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The spin-flip probability for protons inelastically

scattered from the first 2+ state in lZC and-lZOSn‘has been

measured at incident proton energies of 26.2 and 40.0 MeV

12 120

for C, and 30.0 MeV for Sn. The experimental method

involved the detection of inelastically scattered protons
in coincidence with de-excitation gamma radiation emitted
‘along'tﬁé normal to the scattering plane. It can be shown
that this correlatidn is directly proportional to the spin-
flip probability in the reactién. |

Angular distributions were obtained over an angular

range of 25° to 155° in the laboratory system for the’lzc

1208n térget. The

target, and from 30° to 155° fdr the
data display prominent backward peaks similar to previous
observations ét lower energies and for other nuclei. The
magnitude of this peak-ih the sPin—flip:probability was

12 120

about 0.30 for C aﬁd 0.50 for Sn and the location of

its rapidly rising edge seems to be correlated with the
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target mass number. The total spin-flip probability is only
about 0.03 for %ZC and 0.08 for 1208n despite the large
backward peak in the angular distribution, because the .inelastic
cross section is largest at the forward angles where the spin-
flip probability is small (£ 0.10 for both targets). Distorted-
wave calculations were performed with collective-model and
microscopic-model form factors in an attempt to detérmine the
type of information about spin—dépendent nuélebn—nucleus forces
which can be extracted from spin-flip data. The theoretical
predictions were in semi-quaﬁtitative agreement with experiment
at the peak of the distribution. The most seriéus failure in
this fegard occurred for the 12C data at 40.0 MeV where the
predicted peak spin-flip probability was 0.20 compared to the
measured value of ébout 0.30. Lafger differences were observed

12

for the forward angle data. In the case of ~°C, thesé

discrepancies were associated with the failure of the optical
model for this light nucleus, and no definite conclusions
could be reached regarding the spin—dependent part of the

1208n data, however, there is

inelastic interaction. For the
some evidence that the observed discrepancies are related to
the spin-dependence of the inelastic interaction. If this is
the case, a more adequate treatment of this interaction may

significantly improve the agreement between theory and

experiment.
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CHAPTER I
INTRODUCTION

Several experimental techniques are available for
studying the spin dependence of the nucleon-nucleus. reaction.
In particular, one might investigate the inelastic scéttering
of polarized protons (Fr 67,Gl 67) or the effects of farget
polarization on a given reaction (Go 62). Either of these
methods involves the preparation of an initial system with
known spin orientation; the relative scarcity of such data
reflects the experimental difficulties enéountered.
Alternatively, it is possible to defermine the angular
dependenée of polarization of the residual nucleus, when the
initial system is completely unpolarized. Usually, one
observes the angular correlation involving the scattered
particle and the de-excitation gamma radiation. It can be
shown (Go 62,Sa 64), in th;’context of the distorted-wave
Born approximation (DWBA) with unique total transferred
angular momentum, that the ihformation obtained by this
method is the same as that obtained by scattering from
polarized targets. Thefefore, such measurements can
provide valuable da%a concerning the spin dependence of
nuclear reaction mechénisms for the wide range of nuclei

for which polarized targets are unavailable (as, for example,

1
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if the nucleus to be studied has zero ground state spin).
In addition, they can provide supplementary information in
those cases for which the inelastic écattering of polarized
protons has been measured. The chief disadvantage of the
method lies in the need to perform a coincidence experiment.

The angular correlation function for the case in which
gamma radiation is detected in the plane determined by the
incident beam and the scattered particle (in-plane correlation)
“has beén analyzed in the DWBA by several authors (Sa 55,B1 61,

Ba 57). Banerjee and Levinson (Ba 57) predicted the form:
.2 e (I.1)
W(er)z A+ Bsim 2(6,.-€)) +Csum (or—éz)

and associated the last term with the presence of spin flip
in the interaction. Such a term has been observed (Yo‘SO,

Br 61), but it has proved to be very difficult to extract

the relevant spin-flip probability, which is expected to be
quite sensitive to the spin depéndence of the nucleon-nucleus
interaction.

Recently, Schmidt et.al. (Sc 64) havé pointed out thét
spin flip could be more easily studied through an angular
corrélation in which the gamma radiation is detected along
the normal to the scattering plane (gamma-perpendicular
correlation). They were able to show that this cofrelation
is directly proportional to the spin-flip probability for
the case of a 07 - 2+ transition, independent of the reaction
mechanism assumed. The argument may be extended with minor
modification to the excitation of a 1¥ or 2~ state from a .

+
0 ground state.
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We have used this method to investigate proton spin flip

in the excitation of the first 2+ state of 12C and 120 Sn
These targets were chosen for several reasons. TFirst of ali,
l2C is a nominally 'closed shell’ nucléus on which numerous
theoretical calcﬁlations have been done. 1In addition, the
relatively small number of open reaction channels and the
well~separafed energy levels are non-trivial experimental
advantages. Unfortunately, 12C is also a notorioﬁsly poof
'optical-model' nucleus, in that it is extremely difficult

to extract optical model parameters which accurately describe
the elastic scattering (Sa 67). When it became clear that
good optical parameters were necessary for the interpretation

1208n which is

of the data, it was decided to investigate
not plagued by this problem, though it:is experimentally

more difficult because of the high background of gamma .
radiation from various reactions in the target.

The data have been analyzed in the DWBA, with séveral
different reaction models, in an attempt to determine the
type of information about spin-dependent nucleon-nucleus
forces which can be extracted from spin-flip meééurements.
Chapter II is devoted to a discussion of the DWBA method,
and of the particular reaction models used. The experimental
method and techniques are described in Chapter III, followed
by a short discussion of the optical model and the extraction
of the parameters in Chapter IV. The theoreticalhpredictions

are compared to the experimental data in Chapter V, and the

resulting conclusions which can be reached from this



comparison regarding the value of spin-flip measurements in
the investigation of spin-dependent forces are summarized

in Chapter VI.



CHAPTER II
DWBA THEORY OF ANGULAR CORRELATIONS

' The theoretical formalism of the distorted-wave Born
approximation (DWBA) for inelastic scattering has been
treated in detail by Satchler (Sa 64) and by Tobocman (To 61).
The basic assumption made in the development of fhe theoryr
_is that of 'weak coupling'; that is, it is assumed that
elastic scattering is the most important process that occurs,
and that the inelastic event can be treated as resulting
from a perturbation which causes transitions between elastic
scattering states. The elastic scattering itself is treated
'exactly', in the sense fhat it is calculated from an optical
model potential using parameters which fit the elastic data.

In the following sections, some of the more important
results in the development of the‘DWBA theory, and its
application to the predicfion of angular correlations,“are

disgussed. ‘The treatment followed is that due to Satchler
(Sa 64),



II.A. Transition Amplitude-

II.A.1. General Form of the Transition Amplitude for

Inelastic Scattering

In the DWBA theory of inelastic scattering, the

transition‘amplitude takes the form:
- le [
=T is X, R, P <KVIE> K, RN O &, (110
< £ f N _ :

m. m,
where ?g and ?% are the coordinates of the pfojectile
relative to the target in the inifiél and final state, and
' J is the Jacobian of the transformation to tﬁese coordinates.

. The functions Clz and CKF are the distorted waves,

which are eigenstates of elastic scattering from the target
in its initial and final states, respectively; They are
usually generated from an optical model potential using
parameters which fit the elastic scattering data (see Chapter
IV). The superscriptA(+) or (-) denotes outgoing or incoming
boundary conditions, and the subscript m refers to the
z-component of the projectile spin. The two boundary

conditions are related by time reversal invariance:

(=) % m-m (+) -
2 (87 = @ X, CRT) (11.2)

Since the spin-orbit term in the usual optical model potential
(see Chapter IV) can couple different spin projections, the

distorted waves are, in general, non-diagonal matrices in



spin space. The off-diagonal terms (m#m') can lead to a
nonzero spin-flip amplitude.

The remainiﬁg factor in the expression.for the transition
amplitude is the matrix element of the interaction causing
theAtransition, taken between the initial and final internal
states of the scattering systém. It contains all of the
information about the structure of these states and the
mechanism which couples them, and can be looked upon as
producing transitions between the elastic scatteriné
eigenstates ﬂﬁi and.'jép . Since this matrix element will,
in general, be spin dependent, it can also couple different

8pin projections and therefore produce a nonzero spin-flip

amplitude.

IT.A.2. Zero-Range Approximation

The general form of the transition amplitude (II.1)
‘involves a six dimensional integration over the space of
7?a and'?s. Since the nuﬁerical evaluation of such an
integral is difficult and time consuming, the 'zero-range'
approximation is usually introduced. The physical assumption
behind this approximation is that the scattered particle is
emitted at the same point at which the incident particle is
absorbed, -so that'f£ = (g)'?; (where A and B are the masses
of the target nucleus in the entrance and exit channel).
The introduction of the zero-range approximation.reduces the
transition amplitude to a three-dimensional integral which

is much easier to campute. The price paid for this

simplification'is that the effects of particle exchange



are neglected, and possible nonlocal inelastic interaction
potentials cannot be iﬁtroduced exactly. However, both
these cases can bé treated in some approximation by
replacing the interaction potential by an equivalent local

but momentum dependent pseudo-potential (Pe 64).

IT.A.3. Reduced Amplitudes

The transition amplitude Tfi is usually expanded in
terms of 'rgduceé amplitudes' corresponding to the transfer
of- a definite total angular momentum'g, orbital angular
momentumli, and spin angular-momentum T to the nucleus

during the inelastic event. In the zero-range approximation,

this expansion takes the form:

(2 I) m oy
T, = ‘% I )T TS M M| T p) sz k) aro-
ﬂn‘”" ' .

where m = Mf-Mi+mf~mi, and J and M are the total angular
momentum of the target nucleus, and its z-component. The
; . e 1o '3
expression for the reduced amplitude }? . in terms of
2s)

previously defined quantities appears in Ref. (Sa 64).

. &> > = .

The transferred angular momenta (1l,s,j) are determined

o

from the relationships:

i . - - =h
7 - l?f-Ji T =85 1 = 3-5
and, in the zero-range approximation: (IT. W)
£
T, = ()

: x b 4 - . .
where the transition is (J )i'-’ (g )f and si(sf) is the spin

e



of the incident (scattered) particle. It is important to
notice that the value of each of these angular momenta
during the‘inelasfic event is to be used; this is not
necessarily the same as the asymptotic value. For examplé,
a reduced amplitude lébeled by s=0 may still contribute to
spin flip (s=1 asymptotically) through the distortions

introduced into flfé and /]{F by the spin-orbit term in the

optical potential.

IT.B. Cross Sections, Polarization, and Angular Correlation

IT.B.1. Scattering Cross Section, and the Polarization

of the Scattefed Particles

The differential cross section for an unpolarized
projectile and target is proportional to the square of the
transition  amplitude and can be written in terms of the

reduced amplitudes as:

do My My e 2%t | o m 2
dg‘ (27 H*)* e (23.+1)(28;+) m’..,..."‘is Esj NS
: o,

where ,AQL and ‘;Lb are the reduced masses in the entrance
and exit channels. Note that the sum on j is incoherent,
although the possibility of interference terms between
different 1 and s remains.

The vector polarization of the scattered particle is
defined as the expectation value <§‘>/SF . If the z-axis

is chosen along'§; and the y-axis along'fg X k

b? the
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expression for the polarization is:

mll M mel, m'l m()*
2[‘5;""5"5*"‘4“)] JM[PJ.sJ : FLSJ

(I1.86)

% 2 P P—l’s’J

where the sums are taken over 1,1',s,s',j, and all the
projection quantum numbers. Here again the coherent‘sum on
1 and s appears. |

The differential cross section for the inelastic
scattering was calculated using a computer code written by
T. Tamura and R.M. Haybron bf the Oék Ridge National Laboratory.
This code was modlfled to perform additional calculations and
was reprogrammed to run on the Z 7 computer at the cyclotron
laﬁoratory. In the final version, an option allowing the
coherent sum over 1 and s'was implemented, and the expression
(IT.6) for the polarization was programmed. In addition, a

subroutine to calculate the spin flip was added; this

parficular routine will be briefly described below.

IT1.B.2.. Statistical Tensors

It is convenient to describe the polarization of the
residual nucleus in terms of the density matrix (Br 62) in
Mf for the residual nuclear spin, which is constructed

-from the reaction amplitudeS'

P = £ Tsi (m; M vy :,-)T:("'“\"‘M) (I1.7)

L how M
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This in turn may be expanded in polarization moments or

'statistical tensors' fKQ of rank K € 2 ¢

et TIM. O f '
<IeMes@-M k@ Lo (11.9)

f:uw' = 2=

fF K@ -

After a moderate amount of algebra, we find for the

statistical tensors:

T J‘ rird’ =K +Q-u

fo =(3% ) 20 Vaim iy WGisTe)

lc-l

2'sJ
mm ", (TI.9)

\an mQ, mo ot

< >
x <JJ/4- Q‘ﬂlKQ> Fﬂa 2's';!

where 4 = m+mi—mf. In contrast .to the expressions for the
differential cross section and polarization, the sum on j is
coherent, so that amplitudes with different total transferred:
angular momenta can interfere.

The fgq are constructed so as to behave under rotations
like spherical tensors of rank K. In addition, when referred
to -}:a as the z-axis and -]:a X -}-:b as the y-axis, they satisfy
the symmetry relation:

K-Q@ Io
ﬁtq =) K,-qQ (II.10)
so that the 70“9 arg real (imaginary) for K even (o,:dd). In

particular, f,(o vanishes for K odd.

