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ABSTRACT

HIGH ORDER FINITE ELEMENT METHODS
TO COMPUTE TAYLOR TRANSFER MAPS

By

Shashikant Manikonda

In beam physics, map methods are important techniques for the design and analysis
of lattice structures. The computation of the transfer map for an electric or magnetic
element requires the multipole decomposition of the field in the region where the beam
passes. In the first part of this dissertation we present new techniques to extract the
multipole decomposition of the electric or magnetic field from the measured field data
or from the knowledge of the current distribution.

The new high precision technique developed to obtain the multipole decomposi-
tion of the field from the measured field data solves the Laplace equation using the
Helmholtz vector decomposition theorem and differential algebraic methods. This
technique requires the field to be specified on a closed surface enclosing the volume
of interest. The method outperforms the conventional finite difference and finite el-
ement methods in both the execution speed and the precision achieved. We extend
this technique to obtain a verified solution to the Laplace equation by using the Tay-
lor model methods. We also parallelize this technique and implement it on a high

performance cluster.
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We then present a new high precision technique to find the magnetic field of an
arbitrary current distribution. The technique uses the Biot-Savart law and differential
algebra methods to compute the magnetic field. Using this technique we develop new
computational tools to design accelerator magnets.

Both these techniques can also be combined to solve the Poisson equation when
the source distribution is specified inside a volume and the field is specified on the
surface enclosing the volume. Besides providing a natural multipole decomposition
of the field both these tools have the unique advantage of always producing purely
Maxwellian fields.

We demonstrate the utility of these techniques in solving practical problems by
applying them to real life applications. We present the design and analysis of a
novel combined function multipole magnet with an elliptic cross section that can
simplify the correction of aberrations in the large acceptance fragment separators for
radioactive ion accelerators. We then apply the Laplace field solver to the measured
magnetic field data of the dipole magnet of the MAGNEX spectrometer and extract
the multipole decomposition of the magnetic field. Finally, we present the linear
and high order ion optic simulations for the proposed design of the superconducting
fragment separator (Super-FRS) and also apply the field solver technique to extract
the transfer map for the magnetic field data obtained through the TOSCA simulation

for the Super-FRS quadrupole magnet.
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CHAPTER 1

Introduction

The advent of computers has provided new means to solve the problems in physics.
Traditionally, the choice of the technique to numerically solve a PDE is driven by the
factors faster execution and the minimal use of the computational resources. Both
these factors are purely practical limitations due to the limited time and resources. In
the traditional numerical techniques the requirement of fast execution and minimal
use of resources can only be achieved at the cost of limiting the precision of the
numerical result. However, for many problems in physics that investigate phenomena
and processes at high energy (TeV) or in relatively small (nano/femto) length and
time scales, highly accurate results are an absolute necessity which the traditional
numerical metheds can not provide. For instance, the Large hadron collider (LHC)
accelerator being built at CERN is designed for an energy of 14 TeV at the interaction

2 sec1 [5], and this requires magnets to be designed

point and laminosity of 103%¢m™
with a magnetic field precision of %‘E ~ 1074 [37]. The modeling and study of
such instruments require high precision numerical tools. This leads to an additional
constraint for modern numerical techniques of obtaining very high precision results.

The traditional numerical techniques can not achieve all of the three conditions at

the same time, and hence fail to solve many modern problems. This leads us to
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investigate new numerical techniques that are not only fast and make efficient use of
the computational resources, but also give high precision results.

One of the limitations with the conventional techniques comes from the fact that
the mathematical functions cannot be directly used on a computer. The treatment
of a function is done based on the treatment of numbers, and as a result, virtually
all the classical numerical algorithms are based on the mere evaluation of functions
at specific points. One way to overcome this difficulty is through the use of the local
Taylor expansion of a function about a point. We are then able to extract more
information about the function than just the value at a specific point. Once again
due to the limitation of the computational resources it is necessary to truncate the
Taylor expansion.

Algebraic operations like +, —, - and composition can be defined on truncated Tay-
lor expansions, leading to an algebra called the truncated power series algebra (TPSA)
[7]. The power of TPSA can be further enhanced by the introduction of derivations &
and their inverses, corresponding to the differentiation and integration on the space
of functions. The resulting structure is called a Differential Algebra (DA) [67, 47].
The Differential Algebra provides a framework to develop techniques and algorithms
to use a truncated Taylor expansion of a function on a computer. The numerical
techniques based on DA have the unique advantage of getting high accuracy at a very
small cost of the execution time and the computational resources compared to the
traditional techniques.

In beam physics, the DA techniques were first introduced by M. Berz 1989 [12, 10,
9, 11] to compute the high-order Taylor expansions of the transfer maps. The beam
physics codes based on the DA techniques have become indispensable tools to the
design and analysis of accelerator lattices. In recent years the DA techniques have

been applied to solve DAEs, ODEs and PDEs [50, 42, 43, 28|.
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CHAPTER 2

Background information

In this chapter we present the background behind the work presented in this disser-
tation. We start by defining a vector field in the 3-dimensional Euclidean space E?
and discussing the relevant properties. We then discuss the Laplace equation and the
Poisson equation and present some of their properties. We also present a brief survey
of the analytic and numerical techniques to solve the Laplace and the Poisson equa-
tions. We then discuss the background of the numerical techniques that we utilize in

this dissertation, namely the Differential Algebra (DA) and the Taylor Model (TM).

2.1 Vector field and the Helmholtz theorem

Let V be a bounded region in the 3-dimensional (3D) Euclidean space E3. A vector
field on the E3 is a function B that assigns to each point (z,y,2) in V a three-
dimensional vector B (z,,2). A vector field that has zero curl everywhere is called
an irrotational field. Such a field can be expressed as a gradient of a scalar field.
This scalar field is called a scalar potential. A vector field that has zero divergence
everywhere is called a solenoidal field. Such a field can be expressed as a curl of a

vector field. This vector field is called a vector potential.
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2.1.1 The Helmholtz theorem for Euclidean three-space

The Helmholtz theorem [40, 59, 44, 62, 61] expresses any general vector field as a sum

of an irrotational field and a solenoidal field over all of a Euclidean three-space.

Theorem 1 (The Helmholtz theorem for Euclidean three-space) A general
continuous three-vector field defined everywhere in a FEuclidean three-space, that along
with its first derivatives vanishes sufficiently rapidly at infinity, may be uniquely rep-

resented as a sum of an irrotational part and a solenoidal part.
The theorem imply that any vector field B (7) can be written as
B=-V¢,+V x A, (2.1.1)

where [ft is a vector potential and ¢,, is a scalar potential. A simple proof of this
statement follows directly from a well-know vector identity for an arbitrary vector
field,

~V2V =V x (fof') —V(V-V’)
Now by choosing B = —V2V, ¢, = V-V and A; = V x V, we get the equation
(2.1.1). However, this assumes that there is always a solution to the vector Poisson

equation, B = —V2V. We now propose the following

Proposition 2 For any vector field B (™) that vanishes fast for large v, and satisfies

a Hélder condition, a vector potential V given by

. B
7 () =— /E B—(r)—dﬂ', (2.1.2)

34w|f'~f"]

is the solution to a vector Poisson equation

B (7) = -V2V (7). (2.1.3)
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We now prove the proposition above. We first note that the volume integral in the
equation (2.1.2) exists only if the vector field B () vanishes fast for large r. Such a
vector field has a compact support in E3, as a result the integral over all of Euclidean

three-space in the equation (2.1.2) can expressed as an integral on finite volume

5 (<
V() =- fv —B-il_ydﬂ’, (2.1.4)

2
V2 () = —V2 fv i(il—dﬂ' , (2.1.5)

Since the Laplacian is with respect to the unprimed coordinates, r, the integral and
the vector B can be brought out of the Laplacian. The final step is proving the

relation

v Ar Fe

_/ g(r)v2 . | a0 =B (7). (2.1.6)

Once we prove the equation above, we can use the above equation and the equation
(2.1.5) to complete the proof that the vector potential V () given by equation (2.1.1)
is the solution to the vector Poisson equation (2.1.3). To prove the equation (2.1.6)
we need all the three components of the vector field B; (i = 1,2, 0or 3) to satisfy a

Holder condition.

Definition 3 [61] Let rg = |y — 71| be the distance between two points 7} and 75,

If three positive constants a,n, ¢ exist such that
|B; (72) — B; (71)| < arfj,

for all points 71 and 7y for which rg < ¢, the quantity B; is said to satisfy a Holder

condition.
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The B; is also said to be Hélder continuous. We are now ready to prove the relation
expressed in equation (2.1.6).

Proof. We note that

thus the volume integral in equation (2.1.6) is zero except for the contribution from
the singular point 7 = Ff . As *F! approaches 7, the distance |F — F! I tends towards
zero. We surround this singular point by a small sphere of radius e, with surface S¢
and volume V. Since B (f‘f ) satisfies a Holder condition, we can choose ¢ so small
that for all values of 'F! inside the sphere, Bis essentially equal to its value B (F! ) at
the singular point. Then the integral in the equation (2.1.6) becomes

5 (4
B ("" r B 1 /

/ )v2 1 g - BO [ o2 — | da. (2.1.7)
v dr 7| v Jve  \|r-v

Using the relations,

[

1 ! 1
Viz—=2 = Vi7"
\T—'f' T_?'|

2 1 _ 0] 1
\T'_T |?"—T‘

and the divergence theorem on the volume integral we obtain

3 3 /
B() [ 2 lJ dﬂ':B_@fﬁ(ﬁ)-v’ % s,  (218)
A Jve |1"’—'r' 4ﬂ-S ?-"—‘P‘

€

where 1 (f‘f ) is the unit vector normal to the surface Se at # . We note that

2
!
a8 = -] av,
_
(1 - (7)
v S )
F—r| |f-#|
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substituting this in the equation (2.1.8), we prove the relation expressed in the equa-

tion (2.1.6)
= (. . (4
BT ;3 —n|\r 2
f E )v2 IJ a0 = i—(ﬂ ﬁ(f‘!)--—-(——z e |
Vv am }r—r| ?TSE .f'__f-"1
~B(7) =
= — 2 ddw=—-B(F).
g (7)
Se
| |

We see that the vector field B (*.Fir ) must satisfy a Holder condition the equation
(2.1.7) to be valid. This requirement is stronger than continuity but less stringent
than differentiability. All infinitely often differentiable functions in C°° satisfy this

condition.

