous
assertions are supported by tests carried over several isotonic and isotopic chains.
Looking for possible improvements, we tested that including truncated higher-order
terms associated with the action of V 5 on (1/4Ap, — 7, + 3/5k}%p,), when going

from Eq. 5.93 to 5.94, does not improve the accuracy of PSA-DME.

Coming to the energy itself, i.e. to the integrated product of the interaction vy s(r)
with the spin-orbit energy density, we compare

Efgnn] = 47r/dﬁd’rr2 vps(r) LSE (R,7) | (5.95)

nn

EPMEmn] = 47r/dﬁdrr2 vps(r)r? LSPME(R r) (5.96)

Figure 5.16 shows the percentage error obtained for three isotopic chains. In agree-
ment with the analysis done for the spin-orbit energy density, the percentage error
of PSA-DME is impractically large and negative, in the range of -15% to -50% for
the two schematic interactions used. In contrast, NV-DME provides a much better
accuracy with percentage errors within + 10% for most studied isotopes. Last but not
least, one notes that the spikes in the percentage errors already discussed in section
5.4.3 arise for the same isotopes and relate to the vanishing non-local spin density in

near spin-saturated nuclei.
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where the latter is either computed from NV-DME or from PSA-DME. Densities
are obtained from self-consistent EDF calculations using the SLy4 Skyrme EDF in
the particle-hole channel and no pairing. Notice the different vertical scale
compared to Figs. 5.10 and 5.13.
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Further investigation of the spin-orbit exchange

The results of the previous section show that NV-DME is better suited than PSA-
DME to reproduce the spin-orbit contribution to the Fock energy. This can be con-
founding in light of the better accuracy obtained using PSA-DME to reproduce the
tensor contribution to the Fock energy. We can infer from Fig. 5.12 that NV-DME
underestimates the main peak of the nonlocal spin density while the latter is well cap-
tured by PSA-DME. It is thus puzzling to find the opposite for the Fock spin-orbit
energy density. In the following we employ a toy model of the OBDM of finite nuclei

to show that this is due to a fortuitous cancelation of errors.

Having already a handle on the non-local spin density §,(71,72), we focus on the
term it multiplies in the spin-orbit energy density, i.e. 7 X 62;0(,(771,7"2), which we
first approximate by 7 x v 7 Pq(T1,72) thanks to the weak dependence of the non-local
matter density on the orientation of # [176]. Hence, and focusing arbitrarily on

neutrons, we want to compare the two quantities

Ge = Vap.(R,7) , (5.97)
\%

7 (W5(k3r) ou(D) | (5.98)

GDAIE -

where the latter is independent of whether NV-DME or PSA-DME is used. To do
so, we employ the toy model we discussed in section where the expressions for the
local and nonlocal neutron densities are given by Egs. (5.58) and (5.59). From these

equations, one easily obtains

Vspn(R + %, R— g) = exp [—1/4a2r2 : i t] [Van(R)] , (5.99)



The corresponding PSA-DME reads

kpr rPf 1+t 2 -
B e L O T | PXL/RRCRY

such that, given the definition of k}(ﬁ), one can easily obtain

@ W5(k3)0() | = 305 ) (5.102)
and show that

GDAIE( F)

ratzo( 'ff) GE(R, ’f")

1
= jo(kpr)exp [1/4042 21 ti]

In order to study G, quantitatively, we fix the inverse oscillator length, «, using
the Blomqvist and Molinari formula, ie. o = (0.90A1/ 34 0.70). In subsequent
discussions, we take reasonable combinations of A and N although we show that the

conclusions of the present section are independent of the actual value of A.

Before analyzing the behavior of G,.atio(l;’:,f'), it is worth noticing that the toy
nonlocal matter density is exactly separable in relative and center-of-mass coordi-
nates. Such a separability being one inherent, usually only approximate, aspect of
the DME, we expect the latter to work well in the present case [185]. Computing
the same ratio as in Gmtio(ﬁ, ) without the gradient operators, we do indeed obtain
the good performance of the DME as is visible in Fig. 5.17. Note in particular that
the ratio is independent of the value of R. Such a result proves that the toy model
provides a situation comparable to the one studied in Sec. 5.4.2, i.e. the DME of the
scalar part of the density matrix performs well. Such a performance sets the stage in

view of qualifying the results obtained below for Gmtio(é, 7).

In order to identify the short distance behavior of Gmtio(é, 7), we perform a Taylor
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Figure 5.17: (Color online) Ratio of the DME (Eq.(5.101)) over the exact
(Eq.(5.58)) expressions of the toy nonlocal matter density.

112



series expansion in 7

= k2 o?(1+1)
ratio( R, 7) = 1 + | ——= 2. 5.103
Gratio R, T) +< 5 +4(1_t)>r ( )

Looking close to the surface of the nucleus, one can neglect £%2/6 in comparison
with the second term of Eq. (5.103). Defining Germr(l—?:,r”) = Gmtio(};’:,f') — 1, one
obtains

- 0.205
Gerror (R, 7) ~ (0.326 — W) r2. (5.104)

Equation 5.104 is valid around the nuclear surface. Inside the nucleus, one cannot
neglect the first term k%2/6 of Eq. (5.103). This is irrelevant as the spin-orbit energy
density is concentrated around the nuclear surface. Figure 5.18 bears our expectation
i.e. overestimation of Gg by Gpag around the nuclear surface for a wide range of R,
A and N values. It can also be seen that there is a gradual and systematic shift from
slight underestimation to overestimation as one moves from inside the nucleus to the

nuclear surface.

Keeping the results shown in Fig. 5.17 as a reference, we conclude that the applica-
tion of the gradient operator on the scalar part of the density matrix deteriorates the
quality of the DME that overestimates the exact results, in particular as one goes to
the surface of the nucleus where the exchange spin-orbit energy density is maximum.
Combined with the good approximation of the vector part of the density matrix, such
a semi-quantitative analysis explains the overall overestimation (in absolute value) of
the exchange spin-orbit energy provided by PSA-DME (see Fig. 5.16). Contrarily,
the underestimation of the vector part of the density matrix by NV-DME provides a
fortuitous, but rather accurate, cancelation of errors such that the nonlocal spin-orbit
energy density is much better reproduced overall (see Fig. 5.16). Even though we can
be satisfied with such a situation in the short term future and advocate the use of

the NV-DME variant for the spin-orbit contribution to the Fock energy, it would be
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more satisfying on the long run to design a suitable DME for the gradient of the
scalar part of the density matrix that can be combined with the improved PSA-DME
for the vector part.This loss of accuracy for the spin-orbit part does not have any
impact on the application of the DME to the HF energy from chiral EFT NN +
NNN interaction at N2LO. This is due to the fact that the NN spin-orbit interaction
that we have at N2LO is zero-range/contact, thus does not require the application
of the DME. In the NNN case, the problem does not seem to be relevant. Refer to

section 7.2 for details.

5.4.5 Hartree contribution from Vg, Vs and Vr

The numerical results given in section 5.4.6 confirm the view that the DME should be
applied only to the Fock part of the HF energy. However, for the sake of completeness,
we gauge the accuracy of the DME when applied to Hartree contributions. As shown
in the next chapter, the Hartree contribution from the tensor part of the two-nucleon
interaction vanishes for time-reversal invariant systems. For central and spin-orbit

parts, the exact integrands for the profile comparison are

s 1

Ci(Rr) = 3 [0 070 puli) (5.105)
=3 ]_ —

LSy (Ror) = = [ pa(@) 7 - Ja(f) (5.106)

while the corresponding DME expressions read

. = = r - =
CoPME s [m( Q) pa(R)pgs (B) — = [T(Q)] Vou(R) - Vp,i(R)
2
T — — — —
+ 15 Q75 | po (BB (B) + p,(R)Apy(R) | , (5.107)
LSTPME %ﬁfn(ﬁ) V() (5.108)



where the m—functions in Eq. (5.107) are fixed in two ways: (i) The first set (NV-
DME) are given in Egs. (5.62)-(5.64). (ii) The second set consists of the parameterized
functions given in Egs. (5.67)-(5.69) and whose optimized parameters are: ag = 0.850
and a; = 0.3000. Eq. (5.108) results after fixing the m—functions according to
Eq. (5.72) (simple Taylor series expansion). The corresponding integrated energy

contributions are given as

Ef[nn] = 4x /dl;’: drr?ve(r) CH (R, 1), (5.109)
Eg’DME [nn] = 4x / dR drr? ve(r) Cﬁ;DME(ﬁ, r}, (5.110)
Efinn] = 4x / dR drr?ve(r) LSH (R, 1), (5.111)
EZPMElnn] = 4n /dﬁ drr?ve(r) LSEPME(R 1) | (5.112)

Fig. 5.19 shows that for large r values, Eq. (5.107) does not reproduce the correct
profile of Eq. (5.81) for both sets of m—functions. The two DMEs (sets of #—functions)
have opposite effect in that region. In contrast, one can achieve an accurate repro-
duction of the integrated contribution, Eq. (5.109), with Eq. (5.110), when the range
of the interaction is short. Furthermore, the plots contrast the accuracy of the two
sets of m—functions, with the parameterized version performing significantly better
as the range of the interaction increases, though with a decreasing overall accuracy.
Even though this decrease in accuracy is a general trend for all DME approximated
quantities, the deterioration is more significant in this case than the Fock contribu-
tions. Perhaps this is due to the wrong prediction of the exact profile (Eq. (5.81))
with Eq. (5.81). Fig. 5.20 compares the profile of the exact Hartree contribution from
the spin-orbit part of the interaction to its DME approximation. One can see the
DME fails to properly capture the profile, with a very large error resulting in the

integrated contributions.
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parameterized m—function which we call PI-DME.
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Figure 5.20: (Color online) LS | and LSZ.PME for NV-DME, with densities
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obtaiend from a converged self-consistent calculation of 2°Pb with the SLy4 Skyrme
EDF in the particle-hole channel and no pairing.

5.4.6 Preliminary self-consistent tests

In practical terms, one of the important benefits of the DME approximations is
the fact that existing Skyrme HFB codes require minimal modifications to be used
with EDF's obtained from the DME. Fig. 5.21 contrasts how a code is implemented
for Skyrme HFB against one for the DME based functional. As can be seen the
main change is in replacing the eventually constant Skyrme couplings, with density-

dependent couplings obtained from the DME.

We carried out a limited set of self-consistent test to gauge the accuracy of the
DME, in both full- and exchange-only-DME. In full-DME, both the Hartree and
Fock contributions are approximated with the DME, while in exchange-only-DME,
only the Fock contributions are approximated with the DME while the Hartree ones
are treated exactly. In addition to confining the test to time-reversal invariant and

spherically symmetric systems, there are several simplifying choices that we made.
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Figure 5.21: Comparison of Skyrme HFB and DME-based HFB codes.

These are

e We used the Brink-Boeker [193] force which has only a central component with
gaussian form factors. The actual form and parameter values are
)2

4
2

i=1

(5.113)

with p, = 0.7fm and pp = 1.4fm. The magnitude and range parameters in

the four spin-isospin channels read

Table 5.3: The Brink-Boeker force(B1)

15631 F S V) 1 QD 1 £31 A 31 1S

a; 3895 389.5 801.6 801.6
b; -140.6 -140.6 -3.82 -3.82

Even though one usually adds a zero-range spin-orbit part to this interaction,
this is not done in this work as our target is to compare the DME approxima-
tions, and a zero-range interaction is treated exactly in the DME. A complete
self-consistent test of DME approximations should make use of modern NN in-

teractions that have central, spin-orbit and tensor components. In this regard,
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building a local chiral interaction that has a low-momentum cutoff, and thus

gives sensible HF results, will be useful.

e We calculate only the total energy, and its components such as kinetic, Hartree
and Fock contributions of closed-shell nuclei: 60, ¥Ca, ¥Ca and °Zr. The
fact that we do nOt resolve the single-particle spectra (such as spin-orbit split-
ting) prevents us from assessing the DME of §,(7}, 52) for spin-unsaturated **Ca
and %Zr. Specifically the impact of the significant improvement in the DME
of §,(71,72) brought by our PSA-DME is not yet gauged with self-consistent
calculations. Additionally, we do not calculate the corresponding exact HF re-
sults. Rather, we use results from Ref. [184] when we need to refer to exact HF

results.

Derivations related to the self-consistent numerical test are given in Appendix 9.8.
For faster convergence of the calculations, we implemented both Broyden’s [194] and
imaginary-time methods. Table 5.4 lists the results of the self-consistent calculations.
At this point, we remind the reader that there are four densities that appear in the
exact HF energy of time-reversal invariant systems: pq(r1,72), 54(71,72), pg(71/2) and
j;,(Fl s2) (which appears only if the given NN interaction has a finite-range spin-orbit
part). The second column show how the m—functions of these densities are fixed.
Obviously, p,(71/2) and J_:,(Fl /2) are not expanded in exchange-only-DME calculations.

We start with the nonlocal densities. First, we have the labels NV-full and NV-
exc-only. The full and exchange-only labels should be self-explanatory. NV refers to
fixing the w—functions of p,(71,75) and §,(7, ) according to the original DME of
Negele and Vautherin (Ref. [170]). PSA-II-exc-only use the parameterized versions of
the m—functions of p,(¥1,72) and §,(71, 7). The parameters that we used are the ones

that we optimized for the non self-consistent test, while for p4(7/2), the parameters

and m—functions are as discussed in the previous section ( 5.4.5). For the 7#—functions
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of J—,;(f’l /2), we use Taylor series as was done in Ref. [170].

Table 5.4: Full-DME and Exchange-only-DME for Brink-Boeker interaction and
several DMEs

Eio kin Dir Exch
160 NV-full -6.204 13.948 - -
NV-exc-only -5.600 13.474 18.839 -37.914
PSA-II-full -7.932 15.417 - -
PSA-II-exc-only -5.635 13.338 18.513 -37.487
40Ca NV-full -8.526 16.822 - -
NV-exc-only -7.516 15.793 22.567 -45.878
PSA-II-full -10.359 17.575 - -
PSA-II-exc-only -7.539 15.583 22.075 -45.198
8Ca NV-full -7.447 16.678 - -
NV-exc-only -6.625 15.762 21.334 -43.803
PSA-II-full -9.304 17.57 - -
PSA-II-exc-only -6.646 15.529 20.884 -43.062
0Zr NV-full -9.339 18.778 - -
NV-exc-only -8.388 17.320 24.322 -50.041
PSA-II-full -11.543 19.038 - -
PSA-II-exc-only -8.389 17.040 23.700 -49.140

A complete self-consistent test should include the exact self-consistent HF calcula-
tion and the calculation of several other quantities such as matter, proton and neutron
radii, proton and neutron densities. For the single-particle energies, the balance of
Hartree to Fock contributions need to be assessed [184]. Still, our preliminary test is

consistent with the main conclusion of Ref. [184], viz, the ful-DME gives an excess
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of 1 MeV per particle binding energy compared to exchange-only-DME, irrespective
of the performed DME. The exact HF calculations given in Ref. [184] show that the
error in the exchange-only-DME (compared to the exact HF of Ref. [184]) are much
smaller than that of the full-DME. Consequently, one can obtain a significant reduc-
tion of the error in DME approximations by treating the Hartree contribution exactly
as exact treatment of the Hartree contribution does not add to the numerical com-
plexity of the problem. Comparing the two DMEs, it can be seen that the difference
between the exchange-only versions of NV-DME and PSA-DME-II is marginal, while
for the case of the the full-DME version, there is a significant difference with NV-
DME being much closer to the exact HF results reported in Ref. [184]. This must be
due to the strong parameter dependence and self-consistent error enhancement as the
non-self-consistent percentage error from PSA-DME-II (which we called PI-DME) of
the Hartree contribution, given in section 5.4.5 is less than that of NV-DME. This

requires further investigation.
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Chapter 6

Non-Empirical Energy Density

Functional from NN interaction

In this chapter, we calculate the HFB energy from a generic two-nucleon interaction
that contains central, spin-orbit and tensor components. Furthermore, we apply the
DME to the HFB energy to obtain a local EDF. Analytical couplings of the particle-
hole (HF) part of the resulting EDF are calculated using the finite-range part of the
chiral EFT two-nucleon interaction at N*LO. Following the usual convention, we
represent momentum transfers with q. To avoid ambiguity, the isospin coordinates of

the particles are labeled with T.

6.1 The HF energy from an NN interaction

Starting with a two-body interaction, the Hartree-Fock energy is given, in an arbitrary

basis, by

1 TR
ENN = —2— Z Z <7,T]T/' %4 IkT”lT”/> (pkq-”i—r plq-/”j'r/ = Pty plcT”jT/) ’ (61)

Gkl ol I
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where (i7j7/| V |k7"l7") are non-antisymmetrized matrix elements of the two-body
interaction and p, ;s denote the one-body density matrix, as defined in Eq. (9.70).
Because isospin is presently assumed to be a good quantum number, the density

matrix is diagonal in isospin space, p, », = pj; 0_n_. Thus Eq. (6.1) becomes

1 NI I'r‘rll SSINIE & r o7l
N 52 Z (irgr’ |V |kTlT’) pri p; — 52 Z(zTJTIV|kT'lT) Pi; Prj- (6.2)

ikl ot ijkl oot

Using the completeness relationship in the two-body Hilbert space

>N / | Fro1m1; Ta0ame) (T101Ty; TaoeTe | dFidiy = 1, (6.3)
7192 7172
and the definition of the density matrix in |¥) ® |7) ® |T) space as given in Eqgs. (9.70),

the HF energy can also be written as

4
1 — — 3 — —
ENN = 52/1—[ dr; (1017172097 | VI®2|T303 370474
=1
X P(F3037'37 T1017T1) p(T404Ty, T202Ts)

= —TI'ITI'Q / H dr, 7'17_'42]"\/1®2|7—"‘3F4>p(1)(f‘3, ,,-,'1)’0(2)(?4’ Fg) s (64)

where V1®2 = V(1 — P,,), with Pj3 being the particle exchange operator defined in
Table 1.2. A matrix notation is used in the second equation and the traces, denoted by
Tr, denote summation over the spin and isospin indices of “particle 1” and “particle
2”. The quantity p(7},7) is defined in Eq. (7.12). As discussed in section 7.1 in
relation to a similar calculation for the chiral three-nucleon interaction at N2LO, this
notation makes the direct Mathematica implementation of the equations transparent.

Refer to that section for details on this notation !.

In this chapter, we eventually qualify all results for the finite-range (pion-exchange)

IThe calculations for the NN case are relatively much simpler than for the NNN case. Conse-
quently, the complete HF + DME calculation was carried out manually in this case.
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part of the chiral EFT two-nucleon interaction at N2LO, which is discussed in sec-
tion 2.4.1. As the HF energy from the contact part is already in a quasi-local (Skyrme-
like) form, it does not require the application of the DME. Thus, we do not discuss
it any further. The actual expression for the contribution to the EDF from the HF

energy of the contact part can be found in Ref. [153].

The application of the DME to the HF energy requires expressing the HF energy
in terms of the scalar/vector-isoscalar/isovector components of the OBDM in |7) ®
|0) ® |7) space. This is due to the fact that the DME, as formulated in section 5.2,
is most intuitively expressed in that space. For its formulation in momentum space,
consult Ref. [154]. Hence, we need to perform inverse-Fourier transformation of the

chiral interaction given in Eq.(2.14). This results in

(R'¥|V|RF) = ([VC(T) + 1 Welr)] + [ Vs(r) + 7 -1 Ws(r)] 61 - o
+[Velr) + 7 Wr(r)] 61 - B G- A, + % [Vis(r)
+ 71 eWis(r)] (61 + G2) - (A, ® AR) ) §(F—7)6(R - R,

(6.5)

where R’ , R denote the center of mass coordinates, 7/, 7 are the relative coordi-
nates and V, and Vg refer to gradients with respect to 7 and R respectively. The
{Vi(r), W.(r), ...} denote the inverse-Fourier transform of the respective form factors

given in momentum space [153]

Vilr) = / (2(:1)3 ¢ Vi) fori=C,S,T, (6.6)
o dq  gr - _
= 5 [ T @O0 fori=Ls. (6.7)

One should note that chiral interactions come with a regulator that cuts off high-
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momentum components. It should be noted that we have not included regulators
in Egs. (2.14), (2.16), (2.18) and (2.19). The commonly used regulators result in a
non-local interaction since (k!/k}|V| kik2) which can also be written as (k'|V|k) is
replaced with f(k’/A){k’|V|k)f(k/A) for some momentum scale A, where f(k/A) —
0 for K > A and f(k/A) = 1 for k < A. In contrast, Eq. (6.5) shows that the
IF) ® |6} ® |T) space representation of the interaction given in Eq. (2.14), viz, without
the regulator, is diagonal and depends on the gradient V with respect to 7. The
spin-orbit part in Eq. (2.14) is actually the only term that depends on v 7 This
dependence on v 7 is usually remarked by referring to the interaction as quasi-local.
In order to obtain a local interaction, one could use a regulator that suppresses large
momentum transfers instead of large relative momenta. In any case, we neglect
the regulator since we work at the HF level which samples only the low-momentum

spectrum of the single-particle Hilbert space. This argument will remain valid as long

as the local Fermi momentum kp < A.

6.1.1 HF contribution from a central interaction

A local two-nucleon central interaction can be split into four different spin-isospin
channels as

where 7, j€{0,1} denote the singlet and triplet channels, V¥(r) is the form factor

[

and H"i and IITJ. are the spin and isospin projection operators defined in Table 1.2.
For the chiral interaction given in Eq. (6.5), the form factors of the central interaction

in the different channels is given by

VAr) = Vilr) — 3W.(r) + Vi(r) — 3W,(r), (6.9)
VM) = Vir) + Wo(r) — 3V(r) — 3W,(r), (6.10)
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Vi) = Vi(r) + Wa(r) + Vi(r) + Wi(r) , (6.11)

VE(r) = Vi(r) — 3Weu(r) — 3Vi(r) + 9W,(r) , (6.12)
where V_(r), W.(r), ... are the coordinate space form factors given by Eq. (6.6)- (6.7).

Starting from Eq. (6.4), the HF energy in the four different channels can be derived
by replacing V with the corresponding interaction given in Eq. (6.8). The details can

be found in appendix 9.6.1. For the spin-triplet and isospin-singlet channel, one has

EXN[10] = —Z/drl diy V3 r)[3 +(71) pr(72) + SPT(TI,TQ)[)T(TZ,TI)

5L - S|, (613)

N1 = —Z [ aran v [pT(rl)pT(fg)+pr(fa,fa)pf(ﬁ,ﬂ)

The HF energy for the triplet-triplet and singlet-singlet channels read

EcM] = 82 f dry diy Vo' (r [3p7(n)pr(r2>—3pr(fa,f2)pf(f2,ﬂ>
FE(R) - () — 5 (R ) - §T<f2,m}

1 oo a3 L oy L

+ §Z dry diy V' (r) 5/)7(7“1)[7%(7“2) - 5%(’"1#‘2)0?(7"2,7”1)

) - — 1 - — — -
ST(TI) . 3?(T2) - §‘ST(T1)T2) : 31—'(7'2)7"1)} 3 (615)



and

1 o g | B . r -
EYY00] =5 3 [ dri v [5 pr(7) pr(7) = 5 pr(F1 %) pr(, )
4 (6.16)

3:(71) - 8z (%) + §§T(F1;F2) - §x (7, 1) | -

The corresponding expressions for the finite-range part of the chiral NN interaction
at N2LO can be found by utilizing Eqs. (6.9)-(6.12) in the place of the generic form
factors V#(r). In time reversal invariant systems, the symmetry properties of the one-
body density matrix discussed in section 9.2.4 can be used to simplify the expressions.
In particular, those terms that depend on the local spin density vanish as §,(7) = 0
in this case. Finally, it should be mentioned that the channel by channel expressions
for the central interaction agree with the unpolarized and symmetric infinite nuclear

matter limit of the same expression given in [170].

6.1.2 HF contribution from the spin-orbit interaction

A given quasi-local two-nucleon spin-orbit interaction can be split into its spin-isospin-

singlet-triplet channels as

\ i e
Vis = "§VL§(T) 6(7y — 73) 6(F1 — 73) V - (61 + G2) L, HTJ. . (6.17)

The spin-orbit orbit interaction vanishes in the spin-singlet channels |Xsingiet) =
1/V2(ITL) = 11)) as 52 |Xsingtet) = 0, with two-body spin operator S = (G1+d)/2.

For the chiral interaction given in Eq.(6.5), the spin-orbit form factors read

Vidr) = 2Vis(r) — 6Wis(r) , (6.18)
Vis(r) = 2Vis(r) + 2Wis(r) . (6.19)
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The HF contribution from the spin-orbit interaction in the spin-triplet and isospin-

singlet channel is given by

EYN0) = - Z/ diy diiy V3o (r) 7 - [f,(ﬂ)pf(f'g) + 3 (7)) x 77(Fa)
+Z XT:/ dry diy Vi (r) {§T(ﬂ,f'g) T X 629%(772,’771)

(1, ) 7 x T s;(fa,fa)] , (6.20)
while in the spin-triplet and isospin-triplet channel, the result reads

EXY1) = = Z/ dry dia Vi [J (1) pr(73) + 87(71) X 5;(7"2)}

+ 9 Z/ diy dia Vig(r) [@(ﬁﬂ%) T X 62&(?"2,771)

+ - Z/ dry drs VLS {Jr(rl)pf(f’g) + §T(F1) X _;;(Fg):}
- 3 Z/ diy diy Via(r { (71, 72) - 7 X Vsz(rg 1)

+pr (71, 7%) Fx Vs - s}(f'g,ﬁ)}. (6.21)

The actual derivation is given in appendix 9.6.2.

6.1.3 HF contribution from the tensor interaction

A local two-nucleon tensor interaction in the four spin-isospin channels is given by

Vi = V() 67 — ) (7 — %) STl T, (6.22)
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where Si2 is the tensor operator given in Eq. (2.10). The tensor interaction acts only
in the spin-triplet channels. This becomes obvious once Sy is written as

Si2 = 6 (§ - )2 — 2 52, where the total spin operator, S , has zero expectation value
in the spin-singlet state. Hence, concentrating on spin-triplet channels, the chiral NN

interaction at N2LO given in Eq.(6.5) has the following components

Vo) = %VT(r) — W) | (6.23)
Vitry = %VT(T) + %W'T(r) . (6.24)

The HF contribution to the energy in the spin-triplet and isospin-singlet channel is

given by

1 — — 3T rl/ — — - — - -
B0 = 125 [ nan o) [ 2 ) sl - 502) - 50
T uv
3TV ,r[.l: 3 — — — — — —
Tsr,,t(h,rz) s7.(T2, T1) — 8:(71,73) - 57(7%,71)

(6.25)

while for the spin-triplet and isospin-triplet channel

1 e 3TuTy . S N = g
ENN[11] = 3 Z Z / diy diy Vi (r) {—:2—3,,“(7‘1) Sru(T2) — §:(71) - 8- (7%)

T  pv

3r,r . n o o IR
:2 2 87 u(F1,72) 870 (T2, F1) + 80 (71, 72) - ST(TQ;TI)]

1 oo 3r,r, o N — oo
t3 2.0 / dry iy Vr'(r) [ :2 Sru(T1) s70(T2) — 5-(71) - 52(72)

T  pv

3r,r W o o o .
- %sw(rl,rz) $ru (P2, T1) + 5-(71,72) - f(rg,rl)]-

(6.26)

Once more, the relevant expressions for finite-range part tensor part of the chiral NN

interaction at N2LO can be obtained by making use of Eqs.(6.23)-(6.24). For time-
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reversal invariant systems, those terms that depend on the local spin density, 5,(7),
vanish. This recovers the expression derived in Ref.[170]. Refer to appendix 9.6.3 for

details.

6.1.4 Additional contributions to the HF energy

In addition to the contributions to the HF energy that come from the starting NN
interaction, there are several additional terms that are due to the kinetic energy, the
center of mass correction and the coulomb interaction. The simplest is the uncorre-

lated kinetic energy associated with the reference product (HF) state

Epin = n” > / dF7(7) . (6.27)

Since (HF') meanfield solutions are localized in space, translational invariance of the
actual nuclear hamiltonian is broken. Consequently, one needs to correct for the
center of mass motion, which can be done by defining an intrinsic Hamiltonian [38].
In addition to the the starting Hamiltonian, the intrinsic Hamiltonian contains a

correction term Ecj; which reads

o (QIPEy®) (@, B)?I®)
Eowm = 2Am - 2Am (6.28)

where Py = > 1 Dk is the sum of single-particle momentum operators and A is the

number of nucleons and the |®) is the reference independent particle or quasi-particle
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state. Expressing F¢js in terms of densities, one obtains

hQ 5 h2 ! = - )
Bow =~ - | 70 ~ 5 Z//drdr 7o)-3,0()
2Am Z / / drdi pe(F', 7) 7.1 (7, 77) (6.29)
-+ 2Am Z;//drdr Kr(F,77) o (7, 7).

Several comments are at play concerning such a correction to the the HF energy
(i) the first term is a one-body center of mass correction with an overall effect of
rescaling the kinetic energy term, Ey;, (ii) the second term is really local and is zero
if the single-particle states have a good parity, which we assume to be the case (iii)
the non-local third term is the so-called two-body center of mass correction and is
often omitted; if single-particle states have a good parity, the two coupled densities
are labeled with opposite parities (iv) the non-local fourth term contributes to the
pairing energy appears if one considers a reference independent quasi-particle state.
It has never been considered in practical calculations [26]. If the single particle states
have a good parity, the two coupled densities are labelled with opposite parities. In
its full generality, such a term generates neutron-proton pairing. These nonlocal (the

third and fourth) terms will be neglected in our application of the DME.

The last correction arises from the Coulomb repulsion among the protons. It
has both direct and exchange parts. The nonlocal exchange contribution is usually
approximated with the slater approximation [155]. This is due to the fact that for the
long-range Coulomb interaction, the simple slater approximation seems to perform
at least as good as the DME techniques discussed in the previous section. Hence, we

write the contribution from the Couloumb interaction as the HF energy reads

e i [ [0 20()" [, o
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6.1.5 The leading-order pairing contribution

The leading-order pairing contribution is obtained by calculating the expectation
value of the interaction in a Bogoliubov quasi-particle vacuum. At this point, we
enforce several restrictions: (i) we neglect proton-neutron pairing, hence no isospin-
singlet contribution. This is justified in most cases as the Fermi energies of protons
and neutrons are quite different for most nuclei [38]. (ii) only central interaction is
considered, as it is the 1Sy channel that exhausts most of the pairi.ng contribution in
nuclei, i.e. the contribution of other partial waves are negligible [117]. Leaving the

details to appendix 9.6.4, the spin-singlet isospin-triplet contribution reads
(1 @har = 1 3 [ R GR L 63D
while for the spin-triplet and isospin-singlet channel, we have
(DIVA @ )pair = iz / diy diy VEN(r) §5(7, ) - 5,(71,7) . (6.32)

The Coulomb interaction has an important effect on proton pairing gaps [110]. Specif-
ically, its repulsive nature reduces proton pairing gaps (anti-pairing effect). To cal-
culate these contributions, one simply replaces the form factors, VA'(r) and V2!(r),

with the corresponding Coulomb interaction form factor.

6.2 Application of the DME to the NN-HF energy

In this section, we apply the DME to the HFB energy derived in the previous section
to obtain a local EDF. In section 5.4.6, we have verified that the DME of the Hartree
contribution is the main source of the descripancy between the DME-approximation

and exact HF, thereby advocating the exact treatment of the Hartree contribution.
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Still, for the sake of completeness, we apply the DME to all contributions of the
HFB energy: Hartree, Fock and Bogoliubov. As the HFB energy is derived for a
generic two-nucleon interaction, we perform the derivation of a local EDF using the
modified-Taylor series detailed in appendix 9.5.7. As explained there, all available
DMES, including PSA-DME developed in this work, can be mapped in to this formal

expansion.