The spin-flip subroutine calculates the )O’-(? for unique
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total transferred angular momentum ] € 2 and the possibility
of coherent sums on 1 and s is retéined. Thus, it is
sufficiently genéral'for inelastic proton scattering to a 2"
level from a 0+ ground state, where the only allowed values .
of the transfer quantum numbers are (l,s,j) = (202) or (212)
(see II.4 above). The statistical tensors are computed for
all X,Q satisfying:

0 =K = 2Jf ‘ (IT1.1L)

-K ® Q %K

Therefore, the accuracy of the calculation may be checked

by verifying that the symmetry relation (II.10) is obeyed.

ITI.B.3. Angular Correlation Function and Spin Flip

The angular correlation of the de-excitation gamma
radiation with respect to the direction of the scattered

particle has the form (Sa 60,Br 62,Go 62):

4rc Q '
W(9¢,9,¢,) = 3; IRe] f,iq F& YK (e,.9,) (IT.12)

where Yg is the usual spherical harmonic. The parameters
FK can be written in terms of tabulated (Bi 53) correlation

coefficients:

F. = :.2‘ C.C F (LL T T) (II.13)
L

Here, Jc is the nuclear spin after the emission of the

gamma ray and L,L' are its multipole orders. vCL is the
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probability amplitude for ol pole emission and the -
normalization is:

z .

sie =1 (II.14)
L .

The spin fllp subroutine calculates W(©, 0 90 90) for

the case of a 2 - 0+ tran51tlon Only one multipole order

(1=2) can contribute, so that the computation of F, is

K
considerably simplified. The spin-flip probability is
directly proportional to this correlation. The constant of

proportionality is derived in Appendix B.

II.C. Nuclear Reaction Models )

Thé model dependence of the DWBA transition amplitude
is contained in the matrix element of the interaction potential
V taken between the wa?e fﬁncfion for the internal sfates
of the colliding pair. If V is static (i.e., if it is local
and does not contain gradient operators), it may be expanded

-

in a multipole series of the form (Sa 66):

VE b b= 560V <r¢>T (64, £.)

B . ‘J ~AL (I1.15)
CRsi M "‘

‘where ;; represents the internal coordinates of the target,
and ﬁt'those of the projecfile. The 'spin-angle' tensor
T is given by: |

T'_s ..(L°¢ £a) = <£S m “"“l"/")\(“’) Ss,.ﬁ:) (II.16)
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where SS is a tensor of rank s in the projectile spin space
(for inelastic proton scattering,-s=0 or 1). Taking the

matrix element of'V, we get (Sa 66):
2 ' m*
<sm TM\VIsm T M= 5 F ) Y, (e4)
.esJ)At

S -m
()P K<spsm o[ S, oD 11 gy

x LT9 MC’M$— M; | T M <As m - ,Jh}.m)

where the dependence on the projection quantum numbers has
been factored out using the Wigner-Eckart theorem. The
radial function Flsj(r), or 'form factor', contains the

reduced matrix elements of the interaction:

, 25 +1 Il 1.>
- I
Fo (7= V2o <s uS s> < HV 11169

The form factor is to be computed in the context of a .
particular reaction model. In the present section, we
discuss three models which have been used to interpret the
experimental data. The first of these is a collective
model in which the nuclear wave functions are taken to be
the rotational eigenstates of the total angular momentum of
the nucleus, and fhe interaction is generated from a
deformed optical model potential. The other two are
microscopic models, in which thé nuclear wave functions are

shell model states and the effective. interaction potential
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is the sum of two-body forces.

IT.C.1. Collective Model

We consider first the spin-independent‘term in the
optical potential; in this case, only the spin-independent
(s=0) form factor is nonvanishing. It is assumed that the
potential depends only on the distance from the nuclear
surface, which is allowed to be nonspherical. Let the
nuclear surface be defined in body-;fixed axes by r =.R(9: ¢l)
and expand in spherical harmonics:

V=V(r-Rr(e.¢))= \/(r-R £|+z°-,,,, s ’J) (II.19)

The multipole order of the deformation is determined by the
quantum nuﬁbér 1. For an axially symmetric deformation, the
only nonvanishing parameter is Q‘“E P.L .

The next step is to expand the potential in a Taylof}

series about R = RO:

V= V(r-g)- SR f;--t\/((—ﬁ,) ,o

where; ' . 4 (ITI.20)

™ [ EAY
SR = ]20'3a1052m\*; (e'¢’)

The first term in (II.20) is the spherical optical potential
which describes the elastic scattering. In the first
approximation, the interaction is taken to be that part of

the expansion which occurs to first order in the deformation
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parameters:
cnt. (0 r z 2m 'R | (I1.21)

We now compare with (II.15), which, in the special case

s=0, takes the form:

2- M
V,;n*. = 2 () ‘401 “ Yz (eg) O (IT.22)
J '

Lu
Let R be the rotation which takes body-fixed axes (€ ¢ )

into space-fixed axes ( © ¢ ). The transformation is (Ba 62):

laal ,e M’- ’ ’
- LY (e'¢
Y2 (e ¢) 5, '.Dm’ )Te J (II.23)

where D is the usual rotation matrix. Substituting into

(II.22):

2-u 4 N
- (.-) . . rqr
Vc'ni. - J/Zu’r Kﬂ,el/(, -D) Yl (9¢/(II.21+)

Comparing with (II.21) above:
L-pt 2 AVir-R, )
2(“) 4 D = "Eo T——e) a (II.25)
Using the orth lity relati D g D!* d
sin e orthogonality relation =
ng og y f 2 1”'/ ,

’

bt m

JV("’?o) (II. 26)

M4
V = - [(—) .2_0‘1 ‘A] R

Log s
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' % m-m' LA ‘
Finally, we have the symmetry relation D , =) ']D )

and, since 1 is imntegral:

&V?r-ﬁg)

' L2+mMm ])
\/ = —[2(’) %, -m A dr  (11.27)
,Qo_j,k(. m

The form factor is proportional to the reduced matrix
element of (II.27) taken between the initial and final nuclear
states. Here,'we shall only consider axially symmetric

states, for which the wave function is (Ba 62,Da 58):

) .
- ar+! (T=0,%,4 - )
Fom = 'J po D° 2700 (II.28)

mMm

The matrix element of VlOl,}L between states with spin Ji
and Jf is:

+/

]
<IeMg ’ 200 [ T¢ Mt> on® F,g Ro T;._—. 'd(’-r.-“)(ll"*')

ST)‘,M D% Do w 48 (II.29)

._(_)J‘;"J'nlp‘ R &_‘gi)<,¢,]:,a_o|3'fo><l‘.ﬂﬂinﬂ;hif>

For even-even nuclei, Ji=0 and:

B, Ro dAVCr-R)
- E:‘___f- —  (R:=qt¥-) (11.30)
‘JZQH ar

Hence, the final expression for the collective model form

r

{3l Vo p 10> =

factor:



18

= Wir-r)
f-:" (r) = = Ya2gu F,q, — ) (2=024-)

Y (I1.31)

It has been cuStomary to deform only the real part of the
optical potential (Ba 62a); more receﬁt studies (Fr 67,G1l 67),
however; indicate that the imaginary terms,must_also be |
deformed to account for the observed polarization in inelastic
proton scattering;- A Fortran IV code has been written (Lo 68)
to compute this (complex) form factor from optical model
parameters which fit the elastic séaftefing data. The
deformation parameter Fz is treated as an arbitrary
normalization constant, which is assumed to be the same for
both the real and imagiﬁary[parts 6f,tﬁeyoptical model
potential. | |

In.the previous discussion, we have considered only
the spin-independent part of the interaction. It is possible
to introduce spin dependence by deforming the épin—orbit
' term in the optical potential. The resulting interaction
is extremely difficult to handle (Sa 66) since it is nonstatic
(gradient operators appear in the expansion of'tfg). For
this reason, all of the collective model results were
computed with spin-independent interacfions,vwhich contribute
no s=1 amplitude.' Iﬁ this model, thén, the entire spin-flip
cross section is due to spin-orbit distortions in the

elastic channel wave functions.
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II.C.2. Microscopic Models

Assuming that the projectile interacts with the target
through a sum of two-body forces, and that multiple scattering
processes are unlikely, the interaction potential may be

written (Sa 66):
V= quf’ -V (II.32)

where U is the optical model potential which generated the
distorted waves, and viP is the two-body interaction between
the projectile and the ith target nucleon. Furthermore,

-Vip is usually approximated by (Sa 67a,Ke 59,J0 66):

- - - -
fUEP = Vo(!ﬁ—r,,l) + Vi(‘r."?r') G'L'O'P (II.33)
— -
where CE’(O;) is the spin operator for the target (projectile)
nucleon. This expression neglects the tensor and spin-orbit
forces known to be present in the interaction between free
nucleons (La 62,Ha 62). The main justification for this
truﬂcation is simplicity; non-central two body forces are
much more difficult to work with (Sa 686).
Equation (II.33) can be written in terms of the

-ie -

. M
spherical tensor S, where §; = 1 and S =0

V. = Z(—-) S(U S (P V,(IV‘ -121) (II.34)

tp

The radial dependence of the interaction potential may now
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be expanded in multipoles:

¥ .
L . Yo (r
\/5 (lrc.fr,,l) =£im st("a,rp) Y,,,,('Z)Y,tm ) (II.35)

Substituting this result into (II.15) and applying the

definition (II.16) of the spin-angle tensor T, ., the two-

1sj)
body potential becomes:

st R
y , ) | _(P).
o 2 0) \/“(Q}r,,) %sjw Asi-ac (I1.36)
/

‘P ‘esjlu |

The form factor is then obtained from (IZI.17) and (II.18):

F () = Jz <%l ;_i\{fs(r‘”r') TeS.iu)"'Ti> (II.37)
£s)

In order to calculate the form factor from (II.37), it
is necessary to determine the initial and final state nuclear
-wave functions, and the interaction potentials Vls(ri,rp),
from some nuclear models. The interaction potentials will
be discussed in this section, and the discussion of the
nuclear wave functions will be deferred fo the next section.

Two different interaction potentials were used in the
calculation of the form factor. The first of these was a

Yukawa interaction:
e —b‘ - 'MSR ; .-..‘
V,("ﬂ"rr’)' V. (2 /MS‘R) (R=IET1) (11,38

where the strength VS and the inverse range m, were
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determined in the impulse approximation by McManus and
Petrovich (Mc 67{Pe 67). They fitted the Fourier transform
of a single Yukawa to the nucleon-~nucleon scéttering amplitude
calculated from the éentral part of thé Hamada-Johnson
potential (Ha 62). The interaction so determined is complex
and spin-dependent, and both the range and strength pérameters
vary‘with the incident proton energy. The particular Virtue
of the Yukawa-type interaction is that a closed form for the

multipole expansion exists (Me 65):

-m_R . .. ‘ +) | A , *A
e s/m‘.az e Z"z(“"xy;)’,z‘z (‘"'s»';)--Y,:‘r") Y”frf’) (I1.39)

am

where jl and h{ are the spherical Bessel and Hankel functions,
n,(g<) refers to the greater (lesser) of r, and rP, and

wly oy
R -lri—rpb Then:

Y AR ‘C*).
\./Qs (r;.',fP) = 41T VS J (“”‘Q)ﬂl (im r;) (II.40)

£ y 4 $

The second form for the interaction potential was
derived by McManus and Petrovich (Mc 69) from the Kallio—
Kolltveit shell-model effective interaction (Ka 64). The
resulting interaction was real, spin-depeﬁdent,vand
independent of energy. In addition, it also included a
factor depending on the two-thirds power of the nuclear
matter density, which seems to improve the agreement between
theory and experiment (Gr 67,La 67). The radial‘dependence

is an exponential form, so that the multipole expansion is
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somewhat more complicated. For an arbitrary function of

R =lf}—?§l:
‘ l
V= oz @iV m By
£

where ¢ is the angle between éi‘ and ép" Using the properties

of the Legendre polynomials (Me 65):

Sg,(m“)\/s (R) d(wnu) = Tr Z(J,Qu) V (r. r,,)j[’m“)P (@) d(03q)

(IT.y42)
L (r.
= ar %zs (r,fe) .
’ g §
Next, make a change of variable, noting that = (rf+ V,, 'J’;~f,3“.’>d) -
r+r
vV (r, r,) = | P(R)\/(E)RQQ
Y L,'P (II.43)
s
Ir- r/

Thus, the evaluation of the multipole coefficients of the
potential introduces an additional integration which must
be performed numerically. A computer code has been written

. (Pe 68) to calculate the form factor in this case.

II.C.3. Nuclear Wave Functions

The excited stdates of doubly-closed-shell nuclei
such as 12C may be expressed as coherent suﬁerposi‘tions
of particle-hole states obtained by promoting a nucleon
from a closed sheil jh to an empty sheil ]p We define

the particle-hole state by (Sa 66):

P
_I(J“.JP)J’AO—_- s < Jpl\f\m m | Tm>
m.
j +M-m 4+

'.._ i ; . Q. fo
X(, q"‘.’m_M mel >
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where [0 is the particle-hole vacuum wave function and
+

ajm (ajm) creates (destroys) a particle in the shell model

orbital j,m. The excited state [&n§>is then:

2% I
> =2 C | 5p) TM> - (II.45)
iJ JP
%r %
where the coefficient C._j is the amplitude for the
h-p

corresponding particle-hole pair in the excited state wave
function. The amplitudes we used were those computéd in
the random phase approximation (RPA) by Gillet and Vinh Mau
(Gi 64), which include the effects of ground state correlations.