2.1.2 The Helmholtz theorem for a finite volume

For a bounded region the statement can be modified as follows

Theorem 4 (The Helmholtz theorem for a finite volume) A general continu-
ous three-vector field that is defined everywhere in a finite volume V of a Euclidean
three-space and whose tangential and normal components on the bounding closed sur-
face S are given may be uniquely represented as a sum of an irrotational part and a

solenoidal part.
Once again, the theorem implies that any vector field B (Z) can be written as
E}: —Vgﬁn-{-Vth.

We now proceed to prove theorem 4, and obtain the explicit expressions for the vector
potential Ay and the scalar potential ®n, in terms of the essential characteristics of the

vector field, namely, divergence, curl, discontinuities, and boundary values. We adapt
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the derivation from [62]. By using the equation (2.1.6) a vector function B (z,y,2)
can be represented as

4 () (1 \ .
B(M = -L = V2 ‘r—-’r'| v,

.y
_ _y? /V ﬂ;ﬂ/’. (2.1.9)

4 |r —frf1

Using the vector identity

—

Vx (VxB)=v(v-B) -V,
we rewrite equation (2.1.9) as

—

! =1
B() =V x VX/f(—T)—dv’ —v V-Ai(r—)’dv' . (2.1.10)

V4?r|r—rf[ 47r|r—r|
ey ‘Et - Ny g o
‘We first consider the divergence term ¢,
é (T-'!) 1 !
¢ = o -V |T_rr‘ av . (2.1.11)

‘We note that

i T |
r—r r—r
substituting this in the equation (2.1.11) and using the divergence theorem for the

second part of the volume integral,

v .B(7F) |, B(¥
¢ = [V (T)dv—fvv’-—“}(r),dvf,

-

drw|r—r dr|r—r
) /- V!-ﬁ(f!)dv,_fﬁ-é(f")ds,?
V 4 |r -1 S47r|r—r’
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gives the desired form of the scalar potential ¢. The curl term A, in the equation

(2.1.10) can be written as

(4
i = vaLr)fdv',
1’4

47r|r—r|

7]
- ﬁ Vé(f-")xv' ’TET,‘)dV’. (2.1.12)
We note that
V,xg(#):v'xg #)_B,F, o)
7 N 7
r=r"| =] Ir—r'|

using this in equation (2.1.12) we get
_!

. V XB '.r' f
At=f fo
|4 47r['r—r rhr

For the second integral on the right hand side of the above equation we now show the

following
“';T-/VV * r—r W= 4’”5 }'r rfl i

To prove this result we consider a constant vector C' and apply the divergence theorem

to the quantity of V’ X (é ('F!) /|?‘ - ?”!D?

5[
/c v x )dv" = - v'-Cdev’,

T—T
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since the constant vector € is arbitrary we prove the relation (2.1.13). Using this

relation leads to the desired form of the vector potential fft,

fi’t =jvwdv" +fﬂdsf.

/ /
47r|r—r| 47r|’r—r|

Hence, the Helmholtz identity for any vector field B (7) in a finite volume is

B = -v fﬂdv"—j{ﬂﬁ’
V4?r"r—'r’ S4‘H’|T—T|
+V x /——_v’xg(g)dvﬁfn—:w———xg(#)ds'
Vv 47r|:r'—'r‘ 4?r|r—r'|

2.1.3 The Helmholtz theorem for time dependent vector

fields

Recent works [30, 82, 81] have extended the Helmholtz theorem to time dependent
vector fields. We present a summary of some of those recent works here.

It is possible to obtain the Helmholtz theorem and an explicit form of the scalar
and vector time dependent potentials by replacing the three dimensional analysis on
the Euclidian three space in the sections 2.1.1 and 2.1.2 with a four-vector equivalent
on the Euclidian four space E#, or the Minkowski four-space R3+1 (81, 80]. However,
the approach we describe below is more suitable for our purposes, as it allows us to
not only obtain the Helmholtz theorem for the time dependent vector field but also to
obtain Maxwell’s equation starting from the Helmholtz theorem and the continuity
equation.

Let f (7,t) be a time dependent scalar function and let g (7, ¢) be a time dependent

scalar function defined by

3ol
g(7t) = / f(r ;’,.'r_ ;" !}C)d"’” (2.1.14)
10
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where ¢ is a constant. We introduce the notation, R = #— f‘!, R = ‘R'|, Y (R) =
1/(47R), and 7 =t — R/c. Using this notation, the equation (2.1.14) can be written

as
g (7 t) = /f (F’, 1‘) W (R)dV . (2.1.15)
The gradient of g and its divergence, i.e., the Laplacian of g can be given as
!
ve@t) = [Ws+fonav,
2 2 4
f (w f+2Vf - Vip+ fV ;b) dv

<]
(]
Q
N )
et
e
|

The gradient of the scalar function f and 1 are given by

191,
Vf = —EE-GR, (2116)
: WS
VT:{" — _EweR:
and taking the divergence of V f, we obtain
2
2, 10f 20f
Vi = g (2.1.17)

Using the equations (2.1.16) and (2.1.17), the Laplacian of g can be given as

J
2, o 1a2f(r‘r) ! J By 5t
Veg(rit) = ?TW(R)O{V + | f|7,7) V%dV . (2.1.18)
We apply the equation (2.2.4) derived in the section 2.1.2 to the three dimensional
vector field with one of its components being f (7, 7) and other two being zero to

obtain

/f (F",-,r) V2pdV = —f (71). (2.1.19)
Now, by changing the differentiation with respect to 7 in the first term on the right
hand side of the equation (2.1.18) to differentiation with respect to ¢, and bringing
the differentiation with respect to ¢ outside the integral, and using equations (2.1.19)

and (2.1.15) we obtain
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We can now rewrite the equation above as
1 9
(v2 - 22"}9?) (Ft) = —f (F1). (2.1.20)

We now consider a time dependent vector function F (7t) and define a vector

potential A (7,t) by

At = / F (f-",fr) ¥(R)dV, (2.1.21)
and using the equation (2.1.20) component-wise for the vector fl‘, we get
(V2 = é;—i) A7) =-FFt). (2.1.22)
We now define a scalar potential ¢ associated with F (7 ¢) such that it is a solution
to
éa‘i’g‘;‘ D _v.AF). (2.1.23)

The equation above is the well-known Lorenz gauge condition. We now use the
standard vector identity for the double curl of a vector field on the vector A and use

the equations (2.1.23) and (2.1.22) to get

V x (v x A1) = v(v-ff(f:t)) —V2AF D

1 8¢ (7,t) 1824(Ft) =, .
- _V( 2 ot ) (c2 ot F(T’t))

s et Z (w( E) 4 ZAL, t)) +F (7).

c2 Ot

Rearranging the equation above we arrive at the Helmholtz theorem for time dependent
vector fields,
-~ 10 0A =
F=5s (V¢+ as) +V x (va).
Now we derive additional relations which would facilitate the derivation of

Maxwell’s equations from the Helmholtz theorem in the section 2.1.4. Starting from

12
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the equation (2.1.21), we evaluate the divergence of A to obtain

/v- [w(R}F'(F',r)] v’

= f[_v'¢-ﬁ+¢v-ﬁ]dv’

= f[-v’-(wﬁ)wv’-ﬁwvﬁ]d!/

- f—v'-(wﬁ)dvi+/[v’-ﬁ+v'ﬁ‘ v,

I

VARt

Using the divergence theorem, we can write the integral I as

f:f—v". (wﬁ") dV’=—wa*-dS".

Assuming that the vector function F' vanishes sufficiently fast as r — oo, we see that

the integral I vanishes. Thus, we have

v.-AF 1 =j [v'-ﬁ‘(f;,r) +V.F (f«",r)] wav'.

We rewrite V! .Fand V-F as

- J -
o ﬁ(?"—!,‘]") _ i dF; (?"{TT) +‘3Fi (T’T)_B; |
i=1 | oz, or oz,
V-ﬁ(#,r) _ 3 -BF-;' (F!,T)E] |
ol or Ox;

We note that (B'r/ 8.1::) = — (J7/0x;). Using this, we can conclude that

/ Ei M] pdv’

=1 Oz

VA7)

/ [vf, - F’] vV, (2.1.24)

/ ’
where the notation V- is the gradient operator with respect to x; with 7 kept constant,

for i = 1,2,3. The scalar potential in the Lorenz gauge equation (2.1.23) can be

13
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expressed in terms on another scalar function p, (r,t) as

6 (7 1) = f Pa (F’.T) ¥ (R)dV', (2.1.25)
and also from the equation (2.1.20), the scalar potential ¢ (,t) also satisfies
2
2 10 — .
(V - 0_2@) t;b(’f‘, t) = —Pa (T: t) : (2'1'26)

Using the equations (2.1.24) and (2.1.23) and assuming that the time derivative can

be exchanged with the spatial integral, we get

apa (Fr t) =

— 2 . =l =
= AV-F@Ft). (2.1.27)

2.1.4 Maxwell’s equations from the Helmholtz theorem

We will now obtain Maxwell’s equations using the Helmholtz theorem for time de-

pendent vector fields and the continuity equation

N TR/l 1)
V-J(rt)+ 5 =0,

(2.1.28)
where J (7,t) is the current density vector and p (7, ) is the charge density at point 7
and at time £.