Since, the starting point is the strict Hartree, Fock and Bogoliubov contributions
(diagrams), the energy functional is intrinsically a bilinear functional of p and « i.e.

elp, k6] = ef + bt + ey + b + eff (6.33)

coul ?

where the right hand side corresponds to the uncorrelated kinetic energy, the particle-
hole (HF), the particle-particle (Bogoliubov/B), the center of mass and Coulomb
corrections. The p and x exponents denote genuine, original dependence on the
density matrices. To recap the steps for the application of the DME, first we replace
the densities in the HFB energy with their formal expansion given in appendix 9.5.7.
This is followed by the simplification of the expression using the angle independence of
the m— functions and the relations among the 7 —functions discussed in section 5.3.6.
After neglecting terms with beyond second-order gradients, the particle-hole part of
the EDF takes exactly the same form as given by Eq. (4.11), where in this case, the

A/B couplings are functionals of the 7—functions and the starting interaction.

Through the DME, finite-range contributions of the starting interactions are en-

coded into density-dependencies of the EDF couplings. For instance,

wo = I / dr v I:Vgl(r) ((wg(km)? + (ng(kﬂ)f) 3V ((Wg(kmf
_ (ng(km)z)] , (6.34)
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where we used the isoscalar kr as the DME length scale and suppressed the R de-
pendence of kr for brevity. It should be noted that due to the density dependence of
the couplings, the usual integration by parts that is used in traditional Skyrme EDFs
to reduce the number of independent terms can not be applied here. For instance,
in conventional Skyrme EDFs, it is possible to convert the pAp term of the EDF
into VpVp , thereby reducing the number of terms. Generally speaking, this is not

possible in the previous case.

The couplings depend on the central, spin-orbit and tensor parts of the interaction

as follows

Central — {APP, A% APT APRP AVPVP AT pshs  pAVsoVs
BPP} Bss’ BPT’ BPAP’ BVPVP, BJJ. BsAs, BVsoVs}
Spin-Orbit — {4V AVP BPYI pVrIY

Tensor — {AJJ, AJ'], ASAS’ AVsVs’ AVsoVs’

JJ JJ As VsVs VsoVs
B’/ Bl | psds pVsVs pBVsoVsy

The complete expression of the couplings is given in appendix 9.6.5.

In the particle-particle (pairing) channel, the application of the DME to the pair-
ing contribution results in a functional that is more complex than the usual phe-

nomenological forms, given in Eq. (4.16). It reads

wlonn] = 3 [ i [ a1 + 47 (8520 - 4520
47 (D) (A7) - 47 ()
AT Y B Tl ).
(6.35)
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where the A7/ terms originate from spin-triplet pairing while the rest originate from
spin-singlet pairing. The actual expressions for all couplings is given in appendix 9.6.5.
The EDF that results from the correction terms, namely, uncorrelated kinetic

energy, center of mass and Coulomb corrections are simply given by

12 -
e = 2_mZ/dRT,(R),

K2 L
PP _
err T Z / dRT(R),
e, = / dR {C"” Pp0p + CP2% p, A p, + CVPVP ﬁpp . 6;),,
3, /3\"® .
—Ze2 (;> / dRpi*(R) , (6.36)

where as noted in section 6.1.4, we have neglected the third and fourth terms of
Eq. (6.29) while its second term vanishes due to the assumption of good parity for
the single-particle states. For the Coulomb correction, we have applied the DME to
the direct piece, while leaving intact the Slater approximation for the exchange part.
The application of the DME to the Hartree contribution is given just for the sake of
completeness. In fact, even the exchange contribution from the Coulomb interaction
can not be treated accurately due to the long-rangedness of the Coulomb interaction.
One can expect the DME of the direct part to be much worse. Still, we give the

values for the C couplings in appendix 9.6.5.

6.2.1 Analytical couplings from the chiral EFT NN interac-

tion at N2LO

There are three steps necessary to obtain the analytical calculation of the couplings of
the local EDF derived in the previous section. First, we have to restrict the discussion

to time-reversal invariant systems as the analytical forms of the 7 —functions for time-
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odd densities are not completely determined yet. This is discussed in section 5.3.6 in
detail. The next two steps involve (i) fixing the interaction which in this case is the
finite-range part of the two-nucleon chiral EFT interaction at N2LO. Thé respective
use of the three-nucleon interaction is the subject of the next chapter. (ii) Specifying
the m—functions. This can be PSA-DME, or any of the other available DMEs. In fact,
using different DMESs results in different couplings, which is mentioned in section 8.2
as a way to estimate the error of the DME couplings. In our case, we calculate the
couplings for PSA-DME. A similar calculation can easily be done for the original

DME of Ref. [170].

The derivation is discussed in appendix 9.6.6. As the final expressions are too
lengthy, we discuss only the skeleton expressions of the couplings. For the more on
the couplings, consult section 8.1 for a relevant discussion. The lengthy analytic
expressions for the DME couplings tend to obscure their underlying structural sim-
plicity. Therefore, it is more illuminating to display the couplings in “skeleton form”.
Each coupling C*) is given by the sum of the LO (n = 0), NLO (n = 1), and N2LO

(n = 2) contributions

2
CPlw) = > _Cliaw) i€ {p’ pr,pAp,.. }, (6.37)
n=0

where the dimensionless variable u = kp/m, and t = {0, 1} is the isoscalar/isovector
index. The fact that we express the couplings in terms of isoscalar/isovector no-
tation instead of proton-neutron is for conformance with the notation used in the
derivations related to the three-nucleon interaction. Refer to [156] as to why the
isoscalar /isovector notation is more convenient in that case, and Egs. (9.72)-(9.75) for

the simple algebra relating isoscalar/isovector notation with that of proton-neutron
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notation. Now, each coupling can be written as
Chw) = ol (n,t,u) Fi(n,w) (6.38)
J

where a§i)(n, t,u) are rational polynomials in u and F;(n, u) are functions which may
exhibit non-analytic behavior in u due to the finite-range of the NN interaction. In
the skeleton expressions listed below, we use a more compact notation where the

dependence of the a’s on u, t, and n is not explicitly shown:

o LO couplings

oW — aéi) + agi) log(1 + 4u2) + ag) arctan(2u) (6.39)

o NLO couplings

2
C(i) — agi) + agz) ]()g(l + 2u2 +2uv1 -+ u2)

+afV1+ u?log(1 + 2u? + 2uvT + ) (6.40)

e N?LO couplings

oW — aéf) + agi) log(1 +u?) + agi) arctan(u) (6.41)

6.2.2 Single-particle fields and equations of motion

In appendix 9.7, we give the derivation of the single-particle fields and HFB equa-

tions of motion that result from the variation of the Skyrme-like EDF given in
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Egs. (4.11),(6.35) and (6.36). Additionally, we give similar derivation for the case
where the DME is applied only to the exchange part of the HF energy. As discussed
in 5.4.6, all numerical tests are carried out for the case of spherical symmetry. Hence,
we give the most simplified single-particle fields and equations of motion that result
when spherical symmetry is imposed. Furthermore, the numerical methods used to
solve the self-consistent spherical HF equations are also discussed. All this can be

found in appendix 9.8.
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Chapter 7

Non-Empirical Energy Density
Functional from Chiral EFT NNN

Interaction at N?LO

In this chapter, we calculate the HF energy from the chiral EFT NNN interaction
at N*LO. Next, PSA-DME, formulated and discussed in chapter 4, is generalized in
such a way that it becomes applicable to the N*LO chiral EFT NNN HF energy. This
is followed by the application of this generalized PSA-DME to obtain a local EDF and
the analytical calculation of the couplings. Additionally, we make several references
to the actual symbolic implementation of the calculation. Again, following the usual
convention, we represent momentum transfers with q. To avoid ambiguity, the isospin

coordinates of the particles are labelled with 7.
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7.1 The Hartree-Fock energy from Chiral EFT NNN

interaction at N2LO

The consistent application of an MBPT calculation starting from a chiral EFT in-
teraction, at a given order, requires utilizing all the components of the interaction:
two- and many-nucleon interactions. As discussed in section 2.4.2, the leading three-
nucleon interaction appears at N2LO in the chiral expansion and it has three main
pieces: the three-nucleon contact which is referred to as the E-term, the one-pion ex-
change plus contact (D-term) and the two-pion exchange which is called the C-term.
In this section, we calculate the HF energy from these pieces of the NNN interaction

and apply the DME to obtain a quasi-local EDF.

Unlike the NN case, the algebra required to arrive at our final target, namely, a
quasi-local EDF, is so complicated that one can simply rule out a manual derivation.
This is due to the tremendous size of the algebra required in both layers of the
problem. Firstly, we have to derive the exact HF energy in terms of the scalar/vector-
isoscalar /isovector parts of the OBDM. This has to be followed by the application of
the DME to obtain the final quasi-local EDF.

However, the whole problem displays several features that make it amenable to
symbolic automation [151]: (i) it involves many similar and repetitive algebraic steps
(ii) most of it does not involve numerical computation, and (iii) the part of it that
seems to require numerical computation, such as multidimensional integrals, can be
performed using a combination of analytic expansion and symbolic integration. In
the following section, the HF energy from chiral EFT NNN interaction at N2LO
is expressed in a form that makes the symbolic implementation transparent. The

complete symbolic derivation is discussed in Ref. [156].
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Basic form of the HF energy

A three-nucleon interaction can in general be decomposed as a sum of three terms
Van = Vig + Vaz + Vi3, (7.1)

where ‘A/ij is symmetric in nucleon 7 and j. Specifically, for the chiral EFT three-
nucleon interaction at N?LO, V;; depends on momentum transfers ¢ and ¢; and, in
general, on the spin-isospin coordinates of the three nucleons. Refer to section 2.4.2

for details. Starting with the HF energy from a three-nucleon interaction

~ 1 RS .
(‘/:sI}VF> = 5 Z <Uk|V3.N(1 + Pi3Pip + PosPi2)(1 — Pig)lijk) , (7.2)
ijk
a few basic algebraic manipulations are in order to express the HF energy in terms

of only one of the three Vij operators, e.g. Vg3, as

~ 1 i ..
(Vin) = 2 Z (ijk|Vas(1 — 2 Pig — Py3 + 2 PiaPo3)|ijk) (7.3)
ijk
where P, denotes the exchange operator (of particles ! and m) defined in Table 1.2
whereas 7, j and k& denote occupied HF single-particle states. Note that for ease of
notation, we are using the single-particle basis that diagonalizes the one-body density

matrix of the HF Slater determinant.

One can identify three groups of terms in Eq. (7.3): direct, single-exchange and
double-exchange terms!. The direct term corresponds to the expectation value of

Va3, the single-exchange term to the expectation value of 1723(—2 Pi3 — Py3) and the

1This should not be confused with one- and two-pion exchanges contribution to the three-nucleon
interaction.
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double-exchange term to that of 2 Va3 P2 Pas

° dir 1 T ..

(Van ) = 3 > (igk|Vaslijk) (7.4)

ijk
x 1 RS .

(Vay ™) = 3 Z (t7k|Vas(=2P13 — Pys)lijk) , (7.5)
ijk

Van =) = > (ijk|VasPraPasligh) . (7.6)

ijk

As the derivation of the Skyrme-like quasi-local EDF from the exact HF energy
requires the application of the DME, we need to express the HF energy in the |7) ®
|6) ® |T) single-particle basis. Hence, we perform inverse-Fourier transformation of
the interaction. This transformation leaves the spin-isospin dependencies untouched.
Furthermore, just as in the case of the NN interaction, the fact that the calculation
is confined to the HF contribution enables us to neglect the regulator so long as
kr << A, the momentum cutoff scale. The absence of the regulator makes the
interaction local in coordinate space and simplifies the form of the interaction in

|™) ® |o) ® |1) space. Confining the discussion to the spatial dependence, we have

(P | Vas|F i) = O(7 — 7)) 8(7% — 75) (75 — 75)
X Vo3(y — 71,73 — 1), (7.7)
where

1
(2m)°

VQg(’FQ — Fl, T_"3 — T—"l) = /d(fgd(ﬁ €i(72'(F2_F1) ez'¢i'3.(7"3—?1) ‘/23(q"2, q_zg) . (78)

At this point, we do not actually perform the integrals over the momentum co-
ordinates in Eq (7.8), except for the E-term of the interaction which is a trivial
three-nucleon contact interaction, thereby yielding simple delta functions as shown in

Eq. (9.347). Rather, Eq. (7.8) is used as it is, resulting in fifteen-dimensional integrals
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in Egs. (7.13)-(7.15). As discussed in section 7.2, the application of the DME prior

to the actual multi-dimensional integrations is crucial.

The next target is to rewrite Egs. (7.4)-(7.6) in a form transparent for Mathemat-
ica implementation. We illustrate the steps required to achieve that with Eq. (7.6),

for which we have

(Vin™) = > (i5k[VasPioPaslisk)

ijk
= E E E / Hd Hdr (iJk|F10(T| TlaoyTy T1304T4)
ijk 0 .09 ‘r1 T3
11 = 1Ny aT DOT | = - —
X (7”/10171 T1904Ty T1304T3 |Vaz Pry Py 710171 Ta02Ts T303Ts)

X <F101T1 ’FgO’QTQ F30'3T31P1F2P£|’L]k> y (79)
where we used completeness relations in the three Hilbert space

Z Z /Hdr,|r1017'1 7'20'27'27“30'37'3) <T1017'1 T20'2T2T303T3|— ]l (710)

71937173

0’7’—

and P We split the particle-exchange operator such that the coordinate

part acts on the wave-functions while the spin-isospin piece is taken care of along
with the interaction. Let X; represent (7;0,7;) such that the one-body density matrix

reads as

o(X;, Xx) = oFjojmy Frowte) =Y @ (Feor i) @il 0575) (7.11)

where the sums is over occupied single-particle HF states. Making use of this, we

define another quantity, which we call the auxiliary density matrix, as

(X5, Xx) = o(Fjoir), Froim), (7.12)
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where i€ {1, 2, 3}. Basically, the spin-isospin coordinates of this quantity are those of
the 7** particle. Applying the steps demonstrated in Eq. (7.9) and using Egs. (7.12),
(7.7)-(7.8), one can express the direct, single-exchange and double-exchange parts of

the three-nucleon interaction HF energy as

ir ]' — — — bl — . —
(Vibdiny - 5 TriTroTr [ / difydiadis 0 (Xh) 0% (X2) 0*(X3)
X Vgg(f"g — Fl,’f_”g — 7?1):! , (713)
HFIxy = g a5 Y YN 2 3 Y. W
<V;}N > = —TI‘1TI‘2TI‘3 dT‘ldTQdTg;Q (Xg,X])Q (XQ) 0 (Xl,X3)

XV23("?2 — T, T3 — 7—*1) {737]

1 e 1= I I
— —2— TI‘lTI'QTrg |:/ d'f'ld'f'gd'r;g Ql (Xl) QQ(X;}, Xz) Q3(X2, Xg)

V(s — 72,7 — 72) P;;} , (7.14)
<‘/31:7I\}?’2X> = TI'lTrQT‘I'g / dFldFQdF3 I:Ql (XQ, Xl) 92()23, XQ) Q3(X1, X3)
X Vao3(ry — 71,73 — 71) P%TP{’QT] , (7.15)

where ¢'(X ;)= d(X s X ;) and Tr; refers to tracing over spin and isospin coordinates
of the i** particle. The key to understand the form of these equations is the splitting of
the particle exchange operator, performed in Egs. (7.9), that results in the spin-isospin
coordinates of each particle to be grouped in a single auxiliary density matrix. These
are the basic equations that are implemented directly in Mathematica. In Ref. [156],
it is shown that the implementation of these equations is transparent, viz, directly
interpretable to the language that Mathematica understands. This would not have
been the case without the trick used to group spin-isospin coordinates of each particle
in a single auxiliary density matrix, Eq. (7.12).

The following sections state the contributions to the HF energy of time-reversal

invariant systems from the E-, D- and C-terms of the chiral EFT NNN interaction
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at N?LO. The complete expressions where the assumption of time-reversal invariance
is relaxed are given in appendix 9.9. Even for time-reversal invariant systems, some
of the expressions are too long. In those cases, the expressions are relegated to the
same appendix, where we also give the corresponding results for INM and PNM (pure

neutron matter).

Prior to delving in to the details of the expressions, the following observations
can be made regarding the HF energy: (i) Each term in the energy expression should
contain three local/nonlocal densities. (ii) As discussed in appendix 9.2.4, the various
local and non-local densities that result from the one-body density matrix have specific
time-reversal properties. Hence, considering that energy is a time-reversal invariant
quantity, there can be no term that contains one/three time-odd densities. Note that
at the level of exact HF, the only time-odd density that we have is the local spin
density, §,(7). Nonetheless, the application of the DME extends this set to include
all the time-odd densities that are discussed in appendix 9.2.4. (iii) The fact that
the starting interaction is isospin invariant makes the energy isospin invariant as well.
Therefore, there can be no term in the energy expression that contains one/three
isovector densities. (iv) For each part of the interaction, there are the direct, single-

and double-exchange contributions as given by Egs. (7.13)-(7.15).

Finally, we remark that the HF expressions and the resulting quasi-local EDF from
the chiral EFT NNN interaction at N2LO are given in terms of isoscalar-isovector no-
tation instead of proton-neutron notation. In Ref. [156] where we discuss the Math-
ematica implementation, it is shown that the isovector-isoscalar notation is better
suited to the implementation. Finally, keeping in mind that the NNN chiral EFT
interaction at N2LO does not have isospin invariance breaking terms, the isospin in-
variance of the energy expressions of both exact HF and quasi-local EDF become

transparent in isoscalar-isovector notation.
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HF energy from the E-term

The actual operator structure and analytical form of the E-term of the chiral EFT
NNN interaction at N2LO are given in Eq. (2.16). The HF energy that results from

it for time-reversal invariant systems is given as

ey — _2p [ar (a0 - wos0). @19
As expected due to its complete zero-range character, the HF energy from the E-
term is already in the form of a local EDF. Consequently, it does not require the
application of the DME. It should be noted that the E-term has a direct counterpart
in the Skyrme interaction, Eq. (4.12). In most phenomenological Skyrme EDFs, the
density dependence is in the form of p}(7¥) where 7 takes a fractional value [26], while
the one that results from the E-term has v =1.

Three-nucleon contact interaction requires the three nucleons to have the same
coordinate 7, which implies that three neutrons or three protons cannot interact via
a contact interaction, due to Pauli’s exclusion principle. Indeed, Eq. (9.346) shows
that VEHJEE PNM vanishes for pure neutron matter and likewise for pure proton matter

(though pure proton matter can not exist as it is not energetically stable).

HF energy from the D-term

The operator structure and analytical expression of the D-term of the chiral EFT
NNN interaction at N2LO are given in Eq. (2.18). Its contribution to the HF energy
is nonlocal due to the finite-range pion-exchange part of the interaction. In time-
reversal invariant systems, the HF energy contribution from the D-term takes the

form

_ C 1 1 s (Foy — . qﬁq7
y/HE.D,TRLy QA_L_/d—»d—»/ da. ¢93-(F3—T9) _4313
(Vay ™) af? 28, 16 ) O ) n)pt®e &+ m2
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X | =30y po(72) po(72, 73) po (73, 72)

+ 28+ po(72) p1 (72, 73) p1 (73, 72)

+ 03y p1(T2) po (72, 75) 1 (75, 75)

— 3 po(72) 5 (Fa, )53 (s, 72)

+3 e € po(72) 5§ (72, 73) 5 (75, 72)
+po(7?2)3f(7_"2; F3)31’(F3’ 73)

— X Po(T2)s7 (T2, 73)s7 (73, 72)
+2 p1(a)sg (P, 75)s7 (75, 73)

— 2 €% p) () 8§ (7o, 75) 85 (73, 72) | - (7.17)

The multi-dimensional integrals that occur in the HF energy are tackled only after
the application of the DME. As can be seen, each term in Eq. (7.17) is composed of
one local and two nonlocal densities. This can be traced to the fact the D-term of

the interaction combines a contact term and pion-exchange interaction.

HF energy from the C-term

The operator structure and analytical form of the C-term of the chiral EFT NNN
interaction at N2LO are given in Eq. (2.19). The HF energy from the C-term can be
grouped into two categories: a D-like term and remaining terms (which we call R-
part). This grouping originates from the operator structure of F, Sf given in Eq.(2.20).
The D-like term is associated with o3 [—4%:’{2% + 2 i%(j; (j}] whereas the R-part
relates to ;Tieamﬂz Gk - (¢ + ;). For time-reversal invariant systems, the HF energy

contribution from the C-term is relegated to appendix 9.9.4 due to its length. Rather,

out of line with the previous sections, the contribution of the C-term to the HF energy
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in the particular case of symmetric INM is given by

2
A\ 3 N L i () Jid3.(F3—F
(VHECINMY - ( 29f‘> o / didradrs / (%)ququg,e'qz-('? ) @3- (F3=71)
T
A1 1

2
dy " qs ( cymy C3 , o
—4 +2—q2-q3)
(45 +m2)(g5 +m2) [ VE 2

(‘ 208, Po(71)po(73, 72) po (T2, 73)

+ 68y+1 Po(T1: T3)po (T2, F1)P0(F3,F2)>

C v B - - o
_..2_2 Gﬂl'yl’/fﬁ?')’Q (_IQQ(];Q p()('rl,7'3)p0(’f'2,’l"1)p0(7'3,7'2):| . (718)

™

Even though the full complexity of the expression for time-reversal finite systems,
let alone non-time-reversal systems, cannot be appreciated by analyzing Eq.(7.18),
one can still make a few observations. To start with, the complete reduction of the
expression to a local EDF requires calculating twelve dimensional integrals, after the
application of the DME. This is due to there being three position and two momentum
coordinates, while a local EDF allows only one position coordinate in the energy
density. This is in contrast to the E-term contribution which is already in a local
EDF form and the D-term where one has to calculate five dimensional integrals. The
details of the DME technique used that preceeds the multi-dimensional integrations
and the specific analytical and symbolic approaches used for the multi-dimensional

integration are discussed in the next several sections.

7.2 DME for the HF energy from chiral EFT N°LO

3NF in time-reversal invariant systems

In this section, restricting the discussion to time-reversal invariant systems, we ap-

ply the DME to the HF energy from chiral EFT 3NF at N2LO. In contrast to the
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application of the DME to the HF energy from NN interactions, the task at hand is
complicated by several factors. Firstly, the usual choice of DME-coordinates as the
relative and center of mass coordinates, of the three-nucleons in this case, turns out
to be of little use. Secondly, the HF energy from local NNN interactions in general
depend on three-coordinates. This is also the case for NNN chiral EFT interaction at
N2LO. Hence, there are two-nonlocality coordinates which should be integrated out
in the final energy density. Finally, the complexity of the starting HF energy expres-
sion, even for the case of time-reversal invariant systems, renders manual derivation
impractical. In order to mitigate these complexifying factors, it is imperative that we
organize the HF energy expression in a systematic manner.

Even though one has a large number of seemingly different terms coming from HF
contribution of the C and D-terms of the NNN chiral EF'T interaction, it is possible
to group these terms into three generic classes. Note that the E-term results in a
local EDF without the application of the DME, and thus we do not refer to it in
this section?. This systematic organization of the HF energy is done with the aim of
identifying the optimal DME-coordinate system. What makes this systematic organi-
zation possible is the fact that, after the expansion of each local/nonlocal density, the
DME requires only angle integrations irrespective of the nature of the densities in-
volved. Certainly, each density has its own w—functions, but this does not undermine

the previous statement.

7.2.1 Generic forms of the 3NF energy expressions

There are only three generic forms that appear in the HF energy from chiral EFT 3NF
at N°LO. These are listed in Egs.(7.19), (7.20) and (7.21). In listing these expressions,
the conventions used are that (i) all numerical and constant coefficients have been

dropped, (ii) ¢#1,¢"2,¢#3 can be any of the scalar/vector, isoscalar/isovector densities,

2Its contribution to the final contributions will be simply added at the end.
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(iii) the tensors T, 5 11%2,3#23,,2

particular index is dropped from T'. This is the case when the corresponding density

and Tg&uw‘?’ may not depend on pi, 2, or ug, then that

is a scalar density, pg/,. For instance, if ¢#2 is a scalar density, then the tensor
T will not depend on ps. Hence, it will take the form 7, 511513@72 or Tg 11%3. This
unconventional notation has been chosen to treat the scalar and vector densities with

the same routine in Mathematica.

Generic-Form-1

The generic form of this group of terms is

A1,.M

T — 3 Je — 3 _3dn.(To—T" iga . (Fg —7 q2 q3
Van o = / diy d7dF / d>dgs €227 ¢i93-(F3 =)

(Van ™) 16726Ts. [ (4203 (a3 +m2)(q} +m2)

H1MoHS N s L L B9 Y9 i HoU3
X [cl Tgln + G242 3 T5171 + C3G5°q3 Tﬁ1 1 Botey
X glll (Flv 7?’3)g#2 (7_"2, F1)§“3 (F3a 'FQ) ) (719)

where ¢, ¢y and ¢3 are either zero or one. The double-exchange of the C-term (both

D-like and R-part) is the sole origin of this type of terms.

Generic-Form-2

The generic form of this group of terms is

,6 ’y — —
g g o gm b (Fo—i ) ida . (Fa—7" QQQ3(01+02€12'Q3)
Vi &8 = / A, didry / ddrds €227 i3 3 =)
5 (g5 +m2)(g3 +m2)

« TH123 [gul(ﬂ)w(fa,f3><ﬂ3(f3f2) L (120)

where ¢; and c, are either zero or one. The single-exchange of the C-term is the origin

of this type of terms.

151



Generic-Form-3

The generic form of this group of terms is

yHF 03 iGa.(F Q3 (I3 H189oH3
dindrsy | d; 933772 BB /]
(Van / 2413 / a3 2 +m2 By

X [g“l (72)*2(r2, 73)sH3(75,72) | - (7.21)

The D-term is the only origin of this type of terms.

7.2.2 The DME-coordinate system

Most of the complexifying factors in the application of DME to the HF energy from
the chiral EFT NNN interaction at N2LO can be mitigated by the proper choice
of a DME-coordinate system. There are several qualities that we require from a
viable DME-coordinate system. As discussed in section 5.3.7, the expansion of local
densities is problematic. Hence, the DME-coordinate system should reduce the need
for the expansion of the local densities. The other quality required of the coordinate
system relates to the need to have analytical expressions for the couplings of the
resulting EDF. This is a requirement in so far as there is no apparent reduction in
the accuracy of the whole approximation. Finally, and related to the previous point,
the coordinate system should be such that the amount of mathematical manipulation
required to arrive at the final result is manageable.

These requirements rule out the usual relative and center of mass coordinates of
the three-nucleon system. Likewise, the three-body Jacobi coordinates are found to

be non-optimal. Rather, the coordinate system that we use is



no= 7, (7.22)

which implies that we are expanding about the coordinate of the first particle, 7.
While this choice is directly applicable to generic forms given in Egs. (7.19) and (7.20),
for that of Eq.(7.21), one simply sets 7y = 75 which results in # = 0. The main ad-
vantages of this coordinate system are:(i) It allows exact integration of the factors
resulting from the interaction, with any approximation being confined to the expan-
sion of the densities. This implies that this work can be modified and/or extended
by simple modification of the expansion of the densities. This point is discussed in
section 9.10.1. (ii) The chosen coordinate system enables one to apply the DME only

to the nonlocal densities that occur in the HF energy expression.

7.2.3 Generalized PSA-DME

Using the coordinate system specified in Eq. (7.22), the non-local densities that appear
in Egs. (7.19)-(7.21) are of the form ¢"1(7, 7 + T3), <"2(7 + &2, 71) and ¢#3(F; +
T3, 71 + &2). These non-local densities can be scalar/vector, isoscalar/isovector. The
generalized PSA-DME aims at approximating each of these non-local densities in
terms of local densities, dependent on 7, and m—functions which can depend on T
and/or Zs.

A detailed discussion on the generalized PSA-DME of these nonlocal densities is
given in appendix 9.5.3. Reproducing the main results, the PSA-DME of the nonlocal
densities that occur in the HF energy from chiral EFT three-nucleon interaction at

N2LO take the form

Y oa L, T3 1 . B
Pl o+ 3 = T(kan) o) + 2 TEkEes) (5 () = ()
3 S
i p,,(rl)) , (7.23)
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with the same form holding for p,(71,71 + Z3). From the time-reversal property of
the scalar part of the OBDM stated in Eq. (9.85), p (71 + 2, 71) = pé(r’},f’l + 7).
Hence, their DME can be obtained from Eq. (7.23). The DME of p, (7} + &2, 71 + &3),

which involves two nonlocality coordinates, 75 and 3. is given by

— — — — - oy = — 1 iy =, -
plri+a ez = 000 () + X Vi) + 3 (9270
T 2 1 = >
+ 6 I5(kfz) | (a® —a+ i)qu(rl) — 74(71)
3 -
+ gk%2ﬂq(7“1)> : (7.24)

where the coordinates # and X are given by T = 75 — Z3 and X = (1—a)Zy +
ar3. For a discussion on the DME-coordinate optimization parameter a, refer to
appendix 9.5.3. The same form holds for its time-reversal counterpart p,(ry + 3, 71 +

#3). The m—functions that occur in both Eqs. (7.23) and (7.24) are given by

G
kiy

IG(kfy) = 3 = M5(k%y) - (7.25)

The corresponding expansions for the vector part of the OBDM are given by

sq,u(ﬂ, 74 :32) ~ AT (kfa2) > w2u Jouw(71) (7.26)
U=z

s,,,u(f'l + &y, T :;33) ~ T (k) Y @y Jow() (7.27)
M=T

where the m—function occurring in Egs. (7.26) and (7.27) is given by

M§(kly) = 3-E22, (7.28)

k% as given in Eq. (5.37). A similar expansion holds for s, (7,7 + Z3). Using

the time-reversal property of the nonlocal vector density as given in Eq. (9.85), the
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expansions for s, , (71 + T2, 71), Sq v (F1 + T3,71) and s, ,(Fy + &3, 71 + L2) can easily

be generated from Egs. (7.26) and (7.27).

Infinite nuclear matter limit

The generalized PSA-DME, just like the PSA-DME developed in section 5.3, is exact
in INM. Since 5,(71 + &2,71 + Z3) = 0. in spin-unpolarized INM, we consider only
the scalar part of the density matrix. In INM, it is given by

J1(kEz2)

pe(T1, 71 +T2) = 3 T Pq(T1) (7.29)
FL2

NACIEEEY)

pq(Fl +f27ﬂ+:f3) kq Ifg—f2l
'F

AGYE (7.30)

which can be recovered exactly from Eqs. (7.23) and (7.24) by noting that Vp,(7)
and Apg(7) vanish in INM and 7,(7) = gkzz pq(7) . This implies that in the application
of the DME to the HF energy from chiral EFT NNN interaction at N2LO results in
a local EDF which will reproduce the exact HF energy with no discrepancy. The
previous statement holds as long as the DME is the only approximation in the whole
set of steps followed to obtain a local EDF. As discussed in section 7.2.2, this is one

of the benefits of the adopted DME-coordinate.

7.2.4 The resulting EDF

The application of the generalized PSA-DME given in the previous section to the
exact HF energy from the chiral EFT three-nucleon interaction at N2LO, followed
by a set of mathematical steps that mostly involve angular integrations, results in a
local EDF. Yet again, the complexity of the algebra required to arrive at the final
simplified form of the EDF rules out manual derivation. Hence, we automate the
derivation using Mathematica. The main ingredients of the symbolic derivation of

the EDF are given in appendix 9.10, while the complete derivation can be found in
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Ref. [161].