The form factor is proportional to the reduced matrix

element:

M= <3l 2V, ESJ.MIIO>

(II.46)
In second quantization notation:
() = h1
iVISESJ(‘) z <° !s lsJ“’ '"7& Q g m,  (II.47)
xf "

where the summation extends over all shell-model states.
Taking the matrix element of this operator between the
states (II.45), and using the commutation properties of the

creation-annihilation operators (DeB 64), one obtains:

Aoa-l . : , . |
M = JZJ PR C{‘ ; < ‘Ee."-’-;ﬂ'”‘"’) <~f‘l%’"2°f)/"p> (II.48)
e P

where j =|ﬁj+lJ Expressions for the single-particle
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matrix elements <:jh‘l Tlsj" j;>> are found in Satchler

(Sa 66). The radial integrals are:

<l v nr]iyy - S%.s 4y %) Uy ) dr.  (11.u9)

where u:.l is the radial part of the shell model bound state
wave function, and j stands for the quantum numbers (N,l}j)
where N is the principle Quantum number, 1 the orbital
angular homentum, and j the total angular momentum of the
shell model orbital. We have used harmonic oscillator
bound state wave functions, which seem to give an adequate
representation of the shell-model states (Mc 69a) and have
the advantage of being analytic.

120

The nucleus Sn has been studied in the quasi-

particle model by Yoshida (Yo 62). Since a quasi-particle
is a mixture of a particle and a hole state, the expression
for the matrix element M in this model is very similar to
the preceding results for pafficle—hole excitations. In
the notation of Yoshida:

. T A-l . . i J J
=5 J <JNT HIo<siV. . L UV + T

J.

where expressions for the normalization coefficients }‘;J.
. : 4,

and CPJ are given in Ref. (Yo 62) and U, and V. are the
J'Jt ’ J 3 £y

usual occupation parameters (Ba 63). A derivation of this

result is given in Appendix C.
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CHAPTER III
EXPERIMENTAL METHOD

III.A. Beam Line

IITI.A.1. Cyclotron and Beam Analysié System

"All experimental data were taken using proton beams
- from the Michigan State University sector-focused cyclotron.
The design and operating charaéteristics of this machine |
have been deseribed in detail elsewhere (Bl 66). It is
capable of producing high quality‘beams of several different
'projectilgs over a wide energy range. For protons, this
range extends from 20 to 50 MeV, although lower energy
beams have been produced by accelerating molecular hydrogen
(Pa 69). |

A schematic diagram of the beam transport and energy
analysis system appears in Figure III-1. The extracted
proton beam was focused on the object slit S1 by a set of
quadrupole doublets. Protons passing through this slit
and the divérgenée.limiting slit S2 are bent through 90°
by the energy analyzing magnets M3 and M4, and then strike
the image slit S3. | |

The properties of this beam transport system have

25
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been investigated previously. In particular, the energy
resolution of the tfansmitted beam as a function of slit
widths (Ma 67),'and the energy of the analyzed beam as a
function of magnet field strength (Sn 66) have been calculated.
Typical slit openings used in‘this experiment were 0.25 cm

for the object and imége slits, and 0.30 cm for the

divergence limiting slit. This corresponds to an energy
resolution of 8 parts in 10% full width at half maximum

(FWHM). The energy of the transmitted beam was calculated

to within tO.l MeV from the measured field strengths.

ITI.A.2. Beam Alignment

The analyzed beam was deflected into the appropriate
experimental area by magnet M5, and was focused on the target
by the final quadrupole doublet Q5. No collimating slits
were used near the target in order to keep background
radiation in the experimental area to a minimum. Instead,
the beam was positioned by observing a 0.125 mm thick piece
of Pilot-B plastic scintillator* at the target position using
a closed circuit television system.

In practice, the excitation of magnet M5 was set to
the calculated value appropriate to the Particle and energy
required (Sn 66). Fine'adjustments were .then made to center
the beam spot on fiducial marks inscribed in the plastic
scintillator. In. this way, the beam could be centered to

within 1 mm. The scintillator was inserted into the beam

#Pilot Chemical, Watertown, Mass.
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line several times during the course of a run to check
against centering drifts, which did not occur. During
the later runs wifh the tin target, the fields at magnets
M3 - M5 were monitored with NMR fluxmeters.

Beam spots were typically rectangular, with a height
of 2 mm and a width of 4 mm. Angular divergence was less
than t0.5°, as determined from the maximum possible beam

diameter at the quadrupole doublet Q5.

ITTI.A.3. Targets

The target used for the 12C experiment was a 26.5 mg/cm2
graphite foil*. Its ﬁniformity was determined to be better
than 1'1% by monitoring elastic protonvscattering from
various areas of the sample. The tin target was a 9.9 mg/cm2

12OSn obtained from the

foil rolled from 98.4% enriched
isotopes ‘division of 0Oak Ridge National Laboratory.

The energy loss AE in the graphite target was 500 keV
at 26 MeV, and 350 keV at 40 MeV. The corresponding value
for the tin target was 100 keV at 30 MeV. The mean proton

energy Ep was determined by subtracting A&/2 from the energy

determined by the beam transport system.

III.A.4. Target Chamber

The targets were mounted in a small Al chamber in

which provisions were made to mount two targets. The angle

Speer Carbon Co.,Inc., Carbon Products Div., St. Marys,
Pa., Shield Grade 9326.
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of the target frame relative to the beam line could be
remotely adjusted and.read out to within il’. Scattered
protons passed tﬂrough a 0.125 mm thick Mylar window in the
side of the chamber. Energy-loss straggling in this window
was approximately 180 keV. Because the states of interest
are well separated (> 1 MeV in the case of 120Sn and >3 MeV

in the case of 12

C), this broadening is quite acceptable,
particularly since the use of a window leads to major design
simplifications in the apparatus which positions‘tﬁe proton
detector. TFor example, the arm on which this detector is
mounted does not have to be inside a large vacuum chamber.
The counter arm could be remotely positioned to
within i'0.1° over the angular range from 25° to 155°. The
limits of this range are determined by the geometry of the
target chamber and beam line, and by the size of the detector
package. The center of rotation of this arm coincides with
the cénter of the target frame to within 0.05 mm, and the
maximum backlash in the positioning apparatus has been
measured to be iO.l° when the drive mechanism is properly
adjusted.
|

III.A.5. Charge Integration

Protons paésing through the target were collected in a
7.5 cm diameter by 1.5 m long Faraday cup located so that
the beam stop was 2 m beyond the target position. This
distance was chosen to enable the elimination of chance

coincidences with background radiation coming from the
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Faraday cup'(see Sec. III.D.4). The length of the cup
ensures that protons which suffer multiple collisions in
the target will still be collected, and it also reduces the
probability that electrons produced in the cup will leave it.
A study of the background radiation produced by various
beam stop materials indicated that graphite was best suited
.for this purpose. The observed reduction in background
(about a factor of 2.5 compared to Al, for 30-MeV protons)
overweighed cohsiderations of the additional'radiation
hazard posed by the pfoduction of relatively long-lived
(A~20 min.) activity in the beam stop. However, Al was used
for the beam stop in the 12C runs to avoid possible confusion
of 4.u44 MeV gamma rays from the target and the beam stop.
The beam current and integrated_charge were measured
using an Elcor Model A310B current integrator. The accuracy

. ...t
of this instrument has been measured to be within -1% (Ko 67).
TIT.B. Detectors

III.B.1. Gamma-ray Detector Assembly

The gamma-ray detector used throughout this experiment
was a 5 cm diameter by 7.5 cm long Nal (T1) scintillator
mounted on a RCA 8575 photomultiplier*. The energy resolution
of this detector has been measured to be 7.6% for the 662 keV

gamma line from 13"7Cs.

* . B .
Obtained from the Harshaw Chemical Co.; Cleveland, Ohio.
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The proper distribution of bias voltage to the'dynodes'
of the photomultiplier was maintained by an ORTEC 265
phototube base. A schematic diagram for this unit appears in
Figure III-2. One important feature of the design is the
fact that the anode is operated at ground potential. This
means that the fasf output can be direct—coupled'and therefore
that the rise time of this signal is not limited by the time
constant of a coupling capacitor. A minor disadvantage of
this.arrangement is that the photocathode is operafed at a high
negative potential with respect to groﬁnd so that the outer
glass envelope of the phototube must be well insulated.

A major problem associated with the photoﬁultipliers
used in this experiment was the gain shifts observed at.
high count rates. Thefadditional‘current drawn through the
voltage divider string during a pulsevcauses an increase
in the dynode potentials with respect to the photocathode,
resulting in a net increase in the effective gain of the
system. Since the current amplification of photomultiplier
tubes is proporfional to a very high power of the interdynode
potential (Ch 61), this effect can plaée rather severe limits
on the allowable variations in count rate. The problem
can be eliminated for shoft term fluctuations, such as.
those Que tOfthe pulsed nature of the cyclotron beam, simply
bx connecting rather large capacitors across the latter
stages of the tube to serve as 'charge reservoirs', This
method is effective .in eliminating fluctuations with time

constants of several milliseconds. It becomes quite
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impractical, however, if variations in average beam intensity
can occur over a‘time interval of minutes, as was often true
in this experiment. We have substantially reduced the
observed gain shifts in the latter case by employing zener
diode voltage stabilization on the last four dynodes (Figure
III-3). The increased stability comes at the expense of
flexibility in the selection of photomultiplier gain, since
the stabilizer must be designed for a particular dynode
voltage distribution. The operatihg voltagevfor the gamma
detector was -2400V.

The gamma-ray detector was contained in a 130 kg.
cylindrical Pb shield supported below the target chamber.
This shield was quite effective in reducing the'éount raté
in the detector due to general room background. The entire
assembly was centered on the normal to the scattering plane
to within 4 mm and the distance from the beam line to the
center of the detectér.was variable between 12.5 and 45 cm.
Scattered protons were kept out of the gamma-ray detector

by the 1.27 cm thick Al floor of the target chamber.

12

IIT.B.2. Proton Detector for the C Experiment

The proton detector for the 12C experiment was a
3.8 cm diameter by 1.9 cm thick NaI (T1l) scintillator
mounted on an RCA 8575 photomultiplier tube. This unit was
packaged at the cyclotron laboratory. A diagram of the
completed assembly appears in Figure III-4. Because of the

hygroscopic properties of Nal, the packaging was carried
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out in a low humidity atmosphere, and careful attention was
paid to the problem'of eliminating moistufe leakage into
the container. |

It was previously mentioned in connection with the
gamma-ray detector that the cathode of the photomultiplier
tube is operated at a high ﬁegative potential with respect
to local ground. Care must be taken to insure that this
high voltage is not dropped across the glass envelope of
the tube. TFor this reason, the detector package was
machined from black Lucite plastic. The interior sﬁrface
of this container was covered with a reflecting coating of
#1000 <« -alumina (A1203)‘using the following technique: a
thin layer of clear acrylic lacquer was sprayed onto the
surface to be coated, and the alumina powder was immediately
dusted on. Several repetitions of the process were
necessary to build up a uniform reflecting layer.

The NaI (T1) scintillator was carefully polished, and
then bonded to a 3.8 cm diameter by 1.27 cm thick Pyrex
light pipe using R-313 epoxy*. This subassembly was tightly
clamped together until the epoxy set to prevent the formation
of bubbles which would spoil the optical contact and therefore
the energy resolution. The advantagé of using epoxy, of
course, is the simplification introduced by not héving to
use clamps to maintain optical contact once the bond is set.
An expériment was performed in an attempt to determine

whether a scintillator mounted in this way would show any

* * - L Ad
C.H. Biggs Co.; Santa Monica, Callfornla
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degradation in performance as compared to one mounted in

%

the more conventional way using DC-200 silicone grease R

with spring clampé to maintain optical contact. No
significant difference was observed.

The scinfillator-light pipe subassembly was bonded
to the face of the phototube, again maintaining pressuré
until the bond had set. Extra epoxy which was squéezed
out from under the light pipe was carefully trimmed away
to prevent light leakage, and then the detector package
was epoxyed to the phototube around the scintillator. A
0.0025 cm Al entrance window was placed over the detector
and sealed in place using an o-ring. The packaging was
compieted by wrapping the phototube with several layers.of
black electrical tape (10 vaper layer), Which served both
as a light shield and as electrical insulation for the
phototube envelope.

The RCA 8575 photomultiplier tube has the unfortunate
characteristic of a cleér glass base. The following
technique was used to eliminate troublesome light leaks:
the base was covered with a coating of G.C. 47-2 black
corona dope**, which was thinned to a watery consistency
using G.C. 28 solvent** and then applied in successive
layers until no light could be seen through the base. This

treatment was used sﬁccessfhlly for both the proton and

* ¥ . .
Dow Corning Co.; Midland, Mlch;gan

* . .
G.C. Electronics Co.; Rockford, Illinois
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gamma-ray detectors; no evidence of current leakage between
connector pins has been observed over the course of one
year.

The completed proton detector had a measured energy
resolution of 600 keV (FWHM) for 30-MeV protons when a 1.9
cm diameter circular collimator was used (Figure III-S5).
The resolution improved to 400 keV when a 0.63 cm diameter
collimator was used. It is assumed that the latter effect
is due to inhomogeheities in the NaI (T1l) scintillétor
since the observed output pulse height for a given proton
energy depends to some extent on the locafion of the small
collimator relative to the crystal face.

Since the proton detector also suffered from pulse
height shifts with fluctuating count rate, a zener diode
stabilizer was constructed for it. The circuit appears
.in Figure III-3. Note that the éomponent values differ
somewhat for the proton and gamma-ray detectors since the

former was operated at a lower bias voltage (-1800V).

III.B.3. Proton Detectors for the 1208n Experiment

The average separation between the three lowest lying

120

levels of 12C is about 3 MeV, while for Sn it is on the

order of 1 MeV. In order to cleanly separate the states in
120Sn, it was necessary to use a solid state detector. We

*
used a 5 mm thick lithium-drifted silicon detector which

Obtained from the Kevex Co.; Burlingame, California
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had an active area of 80 mm2. To eliminate multiple
scattering of protons out of the sensitive volume, a 0.63
cm diameter collimator was used. The detector was operated
in vacuum at 1500 V bias, and arrangements were made to
cool it to -70 c with dry ice and methyl alcohol. Under
these conditions, a typical value for the measured energy
resolution was 170 keV (Figure ITI-6) which was quite
adequate to separate the states of interest.