We start from the Helmholtz theorem for time dependent potentials

= 10 04 ,
F=35 (V‘Hﬁ) +Vx (Vx 4). (2.1.29)
We choose F (7,t) to be poJ (7,t), where i is permeability of the free space. Using
the equation (2.1.21), we see that the vector potential A can be written as
=1 f
. 1o J (r ,T) /
A= j ——— 24V,
AT R

and using the equation (2.1.27), we get

%) _ 294070
9 6}9 (ﬁ t) )

= (2.1.30)

= —u?V . J(Ft) = poC

14
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In the equation (2.1.30) we use the continuity equation (2.1.28). We now attribute
a meaning to the constant ¢ as the speed of light, and ¢ = 1/, /g€, and ¢ is the

permittivity of free space. We thus get

pa (1) = 208, (2.131)
€

Using the equation (2.1.25), we define @, the electric scalar potential, as
F
7 ¢ o) av’
(74 = / ireoR
Additionally, we now define two new quantities. The electric field intensity E (7,1) is

defined as

(7 t) = — (V¢> (7 t) + B—A’é@) , (2.1.32)

and the magnetic induction B (7,t) is defined by

-

B(Ft)=V x A(Tt).

From the definition of B (7t) it follows that the divergence of B (7, t) vanishes, that
is,

V-B(Ft)=0. (2.1.33)
Now the equation (2.1.29) becomes the Ampere-Maxwell equation

V x B(Rt) = ugJ (7 ) + éaEg;’*).

Taking the curl of both sides of the equation (2.1.32) and using the definition of

(2.1.34)

B (7, t), we get

(2.1.35)

Taking the divergence of both side of the equation (2.1.32) and using the equations

15
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(2.1.23), (2.1.26) and (2.1.31), we get

VB = -V - g [V AGED)

2
_ *(Vz—gl"z‘gﬁ)‘f’(ﬁ”:p( ), (2.1.36)

We have derived Maxwell’s equations (2.1.36), (2.1.35), (2.1.33), and (2.1.34) start-
ing from the Helmholtz theorem (2.1.29) and the continuity equation (2.1.30).

2.2 Laplace’s and Poisson’s equations

A vector field that is both solenoidal and irrotational and is continuously differentiable
is called a Laplacian vector field. Since this field is irrotational, there is a potential ¢
such that

B=-V¢,

and since the field is solenoidal and continuously differentiable, this potential satisfies

Laplace’s equation,

P¢ 0% 0
5+ gt + 522
dx ay dz

the corresponding inhomogenous equation is called Poisson’s equation,

v2¢ = =0, (2.2.1)

-v2p = f. (2.2.2)

Laplace’s and Poisson’s equations describe a wide variety of physical processes,
e.g. the gravitational potential, the electrostatic potential, the magnetostatic poten-
tial, chemical concentrations, steady-state heat conduction, steady-state diffusion of a
solute, steady-state irrotational flow of the incompressible fluids, and the probabilistic
investigation of Brownian motion. In a typical interpretation, ¢ denotes the density
of some quantity in equilibrium, as in the case of an electric potential. Laplace’s

equation is equivalent to the requirement that there be no maximum or minimum of

16
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¢ inside the volume V and the value of ¢ at a point be equal to the average of the
values of ¢ at the neighboring points.

A C? function that satisfies Laplace’s equation is called a harmonic function. In
this section we discuss properties of harmonic functions which are relevant to the work
that we present. All theorems presented are valid over R, but since the problems
that we address are all in two or three dimensions we restrict our attention to the
special case n = 2 or n = 3. We also discuss the established techniques to solve

Laplace’s and Poisson’s equations. The material presented here is adapted from [36].

2.2.1 Fundamental solution and Green’s functions
In the section 2.1.1 we proved that for any vector field B () the vector potential V ()
given by

2 (.
V() = - f ﬂdﬂ’, (2.2.3)
B3 4r |7 — 7 |

is a solution to the vector Poisson equation B = —V2V. In the equation above,
irrespective of what the vector field B (7) is, the kernel of the volume integral,
1/ (417 If’ - f'! ), will always remain the same. This observation leads us to define

the fundamental solution ® of the Laplace equation as

@ (7) = 1/ (4= |71).

We can also arrive at a fundamental solution by finding an explicit solution to the
Laplace equation with certain symmetry properties [36]. For a two dimensional case it
can be easily shown that a fundamental solution is given by @ (7) = — (log|7]) / (27).
The fundamental solution @ has a property that it is invariant under rotation and it
is singular at origin. Using the notation for the fundamental solution the equation

(2.2.3) can be written as a convolution integral

V() = _/Esii’ (F— F’)fi(f") dq’.

17

BDoarnrandinicrad with nermiccinn of the cormurninht oovvnar Enirdther reanradnicetionn nroahibitead withooit marmiccinn



| o PP R et |

s

We see that the recognizing the fundamental solution of the Laplace equation al-
lows us to construct the solution to the more complicated Poisson equation using a
convolution integral.

The Green’s function is a fundamental solutions that also satisfy boundary condi-
tions or initial conditions. To discuss Green’s function it will be useful to first present

Green’s formula.

Theorem 1 (Green’s Formulas) Let ¢,% € C2 on a closed domain U C E3. Then

L fyV2dv = [y 32ds

2 [y V- VpdV = — [or; V2aV + [o 63LdsS

5. fy [oV%0 — 92| aV = [y (636 — w3 ds

All three Green’s formulas above can be easily proved using the divergence theorem
[36]. Greens’s formulas along with the definition of Green’s function can be used to

prove the uniqueness of the solution for certain boundary value problems. We now

formally define Green’s function.

Definition 2 (Green’s function) Green’s function for the region U is of the form

! / !
G(ﬁﬁ):@(f’—i‘)—w(ﬁr‘-‘), (2.2.4)

where & (1""— F! ) is a fundamental solution and ¥ is a harmonic function.

The boundary conditions will depend on the problem. For the special case of the
Dirichlet and the Neumann boundary condition, it can be shown using the definition
of Green’s function and Green’s formulas that the unique solution can be found for

the Poisson problem —V2¢ = p in U. The solution to this problem can be expressed

6 (7) = Up(ﬁ')a(ﬁf”)dwrfw G(ﬁf”)M~¢(f‘)?€(ﬂ;—a ds’

v ov
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For the Dirichlet boundary conditions where the potential ¢ is specified on the bound-

ary dU, Green’s function can be chosen to be
e, (f-’, 7 ) — 0 on the boundary 8U,

and for the Neumann boundary conditions where the normal component of the gra-
dient of the potential ¢ is specified on the boundary dU, Green’s function can be
chosen to be
aG (?, o )
—3—7—-—-— = ( on the boundary 9U.
v

Green’s function is uniquely determined by the equation (2.2.4) and the boundary
conditions. Green’s function is symmetric with respect to 7 and Ff , G (*F’, ?‘f ) =
G ('Fl ,1") . Except for few simple geometries, like the half-plane and the sphere, it
is usually very hard to find Green’s functions. For many problems Green’s function

may not exist or may not be uniquely determined.

2.2.2 Mean-value formulas

Consider an open set U C E3 and suppose ¢ is a harmonic function within U, Let
S (7p, R) denote a ball at 7y with radius R in U. The mean-value formulas declare
that ¢ (7)) equals both the average of ¢ over the ball 95 (7, R) and the average of ¢

over the entire ball S (7, R).

Theorem 3 (Mean-value formulas for 3D Laplace’s equation). If ¢ € C2 (U) is har-

monic, then
1 il = 3 .
ATR? JS(7p,R)

¢d) (2.2.5)
95(r,R)
for each sphere of radius R with center at point 7, S (7, R) C U.

The converse of this theorem is also true. One of the consequences of the mean

value theorem is that the maximum or a minimum of a Harmonic function can occur
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only on the boundary. If the function has a maximum or minimum inside U then the
function is just a constant. This result provides another way to establish uniqueness

of solutions in certain boundary value problems for Poisson’s equation.

Regularity

The regularity theorem says that if ¢ € C? is harmonic, then necessarily ¢ € C°,
Thus harmonic functions are automatically infinitely often differentiable, Even
though the Laplace equations itself has only second order partial derivatives it has

the interesting feature that the all partial derivatives of the solution ¢ exist.

Analyticity

An analytic function ¢ is an infinitely differentiable function such that the Taylor
series around any point z)
o0
9" (z
r@)= 3 E50 gy,

n=0

is convergent for = close enough to zg, and its value equals ¢ (x). The analyticity

theorem states
Theorem 4 (Analyticity) Assume ¢ is harmonic in U. Then ¢ is analytic in U.

This property allows us to express a harmonic function ¢ as a Taylor series .

The last important property is the Harnack’s inequality, which assert that the
values of a non-negative harmonic function within V' are all comparable. The value
of a harmonic function ¢ cannot be very small or very large at any point of V unless

¢ is very small or very large everywhere in V.

2.2.3 An analytical solution of the 2D Laplace equation

Let z = z+iy, dz = dz+idy and dz = dz—idy. Then, (8/87) = 3 ((9/dz) + i (9/y))
and (0/0z) = % ((8/0z) — i (0/8y)). The Laplacian operator in 2D can be given as
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A = 4(8/8%) (8/0z). For any Cl complex function f on a complex domain Q with

boundary 0%2, the Cauchy-Pompeiu integral representation can be written as

_ 1 f(2) ! (0f/07)

If the funetion f is analytic then it satisfies the Cauchy-Riemann equation (0f/0z) =

0, and the equation (2.2.6) reduces to the standard Cauchy’s formula

_ 1 f(2)
flz) =5~ agz—_gdz-

Cauchy’s formula tells us that the value f at any point zj in 2 is completely deter-
mined by the value of f on the boundary d). This can also be used to develop a

numerical scheme to solve the 2D Laplace equation.