In the symbolic derivation of the EDF, the analytical PSA-DME expressions of the
nonlocal densities given in Eqs. (7.23), (7.24), (7.26) and (7.27) are replaced with
their symbolic counterparts. Even though this might seem an irrelevant technical
detail of the actual implementation, it is important in the following respect. We have
mentioned that, once nonlocal densities are approximated by their DME counterparts,
the DME-coordinates 7, &5, #3 allow for the exact simplification of all components
of the exact HF expression. This implies that any disagreement between the exact
HF energy and the corresponding EDF can be reduced by further optimization of
the DMEs of these nonlocal densities. In line with this, we develop a very general
symbolic DME ansatz and one can consider the generalized PSA-DME discussed in
the previous section as a specific realization of this symbolic DME ansatz. Refer to
appendix 9.10.1 for detail. In this way, future improvements to the DME can be

automatically implemented in the current approach.

There are several strong points about this symbolic derivation: (i) The couplings of
the EDF are functionals of the 7—functions. Consequently, by fixing the #—functions
according to some analytical DME scheme, one can generate the corresponding cou-
plings of the EDF. In the next section, we discuss how we obtain the analytical
couplings for our choice of the m—functions according to the generalized PSA-DME.
(ii) The automation of the whole task enables us to keep all the higher-order terms
(up-to-sixth order) in the EDF. Note that only even orders occur in th EDF i.e. the
occurrence of terms with one, three or five derivatives is precluded by the requirement
of rotational invariance, as energy is a scalar quantity. The complete EDF, includ-
ing all the higher-order terms, is reported in the Mathematica files accompanying
Ref. [161]. The usual truncation of EDFs at second-order in gradients is mostly due
to the complexity of numerical techniques to solve an equation of motion with beyond

second-order gradient terms. Recently, there have been several efforts geared towards
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incorporating higher order terms in the EDF [35]. In appendix 9.10.4, we report the

EDF by including terms up to fourth-order gradients.

At this point, the result of this work is being utilized along with phenomenological
extensions. This is discussed in section 8.1. As terms with at most second-order
gradients are the ones being used in the referred work, here, we report the form of
the EDF by truncating it at second-order, with the added assumption of spherical

symmetry,

foves = [ dF{ 0% i) + CP0°T po() () + €070 () ()
1710 2(7) ro(7) + CAOPLTL po() () ma(7)
+ POV po(7) V() - Vi (7)
+CP0VPLYL o) Vu(7) - Vi (7)
+ CPIVROPL py (7) Fpo(7) - T (7) + C8P0 2(7) Apol)
A0 g2(7) Apo(F) + CROPAPL po(7) p (7) Ay (7)
+ 0’3 po(7) Jo(F) - Jo(F) + cro’f po(7) J1(7) - i (7)
+CPLI0% py (7) Jo(7) - Ju(F) + CPOVP0%0 po(7) ¥ po(7) - Jo ()
+CAOVPLL po(F) Vpu (7) - Ji(7) + CP1YP071 po(7) Vo (7) - Ji(7)
£ CPIIPL0 o)V pu () - o) + €070 () - o)
L0 27V - o(7) + CPOPTY po(7) (7)Y - () } )

(7.31)

where C°1°2°3 are the couplings of the EDF. Note the explicit isotopic symmetry of

the functional as each term contains an even number of isovector densities.
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Comments on the second-order truncation for spherical systems

Even though all higher order terms in the resulting EDF (up to sixth order) can be
used in the future, currently only up to second-order terms are being considered in the
UNEDF implementation of this work as described in section 8.1. Numerical tests per-
formed in section 5.4 confirm that the higher order terms generated by the DME are
much smaller than the leading order terms. Still, it is important to ask which terms
will be missing when truncating the resulting EDF at second-order. This is especially
important for the tensor and spin-orbit pieces of the functional as current phenomeno-
logical EDF's show significant deficiencies in that respect [[109],[159],[158]]. It is also
well known that the two-pion exchange part of the three-nucleon interaction plays a
significant role in the spin-orbit splittings of atomic nuclei [154], further increasing
the importance of reproducing the exact HF energy with the DME approximation.
Consequently, we analyze what the practical second-order truncation entails for
terms in the exact HF energy that contain the nonlocal spin density, 5y, (7%, 7;), as
these are the possible origins of tensor and spin-orbit terms in the resulting EDF.
The assumption of time-reversal invariance sets 5y/,(7) = 0, meaning we have to
consider only nonlocal spin densities. In addition, the analysis is done when the
DME adopted is the generalized PSA-DME, instead of the more general symbolic
DME ansatz described in appendix 9.10.1. The key difference between the two, for
the purpose of the following analysis, is the fact that the DME of the nonlocal spin
density does not involve the gradient, v «Jv, and the laplacian, AJ,, corrections in the
generalized PSA-DME while the symbolic DME ansatz contains such terms. Noting

that the isoscalar/isovector label does not matter in the following analysis

o Generic-Form-1 (Eq. (9.406)) - here either one, two or all three of the nonlocal
densities, viz, ¢*1(7,753), <#2(7%,71), ¢"3(7,7;) can be nonlocal 5p,;. Starting

with one of them being nonlocal Sy/1, the terms that are not considered during
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second-order truncation include fourth-order terms only such as Vg1 - j(; /1T0/1-
A similar analysis for the more general symbolic DME ansatz shows that there
are neglected sixth-order terms in this case, as the DME of nonlocal 5y, include
corrections from gradient and laplacian of j{)/l. When two of the nonlocal
densities are nonlocal Sy/;, there are again only fourth-order terms such as
To/1 fo/l . .f{)/l. The case is much simpler when all the nonlocal densities are
the nonlocal 5y/;. The contribution of these terms to the EDF vanishes, as
one cannot form a scalar by picking three spin-orbit densities from the set
containing just two elements: (J_(’), fl) Hence, the truncation does not introduce
any missing terms when all the nonlocal densities are nonlocal 5y/;. A similar,
but more complex, analysis can be done for the case of the symbolic DME

ansatz.

Generic-Form-2 (Eq. (7.20)) - here either one or both of the two nonlocal den-
sities, viz, ¢#2(7%, 73), ¢*3(73,7%) can be nonlocal §j/,. Starting with one of the
them being nonlocal 5y/1, there are no terms that are not considered due to the
second order truncation. This can be realized from the fact that the local den-
sity ¢#1(71) is not expanded and the only gradient terms come from the DME of
the other nonlocal density. However, we have only up to second order gradients
in the expansion of the other nonlocal density, of which only the first order term
(along with J of the nonlocal 5 ,51) contributes to the EDF. This is due to the
requirement of rotational invariance. Hence, there are no terms that contribute
to the tensor/spin-orbit part of the EDF and are beyond second-order in gradi-
ents. When both nonlocal densities are nonlocal 5y/,, the only EDF terms that
result are of the form py/; J:)/l . ,]—E)/l, which contain only second-order gradi-
ents. Consequently, the second-order truncation does not result in any missing

tensor/spin-orbit terms from terms of Generic-Form-2.
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o Generic-Form-3 (Eq. (7.21)) - a similar analysis shows that the same conclu-
sion as in the case of Generic-Form-2 holds. In other words, the second-order

truncation does not result in any missing tensor/spin-orbit terms.

Concluding, the above analysis shows that, for the generalized PSA-DME, truncating
at second-order keeps most, if not all, of the important spin-orbit/tensor terms of the
resulting EDF. In fact, the few missing higher-order terms are fourth-order terms
from Generic-Form-1. These terms can be expected to be absorbed in the part of the
couplings that are phenomenologically fit. Refer to section 8.1 for detail. The above

analysis can simply be extended to non spin-orbit/tensor terms of the EDF.

7.3 Analytical Couplings from the chiral EFT NNN
interaction at N2LO for time-reversal invariant
systems

In this section, the general analytical structure of the couplings is discussed. As
discussed in section 5.3.5, we use the isoscalar kr instead of klzlr in order to obtain
isospin preserving EDF. Starting from Generic-Form-1, given in Eq. (9.406), it can
be seen that the application of the DME to the nonlocal densities results in couplings

of the form
CI2B ~ / 07, ATy iy diy Fi(ors T, T, Gor ). (7.32)

where Cz};%gg’ denotes the couplings obtained from the application of the DME to
Generic-Form-1 type terms. In this equation, Fj is in general separable in ¢, and g,
but not in ¥, and Z3. This is due to the fact that the sole origin of the momentum

transfer coordinates, ¢ and g, is the interaction where they already occur in separable
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form, while 75 and Z3 remain coupled even after the application of the DME. This
in turn is because of the m—functions associated with ¢*3(7 + Z5, 71 + T3), as given
in Egs. (7.25) and (7.28). A similar analysis shows that the couplings from Generic-
Form-2 given in Eq. (7.20) take the same form as Eq. (7.32). The form of the couplings

from Generic-Form-3 is simpler and it reads

CE23 / 0%y iy Fylkr, B, @) (7.33)

In general, direct, exact and analytical integrations of couplings of the form
Eq. (7.32) that require twelve-dimensional integration is a hopeless task. Even for
couplings of the form given in Eq. (7.33) and a few other cases where there is a com-
plete separation between terms dependent on (&2, 32) and (3, ¢3), in general we have a
product of three spherical Bessel functions in addition to exponential and polynomial
prefactors for each group, i.e. for those dependent on (75, ¢5) and those that depend
on (Z3,3). In general there is no known analytical method to calculate these types of
integrals, further complicating the problem. One can thus envision doing numerical
Monte-Carlo integrations, thereby resulting in non-analytical/numerical couplings.
However, the resulting lack of elegance and inconvenience for systematic study of the
couplings convinced us to invent a combination of analytical and symbolic methods to
integrate these couplings analytically. The symbolic and analytical procedures used
for the analytical calculation of these couplings are discussed in appendix 9.11. In
this regard, Gegenbaur’s addition theorem which is detailed in appendix (9.1.5) and

tested in appendix(9.11.3) plays a significant role.
The simple analytical structure that emerges for all the couplings of the EDF

reads

C1238[u] = CiY28 [y + C3L23[u] Infdu® + 1] + C512%3[u] arctan(2u], (7.34)
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NI . . . . . .
where Cil 2*3 are polynomial functions of u. The variable u, which is also used in

section 6.2.1, is a dimensionless quantity given by

kr(R)

My

: (7.35)

e
Il

where we explicitly show the R dependence of kp(ﬁ) to emphasize that the couplings
are functions of density/position. Note that in writing Eq. (7.34) for C°1°2%3[u], we
have dropped coefficients that appear in front of C’: 1°2%3 " These coefficients are given
in terms of the interaction parameter, m, and kp(R). This can be seen from the
requirements of the dimension of the couplings. For instance, C??? needs to have
MeV (fm)® dimension. Finally, we remark that the variable u stays predominantly
within u € [1.0, 2.0]. For this, we used kp =~ 1.4 fm™! inside the nucleus and half that

1

value out in the surface, while m, = 0.7 fm™". For the actual analytical forms of

the couplings, consult Mathematica files of Ref. [161].

Comparison of analytical and Monte-Carlo results

We mentioned that the combination of analytical and symbolic approaches have en-
abled us to calculate the couplings of the EDF analytically. The calculation of the cou-
plings from Generic-Form-1 and Generic-Form-2, given by the generic form Eq. (7.32),
relies on Gegenbaur’s addition theorem of Bessel functions followed by the symbolic
approach that we invented for this purpose. In contrast, the integration of the cou-
plings from Generic-Form-3, denoted by the generic form Eq. (7.32), do not require
the use of Gegenbaur’s addition theorem. Rather, they are calculated directly using
the symbolic approach. Refer to section 9.11 for details.

Gegenbaur’s addition theorem is exact only if it is not truncated at a finite or-
der. Since we are forced to truncate the expansion at a finite order, this calls in to

question the accuracy of the couplings which are calculated using this approach. In
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appendix 9.11.3, we discuss the accuracy of a truncated Gegenbaur’s addition theo-
rem, where we show that including at least the first five terms of the expansion gives
a practically exact expansion. In this section, we test the impact of this truncation
by comparing the local EDF that results after the application of the DME with the
exact HF energy from chiral EFT NNN interaction at N2LO. We perform the test for

symmetric INM, where in principle we should have exact agrement.

The exact INM HF energy contribution from the chiral EFT NNN interaction,

given in appendix 9.9, can be written in terms of Egs. (7.29) and (7.30) as

, 3
<%111VF,E,INM> _ —IEE/dﬂpg(ﬁ)’ (7.36)

which is already in local form and does not need any DME. For the D-term, we have

3
/ - AP -
vty — [ a7 € ), (737)
where
3 2 . .
I _ 27ga Cp S e iGad s Jilkrzs) ji(krxs)
= 2= dTs dg; e*9373 . 7.38
DINM 51273 fiA, T3 3¢ @2 +m2  kprs krxs ( )
Note that, in this formula kr = kp(7) = [3/27%p,(71)]"/3, using the isoscalar den-

sity. This coupling can be integrated analytically without the application of Gegen-

baur’s addition theorem and thus we do not discuss it further. The C-term contributes

<V3LI{VF,C,INM> _ (X/:;}IIVF,CDlX,INM> + <‘/;’IVF,CD2X,INM)
i (XG}IIVF,R2X,INM> (7.39)
3
R .
= / dry CC’(,)INM ,03(7"1), (7.40)
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where

B % 7 7
Coanm = Copreanar T Cepozanar + Craeana - (7.41)

We have separated the three different contributions to the coupling in Eq. (7.41). As
discussed in section 7.1, the C-term of the chiral EFT three-nucleon interaction at
N2LO has what we call the D-like and R pieces. In the coupling shown in Eq. (7.41),
the first two terms of the couplings are from the single- and double-exchange parts of
the D-like piece, while the last one is from the double-exchange part of the R-piece.

These are given by

3 2
P 54 ga e am et iGeEe G
CCODIX,INM = ~ 1024 75 <F> /datg dT3 dgs dfy €'9272 ¢'9373
B
(53171 Qqugl ( 4017713r n 263 i @)
- 242 " 43
(g3 +m2)(q5 +m2) f2 fZ
Ji(kp|E5 — 2|) ji(krl|Ts — T2))
kp|Zs — o) kp|Ts — Ty
3 2
P, 81 ga 4 3o g AGe e il.E
ki
81 v
(5317]_ Qqu;;l (_4617’1727 4 20_3(7 ' (7>
(63 +m2) (g5 +m2) f2 e
y Jilkrza) ji(krpzs) j1(kp|Ts — 72)
krzo  krzs  kp|T3— T
3 2
P 243 (ga\ @ e e a o
Cr y - (—) — / dy dis Ay dgz €'92°72 9373
R2X,INM 102478 \2f, ) 72

P 71 P2 12
ga q3 P Q3 6/31’711/6/327211

(g5 +m2)(q3 +m2)
Jilkrza) j1(kpxs) ji(kp|Ts — T)
X — —
k’p.’rz k‘pxg kF|CU3 - 1‘2|

(7.42)

I

(7.43)

(7.44)

As can be seen from Egs. (7.42), (7.43) and (7.44), all of them require the appli-
cation of Gegenbaur’s addition theorem. This is due to the occurrence of j; (kp|Z%2 —

Z3|)/(kp|Z2 — Z3]) in these terms that are not separable in Zy and #3. The numer-
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ical test discussed in appendix 9.11.3 shows that we can truncate the Gegenbaur

expansion of this term at fifth order as

dlkelTs = @) \/ 1 T(3/2) Z

kF|.’E3 - fg[ ™ k2 T3 Lo

L+ 5 ) Jur1(kpx2) jus1(krxs)
-0

x C#2(cos(0)), (7.45)

where 6 is the angle between ¥, and &3 This is followed by analytical integration
of the couplings. Furthermore, one notes that Eq. (7.42) requires the application
of two Gegenbaur expansions while Eq. (7.43) and (7.44) require the application
of only one Gegenbaur expansion. To assess the accuracy of the couplings/EDF in
Eq. (7.39) when calculated with the truncated Gegenbaur expansion, we compare
the result with the case when the couplings are calculated with the essentially-exact

Monte-Carlo integration (without Gegenbaur expansion).

In Fig. 7.1, we show the percentage error of the Gegenbaur-based calculation
with respect to the Monte-Carlo ones, for the contribution of the three terms of
Eq. (7.39) to the energy per particle of INM as a function kp. For each of the
three terms, we have two curves where the insets show the actual contribution to the
energy per particle when the couplings (Eqgs. (7.42)- (7.44)) are calculated analytically
with the truncated Gegenbaur addition theorem, at fifth order, and the lower curves
(main curves) represent the percentage errors. The constants of the chiral EFT
three-nucleon interaction that are used in this particular calculation are specified in

Table 2.2, with Ac = 197.327 [MeV fm].

The results show that, the percentage error resulting from truncating the Gegen-
baur expansion is less than 0.5% over the range of physically interesting kr values.
In fact, for the double-exchange from the D-like and R pieces, the percentage error
shows a strong fluctuation between 0 and 0.5%. For the single-exchange from the D-

like term, the percentage error shows a steady increase from 0 to about 0.3%, which
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Figure 7.1: (Color online) The percentage error of the truncated Gegenbaur
expansion with respect to Monte-Carlo based calculation of the contribution to E/A

in INM. Upper plots show the actual values for the calculation based on the
truncated Gegenbaur expansion.
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is not surprising as we needed to apply Gegenbaur’s addition theorem twice in that
case. Considering the unavoidable numerical errors/flucuations in the Monte-Carlo
calculation and the smallness of the percentage errors, obtained we can conclude that
the truncation of Gegenbaur’s addition theorem at fifth order provides a practically
exact truncation. At this point, one should realize yet another reason for the need to
automate the whole calculation. Le. the application of Gegenbaur’s addition theo-
rem replaces each term in the couplings with about five terms when truncated at fifth
order. For instance, in the integration of Eq. (7.42), the single Monte-Carlo integra-
tion is replaced with about 25 integrals due to the double-application of Gegenbaur’s
theorem. Hence, even though it enables us to obtain completely analytical couplings,
Gegenbaur’s addition theorem comes with a tricky overhead: about two orders of
magnitude increase in the number of integrals to be calculated. Finally, we remark
that the conclusion of this section, viz, the truncated Gegenbaur’s addition theorem
enables us to calculate the couplings in a practically exact manner, holds for all other
couplings as the truncated Gegenbaur expansion is the only “approximation” that
goes into the calculation of the couplings. In the next chapter, besides the possible
future extensions and conclusions, we perform preliminary analysis of the couplings
and the ongoing semi-phenomenological approach that is attempting to make use of

this work.
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Chapter 8

Semi-phenomenological EDF,

Future Extensions and Conclusions

8.1 The semi-phenomenological approach

Based on the arguments discussed in section 5.1.1, we advocate a semi-phenomenological
approach in which the phenomenological Skyrme functional is to be augmented with
the DME-functional. Here, DME-functional refers to the EDF that we obtained
from the application of the DME to the Fock energy contributions of finite-range
NN and the complete HF of finite-range NNN chiral EFT interactions at N2LO. In
this scheme, the Hartree contributions from the NN part are to be treated exactly.
Finally, the phenomenological Skyrme parameters are to be re-fit to INM and finite
nuclei properties, leaving those couplings/terms that originate from the DME intact.
Actually, the so-called phenomenological Skyrme parameters can also considered to
have originated from the contact part of the chiral EFT NN and NNN interactions.
The generic structure of EFT interactions given in Eq. (2.12), Vgrr = Vz+Va(A),
shows a clean separation between long- and short-distance physics. Consequently,

each DME coupling at the HF level can be decomposed as the sum of a density-
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independent, A-dependent piece, which are subsequently re-fit, coming from the con-
tact terms of the EFT NN and NNN (E-term) interaction (V4(A)) and a density-

dependent, A-independent piece coming from the finite-range pion exchanges

12 = LR (A V) + C2(ER; V), (8.1)

thl 293 _ thl <2<3(A; Vct) + C:'l <2<3(R'; Vﬂ)’ (8.2)

where ¢; ¢ and ¢ <2 ¢3 are bilinear and trilinear combinations of densities that occur

in the EDF [[153], [160]].

In this sense, the re-fit parameters can be viewed as containing the effects of
the HF contribution from the contact interactions, V4, plus higher order effects that
would arise in a more sophisticated Brueckner-Hartree-Fock or 2nd-order MBPT cal-
culations. In this regard, through the loose connection of the refit Skyrme parameters
to the EFT contact terms, the EFT concept of naturalness might provide useful the-

oretical constraints for the fitting procedure [163].

The following several plots show sample C:l *2_ As can be seen from fig. 8.1, the
novel density-dependence is controlled by the long-range parts of the NN interaction.
Therefore, it is not surprising to see that the density profile of the couplings shown in
the figures is driven by the LO term (one-pion exchange) since the NLO and N?LO
interactions are of shorter two-pion exchange range. Even though the couplings in
fig. 8.1 seem to satisfy the hierarchy requirement, viz, LO > NLO > N2LOQ, it is
not guaranteed that this will always hold. This is because we are including only HF
contributions to the couplings, with our focus being primarily on finite-range pieces.
The fact that the hierarchy might not be maintained should not seem to be a big
problem as HF amounts to comparing the LO, NLO, N2LO potentials (which are not

observables) and therefore are they not required to obey any hierarchy.

Fig. 8.2 and 8.3 show the CJ” and C{’ couplings with +/- error bands as de-
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Figure 8.1: (Color online) CJ” and Cj’ couplings from chiral EFT NN interaction at
N2LO.
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Figure 8.2: (Color online) Cj” couplings from the chiral NN interaction at N2LO
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171



50 | | T T T T | ! 1R i

50
g
(2
ro-1
> 00
O
2-150
= —— SLy4 Tself
© 200 ——- SLy5_T _
i a s w SkM* |
250 Y
250, _ .=+ T44 n
_ASFR—SOOMeV . TZA )
_ | 1 | 1 11 [ll | | | L1 11 II |
300 0.01 0.1
3
p [fm ]

Figure 8.3: (Color online) C{” couplings from the chiral NN interaction at N?LO
with error bands from naturalness requirement.

172



termined from the naturalness requirement [163], compared with the corresponding
phenomenological values. The error bands cover all phenomenological values in the
density region of interest. Thus, the main conclusion that can be made at this stage
is that the DME couplings are close to phenomenology, but with a novel density-
dependence, as long as one allows for natural-sized contact terms. For a detailed
discussion, refer to Ref. [153], while for the corresponding discussion on C: 1293 refer
to Ref. [160].

The first calculations following the semi-phenomenological approach advocated
in this section are underway [164]. Figs. 8.4 and 8.5 shows one of the exploratory
“results” regarding the saturation curve, W(p, I), of INM and PNM. Here, I = (p, —
pp)/p- The parameters of the DME-based functional used for the saturation curves
are not optimized, rather they are simple educated guesses. Preliminary indication
from this study is the Skyrme functional that is augmented with the DME functional
is more flexible in that it relaxes some of the interdependencies that one observes in

phenomenological functionals [164].

8.2 Key future extensions

In this section, we revise the main directions in which this work can be extended in

the future. These are

o Extensive self-consistent test of the PSA-DME. As discussed in section 5.4, our
tests can be judged to be extensive only for non self-consistent ones. Along with
the self-consistent test, the invention of a local NN and NNN chiral interaction

that is soft enough to be used for these tests is important.

e Studying the impact of the different DMEs on the couplings of the resulting
EDF'. Note that the non-self consistent tests that we performed in this work are

using schematic interactions and it will be beneficial to extend this and perform
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extensive comparison of the actual couplings that result from the application of
different DMEs. This should provide a better estimate of the associated DME

errors/uncertainities.

e Non-self-consistent and self-consistent tests of generalized PSA-DME. This is
important to gauge the accuracy of the DME approximation that we made to
the HF energy from the chiral EFT NNN interaction at N2LO. Even though we
have shown in appendix 9.5.3 that the approximations that we used to obtain
the generalized PSA-DME are equivalent to the ones used for PSA-DME, the
existence of more than one non-locality coordinate may change the relative
accuracy of generalized PSA-DME with respect to PSA-DME. Furthermore,
the effect of DME-coordinate optimization parameter a in Eq. (7.24) should be

investigated.

e Calculation of Bogoliubov contribution from NN + NNN, extension of PSA-
DME or its variants for pairing densities. Furthermore, the required renormal-

ization should be designed along with the DME.

e From the interaction side, the extension should include the contributions from
the N3LO component of chiral EFT interactions. It should be noted that, even
limiting the calculation at the HF level, the four-nucleon interaction which first
appears at this order will make the extensions more complex. In principle,
one needs to incorporate the contribution from the four-nucleon interaction.
Nevertheless, current estimations of its effect on nuclei, at least in light-nuclei,
suggest that it can be ignored safely. For instance, estimates in ‘He show
that the additional binding energy it provides is of the order of a few hundred

keV [165].

e Extension of the DME scheme to approximate higher-order contributions as
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discussed in section 5.1.1.

e Analysis of self-interaction and self-pairing issues that arise in the context of

the DME [105].

8.3 Conclusion

This work is a part of a long-term project to develop nuclear EDFs starting from
many-body perturbation theory and the underlying two- and three-nucleon interac-
tions [[110]-[154]]. This is necessitated by the fact that empirical EDF's lack solid mi-
croscopic foundations and often result in uncontrolled (i.e., parameterization-dependent)
predictions away from known data.

We used the DME as a tool to explicitly build microscopic physics associated with
long-range pion-exchange interactions into existing Skyrme functionals in the form of
novel density dependencies. An important component of this endeavor is the improved
PSA-DME and its NNN counterpart, the generalized PSA-DME, which are crucial
if we want to provide microscopic guidance to the description of spin-unsaturated
nuclei. The rich spin/isovector dependence of pion-exchange interactions gives us
hope that their inclusion via the DME will give valuable microscopic constraints on
the isovector properties of the EDF. Moreover, it is comforting that these constraints
are coming from the best-understood part of nuclear interactions.

The EDF obtained as a result of the present work contains only HF physics such
that further correlations must be added to produce any reasonable description of
nuclei. In the short term, such an addition is being implemented empirically by
adding the DME couplings to empirical Skyrme functionals and performing a refit of
the Skyrme constants to data [164]. While this is a purely empirical procedure, it is
motivated by the well-known observation that a Brueckner G-matrix differs from the

starting vacuum NN interaction only at short distances. Therefore, one can interpret
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the refit to data as approximating the short-distance part of the G-matrix with a zero-
range expansion through second order in gradients. Eventually though, it is the goal
of the UNEDF (universal energy density functional) project to design a generalized
DME that is suited to higher orders in perturbation theory and move closer and closer

to complete microscopy.
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Chapter 9

Appendix

9.1 Mathematical Formulae

In this section, we list the Mathematical definitions, relations and formulae that have
been used in the rest of the work. Only the relevant mathematical relations and

formulae are listed, and for a more extensive list, refer to classic references such as

([152],[151]).

9.1.1 Miscellaneous elementary formulae

In various parts of this work, we use the following general linear coordinate transfor-
mation. Starting with two coordinates (71, Z2), we define a new coordinate system
(7, X) as

fzfl—f2 )Zz(l—a)fl+a§:'2, (91)

where the unspecified parameter a is a real number satisfying a e [0, 1]. The corre-

sponding gradient operators are given by

V., = aVzl —(1—a)Vx2,
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— —

Vi = Vo + Vay. (9.3)

with @ = 1/2 recovering the usual center of mass and relative coordinates.

In the derivation of local densities, detailed in appendix 9.4 and other parts of the

work, the following elementary results are important.

— = N n 2
V.-V (T 'I') s = ;2‘, (94)
X At Ti 't =Ty -
(7)) = 2 (ET)k (9.5)
7]
— | dQ#(F- A)(F-B) = —A-B. (9.6)
47 3

The manual derivation of the HF energy from a generic two-nucleon interaction

involves a modest amount of spin-isospin algebra. First, the Pauli matrices are given

They satisfy the commutation and anticommutation relations

0i0; — 0;0; = 12640k, (9.8)
0:0; -+ g;0; = 25,']'1, (99)
which can be used to prove
(A-8)(B-3) = (A-B)I +i¢-(AxB), (9.10)
- cos(a) + i (7 - &) sin(a), (9.11)



for any two vectors A, B and A = aA. Additional, elementary relations are

> Gor =0, (9.12)

> (A-5,,)5 1, =2Aforall A. (9.13)

0'0',

9.1.2 Clebsh-Gordon, Wigner 3-J and 6-J coefficients

Representing Clebsch-Gordon, Wigner 3-J and 6-J coeflicients by

o JioJ2 J hoJ2 J
(jm| jimajama) , : (9.14)
mp Mo M m; Mo M

respectively, the following is a list of the relations that are important for different

parts of this work.

1 27 +1
lmy=o|jm)? = : 9.15
203 migolim)® = S (9.15)
for all m and my; such that m =m; + 0.
o : i . o J2 7
(nmagamglim) = (=1)™1792 /25 + 1 (9.16)
m me m
Ao s s Ja J2 s Ja Js J
2. D
mymgmeg my My Mg —my Mo Mg my —Ms Mg
S j b
_ Ju J2 3 1 J2 B L (9.17)
Ja Js Je my M2 M3

where a = jy +my + j5 + ms + jg + Mg .
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o127 :(_1)j1+j2+j Jr 7 J2
my Mo m my M May
L 11 I L1 1 l
> (2L+1) f(1,L) = — (=)'l +1).
7 111 0 0 0 V6
where
—l\/ 355 if L=1+1;
L) =4 —(1+1) /55 if L=1-1;
0 otherwise.
|
— (=1)"™ e 8, 1
m om0 VIE+1)@2E+1) TP

o :(—1)1“’"1\/(Z‘Tflt)(lererl)(S

!
my mll 1 21([ + 1)(2[ + 1) mys—my -1

A | = (—1)HmH (I+m)(l—m+1) 5 ,

m; m; -1 A0+ 12t +1) mpmmy
I 11 _ -1_ (_1)l+j+3/2 3/4 +1(1+1) —j(G+1)
21 ) Ve VII+T1)(2+ 1)
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9.1.3 A few special functions

Legendre polynomials

Starting with the associated Legendre differential equation, for integer { and m,

m2

1— 22

a
dzr

[(1 —z?) P,m(:r)} + [l(l+ 1) — ]P,m(x) =0, (9.24)

where z € R (the set of real numbers), P(z) is the associated Legendre polynomial.

The associated Legendre polynomials satisfy

(I —m)!

Pr(z). (9.25)

For m = 0, the differential equation given in Eq. (9.24) can be reduced to

PR() _, dR()

_ 2
(12— dz

+I(l+1)P(z) = 0, (9.26)

where P;(z) is Legendre polynomial of order . The first few Legendre polynomials

are

Po(z) = 1, (9.27)
P(z) = =z, (9.28)
Pyz) = %(3332—1), (9.29)

The Legendre polynomials are orthogonal over the range (—1, 1) and satisfy

2

—— dmn - .
2n+1 (9:30)

/da: P,(z) Pyp(x) =
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Additionally, P,(1) = 1 for any I. The derivative of Legendre polynomials satisfy the

following properties

dP,(x) _ I(1+1) 7 (9.31)
x|, 2
z?> — 1dP(x
1) k) - Pa). (9.32)
Laguerre polynomials
The Laguerre polynomials are solutions of the Laguerre differential equation
d*L,(z) dL,(x)
—_— l—xz)—F—— L.(x) = 0. .
Tp2 + (1 —x) T +nLy,(z) =0 (9.33)
The can also be defined using Rodrigues formula
o _ x—a e:r dn —z ,n+a

where L% (x) is the associated Laguerre polynomial. The Laguerre polynomials are
recovered by setting oo = 0

L.(z) = L(x). (9.35)

The first few associated Laguerre polynomials are given by

Li(z) = 1, (9.36)
Li(z) = —2z+a+1, (9.37)
18(z) = %2 —(@+2)z + (a+2)2(0‘+1). (9.38)
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Gamma functions

The Gamma function, which appears from the extension of the factorial with a down-

ward shift of the argument by 1. is given by

I(z) :/ dtt* e, (9.39)
0

where z is a complex number with a positive real part. In this work, we need only

the Gamma function for positive integer arguments, which is given by

L(n) = (n—1)!. (9.40)
Spherical harmonics

Spherical Harmonics are eigenfunctions of angular momentum operators L? and L.,

and are given by

Y0, 9) = \/ (2‘4;(1,{1 ;)’!”” PP(cos(8)) €™ | (9.41)

with their orthonormality relation being give by

T 2w
| [ #a6vr 0005 0.6) = 16,0 (9.42)
0

0

There are various relations satisfied by spherical harmonics, and which are of interest

to this work. These are

ZYz PNy, Hr) = 4: B(#'-7), (9.43)
i
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where the sum extends over all allowed values of m;.

r Or

Y [f(r) Y/"(f)] = PO ymiy 1 pr) Y5, (9.44)

where f(r) is any function dependent only on 7.