During the course of the experiment, it was found
that the cross—seétion to the first excited state of l208n
in the angular region from 100° to 155° was too small to
enable the collection of an adequate number of coincidence
events in a reasonable time. Physical limitations imposed
by the construction of the target chamber and the detector
package restricted the minimum target-to-detector distance
to 10 cm, and the beam current was limited by pileup losses
in the gamma detector (see Sec. III.D.S5). Therefore, the
Nal detector was used in this angular range, with a 1.26 cm

diameter collimator.

ITT.C. Electronics

A block diagram of the electronics for thls experiment

appears in Figure III-7. Essentially, it consists of a

fast-slow coincidence’ circuit in which the fast unit is a

timevtonamplitude;converter (TAC).
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ITI.C.1. TFast Timing Circuitry

Presently, theré are three methods of deriving time
information from a detector pulse. These are: 1) leading
edge trigger, 2) conventional crossover timing, and 3)
'fast' crossover timing. The last method is applicable
only to scintillators having a decay time-constant 'ZsﬁIOns,
such as Pilot-B plastic scintillator. For this reason,
it was not considered for this experiment ( 1; for Nal =
250ns) and it will not be discussed here. Of the femaining»
methods, which are illustrated in Figure I1I-8, léading
edge trigger is by far the better choice for fast timing
since it results in less 'jitter', i.e., time dispersion
due to electronic noise and statistical fluctuations in
the detector pulses. Recent theoretical studies (Be 66)
have shown that leading edge timing is better than the
conventional crossover method by about a factor of 1u.

A major problem in the use of leading edge timing is
the need to restrict the dynamic range of pulse amplitudes
accepted to avoid the time resolution problems associated
with 'walk' in the low-level discriminator. 'Walk' is
defined by the time shift due to a fixed low-level threshold
and variable energy pulses (see Figure III-8). For a pulse

rise time of 10 nsec., and a ratio E 0.2,

thresh./EO B
which represent typical values for this experiment, the
dynamic range must be limited to D € 2 to obtain the required .

1 nsec. resolution (neglecting jitter). This is not a

particularly restrictive requirement, but it does mean that
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WALK = tTHRESH(Eo)— 'maesu (Eo+aE)

Figure III-8. Schematic representation of leading-edge and
conventional crossover timing, and the. definition of 'walk'

. and 'jitter'.
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the fast coincidence measurement must be supplemented by
side-channel amplitude analysis. The crossover technique
does not suffer ffom this problem since the crossover time
of a double-delay-line clipped‘pulse is independent of the
pulse amplitude, to a very good approximation. Therefore,
it is particularly valuable for those applications in which
a very large dynamic range is required.

In this experiment, timing information in the fast
coincidence channel was obtained by leading-edge timing
with suitable low-level discriminators viewing the fast
signals from the detectors. The logic signals frbm these
discriminators were used to start and stop the TAC. A
variable delay was introduced into the stop side to shift
the 'true + chance' peak in the time spectrum to a
convenient pulse height. The time spectrum was gated by a
logic signal from the slow coincidence unit, thereby
restricting the effective dynamic range as discussed below.
The gated time spectrum was analyzed using a 1024 channel
pulse height analyzer. Typical time spectra are shown in

Figures III-9 to III-12.

IITI.C.2. Side-Channel Amplitude Analysis

The slow coincidence unit,‘whigh provided pulse-height
information, was a conventional zero-crossover coincidence
circuit. The linear signals from the two detectors were
converted to bipolar pulses and analyzed for both pulse

height and time information using timing single channel
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103 |
. ! ] [
| ngn-:o TIME SPECTRUM
Sn EXPERIMENT
Q.21 nsec/CHANNEL
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Figure III-12.
The exponentially decayingz 'tail'
5.5 nsec state at 2.28 MeV (see Figure III-13),

cascaces *broqvb the 1.17 eV state.

is due to the decay of the
which

Typical time spectrum for the 1208n experiment.

O P D O



Ex,(MeV)

2.28
2.10

- 1.87

*s—2.18

IZOSn

Figure III-13. Energy level diagram for the low-lying
exc1ted states of ﬂzoSn. S
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analyzers (TSCA). 7"T!hese units are designed so that their
output occurs. at the zero-crossing time of the input signal.
A pulse-height wiﬁdow_was set ovép elastic and first
excited state events in the pfotoh channel, and over the
nelevanf portion of the gamma-ray events in the gamma channel.
OfvcourSe, the efficiencyxof'gamma4ray detection'depends on
the width of,this pulse heighf window because of the continuous
' Compton»spectfum’below the photopeak. The methods used to
accouﬁt“fbr this effect are described in Sec. III.D.2.
Timé’cdinqidence befWeen logic pulses from the timing
single channel analyzers was determined by a conventional
overlép coincidenéév(l¢gical AND) circuit, which produces
an outputvif fhe1sighals at the two inputs overlap in time.
Since these signals were eéch 500 nsec. wide, the effective
slow coincidence resblVing’time (2%°) for this experiment
was 1mMsec. The output of this circuit enabled the linear
~gate in the fast coincidenée unit, as previously described.
The effect of the slow coincidence requirement on the time
resolﬁtion is illustrated in Figure III-1lu.
An alternate arrangement is possible, in which the
slow logic signal is used to open a gate on the 'start'
side of the TAC, thus enabling time‘conversion to begin.
This method has the possible fd?antage of reducing the
dead time of the TAC, which is only required to convert the
relatively few pulses satisfying slow coincidence requirements.
However, it is then necessary té delﬁy the fast time signals

to the TAC by a rather large amount (of the order of 1 Msec)
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until the slow logic has had time to reach a decision. Cable
delays of this length are impractical because of their large
attenuation factor, and electronic deiays introduce too much
jitter into the fast coincidence circuit and are beset by

dead time problems of their own. Therefore, this method was

not used for the present experiment.

ITI.C.3. Data Collection Circuitry

The 'true + chénce' peak in the gated time spectrum
was selected by yét énother timing single channel analyzer,
as indicated in Pigufe ITI-7. The resulting time gate
signal openéd a logic gate, enabling signéls from two more
single chénnel analyzers to be scaled. One of these analyzers
was set over the elastic.events, and the other analyzed
only events corresponding to the excitatioﬁ of the state
being investigated. In addition, the singles events in
these two analyzers were simultaneously scaled. The resulting
four numbers for each angle enabled us to calculate the
spin flip probability, as discussed in Sec. III.D. below.
The 120Sn data was collected in a somewhat different
manner, due to the smaller separation between the states.
In this case, separate singles and coincidence spectra
were taken at each angle with a multichannel analyzer.
These spectra were later integrated to determine the number

of singles and coincidence events in the elastic peak, and

in the peak corresponding tc the excitation of the 1.17 MeV

first excited state.
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III.D. Data Reduction

ITI.D.1. Angular Correlation Function and Spin-Flip

Probability

The connection betwéen the gamma-perpendicular
correlation and proton spih—flip probability was first
demonstrated by Schmidt, et.al. (Sc 64). They based their
result on a theorem due to A. Bohr (Bo 59), which states
that for any two-body scattering system which conserves
parity and total angular momentum the eigenvalue of the
operator:

urs

R=Pe *

h (ITI.1)

is a constant of the motion. Here, Pn is the total
intrinsic parity of the two-body scattering system and SZ
is the projection §f the total spin angular momentum onto
the normal to the scattering plane. A short proof of the
theorgm is given in Appendix A.

We now considér the application of the theorem to
proton scattering from an even-even nucleus, which has a
ground state spin (parity) of 0 (+). Since. the intrinsic
parity of the proton is positive, the eigenvalue of R' in
the initial state is: _
arms e

P
| o _ ()
eigmintue (R) = & (III.2)
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where the notation has been simplified by letting m;
represent the projection of the proton spin onto the normal
to the scattering plane. If the nucléus is excited to a

- positive parity level, the eigenvalue of R' in the final

state is:

iaenmalue (R) = € - (=
e (R = (III.3)

where mi is the projection of the nuclear spin onto the
normal to the scattering plane. The Bohr theorem states

that this eigenvalue is a constant of the mdtion, so that:

-mi ot +mf
(-)'p = (=)Y'p ™n (ITII.4)
Letting mt - mf = Am_, this becomes:
p P P
f
()™ = (% (III.5)

The qgantity |A mp[ is unity if the proton undergoes spin
flip and zero otherwise. If the final state nuclear spin
is Jf=2, mi can only take on the values (tQ,tl,O). Of these,
only the states mi =0 satisfy the requirements of the
Bohr theorem (III.S5) if spin flip has occurred. We conclude
that spin-flip scattering selectively populates the m = g
magnetic substates of the 2% 1evel.

The connection with the gamma-perpendicular correlation
comes about because the de-excitation gamma radiation from

. + .
a nucleus which has been excited to the m = -1 magnetic
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substates has a very distinctive charaéteristic. The
radiation pattern has a maximum along the quantization axis
(normal to the scattering plane), where the patterns from
the other substates have nodes (see Figure III-15).
Therefore, the flux of gamma radiation along thé normal to
the scattering plane is directly proportional to the spin-
flip probability in the interaction. The proportionality
constant is derived in Appendix B.

These arguments can be extended with very minor
modifications to the case of the excitation of quadrupole
states of the opposite parity (J”-= 27), or of dipole
states (J = lt), from a 0 ground state. Unfortunately,
they cannot be extehded to states of higher angular

momentum (such as the strong 3 states observed in 16O

and L}OCa) because the higher odd-m substates, which can
also be populated by spin-flip reactions, do not have the
.distinctive signature of the m = g sublevel (Bl 52). It
is also possible to perform the experiment with other
spin-1/2 particles. This has already been done for the

scattering of 3He from 12

C (Pa 68).

The Bohr theorem itself may be generalized to the
case of sevefal particles in fhe final state, if all the
reaction products ére confined to a single plane. Possible

applications of this extended theorem are given by Bohr

(Bo'59),'but will not be discussed here.

S TR T ae S
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QUADRUPOLE RADIATION PATTERNS FOR PURE (1,m) MULTIPOLES.

l=2,m=32_

Figure III-15. Quadrupole radiation patterns for pure (1,m)
multipoles. These are polar plots of intensity vs. angle -

relative to the axis of quantization (z-axis).
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IIT.D.2. Gamma Detector Efficiency Measurements

In order to determine the absolute spin-flip
probability, it is necessary to know the efficiency
for detection of gamma radiation. For a given Nal crystal,
this quantity is a function of the energy of the gamma ray,
the distance from the source to the detector, and the width
of the window set on the gamma-ray pulse height spectrum
(see Figure‘III—ls). In addition, it may also depend on
the iﬁmediate environment of the détector. For example, it
is possible that Compton scattering from the Pb shield
surrounding the detector could significantly alter the
observed pulsé—height spectrum.

Several auxiliary e?periments were performed in
‘order to determine the efficiency of the gamma detector in
the particular geometry used. For the 12C experiment,
the total (p,p') cross section to the first excited state
was measured for Ep= 26.2 and 40.0 MeV. In addition, the
gamma-ray angular distributions from the same state at both
energies were determined.' The integrated gamma-ray
distributions were normalized to the total cross sections
to obtain absolute gémma—ray differential cross sections.
These were éubsequently used to determine the efficiency of
the Nal detector in the experimental geometry by simply
counting the number of 4.u44 MeV gamma rays in the pulse-
height window, and camparing to the number obtained from
the absolute cross sections. The measured efficiencies

appear in Table III-1.
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Table ITI-1. Measured values of the efficiency of the gamma-

ray detector for the ;ZC and 1208n experiments.

Experiment E_(MeV) E (MeV) da (s e LQ(sr)b)
p ¥ ¥ r r

12 ; ' ’ 3

e 26.2 4.y 1.23%107°  (6.10%0.55)x10"3
12, 40.0 4.y 1.23%107°  (5.41%0.76)x10"3
1205 30.0 1.17 8.72x1072 (2.24%0.11)x1072

a) Measured at the center of the 2" x 3" NaIl (T1l) scintillator.

b) Efficiency for gamma rays in the pulse-height window.

Table III-2. Measured values for the strength of the SOCo
source.
Galza) Counting Time(hrs) Source Strength(sec—l)
180° 3.5 (8.u4%0.20)x10°
180° 3.5 (8.3u%0.20)x10°
90° 11.0 (8.62%0.11)x10°

Average: (8.51f0.15)x105

a)

Angle between the two detectors, one of which was a 3" x 3"
NaI (T1l) scintillator at 18" from the source (measured to the
center of the detector). The other detector was a 2" x 3"

NaI (T1) scintillator at 12" from the source.
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For the 1.17 MeV gamma line from 120Sn, the well-known

method of ¥ -7 coincidences following the decay of 80co

i
b

was used to prepare a standard source. The relevant decay
scheme appears in Figure III-17. The 5.26 year ground state
of 60Co decays by ‘P‘ emission greater than 99% of the time
to the 2.50 MeV 4° state in 60y;. This state subsequently
decays via a gamma cascade through the 1.33 MeV 2Jr level.
The two gammé‘rays, with energy 1.17 and 1.33 MeV, are
always emitted in prompt coincidence. The angular correlation
function for this cascade is well known (K1 53,La 53).
Suppose that we now prepare a source of strength S (unknown)
‘and then observe coincidences between two gamma detectors
which count the 1.17 and 1.33 MeV gamma rays, respectively.
The number of singles events in the two detectors is:

st
N1= 61 Ani —‘/ﬁ'

St (III.6)
N_,_ = 61 AIL?. re/4
in a time t. During the same interval the number of

coincidences is:

41T

| St Mwee)e a0, |
Ne= €44, [ T ;J (ITII.7)

where W( © 12) is the angular correlation function and 912

is- the angle between the detectors. These equations may
be solved for the source strength in terms of known
quantities:
v Wie,) [ ‘_’__’i"_-]
- t Ve (I1I.8)
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The method is potentially quite'accurate. The results

obtained for two values'ofleajé;are listed in Tabie III-2.
The calibrated source was then used te determine the
efficiency of the gamma detector for the 120g, experiment;
the ﬁeaéured‘value-appeers*in~Table III-1.

oo

IiI.D.S. ~Acceptance-Angle Corrections

In any real correlation experiment, the effect of the
finite acceptance-angles ef‘the detectors on the measured
correlation function muetibe considered. In the case of the
present eXperiment, a gémma—ray detector subtending a finite
angular range will accept seme radiation from the A m=0 and
Axn=t2 transitions (non-spin-flip events). If the proton
detector also has finite size, the normal to the scattering
plane become somewhat indeterminate since this detector
then defines only a range of seattering planes. Corrections
can be made for these effects if the complete correlation
function W( ¢,.)9,.)¢r) is known (Sc 64). However, the
experimental determination of W is difficult since it
Peeuires coincidence measurements as a function of three
angular variables. Fortunately, it 1s possible to deduce
minimum and maximum values for the finite-aperture corrections
from the gamma-perpendicular correlation alone (see
Appendix B). The actual corfection is taken to be the average
of the maximum and minimum values, with an uncertainty
equal to t34% of the difference between them. That is, in

the absence of better information it is assumed that the
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'true' correction will be uniformly distributed between the
maximum and minimum value.