2.2.4 Analytical and numerical solutions of the 3D Laplace
equation

A solution of Laplace’s equation is uniquely determined if the value of the function
is specified everywhere on the boundary (Dirichlet boundary conditions) or the nor-
mal derivative of the function is specified everywhere on the boundary (Neumann
boundary conditions) or a linear combination of the solution and its normal deriva-
tive is specified on the boundary (Robin boundary conditions). For many problems
neither of the three boundary conditions above is suitable. We may then use the nat-
ural boundary conditions. Natural boundary conditions usually set the solution to a
distinct value at infinity (asymptotic boundary conditions). The kind of boundary
condition can vary from point to point on the boundary, but at any given point only
one boundary condition can be specified. When the region on which the PDE prob-
lem is posed is unbounded, one or more of the above boundary conditions is usually

replaced by a growth condition that limits the behavior of the solution at infinity.
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Coordinate System [ Solufion Functions

Cartesian Exponential, Circular and Hyperbolic functions
Circular cylindrical Bessel, Exponential and Circular functions
Conical Ellipsoidal harmonics and Power

Ellipsoidal FEllipsoidal harmonic

Elliptic cylindrical Mathieu and Circular function

Oblate spheroidal Legendre polynomial and Circular function
Parabolic Bessel and Circular function

Parabolic cylindrical | Bessel, Circular and Parabolic cylinder functions,
Paraboloidal Circular function

Prolate spheroidal Legendre polynomial and Circular function
opherical Legendre polynomial, Power and Circular functions

Table 2.2.1. Analytic solution functions for different coordinate systems where the
method of seperation of variables can be applied.

The method of separation of variables

The method of separation of variables is a suitable technique for determining solutions
to linear PDEs, usually with constant coefficients, when the domain is bounded in
at least one of the independent variables. It turns out that in the three-dimensional
Laplace’s equation, there are some coordinate systems in which the solution takes
on the form R (£1,£2,€3) - X1 (&1) - X2 (€2) - X3(£3), where the additional factor
R is independent of the separation constants. Laplace’s equation can be solved by
separation of variables in 11 coordinate systems [76, 59]. The form these solutions take
is summarized in Table 2.2.1. In addition to these 11 coordinate systems, separation
can be achieved in two additional coordinate systems by introducing a multiplicative
factor.

In addition to the method of separation of variables, the finite Fourier transform
and the power series method can be used to find an analytic solution to the Laplace

and the Poisson boundary value problems.

Numerical methods

For all the electromagnetic problems that cannot be solved analytically, numerical

methods are the only way to proceed. Most of the industrial packages are based on
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one of the three classes of numerical techniques [6]:

The finite difference method (FDM) discretizes the differential operator at
cach point of a rectangular grid covering the entire region of interest. The differential
operator is approximated by an algebraic expression (difference formula) with refer-
ence to the adjacent nodes. This leads to a large system of linear equations and the
solution requires inversion of large and sparse matrices. The FDM usually utilizes
uniformly spaced grids. The results usually are less accurate than other methods.

The finite element method (FEM) is based on division of the volume of space
in which the Laplace or Poisson equation is satisfied into small volumes (the finite
elements). Within each finite element a simple polynomial is used to approximate
the solution. To obtain the polynomial a variational formulation over the volume is
used. The variational quantity to be minimized is the total electrostatic or magne-
tostatic energy stored in a region. Element geometries and unknowns are expressed
by polynomials with nodal values as coefficients. Relating these approximations to
the operator equation through minimizing the energy functional yields the solution
at the nodes. The FEM utilizes either uniform or nonuniform grids and it is possible
to implement automatic mesh size control. Even though, this method is considered

superior to FDM, but still suffers from some drawbacks. Among them are:

e The finite element techniques requires the mesh be extended to a reasonable
distance with either potential or derivative boundary conditions applied to the
outer surface, so that the truncation has an insignificant effect on the region of

interest. This usually leads to a large number of finite elements.

e For problems where the magnetic or the electric field in the region of inter-
est differ by a large ratio ("106 ) in the maximum and minimum value, the
FEM elements have to start with extremely small element size and gradually
adapt themselves to much larger element size. This will increase the number of

unknowns substantially.
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Most of these techniques using FDM or FEM utilize relatively low approximation
order and provide solution as a data set in the region of interest. They also require
a prohibitively large number of mesh points and careful meshing. Both FDM and
FEM are geared to solve electric and magnetic potentials. Since in beam physics
applications the knowledge of the values of electric or magnetic field is required,
these values have to be extracted by numerical differentiation of the potential. But
the numerical differentiation process is very sensitive to numerical, truncation and
round off errors.

The boundary element method (BEM) or source based field models the field
inside of a source free volume due to a real sources outside of it can be exactly
replicated by a distribution of fictitious sources on its surface. The error due to
discretization of the source falls off rapidly as the field point moves away from the
source. Since the discretization is done only on the surface, the dimensionality of the
problem is decreased by one. It makes the modeling of the problem easier and more
user friendly. The trade off here is that the matrices generated by BEM are usually
smaller and denser matrices. One technique that falls in this category is the image
charge method. This requires proper choice of planes/grids to place point charges (or
Gaussian distribution) and solve a large least square fit problem to find the charges.
This involves a lot of guess work and computation time involved in getting the right
solution. Knowing these charges, the potential and field can be directly computed
everywhere in space. In problems where extreme ratios exist between smallest and
largest details of the structure, BEM will be the method of choice. Finally, since the
field and the potential everywhere in space are being computed from the actual charge
distribution on the boundaries, it will result in extremely accurate results when this
method is applied to particle ray tracing.

BEM methods are only applicable to problems for which Green’s functions can be

defined. This places considerable restrictions on the range and generality of problems
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to which boundary elements can usefully be applied. And once again these methods
usually compute the potential and not the field.

New methods that use the Helmholtz vector decomposition theorem are being used
in recent years to overcome the difficulties encountered by the BEM. The techniques
based on this method have the added benefits of giving the field directly and are
particularly suitable for beam physics applications. The references [63, 74, 73, 72, 75]
describe techniques based on this method to compute multipole decomposition of the
fields. Other applications based on this method include vector tomography [60] and
incompressible flows [33].

In beam physics, the detailed simulation of particle trajectories through magnets
in spectrographs and other large acceptance devices requires the use of detailed field
information obtained from measurements. Likewise, for high energy accelerators like
the LHC, higher order description of the beam dynamic via one-turn maps is required
to study the long term beam stability [69, 35]. The construction of such high order
one-turn truncated Taylor maps [17] requires the precise information of the electro-
magnetic field in the individual electromagnetic components (quadrupoles, dipoles,
sextupoles etc.) of the lattice.

It is commonly known that for a device that satisfies midplane symmetry, the entire
field information can be extracted from the data in the midplane of the device [17].
However, it is well known that this method has limitations in accurately predicting
nonlinear field information outside the immediate vicinity of the midplane because
the extrapolation requires the computation of higher order derivatives of in-midplane
data, which is difficult to do with accuracy if the data is based on measurements.
Thus it is particularly useful to employ techniques that rely on field measurements
outside the midplane. In particular, in modern particle spectrographs it is common to
measure the fields on a fine mesh on 2 to 4 planes outside the midplane. These data

have frequently been used to model the overall field as a superposition of point-charge
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fields of so-called image charges [32, 18]. However, the computational effort required
for this approach is large, as it requires the inversion of a matrix with a dimension
equal to that of the number of image charges.

However, the out-of-plane field measurements in essence provide field data on the
top and bottom surfaces of a box containing the region of interest through which the
beam passes. If the planes extend outward far enough to a region where the fringe
field becomes very small, or can easily be modeled, and inwards far enough that the
field becomes rather homogenous, field data are known on an entire surface enclosing
the region of interest. The method we present can extract the field information as a
multipole expansion in the volume of interest if a discrete set of field measurements

are provided on a closed surface enclosing the volume of interest.

2.3 The Differential Algebra ,D,

For real analytic function f in v variables, we form a vector that contains all Taylor
expansion coefficients at # = 0 up to a certain order n. The vector with all the
Taylor coefficients is called the DA vector. Knowing this vector for two real analytic
functions f and g allows to compute the respective vector for f+ g and f-g, since the
derivatives of the sum and product function is uniquely defined from those of f and
g. The resulting operations of addition and multiplication lead to an algebra, the
so-called Truncated Power Series Algebra (TPSA) [7]. The power of TPSA can be
enhanced by the introduction of the derivations & and their inverses, corresponding
to the differentiation and integration in the space of functions. This resulted in
the recognition of the underlying differential algebraic structure and its exploitation,

based on the commuting diagrams for the addition, multiplication, and differentiation
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and their inverses:

f.g %+ FG f9 -2 FG

+.—l laa,e-,/l 19@ (2.3.1)
fﬂ:g—»FgG f)g-wm—»F%G
T T
Foo=ts F
0071 2025
8f,071f —— OoF,05 F

In the equation above the operation T is extraction of the Taylor coefficients of

prespecified order n of the function. Thus, the operation 7' can be used to create

a DA vector from a function. The operation T' is an equivalence relation, and the

application of T corresponds to the transition from the function to the equivalence

class comprising all those functions with identical Taylor expansion to order n. The

symbols &, &, ®, @, BO and 361 denote operations on the space of DA objects

which are defined such that the commuting relation expressed in the equation (2.3.1)
holds.

Using the Differential Algebra and analytic formulae to compute the n-th order
derivative of an univariant fundamental function, like sin z, cos z, log =, tan = etc., we
can compute the derivatives up to order n of functions in v variables. The detailed
description of obtaining the n-th order Taylor expansion for a multivariate function
that is expressible on a computer is described in [17]. Also, composition of two
multivariate functions can be defined using the DA. Many problems involving the use
of DA techniques can be formulated as fixed-point problems, such as the inversion of a
multivariate function. Here fixed point theorems can be applied to show that existence
of the solution, and this also provides a practical means to obtain the solution [39].