Vi ¥ 6) = - 37 10, L) (m | LM) Y 7). (9.45)
LM
where
—1 /5 if L=1+1;
fOL) = —(1+1) /35 if L=1-1;
0 otherwise.
21+ 1)(I — m)! .
Y(0,6) = \/ e Aoy e, (9.46)
d o ri+1) .,
—m)!
Fme) = ()" G ). (9.48)

Bessel functions

Bessel functions are solutions of Bessel’s differential equation

2 LPAale) | dJo(@)

T2 T— =+ (2% — o?) Ju(z) = 0, (9.49)

where a is a complex number and J,(z) is Bessel function of order a. In most

physical problems with spherical symmetry, « takes half-integer values, a =n+1/2.
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Consequently, one defines the spherical Bessel functions of integer order, n, as

(@) = [ ate) = (o (2 ) = (9.50)

The first few spherical Bessel functions are

jolx) = . o (9.51)
@) = é sinaga:) coz(:v) ’ (9.52)
jn(z) = (% B 1) sinafx) 3 %cozf:n) , (9.53)
in(z) = (g 3 g) sinafac) N (g B 1) coi(x) 7 (0.54)
@) = (%3 - g + 1) Smf) - (%’ _ ’1,@9) Cosx(”’) . (9.55)

9.1.4 Three-dimensional spherical harmonic oscillator eigen-

functions

The isotropic three-dimensional harmonic oscillator is described by Schrodinger’s

equation
h

1
—%A + —imwQ T2 ¢nlm(r,9,¢) = €nl¢nlm(7’,6,¢). (956)

The wave-function is separable in the radial and polar coordinates as

R, ”
buinr.0,8) = T yin(g, ). (9.57)
where
1 2(n — 1)! V2
Ru(r) = - \/BF(::LH_)UQ)?, \/ElJrle $/2L,l,:r_11/2(:l:)
z = fOr?
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m
A
en = hw@n+l-—1/2). (9.58)

Note that there are two conventions in use regarding the possible values of integer n:

n > 0and n > 1. The latter is used in this work.

9.1.5 Gegenbaur expansion

Gegenbaur’s addition theorem of bessel functions of the first kind reads

J(r)  2"T(v)
rv - vy

S W+ 1) Jusu@) o) Clleos(6)) (9.59)

u=0

where v > 0 and for all values of z, y and # (the angle between # and ). The variable

r is given by r = /a? + y? — 2zycos(d). T'(v) is the Gamma function and C refers

to Gegenbaur polynomials. The first few Gegenbaur polynomials are given by

cy o= 0,

Cf/z = 3cos(f),
3 15cos%(9)

o = 3y Bt
15 0 35 cos®(#
03/2 _ C(Q)S()+ COQS()'
(9.60)
A formula related to Eq. (9.59) is

i 2"T(v) w

J TV(’“) _ muy(y”) SO0 (0 1) T (®) Jusa®) Coleos(6)),  (9.61)
p=0

and it holds only when |ye*| < |z|. Combining Egs. (9.59) and (9.61), one obtains

the relevant expansion for Bessel functions of the second kind and those of the mod-
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ified Bessel functions. For details, refer to [195]. Gegenbaur’s addition theorem is a
key ingredient for the analytical calculation of the EDF couplings obtained from the
application of the DME to the HF of chiral EFT three-nucleon interaction at N2LO.

Refer to section 9.11 for details.

9.1.6 Functional derivatives

A functional maps functions into a number. Analogous to the derivative of functions,

one defines the functional derivative of a functional, F[f(z)], with respect to f(z) as

SF Ffy) +edy—2) - F[f)]

= lims_.,o

0f(z) €

(9.62)

The functional derivative satisfies several relations which are analogous to the ones

satisfied by the derivatives of functions. For instance, if F' and G are two functional

of f(z),

§(FG)  _, 8(F) 4(G)
éf(z) ¢ 6f(z) tr 5f(x)’ (9.65)
while for F[f(x)] = fab dz [f(z)]",
5(F) - n P n—1
@ (@) (9.64)

9.2 The one-body density matrix and densities

The basic quantity in the EDF approach for nuclei is the OBDM and the various
nonlocal and local densities that can be extracted from it. An extensive discussion of

these basic quantities is given in this section.
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9.2.1 Properties of single particle states

The wave function of a particle having spin S is a spinor of rank 25, i.e. is composed of
2S5 + 1 components. The particles constituting the nucleus are protons and neutrons
which have spin, S = % The single particle states are assumed to have a good isospin
projection, but mix spin states. We use o = %3, ¢ = &3 to designate the spin, isospin
and i, j, k... the remaining quantum numbers of the single-particle states respectively.

Thus the single-particle states can be designated as

lig) = | ioq). (9.65)

g

In spinor notation, the single particle spinors are given by four real functions ¢ , ..., ¢,

: . pi(Fo = +5 q) 01i(Fq) + i 2:(Fq)
(Flig) = ¢i(7q) = ) ; = I X
ei(Fo = —39) ©34(Tq) + 1p4:(7q)
The orthonormality and closure relationships are given as
[ i) = b,y (9.67)
> ol(Foq) oi(Fa'q’) = (F—7")8,q106,, - (9.68)

It is important to characterize the single-particle properties under time reversal. The
time-reversal operator is given by T' = i, K, where K, denotes the complex conjuga-
tion operator and o is a pauli spin matrix. Thus the time-reverse of the single-particle

states is

(Tp)i (Foq) = 20¢; (Faq) (9.69)
where ¢ = — 0. For an extensive discussion, refer to Ref. [81].
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9.2.2 One-body density matrix

The one-body density matrix can be written in (fog) space as

PP, ") = (@] (7o' q)c(Foq) | ®) =) wi(i0'q) w;(Foq) pli, (9.70)

i

where |®) defines the many-body wave function and pj; = (@| cl¢;|®) defines the
density matrix in the basis {c;/ ¢;}. Since the single-particle states have definite
isospin quantum number, the density matrix is diagonal in isospin subspace. The

density matrix can be separated in its scalar/vector-isoscalar/isovector parts

[egel

[po(f’f’) 8 1 + Fo(F, 7).,

]

0T b+ 5GE ) | 01)

where the scalar-isoscalar, scalar-isovector, vector-isoscalar and vector-isovector parts

are respectively

PP T) = D py(Fo,T )8, = Y Y pli0q) ¢5(oq) o

ocf’q oq ij
= 3 plF i), (9.72)
q

p(F7) = Y p(Fo 7 0') S, Aa) = Y Aa) Y i (Foq) ¢(foq) o
aq i

= 3 p(7 ), (9.73)

T ) (9.74)
ST = D plFo, 7 05, M) = D AW Y 0iF'e) vi(7oq) G, £

aolq oolq ij
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= ) M) &7, (9.75)

1
where A(q) = (—1)27%. The extraction of the scalar/vector-isoscalar/isovector parts
from Eq.(9.71) can be done easily using properties of the Pauli matrices given in

Egs. (9.12)-(9.13).

9.2.3 Local densities

Working in neutron/proton representation and taking derivatives up to second order,

the following local densities that can be formed from p,(7, ") and §,(7, ")

pa(™) = Y (7a) wilFa) pl (9.76)
T,(F) = i%}(ﬁz) -Vi(7g) Y, (9.77)
Sou(™) = i@}(Fq) o, 0il7q) Pl , (9.78)
i@ = =5 S (A0 Vi) = Vo) 70) ei) (979)
Jou®) = —i Za EJ: Eva P} (79) [V., 0 w(f’q)] o (9.80)
Tou(r) = 2]: Vel(7q) [o,‘ -K”?cpi(Fq)] Py (9.81)

Jou(®) = —% ; }; Epwva (@}(f’q) [Vy Oa 991(7761)}
- [Vu @}(F'q)] T pi(7q) ) o (9.82)

Tl = -g;(ga;(fq) [auwz-(fq)] - [Vaslr] avati )y 059

Fou(f) = % 2 ( [6 : 599}(7*(1)} Vui(Fg) + [Vu W;(FQ)} V- 5’%(@)) Pl
’ (9.84)
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These are the matter density, kinetic density, spin density, current density, spin-orbit
density, the spin kinetic density, the cartesian spin-orbit tensor density and the tensor
kinetic density. These local densities, except fq’ are all real. It can easily be shown

that in the case of time-reversal invariant systems, J;’ and J:; are equal to each other.

9.2.4 Properties under time reversal

According to Eq.(9.69), the scalar p?(7,7) and vector §7(7,7') parts of the time

reversed density matrix p? (7o, 7 0’) are [196]

pg (B F) = py(F ") = po(7,7) (9.85)

ST(FF) = =§HFT) = =57, (9.86)
Thus, under time reversal, the transformation of the local densities is

IR = . T E =), 50 =50, T =7 087)

TR = G, TI@=-TyR,  FIE) =-F@), (9.88)

where one can simply count the number of time-odd operators used to define the
density to obtain its transformation property under time-reversal. For time-reversal

invariant systems, one sets all the densities equal to their time-reversed counterparts

pr(F ) = pg(F7) = p(F',7) (9.89)

§'qT (7 7)) = 5(F7) = =5,(7,7), (9.90)

and the time-odd densities vanish. Le.



T, = 0  F(f)=0. (9.91)

The rest p,(7), 74(7) , and Jo(7) are time-even densities.

9.2.5 Extension to anomalous contractions

The normal density is insufficient for the explicit treatment of pairing correlations.
Thus in addition to the normal density, p,s, = c;,cl,, one introduces pairing tensor,
referred to as the anomalous density, k,7, = ¢;/c;. The generalized one-body density

matrix is defined as

(@1p|®)  (®|k|®) (@|che|®) (@]cpc|®)
—(@|&|D) 1—(®|p]| )" (®|cl,cf [®) (@|cuc]|®)
(9.92)

where [’and! are elements of the single particle configuration space and |®) is a

quasi-particle vacuum [38]. The operator p is hermitean (p' = p) and & is skew

T

(anti) symmetric /7 = —k. Here &T

refers to the transpose of % , not the time

reverse of 4. Two important relations hold for p and & . These are

. (9.93)

R
x>
I
>
)

Using the above two relations, it can be easily seen that the generalized matrix R is
idempotent i.e. R? = R. In fact, R is also Hermitean. The pairing tensor can be

transformed into the pairing density matrix, p. This is given in (Foq) space as

hnd A~ W

p(Toq,7'a'q) = 26" (Q| cpro1y Crog | ) = 25" k(Foq,7'5'q") . (9.94)

We still assume that the density matrix is diagonal in isospin subspace. In pairing

terms, this assumption means that there is no proton-neutron pairing. This implies
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that the pairing density p(7oq,70'q’) can be written in the form p, (Fo,70") 4, .
The pairing density matrix can be resolved into its scalar/isoscalar, vector/isovector
parts in exactly the same way as the normal density matrix. Thus, appropriate

contractions in spin and isospin space yield

po(F 7)) = > p(Fo,i o) b, =D Y 20 0i(i5q) ¢i(Foq) KL,

/ oq ]

= P77, (9.95)

AT = > p(Fo, 7 0) 6,y Mg =D Ala) Y 25 ¢i(i'5q) p;(Foq) & ,

/ oq ]

= > Aq) py(F7"), (9.96)

aa,q

- Z A(q Z 20 992 T' UQ) QJ(TO-q)U e K’]'m

oaq

=wam (9.98)

q

Working in neutron/proton representations, and going directly to the local densities,
the following is the list of the local pairing densities that can be formed by taking

derivatives up to second order

() = D0 D 2 ¢ilFoq) ¢i(Tog) K, (9.99)
7, () = Z Z 26 Vou(Faq) - Voi(Foq) K, (9.100)
smﬁ=22%% 0) (0" loulo) o;(Foq) K2, = 0, (9.101)
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ol®) =Y 20 (000 (700) — Vo000, Fou) ) (9102)

oij

TP = .Y 25'Vgi(Faq)-(o'loulo) V o;(Foq) k%, (9.103)

oo! U

Tulf) = ~5 330 Y20 5 (i 5T o) 00

va ool i

—V,0i(7F5'q) (0'|0a]o) soj(F’oq))re;, (9.104)

1 _ . ' >
Jq,;w('r.’) = _‘2‘ Z Z 20, (@i(rO—IQ) v,u <0' |UV|0> (fgj(TUQ)
ool 1

Vi nlF oD ol i) ) . (0105)

1 P = 1o o .
Ful®) = 3 5 2" (9 (01610) (00 niion
oo! U

+V,u0,(75'q)V - (0'|F|0) soi(Faq)) K% (9.106)

One notes that most of these anomalous local densities are not used in current
empirical parameterizations of nuclear EDFs (see section 4.2.2). In fact, only the
local pairing density, p,, is used. As discussed in section 5.3.8, the application of
the DME to the anomalous part of the OBDM results in these local densities. Thus,
these densities may be useful in future non-empirical construction of the particle-

particle/pairing part of nuclear EDFs.

9.2.6 Relations among the densities

One can establish a number of relations among the various local and nonlocal densities
defined in the previous section. We start with those relations which are important in

the derivation of the DME of the scalar/vector components of the normal part of the

OBDM. These are

{<V2 + V’2>pq(F, F')}

= V2p,(F) — 27,(7) (9.107)

F=i
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1 . S
= 5 V20 (7) — 7,(F) +1iV - 3,(7) (9.108)

— 1 < — - . — v d
V72 pa(7, ) = avzpq(r)—Tq(r)—zV-](fF)
(9.109)
[ﬁpq“ ™) = {ﬁlpq(f"f'):l
HHi=# =
le o =
— 5qu(r) + 134(7) (9.110)
[(VQ + V’Q) Suq(T, ) = V25,4(7) = 2T, 4(7) (9.111)
[Vus,,,q(i’, ) = [VLSV,Q(F,F)]
=i =i
1
= -Q—V,Ls,,,q(f’) + 1 (7). (9.112)

Most of these relations were initially given in Ref. [197]. Here, we extended the
list by deriving additional relations which are found be useful in the derivation of
the generalized PSA-DME, discussed in section 9.5.3. We illustrate the derivation of
these relations by taking Eq. (9.107) as an example. Starting with the left hand side
of Eq. (9.107)

(7 +9%) i)

-

’

- [(W + V’2> > ol(q) @il pgj]

ji

= > A [‘MF q) V20l(7a) + ¢;(7q) VZWI(FQ)] :
i

—

T=r

where we used the definitions of p, () and 7,(7) given in Egs. (9.76) and (9.77). The

same set of relations holds for the anomalous densities as differentiation is the only
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operation that is applied in the derivations. Hence, we avoid repeating these relations

for the anomalous densities. However, under general circumstances discussed in [81],

the nonlocal anomalous density, (7, 7) satisfies

ﬁ‘I(F? F/) = ﬁq(F,? F') s (9114)

which results in ]q(ﬁ) = 0. For the nonlocal anomalous spin density, we have

9.3

S, (AT = —5,(7,7). (9.115)

Local Gauge transformation of the OBDM and

local densities

Neglecting relativistic effects, the nuclear EDF must be invariant under Galilean

transformation, while the usual justification for the requirement of a locally gauge

invariant EDF is the fact that the underlying nuclear interaction is expected to be

gauge invariant. This seems to hold only for local interactions. Still, it is shown

in Eq.(9.130) that Galilean transformation is a special kind of local gauge transfor-

mation. In addition, the locally gauge-invariant bilinear combination of densities,

which is what we are interested in, do not depend on whether one invokes Galilean

invariance or local gauge invariance. Thus for the sake of generality, we discuss the

local gauge transformation of the normal and anomalous parts of the OBDM and

densities. The ultimate objective is to obtain the bilinear combination of densities

that are invariant with respect to local gauge transformation.
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9.3.1 Local Gauge transformation in many-body physics

In many-body physics, one can formulate local gauge transformation in two equivalent
ways (i) local gauge transformation of the many-body wave-function which is an intu-
itive generalization of the local gauge transformation of single-particle wave-functions
especially in the case of Hartree-Fock approximation (ii) local gauge transformation
in second quantization formalism which is very general and can be applied in any

many-body approximation.

Conventional formulation

In the usual formulation, local gauge transformation is applied to the N-body Hartree-

Fock wave-function |®) in space, spin and isospin coordinate space

A
@(zl,xz, ceey Ty t) = exp {z Zqﬁ(:c])} <I>(a:1, Zo, ..., :cmt), (9.116)
j=1

where z; = (7, 04, ¢;) and ¢(z;) = ¢(7},t) is an arbitrary, differentiable real function
of the position 7 and time ¢t. In general ¢(x;) are independent of spin and isospin

coordinates, and in the static picture, they do not depend on t.

Second quantization formulation

For generalization of local gauge transformation to other many-body approximations
where there is no explicit conservation of particle number, one has to formulate local
gauge transformation in second quantization. Since the state vectors in second quanti-
zation are elements of abstract Hilbert space or Fock space, local gauge transformation
must be performed by an abstract unitary operator [198]. When the transformed-
state vector is projected in to the N-particle subspace, the transformed wave-function
in the subspace is equal to the projection of the original-state vector times the ap-

propriate space and time dependent phase factors. In second quantization the state
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vector |®), which is not necessarily an eigenstate of particle number, is represented

in Fock space by the column vector
|®) = col {|®°),|®Y), ..., |®"),...}, (9.117)

where |®*) refers to i-particle component of the state-vector. A local single-particle
operator ¢, which is assumed to be diagonal in isospin space, can be represented in

second quantization as an operator in Fock space

> / di* (Fo1q|¢|7o2q) a' (Forq) a(Fozg) . (9.118)

7192 4
Defining the unitary operator U as
U = exp ZZ Z/ d (Fo1q|@|Fo2q) a' (Fo1q) a(Foaq) 3 , (9.119)
7192 1

the local gauge transformation of the state-vector is given by [199]
|®) = U|P). (9.120)

One can easily verify that this gives back the previous formulation when applied to an
N-particle Hartree-Fock wave-function. Once the unitary operator U is defined, local
gauge transformation can be carried out by transforming the creation and annihilation

operators

d(Foq) = Ua(Foq)U' = 70 q(7gq)

af/(Faq) = Ud'(Foq)U' = e™9qi(7uq). (9.121)
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9.3.2 Local Gauge transformation of normal densities

The local gauge transformation of the normal part of the OBDM is

p; (Flal, F202) = exp {Z (Q‘)(?’—"l) — @(Fg)) } pq(f'lal, ’FQO’Q). (9122)

When the various local densities involved in the EDF are calculated from the lo-

cally gauge-transformed density matrix Eq.(9.122), one obtains the following relations

[200]

Pa(T) = py(7) (9.123)
(7)) = 1)+ 254(F) - VO(7) + py(7) (W(ﬂ)zv (9.124)
S () = 8q0(P), (9.125)
Jaw(®) = Jau(7) + pa(MV,0(F), (9.126)
T,,(7) = Tou(®+2>  Jaup(F)Vud(7) + 5qu(F) (%(m)z, (9.127)
TP = Jquu(7) + s:u(ﬂvuqb(ﬂ, (9.128)

Fp () = Fuu(® + V.,6(7) Zw ) Sq mzvm ") Jaun(7)

+ V., é(7) Z Jau (7). (9.129)

From the previous relationships, the only bilinear combinations of local densities

which are invariant under local gauge transformation are

(3) pa(P)70 (7) = 7o(7) - T (7)

(i) pg (MY - Ty () + 5, ) - ¥ x 5,7,
(i) Vpg(7) - T (7) = 5,7) - 9 x Gy (7).
()pa(7) T, (7) + 5(7) x T (7)

(V) 3(7) - Ty () = 3 a7 1,7
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(V1) Z/_t JQvﬂN(f) Zu Jq’yuy(f") + Zup Jq;“ﬂ(f’) Jq’,uu(f’) - 2§Q(F) . Fq’ (?:)'
Galilean invariance is a special case of the local gauge invariance for which the
phase in Eq. (9.116) is given by

P

o) =5, (9.130)

where p'is the linear momentum of the boost transformation [200]. Transformation

properties of 7,(7) and j,(7) allow one to interpret Vo (7) as a velocity field,
- h=
() = Z96(7), (9.131)

which shows that the flow of matter obtained through the local gauge transformation

is irrotational, V x @ = 0 [200].

9.3.3 Local Gauge transformation of anomalous densities

The local gauge transformation of the anomalous part of the OBDM reads

pL(Fio1,7305) = exp {i(qb(ﬁ) + ¢(Fg)) } po(Fron, a0s). (9.132)

The local gauge transformation of the various local anomalous densities are calcu-
lated from the locally gauge-transformed anomalous part of the OBDM as given in

Eq.(9.132). Thus one obtains

Fy(®) = P05 (7) (9.133)
i) = e [ﬁm # 99 (F17,(73.72) + Fap (5 )
7| =g =
(T (9.134)
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& = €05 =0, (9.135)

SR = e, (9.136)
7:1:;(77) = 0 [f (7) + V() - (61§Q(F11 ) + Va5, (7, 72))
| =g =F
+8,(7) (%’(f))g} ) (9.137)
Y],kl(ﬂ = 20 ] (. (9.138)

The above relationships yield the following locally gauge invariant bilinear combina-

tion of densities in the pp-channel

() 3™

(i) |5,

(i) 5,(7)(AB(7) — 473 (7))
() 5,(7) - (A5 () - 4T(7)
OIGE

(vi) Zun o Jguu , nOting that complex conjugates of (iii) and (iv) are also gauge

invariant combinations. One can verify that starting from a local/semi-local interac-
tion, such as the standard Skyrme given in Eq. (4.12), only the bilinear combination

of normal and anomalous densities identified in this section occur in the HFB energy.

9.4 Densities in spherical systems

Under spherical symmetry, which also implies time-reversal invariance, the various
densities defined in the previous section take simplified forms. In spherical symme-

try, the HFB quasiparticle wave functions in the traditional representation take the
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form [81]

. Ul (rq) my 1
U:f]fl[’»](,t’q) — IJTZY’ l(r) (lml§a|]m> lo) (9.139)
mlo
. Vg(?’(]) my, . 1 .
yokial () = —l"]r_ > Y 7) 20 (Imiz6ljm) |o) - (9.140)
mlO'

9.4.1 Expression for the normal densities in spherical sym-

metry

Using the specific form of the quasiparticle wavefunctions given in Eqs.(9.139) and

(9.140), the full density matrix reads

p(To, 7o’y = Vel (7 q) yrbalkl (7o
q m m
nljm
Vql‘(’l",) m] 1 Vq~('f')
. 7 1 ~ -7 - nl
= Z ;, Z Y, (r’)2a'(lml’§a’|jm) ;
nljm mllgl
m 1
x Y V() 20 (Imy55]im) (9.141)
mla

where we have made use of the fact that the radial parts of the quasiparticle wave
functions and Clebsch-Gordon coefficients are real. In the following sections, the most

simplified forms of the various normal densities are given (for spherical symmetry).

Scalar part of the density matrix - matter density

The simplification of the nonlocal matter density proceeds by making use of the

relations stated in appendix Eq.(9.15) and Eq.(9.43). Thus

o 25 +1 Vi (r) Vi(r)
po(F i) = Z o ’;/ ’; P(7-#"), (9.142)

nlj
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where P, is Legendre polynomial of order . The above expression is manifestly
symmetric in 7, 77, viz, po(7,7') = p4(’,7). For the local part, one simply sets

7 = 7 in Eq.(9.142) to obtain

() = Z 2j+1 [ Vo (r )r_ (9.143)

nlj

To derive the local gradient and laplacian densities, one simply operates on Eq.

(9.143) using the respective operators. Hence,

Vo) = %,: 2{; = % [ "‘;(T)] (9.144)
Ap,(F) = %; 2{;1 (5—; + %) [ "‘J(T)} (9.145)

Kinetic density

For the kinetic density, one can proceed in two different ways: (i) Operating on the
simplified form of the nonlocal matter density as given by Eq.(9.142) (ii) Operating on
the quasiparticle wave functions (lower component) as given in (9.140) and employing
angular momentum algebra. The first path is followed for the sake of simplicity.

Starting with the nonlocal kinetic density,

1,77 = V- V’pq(* 7
2 1 7 ! /
< 47 r! T
nlj
Vi) . o (VED T 8ir? — 1T
+ , Pl’(r . T) ( "y Z 7"2 7‘3

+ V(T/) Pll(f’ . f') (V(T)) ! T 5ij7'l2 - TiITJ{

r! r 7-2 TI3
1] T Ay 2
LY V(r') V(r) ") Z rary 0T’ e =TTl Sy’ — iy
rr d rr! '3 r3



V(T’) V I‘) Z 1_7 r/r O 'r — Ty

r3

(9.146)

where P/ and P/’ denote first and second derivatives of the Legendre polynomials.
Using this same notation and simplifying the above expression one obtains Even
though the above expression looks complicated, it is handy to use when one wants
to extract the local value. With the nonlocal kinetic density as given in Eq. (9.146)
and setting 7' = 7, one can simplify the expression much further. Making use of the

relations stated in Eq.(9.5) and Eq.(9.31), one obtains

. Ve 2
) = 3 A | (v - P M D ]

The vector part of the density matrix - Spin density

The nonlocal spin density is given by

5,(F7) = qu(Fa,F'cf’) (o'|3|o)
T
= Z "“( "lJ ) Z Y lm, o'ljm) ZY l(r
nljm mjo

1
X (lm,io[jm) 455’ (5'|d|a) .

(9.148)
In the orthonormal coordinate system defined according to
€ =€, €x = SRl (€ +i€,) (9.149)
V2



and using

(&'10.45) = V3 %01“;%03, (9.150)

one can write the nonlocal spin density as

L Vit (r') Vo (r) T (o
sali7) = V6 ) =) Ve Y @i+ )
nlJm mlo”nllo'
1 1
X (—1)2+2me30-2 Log g bog
my o —m m{ ¢ —m
b1y
X . (9.151)
G u o

Making use of the 3j-6j symbols relation stated in appendix 9.1.2, one obtains

Ve (r mls . o
senl7) = V63 (25+1) "li( it Z v @ Y ) (<1

'
nlj

7nlnl
I 11 I 11

x . (9.152)
3 3 7 my om] u

One can plug in the algebraic values for the 3j and 6j symbols in the above equation
and do further simplification. To proceed further than that, it is imperative to choose

a coordinate system in which one of the vectors (7, ) is along the z—axis. Let 7
m]=0
be the one along the z-axis. This implies that ' = 0 and ¢’ = 0. Thus, only Y, !

contributes. Making use of the relations in Eq.(9.20)-Eq.(9.23) and simplifying,

Sq,o(F,F,) = 0
, |4 T
Se(7) = i) ()P (2 +1) "l;(, ") "”” Y R Y(0'=0,¢'=0)
nlj
3/4+1(1+1)—-j(G+1)
X
V201 +1)(2+1)
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) Vq- ’ Vq'T
Sq—1(F ) = zz (=D)¥ (25 + 1) "l;(lr) nlJ()

LY V(0 =0, 67 = 0)

nlj
3/4+1U1+1) -5 +1)
X
VA(T+1)(21+1)

One obtains the prefactor ¢ after properly summing the exponents of —1 which takes
the form (—1)* where a = 25 + 3/2 or a = 2j + 1/2. Writing the components in

x, ¥y, z coordinate space, one obtains

6 (FF) = 0 (9.153)
Vq
) = =iy e Bl s i costo)) Y28 = 0, " = 0)

x cos(¢) (3/4 +I1+1)—j(G+1)) NESCES (9.154)

l val 1 ! !
sualfs) = \fZQ 1) 2 B pa o)) v0(07 = 0, 07 0)
<sin(@) (374 L+1) =36 +1)) = 11)(21 - 1)

The above result can be used to show that the nonlocal spin density is in the direction
of ¥ x 7. This can also be shown to be true from a different perspective : using the
properties of nonlocal spin density under time-reversal and symmetry arguments. In
spherical systems, the general form of the nonlocal spin density can be constrained
as follows. There are only three vectors available for the construction of any vector

physical quantity. These are 7,7 and 7 x /. Thus
F(F 7Y = so(r,r',0) 7 + sp(r,r’,0) 7 + s.(r,r',0)7 x 7 (9.156)
where the s,(r,7',8), sp(r,r’,0) and s.(r,r’,0) are scalar functions dependent on the

magnitudes of ¥, 7 and 6 which is the angle between 7 and 7’. In spherical systems,
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the nonlocal spin density should satisfy
(7, 7") = 8y(—=7, =) (9.157)

This condition can be satisfied only by setting all except s.(r,7’) to zero. Thus the
nonlocal spin density is proportional to 7 x 7. To further constrain the form, let us
invoke the property of nonlocal spin density under time-reversal invariance. Under

time reversal

ST(F, ) = —52(7, ) = —5,(F",7), (9.158)

from which one recovers that 5,() = 0. Using the above property, one can easily

show that the nonlocal spin density has only an imaginary component. Thus
5, (7,7 = a7 x 7 s4(r, 7", 6). (9.159)

This result has been verified by the derivation in Eq.(9.153)

, Va V, 7’) P}(cosb
$q(ryr’,0) = \/ Z ?,2 lJ Y2(0,0) —————S(ine)

nlj

y (25 +1) (3/4+l(l+ 1) —j(G+1))
{1+ 1)v20+1 '

(9.160)

In ref. [170] a similar expression is given for the nonlocal spin density with s,(r,7’,6)

being
1 Vi (r r
Sq(ryr',0) = i% Z nl;’( ") ":( )P '(cosb), (9.161)

’2

nlj
where =& is for j = [ 4 1/2, P/ is the derivative of Legendre polynomial P, and @ is
the angle between 7 and 7. One can show that Eq. (9.161) reduces to Eq. (9.160)

by using the relations Eq.(9.46) given in the appendix. Obviously, in time-reversal
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invariant systems, the local part of the spin density is zero. L.e.
5(r) = 0.