For angular acceptances which are 'small enough', the
correction (and its uncertainty) is also small. The
interpretation of 'small enough' depends on the degree of
difficulty of the experiment. It is always possible to
reduce the angular acceptance to the point at which the
' correction becomes negligible. However, this involves a
decrease in the coincidence count rate which cannot in
general be regained by increasing the beam current because
of the associated increase in the accidental coincidence
rate (see Sec.III.D.u). Therefore, an appropriate balance
must be struck between the uncertainty in the acceptance-
angle correction and the statistical uncertainty in the
number of coincidence events obtained in a given time. In
the case of the 12C experiment, it was possible to reduce
the angular acceptance of both detectors to t3° and still
maintain a reasonable coincidence count rate. The
uncertainty in the acceptance-angle correction was therefore
quite small. For example, the correction for a spin-flip
probability S$,=0.10 was (-4.8%2.3) x 10™°. For the more
difficult 1208n experiment, it was necessary to increase
the acceptance angle of the gamma detector to th° to
obtain a reasonable count rate. The precton detector
subtended a 22° angular range because of physical limitations

¢
imposed by the small size of the Si(Li) detector. The

corresponding correction for Sl=0.10'wés —(2.li0.8) X 10_2.
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All experimental data were corrected for the effects of
finite angular acceptance, and the associated uncertainty

was included in the Quoted experimental uncertainty.

III.D.4. Accidental'Coincidences

The acoidental coincidence rate between two detectors

viewing a continuously radiating source is given by (Gr 66):

<NY= <a> SN, D k4 (III.9)
where <N1) and <N2> are the -avérage éingles count rates
in the two detectors and € is the resolving time of the
coincidence circuit. The same formula is applicable to the
case of a pulsed source such as a cyclotron beam, except
that must be replaced by an 'effective resolving time'
’tl¢n which is generally much larger than ¥ . For example,
it can easily be shown (Hr 67) that for a coincidence
circuit with resclving time € which is less than the time

T between beam bursts and greater than the beam pulse

width b:

eff. | (III.10)

Typical values for these parameters in the present experiment
are T =1 nsec, b = 1 nsec, and T = 60 nsec. Note that e«m

is independent of T if peT=T so that 50 nsec is 'as good

t

as’' 1 nsec. Of course, this is only true if there is no
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possibility ofAchance coincidences occurring between beam
bursts. Figure III—il illustrates the fact that this is not
generally the case. There is a finite probability for
chance coincidences to occur while the beam is off due to
stray backgroﬁnd radiation between beam bursts. Of
particular interest is the small peak occurring midway
between the major peaks in the time spectrum, which is due
to a component of background radiation coming from the
Faraday cup. By adjusting the distance from the target to
the beam stop so that these events arrive between beam
bursts (see Sec.III.A.5), it is possible to eliminate them
from the chance coincidence rate (along with a major portion
of the remaining continuous background between bursts)
merely by placing & sufficiently small window around the
'true coincidence' peak. However, it is also clear from
Figure III-11 that the reduction in the chance rate obtained
in this manner is small compared to that which could be
obtained if the resolving time were made smaller than the
beam-pulse width.

‘The preceding discussion of the calculation of chance
coincidence rates is valid if the beam pulses are perfectly
uniform over the counting period. This is in fact not
always the case with our cyclotron beam. Modulations with
frequencies of 360 Hz and 100 kEz have been observed.
Corrections can be made for the effects of these modulations.
The result is invariably an increase in the effective
resolving time (Hr 67). The formula for ‘0;46 in the

general case is quite complex, and it includes terms
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depending on the specific natufe of the modulation which are
difficult to'meaéure accurately. For this reésén,vthe:
following method was used to obtain an accurate measure of
the number of accideﬁtal coincidences in each experimental
run. The elastic and first excited state inelastic events
were counted in singles and coincidence. Since the
elastically scattered prétons cannot be in true coincidence
-witﬁ a gamma ray, they provided an accurate measure of the |
accidental rate. If NOS(NOC) and NlS(NlC) are the total
number of singles (coincidence) events for the elastic and.
first excited state inelastic scattering, respectively, we

have for the accidental coincidences:

le
NA = NOC(N——) (I1II.11)

Os

since the probability that aniinelastically scattered proton
will produce an accidental coincidence is exactly the same
as that for an elastic event. |

. Although the method just discussed enables accurate
chance coincidence subtraction, it is still desirable to
reduce the chance rate to a minimum to obtain increassd
statistical accuracy in the data. This was particularly
true for the l208n experiment, in which a low true coincidence
rate and a high accidental rate due to the large background
of gamma radiation qom;pg from the target conspired to
make data collection'ﬁbfé difficult. For this experiment,

a significant redu¢tion in the accidental rate was achieved
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.
by monitoring the- gamma detector output on an oscilloscope

set to 50 milliseconds full scale horizontal deflection and
triggered at the line'frequency. Under these conditions,
any 360 Hz modulation of the beam was clearly evident from
the time distribution of detector pulses. Minor adjustments
to the tune of the cyclotron and to the external beam |
handling system were then made during the course of a run
to keep the modulation to a minimum. In practice it was
possible to eliminate the 360 Hz modulation almost entirely
by careful adjustment. Some idea of the improvement in

the accidental rate obtained in this manner may be inferred
from a comparison of the observed number of accidental
coincidences to.that calculated from (III.9) using an
effective resolving time equal to the period of the beam
bursts. The average value of the ratio of these quantities
was 3.88 for the unmonitored runs, and 1.36 for the
monitored runs.

Finally, it can be seen from (III.9) that the
accidental rate is proportional to the product of the
singles rates in the two detectors and therefore to the
square of the beam current. This fact may be used to
determine the optimum beam current to use in order to
obtain the best statistics on the number of real coincidences
in a given counting time. Let T be the total coincidence
counting rate, and let A be the accidental rate. Then
R = T-A is the real coincidence rate. The fractional

error in the total number of real coincidences obtained



69

in a time t is determined by the propagation of errors:

err(RY) - — W x
s m Ve = R R

(ITII.12)

Since R is directly proportional to the beam current I,

while A is proportional to I2:

err(Rt) -5 Vr" o
Rt -t T k. (IT1.13)

This rather surprising result indicated that, everything
else being equal, the best statistics on the number of real
coincidences is obtained for very large beam currents such
that the first term in»(III.lS) vanishes. Actually, other
problems such as dead-time losses at high count rates and
the effects of beam modulation have to be considered so

that it is not advisable to use extremely high currents.

IIT.D.5. Pulse Pileup and Dead Time Losses

There are several ways in which coincidence events
can be lost due to dead time or pulse pileup in the
coincidence circuitry. For example, the TAC has an average
dead time of 4 Msec every time it is started. Losses from
this source were reduced by starting the TAC with pulses
from the detector having the lower average count rate.

Even so, the average start rate in some cases was as large
as lOu sec_l, which corresponds to a dead time loss of

4% (for an unmodulated cyclotron beam). This was the
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major source of dead time losses for the 12¢ experiment.
Coincidence losses méy also occur if a time conversion
started by a 'tfue' event is stopped by an accidental
coincidence from a preceding beam burst, or from the
uncorrelated background between bursts. The probability
that this hill occur‘depends on the location of the 'true
coincidence' ﬁeak in the time spectrum. For the 12C
experimént, the maximum equivalent dead time introduced
by this effect was 200 nsec, whiéh corresponds‘té a

negligible 0.2% counting loss at the typical lOL‘L sec_l

count rate. Because of the large background in the 1208n
gamma-ray spectrum (see Figure III-18), the avefage stop
rate was higher in this case (NlO5 sec_l). Therefore, the
TAC conversion gain was set to 100 nsec full scale so that
anly events from the 'true coincidence' peak and a part of
the continuous background between peaks were analyzed. The
equivalent dead time from this source could then be neglected.
It should be mentioned that the recovery time of the fast
discriminators was very small (~10 nsec), so that coincidence
losses due to the dead time of these units were also
negligible. |

Finally, coincidence losses can occur due to pulse
pileup in the slow coincidence circuit. The shaping
amplifiers used in this experiment had time constants of
O.ZS/u.sec, so that the total width of the outpﬁt pulse

was approximately 1 Msec. Two pulses arriving within

this interval are algebraically added by the amplifier
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circuitry. The resulting output pulse will be rejected by
the coincidence unit if it fails to satisfy the pulse height
requirements or if the zerd—crqssoverztime is shifted by
mofe than 1'0..5/-1sec (i.e.; half the resolving time). This
property has been used as the basis of pileup rejection
circuits. A FORTRAN-IV‘cdde has been written for the SDS
£7 computer at the cyclotfon laboratory which simulates
the‘behavior of the coincidence circuitry to calculate the
rejection probability as a function of the count rate and
the width of the pulse—héight window. Two approximations
were made in this calculation. First of all, the pulse

shape at the output of the shaping amplifier was assumed

to be of the form:

At = A, t/to (o tst,)

| - % t €25t

At = Ao (2 £,) (t,st=25¢) (III.14)
-L2. -t/t‘,

Alt) = -5—2‘_1 (e, : ]) (z.sf,sts/ota)

where A(t) is the amplitude of the pulse at a time t and t,
is the amplifier time-constant (typically 0.25 4 sec).

This is a reasonably good approximation (see, for example,
the ORTEC catalog #1001*). Secondly, the amplitude spectrum
of the detector pulses was described by an exponential
distribution (Figure III-18). A set of pulses with this
amplitude spectrum was distributed in time according to

the interval distribution (Ev 55) for the average count rate.

%
ORTEC, Inc.; Oak Ridge, Tennessee.
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Whenever one of these pulses overlapped a reference pulse
corresponding to a 'true' evenf, the pulse shapes were added
algébraically and the resulting sum pulse was rejected if it
did not meet either the pulse-height or the zero-crossover
time requirements. The results were uséq to correct for
coincidence losses due to pulse pileup. A typical value of

the rejection probability for the 120Sn experiment was 2%

at an average count rate of 105 sec-1 and for an unmodulated

beam.

In the previous discussion, an unmodulated cyclotron
beam was assumed. In point of fact, the beam was not
steady (see Sec.III.D.4). A correction must be-made for
the effects of beam modulation. Fortunately, this correction
can be expressed in terms of the ratio of experimental to
calculated accidental coincidence rate. Let 2; be the dead
time of the coincidence unit, and let a(T) be the average
count rate over the interval between T and T+dT, where
dT >> ﬁ;. It is also assumed that dT can be selected go
that the count rate does not vary appreciably over this
interval. The fraction of intervals shorter than 2&
(i.e., the fraction of lost events) is (Ev 55):

7

f(ry=1-¢€ RRAC x o T (IIT.15)
The approximation is quite good since a(T) 2: is typically
< 0.1. The total number of events during 4T is:

NT = a(T)daT (III.16)
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and the total number of lost events is simply:

_ 2
N, = a (T)t’ddT (III.17)

The fractional dead time loss f is obtained by integrating

Np and NL over the counting period and dividing:

C amdT
(-3

<ot > n~
{\= qy = R ! <a> Ld
| glra(”“. <> (III.18)

[}

Since a(T) is proportional to . qQ (T), the average charge
per beam burst:

2
f‘=' <':_""';?'z. <a> ’t;

<q7> (IT11.19)

In the case of uniform beam, the first factor reduces to
one. For a modulated beam this correction factor can be
easily related to the ratio of experimental to calculat*ed

accidental rates by applying a parallel argument to (IIT.3)

above (Sc &4). The resulting expression for f is:
N, o
= A T, = <a> T
f= m <a>T= f, > " (II1.20)
A&

where NATﬁ is calculated from (III.9) and (ITI.10). The

correctién’factor,fé%was applied to all dead-time and pulse
R

Pileup corrections. The maximum value of the corrected

{

2

. : 12 .
dead time was 14% for the C experiment, and 8% for the

1208n experiment.
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JTII.D.6. Analeis'of_Experimental Uncertainties

The major sources of error in the determination of the
relative spin-flip probability are: (1) the statistical
uncertainty in the nuﬁber of real. coincidence evenfs, (2)
the uhcertaiﬂty in the solid-angle correction, (3) the
uncertainty in the dead time correction, and (4) possible
errors in the positioning of the two detectors. The first
of these always made tﬁe largest contribution to the final
experimental uncertainties quoted in this experiment.