As mentioned before the DA techniques have been widely applied in beam physics,
asteroid problems and other problems involving the solution of ODEs or PDEs. The

focus of the work we present is finding a solution to the Laplace and Poisson equation

27

BDoarnrandinicrad with nermiccinn of the cormurninht oovvnar Enirdther reanradnicetionn nroahibitead withooit marmiccinn



using DA techniques. In this context it is worthwhile to look at the techniques that

already use DA to solve PDEs [17].

2.3.1 Solution of PDEs using DA

The complicated PDEs for the fields and potentials stemming from the representation
of Maxwell’s equations in particle optical coordinates could be iteratively solved in
the DA framework to any order in finitely many steps by rephrasing them in terms

of a fixed-point problem [17, 54]. For example, consider the general PDE

d i} d 0¢ 0 0\ _
al-é-w— (agé-;) +bl§§ (bzﬁg) + 015; (825) =0,

where a1, by, ¢1, a9, bo, and c9 are functions of z,y and z. The equation above can be

written in fixed point form

. L1098 o= J [0 8} A0 |
¢($,yaz)—¢|y=0+_/;b2 {3y|y=0 ./y(bl ox (a25$)+5152 (025‘7))}.

If ¢ and 0¢/0y are specified on the ¥y = 0 plane then it is possible to iteratively
calculate various high orders in y. Techniques based on the fixed point scheme for
PDEs can be used to solve the Laplace equation when the potential ¢ and the normal
derivative ¢ /0y are specified e.g. on the midplane of a magnet. Also, by considering
the Laplace equation in cylindrical coordinates, it is possible to devise a technique
to obtain the magnetic field of a magnet with cylindrical symmetry when the field is

specified on the central axis.

2.3.2 Taylor transfer maps

An ensemble of particles with similar coordinates is called a beam. Detailed under-
standing of the beam dynamics requires the study of the motion of the reference
particle as well as the motion of the particle in the relative coordinates. The position

and momenta are usually sufficient to describe the motion. The state vector is given
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by

Z_:(S) = (mmpﬂ:?y:pys 2:102)1

where the point (z,y, 2z) and the momentum vector (p_'r, Dy, P 3) gives the position and
the momentum of a particle, and the arclength s along the reference orbit is used as
the independent variable. The space spanned by the state vector is called phase space
and the volume of the phase space is called emittance. At cach point on the reference
orbit it is possible to define an unique orthogonal coordinate system, denoted by
(éx, éy, és), satisfying a certain set of conditions {50, 17]. In this coordinate system
the motion of the particles in the beam can be described using relative coordinates,

which are given by

i
a=pz/py
Z(s) = y
b= py/pgy
I =k(t —tp)

§ = (E — Ey) /Eg

where the position (z,y) describe the position of the particle in the local coordinate
system, py is a fixed momentum and Ej and £( are the energy and the time of flight
of the reference particle, @ and b are the momentum slopes, E is the total energy,
and k has a dimension of velocity which makes [ a length like coordinate. The point
Z=0 corresponds to the reference particle.

The transfer map or transfer function M relates initial conditions at sy to the
conditions at s via

—

Z (s) = M(sq, )

A~

Z (30)) :
Transfer maps are origin preserving, M (6) = 0, and the transfer maps have the
property that

M (s1,82) 0 M (s9,51) = M (s, 52),

which says that the transfers maps of systems can be built up from the transfer maps

of the pieces. For a deterministic system (a unique solution exists) the transfer map
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is the flow of ODEs

-‘g = f(2,9), (2.3.2)
in the independent variable s. For most dynamical systems, the transfer map can not
be represented in a closed form. For weakly non-linear systems, like an accelerator
system, the map can be expanded as a Taylor series. Usually, the Taylor expansion
converges rapidly. Implementation of such a map on a computer would require the
map to be truncated at a certain order. From the implementation point of view the
Taylor transfer map is an array of DA vectors with each DA vector being an array
storing the coefficients of the truncated Taylor series expansion of the final phase
space coordinate in terms of the initial phase space coordinates. The Taylor transfer
maps can be used to replace and speed up element-by-element tracking, to look at

aberration content, or to monitor a design process [45]. A detailed discussion of the

properties and use of the Taylor transfer maps can be found in [17).

Generating transfer maps

To generate a transfer map we have to solve the equation 2.3.2. For beam physics
applications, the set of ODEs describing the equations of motion when the reference

trajectory is restricted to a plane and the energy is conserved are given by

’

z =a(l+hzx) 1
Ps

y =b(1+hz) 20,
Ps

! 1

[ = {(1+hw)ﬂp_ﬂ_1}£‘
1+ 19 ps v

/ 1 E B B
a = [ +q@-—-—$-+b—3—m——”] -(1+hx)+h.p—0,
1+n0PsXeD  XmOPs Xm0 Ps
/ 1 E B B
1+700PsXeD Xm0 Xm0 Ps
!

§ =0, (2.3.3)
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Beam Physics

ODE's
: : ODE Integrators Magnetic
g (Runge-Kutta) AND/OR Electric
geora DA Integrators Ficld Information
Taylor Map

Figure 2.3.1. Flow chart for extracting the Taylor transfer maps from either the
electric or the magnetic field information or both.

where h is the radius of curvature, the ratio py/ps is given by

1
po _ [ n(2+m) _m_2_a2_bz 2
ps  \no(2+m) md ’
the ratio n of the kinetic to rest mass energy is given by n =

(E —eV (z,y,8))/ (mcz), the x;mo = po/ (ze) is the magnetic rigidity and x.q =
(poug) / (ze) is the electric rigidity. In the equation (2.3.3) By, By, B, and Ey, Ey, E,
represent the z,y and z components of the magnetic field and the electric field.
Using the differential algebra and the knowledge of the magnetic and the electric
field we can solve the equation (2.3.3) by using one of the ODE integration schemes.
Figure 2.3.1 shows the flow chart for the extraction of transfer maps. Traditionally,
it was only possible to extract the transfer maps to low orders (< 3), using the
perturbative analytic approach. However, the introduction of differential algebra to
beam physics has made it possible to extract maps to in principle arbitrary order.

Further, the direct availability of the derivation 9; and their inverses 9; L allows
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to devise efficient numerical integrators of any order. The code COSY INFINITY
makes it possible to use DA integrators or a Runge-Kutta integrator of order eight
with automatic step size control based on a seventh-order scheme for this purpose.
The Runge-Kutta integration can be carried out not only with real numbers but also
for DA vectors. At each time step the eighth order Runge-Kutta scheme requires the
evaluation of the function f at thirteen points to compute the Taylor transfer map
[51, 64, 48], which in turn requires the electric and magnetic field information at these

thirteen points.

2.4 Taylor Models

Taylor model methods are newly developed techniques that unify many concepts
of high-order computational differentiation with verification approaches covering the
Taylor remainder term. These were developed as a better alternative to the conven-
tional interval methods that have limited practical applicability. The reasons for the
failure of conventional interval methods for large dimensional and domain size prob-
lems are discussed in [50, 42, 53]. The results obtained with Taylor model methods
include verified optimization, verified quadrature and verified propagation of extended
domains of initial conditions through ODEs, and approaches towards verified solution
of DAEs and PDEs.

Definition 1 (Taylor Model) Let f : D C RY — R be a function that is (n + 1)
times continuously partially differentiable on an open set containing the domain D.
Let zy be a point in D and P the n —th order Taylor polynomial of f around xy. Let

I be an interval such that
f(xz) € P(x —zqg) + I forallz € D.
Then the pair (P, I) is called an n — th order Taylor model of f around z on D.
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For the problems we discuss in this work the domain D is always [-1,1]Y C RV. A
full theory of Taylor model arithmetic for elementary operations, intrinsic functions,
initial value problems and functional inversion problems has been developed; see [50,
42, 53] and references therein. The arithmetic and the computational implementation
is performed in such a way that the interval enclosure is mathematically rigorous,
taking into account all round-off and threshold cut-off errors due to floating point
arithmetic. Details about the verified implementation of arithmetic operation in the
code COSY INFINITY can be found in [66, 53).

For the purposes of the further discussion, one particular intrinsic function, the
so-called antiderivation, plays an important role. We note that a Taylor model for
the integral with respect to variable i of a function f can be obtained from the Taylor
model (P, ) of the function by merely integrating the part F,,_1 of order up to order

n — 1 of the polynomial, and bounding the n-th order into the new remainder bound.

2.4.1 The Taylor Model integration scheme

We start out by defining the indefinite integration for a Taylor model in one variable
and then proceed to define a special finite integral that we are going to use extensively

in this work.
Definition 2 For an n-th order Taylor model T'= (P,I) and k =1,...,v, let

Tk
Qr = /0 Pln-1) (@152 k=1, &k Th4 1+ T0) d-

The antiderivative a;l of T is defined by

35R.) = (@0 (B (R~ R 1) )

More details about the implementation of the anti-derivation operation can be

found in [22].

33

BDoarnrandinicrad with nermiccinn of the cormurninht oovvnar Enirdther reanradnicetionn nroahibitead withooit marmiccinn



| o PP Rt TR |

s

Let TV = (P, 1), be a n—th order Taylor model in v variables. While solving PDEs

we commonly encounter the finite integration

Jlo=1) .. /;111‘” (xl;---xkulagk,$k+1»“‘ ,a’ﬂu) A€,

where J(¥=1) is the resulting Taylor model of order n in (v — 1) variables, and k =
1,...,v. We now describe the steps to compute the Taylor model J (v-1) using the

antiderivative 66_1 1 operator.