Spin-orbit density

Starting with the definition of the local spin-current tensor

4 ! -
Jau(T) = 3 (vu - Vu) Squw(F,T")

=7

and making use of Eq.(9.159), we can write the local spin-orbit tensor as

" Ta
"]‘I,I“/( r ) = —-r Sq(r) Z Cuva “;‘

o

(9.162)

(9.163)

(9.164)

One can write J, ,,(7) as a sum of pseudoscalar, (antisymmetric) vector and (sym-

metric) traceless pseudotensor parts
o Lls oL Ly W= 4 J@ (7
Jq,il'/(lr) = §5HV Jq (T) + 5 ZEI»LU’C Jq,k(r) + Jq,uu(r)a
k=x
where the three components read

Jéo)( F) = Z Ow Jq,;w(F)
iy

JRE) = 3 ek Jagu(7)

[Nz

y D SN K« q
AT = Tl F) = 38w IO(F) = 5D cun JPUT).

k=x

(9.165)

(9.166)

(9.167)

(9.168)

Combining the above results, it can easily be shown that both the pseudoscalar and

the pseudotensor parts are zero ie. JO(#) = 0 and J?(F) = 0. Thus one needs

to simplify only the vector part. Even though one can perform a series of angular
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momentum coupling operations to obtain the most simplified form for the vector part
of the local spin-current tensor in spherical systems, a simple physically motivated

derivation is given in Ref. [201). In spherical systems .J,( #) must be proportional to

r. Thus
7o - (T.7\F
Jo(7) = (r J)r
T -

resulting in

—

W) = o e+ G+ 0 - 0en - §] (o) . @)

nlj

9.4.2 Expression for the anomalous densities in spherical sym-

metry

For the anomalous part, starting with the anomalous density matrix as defined in the

traditional representation [81]

p(To, e’y = _22 Untialk] () yldalkl (21 5.1)
nljm
, Ungs ()
= 2 L) (tmi o jm) 26" =2
nljm mlo!
l
x DY) (g 0|3m> (9.171)

mla

For the following anomalous densities, we follow exactly the same mathematical steps
as their normal counterparts. Thus only the results are stated. The two changes are
(i) overall sign becomes opposite to that of the normal densities (ii) one of the lower

part of the quasiparticle wavefunction is replaced with its upper part. Thus ringing
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the change in the respective densities, one obtains the following results.

pairing density

The nonlocal part of the pairing density reads

BRI = _Z 2]+1 nl] (r’) nl](r) B(# 7). (9.172)

nlj

while for the local part, one simply sets ¥ = 7 in Eq.(9.172) to obtain

6@ = -3 2]4:1 Vm(ri2 i (1) (0.173)
nlj

The local pairing gradient and laplacian densities are given by

2.7 +1 0 nl]( )Ug,l](r)

= — > y—— 2 7 (9.174)
_ 2j+1 2\ Vi (r) Uk;(r)
Ap(P) = —Z ye (07 + T) S (9.175)

Pairing kinetic density
The local pairing kinetic density reads

- -3 EE (v - 2 (g - 20

nlj

x+l(l+1)V"

nlj

(r) Upy;(r )] (9.176)

Pairing spin-orbit density

The pairing spin-orbit density is given by

J) = 4M4 Z (27 +1) [ (G+1) — 1(1+1) - i Vi) Uly(r). (9.177)

nlj
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9.5 Details on the density matrix expansion

In this part of the appendix, we derive and discuss the generalized PSA-DME. First,
we start with brief discussion of the Husimi distribution and the derivation of the
quadrupolar deformation, Pj(7). This is followed by few remarks and derivations
related to the Wigner transform of the p,(7,75) up to A?. Subsequently, we derive
the generalized PSA-DME, from which we recover all the special cases such as the
PSA-DME discussed in section 5.3, the original DME of Ref. [170] and its subsequent
generalizations [202]. Finally, we give the formal modified-Taylor series expansion,

discussed in section 5.3.6, of all the local densities.

9.5.1 Husimi distribution and the local anisotropy PJ(7)

The Husimi distribution is one of the many quantum phase-space distribution func-
tions. It possesses the key property of positive definiteness [[203],[169]] and is defined

as

If
|

i 1
. . 11aY 1)—;2(7”—7‘1) .
H,(7,p) N / pi(T1g) e 0 dry| pl, (9.178)

where N = 1/(n% 4r3/ ?y and rg is a chosen parameter. In the following, we use the
HF single-particle wave functions. The occupation probability of a given spherical
shell p?! is one or zero, except for open-shell semi-magic nuclei where the so-called
filling approximation provides the valence shell with a partial occupation. Modifying
the derivation to include pairing (HFB) can be done through the proper formulation
of the Wigner distribution as given in Ref. [204], as the Husimi distribution is a

coarse-graining of the Wigner distribution using gaussian phase space factors[169)].

To derive Eq. (5.15) for the quadrupolar local anisotropy of the momentum Fermi
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surface Pj(7) we start from the definition

J dp[3(¢; - p)* — p*| H,y(7, D)

Py(7 - — , 9.179
2(-’) fdf)f)QHq(sz ( )
and make use of the relations
o o B

/ dppRe AP = (2m)R°V | - V(7] — V1), (9.180)

1,2 212

—fg(rl—Tl)
e "0 ~ O(F — ) + O((kEro)?). (9.181)

Through direct application of the above relations, one obtains

[ 6 en ~ @ P SNV o+ O((kkm?),

/dﬁ(ﬁ.ﬁ)%]q(ﬁﬁ) ~ (27)%R° Z‘(T c,oz(rq | pL + (’)((k‘Frg) ),

which, plugged into Eq.(9.179), gives

0 = | 1@ Dl st - 1] + 0.

3
74(7)

Further simplifications can be performed for spherical systems, using single-particle
wave-functions essentially the same as the ones given in Eq. (9.140). However, note
that we are working in the HF picture. Using the angular momentum relations in

section 9.1.2, one obtains

o 241 (9 VLN
Zi(er'V)%(T(J)IQPgi = Z An (Br l;“ )p" ’

7 nlj

. B 2]"“]- n (T) nj
E;IVQOi(TQ)l?pgi = Z A (87‘ l;' )Pq ’
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-5 (B2 o

nlj

where F(l,7) is given in Eq. (9.1.3) and p™! is the occupation probability of the
(n,1, j) shell with g labeling the protons/neutrons. Plugging these intermediate results

into Eq. (9.182) yields the expression of P,(7) as

no = S S () -G () ey

where 7,(7) is the kinetic density as defined in Eq. (9.77).

9.5.2 Wigner transform of the p,(71,7) up to h?

In the parameterized PSA-DME of 5,(7, 72), we used the Wigner transform of p, (77, 7)
up to h? to motivate the form of Eq. (5.41). In this section, we derive Eq. (5.40).

We restrict the derivation to the HF approximation. Refer to [204] for a recent work

on the formalism of the wigner distribution in systems with pairing (HFB). One can

write the scalar part of the normal part of the OBDM as

CB(71,73)

70 = 3 elE i) 00, - ) = 205, [T o1

where © is the unit step function, A, is the fermi energy, ¢; is the single-particle energy,
3 = it and L™! refers to the inverse Laplace tranform. C? (7, 73) is the single-particle

propagator which, in the HF approximation, reads

CEo(r, 7o) = Y ol(7q) pilfig) e 9O\ — &). (9.184)
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Since the Wigner transform of the right and left hand sides should be equal, one has

Cﬁ‘(ﬁ.ﬁ)}

() = 215, [ (9.189

The derivation of the Wigner transform of the density matrix up to A? can be ob-
tained by working out the inverse Laplace transform up to A? of the single particle

propagator. It reads [38]

’ o (Prvy() i
Cf(R,ﬁ) = e P\2m™" (1 + — = ( AV (R R) + ﬁ(VV(R))
g 2y 4
+§E( - V)2V,(R) ORY) ). (9.186)
Defining the single-particle Hamiltonian h? = —%A + V, where V, is the self-

consistent HF potential, one can use the following relations

/ dge” ™MW = (N, — B,
F—1i00
O[T ap ) = 50— ag),

q Jy—ioo

o y+ioo ) ﬁ()xq—hq ) o
- w = _ B
o /H_oo dge 3 D0 = 1)

for integer n to obtain

2 2
- 1 (& vy (Ry) 4 5
Lglsg [Ee bava = A -5~ Vi(R) ),
- 6] —ﬁ(p +Vg(R)) s B2 .
L g i ®ayi)| - Lavd
P’ =
X5/(Aq—%—Vq(R)),
_ 5252—ﬁ2vﬁ*—*2 R o =2
Lt | e "8 (I ) | = - ST (Fu)

P’ 5
X 5"()\,, ~ o Vq(R)>,
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2 32 P2 - 9
Lty |G e P G0 | = -G 9w

(9.187)

Plugging into Eq.(9.185), we obtain the Wigner transform of p,(73,72) up to K2

_, B2 )
pWK,q(RJ;) :@()\q - ht‘lzv) - 8_A‘/q($ ()‘q — ht‘],v)
e m ) (9.188)
+ 3= [(VV)? + (- V)V, ]8" (A — hiy) + O(R),
where hi, = H, = -2”—3; — V,(R) and the derivatives of the dirac-delta functions

are performed with respect to A;. Even though it is not the main target of this
section, one can calculate the inverse Wigner transform of Eq.(9.188) to obtain the
density matrix up to order h%. This effectively gives the extended Thomas Fermi

approximation to p, (71, 72). We can call EFT-DME. The important relations one has

to use are

RN L d a _ okL. o 1

3(Aq — h3y) 2 d(k — kr) an an, D, KL (9.189)

n2x92 -

where A\, = —£- + V,(R). Since the derivatives act on the dirac-delta functions,
one has to perform integration by parts using the relation

T q n an

dp(s (/\q - h’W’) F(p7 r, /\q) = (_1) I\ F(p, Ty /\q)|p=pFa (9190)

q

where F(p,r, A;) is any well behaved function and pr is the value of p that satisfies

the equation A\, — hY, = 0. Applying these mathematical relations, one essentially
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obtains EFT-DME of p,(71, 72)

kL 35 (kL)

Lo 1 . ,
pulF 72 kb ioktr) K (k)|

S 32 kL
1 qu 2 ] . .
247r2( k;’:) []O(k‘}‘”r) — Akpri(kir) + ’f%2r2]z(k%ff)]
1 1-*kq"kq Tl i (ke 12,25 (1 O
_24772EV FVF'; e FrivkEr) + kg rga(ker) | + O(RY).

(9.191)

In Ref. [173], the authors make angle-averaging (with respect to the orientation of 7)

approximations, followed by the expansion of the Fermi momentum up to A2

1/3 1 —1/3(v )2 A
a _ 2 — (372 Pa)” _ 92Pg 192
e o)) ]

and 2(VEd)? ~ kIAKZ to obtain

] S S 3Gk o Ji(kgr)
pETFa(R,7) = po(R) P =5 8pq | Jo(kgr) — 6 P
r? (qu)2 . 1.4 Ja(KEr)
— 2_16p—q [4]0(]{;Fr) -9 quT ] . (9.193)

9.5.3 Generalized PSA-DME

In section 5.3, we discussed PSA-DME of the scalar and vector components of the
normal part of the OBDM of time-reversal invariant systems. In that derivation, the
chosen set of DME-coordinates (f?:, 7) were integral parts of the derivation. In addi-
tion, we had a single nonlocality coordinate, namely, 7. Here, we give a generalized
formulation of PSA-DME for time-reversal invariant systems where we relax these
two constraints. This allows us to recover the DME of the nonlocal densities that
occur in the HF energy of both NN and NNN interactions. It is to be noted that

the three nonlocal densities that occur in the expression for the HF energy from the
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chiral EFT NNN interaction at N2LO are of the form ¢ (7,7 + Z2), (71,71 + &3)
and ¢, (7 + &y, ™ + Z3), while for the HF energy from the two-nucleon interaction,
the nonlocal densities are of the form ¢,(7,72). In this notation, the NNN case uses
the coordinates defined in Eq. (7.22). Furthermore, ¢, can be either p, or 5;. As can
be seen from the coordinate dependence, the nonlocal densities that occur in the NN
case are particular cases of the ones that occur for the NNN. In fact, all the nonlocal
coordinate dependencies can be generated from the general case (7} + Zo, 71 + T3).
For instance, the usual DME-coordinates (R, 7) used in the NN case is recovered for
T = —&3 = 7/2 with 7 playing the role of the center of mass coordinates. Hence,
we give the PSA-DME for p (71 + &2, 71 + &2) and §,(7, + 25,71 + Z2), which we call

generalized PSA-DME, and generate more specific cases from it.

9.5.4 Generalized PSA-DME for the scalar part of the OBDM

In order to obtain the generalized PSA-DME for p (7 + 2,71 + Z2), we essentially
follow the same set of steps as we did in section 5.3.3. One starts by extracting the
exponential nonlocality operator before introducing a phase factor and performing a

Taylor series expansion up to second order

Po(Fo + Ta, 7+ Bg) = eNE2T3) B (Va—iRiaz (V34h) () )
'7"2:7"'3:1"’1
(9.194)
~ R [1 + Fy - (Vg —ik) + T3 - (V3 + ik)
1 . . \2
+ 35 (:52 (Vy —ik) + 23 - (Vs + zk)) ] Pq(T2,T3) :
Fo=r3="]
(9.195)

Note that for the PSA-DME developed in section 5.3.3, the next approximations

involve angle averaging with respect to the orientation of the relative coordinate and
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averaging with respect to k over a Fermi sphere. For details of the logical arguments
in favor of performing these approximations, refer to that section. Here also, we apply

exactly the same approximations. First, We define a new coordinate system as given

in BEq. (9.1)

T = & - &, (9.196)

X = (1—a)@ + af, (9.197)

where a€[0, 1]. The essence of this parameter will be clear later in this section.
Angle averaging with respect to the orientation of the relative coordinate, Z, en-
tails performing ﬁ J dQz where Q3 denotes the orientation of Z. Let us apply these

approximations to Eq. (9.195) term by term.

e The Leading term gets simplified as

3 - [dQsz .7
—_— dk L pth¥ T, T = [I°(kizx 1), (9.198
47r3k%3 /Iﬁlsk% / An pq( 2 3) B 0( F )Pq( 1) ( )

where

J1(kE|Z2 — Ts))

hkfz)
k) P
FlT2 — T3]

Hg(kfpa?) =3 qu.’IZ 7“1) =3

p(7). (9.199)

e The linear (first-order correction) term has two origins. The first one is from

—ik - (¥2 — ¥3) and the second is from &5 - Va + &3 - V3. Hence

3

4m3k33

— de’ ik-T .7 o = -
/~ dk/4 e* % [—ik - ] py(7h, 73) = Li(kfz) pg(71),
i<k, 4 Ty=T3=r]
(9.200)
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where

, h(kfa
F

(k| Ts — Z5])
KL — o]
(9.201)

= —3jo(kf|T2 —Ts]) + 9

For the simplification of the second linear term, first note that according to
Egs. (9.196)-(9.197), the operator in this term, viz, & - Vs + &3 - V3 simplifies
to Z-(aVa—(1—a)Vs) + X - (Va+ V3). Let us designate

Ve =aVy—(1—0a)Vs. (9.202)

Thus,

/%

/ sz zk :1:( 62 -+ 53 . 63> = /dQ’: /de@zgﬁ[f . 6(1

+X’-(%+<73)}

= jolkz) X - (V2 +Vs),

which implies,
rg=r3=r|

3 / ../de .E_ﬂ(ﬁ - - Lo
dk e T Ty - Vo + T3 Vi | po(7a, 73)
am3ky Jm<ad, 4 a

= L, (k},a:))? V1p(71),

(9.203)

with

kix) J1(kE| T — Z5))
Lo(k2 3J1( £l = gk . 204
(ki) = kix k}| Ty — 25 (9.204)

e The second-order correction term is generated by the operator
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[Z5 - (Vo —ik) + &5 - (Vs + ’LE)}Z /2, where we are not showing the phase factor
explicitly. Using Eqgs. (9.196)-(9.197), this operator reduces to
[Z- (—ik + Vo) + X - (Vo + 63)]2/2. The relations

dQ—' f L7 — —
/ s iz (£ -k} (T-V.) = 0, (9.205)
A
de ik NV (& =
/ e (T k(X - (V2a+V3) = 0, (9.206)

and Eq. (9.5) can be used to simplify the second-order correction as

3 = [dQ L. oL
= — 0T otk T = . )
47T3k%,3 /Ilzlgk% dk / I € /2 [JI ( itk +V )+X (V2 +V3)]

X pq("??v F3)

Fo=r3=i"
= le(k z) = 9, \VY . = q =
= 9 iy [X v ] pa(T1) + Li(kpz) X - Vipy(7) + La(kfz) pg(71)
F
T kizx -
—h(q—F) a Pg(T2,73) ; (9.207)
9=73="1
where
36 — 3(kix)?\ . .
Lykr) = (B3R ey — 6jo(hia).  (9:208)
2kix
Ay = V. -V,. (9.209)

The last term involving A, requires further simplification. Expanding the oper-

ator and using relation Egs. (9.108)- (9.109) and the definition of kinetic density
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given in Eq. (9.77)

2
aVy — (1 - a)Vs) Pq(T2, 73)

I
TN

AapQ(F?r F3)

- - —

Fo=rg=ry Fp=rg=r]

a’ . - D P

o (O RETOREANAGY

1 —a)? o - s A

L (i) - 2ri) — 29 -3
—2a(1 — a)7,(™1) ,
22> —2a+1 L .

— #qu(rl) - Tq(rl) ’ (9210)

where we used the fact that 7,(7;) = 0 for time-reversal invariant systems.

Collecting all the contributions, the complete generalized PSA-DME for p,(7; +

To, Ty + ¥3) in time-reversal invariant systems takes the form

PP+ To, T+ T) = TE(kEx) | pg(F) + Aa(kfa) X - Vipy (i)

| —

1, 2 =2 .
+3 (€90t
# % kL) | (@ = at AnE) = 7o)

6
3 o
+ gk;2A2(qux)pq(rl)] , (9.211)
with
1(kpx) Ji1(kE|Z2 — 25))
Mgy = 3dke?) _ g ik 212
O( F‘T) k%ﬂl’ k%le _f3| ’ (9 )
j1(kg) Jilkp|T2 — 5]) :
Hp kq — 3.]1( F — F . 1
p(kfx) Mo 3 W6 —H] (9.213)
L](kq.T)
Ay (K2 = 14 —0—1"7 ~1 kLr)?) . .
1(kpx) + 7 (k%) + O((kfr)®), (9.214)
L (k% L
Nokia) = 14 L P"’“",)f 2(Ke2) 1+ O((k%r)?). (9.215)
Hz(kg‘ﬂf)



As a can take any value between zero and one, it can be considered as an optimization

parameter that is to be used to select the best DME-coordinates. Refer to the next

section for some detail on related works.

Recovering previous DMEs of the scalar part of the OBDM
At this point, it should be emphasized that the approximations that are used up
to now are exactly the same as the ones that are used in section 5.3.3 when we
derived PSA-DME for py(71,72) using (R, 7) as the DME-coordinates. Hence, we can
recover the PSA-DME of pq(ﬁ—k 7/2, E—F/2), i.e., Eq. (5.21) by setting ¥y = —23 =
/2, 7| = Randa= 1/2. In this case, X =0, #=7and Eq. (9.211) reduces to

r? 1 = =
GIBL0) | {80 ()~ ()

R—3) = T§(kEr) pg(R) + 5
(9.216)

DO =3y
N3y

pq(ﬁ +
3 -
+ gk%‘zth(R)] )

where IIf(k%r) and II5(k%r) are as given in Eqgs. (9.212) and (9.213), with Z being
In obtaining Eq. (9.216), we considered only the leading order

replaced with 7.
contribution to Ag(k%z). The only difference between that of Eq. (9.216) and the
corresponding expression in Ref. [170] is the fact that II5(k%r) = 105 j3(k%r)/(k%r)?

in the original DME. As can be seen from the series expansion,

jl(k}]rT) —~ q.\2
Tl 14+ O((kir)?), (9.217)
j3(k(11?r) ~ q.\2

105 Ky~ 1+ O((kgr)°) (9.218)

the two m—functions are similar in their leading order. Due to the (k%r)? prefac-
tor that we have in the second-order correction, the difference between the second-
order correction terms of PSA-DME and the original DME appears in terms beyond

O((k%r)?). Asnoted in Ref. [170], this difference in the higher-order terms should not
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be surprising due to the the ambiguity of DME correction terms beyond O((k%r)?).

Hence, we have effectively recovered the DME of Ref. [170].

In Ref. [202]. the authors generalize the original DME of [170] as

2

. = -, T .
Pg(R+b07F R—(1—-b)7) ~ TIIf(kLir)p,(R) + Eﬂg(k}’rr) [(b2 —b+1/2) Ap,(R)

.3 .
—1(R) + gk%?pq(R)] : (9.219)

with the same w—functions as given in Ref. [170]. Parameter b = 1/2 recovers the
usual relative and center of mass coordinates. To obtain this expansion from our

generalized PSA-DME, Eq. (9.211), one sets

—

Fl - R, .21?2 = b’F, and .’i"3 = —(1—-b)F, (9220)

which implies Z = 7 and X = 0. Hence, Eq. (9.211) reduces exactly to Eq. (9.219)
with parameter a playing the role of parameter b. Optimizing parameter b, the
authors of Ref. [202] note that b = 0 which amounts to expanding about one of the
particles, instead of the center of mass, seems to give the best accuracy for molecular
systems. This further enforces the view that optimization of parameter a can result

in increased accuracy of the DME.

Further approximation with respect to X

In the generalized PSA-DME of p, (7} + 25,71 + &3), our angle averaging with respect
to the orientation of &' is a well-supported step in that the scalar part of the OBDM
is known to have a weak angular dependence on the orientation of the relative co-
ordinate [176]. If we stretch the argument and assume that the dependence on the

orientation of the other non-locality coordinate, X, is weak, we can average over the
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orientation of X . In this case, Eq. (9.211) reduces to

e s L, 2 1 X2 .
po(Ti + T, 11+ d3) = (k) po(T) + = Ty(Kp2) [(a2 —at+ g+ —5) Apy(ri)
— 3 —
—7q(1) + gquzAz(k%fE) Pq("'l)] ; (9.221)

whose simplicity makes investigating its accuracy a worthy step. As mentioned in
the previous section, parameter a may be optimized to reduce some of the inaccuracy

that may result from averaging over the orientation of X.

9.5.5 Generalized PSA-DME for the vector part of the OBDM

The generalized PSA-DME for the vector component of the OBDM involves a signif-
icantly less algebra than that of the scalar component as we stop at the linear order
in the Taylor series expansion. It involves exactly the same approximations as the
ones that we used in section 5.3.4. Extracting the non-locality operator and a phase
space factor, followed by Taylor series expansion of the operator

ok (Fy—E3) oo (Vo—ik)+E3-(V3+ik) ¢

Sq,u(Fl + 527 Fl + fS) = q,u("?2> F3)

TQ=r3=r]

Q

eil_c‘-(i"Q—i‘B) l:l + f2 . (62 _ ZE)

(9.222)

+ Ty (Vs + iE)} Sq.0(F2, 73)
FZ:F3:F1

where we truncated the expansion at first order. Since §,(71) = 0 for time-reversal
invariant systems, the contribution from the leading term vanishes. Likewise, the
contributions from the linear i3 - k terms vanish. Using Eq. (9.112), the definition

of the cartesian spin-orbit density, J; .., given in Eq. (9.83), one writes Eq. (9.222)
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as

Squ(Fi+ Do, Fi +3) =~ ie*E2%3) > o (). (9.223)

m
The final step involves performing the PSA over a deformed sphere that characterizes
the local momentum distribution. Let us start from a spheroid in momentum space

defined by the equation

2 k2 2
kf + —2—+ kﬁ =1. (9.224)
a(R)?2  a(R)?> c(R)?

-~ —

For ease of notation, we write a(R) as a and ¢(R) as ¢ in the following. We constrain
the position-dependent quantities a and ¢ by requiring that the spheroid has a given

volume and quadrupole moment, viz,

4 4
vV, = §7r3k}3 = §7r3a2c, (9.225)
- 2(—a®+c%)

The IT—function is obtained via the integration over the phase space of interest
g 3 I ik '
Il =——= [ dke"". (9.227)

Carrying out the integration over the volume V, encompassed by the spheroid given
in Eq. (9.224) can be done by using a stretched coordinate system from the transfor-
mation

k= (ko by k) — K = (Eay ky, %kz) : (9.228)
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such that one finally obtains

Sav(FL + 2, T + &) > i T (kEx) Y wpdo (7)) (9.229)
u
where
s i (k2 i (EL|E, — 7
M) = 32Ure) _ g alkelfa = %)) (9.230)
klx kL|Zy — &5
and
- 2+ 2PIR)\?
i = (M) KL (9.231)
2— Pj(R)

Setting Pg(ﬁ) = 0, which consists of performing the PSA over INM phase-space,
results in the same II—function with /Nf% replaced by k%. For spherical systems, one
can simplify the expression further by writing Jq,u,,(ﬁ) as a sum of pseudoscalar,
vector and (antisymmetric) traceless tensor parts given in Eq. (9.165). Since in these
systems, both the pseudoscalar and the tensor parts vanish, one obtains

?

: T (Ker) & x J (7). (9.232)

gq (Fl -+ f2 Fl + 53) =~
Hence, using Eq. (9.229), we have a DME for any type of nonlocal coordinate depen-
dence. For example, s(7, 71 + Z3) is obtained by simply setting 5 = 0, while setting

F=Rand & = —T5 = 7/2, Eq. (9.229) reduces to

—

A (R’ + g- R— g) ~ AT (kEr) > rudyuw(R), (9.233)

I

where I15(k%r) is as given in Eq. (9.230), with Z replaced with 7. Due to the possible

dependence of the accuracy of the DME on the specific coordinates used, one cannot
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claim or expect the same accuracy in expanding, for instance, §,(71,71 + Z2) and

8, (7 + 72,7 — 7/2).

9.5.6 Remarks on the generalized PSA-DME

As can be seen from Eqgs. (9.212), (9.213) and (9.230), the final results of PSA-
DME of p, (71 + &2,71 + &3) and 5,(7, + &2, 7 + £3) are not separable in &, and 75 .
In contrast, all nonlocal densities that involve only two of the coordinates such as
pq(71,72), pg(T1, 1 + &2), ... led to a completely separable expansions. This can leave
the perception that the objective of having a separable approximation, which is what
the DME proposes to achieve, is not yet met.

However, p,(71 + Z2, 71 +Z3) and §,(71 + &2, 71 +'3) appear in the HF energy from
the chiral EFT NNN interaction at N2LO where &> and &3 are part of the interaction
form factors. Refer to section 7.1. In fact, the interaction does not depend on 7.
Thus, all terms that depend solely on 73 and T3, whether they are separable in these
two coordinates or not, can in principle be integrated out with the interaction form
factors. The actual direct analytical integration of such terms is very difficult, if not
impossible. Refer to section 9.11 for details on how we solve this problem. Leaving
the technicalities for the relevant sections, it should be clear at this point that a local
EDF will result from the application of the generalized PSA-DME of p,(71+Z2, 71+Z3)

and 3, (7, + &2, 71 +Z3) to the HF energy of the chiral EFT NNN interaction at N?LO.

9.5.7 The modified-Taylor series expansion

As discussed in section 5.3.6, the modified-Taylor series approach provides a formal
framework to extend the applicability of the density matrix expansion to non-time
reversal invariant systems. It is obtained by replacing the coeflicients of the Taylor

series expansion of the densities with m—functions. The dimensionless variable € is
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used to denote the possible argument of the 7 —functions. The modified Taylor series

expansion of the densities that appear in the exact HF energy from a generic NN

interaction reads

L F _ 7=
po(R £ 5) =~ m(Q)pg(R) £ 7(Q) 5 - Vrpe(R)
1 A
+578@ (5 - Fe) pldD), (9.234)
= T § D § T = =D
SR+ D)~ @50 @) (] In)af)
1 7 o=\ 5
+§7T2(Q) 3 - Ve | 5(R) (9.235)
- — F k4 -2 = 7 F = -2
]q(R:tg) = W(J)(Q)]q(R):tﬂ'{(Q) (§’VR Jq(R)
150 (7 = \'=,5
-!—57?%(9) 3 " VR Jq(R), (9.236)
- = F 7 D 3 F = 7D
SR+ D) = m{(Q)Jq(R)j:wi’(ﬂ)ﬁ-VRJq(R)
1 5 R L
+5 () (g : VR) J(R), (9.237)
= 7 s T s _ S
plR s 5 R G ~ U@ % @) ] - (V1 - T o, )
F1=F2=R
1 ool =N (7 =\ . .
+§H2(Q) (5 Vi) + (5 Vo Pe(T1, T2)
Py =fo=R
172
7 (9.238)

T5(Q)5,(R) + Q) 7 -

1 . 7oL \? P
+§n;(9)[(g : vl) + (g : v2> ]é:,(fa, 7)
1 =Fo=R
1=72
g F = F = - - —
—H3(Q) (5 . V1> (5 . VQ> Sq(T'l s 7‘2) y (9239)
m=rg=
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and for the pairing densities

_ 3 5 = (N
po(R £ 2) ~ () pe(R) * 7"{)(9)5 Vrpy(R)
1, 7 oo\, s
+§7T§(Q) (5 : VR) Pq(R) (9.240)

1 > ’F - =,
+3 () (5 : VR) 5,(R), (9.241)
-3, T z3_T BIONE (D Bn © Vi 7.\ 5 (7 T
Pq(R + 5’ R ¥ 5) ~ HO(Q)pQ(R) == H1(Q)‘2‘ Vi -V, q(’f‘l, 7"2)
1_"1=_'2=R
1 5 7 =\ (7 = \T. o .
+§H2(Q) --Vi] + 3 Va | |Pg(T1, T2) .
71 =fp=R
5 - ¥ =\ .
—5(©2) 5 Vi ) Va | po(71, 72) B (9.242)
7 =fy=R
SN (B 5oy 5 \2 (e
~ T(Q)5,(R) + II7(Q) 2 (Vl - V2> Sq(T1, 72) )
F1="'2=R

5,(
1= Foo\ 7= \]-
+§H§(Q)[(§ : V1> + (5 . V2) ]gq(ﬂ, )
71 =fo=R
1572
g T = T = \3,- -
— 3(2) (5 : Vl) (§ . V2) Sq(T1, T2) , (9.243)
7 =rg=R

At this point, the modified-Taylor series expansions of the densities can not be written
in terms of the local densities defined in appendix 9.2.3 and 9.2.5. Implementing the

steps explained in section 5.3.6, one obtains an equivalent expansion, this time with

explicit local densities. These are

NN 1]

6 (2) pq(ﬁ) + () 5 - 6R Pq(é)
iR R (9.244)

+3780) (5 - Fa) (D),

2
=
H-
R 1]
X

IR

) = mp(Q)5(R) £71(Q) 5 - Ve, (R)
2

1 . (7 = \. 5

+§7T2(Q) §'VR 5(R),
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e R D) = TR + @) 50 + L@ (Saf)
—qu(ﬁ)) - ;—an(Q)Tq(ﬁ)? (9.246)
Rt 5 RT5) ~ Q) squl) £ ) ruyuF) + ) (85
_qu,,,(é)) . QHS(Q)Tq,,( R), (9.247)
R D) ~ md@5R) £ H@) L aiF)
+ % Q) (g - 6,;) A, (9.248)
WRED) ~ @) B = (@) (Fr) ()
+%w§(9)(§ 6R>2L(R), (9.249)
and for the pairing densities
PR =)~ (@) p,(B) £ (@)L Tpy()
+5 () (5 - *R)Qﬁq(fzd (9.250)
") 5,(A) £ () L Tr ()
(9.251)

v ek (5-9a) G0,
5B + o) <qu(ﬁ)

P(RE 2, BF2) ~ THQ)pH) Q7 j(B) + o
2
—2%,,(1%’)) ﬁH"(Q) 7.(R), (9.252)
- A 7 = - = " re - .¢
S0 (R £ 3 R F 5) ~ II(Q) 5., (R) £I1(Q) rJg um(R) + ﬂHS(Q) (qu,,,(R)
re . ~ —
- —IG(Q)T,.(R), (9.253)

—QTQ,V(R’)> T
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9.6 Derivation of EDF from HF energy of local

NN interaction

In this section, we give detailed derivation of the HF energy from a generic local

two-nucleon interaction and the EDF that results after the application of the DME.