The expression for the statistical uncertainty in the
number of real events is readily derived using propagation
of errors. In the nofation of Sec.III.D.4 the number of

real events R is;

E=N1c - N°<"— ( :15)

es

(ITII.21)

so that the uncertainty in R is:

1

N, N,/ +’L +J-
- 18
w (Q) = ‘\/:/tc + ( OcN ) Noe HYos Mg (I1I.22)

Since the number of singles events is always large compared

to the number of coincidernce events, this reduces to:

Nee Vig\T (L) 2
ern (R) = J”ic"( %N‘:s) ("’oc) = Nic*%; (I11.23)

The uncertainty in the solid angle correction has

been discussed before and a derivation of the relevant
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expressions appears in Appendix B. These formulae may also

be used to determine the contribution from angular positioning

errors. The estimated magnitude of these errors has already
been méhtioned in Sec.IIi.A and Sec.III.B. The corresponding
vuncertainties in the .spin-flip probability were negligible

in all céses, sincevthe angular positidning uncertainties
wéfe always much smaller than the angle subtended by the
detectors. | _

The uncertainty in the dead time correction is more

Th
A

appearing in (III.20), which is the number of accidentals

difficult to determine. In particular, the quantity N

to be expected with an unmodulated cyclotron beam, is
somewhat uncertain due to complications introduced by

accidental coincidences occurring between beam bursts.
Th
A
is estimated from the time spectrum presented in Fig. III-11

These events were neglected in the calculation of N It
that a possible Ii0% uncertainty may be present in the
calculated value. The corresponding 10% uncertainty in the
dead time correction made only a very small contribution

to the quoted errors, since the correction itself was
always small (see Sec.III.D.5).

The only major source of error in the determination
of the absolute spin-flip probability was the uncertainty
in the gamma-ray detector efficiency. Contributions from
other sources such as the target thickness or the current
integration are canceled in taking the ratio of real
coincidences to singles. In the caée of the 12C experiment,

the error in the efficiency measurement was large (10-15%)
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since it is not easy to make a calibrated source of 4.4Y4 MeV
gamma rays. The iﬂdifect method used (see Sec.III.D.2)
provides many opportunities for error to creep in. The

major sources of error were the integratioh of the proton and
gamma-ray angular distributions, and the determination of

the number of u4.u44 MeV gamma rays in the window (a significant
background was present (Piguré III-16) and had to be

- subtracted). The uncentaintieé introduced were quite large

as reflected in the final computed errors.

The 1208n normaiization was much less uncertain
because we could more easily prepare a calibrated source
(see Sec.III.D.2). The only major sources of error were
the statistical uncertainty in the number of true
coincidences and the uncertainty in the solid-angle
corrections. Both these errors were made small by reducing
the solid angle and counting for a long time (~A12 hours). The
resulting uncertainty in the source strength was 12%. An
additional uncertainty was introduced into the efficiency
calculation due tc possible errors in locating the window on
the gémma—ray spectrum (Figure III-18) so that the total
uncertainty in the normalization was estimated to be 5.

In summary, it should be pointed out that the error
bars in the spin-flip distributions to be presented in the
following chapters take into account all the relative
errors mentioned above ard are to be treated as standard
deviations. The errors in the absolute normalization are
not included and must be treated as uncertainties in the

indicated absolute scale.



CHAPTER IV

OPTICAL MODEL ANALYSIS

| - »

IV.A. Elastic Scattering Wave Functions and the Optical Model

The tacit assumption behind the perturbation method
which forms the basis of the DWBA treatment of direct
reactions is that the elastic scattering, i.e., the major
part of the nucleon-nucleus interaction, can be treated
exactly. In practice, éhis is not the case. The elastic
scattering is treated in the optical model approximation
(Jo 63).“ The n-body problem of a.free nucleon (the projectile)
écgttering from an ensemble of bound nucleons (the target)
is approximated by a much simpler one-body problem in which
the total interaction is “eDlaced by an equivalent complex
spherical potential. The real part of this optical model
poten%ial represents an a”erage elastic interaction between
the projectile and the target nucleons and the imaginary
part represents the absdrption of the projectile into open
channels other than elastic scattering, e.g., (p,n) reactions,
inelastic scattering, etc.

The general form of the potential used is:

U = U try -V Fixg) —( (wW-9W, f‘{r fx)

)
| ~ (IV.1)
4'(»;1?}' (V +L So)"’l (PAr)‘F(X,o)
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The functions f(x,) are of the Woods-Saxon (or Fermi) form:

‘F(q&t)'; (ex“-i-i) . ’X‘== (r~f;A_’)/ak | k= (RI,S0)

représeﬁting a diffuse well of mean radius'rkAg . The
'diffuseness' parameter ak'is a measure of the width of the
transition region at the edge of the well where the potential
is changing rapidly. .The derivative of this form represents
a 'surface' interaction since the derivative peaks at the
mean radius. 'In this case, the diffuseness paramgter is
related to the width of the surface peak. |

Uc(r) is the Coulomb potential between a point charge

A 4%
(e) and a uniformly charged sphere of radius rCA ¥ and
charge (Ze): L
ze/\, (r=r.A3)
= 2 " ;
VT 2 (5o Sh,)  (renh®) OO0
27 A c

The 'Coulomb radius' r. is taken to be 1.20F for proton
scattering (Sa 67).

The spin-orbit term is of the Thomas type; 1 and o
refer to the orbital and spin angular momentum of the
projectile, respectively. The normalization constant, which
contains the pion mass mp , has the convenient value

(%C)z = X0 Fz_
"

The DWBA‘code compﬁtes the elastic scattering wave
function as a solution to the Schrodinger equation for a
projectile scattering from the potential U(r). The various

parameters which must be specified in the input to the program
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are determined by fitting the appropriate elastic scattering
data..: This means that the exit channel parameters should be
chosen to fit the elastic scaftering data at the exit channel
energy (the beam energy plus the Q-value for the reaction¥.
If taken literally, it also ﬁeans that one should fit elastic
scatterihg data from the target in its excited state. The
first of ;hese requirements is relatively easy to meet. It
involves arstudy of the energy dependence of the parameters

- over a reasonably small range of incident proton energies.
Since the ZTocal potential U(r) is used to approximate the
nonlocal projectile-;ucleus interaction, one expects a
variation of the parameters with the incident beam energy
(J9-63). The effect of this variation on the exit channel
parameters could be significant in the case of 12C because

of the large Q-value to the first excited state (-4.uy MeV),

and it should be less important for 120

Sn (Q=-1.17 MeV).

The second requirement is clearly impossible to meet.
Instead, it is assumed that the elastic scattering from the
excited state is, in fact, not too dissimilar from scattering
from the grﬁund é%ate. Tr.is neglects, for example, the
effects of a possible spin-spin interaction in the exit
channel where the target has ncrnzero spin. However, this
type of coupiing isrexpect@d to be small provided that the
‘target mass igxmuch greater than the spin of the state in
question. (Jo 63), and it.has been shown to be negligible

for nuclei as 1light as QQM% and 2/Al (Ro 61).
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IV.B. The Search Procedure

Optical model analyses were performed with the search
code GIBELUMP* on the SDS ¢ 7'cqmputef at the cyclotron
laboratory. This code varies the potential depths and
geometrical parameters, singly or in any combination, to
obtain a fit tq‘the experimental elastic scattering data.

The criterion imposed on the fit is the minimization of the

2 2
quantity 711 = Za‘ + ,)LP , Where: e,

z W, )3
%a- S {E &5 (L) -O;x’(C)]/Aa; (L)}‘
¢

5, (IV.3)

z, i
P i_ s { [P, w@ -P,”(U]/ Af’e”’w}
- L.

Na'(Np) is the number of experimental cross section
(polarization) data points, Q;faand z#;“ ('D () amd R (U>
are the theoretical and experimeﬂtal cross section (polarization)
at center-of-mass angle E% , and Afttl (AF “{)15 the
experimental uncertainty in & «) ( a (i)) .
exp P

It is well known (Ba 64) that the optical model
parameters obtained in this way exhibit certain ambiguities.
That is, there exist many sets of potentials which predict

essentially the same elastic scattering. For example, if

the depth of the real well V and the real radius rp are

Unpublished FORTRAN-IV computer code written by

F.G. Perey and modified by R.M. Haybron at Oak Ridge
National Laboratory.
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véried in such a way as to keep the product VPR2 constant,
it is possible to obtain a series of potenfials which give
equivalent fits (Ba 6u4) to the elastic data. In addition,
to this 'continuous' correlation, there exists a 'discrete'
ambiguity in V corresponding to the fact that potentials with
different numbers of half-wave-lengths of the optical model
wave functions in the interior of the nucleus give the same
asymptotic phase shifts, and hence predict the same elastic
scattering. Finally, it éhould be mentioned that these
ambiguities are by no means limited to the real part of the
potential. The imaginary well depth and diffuseness are
closely correlated (Gl 65), as are the imaginary volume
(W) and surface (WD) well depths (Sa 67).

The combined effect of these ambiguities is to make
simultaneous searches on all the parameters unfeasible
since the search procedure tends to become unstable. That
is, the parameters rapidly become unreasonable while
effecting no significant change in Qﬁ:. It has been found
that these 'ruraway' searches can be avoided simply b
doing a 'patterned' search using groups of uncorrelated or
weakly correlated parameters (Pr 68). The parameters were
divided into three groups, each of which contained a
potential depth from one of the three parts of the potential
(real, imaginary, spin-orbit), a radius parameter from
another part, and a diffuseness parameter from the remaining
part. The parameters in a particular group were varied

simultaneously, with the remaining parameters held fixed.
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When a minimum value for X% was fbund, the same procedure
was followed for the other groups. The entire process was
repeated until it converged, i.e., until no significant

change in X% was evident after an iteration.

IV.C. Optical Model Parameters for 12C(p,p)lzc

The 12C optical model potentials used in the DWBA

calculations were determined from an analysis of published
elastic cross section (Di 63,Fa 67,Bl 66a) and polarization
(Bl 66a,Cr 66;Cr 66a) data taken at 26.2, 40.0, and 49.5 MeV.
Preliminary searches were made with volume imaginary (WD=O)
and surface imaginary (W=0) potentials, and also with a
mixture of the twd forms. In the latter case, it was found
that W and wDiwere strongly correlated in such a way that
the search code tended to drive one or the other of them to
zero, depending on initial conditions. This correlation

has been previously noted for elastic scattering from 9Be

12

and C (Sa 67). TFor this reason, pure surface imaginary

potentials, which seemed to give somewhat better fit than
volume types, were used throughout the final analysis.
Furthermore, it was found that the optimum value for the
imaginary spin;orbit depth wso tended to be very close to
zero, in agreement with previous observations (Sa 67,G1 67,
Fr 67). It was therefore set equal to zero in the remaining
_searches.

The other nine parameters were allowed to vary, using

the patterned search procedure outlined above. Since we
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were particularly interested in spin-dependent effects, it
was decided to biés the searches toward fitting the
polarization data. For this reasoﬁ, whenever two sets of
parameters gave equivalent X% preference was given to the
set resulting in smaller sz; The results of this bias are
apparent in the x? values for the final parameters, which
appear in Table IV-1l. The corresponding fits, shown in
Figures IV-i to IV-3, illustrate the fact that it is
difficult to understand the 12C elastic scattering data in
terms of the optical model. It was possible to obtain good
fits to eifher the cross section or the polarization data
alone, but attempts to fit them simultaneously resulted in
rather unsatisfactory compromises. Discrepancies of this
nature have been noticed in previous analyses of 12C elastic
data (Sa 67). It has been suggested that they may be a
result of the rather strong coupling between the ground
state and the first excited state of 12C. However, calculations
in which the equations coupling these states were solved
explicitly indicated that this was not the case (Sa 67). It
seems, then, that these difficulties may be related to the
failure of the assumptions of the optical model for such a
light nucleus; in particular, the averaging implicit in the
potential scattering model may be an invalid procedure for
a system with only twelve nuclsons.

The energy dependence of the parameters obtained is
illustrated in Figure IV-4. The 'error bars' represent the

limits over which the parameter can be varied with less
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Figure IV-1. 12C elastic cross section and polarizaticn fits

obtained for the 26.2 MeV data (Di 63,Cr £6) with the optical
model parameters of Table IV-1. Cross sections shown in ratio

to Rutherford scattering.
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than 25% increase in X%;*

searching on a single paréﬁétér, leaving all others fixed

Se limits were determined by

at their optimum values. A typical 'ﬁap' of Xz—space
b .

obtained in this manner is shown in Figure IV-5 for the spin-

orbit diffuseness parameter.

12 120Sn

IV.D. Optical Model Parameters for OSn(p,p)

Complete elastic scattering data (cross section and
polarization) is available for 120Sn at 30 MeV (Cr 64,Ri 64).
The data have been analyzed‘in the optical model by several
authors (Gr sﬁé,éa 67b). The resulting potentials are all
quite similar and the!fits obtained are uniformiy good. A
selected list of some of theselpotentials appears in Table

IV-2. Figure IV-6 illustrates a typical fit to the 30 MeV

data.

The potentials of Table IV-2 were used in the 1208n
DWBA analyses. The same parameters were used in both the
entrance and exit channels since there is not enough
experimental data to determine the energy dependence of'
the parameters. However, the low Q-value to the first

excited state (-1.17 MeV) leads one to believe that this

will not lead to serious error in the DWBA calculations.

;
H
!
|
i
i
i
i
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" CHAPTER V
EXPERIMENTAL RESULTS AND COMPARISON TO THEORY

| .
v.A. Pop,pt%e” (u.uw)

V.A.1l. Differential Cross Sections

Figure V-1 shows fhe differential cross sections
predicted by the collective model ("COLL"), the ‘impulse
approximation ("HJIA"); and the Kallio-Kolltveit interaction
("KK2/3") along with the inelastic scattering data of (Di 63)
and (Bl 66a). The optical-model parameters are listed in
Table V-1 and V-2. The predictions of the collective model
are normalized to the experimental total cross section. The
value of the deformation parameter determined from the
norma}ization was /zz =0.66 in agreement with previous
results (Sa 67).