1. Split the Taylor Model TV = (P, I) in to a polynomial P of order n and interval
1.

2. Construct a new Taylor model GV = (P, I¢), where I, = [0,0].
3. Apply the antiderivative operator 85_11 to the Taylor model GV.

4. Evaluate the Taylor models 65_1 kg (at £1 =1) and 6{1 Tev (at £; = —1) and

subtract them to obtain a new Taylor model RV~1,

5. Add the interval 2- I to the Taylor model RV~ to give the Taylor model after

integration with respect to the &, variable.

The steps 1 through 5 can be repeated for the integration in more than one variable.

2.4.2 An example of Taylor Model expansion

For a rectangular surface enclosing the volume of interest we now show the Taylor

o
7 — 1 | ) over one surface element and one vol-

model expansion of the kernel 1/ (41r

ume element. A point, 7 = (z,y, z), inside the volume element centered at (zq, %0, z0)

is described by
r = z9+0.5- Az,
y = Yo+05-Alyy,
z = 2z9+0.5- A\3Az,
34
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where Axy, Ay, and Az, are the dimensions of the rectangular volume element and
I
the parameters A1, Ao, A3 € [—1,1]. A point, 'f"! = (:1: A E ), on the surface element

centered at (zg,ys, 2s) is described by

r = z3+05- Az,

Ys +05- )\5.&@‘3,

<
Il

b4 = 23,

where Azg and Ayg are the dimensions of the rectangular surface element and the
parameters Ag, A5 € [—1,1]. A schematic diagram of the rectangular volume element,
rectangular surface element and the rectangular box enclosing the region of interest
is shown in Figure 2.4.1.

For illustration we choose the volume element to be centered at (1,1, 1) and surface
element at (2,2,3) and Az; = Ays = 1/16 and Azy = Ayy = Azy = 1/8. The
Taylor model expansion of the kernel with respect to the parameters Ay, Ag, Az, Ay
and A5 using Taylor model is given in tables 2.4.1 and 2.4.2. In the representation
of the Taylor model expansion, the entries in the first column provide the number
assigned to each of the coefficients in the Taylor model expansion to easily identify
them. The entries in the second column provide the numerical value of the coefficients.
The entries in the fourth through eighth provide the expansion orders with respect to
the parameters Ay, A9, A3, Ay and A5. The total order for each coefficient is the sum
of all the orders in columns four through eight, which is given in the third column.

The Taylor Model integration of the kernel over the surface element, dS, can be

expressed as

dydz f / —dMgd)
/tf34’r‘r—r 147Tr—r e

Table 2.4.3 shows the Taylor model integration of the Taylor model expansion of the

kernel given in tables 2.4.1 and 2.4.2.
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Figure 2.4.1. The figure shows a volume element centered at (zg, yg, 29) element and
a surface element (zs, ys, 2s).
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I COEFFICIENT ORDER EXPONENTS

1 0.2012846454507073E-01 0 00 00 O
2 0.1529273937765291E-03 1 10 00 O
3 0.1529273937765291E-03 1 01 00 O
4 0.2334154957641759E-03 1 00 10 O
5 -.3823184844413227E-04 1 00 01 O
6 -.3823184844413227E-04 1 00 00 1
7 -.T7724385987298169E-06 2 20 00 O
8 0.348b5629176768297E-06 2 11 00 O
9 -.T7724385987298169E-06 2 02 00 0
10 0.5320170848751610E-05 2 10 10 0
11 0.5320170848751610E-056 2 01 10 0
12 0.1544877197459632E-056 2 00 20 0
13 0.3862192993649084E-06 2 10 01 0
14 -.8714072941920742E-06 2 01 01 O
15 -.1330042712187903E-056 2 00 11 0
16 -.8714072941920742E-06 2 10 00 1
17 0.3862192993649084E-06 2 01 00 1
18 -.1330042712187903E-05 2 00 10 1
19 -.4827741242061355E-07 2 00 02 0
20 0.2178518235480185E-06 2 00 01 1
21 -.4827741242061355E-07 2 00 00 2

Table 2.4.1. The Taylor model expansion of the kernel. The coefficients up to second
order are shown.
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22 -.3526083774525404E-07
23 0.8876341263195013E-08
24 0.8876341263195013E-08
25 -.3526083774526404E-07
26 0.1354809982277133E-07
27 0.2021018196702667E-06
28 0.1354809982277133E-07
29 0.9690617197256710E-07
30 0.9690617197256710E-07
31 -.9032066548514218E-08
32 0.2644562830894063E-07
33 -.4438170631597507E-08
34 -.2219085315798754E-08
35 -.677404991138567CE-08
36 -.5052545491756669E-07
37 -.2422654299314178E-07
38 -.2219085315798754E-08
39 -.4438170631597507E-08
40 0.2644562830894083E-07
41 -.5052545491756669E-07
42 -.6774049911386670E-08
43 -.2422664299314178E-07
44 -.6611407077235133E-08

45 (0.5547713289496883E-09
46 0.8467562389232092E-09
47 0.1109542657899377E-08
48 0.1109542657899377E-08
49 0.1263136372939167E-07
50 0.5547713289496883E-09

51 -.6611407077235133E-08

52 0.8467562389232092E-09
53 0.5509505897695944E-09
54 -.1386928322374221E-09

556 -.1386928322374221E-09
56 0.5509505897695944E-09

W W w W wwowwowwwwwwowwowowowowowowwowowookowowowwww
WK = O RNMNNE R OO O k = = = = = OO0 000000000000 oo

O O 0 Ok OO M OO K OO N KBMOOOMNEIKOOOWMNDMNEIEI ROOOO
O HNWO OO = RO OO O O O O O0O0 00000 0O

O 000 C O OO OOEOO O E-IMNMOOEORE-NOOROERNO=BNW
OO0 O O P+ O O OO0 KR OO0 KR O NKMOORERONRL, OO RONREROWNROO

VAR REFERENCE POINT DOMAIN INTERVAL
1 0.000000000000000 {-1.000000000000000 » 1.000000000000000 ]
2 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
3 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
4 0.000000000000000 [~1.000000000000000 , 1.000000000000000 ]
5 0.000000000000000 [-1.000000000000000 » 1.000000000000000 ]
REMAINDER BOUND INTERVAL
R (-.6787457395636954E-007,0, 17693690345686471E-006]

e o o o o oo o o oo o o R oo ko o AR e o ok ok e
Table 2.4.2. The Taylor model expansion of the kernel. The third order coefficients,

the reference points and the remainder bound interval are shown.
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I COEFFICIENT ORDER EXPONENTS

1 0.1965667222668859E-04 0 00 00 O

2 0.1493431579848917E-06 1 10 00 O

3 0.1493431579848917E-06 1 01 00 O

4 0.2279448200822031E-06 1 00 10 O

5 ~-.7b543345690720868E-09 2 20 00 0

6 0.3403934742937790E-08 2 11 00 O

7 -.7543345690720868E-09 2 02 00 0

8 0.5195479344483994E-08 2 10 10 0

9 0.5195479344483994E-08 2 01 10 O

10 0.1508669138144172E-08 2 00 20 0

VAR REFERENCE POINT DOMAIN INTERVAL
1 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
2 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
3 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
4 0.000000000000000 [-1.000000000000000 , 1.000000000000000 ]
5 0.000000000000000 {-1.000000000000000 , 1.000000000000000 ]
REMAINDER BOUND INTERVAL

R [-.1628051142682157E-008, 0.2054209443924109E-008)

s e o s s o ol s e ol ol s sl e ok o e sl ol o ofe e ol ol ofe s ol e o o ook s skl o ok sl ookt il kol lolololokokok

Table 2.4.3. The Taylor model expansion of the kernel. The third order coefficients,
the reference points and the remainder bound interval are shown.
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CHAPTER 3

3D Laplace and Poisson solver

using DA

In this chapter we describe a new method to solve the Poisson equation

V2¢(7) = p(F) in the bounded volume Q C E3, (3.0.1)

Vo (7) = g(7) on the surface 9.

In comparison to the Neumann problem where only the component of the gradient
normal to the surface is specified, the boundary condition specified in the equation
(3.0.1) requires the full gradient to be specified on the surface. However, as we will see
later that the numerical scheme we develop requires all components of the gradient to
be specified on the boundary. In practice this poses no problem as we often measure
or have information about the complete field rather than just the normal component.

In the equation (3.0.1) the source density p () and the normal component of the

gradient g (¥) are related by

fQ p(F)ddz = /3 g () i, (30.2)

where 72 is the unit vector perpendicular to the surface 92 at 7. The equation (3.0.2)

states that the net field across the surface of the volume () is equal to the total
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amount of field created at the sources inside the volume §2, and this follows directly
from application of the divergence theorem to the equation (3.0.1). The potential

#1 (7) due to the source density p (7) in vacuum is given by

L [el)z3
¢1(ﬂ—4w60[9 s

The potential ¢y (7) satisfies the Poisson equation
V24, (7) = p(7) in the bounded volume Q C B3, (3.0.3)
Now, subtracting the equation (3.0.3) from (3.0.1), we get

V2 (4(7) - ¢1 (7)) = 0 in the bounded volume Q C E3,
V (¢(F) — ¢1 (M)

fl

g(7) — Vo1 (7) on the surface 9Q.

Let a new potential ¢ (7) and a vector field f () be defined by

v = 60— 61,
f0 = 70 -ver (.

The potential 4 (7) is then the solution to the Laplace equation

V2y () = 0 in the bounded volume Q C E3, (3.0.4)

Vi (F) = f(7) on the surface 9.