9.6.1 Central contribution

We demonstrate the derivation of the contribution to the HF energy from the central
part of NN interaction by deriving the corresponding expression for the spin-triplet,
isospin-triplet channel. Making use of the spin/isospin projection operators given in
Table 1.2, the projection of a local central interaction in this channel reads

VA = —(1+ P3) (1 + PL) VE(r). (9.254)

|

Plugging this in Eq. (6.2), using the definition of the OBDM (Eq. (9.70)) and its

scalar /isoscalar-vector /isovector decomposition, we obtain

1 o o
EGM11] = g/dﬁ dra V' (r) [Po( 1) po(72) — po(T1,72) po(72, T1)
1
+ Z ( 0'10‘2 + QSO(TI) 00102)
109

1 — - —
_2—80(T2)~00201) ,

1
- Z ( pO TI?TQ 0102 + 230(T1 T?) 00102>
7192
1 o . |
X (5 po(72, 71) 50102 + 530(7"2, 7“1)-00201)

+ 3 (3 2ol + 502 ) (5 0(Fs) + 2 ()27 (7))
— Z(% po(71,72) + %(—1)%—(1 /)1(771’772))
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9 9192

+p1<r1> 01(72) 8010y + 51(71).Go oy X 51(72).Gogo )

- _6 Z Z (pO(Fh FQ) Po(T—E, 7?1) 50102
q 0‘10’2
+50(71,72)-Ooy oy X 53(72, 71)-Gogoy + P1(71,72) p1(72:71) 0oy 0y

+51(71,72). 0505 X S1 (f’z,ﬁ)-6'02al)] : (9.255)

To find the final, most simplified form of the above expression, we make repeated

use of the relations listed in Eqs. (9.12)-(9.13) to obtain

BV = L [ andn v ) | e ) = 31 mlr ) P os() )

3 - . 3. R B
_Z| P1(7‘1,T2) ‘2 + ZSO(TI)'SO(T2) - ZSO(TI,TZ)-SO(T27T1)

1

PR - 3R (9.256)

1
4
In terms of the proton and neutron densities

ENN[11] = Z/drl diy VEH(r [3pq(r1)pq(r2) — 3 pg(71,72) pg(T2, 1)

+3q(7"1) . (7‘2) — gq(Fl,Fz) . §q(7"'2,771)} (9257)

1 3 — — — —
v X [ a3 o) i) = 3 i) oo 7
q
1 — = - 1 — - - Il Bd
+—2—sq(r1) - §5() — §sq(r1,r2) - §5(72, ™) | . (9.258)

Similar derivations can be done for the other three channels.
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9.6.2 Spin-orbit contribution

For the spin-orbit interaction, we demonstrate the derivation for the spin-triplet,
isospin-singlet channel. Starting with Eq. (6.2) and the projection of the spin-orbit

part of the interaction in this channel, we can write the Hartree contribution as

i o e " Lo
ELSH[IO] = _ZZ /drldTQVng (r)7 - [pq(Tg) \Y% xsq(rl,ré)|~2/ #
q

#57) x Faoae oy |
?

Lo S N BV VO
= —ZZ/drld'rQVng(T)T . |:pq(’f'2) (EVX q(Tl)‘{‘ZJq(Tl))

q

1 o g I = . I, -+,
- 1Y [ dran vy A e + 750 8 G
q

Noting that

—

/d’Fl d’FQ VLs(T)’F' V® [pq(f"l) gq/q(’f"g)] = 0, (9260)

where V = 61 — 62, the Hartree contribution from the spin-orbit interaction in the

spin-triplet, isospin-singlet channel reads
E}$%:i (10 Z/ dry iy Vig(r) [@(7‘1)10«1(7?2) + 5y(71) ¥ fq(Fz)}~ (9.261)
The Fock contribution in the spin-triplet, isospin singlet channel reads

Epgpl10] = %(Vs—ve"r‘V?—VS): (9.262)
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where expressing the V;s in terms of the density matrix

Vs = Z Z / dry diy VLS( )7 X Vgpq (Thoq, T101) - {01|0|03) pg (FLo3, Tao2)
019903 ¢
‘/ﬁ = Z Z / d’l“l d72‘ ) X 61@7 (Flo'g, 'FQO'Q) . <0’1|5I0'3> Pq (FQUQ,FlUl)
010903 ¢
Vi = Z Z / dry diy Vg (r) 7 x V2Pq (To04, F101) - (02|F|04) pg (T101, T202)
71924 4
Vs = Z Z / diy dity VIS (r) 7 x Vipg (P01, 7202) - (02] | 04) pq (Fa04,7107) .
919294 4
(9.263)

The manipulation of the above four expressions involves repeated application of

spin-traces. Finally, one obtains

i — — — — — — = - 3
LSe.z('[lo] = 1 Z/ dry diy Vig(r) {Sq(m,m) - T Q@ Vapg(ra, 1)
q
+pg(F1,7) 7 ® V- 55(7, ) | - (9.264)

Spin-orbit contribution in time-reversal invariant systems

To recover the expression given in [170] for the contribution from the Hartree-Fock
energy in spin-orbit interaction, it suffices to show that

— 3, J dF1dia VAU(r) pg(71, 72)F x Va - 55(F1, ) can be simplified as
= — Z/ dFl d?z’z Vgg(’l’) pq(F]_,FQ)FX 62 . gq(f&, Fz)
q .
- Y [ ananvise [ (1 72) - 7 X apy(i )
q

—pq(ﬁ,?‘z)gq(ﬂ-,"?2)'ﬁ2><f'
dVig e N oy oy
—Z/dnd T2 ;——(—qu(rl,m)sq(rl,rg)—rxr
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> / diy d7y VI(r) 5,(F1, 7%2) - 7 x Vapg(Fy, 7a) . (9.265)
q

Thus taking the above result, adding it to the terms coming from the spin-triplet

isospin-triplet one and assuming V/2(r) = V}i(r) ! one obtains

1
B = 5 [ ananvisto) |7 ) 6
+i2 30 8,(F, ) 7 x vgpq(a,@)] ,

q

(9.266)

which is exactly the same expression as given in [170] for time-reversal invariant
systems. Note that there is a factor of two difference between our expression and
the expression in Ref. [170] which is due to a factor of two difference between the

spin-orbit interaction used in our derivation and in Ref. [170].

9.6.3 Tensor contribution

The derivation of the Hartree contribution from the tensor part of the NN interaction

is trivial due to the specific operator structure, viz,

(0102|G1 - €, 0 - €:|o30y) = (01|d1|03) - €, (02|F2|04) - €, (9.267)

<010'2! g1 0’2 |030'4> (O’1|0'1|0'3> <02|52|J4> . (9268)
For example, in the spin-triplet, isospin-singlet channel,

5q(71) - 7 83(72) - 7 — 54(71) - 53(72) | (9.269)

N[o) = Z/drldrgVT (r) |3

1This assumption is essential to obtain the form given in [170] as the authors use the same r
dependence in both channels.
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The derivation of the Fock contribution involves a significant number of spin-traces.
Due to the similarity with the derivation given in section 9.6.1 for the central piece,

we do not repeat the derivation.

9.6.4 Leading-order pairing contribution

Restricting the derivation to a central interaction and to the spin-singlet, isospin-

triplet channel, the leading-order pairing contribution reads

(D|VO @) pir = 5 Z Z kg ( (iqjq| VO | kqlq) K. (9.270)
q ijkl
Thus,
1
<(I)| I(I) pair gz Z /d’l“ld’f‘gvc
q 0109

1 1
X (T‘lﬁq* (7309,7161) %ﬁq (r302,7101)

1 1
*50—1/3 (r209,7161) %08 Pl (101, 720%)
L5 (03, 1) s 1 (R0, Ficr)
201p T209,T101 20, p T201,T102
1 1 - -
+—p (7'20'277'10'1) p (7’10’2,7’20'1) . (9271)
20 J1 20'1

After resolving into scalar/isoscalar, vector/isovector parts and simplifying one gets

1 o o
(BVE @ e = 1 / di diy VO (r) |37 )P (9.272)
q

9.6.5 The resulting EDF: EDF-NN-DME

In section 5.3.6, we discussed the basic steps that are involved in the derivation

of a local EDF from the exact HF energy of a generic NN interaction through the
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application of the modified-Taylor series (or any other DME). These steps are best
exemplified by the simplifications that we carried out to obtain Egs. (5.46) and (5.47).
We apply essentially the same step on the exact HFB given in section 6.1 and arrive at
a local EDF which we call EDF-NN-DME. It has three components: the particle-hole
EDF (given in Eq. (4.11)), the particle-particle EDF (given in Eq. (6.35)) and the
additional terms of the EDF (given in Eq. (6.36)). The couplings of the particle-hole

part of the EDF, in terms of the notation defined in Table 1.2, are given by

wr = e[y ()] 4 2agn](ng)” - ()]
(e B [ )
1 3 1 3
APBP (32 001+§Cu)[7rg7r2]+(32 g;m_gign)[npnp]
1 3
AVAVe (32 qC01 Cll)[(wf)2]
ss L cm § 7\2 L i §\2 5?2
AT = —ga [(Wo) + (Mg)"] + g% [(m3)" — (155)" ]
ApVJ — é]i 55’11[7‘.07.‘.1 HPHS]
AT = Lo [fn] - I
sAs 1 g s 31715 1 1 §_5 §1rs
A = e [momy + GG ] + (55057 — gag't) [nfmy — TGTIS]
2l [2mfw — )
AVsVs _gagn [(Wf 2] z 3’“11[1—[0 (Hs +Hs)]
soU's 1 1 1 5
AVsoVs (ﬁacm_@a011+8a’§rll)[(7r1)2]
1 1 1 3 § (5
Al = ( % a™ — 16ag'n +Zac2r11 _4 Tll)[H (H +H;)}
Al = 3 Tll[HsHs]
2
3 1
BFF = (16(1{10 + 1_6“'1001)[(7‘”8)2
3 1
H(I)’] + (s af™ + 2caf™) [ (ng)” — (1)"]
3 1 3 1
pT ClO = COI - Cll s p p p
BT = (50" — 5% e g ) (T + 115) ]
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Brdr (3 cm+iacm+iacn+ 1 000)[ P p]

T\ Tea™ T2 T™ JLTm
(s + gras® — 2agh - ag™ ) mgn ]
B = (a0 + oS+ D b oas™ ) ()]
B = (ol — o) [(=) + (1))
+ (350" = o™ [(75)" - (11)°]
B = CafO(nfn! - W] + S abS [afn] + LTI
BY = ~%a551o{7r17r0 ;] — ;a?“[w;’wmngni‘]
B = (e — L a§™) [minf + TETE)
+<;4 g1 — 2 a§%) [nfn] — T
(g + goi" - el + g5 [ni ]
(- 136 0+ + ! — e 1)
BV = (Zal 4 2aT) [(n)’)
s '+ ™) (11 (11 + 1)
BYsoVs  _ ( S0 + 61_4 co1l _ gliacu + 614ag00
+f@ P el (D))
BY = (gaf — af” — sa§ 4 a§™ — el 4 S
+; - el [ (nf + 1)
B = (G - Fa) [,
and for the particle-particle part of the EDF
- o [
AT = ia?“[ﬂé‘ﬂi]. (9.273)
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In the EDF that results from the additional terms, given in Eq. (6.36), only the

couplings from the Coulomb piece are unspecified. These are given by

c* = af (n8)?, (9.274)

Crbr =

CVpr

where in these equation af refers to using the Coulomb interaction to compute these

couplings.

9.6.6 Analytical couplings from chiral EFT NN interaction
at N2LO

In this section, we derive the analytical couplings of the particle-hole EDF (given in
Eq. (4.11)) for time-reversal invariant systems starting from the finite-range part of
chiral EFT NN interaction at N2LO (Eq. (6.5)). In line with the exact treatment
of the direct part advocated in section 5.3.7, the contributions to the couplings that
come from the Hartree part of the HF energy are not included. Furthermore, in
conformance with the notation used in the NNN case, we use isoscalar/isovector
notation instead of proton/neutron notation.

The starting point for the derivation is the expression for the couplings expressed
as a functional of the mw—functions. Note that the Fock contributions that we are
interested in correspond to those terms that contain solely IIf, i.e. no x}, for any
density ¢. We illustrate the derivation taking the calculation of A?? as an example

AP = g / dr r? {Vgl(r) (T8 (kpr))® — 3VE(r) ( Hg(kFr))QH , (9.275)

where the interaction vertices V¥ (r) and V}*(r) are given by Eq. (6.10) and (6.11).
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The starting chiral interaction is in momentum space and hence

1 Y
APP = 6 /drrzd(j'e’q'r [ch(q) (Hg(]‘fF?“))2

~372(0) ((ke)’ ) |. (9.276)

The subsequent step requires specifying the m—functions which can be fixed according
to any viable DME approach. In our case, we use PSA-DME with the 7 —functions
given by Egs. (5.22), (5.23) and (5.36). Next, we perform the integration with respect
to r first. This is actually an important step to see that the integrals do not actually
diverge. In contrast, in the NNN case, it is easier to perform the integrations first
with respect to the momentum coordinates. Refer to appendix 9.11.4 for a related

discussion. In performing the r integrals, we define

L) = f ridr jo(ar) (T(r))°, (9.277)
Lig) = / P jolqr) () TIE(r) (9.278)
I(g) = /r2drj0((jr) (Hf(r))z, (9.279)
L) = / rdr jo(gr) (E()°, (9.280)

where ¢ = q/kr. Upon inserting the PSA-DME w—functions, these integrals become

L@) = L@)=1() = ?;—;r (@ - 12 + 16)©(2— ), (9.281)
L@ = g (2-#)ee-1, (9.282)

where © denotes the unit step function. What remain are one-dimensional integrals

with respect to the momentum coordinate, g. At this point, the couplings take the
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form

PP _
cr =
T _

cy' o=
pAp
Ci =

JJ
cy’ =

where

_% q°dgT2(q) [ I(q/kr) + gfz(Q/kF)]
2

k3,

1
—4CF

¢°dq T3 (q) Ix(q/kr)

/ ¢*dqI3(q/kp) (1 + %qaq) I'#(q)

4k

/ ¢*dqTg (q) Li(q/kr),

h 6rk3

') = Vi(e) t=0

with ¢ € {C, S, T, LS}. These exchange-force form factors are given by

Velq)

¢la)
Vs(q)
Ws(q)
Vi(g)

Wr(q)

= Velg) + Welg) + 3Vs(g) + 3Ws(g)
+¢*Vir(q) + ¢Wr(q),

= Welq) + 3Ws(q) + ¢*Wr(q),

= V() + Welg) — Vs(g) — Wsl(q),

= Welq) — Ws(qg),

= Vir(q) + Wr(q),

- - WT(q) )

(9.283)
(9.284)

(9.285)

(9.286)

(9.287)

(9.288)
(9.289)
(9.290)
(9.291)
(9.292)

(9.293)

The remaining one-dimensional integrals are calculated after plugging the chiral EF'T

NN interaction form factors (at N2LO) given in Ref. [12]. The complete expressions

for the couplings are too lengthy to reproduce here. Consult the Mathematica files
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of Ref. [161]. Here, we list the contribution to the couplings from the LO finite-range
piece. As given in Ref. [12], the only LO finite-range piece is a one-pion exchange

term. Therefore we have

W = —(ﬂ)Qq ! (9.294)

2f’ @2+ m2’

where all other components (V¢, etc.) are zero. With u = kp/m,, the non-zero

couplings from the finite-range LO potential are:

2
9a
A = et {(—21+ 4980 + 64u* — 164°) — 12u(35 + 40?) arctan(2u)
3
5 (7+ 16u3(8 — 9u?)) log(1 + 1w}, (9.295)
U
B = 24% (9.296)
APRP = -—@3‘——{(—3 + 72u® + 4u?) — 60w arctan(2u)
©) 3072 f2m2u8
1
+ 7oz (3 54u? — 720*) log(1 + 4u?) | (9.297)
BiY = 2477 (9.298)
A
AT = —aAfSe (9.299)
By = 247, (9.300)
2 & (54120 4 \
AL = { = log(1 +4 } 9.301
© 48 2m2 L (1 + 4u?2)? + u? og(1 + 4u) ( )
2 2
By, = 2A4f, (9.302)

which can easily be put under the form of Eq. (6.39).

9.7 HFB equations from EDF-NN-DME

The general formalism of HFB equations is discussed in Ref. [81]. Just like HF

equations, they are solved self-consistently. In coordinate space, HFB equations for
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general nonlocal “mean field”, h%(¥o, 7’ ¢’), and pairing field, AY(7 o, 7’ o’), take the

form
WY Fo, 7' o Ao, 7' o’ Uui(r' o Ul(Fo
15 o sare) \[ueea] [ o
o \ —A"(Fo,7'0") —h"(Fo,7'd’) V(i o' q) Vi(roq)
(9.303)

where U!(7' o’ q) and VI(7' ¢’ q) represent the upper and lower components of the
fh b

quasi-particle wave functions. E7 is the quasi-particle energy and h'(7'o, 7" o’) is
defined as
W (Fa, 7 a') = hi(Fo,7 o') — X4, 1 6(F— 7). (9.304)

In Eq. (9.304), A? is the chemical potential which is calculated from particle number
constraint at each stage of the self-consistent iteration [205]. In configuration space,

the mean and pairing fields are given by

6E
q = —
hi 5o (9.305)
6

v

Starting from a local HFB energy density, the mean and pairing fields become lo-
cal in coordinate space. This is shown explicitly in the next sections where we de-
rive hi(ro, 7' ¢'), and pairing field, AY(Fo, 7’ ¢’) for EDF-NN-DME discussed in the
previous section. These derivations involve just repeated applications of functional

derivative which is briefly discussed in appendix 9.1.6.
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9.7.1 The mean field from EDF-NN-DME

The derivation of h%(7'o,7’ ¢’) in (7, 0,q) space proceeds by taking the functional

derivative
o(ef + e + e,
h;’.i = ) cowTem ./, (9.307)
ij

where from the coordinate representation of the mean field, one has the configuration

representation

h;lz = Z /dfldfg <p;(771(71q) hq(Fla'l,FQUQ) (pi(FQO'Qq), (9308)
7192

with ¢;(Foq) denoting the spin up/down components of the basis ¢;(7q). Since the

energy functional is quasi-local, it results in a local field of the form
h¥(7y01, Ta02) = 0(ry — 72) h(71; 01, 02). (9.309)

This field acts on the spin up and spin down components of the wave function through

> W71 010) i(Fro2q) = {hq ga,-] (F101q) , (9.310)
72
and it is given by
hi i(Fq) = [—qu(r*)ﬁ + U,(F) + S,(7) - & — %[A’q(r)ﬁ + V- A(M]
¥ [C) 31 ~ £ [Wo) ® Vo + Vo © W]
- %[V'?-D*q(mv + G-V D7) V]| ¢i(7a), (9.311)
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where a shorthand notation for the tensor product has been used

A®B = > " Ay, By,. The various components of the are given by

A = LR a7 () + B oy, (9:312)

U7) = 247 p(7) + AP 14(7) + AP Dpy(7) + A [ AP py(7) ]
—2V - [AVYVp, | + AV - J(F) = V[ AV J(7) ]
+2B" pg(F) + B 14(7) + B Dpg(7) + A [ B pg() ]
29 [BYa] + BV U7 - V(B J@)]
ve [ LA a3y g, (9.313)
Squ(F) = 24%5,(F) — 2V,[AV*VoV - 5,(7)] — AV T,,(7)
— 2477 (F) 4+ AP As,,(F) + A [A2 5., (7)]

—2AVVE A (F) + Z €vap Va [APVJ jq,ﬁ(ﬂ]
of3

- Z Cap [AVPJ Vozjq,,@(f)]
af
+2B% 55,(7) — 2V, [BYV*V - 53(7) | — B T;,(7)

— 2B F;(7) + B*Asq,(7) + A [B* 54,()]
—2BVSOVSASQ,V(7:) + Z eua,@V [ pVJ (F)]

af

= > &vas [BY Vajga(™)] (9.314)
af

Ag () = _QAPqu,u(F) + Z €vap [ApVJ vasq,ﬁ(ﬂ]
of

= €vap Va [A7 545(7)]

ap

~2B" jgu(7) + Y | €uap [B*Y Vasgs()]
of

=~ > €as Va [BY 555()]
af

R S
- /dr/ z; 5 (7). (9.315)
q
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Con(r) = —A‘”sq,,,(F) - BJqu,,,(f'),
W = 2477 J0u(®) = eap Va [APY py(7)]
+ Z (7 {AV'DJ vﬂp(](m]

12477 [T + 6,3 Jyaa] + 2B Ty (7)

3 o Ve (B 0]+ 3 s (B V)]

+2B77 [Juu(P) + 60 > Jaa)

Dg (P = —24%5,,(F) — 2B s4,(7).

9.7.2 The Pairing field from EDF-NN-DME

The derivation of the pairing field proceeds by starting with the variational

6€KI€

g*
0K,

-

The pairing field A? in coordinate space is defined through [81]

Al = Z dry drs ¢} (F101q) ¢} (F202q) A% (7101, T200).

7192

It is local

Aq(FlglaF202) = 5(F1 - 772) Aq(f’ﬁo‘haz)-

and has the structure

AU 01,00) = Uy(F01,02) + V- Dy(i01,02) V + Ay 01,09) - V,

247

(9.316)

(9.317)

(9.318)

(9.319)

(9.320)

(9.321)

(9.322)



where the field components read

OFo.0) = 247 5(7)016myay + 247 (M) - 45(7)) iy

+2 A[APT py(7)] 6160

1792
+1 Z (62(0'2|0u|01) + 01(51|a,,|62)> V“[Ajj Jou()]
vp
(9.323)
ﬁ‘](ﬁ gy, 02) = 8 Aﬁ’f ﬁq("_") 61 6[715'2 3 (9324)

Agu(Fioy,00) = iZ(&g(aglaulal)+01<51|a,,]02)) AT (P . (9.325)

9.8 Numerical solution of EDF-HF equations in

spherical systems

For the preliminary self-consistent tests of the DME discussed in section 5.4.6, we
performed self-consistent calculation of the HF equations. This calculation was done
with the assumption of spherical symmetry, which also implies time-reversal invari-
ance. As the starting EDF, we took two different cases: (i) EDF-NN-DME with
the Bogoliubov contributions turned off. This is what we call fullDME. (ii) In the
second case, EDF-NN-DME is changed in such a way that the Hartree contributions
to EDF-NN-DME are replaced with their exact counterparts, with the Bogoliubov
contribution still turned off. This is what we call exchange-only-DME. Since the Bo-
goliubov contribution is turned off in both calculations, we refer to both calculations

as EDF-HF calculation.

In both full-DME and exchange-only-DME, the spherical self-consistent HF equa-

tions take the form
hipi(Tq) = eqpi(Tq) , (9.326)
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where h? is the single particle Hamiltonian given by

Rt = —V - By(r)V + U,(r) — iW,-V X 7. (9.327)

The only difference between the two is in the actual values of the field components:

By(F), Uy(7) and W,(7).

9.8.1 Full-DME in spherical systems

The components of h? for the case of ful-DME are given by

M = LN 4 o) + B ). (9.328)
Ui) = 247 py(7) + A7 r(7) + AP0 Ap () + A [ 4957 ()]

—2V - [AYVp, | + APV V- J(7) = V-[ AV T ()]
+2B" pg(F) + BT 14() + B Apg() + A[B (i) ]
—2V - [BYYVp;| + BV V- Ji(7) — V[ BV Jy()]

ot )
+e? / g7 LoT) 62(%)”3 P37, (9.329)

|7 — 7| B P

Wy = AV = V][4 py()] + AV Vpy(7) — A7 Jy(7)
+BY T = Y [BY py()] + B Vpy() — BT Ty,

(9.330)

where V and A operators that occur in the fields probe only the radial part as we
are dealing with spherical systems. It should be noted that (i) all the local densities
depend only on the magnitude of 7 (ii) all the derivative operators are not meant to
act on the wave functions, they only act on the densities. All the couplings such as

APP and BP? are as defined in section 9.6.5.
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9.8.2 Exchange-only-DME in spherical systems

In this case, the field components read

B = Co M e () + B e, (9.331)

U = [ (20— )+ 2VE = ()

-

+/df~" [qu PF = TN (7 = 7) - Ty(7)
V(7 = 7D (7 = 7) - Ja()

+ 247 p(F) + AP 7,(F) + APPP Ap,(7)

+A[Ap ()] = 2V [ATVNp ] + AV ()
—V-[AY J(7)] + 2B pg() + B () + B Apy(F)
+A[ B pi(F)] — 2V - [BYYPVp] + BV V- Jy(7)
(B R0 + @ [ar 2T - o

1 1

)3 03 (), (9.332)

Wy = [ |V = ) + Vi )| 7
+ AT Jy(7) = V[ A7 pg(7)] + AV Vp,(7) — A7 T ()

+BJ(7) = V [B*Y py(7)] + BV Vpa(7) — B Jy(7) (9.333)

In this case, the couplings /ﬁlc? and é;c (for any bilinear combination of local den-
sities, ¢1¢2) are obtained from the corresponding Ay and B couplings given in ap-
pendix 9.7 by setting Hartree contributions to zero. Note that, according to our
notation, Hartree contributions are expressed exclusively in terms of 7 (the small let-
ter m—functions) while the Fock ones are expressed in terms of II (the capital letter
w—functions).

For the numerical result reported in this work, we evaluate the 3D-integrals, which
reduce to 2D for spherical systems, directly using Gauss-Legendre integration tech-

nique. An alternative is to solve the corresponding Helmholtz problem [206].
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9.8.3 Harmonic Oscillator basis expansion method

In the numerical solution of the single particle HF equations, the spherical harmonic
oscillator basis expansion method is used. Coupling the spin and angular momentum

to a total angular momentum, the basis are given by

— Rnl T) m AN T
u(Tyq) = —T(— 11/23'(7") X1/2 (9.334)
where
p = (nlymr) refers to the single particle quantum numbers
Of s () = > (smum|im) Y, (#) x5, (9.335)

mymsg

with R, (r) is defined in appendix 9.1.4. In the basis expansion method, one expands

the HF single particle states,|@q), in terms of the basis states, |¢,)

loa) = Y C2 1), (9.336)

where C are the expansion coefficients. The basic steps in a single iteration of the HF
self-consistent calculations is (i) the calculation of the matrix elements of the single
particle hamiltonian (ii) the diagonalization of the hamiltonian matrix to identify the
spectrum (iii) updating the single-particle fields or expansion coefficients using one of
the available schemes to drive the calculation towards convergence. The form of the
matrix elements for each of the three parts (the kinetic, central and spin-orbit parts)
of the single particle hamiltonian listed in Eqs.(9.327) is given below. Of course, the

calculation is performed self-consistently.
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Matrix elements of the kinetic part

By the kinetic part, we are referring to the V- Bq(r)ﬁ' term of the single particle

field. The corresponding matrix elements read

- - R (0O 0 Ry 0?2, Ry

. — o M - 2y
($41V - By(r)V|6,.) / drr® =2 ( 5 Bu(r) 5= + By(r) (35 + ) = )
X 5ll’ 5jj’ amm/ 5'r'r” (9337)

where ¢/ = (n'l'j/m'7’) and p = (nljmr). One can be tempted to use the exact

relation one has in spherical harmonic oscillator basis for kinetic energy operator

T =—h/2mA

2n+1-1/2) ifn=n'
VN(N +1+1/2) if [n —n'| = 1 N = min(n,n’),

0 if |[n' —n| > 1.

(6,1T16,) = 2

In order to make use of this relation, one writes <¢#/|6 - B,(r)V|¢,) as

($IV - By(r)VIgy) = ($uV[Be(r)] - VIgu) + (@4By(r)Alsy)

(9.338)
where one can write (¢,/|By(r)A|,) as
(@,1By(r)Al) = D (81B,(r)|¢n) (du|Al)
= S GBI GTlG) . (9339

Finally, using the exact kinetic relation in Eq.(9.339) and plugging in Eq.(9.338),

one obtains a simplified formula for the matrix element. This is exact in the ideal
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case of both no truncation of the basis states and a box of infinite size. In practical
calculations, one has to truncate the number of basis states and also use a finite-
sized box. These truncations make the use of Eq.(9.339) numerically unstable and
erroneous®. This is the case especially when the inverse-effective mass term, B,(r),
is very different from 1 inside the nucleus. For cases where the inverse-effective mass
remains more or less the same as the inverse bare nucleon mass, using Eq.(9.337) or

Eqgs.(9.338) and (9.339) give the same results for the matrix elements.

Matrix elements of the central potential part

The matrix element for the central potential part of the single particle field, U,(r),

reads

Ry R,
<¢p,qu(T)|¢u’> = /dr r2 Tl Uq(r) TI 5”/ 5]_7/ 5mml 5,’.7./ s (9.340)

where again where y' = (n'l'j'm/7’) and p = (nljmr).

Matrix elements of the spin-orbit part

The matrix element of the spin-orbit part of the single particle field, iW -V x d, reads

Lo R 3
DV, -V x Gld,) = —(j(j+1)—z(z+1)—§)/dw ANAC %
X 8yt 6,30 6t Ot (9.341)

where again ¢ = (n'l'j'm/7’') and p = (nljmr).

2This must be due to the practical violation of the completeness relation and the use of a finite
box size. It can be shown numerically (by increasing the box size) that effect of the later is minimal.
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9.8.4 Self-consistent iterations and convergence

As can be seen from the results of the matrix elements for the three parts of the
single-particle fields, the hamiltonian couples basis states only within a single [ — j
block. Hence, in the actual numerical solution of the HF equations, one diagonalizes
each | — 7 block independently. Of course, the other parts of the calculation will
involve all the relevant [ — j blocks. To drive the calculation towards convergence, we
implemented both Broyden’s method [194] and Imaginary-time method in separate
calculations. After convergence, the results of the two methods usually agree to three
decimal points, and hence the results reported in section 5.4.6 have been obtained

using both methods.

9.9 The HF energy of chiral EF'T NNN interaction

at N2LO

Here, we give a few remarks on the symbolic derivation of the HF energy of chiral
EFT NNN interaction at N2LO and give the complete expression for non time-reversal
invariant systems. The corresponding simpliﬁed expressions for INM, PNM and time-

reversal invariant systems are also stated.

9.9.1 Remarks on the symbolic implementation

The details of the symbolic derivation of the HF energy from the chiral EFT is
discussed in Ref. [156]. In addition to automating a tremendous amount of spin-
isospin and other algebraic steps, we have demonstrated that the approach can be
generalized to treat nonlocal interactions such as the quasi-local Skyrme interactions.
There are several extensions of the symbolic derivation that can be made in the

future: (i) One can envision expanding the work in such a way that first-order pairing
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correlations (due to the NNN interaction) are treated along with the HF part, viz,
performing HFB (Hartree-Fock-Bogoliubov) calculations. Combining this extension
with proton-neutron mixing, one can have a start- ing Skyrme-like functional that
can be used to handle proton-neutron pairing correlations as discussed in Ref. [207].
(iv) Implementing a similar scheme to treat four-nucleon interactions can also be one

area of extension.