The best agreement with the experimental data at both
energies was obtained from the collective-mode]l calculations.
The agreement was particularly good at 40 MeV, where the
shape was quite accurately predicted between 0° and 110°.
However, the small backward peak observed at this energy
was not reproduced.

The microscopic-model calculations are in generally

gy
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poorer agreement with experiment. On the other hand, these

models have no free parameters (all parameters are determined

from ﬁucleon-nucleon scattering data). In particular, the
absolﬁte magnitude of the cross section is predicted by
theory so that the curves are not arbitrarily‘normalized to
the total cross section as is the case for the collective
model. It is interesting to note that the shapes predicted
by the Kallio-Kolltveit interaction ére similar to the
collective-model predictions.at both energies, and that the
impulsé—appfoximation prediction agrees somewhat better

with the experimental data at the higher energy.

V.A.2. 1Inelastic Asymmetries

The inelastic asymmetries calculated with the three
models are shown in Figures V-2 and V-3, along with the
experimental data of (Cr 66) and (Bl 66a). Both microscopic-
model calculations include the contributions of the s=1
amplitude arising from the spin-dependent part of the
interaction potential (see Sec.II.C.2). The collective
model in which the spin-orbit part of the optical potential
is not deformed does not lead to such an amplitude.

The agreement obtained with the experimental inelastic
asymmetry data was at best only qualitative even in the
collective model. The phase predictions in this model are
reasonably good at both energies, but the calculated
magnitudes are far too small. The impulse-approximation

predictions are again quite different from those of the
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collective model apd are also in poor agreement with
experiment. The quality of the predictions obtained in this
model deteriorated at the higher energy where the cross
section predictions, Figure V-1, improved. Finally, it
should be noted that the predictions of the Kallio-Kollveit

interaction again resemble those of the collective model.

V.A.3. Spin-Flip Probability

The spin-flip probabilities determined in this
experiment are also shown in Figures V-2 and V-3. The
average run time per datum point was approximately 30
minutes. As mentioned previously (Sec.III.D.2) there is an
uncertainty in the absolute normalization of T9% at 26 MeV
and tlu% at 40 MeV. The data exhibit the characteristic
backward peak of approximately 30% at 140° which has been
observed at lower energies (Sc 64) and for other nuclei
(Gi 68,Ee 68). The experimental total spin-flip probability,
which is defined by:

(Plo) farerdn

- (vV.1)
deo FEeA
Jn.(o)

SF

<o

where i%i (8) is the differential cross section and f>(e)

is the spin-flip probability at center-of-momentum angle
© , is given in Table V-3. No*e that spin-flip events
constitute only a very small fraction (~8%) of the total
inelastic cross section.

The spin-flip predictions of the three models
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(Figures V-2 and V-3) are in semi-quantitative agreemerit with
the experimental hata. The largest discrepancies occur at
the forward angles where the spin-flip probability is
consistently ovér—estiméted. The predicted total spin-fllip
probability is approximately four times the measured value
(see Table V-3). |

It is interesting that the collective model, which
contains no s=1 amplitﬁae, predicts a spin-flip probability
in réasonable agreement with the experimental data. We
- conclude that the observed spin flip is almost entirely due
to the distortions introduced into the entrance and exit
elastic-channel wave functions by the spin-orbit term in
the optical potential. This implies that if any meaningful
information regarding the s=1 part of the inelastic
interaction is to be obtained from spin-flip data, the
experiment musf be performed for nuclei having very well
determined optical-model parameters so that the effects of
the spin-orbit distortion can be separated from those of the
s=1 amplitude of the inelastic interaction.

A series of calculations has been performed in which
the parameters of thé\spin—orbit term in the optical potential
were systematicallyKV@ried in an attempt to determine the
sensitivity of the spin-flip predictions to these parameters.
First, we determined the range over which the parameters
could be varied such that X% for the fits to the elastic

data increased by less than 25% (see Sec.IV.C). The limits

of this range appear in Tables V-1 and V-2 for each of the
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parameters. Disto?ted-wave calculations were then made
using the upper or lower limits for one of the parameters
while fixing the remaining parameters at their optimum
values. In each case, the form factors.given by the impulse
approximation were used. The results of these calculations
at 26.2 MeV appear in Figures V-4 and V-5. It appears that
the spin-flip predictions are somewhat more sensitive than
the inelastic asymmetries to the spin—orbit parameters. In
fact, it should be possible to determine the spin-orbit term
in the optical '‘potential from spin-flip data in those cases
for which a polarized beam is unavailable (Pa 68). A major
difficﬁlty is that it is not practical to progfam an
automatic search routine for DWBA calculations.

In the same spirit, a number of caiculations were
performed in an attempt to determine the effect of the s=1
amplitude on the predictions of the microscopic model, again
using impulse-approximation form factors. Two types of
calculations were performed. In the first case, the optimum
optical-model parameters of Tablez V-1 and V-2 were used,
but the s=1 amplitude was set equa.! to zero. In the second
type of calculation the s=1 amplitude was that predicted by

the impulse approximation and the sj.n-orbit depth Vso was

set equal to zero. The results of tih:ue calculations at
26.2 MeV also appear in Figure V-5. 7T- is clear that the
s=1 amplitude has only a small effect -: the spin-flip and
asymmetry predictions. The predicted sp 'n flip is increased

by an amount which is almost independent : f angle so that
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the gfeatestvdifferences occur at the forward angles, where
the spin flip is smallest.

No definite conclusions regarding the spin-dependent
part of the inelastic interaction can be obtained from these
results. The addition of an s=1 amplitude to the microscopic-
~model form factors seemed to make the agreement with the
experiméntal data worse, in that it increased the predicted
spin flip at the forward angles where it was already too
large. However, in view of thgvinability of any of the models
to reproduce the inelastic asymmetries, and considering the
fact that optical-model parameters which adequately fit all
of the elastic data could not be found, it would seem that
the difficulty lies in the failure of the optical model for

nucleili as light as 12C.

*
V.B. 120Sn(p,p')lZOSn (1.17)

V.B.1l. Differential Cross Sections

The differential cross section predictions of the
three models for 30 MeV inelastic proton scattering from the

. +
first 2 state of 1208n appear in Figures V-6 to V-8, along

with the experimental data of (Ri 6ha). Calculatiogg were
performed for all of the sets of optical-model parameters
listed in Table IV-2, but the resulting predictions were
very similar so that,only two of them are shown for each

model.

The collective-model predictions (Figure V-6) are in
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numbers 1B and 2C refer to the optical-model parameter sets

of Table IV-2. The deformation parameter is also given.
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- very good agreemenf with the experimental cross section data.
The values obtained for the deformation parameter Ft (Figure
V-6) compare favorably with previous results (Ri 64a,FuA68).
Furthermore, the calculated value fof the reduced transition
strength B(E2) is in good agreement with gamma-ray
measurements (St 58), and with theoretical predictions (Ra 67)
as indicated in Table V-4. The microscopic-model predictions
(Figures V-7 and V-8) are also in good agreement with the
experimental data. As mentioned previously (Sec.II.C.3),
these calculations were pérformed using the Yoshida wave
functions (Yo 62) which include the effects of quasi-particle.
excitations from the closed neutron and proton cores as well
as in the unfilled neutron shells (the 'nuclear cloud').

The results indicate that these wave functions give an

) 1
adequate description of the *ZOSn nucleus.

V.B.2. Spin Flip

The predicted spin-flip probabilities appear in Figures
V-9 to V-11, along with the data from this experiment. Each
datum point represents an average run time of about two hours.
The absolute normalization is uncertain by tS% due to the
uncertainty in the efficiency of the gamma-ray detector
(Sec.III.D.2). The experimental and thecretical total spin-
flip probabilities appear in Table V-1. In contrast to the

12

case for C, the theory here under-predicts the total spin

flip by about a factor of three.

The theoretical predictions of all the models are very
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similar. The backward peak, which has previously been
associated with the effects of distortions introduced into

the elastic-channel wave functions by'the spin-orbit term in
the optical potential (Sec.V.A.3), is well reproduced in all
cases. It is particularly interesting to note that the initial
rapid rise in the épin—flip probability, which occurs at a

center-of-momentum scattering angle of about 120° for the 12C

data at both 26.2 and 40.0 MeV and at about 130° for 58Ni
spin-flip data at 15 and 20 MeV (Ee 68,Ko 67a), occurs here
at approximately 140°. This may indicate a systematic
behavior in this feature of the distribution as a function

of the mass number of the target. The location of this 'edge’
is accurately predicted by the DWBA calculations.

The situation is quite different for angles away from
the peak of the distribution. The spin-flip predictions of
all the models are significantly smaller than the experimental
data in this case. In particular, the average value for all
. the experimental points between 30° and 135° is 0.102%0.020.
The average predicted spin-flip probability over this
angular range 1is about 0.0325. Even if it is assumed that
the acceptance-angle correction (Sec.III.D.3) takes on its
maximum possible value at all angles, the experimental
average 1s only reduced to 0.0SHt0.0QO. Therefore, the
discrepancy cannot be accounted for by the uncertainty in
this correction. In addition, a comparison of the collective-
model and microscopic-model predictions shows that the

addition of an s=1 amplitude due to the spin-spin term in the
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two-body scatteringJ(Séc,iI.C.Z) does not improve the
agreement between theory and experiment. It happené that
the various single~particle'contributibns to the form factor
(Sec.II.C.3) add in‘phase for the s=0 part of the interaction
but éancel almost completely for the s=1 part. As a result
the é=1ﬂamp1itude makes little or no contribution to the
predicted spin flip. Calculations were performed using the
complete impulse—approximation'form'factor (s=0 and s=1) with
the spin-orbit well depth in the optical-model potential set
equél to zero. The predicted spin flip was essentially zero
as expected from the compariéon to the predictions of the
colléctive model, which does not contain an s=1 amplitude.
It is possible that the forward-angle discrepancy may
be removed by calculations which include some terms in the
two-body scattering amplitude that have been neglected in
this discussion. In particular, the two-body tensor and
spin-orbit forces may make significant contributions to the
predicted spin flip. The single-particle contributions
from the latter, at least, are expected to add in phase
(Mc 69a). It is particularly encouraging in this respect
that collective-model calculations in which the spin-orbit
term in the optical potential is deformed tend to predict
larger spin-flip probabilities éf the forward angles.
(Sh 68,Gi 68). A microscopic-model calculation which
includes the two-body tensor and spin-orbit forces should

display the same behavior (Mc 63%a).
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CHAPTER VI

SUMMARY AND CONCLUSIONS
The spin-flip probability for protons inelastically ’

scattered from fhe first 2+ state in 12C_and 1208n has been-

measured at incident proton energies of 26.2 and 40.0 MeV
for lzc:%;nd SO;O'MeV for 12050, The data display the
'qharacteristic backward peak ﬁhich has been observed at
lower energies (Sc 64,Ko 67a) and for other nuclei (Ko 67a,
Ee 68,Gi_68). The magnitude of this peak is about 0.30 for
12C and 0.50 for 120Sn, and the location of its rapidly
rising edge seems to be correlated with the target mass
number. The total spin-flip probability is approximately
0.03 for *2C and 0.08 for 120y

The theoretical‘analyses of the data in the framework
of the DWBA are in semi-quantitative agreement with experiment
at the peak of the distribution. The most serious failure
in this regard occurs for the 120 data at 40.0 MeV, when the
predicted peak spin flip is only about 0.20 compared to the
measured value of 0.30. However, larger differences are

12C

observed for the forward angle data. In the case of
spin fllp, these dlscrepan01ps are of such a nature that no
deflnlte conclusions may be reached regarding the spin-

dependent part of the inelastic interaction. The addition

- e ey
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of an.s;l amplitude in this case made the agreement between
experimént and theory somewﬁat worse, in that it significantly
increased the predicted spin flip at the forward angles where |
it was already too large. However, these discrepancies are

in large part bound up with the general failure of the

optical model to give an adequate representation of a nucleus

as light as }2C. The situation is somewhat different with

120.7° e
Sn forward angle data. In this case, the

‘respect to the
spin flip is under-predicted by about a factor of three. The
remarkably good fits obtained from the optical model for the
elastic cross section and polarization, and the fact that the
inelastic cross section and the backward peak in the spin-
flip distribution are very well reproduced in the DWBA
calculations, lead one to believe that the calculated
contribution to the spin—flip probability from the elastic-
channel wave functions 1s essentially correct. In addition,
there is some evidence that a more adequate treatment of the
spin-dependence of the inelastic interaction will lead to an
increase in the predicted spin flip at the forward angles
(Gi 68,Ko 67a). This sugpests that further DWBA calculations
éhould be performed including those spin-dependent parts of
the two-body scattering amplitucde which have been neglected
here.

The present experiment was directed toward the
determination of the type of information about spin-dependent
nucleon-nuclieus forces which can be obtained from spin-flip

data. Two general conclusions can be reached in this regard



120

from the previous discussion. First of all, the prominent
backwafd peak which is characteristic of all the data
presentéd has been associated with the distortions introduced
into'tﬁe elastic-channel wéve functions by the spin-orbit
term in the optical model potential. Therefore, this feature
of the distribﬁtion may be usedvgo determine the spin-orbit
parameters when elastié_polarizatibn data are unavailable

(Pa 68), and it can provide supplementary information in
those cases for which the scattering of polarized protons has

been measured. Secondly, it seems from the 120

Sn data that
meaningful information concerning the spin dependence of the-
inelastic part of the interaction can be obtained by careful
measurements in the forWard direction for those cases in
which the optical model.parameters are reasonably well
determined.

Two general types of spin-flip experiments are
suggested by the results oflthe present study. First, 3He
inelastic scattering and spin flip could be investigated,
leading to a determination of the spin-orbit parameters of
the optical model (Pa 68). Secondly, it would be of great
interest to have accurate forward angle data for a set of
nuclei having essentially the same optical-model parameters

and different detailed structure (such as the even-even

isctopes of Sn, Cd, and Te) to investigate the dependence of

< the spin-flip probability on the nuclear wave functions and

the two-body scattering parameters. This latter investigation
should yield information on the spin dependence of the inelastic

interaction which is difficult to obtain in any other way.