We have succeeded in splitting our original problem of solving the Poisson equation
(3.0.1) into two independent problems, the solutions of which can then be combined
to get the final solution. In the first problem we find the scalar potential ¢ () that
satisfies the Laplace equation inside the volume 2 enclosed by surface 99, when
the gradient of the potential, Vi) (7) = f (7) is specified on the surface 9. In the
second problem we compute the potential ¢; (7) due to the source distribution p (7)
in vacuum. Both these elements can then be combined to get the solution to the

Poisson equation.
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In the section 3.1.1 we first discuss the benefits of using the boundary data and
present the analytic closed form solution for the 2D case that can be easily found
by application of Cauchy’s integral formula. We then use a 2D example to highlight
the advantages of the methods that use the boundary data to compute the solution.
In section 3.1.3 we present the theory and the implementation of the new scheme
to find the solution of the 3D Laplace equation when the gradient of the solution
is specified on the surface enclosing the volume of interest . This scheme is based
on the Helmholtz theorem and the tools of the code COSY INFINITY [17, 23, 24].
In the section 3.1.3 we present an application of this new scheme to a theoretical
bar magnet problem. We also extend the theory to find the verified solutions of
the Laplace equation 3.2. The implementation and the results of the application to
the analytic bar magnet problem are discussed. The rest of this chapter describes a
new DA based technique to compute the magnetic field due to an arbitrary source
distribution.

3.1 The Laplace solver
The 3D Laplace equation
V2¢ (7) = 0 in the bounded volume Q) C E3 (3.1.1)

is one of the important PDEs of physics, describing among others the phenomenol-
ogy of electrostatics and magnetostatics. In many typical applications, not only the
normal derivative of ¥ but indeed the entire gradient V4 is known on the surface;
for example, in the magnetostatic case the entire field B = V1 is measured, and
not merely the component normal to the surface under consideration. Thus the field
computation problem can be viewed as solving a boundary value problem for the

three dimensional (3D) Laplace equation for the field, i.e. to obtain the solution of
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the PDE

V24 (7) = 0 in the volume © C E?

where V) (7) = f(7) is specified on the surface d.

As discussed in the chapter 2 the existence and uniqueness of the solution for the 3D
Laplace equation case can easily be shown through the application of Green’s formulae
or by using mean-value formulas. But, the analytic closed form solutions for the 3D
Laplace equation case can usually only be found for special problems with certain
regular geometries where a separation of variables can be performed. However, in
most practical 3D cases, numerical methods are the only way to proceed. Frequently
the finite difference or finite element approaches are used to find the approximations of
the solution on a set of points in the region of interest. But because of their relatively
low approximation order, for the problem of precise solution of PDEs, the methods
have very limited success because of the prohibitively large number of mesh points

required. Furthermore, direct validation of such methods is often very difficult.

3.1.1 Methods using boundary data

Boundary data methods such as those utilized below are based on a description of
the interior field in terms of particular surface integrals involving the surface data.
These approaches have various advantages. Firstly, the solution is analytic in terms
of the interior variables, even if the boundary data fail to be differentiable or are even
piecewise discontinuous; all such non-smoothness is removed after the integration is
executed. Hence a Taylor polynomial approximation in terms of interior variables
can be performed; and we expect that a Taylor approximation of a certain order will
provide an accurate approximation over suitable domains.

Secondly, since for the PDEs under consideration here the solution functions are

known to assume their extrema on the boundary because of analyticity or harmonic-
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ity, a method that uses boundary data is expected to be robust against errors in
those boundary data with errors in the interior not exceeding the errors on the sur-
face. Thirdly, if the boundary data given have statistical errors, such errors have a
tendency to even average out in the integration process as long as the contributions
of individual pieces of integration are of similar significance. Thus we expect the
error in the computed field in the interior to be generally much smaller than the
error in the boundary data. This ensures that the methods using boundary data are

computationally stable .

3.1.2 The two dimensional case

As an introduction to the general approach, we begin with the discussion of the 2D
case, the theory of which can be fully developed in the framework of elementary
complex analysis, and which also describes the situation of static electric or magnetic
fields as long as no longitudinal field dependence is present. It is based on the use
of Cauchy’s integral formula stating that if the function f is analytic in a region

containing the closed path C, and if « is a point within C, then

fla) == g LGy, (3.12)

T omi Joz-a

where the integral denotes the path integral over C. Cauchy’s formula is an integral
representation of f which permits us to compute f anywhere in the interior of C,
knowing only the value of f on C. This integral representation of f is also the
solution of the 2D Laplace equation for the primitive of (Re(f), — Im(f)) with the
function f specified on the path C.

Now, suppose a random error of § (z) is introduced in the measured data around
the path C. Then by the equation (3.1.2) we can compute the error E(a) introduced

in the computation of f(a) at some point a inside C as

By f DETEE,, a1 j{; 2@ (313

T omiJo z—a 2mi Joz—a
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We note that while E(a) is given by a Cauchy integral, E need not be analytic since
8(2) need not assume the function values of an analytic function. In fact, if it would,
then it already would be uniquely specified on any dense subset S of C, which removes
the freedom for all values of E on points on C' that are not in S.

While the error E itself may be bounded in magnitude, if the integral is approx-
imated by one of the conventional numerical quadrature methods, the result can
become singular as the point « approaches the boundary C. This case may limit the
practical use of the method and needs to be studied carefully. As an example, we
consider the case of quadrature based on adding the terms of a Riemann sum, i.e.

the approximation

z Nz 9\ #j -
% % j£ {)xdz ~ 2;“ ];1 % . (zj —zj_l) = F(a) (3.1.4)

where the N points z; are spaced equidistantly around C; since C'is closed, 2 = zpy, .
By studying the approximation E(a) as the point a approaches the boundary C, we
can analyze the stability of the method with respect to the discretization of the path
C.

As an example, we choose the path C as a circle of radius R enclosing the region of
interest. We assume a random error of § () (:1:10_2) is introduced in the measured
data around C. The point « is given by r - exp (i - ¢) and the points zj are given
by R-exp(i-2nj/Ny) for j=0,...,N. Letting Jm(zj;) denote the error assigned
to point z; in error set m, for each of these error sets we express the Riemann sum

Cm (@) for point & by
1
(@ =5=" ) +— 5
2mi b (zj "a(?.)) N

We then form the average of the magnitude of the error over N, error sets to obtain
{ o8
) =5 2 Km (@)
m=1
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Note that n(r) still depends on the phase ¢. However, in the statistical limit there
is apparently invariance under rotation by exp (i - 2m/N;); and one quickly sees that
there are two limiting cases for the choice of the phase. These are the case ¢ = 0,
where the a will eventually collide with the z; for j = N, as r — R and thus a
"worst case” divergence will appear, and the case ¢ = 27/2N,, in which case the
a will approach the mid point between zj for j = N, and zj forj=1asr— R.
Choosing sufficiently fine discretization of the path and sufficiently many error sets
dm, the quantity 7(r) for these two cases will be a good measure for the accuracy
that can be achieved with the surface integral method.

For our specific example, we choose random errors of maximum magnitude 1072
at N, = 10,000 points on the circle of radius R = 2. For each value of r, we perform
the computation for a total of N = 10,000 error sets. The results of this analysis
are shown as plots in Figure 3.1.1a and Figure 3.1.1b for the two cases that represent
the "worst case” and the "best case” situation.

We first observe that sufficiently away from the surface, the expected smoothing
effect is happening, and the errors in the function values are indeed well below the
errors assumed on the surface. A rough quantitative analysis shows that this error is
about two orders of magnitude below the surface data error, corresponding well with
the statistically expected decrease of the error by 1/4/N;. As o approaches the curve
closer than 10_3, in the "best case” situation, the error rises to about 10_2, which is
because now only nearby grid points contribute to the sum and thus the smoothing
effect disappears. In the ”worst case” scenario, divergence actually happens; but the
average error is still at the level of the original random error of 10™2 for values of r
that are only about 104 away from the radius 2.

So overall we see that the method performs significant smoothing, and even with
the simplest discretization as a Riemann sum, good accuracy is maintained even as

we approach C. We note in passing that with more sophisticated quadrature meth-
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Figure 3.1.1. (a) The plot shows the dependency of n (1) on the radius r. (b) The plot
shows the dependency of 7 (r) on the radius as the radius r approaches the boundary.
10,000 error sets (Ng) around the circle or radius R = 2 were chosen for the analysis.
We show the plots for both the best and the worst case scenario.
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ods, for example those based on Gaussian methods [17], the divergence effect can be

significantly controlled.

3.1.3 The three dimensional case

The scheme we use for the 3D case is based on the Helmholtz vector decomposition
theorem discussed in the sections 2.1.1 and 2.1.2. We begin by representing the
solution of the PDE via the Helmholtz theorem, which states that any vector field B

which vanishes at infinity can be written as the sum of two terms

B(#) = VxA@E+ 6’% (&), where B (3.1.5)
” _ 1 ii(Ts) - B (Ts) 1 [ V:B (&)
W) = Gl oAl C g Eom
— s o
-, 1 ﬁ(-‘,s)XB(-’s) 1 V x B(fv}
= g | X220,
4@ in Joo T E-dsl - in Jo TEi- 7l

Here 9N is the surface which bounds the volume Q. #; denotes a point on the
surface 99, and #, denotes a point within 2. 7 is the unit vector perpendicular to
0f) that points away from f2. V denotes the gradient with respect to .

The first term is usually referred to as the solenoidal term, and the second term as
the irrotational term. Because of the apparent similarity of these two terms to the
well-known vector- and scalar potentials to B, we note that in the above representa-
tion, it is in general not possible to utilize only one of them; for a given problem, in
general both ¢,, and A; will be nonzero.

For the special case that B = V_’V, we have V x B = 0; furthermore, if V is a
solution of the Laplace equation V2V = 0, we have V - B = 0. Thus in this case, all
the volume integral terms vanish, and ¢,, (¥) and A; (#) are completely determined

from the normal and the tangential components of B on the surface 9Q via

_ 1 [ (@) B (&)
¢n (T) = - /80 = ds (3.1.6)
A (3) = _4]_?{ fa Q”f”’rj)_f st l(“)ds. (3.1.7)
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For static electric or magnetic fields without sources in 2, which are characterized
by the Laplace problem that we are studying, the divergence and the curl of the
field vanish and hence these fields can be decomposed into irrotational and solenoidal
parts. For any point within the volume 2, the scalar and vector potentials depend
only on the field on the surface Q. And due to the smoothing properties of the
integral kernel, the interior fields will be analytic even if the field on the surface data

fails to be differentiable.