9.9.2 HF energy from the E-term
Direct part

The direct part, which comes from the E-term, reads

ir 1 —
VAEEA) = 3B [ dra) 0, (9.342)

Single-exchange part

The contribution from the single-exchange part, which originates from the E-term,

reads

ViR = g / dF[3p3(F) + 300(7) A7) + 3 po(F) 56(7) - ()

— po(7) 81(7) - 51(7) + 4 p1(7) 5o(7) - 51(F) | - (9-343)

Double-exchange part

The contribution from double-exchange part of the E-term reads

(ViBsy = liﬁE /dF[Bpg(T_') + po(F) P3(F) + 9 po(F) 5o(7) - 5(7)

+ po(7) 51(7) - 51(F) + 2 p1(7) 51(7) - 5(7) | - (9.344)



E-term contribution for specific systems

In symmetric INM, the HF energy from the E-term reduces to

, 3 ~
<V3}11VF,E,INM> — féE /d?",og(?)- (9.345)

In unpolarized PNM (pure neutron matter), the HF energy from the E-term vanishes
(Ve 2Py = 0, (9.346)

which is due to Pauli exclusion principle. In time-reversal invariant systems, the HF

energy contribution from the E-term takes the form

ey = X [ar| a0 - me k@] )
9.9.3 HF energy from the D-term
Direct part

The contribution from the direct part of the D-term reads

HF,D,dir —ga Cp 1 - Eql
D, _ d zq3 (Fg—79) 3143
(Van ) w3 72 —f2 A2 / drodry / gse€ 2 +m2
X po(T2) 51 (7“2) 51 (9.348)

In symmetric INM, there is no contribution from this term. Likewise, for time-reversal

invariant systems where 8/, () = 0, the contribution from this term vanishes.
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Single-exchange part

The contribution from the single-exchange part of the D-term reads

—g4 Cp 1 vy
VHEDIsy  _ —9A / drdi / diy B 73) _BL
o ™) 4fz f2A, 4 ) ¢ +m?2

[ /)0(7“317"2)3?(7‘2)31(7'2 r3)
— 1 €M7 g (75, 7)1 (T2, 7‘3)31 (72)
— p1(7, 73) 83 (T3, 72) 85 (Fa) — pu(Fs, 7a) 53 (72, )85 (75)

+ 13 €Y 5§ (T, 73) 8 (75, 72) 87 (7o) — pu(Fa, 73) 8§ (73, 72) 85 (72)

1 p - — — — 1 — o —p o —
- 5 po(rz)sf(r?n 7”2)517(""2, 7‘3) - 5 5[37 Po(Tz)m(T:s, 7‘2)01(7”2, 7‘3)
1 v 17 o — — o .
+ 3 € P po(72)sT (73, T2) ST (Ta, T3)
3 o - — — —_
~3 po(T2)sg (73, T2) 83 (Fa, 73)

— - - — — 3 — - —p . -
+PO(T2)3§3(T377"2)3?(7"2,7'3) - ‘2‘567/’0(7"2)00(7”377”2),00(7”2»?“3)

+ 0y po(72) p1(T5, T2) p1(Ta, T3)
3 ) . oL oL
+§faw€wﬁ” po(72) 38(’”3#“2)5‘6}(7'277‘3)

e () s;*(fg,fg)s:’(@,a)]. (9.349)

For symmetric INM, the expression simplifies to

HF,D, 1z, INM —ga Cp 1 o i (o q2
(Van ) = 4f§ﬁ/\:4/dr2dr3/ Gl Y
3 Lo S
. [—5po<r2)po<r3,r2>po<r2,r3>], (9.350)
while for unpolarized PNM, one has
wrED1zpPNM, _  —9a Cp 1 ) @
(Van ) = 4f2 2, 4 /dT2dT3/ d(]3€ (F3="2 m
X [— 5pn(rg)pn(rg,rg)pn(rg,rg)} . (9.351)

257



In time-reversal invariant systems, using Sp/1(7) = 0, one obtains

- —g4 Cp 1 1 () 4393
yHF.D 1z, TRy gA 1 o g dis 10373 —79) 4393
(Vax ) i A, 1 ) P | e @ +m2

3 — — — — —
X [— B} 03y Po(T2) po(T3, T2) po(T2, T3)
1 — — — — —
+ 5 567 po(TQ)pl("“:h T2)p1(T2, 7“3)

3 ) - o = Lo
+ 5 € P po(72)sg (T3, T2) s (72, T3)

3
2 Po(ﬁ)sg(rsy 7“2) S0 (7’2, ’7'3)

1
5 €
]' — —p —p g —

+ 9 Po(ﬁ)sf(’%, 72)57 (72, 73) | - (9.352)

W P po (7o) (7, 72) 5 (T, Ts)

Double-exchange part

The contribution from the double-exchange part of the D-term reads

y/HF.D.2z —g4 Cp 1 - 7 CI3C]3
= 24 . eid3-(73—y) 1343
(Vay ™) 4f2 f2A, 16 / dr?d""/ P E & +m?2

X [3(5[37 Po(72) po (72, 73) po(T3, 72)
~ Opy p1(T2)po(72, 73) p1 (75, 72)
+3 po(72)sf (Fa, 73) 5§ (7, )

— 3w Py po(72) g (7o, T3) s (75, 72)
— po(7) s (72, 75) 57 (75, 72)

+ € € po () st (7o, )55 (75, 72)

+6 po(Fa, 73)50 (72) 59 (P, 72) — 36y po(a, )0 (72) s (73, 7)
+ 305y po(7s,72) 0 (72)sg (Fa, 72) — 2 p1 (72, 75) s (7)) (s, 7%2)
+ Oy p1(72, 73) 8 (7o) 5] (73, 72) — Oy p1(Ts, T2) 85 (Fa) 8] (72, 75)

— 13 €M1P HaH3BY iV sﬁ,‘l (F2)Sg2 (73, 772)833 (72,73)
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— i3 1P H2M3Ha 40 5oL (Fy, 75) 552 (7)50° (s, 72)

+16 1 12131 40 51 () 502 (73, ) 80> (72, 73)

+ i 1 ehar3g 47 s ()52 (7, )8y 3 (7, )

+ 1 €15 i3 etV §EL (7 7) sh2 ()50 (P, 72)

— 2 15V honiy W 5L (7)) 2 (7, 7)) sy 3 (7, 7s)

+ 38y p1(72)po(T5, T2 ) p1 (72, T3)

—0py 1 (72) p1 (73, T2) po(T2, T3)

— p1(7a) sy (o, 7)1 (73, 75)

+ €W B (75)sq (T2, '3) sy (73, 7o)

+ 3 p1(72) s (73, 72) 8] (Fa, 73)

— 3 X B o) ()55 (T3, 7)Y (P, 73)

— 2 po(7a, 7)Y (7o) 53 (F3, 72) + Oy po(T, 73) 85 (%) 57 (73, )
+ 385, polFs, T2) 85 (7) 8] (Fa, Fa) + 6 pu(Fa, 7a)sh () sg (75, 7o)
— 33py p1(Fa, 7)1 (72)$3 (73, 72) — Oy p1(7s, 7o)} (72) s (72, 73)
+ 118V H23ka e S (7)) SN2 (7y, 7)) sh3 (7, 73)

1 1PV Har3ha 1 51 (7 75)sh2 (7)) 3 (7s, 7)

— 2 H15Y har3rg g §1 (7)) 82 (7, 7)) sh3 (7o, 75)

— i3 1PV horgrg et M (7)) sh2 (7 ) S 3 (7, 7)

— i3 M1V hargha t W L (R 7)) 2 (7%) sh3 (7, )

+i6 €M1V ehonha et L (7)) o2 (7y, 7y) 83 (R, 7s) |- (9.353)

In symmetric INM, the contribution reduces to

(VHF,D.Qm,INM> _ 94 Cp i/df'df'/ 1 i 67;4‘34(173—?2)_(1%__
3N af2 f2a,16 ) 00 ) (@2n)3 @ +m2



X [3p0(7?2)p0(F2,F3)p0(F3,F2):| . (9354)

while for unpolarized PNM, one has

(VHFD22PNMy —ga Cp 1 /d'rzdrg,/ Lg% s 2
3N 4f2 f2A, 16 q3 +m2
X [ 3prl(F2)pn(F277?3)pn(7-‘%7772)] . (9355)

For time-reversal invariant systems, using the relations 5u/1(7) = 0 and pg/1 (72, 73) =

po/1(7s,T2), one obtains

—ga Cp 1 ey
yHF.D22, TRy _ ga / didF. / d iqy.(Fg— r2)_3_i__
( 3N > 4]‘3 szx 16 213 gs € q3 +m721-

X {3 dpy po(72) po(T2, 73) po (73, T2)

+ 88y p1(72) po (72, 73) p1 (73, 72)
+3PO(F2)3€(F27 73)50(73,7%2)

— 3 &P po(7y)s5 (72, ) (s, )
- Po(Fz)Sf(an 73)81 (73, T)

+ €2 PV po () s (T, 73) 8% (73, )
+2p1(7)s5 (7, 7)1 (7, 72)

—2 Ea'yu Gwﬁu P1 (FQ)SS‘ (7:’2, Fg)S‘i’Y(’l’—"g, ’FQ) . (9356)
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D-term contribution for specific systems

Combining the results obtained for the D-term, the contribution to the HF energy of

symmetric INM reads

) —-ga Cp 1 1 o m q
PHEDINMy  _ —94 1 /d" I / i T3 3-)
(Vay 70 A7z 120, 16 ) 0 | (2aptBC @& +m?
X [ —3PO(F2)00(72,7?3)00(7?3;7?2)}- (9.357)

Combining the results obtained for the D-term, the contribution to the HF energy of

unpolarized PNM reads

(VHF.DPNMy - _ —9a Cp 1 / didF. / 1 ds "33 (3772) %
3N 4f2 f2A, 16 ) @2n)3 ¢ +m?2
% [ 3 pn(Fz>pn<w3>pn(F3,fa)] , (0.358)

where p,(7) and p,(7,7) refer to the local and non-local parts of neutron matter
density. In time-reversal invariant systems, the HF energy contribution from the

D-term takes the form

—g4 Cp 1 1 o )
VHF,D,TRI _ ga L / didr / da. ig3-(F3—7) 3 43
(Va0 af2 12A, 16 ) ¢ ) enpte© @ +m2

| =88 Ml ()
+2 0y po(72) p1 (T2, T3) p1 (T3, T2)
+ 68y p1(72)po(72, T3) p1 (73, T2)

— 3 po(7)sg

(772, 7%)50 (""3, 7”2)
+ 3V € () G (Fa, 75 ) s (Fs, 72)
+ po(7) 87 (7o, 73) 8] (73, 72)

— X PV o (7y) 5 (7, T3) 8% (T, 72
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+2 1 (72) 50 (T2, 73) 87 (73, 72)

— 2™ € p1(7)sg (Fa. 73) 87 (T3, 72) |- (9.359)

9.9.4 HF energy from the C-term

The HF energy from the C-term of the chiral EFT N2LO 3NF can be grouped into
two groups: a D-like term and remaining terms (which we call R-part). This grouping
originates from the operator structure of Fgf given in Eq.(2.20). The D-like term is
associated with das [ —4 %2:% + 2 i%q; -§; | whereas the R-part relates to %1%6“'577,;’ Ok
(¢; + q;). In the following, the HF energy from the various parts of the C-term are

given.

Direct part

The contribution from the D-like piece of the direct part is

2
. 1 1 o
VHF,CD,dz'r _ g4 + /d-‘d-’d—* / dadén ei2-(Ta—71) (id3-(F3=71)
(Van ) —2f,r 5 T1aT20473 ———(27r)6 G20q3 € €
B 2
4293 [ (C1My C3 ., o
X —4 +256- G
(43 +m2)(a3 +m2) JE I

N GIEAGIHGIP

(9.360)

For both symmetric INM and time-reversal invariant systems, this contribution van-

ishes. The R-part contribution from the direct part vanishes
(VD CRdiry = ¢, (9.361)

Hence, the direct part vanishes for spin-unpolarized INM/PNM and time-reversal

invariant systems.
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Single-exchange part

The contribution from the D-like piece of the single-exchange part reads

2
1 1 o
<‘/3I}IVF’CD’IX> = g_A - d'FldFQClF‘g -—-—dq_’Qd(jé 6102.(T2—r1) 6143-(7'3—7'1)
2f1r 4 (27()6
(Ig 4 _ 401mi C3 .,
)

X +25G2- @3
(g5 + m2)(g5 + m2 f2 f2

X [— po(73,T1) S?(@)ﬂ(ﬁfs)
—i Y P () sk (7, ) s (P, )

— p1(F, 73) 85 () sg (P, 7)) — pa(Fs, 71) 85 (7a)sg (71, 75)

—i €Y 8 (7)) sh (7, 1) 84 (71, 73) — pulF, T3)sh (72) 83 (75, 71)
1 1

) po(7) 85 (73, 7o) 8] (7o, 73) — 3 gy po(T1)p1(75, 72) p1(72, T3)

]. . — T -
+ 3 PV v po(71) 84 (T, Ta) sy (7, T3)

3 . Lo -
) 00(7“1)35(7“3, Tz)sg(T27 T3)

— — — — — 3 — — - —
+ po(71) 1 (P, 72) 87 (7o, ) — > 0py Po(71) po (75, 2) po (T2, 73)
+ 0y po(71) p1 (73, T2) p1 (T2, 73)
3
-+ 5 6“6V€w7U p()(’l?l)Sg(F;;, 7—"2)8‘6](’[_"23 Fg)

_E,uﬁuew'yl/ pO(Fl)Sf(F.g,FQ)S?(FQ,%):! . (9362)

For INM, this expression reduces to

2
, 1 1 o
(Vay ) = (——é’;) T / diydiydry / Gy €% 2 B T
T Yi3
8 2
243 C1My c3 .,
4 +2%a.
(@ + m2) (@ +m2) [ 2ot q‘”'}

3 -~ — — —p —
X [— ‘2‘ 567 PO(T1)P0(T3, 7‘2)/00(7”2, 7‘3) ] ) (9363)
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while for unpolarized PNM, one has

2
) 1 1 . .
V. HF,CD.IxPNMy - _ ga 2 | ar didr dévda. ¢iB2(Fa=T1) yid3-(F3—1)
(Van ) ‘—wa 1 r1ar2ars —(277)6 g20q3 €
By 2
4243 C1my 3, o,
—4 +25¢ - %}
(63 +m2) (g3 +m3) [ FER &

3 . . Y o o
<[~ 30 G I a) | (9.364)

For time-reversal invariant systems, it becomes

2
HF,CD,1x,TRI\, ga\ 1 e g L i (o) i (Fae)
(VziN > — (if_w) Z/drlerdrg/zéﬁ—)ﬁdQ2dq3eq2 2-71) old3-(T13 -7
B8 2
9293 1y c3 ., .
X —4 +256 ¢
(g5 +m2)(g3 +m2) { f2 f2
3 - o o .
X | — 9 5ﬁv po(71) po (75, Tz)Po(m 73)
1 . » o
+5567,00(7’1)01(7"377"2)/’1(7‘2,7”3)
Lo B oA my S o Brw o\ A
+§PO(T1)S1 (75,72)8) (T2, T3) — §P0(7‘1)50(7‘3=7“2)30(7"2»7“3)

3 ’ o - — —3 s
+2 eluﬁllew’?l’ po(Tl)Sg(T3= 7'2)35)(7'23 7"3)

1 W (MR W
—56“’3"6“” po(71)s (T3, Ta) sy (7'2,7"3)]. (9.365)

The contribution from the R-part of the single-exchange piece reads

2 .

1 o

VHRORDy (94 ) Gl / d, dFsd: / ——dydf €2 T3

(Van ) °f.) 24 1072473 (2m)® 42043
Bl Ba v o

27937437 43 [ﬂl_, who M o\ Wi o

2s (7"2)(—(5 P2 $ (73, 71)sg (71, T3)

(@ +m2)(G+m2) | 2 ' °

+ O €471 8 (P, 1) (71, ) + €°2727 51 (7, 71 )5 (1, 7)

+ 0yq79 P2 sf (73, 7) sy (F1, 73) — Oporyg €71 50 (75, 71) 87 (71, 73)
— %212 5oL (75, 7)Y (7, 75) + €202% 511 (3, 71) st (71, 75)

e = = s T ﬂ r T
— ¢Parav sgl (75, 71)sy (71, 73) — @ 571‘/2 po(T3, r1)812(7‘1, m3)

264



. N | . . N - W7
—’56272 00(7'3,7“1)31’1“1,7‘3) + 257172 91(7‘3-,7“1)502(7'177“3)
. N & . ooy Bos o
—2552’72 pl(r3arl)80 (7'1,7"3) - 7’571’72 PO(Tl;r3)51 (T3,T1)
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(9.366)

The contribution of the R-part of the single-exchange piece vanishes for both spin-

unpolarized INM/PNM and time-reversal invariant systems.

Double-exchange part

The contribution from the D-like piece of the double-exchange part reads

2
1 1 ORI e,
(VARCD2xy - (_29;) 6 / dFidiadis / —(%)ﬁd(ﬁd@ itp-(Fg—]) id3.(F3~ 1)
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8 v 2
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2 32%2 B) [_ : -+ 2—%(]2 . Q?,J
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x [_6u3u1u466u4l/6w21/ + €ﬁu3u46u2u4u6w1u _ 6ﬁu3u46u4u11/6w21/

— 6Wt3ﬂ4¢1ﬂ4"e"3ﬂ2"] ] X (9.367)

For symmetric INM, this reduces to

2
HF CD,2x,INMy ga 1 e g L i (o) ida(Fami)
Var ) = () 55 [ ananas [ e e s
B8 2
4243 [ Gy C3 . .
X - +2—‘12'Q3]
(g3 +m2) (g +m3) TEE

X { 30y po(T1,73) po (T2, 71) po(Ts, Fz)] , (9.368)
while for unpolarized PNM, one has

2

; 1 1 L

(%PE’CDQX’PNM) _ (29;1) T /dﬂdf"gdf’g/(QW)Gd(j'qu_'gelq?(T?'Tl)€’q3'(r3'71)
T

%% {_461m3, o3, 4]

+2—G -
(@ +m2) (@ +m2 2 ipt®

X [ 30y Pn (71, 73) pr (T2, 1) o (T3, 7'"2)] . (9.369)

For time-reversal invariant systems, the expression given in Eq.(9.367) can be simpli-
fied only slightly. The reason is the phase factor '@ ("2)¢i3-"3=71) prevents one
from treating 7, on equal footing as 7 and 773, i.e. even though one can interchange
7 and 73 and recover the same expression, the same can not be said of 7} and 7, or 7;
and 73. This is further compounded by the fact that the HF energy of the C-term’s
double exchange involves invariably three non-local scalar/vector densities. Another
simple interpretation of this is, most if not all of the available symmetries in the co-
ordinates have already been utilized in Eqs. (7.13)-(7.15). Hence, the corresponding
expression reads

2
1 1 e e am e
(XGIE,CDQX,TRI) _ (29;) Ig/dfldFZdF3/Wd@d(z&elqz(??_rl) ez(I3.(r3—7‘1)
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— 383y po(F1, 73) 5 (72, 71) 53 (75, 72)
+3dgy po(75, 72) 35 (72, 71) 83 (71, 75)
—2p1(71, F3)Sg(7727ﬁ)5¥(7:§a )

+ 8y p1 (71, 75) 50 (7, 71) 7 (73, 75)

— 8y (T3, T2)s5 (P2, 7)Y (71, 75)

+ 395y po(T3, T2) p1(T2, T1) P (71, T3)
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— 3PV i (T, T ) sh (s, ) 8% (71, 73)
—p1(F2,F1)8?(7’é,F2)33(F1,F3)

+ " (P, 7)Y (T, 7a) s (71, 75)
+ 8y Po(T1, T3) 85 (72, 1) 8] (73, 72)

+ 30y po(73, 72) 7 (7, 71)57 (71, 73)
+6 pr (71, 73) 87 (P, 71) 83 (73, 72)

— 383y p1 (71, 7?3)3?(7?2; )54 (73, 72)

— (Sﬁ'y J41 (FS; FQ)S?(FQ, ’F)l)sg(lr—ﬁ’ 7?3)
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+i3 (sp L (71, T3) 502 (Fa, 71) 56 (7, 72)
- ‘;; sy L (P, T3) 502 (P, 71) 813 (s, 72)
+ 5y L (71, 73) 842 (Fa, 71) 86 (73, 7)

- 5L A ) 7 )

% [_€M3ulu4€ﬁu4'/6’w2l/ + 6’3“3“46“2“4”67”1'/

—ePHIBY M4V TV 67"3“46”1"4"6‘3"2”] . (9_370)

The contribution from the R-part of the double-exchange of the C-term is composed

of
where (VHF ,CR1, 2x> <V311{VF,CR2,2X>’ (-[/31-11\;'",CR3,QX> nd <VHF .CR4, 2x> Denoting

CRL = (Vo ™),

CR2 = (Vg o),

<VHF,CR3,2X> :

CR3 o

CRe = (Vo o),

these are given by

2 .
9gA Cq4 2 e g |
CR1 = APy diodin | ——dddda ¢92-T2-71) £193(73-71)

(2fw> f28/ ruer “/(W s € ¢

By v1 ¥
g5l ah2qil g2

(g5 +m2)(q5 + m2)

X [fﬁ”l”’ 1 (=085990ugug + Oppugdagug + Oyu30:9uy)
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X 8’1/1 (7?37 7—')2)811/2(7?1,7::3)/70(7?2,7_"1)

— i 1M1 P22 § (7, ) st 2 (Fr, ) pu (o, 71)
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+231 (7'2,7'1)502(7’1,T3)p1(7"3,7'2) — 281 (7'2 T—"l) #2(')"3 7'2),00(7‘1 Tg))] .

(9.374)
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For symmetric INM, this reduces to
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(9.376)
while for unpolarized PNM, one has
,2x, ] ga C4 1 g
(Van" CRZGPNMY - (wa) 723 /dﬁdrzd?% /Wdfhdlh
B 11,72
x £id2-(Fa—T1) id3.(73—71) (12 42793 43
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X [23 1717 €9272Y p,, (7, 73) pu (T2, 1) P (T3, T2) jI .
(9.377)

For time-reversal invariant systems, there is no appreciable reduction in the size

of the expressions. Thus, we avoid repeating the expressions.

C-term contribution for specific systems

Combining the expressions for the direct, single and double-exchanges for the case of
symmetric INM, the contribution of the C-term to the HF energy of symmetric INM

becomes
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The contribution of the C-term to the HF energy of unpolarized PNM becomes

2
’ ) 1 1 e (= L o
<V31}I\f=C,PNM> — (29;) = /dﬂdf’zdfg /qu’?dqg ei@2-(M=T1) (id3.(73—77)

qﬁl qﬂil am C3

2 3 177ty b —
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< (=68 ()00 o)l 72

+305,, Pn(ﬁfz)pn(Fz,ﬁ)pn(Fg,FQ))

Cq B . . -
- 6?2_ 11175272 4,232 p,, (71, 75) pu (P, 71) p(T, T2) ] . (9.379)
™

For time-reversal invariant systems, the HF energy contribution from the C-term
is given by the sum of the direct, single and double-exchanges. Since there is no
appreciable reduction in the complexity of the expressions even after the assumption

of time-reversal invariance, the expressions are not reproduced here.

9.10 Symbolic derivation of EDF-NNN-DME for

time-reversal invariance

In this section, we discuss some of the ingredients of the symbolic derivation of EDF-
NNN-DME, i.e. the EDF that we obtain after the application of the DME to the
HF energy from chiral EFT NNN interaction at N2LO. The derivation is performed
for time-reversal invariant systems. This should be kept in mind in subsequent dis-
cussions. In the final step which involves angular integrations, we assume spherical
symmetry, which also implies time-reversal invariance. The symbolic steps required
to relax this assumption and treat deformed time-reversal invariant systems is dis-

cussed in appendix 9.10.5. For the complete detail of the symbolic derivation, refer

to Ref. [161].
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9.10.1 Generic DME ansatz

In section 7.2.4, we discussed the merits of the symbolic derivation of EDF-NNN-DME
starting from a generic DME ansatz. Here, we develop the generic ansatz for the basic
nonlocal densities ¢#1(7, 7y + &3), ¢*2(7) + To2,71) and ¢*3(F + T3, 71 + Z2). These
non-local densities can be scalar/vector, isoscalar/isovector. The basic objective of
the DME ansatz is to approximate each of these non-local densities in terms of local

densities, dependent on 7, and m—functions which can depend on #, and/or Zs.

In developing the DME ansatz for these nonlocal densities, we follow the same
scheme as in section 5.3.6 where we relied on short-range/Taylor series expansion of
the nonlocal densities. However, the formal expansion that is given in appendix 9.5.7
in relation to the application of the DME to the HF energy from NN interactions
cannot be used. With the aim of implementing the symbolic machinery in the most
general way, the DME ansatz we need at this point should be general and complex
enough so that it can be adopted to different special cases. For instance, for the
analytical coupling calculation discussed in section 9.11, we adopted the generalized
PSA-DME. This will have the benefit of minimizing the effort required to implement
a different approximation of the nonlocal densities and obtain a new EDF (perhaps

both in form and couplings).

Imagine one wants to build an expansion scheme for ¢*1(7, 7 + Z3). In this case,
we have a single nonlocality coordinate, 3. The simplest route to a possible ansatz

is one that applies Taylor series to the density about 7

U, T+ B3) ~ L(R) + Ty VP17, 7)
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where we truncated the expansion at second order, and hence we generalize it to

HUFL P+ T5) o TIT9(Q)¢M1(R) + TUYQ) T3 - VIsHL(F, )

=i

. (9.381)

7l=r

2
+ i) (53 . 6') 1 (7)

Needless to say, the m—functions and Q in Egs. (9.381) are to be fixed by the
choosen analytical /parameterized DME scheme. But, this route does not lead to the
most general form of the ansatz. Rather, we follow a circuitous way which leads to a
general ansatz with which Eq. (9.381), for example, can be recovered as a special case.
Note that if we write ¢¥1(7y, 7, + &3) as ¢*1(R + 7/2, R — R/2), where R = 7+ 1/23
and ¥ = —&3, we can apply the DME derived in section 5.3. In order to arrive at a
final expression which is separable in 7} and ¥3, we perform a short-range expansion
(Taylor series) and truncate beyond second-order terms. Performing these set of steps

yields

, 1 & -
15 () a) o1 7) + 5 2 G- 9417

¢HL(F, 7+ T3) o
1 0 2\ 2
+§ ng’ (kﬂ?;}) (.’f{; . V) §“1(Fl)]
. 1% ,1 RZ TN
- T ) 1 ) ()
1 1 - bl W1,
+§ Wfl (k:cg):vg-VCfl 1(7"1)
1 u1,1 = 2 A%
+§ 7r21’ (k.l‘3) (fg V) §11’ 1(771)}
1
+ ﬂHg‘l(kacg)acggg‘l(ﬁ), (9.382)

and the same form holds for ¢*1(7, 7 + Z2) after replacing ¥5 with Z5. While

F2(F1 + To,m1) = H2F(M, T+ T)
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SH2(Fy + T3, 1) = GM2N(A, T+ Ts) (9.383)

by time-reversal invariance. Hence, the corresponding ansatz is the same as the one
in Eq.(9.382) as all quantities are real for the case of time-reversal invariant systems.
¢H3(Fy + '3, 71 + Z2) has two nonlocality coordinates. Still, the set of steps applied to

arrive at Eq. (9.382) can be applied to obtain

- — — — — — — 1 — — = —
GHI(FY + T, T + Tn) = Hg?}r(k, Ty, T3) [c“?» (7)) + 3 (& + T3) - VS*3(71)
1 N2
T3 ((fz + Z3) - V) C“3(F1)]
— I3, (k, 2o, 53) (x5} — z4!)
W —_ 1 - — houd R4 —
X [Cf:; 1(7‘1) 4 § (ZEQ + 333) . V§f3 1(7’1)

|
+—8- <(-T2+SE3) 'V> CfS 1(7"1)]

1

o7 I, 2, (k, &2, ¥3) (xg +af — 2%, - :f3> 5 3(7).

(9.384)

Unlike the w—functions discussed so far, Hf’?r are not manifestly separable in ¥,
and 73 and in fact depend on the relative orientation of the two vectors. This has
an important implication for the analytical calculation of the couplings. Refer to

section 9.11.

Key points on the DME ansatz

One notes that in the generic DME expansions given in Eqs.(9.382)-(9.384), each non-
local density can be either pg/; or 55/1. To recap the notations used in the Eq.(9.382)-
(9.384), for example, ¢ 11 refers to the local cartesian tensor spin-current density
that results at first order gradient with respect to the relative gradient operator. To

elaborate on this point, consider the ansatz as applied to po(71,7 +Z3). The resulting
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expansion reads

. 1 . & o
,0()(7’1 'Fl -+ J?g) ~ Hg(kl'?,) [Wg(kilfg)po(rl) ~+ 5 Wf(kl'g)l'?, . va(Tl)
1, o=\ .
+87T2(k1’3) T3V ) po(r1)
1
— T8 (kxs) 2 [ﬂ](kmg)]l (F1) + QﬂJ(k$3)$3 V1)
1 =\2 o
+3™ 3 (ks) (fs : V) jf(ﬁ)}
+ 214 T5(kzs)z2 o, 1 (71) - (9.385)

K171

Hence, in the case where ¢#1 = pg/, then ¢ = jg/ll, i.e. the current density. Since

we are dealing with time-reversal invariant systems, jo n= 0. However, we did not set
it to zero in Egs. (9.382)-(9.383) as we wrote the equation to hold for both scalar and

s o v
vector densities, and when ¢¥1 = 5/, then gll

1= JO/l,;qvlv i.e. cartesian tensor
spin-current density. As to gg 1 in Eq .(9.385) and in general, it refers to a second
order correction term in the expansion. It is analogous? to %Ap — 7+ 3/5k% p of the

DME discussed in section 5.3.3. Obviously, gg 1 = 0 in the case where ¢*1 = 5y,;. The

same notation applies to ¢#2 and ¢#3.

Even though all notations and conventions have been explicitly given in Ta-

ble 1.2, we recap the ones used for the m—functions. Taking ¢*1 as an example,

3 ’O ’0 3 -
7rg 1 ,Trfl ,w;’ 1" refer to the m—functions of the local part of the non-local density

)1 1 »1 .
¢*1 and 7rg 1 ,wfl ,wgl refer to the zeroth, first and second w—functions for the

local density that appears at first order with respect to the relative gradient opera-

tor. Hence, these m—functions are equal to n§, 7, x5, ), m), @5 or m§, ms, w3, wg , my , 73

when ¢#1 = pg or ¢*2 = 5y/; respectively. The example given in Eq.(9.385) il-

31t does not mean they are the same.
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lustrates this statement explicitly. Since we are dealing with time-reversal invariant

s 5 5 5.7 Fo B 1
systems, w§, w5, w5, 7, m , 75 are irrelevant. II;* and II;* can be seen as some common

prefactors while n’;’i is the m—function of the second order correction.

Comments on the DME ansatz

The following comments are at play concerning the DME ansatz: (i) The ansatz
is designed to be a general template on which all the known (and perhaps future)
analytical /parameterized DMEs can be mapped. This can be done by setting the
various m—functions to the values dictated by the analytical/parameterized DME at
hand. This allows for a minimal effort to adopt the symbolic machinery to specific
cases. (ii) As mentioned at the beginning of this section, any discrepancy between the
EDF that results after the application of the DME, and the exact NNN HF energy
is solely due to the DME ansatz of the nonlocal densities and the m—functions. This
is a trivial statement in the case of two-body interactions. However, it is not so for
three-body interactions as unless one makes a convenient coordinate choice, it is not
trivial to treat even the non-DME part exactly. Thus, by improving the 7—functions,

one can hope to get better and better accuracy.