APPENDIX A

THE BOHR THEOREM

We wish to investigate tﬁe effect of a reflection in
the scattering plane on a two-hédy scattering system which
conserves total angular ﬁomentum and parity. Such a
reflection may be obtained by a rotation of 180° about the
normal to the scattering plane, followed by a parity
inversion (Figure A-1). Denote the reflection operator by
62,, the rotation operator by R, and the parify opérator
by P. Then:

@J = PR{(TL’)

(4.1)

—

For a system with total angular momentum J:
- A
W (T2 T ML T

R (M = € = & (A.2)

where MJ is the z-component of the total angular momentum.

The reflection operator becones:

(M T

6{ =FPe (A.3)

It is clear that the eigenvalue of this operator will be

a constant of the motion for any system which conserves
121
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total angular momentum and parity. In particular, if ¥
and ):. refer to the (normalized) initial and final
eigenstates of a two-body scattering system:
<HIRITES = <HIRIYS s
NoW, the total angular momentum EPis composed of an

orbital and a spin part:

=L+ S (A.5)

Similarly, the parity operator can be divided into an

orbital and a nuclear parity:

P =P '
I -an (A.

[S 2]
~

sO0 that the expression for the reflection operator beccores:
R-PP e

= e (£.7)
where lz (s_) is the z-component of orbital (spin) angular
momentum.

Next expand the state /‘f in the spherical harmonics:

Mg
/"p,_>= Z C,gmq(‘ld) Y{ (91¢)

(A.8)
'
Iqbq v

where the functions (:.e (44)contain all the other coordinates
m o
%

describing the system, such as the spin eigenfunctions and

the radial dependence. Because of the initial choice of
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axes, the coordinate © is always equal to 90°. We have'

Riv> = P, ™2 ¢ 0B YR E )

mn« My X

_ (TS, L+ m .
Foe "5 (¢ (1)YEp)
1'5«.
2@«

o

. . 4 . ‘
Now, the spherical harmonic YI (’Pz,,¢) vanishes unless
1+ my is an even integer. Therefore:

(s

Riv>=F e “1¥> C A1

A similar expansion can be made for the final state %}
The detected particle is again in the scattering plane (by
definition) so that the results are the same. Substituting
into (A.4):

(s,

LSy
<V‘Z/Fhe ’\/J‘> = <‘)L*.IP“€ }"HP>

(A.11)

We have recovered the RBohr theorem, which simply states
that the eigenvalue of the operator:

(s,

&I= Pne

(A.12)

1s a constant of the motion for a two-body scattering

system which conserves parity and total angular momentum.



APPENDIX B

ACCEPTANCE-ANGLE CORRECTION
The general angular correlation function W( ¢, ) ea. ’¢Y)
for the de-excitation of the 27 nuclear state to its 0+
ground state is (Sc 64):

AN e

L )
: (
W(%,8,.9,)- & Ramaw %
¥ mm

L a4
where X?m is a normalized vector spherical harmonic (Bl 52)

of order two, ¥ represents the possible combination of
spin orientations of the projectile in its initial and final
state, P_, is the probability that a particular combination
will occur, and am('u) is the amplitude for exciting the
mth magnetic sublevel with that combination. For proton

scattering there are four such combinations:

Y =1: incident spin up, outgoing spin down

YV =2 incident spin up, outgoing spin up (B.2)
v =3: incident spin down, outgoing spin up

vV =4 incident spin down, outgoing spin down

If the quantization axis is chosen along the normal to the

1925
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Scattering plane, .the Bohr theorem (Appendix A) requires that:

Am(V) = 0 4 mM+¥ e odd. (B.3)

Applying this restriction and evaluating the spherical

harmonics:
W= /Tn}:(‘/“’ 9 - 3cwato +I)(P {11(1)/ + la UJ/ b+ P{lamh-la £3]] })J
[ St o wt e, (R laom/"+ ALY cwl")]

un[(l toa 9)(%“"‘)/4"4“”}* P {“ (‘"I Ha “)/ })]

wat & "}
= (240, (g 0[P Refo r1a

73

. Py RLamaw e TY)]
(B.u4)

(h & fam am e %)
_ 5 I3 [ 25w wte, (B G ja(x)d
gn V)-jz[ % r ¥
¥ 2@
ra (ol e

»* 25@,
PP, R { a ) e i) e }

W
L Py 02,_{%"" a_:(‘!/e *})J

‘(t.
/ur[ZSu\Q(P&{a‘”q(“e T8

e @,
bR R { a, ) a_:(v) e '})]
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Now, let:

Yoy

5= Bla,alt s Rl |
: ; . . v . .
- = L5 {(o. (l+ )a lI)II} + R {(ai )] +lq nl

(B 5)
Sy = P{Iq (’—)I Y ""/ }+F{lam)/ +la tq)l]

th('u)
Q”'(Tl) -'<Xh'Cv) e

The quantity Sl‘is the probability that the m=1 magnetic

substates of the 2+ level will be excited, i.e., the spin-

flip probability. The next step is to evaluate (B.u4) for
Sl in terms of the measured angular correlation function W

For a detector at a small angle 6; =€ , (B.4) leads to:

m s _o
5,7 % W(g ,0%0°) - e*(3s +5, - §5,)

( 0)2]
3 LT w9 B0 ¢ [ bR

(B.6)
+UC e [T « (28, + Fom) L < (2q +F, ;)

T )
+ -rloc'() ) (upr +qun) + 1, _z(q) éo:(ugjfo_z ]

+ G (e¥)

where:

T (k)
¢y

. (KD
= [3.(K) ’i
PLJ(n} ¢ f

. o - (k)
P, o, (k) <,
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The expression (B.6) must be averaged over the apertures of
the proton and gamma-ray detectors. The first term is
ihdepéndent df é'and‘is unchanged by.thé averaging procedure.
The quantity 5”7% is the normalization constant which gives
the spin-flip probability in terms of the gamma-perpendicular
corpeléticn function. The rest of (B.6) may be divided into
'direct' ter'ms,. proportional to et , and 'interference' terms,
" proportional to 6"&‘05( 20)_ + F:‘_,"(")) . When averaged over the
apertures of the proton and gamma-ray detectors, these terms
give the écceptance-angle corrections. In this development,
the gémma detector is approximated by an 'equivalent'
detector of zero thickness and the same intrinsic efficiency
situated at the centef of the actual cylindrical detector.

The effect of the finite aperture of the proton
detector is to define a set of scattering planes whose
normals are tilted from the axis of symmetry of the gamma-

ray detector (Figure B-1). Let:

EP = angle of tilt of the normal to a given scattering

plane relative to the center of the gamma-ray

detector. (B.7)
€Ep = half-angle subtended by the gamma-ray detector.
eb’ = integration variable defined in Figure B-1.

Then the edge of the gamma-ray detector referred to the

point at which the normal to the scattering plane intersects

the surface of the detector is described by the equation of
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DETECTOR GEOMETRY
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TO SCATTERING PLANE
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X
GAMMA
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Figure B-1. Detector geonletry for the calculation of the
acceptance-angle correction.
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an off-center circle in polar coordinates:

& Cpemd W/G' €' st (B.8)

Moy

The average of the direct' terms over the gamma-ray detector

is proportional to:

ar

- Seida, S

<€ 2 = Sio = e’

ér.. ‘
Y de Jd
€ &

g r ¢(B.9)

which reduces to:

. o € 2 L4
T = € + 8 _ 4 e.ﬁ..

The interference terms are somewhat more difficult because
of the dependence on @ = ~(¢ +Z). In this case, the
. b 4

equation of the detector edge is written in the form:

=
= (%) Crma * €7 -6t
C’S m mﬁx) -
min A€, €,
(B.10)
Gb' = Ep ¢ 60
may
Then, the average of the interference terms is:
e‘mqr gwly J Jé‘
<€y w20+ B, (k]2 = ,rézS Sex’ cos (29-F,(*) g (B 11)
e 9 .
‘"['
which reduces to:
(k)

< ey e (20,% Ffim))b' = ¢y
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The expressions (B.9) and (B.1ll) must now be averaged over
the proton detector aperture( For a ‘rectangular ap;er‘cure,
all Yalues of 6} are equally wéighted. For a circular
apertitr?ek\ of ‘radius €, the weighfing is m—‘. . The
final results for the direct and 1nterference terms are
given in Table (B 1)

?he acceptance-angle corrections are determined by
sﬁbstituting these results into (B.6) using the fact that
SO + S1 + 82 = lf ‘For example? for a circular proton
(gamma-ray) d‘etector.‘vsub‘vcendir;g an angle of 2€ (2€), )
radiané the maximum and minimdm;vaiués of the correction
terms are glven by:

MAx="(% Y ‘.’,e )( S]_)-—-;-e"%--;/?e"(/—sz)

Y

N s 2 (B.12)
-: ‘Ve‘)(l' S)+§é S_—z

where it is assumed that the /8..(#) are independent
t

quantities.
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Table B-1. Average of direct and interference terms over
the acceptance angle of the gamma-ray and proton

detectors.
APERTURE &) TERM
Direct : Interference
et & 16 LTep®
T -_— 4+ — - ‘ ‘)

RECTANGULAR 3 > 0 €

e @ 1L L Cwp®
- ’ — — - ) ¢y
CIRCULAR gt o T et N
ad

Refers to the proton-detector aperture. The quantity €
equals half the height for a rectangular aperture, and is
equal to the radius for a circular aperture. The gamma-ray
detector is assumed to be circular, with radius €y in all
cases.



| APPENDIX C

DERIVATION OF THE FORM FACTOR IN THE QUASI- PARTICLE MODEL

‘The form factor 1s proportlonal to the reduced matrix

element:

< {Ii}"_u\‘/‘;j 7;: ; ] 0> (C.1)

taken between the 1n1t1a1 and flnal nuclear states which are
to be descrlbed as qua31 particle states (Yo 62). Applying

the Wigner—Eckart.theorem (Me 65):

M-T
STV T o> = <amy, Tl lo> €0

M
T . .
The single-particle operator y;a; ‘lsj may be written in
second-quantization notation (Ma 65):
MJ’ ' Mr . T
= Z <im |V T Cim> &, , A (c.3)
vlsj -TJJJ' Ji’ L5y sy Jm' Im
MM‘

where agm (ajm) creates (destroys) a particle in the shell-
model orbital jm.

The transition to the quasi-particle formalism is

133
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accomplished through the Boguliubov-Valatin transformation

(Bo 58,Bo 58a,Va 58):

| | J-m v d‘i’
a. = Lo + () ; . '
Vim KJJ o‘am / yem (C.w)
where 4' ( q ) creates (destroys) a quasi-particle with

quantum numbers jm, and Uj and Vj,are the usual occupation

parameters (Ba 63). Substituting into (C.3) we find:

Ms
V‘!Jj T‘SJ' = Z < J b‘ I V.!;J -QSJ \ "m>
Jd
mm’ '
J'{-»', (CoS)
Jom Tt AS) ,
(G e o, YO ]

+ (terms which have zero matrix element between the ground

state and the two quasi-particle excited states).

Following Yoshida (Yo 62), the two quasi-particle operators

are defined by:

' +
t, 0 Tm) = <, J ™M,m | IM X .
A (J 9, Tm) mzm | > °( o Sm,
(C.6)
. - J m M, | TM .
A G am)=2 < S T

In terms of these operators:

M

7’

A A
/T 7. s Jrri<cilnT, IIJ>(JIV S19>
54 RS L

(c.7)

' t . M,
<[V V. Awsam +V, Uj(— A(“.TM)]
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AT
where J =Vau+/ |

a radial integral of the interaction potential taken between

. . I | . .
The matrix element <V “{,”- 1> s

shell model states which are assumed to be harmonic oscillator

~wave functions.

Next the phonon creation operator is defined:

+ N y oI, J
Q' = 'i: b3 [V/ . A ("'J;JMJ) - ¢ e A(J;J;J:—Af)
J‘MJ JJ. » JI"P : ' »Jo',t (C.S)
_ T J :
where # and ¢2.are normalization coefficients (Yo 62). Then:
"J" ;‘o"o
T-M r .o
+ 0. S J . 62‘
A(i'iTmMg) = =) cp.i’.i ?{—MI * ‘FJJ TM;
y (C.9)
. T J-m, T Q*
ACiiTm) = ¥ QMJ &) Vi rom,
. 80 that:
MJ— Al A=/ N . Y , .
vV T = s 47 <Jll";sJ.llJ> <INy ;19>
Ls) sy JJ '

C.10)
+ (

X [*)z t};”vi ' ¢/"J ‘“{ EJJ:)QJ'M

T

+ (phonon destruction terms).
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The Q operators satisfy the boson commutation relations:
+ S .5 -
[qu ) Q»J’M"] = v‘rJ" Kaa ! (C.11)
and the one-phonon excited states IJMJ:> are given by:
gL s ’ ' (C.12)
’ J.MJ‘> J'MJ.

where 10D is the ground state (phonon vacuum). Thus, the

r‘educed matrix element (C.1) is:‘

: A A=l .
< TNV .ISJ, o> = 3 J 7 <J,u'l:$j HJ1>

Lsy 2 JJ.‘
[ e
x <31V, )i> f‘#J kU- V. + ¢T V. U] (c.13)
£s) "/,"/z.. J, I J,J"_ J' Jo A

A FORTRAN-IV code has been written to calculate the

reduced matrix element (C.13). The normalization coefficients
T T
‘7‘:-.,. and ¢..were computed according to the work of Yoshida.
A V,Jx_

The values obtained were checked by comparing to the data

given in (Yo 62), and found to be in good agreement.
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