9.10.2 The G-tensors and their analytical forms

In sections 7.2.1- 7.2.1, we identified the three generic forms (Egs. (9.406)-(7.2.1)) of
the terms that occur in the HF energy from the chiral EFT NNN interaction at N2LO.
We refer to the interaction form factors that enter these equations as G-tensors. They

are of the form

4 43 4245
GAMP22 (g, 23, 2, g3, w) = / Ao dSYy, €27261353 22 3 228
e (3 +m2) (g5 +m3)

(9.386)
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B
= iGo. o ,iG .2 9343
Gﬁ7($2a333,Q2~,q3,w) = /dQ dQ) . 9272619373
2 (g3 +m2)(¢2 +m2)’

(9.387)

~5 iy BG

where qu2 and qu3 refer to the differential solid angles of the two vectors, and
w is the angle between ¥ and Zs. In the following, we derive the analytical forms
of these tensors. Indices 31,7, 02,72 can take values {1, 2,3} corresponding to the
cartesian labels {z, y, z}. To obtain the analytical form for GP171%272(xy, z3, ¢2, g3, w),

we define

FP(Z,q) = / dQ,e'TE p +m2. (9.389)

In the case where the vector ¥ is along the 2 direction, we denote the F#7(Z, q) tensor

as FP(Z, q), which equals

%P
F&,q) = 6, / Qe qxa%q—m? (9.390)

Denoting FM = FX* F?2 = FYY F3 = F? we obtain

2 -
FX(z,q) = —4m s (9.391)
2 .
q J1(gz)
Fo(e,q) = AT T (9.392)
2 .
22 q . jl(qx)

Next, we need to define a convenient coordinate system. If one could define both &,
and Z3 to be along the Z direction of the coordinate system, the G-tensor could be
calculated very easily. But in the actual case, one cannot, in general, define both 25

and Z3 to be along the Z direction. Let Z5 be such that it is along the Z direction and
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Z3 be in the & — z plane, with angle w between Zs and #3. Next, write

GPINP22 (29, 13, o, g3, w0) =  FP1P2(Ty, qo) F7172(T5, g3)

Sy PV (0, ) F1°2(2, g,0) . (9.394)
where due to the specific coordinate system chosen, the G-tensor will be nonzero
only when 8, = (3. The same cannot be said about v; and v,. In the next step,
we concentrate on F"172(x3, g3,w). One can calculate this quantity by performing a
few steps involving rotation of the coordinate system. Hence, rotate the coordinate
system with respect to the y-axis such that s aligns with the new %’ axis. The

rotation matrix for this operation reads

cos(w) 0 —sin(w)
R(w) = o 1 0

sinfw) 0 cos(w)

The transformation of the various terms of F7172 is (obviously only the vectors get

affected)

i = R,
(9.395)
where we have left out other trivial terms. Using these intermediate results
F172(23,¢3,w) = Oy g Rlllvl (w) R;21'y2(w) F2Y2 (5, q3). (9.396)
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Plugging this result into Eq. (9.394), one obtains the analytical form

#1716 ‘ =9 p
G272 (3, 3, 2, 43, w) = Op 9 Ry 12

_ 315
R () R (w) BV (24, go) FP* (23, q3) -

(9.397)

To calculate the related but different G tensor, G®7(x2, 3, ¢2, g3, w), we define

.
P = [0

e B
F5(Z,q) = 635 / Qe 1

where 035 = d,5 and representing F} = FX F2 = FY, F? = FZ, we obtain

z? z

Fi(z,q) = 0,
FY(z,q) = 0,
F? = i4 ' .
z($7Q) ? 7Tq2+m?r .71((11;)

Plugging this result
Gﬁ7($2»i€3,Q2aq3»w) = 035 03, R;a,l(w) Fzﬂ(*TQaq?) F¥(x3,93)-
Finally, we have a trivial tensor G defined in Eq.(9.388) is given by

(_;m(:f, q = Fﬂ7(§:’, q).
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9.10.3 Sample DME simplification

After the specification of the DME ansatz and the analytical calculation of the G-
tensors, the next logical step is to plug them into the respective exact HF energy
terms to obtain the EDF. We discuss the DME simpification by considering a term

that has the form of Generic-Form-1. Consider

HF G1, o A
(Vay 707070y = /dﬁdedﬁ dga dgs g3 @3 GP171°272 (29, T3, @2, g3, w)

X 8171 08919 PO(T1, 73) po(T2, 1) po(s, T2) , (9.406)

where we recap that w is the angle between Z5 and Z3. According to the description
given in section 7.2.1, this means, Eq. (9.406) corresponds to a case of Eq. (7.2.1)

where ¢; =0, c=0c¢3 =1 and

SH1(f,T3) = polf1,73),
#2(73,7) = po(Fs,71),
sM3(7p, 1) = polTa, 1),
Tg11$12l;‘237 s = 0141 Ogng s (9.407)

TH1#2H3

where due to there being only scalar densities, the tensor 8171 By

is independent
of {u1, o, ps}. Refer to section 7.2.1 for the explanation of this notation. Plugging
the DME ansatz discussed in the previous section, and noting that fq(F’l) = 0 for

time-reversal invariant systems, one obtains

HF,G1, o g g
<V3N pOpOpO) = /dT1d£E2d$3dQ2dQ3qg(I§Gﬂﬂlﬁ?n(ﬂ?mﬂ?&(hﬂ&w)55171 5g272
- 1 Y = o
X (Hg(mz) [Wg(k$2)00(7"1) t3 7 (kao)Ts - V po (1)
1, e\ L
+§7T2(k11?2) .Tz'v po(’l’l)
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1 .
+ﬂ Hgl (kxs) rg gg(rl))
. 1 e S e
X (H{)’(kr;),) [Wg(k%)Po(Tl) + 5 7y (kx3)Ts - Vpo(7))
1 N2
+24 H " (kIg) ﬂ?% (g(Fl))

L. . I, .= .
X (Hg,fr(k?$2’x3) (Po(ﬁ) + §($2 + I3) - Vpo(71)

1
+ = ] ( IEQ +£L‘3 ) )
1
+ 24H2 fr(k .’132,333) (,L.2 + .TZT3 - 23:2 $3)§§( )) 5

(9.408)

where ¢2(7}) is the second-order correction density in the DME of the scalar density
with the given coordinates. For instance, the generalized PSA-DME discussed in

appendix 9.5.3 sets this correction density as

(7)) = = Dpo(F1) — 7o(71) + T kFpo(71) . (9.409)

The expressions given in appendix 9.9 show that we already have a very large number
of terms in the exact HF energy, even for time-reversal invariant systems. The appli-
cation of the DME increases the number of terms by at least an order of magnitude,
further ruling out any hope for manual simplification. The next step in the symbolic
simplification involves angular integrations with respect to the orientation of Z and

P

xT3.

Angular integrations for spherical systems

From our sample DME simplification given in Eq. (9.408), it can be seen that we

can perform the angular integrations with respect to the orientations of 5 and T3
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if we solve one remaining problem. Le. obtain a separable expression for the IIf fr

i

m—functions that couple Z> and Z3. This holds for all II.% m—functions used in
the DME ansatz of ¢*i(7] + T2, 71 + T2), given in Eq. (9.384). Within the symbolic

approach, we solve this problem by expanding these problematic 7—functions as

b T ) Y | D ko) g (kes) | (B2 35", (9.410)

nmaz [ mmaz(n)
n=0 m=0

where f5¢ (kxy) and g57 (kzs) are unspecified scalar functions and the number of
terms in the inner summation depends on the value of n, expressed as (Muqq(n)).
Note that the angular integrations (with respect to 2 and Z3) do not require the
values of f5¢ (kxe) and g5¢ (kzs) to be specified. In addition, the special symbolic
technique that we developed, Ref. [161], helped us avoid specifying m,,q.(n) which is
not known anyways. As to Ny, we found that n,,.. = 5 suffices in the practical
implementation [161]. In section 9.11.3, we discuss how these scalar functions are
obtained for II; ;, derived from the generalized PSA-DME. In addition, we show that
at Nmaz > 5, Eq. (9.410) becomes practically exact for these m—functions. Actually,
one can increase N, for any I fr if there is a need. The only problem with increasing
Nmaz t0 a much higher value is the rapid increase in the time-complexity of the
symbolic computation. Similar to the application of the DME (ansatz) to the exact

HF energy, the expansion of II; , introduces yet another increase in the number of

terms to simplify.

With this expansion at hand, we are able to perform the angular integrations
with respect to ¥, and T3. At this point, due to the complexity of the problem,
we introduce the assumption of spherical symmetry. This implies that all the local
densities depend only on the magnitude of the radial vector. In other words, we now
have only three independent directions: ¥y, Z3 and 7. Appendix 9.10.5 discusses how

we can relax this assumption. The generic form of the required angular integrations
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for the case of spherical symmetry read

/ g (&3 - V) (£2 - &3) " |2 ® &3]" (22 - V)" (2 ® 7))L

"1

(:@@ﬂ)ﬁ% (;%3®f1):§ (23 ®f1):j, (9.411)

where [,m,n and p are integers. The maximum power of gradient in the DME ansatz
for any density is fixed at two, hence, {€{0,1,2} and also pe{0,1,2}. Due to the
specific form of the ansatz, me {0,1,2,3,4,5,6,7,8,9,10} and ne{0,1,2}. The ex-
ponents ny,ng,n3,n4€{0,1}. Even though the generic angular dependence given in

Eq. (9.411) is very complex, all these terms do not occur at the same time.

The origin of the various angular dependencies is (i) 3.V and &,.V are due to the
DME ansatz, (ii) .43 originates from the DME ansatz (Eqs. (9.382)-(9.384)), the ro-
tation matrix of the G tensors (Eq. (9.10.2)) and the expansion of Hj’ - (Eq. (9.410))
(i) |£2 ® 23| comes from the rotation matrix in the G tensors and (iv) (22 ® rl)zz
where i€ {1,2,3, 4} originate from the directional coupling in the DME of the vector
density, 5p/1. Remember that in spherical symmetry, only the vector component of
the cartesian spin-current tensor density is nonzero. The exponents ny, ns, ng and
ny4 can not be one at the same time i.e, at most only three of the exponents can be

one at the same time. This is due to the fact that only three local/non-local densities

(be it vector/scalar) densities appear in all terms of the exact 3NF HF energy.

Due to the huge number of terms generated by the DME expansion, direct multi-
dimensional (four dimensions) angular integrations is both impossible and not re-
quired. Rather we developed a Mathematica rule-based technique to replace the
multi-dimensional integrals with four independent single dimensional integrals. The
merit of this technique is that one can calculate the single dimensional integrals once

and use their stored values in the whole computation. The angular integrations is
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followed by several symbolic manipulation techniques to obtain the final EDF. The
details of these techniques can be found in Ref. [161]. We remark that the symbolic
automation enabled us to keep all higher-order terms in the final EDF (up to sixth

order) for whenever necessary.

9.10.4 Contributions to EDF-NNN-DME

In the following, we list the EDF, truncated at fourth-order, that results from the
application of the DME on specific contributions to the HF energy (of time-reversal
invariant systems) from chiral EFT NNN interaction at N>LO. Due to the assumption
of spherical symmetry that we imposed in the previous angular integration step, the
given expressions hold only for spherical systems. The actual values of the couplings
as a functional of the m—functions is found in the Mathematica files of Ref. [161].

First let us define the auxiliary quantity ¢/, () as

<5/1(f) =7 6P()/1(7?)~ (9.412)

Also note that ¢¢ /I(F) stands for the second-order correction density which in the case

of generalized PSA-DME reads

1 3
Cg/l(m = 'Q‘APO/I(T_) - 7’0/1(7.") + gk% po/1(77) . (9.413)

Fourth order EDF from the D-term

D — f% 3 PO”% 2 Pg% 2 2
EY = [ dr{ G pp(r) + € % po(T) pi(F) + Ci7F pg(F) so(7)
P%ﬂ% 2 2 p0p1<% 2
-+ Cl P1 (7'_) <o (7—:) + Cl po(f") P1 (7:) 1 (f‘)

J2 - = 7 7
+C10 o) Jo() - o) + CPO pu(7) o) - a7
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¢ @ (7)) + OV

po(7) [V - To(P)]*
+CP0%0 () Jo(7) - ATo(7) + CTI0 py(7) T () - A7)
() [V - (7))

F PO () o) AR + () ) - AT

1VJ0VJ1 0VJ1VJ1

+Cy PPV - SNV - () + C

(9.414)

Fourth order EDF from the single-exchange piece of the D-like part of the

C-term

g = / df{ & 8 + & @ 27 + T () (<19

+ 5000 5o (7) Vo (7) - ¥ ()

+cﬂ0"”1 R IGAXGRZAG

FE0 2 Apy() + CPL () pu() A ()

+c"5<3 PR ) + c"“”“l o) 7))

+0200 R (7 + C po(f) Jo(F) - Jol(7)

F QT @ T3 - ) + OV (79 [ - Jo(]
OV o) [V - ()

T+ (7 i) - AJl(m} . (0.415)

+C50T0%0 o7 Jo(7) - AT () + €

Fourth order EDF from the double-exchange piece of the D-like part of

the C-term

3 2 1
. 2 .r PP P0P1S
E°P% = / dr{ca‘) A + €L po(7) P3P + C° T pol) pa(7) 61 (7)

+03° 0 02(7) Apo(7) + 03 0 52(7) Apo(7)
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+CPO"L () py (7) Ao + &3 ) 27
+c31 D 022 + YT () () 2(7)
+c"00 27 G (7) + 031 0 P(F) o (7)

c"O‘O o(P) Jo(P) - Jo(7) + C5YOL py(7) Jo(7) - i (7)
+CP0 ? po(7) J(7) - Jo(7) + cprJ‘% Apo(7) Jo(F) - Jo(7)
+c0 370 E(F) Jo(7) - Jo(F) + 030 ’ 3 (7) Jo() - Jo(7)
5 00T G () - Jo(7) Y - o)

JOV0T0 po(7) [V o))

R0 (79 o) - AT + O G o) - )

+Cs

FEY A g7 Ty i) + YO @) T - )

+¢ VY0 G5 (7) - TV - T ()

+ CU0 oy (7) Ty (7) - A7)
2 ;2 - -
e 20 Apo(r) i) T + € @@ ) - T
2 . . — - T
=T AR A - T + T () () V- T
P VIgVay

PPV - Jo(®) V- ()
" CVpoJ1V~’1 Vpo(F) - JU(F) V - J1(7)
SOV po () [ - R + TN i (7) Jo(7) - A7)

L T 7 - AT () } (9.416)

+Cy

+Cy

Fourth order EDF from the R1-double-exchange piece of the C-term

- . J2 . -
gema dr*{c;’l"OJ1 pr(7) Jo() - Ti(7) + €O pol7) () - Tu(7)
29y, o T,
+C VTR - WP Y - Jo(7)

+ ¢ @) - R Y - )
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+c‘1 O R - A + G An () o) - R
LA 2 o) - T

+0 VYOG (7) - T(7) Y - Tol)

LT 00 F(7) - MG + € A ) - S
v e i i + Qe i - e

+C, YOGy (7) - (7)Y - ()

()Y - Jo() V- ()

+, VNG po(7) - L7V - ()

po(7) [V - i(7)?

+ OO () o(7) - AT(P)

1VJIgV Iy

+Ch

p0VJ1 v

+Cy

L ) T (7) - AT } . (0.417)

Fourth order EDF from the R2-double-exchange piece of the C-term

gCR22  _ /df’{(,’ i PR G + G o7 po(7) p1(7) £ (7)

£ @ T T + O o) ()
LT R TP T - o + GO R R - L)

LT iy T - R + N A7) T - )
+C<1 Jo71 2(F) Jo(7) - T(7) + ¢y 1Y Vpl(f’) J(F)V - Jo(7)
L CIN0 3 T - AT + O Ao () - i)
N VAL I AR LR AR AT
+¢ Oy (7) - Jo(7) Y ()

P1VHVI p1(F)V - Jo(F) V - J1(F)

+C;
+5 O G po() - Hi(7) Y - ()

Jl AJO
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p0VI1 VI

po(7) [V - J(P)]
+CPVOM o (7) Jo(7) - AL (F)

+Cs

LA ) () - AT () } . (0.418)

Fourth order EDF from the R3-double-exchange piece of the C-term

J2 - - 7 7
goRm2 / df{cgo 0 po(®) Jo(7) - Jo(7) + CoT'0™L py(7) Jo(7) - Ji ()

+C o) ) - A ) + GO T T 9 T
2viy - HVJ

+C1 V(P - A(F) V- Jo(F) + 660 5L J(®) W (P V- Iy (7)

G 20 Aoy Jo(7) - o) + €70 @) ) - T

L8 Q) ) - Jo() + €T () T 9 - o)

o) [V - Jo(@]* + €000 po(7) Jo(7) - ATy(7)

+c‘1 VL@ T - T + €N Apu () To(7) - T (7)

+ CpoVJoVJO

L0 3 ) T + cvf’ﬂlv"owm L)V - Io()
+ 0 o () T () - AT (F) + 06 % () Ju(7) - 1(7)

+C5 MO (7) - Jo(7) 9 - ()

SO (7)Y - TRV - ()

ool [V - (7]

+cglJ0A"1 pr(7) Jo(F) - AL(F)

+Cs

vJi1VJ

FCOAL o) Fo7) - ATL(F) } (0.419)

Fourth order EDF from the R4-double-exchange piece of the C-term

ECRA2e  _ /df’{ ; pO(f") + C; L0P lpo(m P ()
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+Cp0pl11 o(F) p1(7) 1 (F) + C, 0 OP 7) Apo(7)

+C o) () A7) + e i )

+Cﬁ‘2’ 22 + T p) ()2

+ 80 O + O ) T - o)

+c”1 0L 1 (7) Jo(7) - Ti(7) + cé’“"% po(7) Ji(7) - 1 (7)
+E0 o) o) 9 o) + T )T )
G R0 HO T A + O Apo() Jo(7) - o)
100 2 0 - o) + 0 Q@ Ty - )

+C7 O0Y0 G po(7) Jo(7) ¥ - o(7)

POVIOT0 oy (7) [V - o))

P00 () Jo(7) - AT +c71 ) R - A

+C;

+C7 0N Apy (7) TP - Hi() + Ccl o’ S{GRAGEAG
+C Y0 G (7) - Ji(7) Y - Jo(7)
+CP1J1AJO () JL(F) - AJy(7)

2 — — — — - -
e 2 Ji(7) - TR + PN G () - (7)Y - ()

+CV O oy (7 - Jy(7) Y - T ()
+CPOV Y gy (7) [V - B

+ ML 4 () Jo(7) - ATL(F)

OO o) ) BT | (9.420)

9.10.5 Extension to deformed time-reversal invariant systems

The assumption of spherical symmetry was used to obtain the generic form of the

angular integrations in Eq. (9.411). This can be relaxed to treat deformed time-

reversal invariant systems, though with a significant increase in the time-complexity
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of the symbolic computation. In deformed systems, all local densities denoted here
by, <(71), depend on the orientation of ;. Hence, they come with their own direction,
increasing the number of available vector directions to a much higher value than
the three that we have in spherical systems (&, £3 and 7). This entails changing
the angular integration technique discussed in appendix 9.10.3 with symbolic tensor
manipulation. To illustrate the difference between the two-techniques, consider a

schematic example, perhaps misleading due to its simplicity,
T = / 4, (s - 1) (B2 - ¥) (9.421)

Note that V is acting on some unspecified local density which depends on 7;. In the
case of spherical symmetry, the action of V results in a gradient density that is along

71. Hence, T is written as
T = /d62 d¢2 Iﬁl COSZ(92) sin(ég) . (9422)

which is directly integrable. In deformed systems, one can no longer assume that the

direction of the local densities is along 7. Hence, one spells out Eq. (9.421) as
T=3 iV / Ay &y 3a5, (9.423)
tj

where ¢ and j label the cartesian coordinates of the labels. A symbolic algorithm,
a la the one developed for the angular integrations in appendix 9.10.3 needs to be
developed that not only does the integration but also groups the tensor components

so that a manifestly scalar EDF results. For details, refer to Ref. [162].
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9.11 Analytical couplings for the EDF from chiral

EFT NNN interaction at N2LO

9.11.1 Functional form of the couplings

The main objective of this section is to motivate the analytical calculation of the
couplings of the EDFs given in appendix 9.10.4, C: 1§2€3, by isolating the forms and
types of integrals required. Note that at this stage, all required angular integra-
JdQ

tions, viz, [d J dQ,, and J dQ, have been carried out. Of course,

a9 a3

f dQ),, is left intact as 7\ is the coordinate of the local EDF. To recap, we per-
formed [ dSg, and J dQy, in appendix 9.10.2 where the G-tensors are discussed, while
I d$2g, and [ d2,, are handled in appendix 9.10.3. Thus, the remaining integrals are
Jda2 g3, [dgs @3, [ dzs a2 and [ dzzz3. For the sake of notational simplicity, we use
4

;r a8 it is rather than their separable expansion discussed in appendix 9.10.3. In

the actual analytical calculation, the expansion is used. Refer to appendix 9.11.3 for

details. After dropping all pre-factors, the couplings take the following general forms.

Couplings from Generic-Form-1

All the couplings that originate from Generic-Form-1 7.2.1 take the form

123
C (k) « /d:vg drs dgs dgz 3 75 g5 ¢5 | 2523 FP (22, qo) F) (23, 3)
x T (k) wil™ (kzs)

XI2 (kay) w2 (ko) I3, (F0, 35, k) |, (9.424)
or

1.2.3
CS (k) o /da:2 dx3 dgs dgs ©3 73 g5 ¢5 | whal FPP (29, qo) F) (23, ¢s)
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x I3 (kag) mek ’O/I(k:ng)

IR (ko) w2 ™ (ko) L3, (o, B, k) [, (9.425)

where p, q,7,s,t,u,v, 3,7 take only integer values, F?%, F)" are given in Eqs.(9.391)-
(9.393) and F?, FY are as defined in Eqs.(9.400)-(9.402). In fact, r,s,t,u,ve{0,1,2},
B3,7v€{1,2,3}, while p,qe{0,1,2,3,4}.

Couplings from Generic-Form-2

All the couplings that originate from Generic-Form-2 7.2.1 take the form

1.2.3
Cce (k) /dﬂﬁz dz3 dgo dgs 2525 45 G5 [mgmg FP(z2,q) F) (73, 43)

x H;?,’fr(f’?% 3, k) ijfr(f% T3, k)} ; (9.426)
or

123 ’
C (k) /dl‘g dzs dgs dgs 73 72 G2 ¢3 [z’z’zg FPP(zy, qo) F)V (23, q3)

I G, 20 ) T (20 ) (9.427)

where all the specifications given at the end of Eq. (9.424) regarding the indices and

functions hold.

Couplings from Generic-Form-3

All the couplings that originate from Generic-Form-3 7.2.1 take the form
§1§2<3 2 2 P 38
C x dzsdgs x5 g5 | o5 F7P (23, g3)
R IL2 (kas) w2 ™" (k) T3 (kas) 73 (k) |, (9.428)
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where again all the specifications given at the end of Eq.(9.424) regarding the indices

hold and £*? is defined in Eqs.(9.391)-(9.393).

9.11.2 Matching generalized PSA-DME against the DME-

ansatz

At this point, we have the expressions for the couplings expressed as a functional
of the m—functions of the DME ansatz discussed in appendix 9.10.1. In line with
the view that the DME ansatz is just a general symbolic template for an anlyti-
cal/parameterized DME, we fix the m—functions of the DME ansatz with the gener-
alized PSA-DME of appendix 9.5.3 (also discussed in sections 7.2.3) for the analytical

calculation of the couplings.

Adopting and matching the DME ansatz, Eq. (9.382), for p (71,7 + &2) with its

generalized PSA-DME expansion, Eq. (9.211), the 7—functions for this density read

(kpx
My(kpzy) = 3 J—“—ll(c FT2) ,
FI2
I (k _ J1( FT2
5(krz2) 3————kﬂ2 ,
m(krzs) = 1, i (krz2) = 0, nf(krz) = 0, (9.429)

where we set k = k. Similar m—functions hold for p, (71 + Z2,71) due to the assump-
tion of time-reversal invariance, while for p, (7, 71 + Z3) and pq(71 + &3, 71) one simply
replaces xo with x3. We leave the m—functions multiplying the time-odd densities

unspecified. As to p,(71 + Za, 71 + F3), following the same set of steps

J1(kp|Zy — T5))

Hg’fr(kp,fl—fg,fg) = 3

kp|Zy — Zs|
N° , (kp, @ &) = 5 J1lkr|%; =~ ) (9.430)
A krp|Z2 — T3
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where again time-reversal invariance implies the same set of m—functions for p,(7; +
T3, " + wZ)‘

The m—functions for §,(7, 7 + Z2) read

5 Ji(kraa)
5 (k =
1( FQ:Z) 3 k'F.I'Q )
mg(kpxy) = 1, ) (kpzs) = 0, 7] (kpza) = 0. (9.431)

Similar 7—functions hold for §,(7; + &2, 71 ), while for §,(7, 71 +Z3) and §,(71 + T3, 1),
one simply replaces xo with x3. Again, we leave the m—functions multiplying the
time-odd densities unspecified. As to §,(7) + Z2,71 + &3), following the same set of
steps

Ji(kp|Ty — 7))
kp|Z2 — Ts)

b

Hif,(kp, T, 73) = 3

(9.432)

where again time-reversal invariance implies the same 7—functions for §,(7 + 2, 71 +

).

9.11.3 Application of Gegenbaur’s addition theorem

In appendix 9.10.3, we discussed the need for the separable expansion and its for-

mal solution of IT; ; (k, %2, ¥3). With the generalized PSA-DME used to fix the

m—functions of the DME ansatz, one can apply Gegenbaur’s addition theorem, which

is discussed in appendix 9.1.5 to the as of yet non-separable m—functions given in

the Eqgs. (9.212), (9.213) and (9.230) : 11§ ;,, 5 ,, and TIf ;.. In this case, the non-

separability is due to the appearance of the following function in these 7—functions
J1(k|Z5 — Tol)

f(k7 o, :L'B) — W s (9.433)
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whose Gegenbaur expansion is obtained by using Eqgs. (9.59) and (9.50). It reads

o o [ J3j2(k|Es — Taf)
k. = /=
f(k, T2, T3) 2 (k|Z3 — T2|)32

= 14 163/2) Z (n+ g)juﬂ(k@)jwl(’“’?») Ci/*(cos(9)) ,

k2z5x
T 3L2 0%

(9.434)

where 6 is the angle between Z5 and F3. A simple re-organization of the terms is needed
to recast Eq. (9.434) in to the form of Eq. (9.410). There are several interesting
characteristics of this expansion that make it highly applicable to this work: (i)
It converges very fast, (ii) In combination with the symbolic integration technique
mentioned in the next section (appendix 9.11.4), it makes the analytical computation
of the couplings possible (iii) the validity of truncating the expansion at some value of
1 can readily be tested with Mathematica. Our numerical experimenfs show that p >
5 suffices for a practically perfect reproduction of the exact quantity. Furthermore,
these numerical experiments show that the accuracy increases progressively as the
value at which g is truncated increases. This, seemingly trivial statement, is not
obvious just from the expansion formula given in Eq. (9.434). In the following we test

the accuracy of truncating the expansion at u = 5. For this, let us define f5(k, &2, 3)

as
Lo 144 T(3/2) < 3. :

k,To, T = — + = kz kxz3) C3/%(cos(8)),

fs(k, T2, T3) e ;(M 2)];1+1( 2) Ju+1(kz3) C,/*(cos(6))
(9.435)

and the ratio function Rs(k,xs,z3,6) as
k, Ty, T

Ryl 03,0,6) = L0 T0T0) (9.436)

B f5(k752af3) '
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We plot Rs(k,z2,23,6) in Fig. 9.1, after absorbing the k dependence into X, =

kxy and X3 = kz3. First, note that the region of interest for this work is set
Angle =0 Angle = % Angle = Z‘—T
6.0
e
el 4.0
2.0
0.0
=T i
Angle = 2 Angle = 3
6.0
N
e 4.0
2.0
0.0
Angle = %E Angle = ’%" Angle=m
6.0
on
e 4.0

2.0

0.0

0.0 20 40 60 00 2.0 40 6.0 00 2.0 4.0 6.9

X, X, X,

Figure 9.1: (Color online) Rs(k, z2,z3,6) for a set of angles.

by the range of nuclear interactions as ¥ and 3 are relative coordinates and the
k parameter, viz, the DME length scale. Setting £ = kr = 1.42fm close to the
saturation density of INM, and the a maximum range of about 5fm for the nuclear-

interaction range dependent pieces ,viz, s and 3, the region of interest becomes
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X2 < 7.5 and X3 < 7.5. As can be seen from the plot, Fig. 7.3, Rs(k, z2,23,0) is
close to one for most, if not all, of the region of interest. In fact, investigation of the
actual numerical values shows that Ry (k, xq,x3,0) > 0.995 for most of the physically
interesting region. Hence, for our calculation of the couplings, we truncated the
expansion at u = 5. Further validation of the accuracy of Gegenbaur’'s expansion
truncated at u = 5 is discussed in section 7.3 where we compare results from Monte-
Carlo based calculation, which are essentially exact, with the ones based on the
truncated Gegenbaur’s expansion.

Finally, it should be mentioned that, the Gegenbaur expansion of expressions
containing higher order spherical bessel functions, such as js(k|Z3 — T3|) / (k| T3 — T2| ),
have been found to be as accurate, though at this point their practical use is limited for
this work. In order to compare the dependence of the couplings on the m—functions,
we have generated another set of couplings by setting I15 ;. = 10573(k|Z3—Za|)/(k|Z5—

#2|)3. This is based on the 7—functions extracted from the original DME of Ref. [170].

9.11.4 Analytical and symbolic integration

With the use of the m—functions specified in Eqgs. 9.11.2 and the application of Gegen-
baur’s addition theorem, the final step in the analytical calculation of the couplings
C;1°2%3 is the four-dimensional integration with respect to [ dgs dgs dzo dzs ¢ ¢3 23 3.
At this point, each term in the expression for any of the couplings is separable in
(g2, ®2) and (ga, x3). This can be seen from the form of the generic couplings given in
Egs. (9.424)-(9.428) and the expansion discussed in appendix 9.11.3.

We first perform the analytical integrations with respect to g2 and g3. Note that

we have already absorbed all ¢, and ¢3 dependencies into the G-tensors. Hence, the

only integrals that we need to integrate out the g2 and g3 dependencies from the are

oc 4 _
I _ 8(z) o, €7
/0 dq g jolgr) = —m—5m - wmt——, (9.437)



oo 4 . 'y —~mz —mz
q Jilgz) d(x) e e
d = - 7 ) , 438
/0 @?+m? qx T PTG T (0.438)
o© 3 —mzx —mz
q : o(x) 2 e ,
/0 dg P g Jilgz) = T kM T (9.439)

where ¢ stands for either g2 or ¢3. These integrals can be obtained by following the
steps: (i) Rewrite the fractional prefactors, for instance, ¢*/(¢>+m?) as ¢ — m?/(q®+
m?) and (ii) Express the integral of the non-fractional piece in terms of §(x) whereas

that of the other piece can be found by standard contour integration.

The subsequent integrations are with respect to z2 and x3. Even though each
relevant term is separable in z, and x3 and thus the integrals calculable separately,

the required integrals are much more complex. In general, we need to obtain

/ e Uz, (z)j,(z)dz (9.440)
0

where v > 0, p > 0, whereas u > 0 is a real parameter and n is an integer. Conver-
gence of the integral requires that n+v+pu > 0. Note that in our problem, u = kg /m,.
The application of Gegenbaur’s expansion introduces higher order spherical Bessel
functions. ILe. if the expansion is truncated at p = 5, up to sixth-order (jg(z)) spher-
ical Bessel functions are introduced. However, we are not aware of any analytical
or symbolic integration technique that works for any values of the indices: {n, v, p}
which satisfy the convergence criterion. Furthermore, we need to perform calcula-
tion of hundreds these integrals. In Ref. [157], we discuss how we solve this problem
with the Mathematica package that we developed. In the package, we designed and
implemented a symbolic integration algorithm that can calculate these integrals for
any values of {n, v, u}, which satisfy the convergence criterion, and gives the exact

analytical expression.

In principle, we have analytical expressions for the couplings at this point. How-

ever, the actual Mathematica implementation of the DME starting from the exact
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HF energy from the chiral EFT NNN interaction at N?LO has not been discussed.
In Ref. [161], we give a detailed presentation of the symbolic implementation. We
remark that the implementation is done in such a way that it can be adapted to
deformed time-reversal invariant systems as discussed in appendix 9.10.5 with only a
modest amount of change. The implementation for deformed time-reversal invariant
systems will be the subject of a subsequent publication [162]. A detailed analysis
and discussion of these couplings can be found in Ref. [160]. Finally, the lengths of
the coupling expressions prevent us from reproducing even a single coupling in here.

Consult the Mathematica files of Ref. [161].
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