Surface integration and finite elements via DA

Since the expressions (3.1.6) and (3.1.7) are analytic, they can be expanded at least
locally. The idea is now to expand them to higher orders in BOTH the two components
of the surface variables #5 and the three components of the volume variables Z. The
polynomial dependence on the surface variables will be integrated over surface sub-
cells, which results in a highly accurate integration formula with an error order equal
to that of the expansion. The dependence on the volume variables will be retained,
which leads to a high order finite element method. By using sufficiently high order,
high accuracy can be achieved with a small number of surface elements, and more
importantly, a small number of volume elements. We describe the details of the
implementation in the following.

The volume (Q is subdivided into volume elements. Using the prescription for the
surface field, the Taylor expansion of the field is computed at the center of each volume
element. The final solution inside the overall volume is given as local expansions of
the field in different volume elements.

To find the local expansions for each volume element, we first split the domain of
integration 90 into smaller elements I';. From the surface field formula we extract
an approximate Taylor expansion in the surface variables s about the center of the

surface element. Then the integral kernel 1/ |7 — 75| and the field B on the surface
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are Taylor expanded in the surface variables 7s about the center of each surface
element. We also Taylor expand the kernel in the volume variables 7~ about the center
of the volume element. The final step is to integrate and sum the resulting Taylor
expansions for all surface elements. Depending on the accuracy of the computation
needed we choose step sizes, order of expansion in r (z,y, ), and order of expansion
in g (z,y, 2)-

All the mathematical operations to perform the expansion, surface integration,
curl and divergence were implemented using the high-order multivariate differential
algebraic tools available in the code COSY INFINITY (23, 24, 17] which automat-
ically leads to the respective field representation to any order without any manual

computations.

An analytical example: the bar magnet

As a reference problem we consider the magnetic field of an arrangement of the two
rectangular iron bars with inner surfaces (y = +yg) parallel to the midplane (y = 0 m)
as shown in Figure 3.1.2a. The interior of these uniformly magnetized bars, which are
assumed to be infinitely extended in the +y-directions, is defined by: z1 < 2 < 79,
|yl < yg, and z; < z < 29. From this bar magnet one can obtain an analytic solution

for the magnetic field B (z,y, 2) - see for example [31] - and the result is given by

2
" X2 304 <7
By (z,y,2) = Bo Z (-=1)**7 |arctan [ ———Z | + arctan | ——L
4m < +R+ Y_--R..
i,7=1 | (5] 1]
2 [ (2 +R;;
By i+ J ij
BI (wly)z) =—— Z (_1)1 J In =
2 |\ %+ R’
2 i . -
By " XJ + Rij
Bz (z,y,2) = — Z (-1)*"7 |In T
k=i |\ X+ B

1
where X; =2 —z;, Yo =ygty, Z; = z — z;, and RES-: (X§+yj2+zii_)?_ We

note that because of the symmetry of the field around the midplane, only even order
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Figure 3.1.2. (a) The geometric layout of the bar magnet, consisting of two bars
of magnetized material. (b) The magnetic field By on the center plane of the bar
magnet. By = 17 and the interior of this magnet is defined by —0.5 < = < 0.5,
ly| < 0.5, and -0.5 < z < 0.5.

terms exist in the Taylor expansion of this field about the origin. The mid plane field
of such a magnet is shown in Figure 3.1.2b.

The method presented in the section 3.1.3 is valid for any volume enclosed by a
smooth surface. For this example we choose three cases, (a) a volume enclosed by a
cube, (b) a volume enclosed by a cylinder, and (c) a volume enclosed by a sphere. For
these cases we first study the performance of the surface integration method. To this
end, we consider a cube of edge length 0.8 m, a cylinder of length 0.8 m and radius
0.4 m, and a sphere of radius 0.4 m. The center of all three geometries coincides with
the center of the interior of the uniformly magnetized bars. The six surfaces of the
cube are each subdivided into a 44 x 44 mesh. The surface of the cylinder and the
sphere are also subdivided so that the number of cells are same as in the cube case.
On each of the mesh cells, the contribution from the Helmholtz integral is expanded

using differential algebraic tools [17], and the resulting polynomial is integrated.
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Figure 3.1.3 shows the accuracy of the predicted field, compared with the exact
solution, as a function of the order of expansion within the surface mesh cells. Results
are shown for the points (0, 0,0), (0.1,0.1,0.1), (0.2,0.2,0.2) and (0.3,0.3,0.3) for the
cube case. It can be seen that at order six, an accuracy of approximately 10712 ;5
reached, which is very high compared to conventional numerical field solvers. The

corresponding results for the cylinder and sphere case are shown in figures 3.1.4 and

3.1.5.
-2 T T T T - .
Error at point (0.0,0.0,0.0 bt
Error at point (0.1,0.1,0.1 i
4 F Error at point (0.2,0.2,0.2) Sm—
o\, Error at point (0.3,0.3,0.3) i
6
—— -8 B
5
% -10
S
2 F
14
-16 1 | i i 2 ?
. 8 4 5 6 7 8 9

Figure 3.1.3. The error for the field calculated for the bar magnet example
with rectangular grid for individual points (0,0,0), (0.1,0.1,0.1) and (0.2,0.2,0.2)
(0.3,0.3,0.3).

We note that a change from an even order to the next higher order does not
produce significant change in the error, which is due to the specific symmetry of
the magnetic field and the resulting fact that even orders dominate in the Taylor
expansion. Also, this study clearly demonstrates that the method works for all smooth
surfaces. Henceforth we only present the results for the cube case.

For the next example, we split the volume inside the bar magnet into 4 x 4 x 4 finite

52

BDoarnrandinicrad with nermiccinn of the cormurninht oovvnar Enirdther reanradnicetionn nroahibitead withooit marmiccinn



Error at point (0.0,0.0,0.0) ——
Error at point (0.1,0.1,0.1) p—
-4 L Error at point (0.2,02,02) - S
! - Error at point (0.25,0.25,0.25) B
H‘“-B. e - N
6 Eaia s H— B
1]
- B
g ...............
w
— _10 =
g
42 e
-14
-16 L L 1 ' 1 4
= 3 4 5 6 7 8 9
Qrder

Figure 3.1.4. The error for the field calculated for the bar magnet example
with cylinderical grid for individual points (0,0,0), (0.1,0.1,0.1) and (0.2,0.2,0.2)
(0.25,0.25, 0.25).
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Figure 3.1.5. The error for the field calculated for the bar magnet example with
speherical grid for individual points (0,0,0), (0.1,0.1,0.1) and (0.15,0.15,0.15)
(0.2,0.2,0.2).
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RMS Error at point (0.0,0.0,0.0) e
RMS Error at point (0.1,0.1,0.1) MR
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Log(RMS error)

Figure 3.1.6. The average error for the field calculated for the bar magnet example
for finite elements of width 0.4 around points (0,0, 0) and (0.1,0.1,0.1).

elements of width £0.1 m. Within each of the elements, a Taylor expansion in the
three volume variables is carried out, resulting in a polynomial representation of the
field within the finite element cell. The polynomial representation is used to evaluate
the field at 1000 randomly chosen points within the cell, and comparing the result
with the analytical answer. Figure 3.1.6 shows the resulting RMS error for finite
elements centered around (0, 0,0), (0.1,0.1,0.1), (0.2,0.2,0.2) and (0.3,0.3,0.3). The
plot for the finite element centered at (0.3,0.3,0.3) shows the behavior of the RMS
error as we approach the boundary. It can be seen that the method remains stable as
we approach the boundary. For the finite elements well within the volume of interest,
it can be seen that at order 7, an accuracy of approximately 10~ is reached.

We see that the method of simultaneous surface and volume expansion, all of which
can be carried out fully automatically using differential algebraic tools [17] imple-

mented in the code COSY [23, 24], leads to accuracies that are significantly higher
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than those of conventional finite element tools, even when unusually large finite ele-
ments are used.

For purposes of illustration, we now show in the table 3.1.1 the Taylor expansion of
the field given by the equation (3.1.6) and calculated using the DA tools of COSY over
one surface element for a particular point frozen inside the volume of interest. The
center of the surface element is at (—0.39, —0.39, 0.4) and the point is at (0.1,0.1,0.1).
The surface element is described by (—0.39 + 0.5 zxs, —0.39 + 0.5Ayys, 0.4), where

Az; Ay represent the length and width of the surface element and z4,ys € [-1,1]. In

I COEFFICIENT ORDER EXPONENTS

1 0.14300150565365947E-01 ©0 00 00 O
2 0.6922600731781813E-03 1 00 01 O
3 ~.0437452710163340E-03 1 00 00 1
4 -.1561210105220474E-04 2 00 02 0
5 -.4471499751575185E-04 2 00 01 1
20 -.3232493054085583E-07 5 00 01 4
21 0.6156849473575023E-07 5 00 00 5
22 0.896050597163286BE-10 6 00 06 0
23 0.18905563337467643E-08 6 00 05 1
24 -,0792219471281489E-09 6 00 04 2
41 -.2417698920592542E-10 8 00 04 4
42 0.7717865636738434E-10 8 00 03 b
43 -.2649803372019223E-11 8 00 02 6
44 -.2561415687161454E-10 8 00 01 7
45 0.8506329051477273E-10 8 00 00 8

Table 3.1.1. A sample eighth order Taylor expansion in two surface variables.

the representation of the Taylor expansion in zg and yg in the table 3.1.1, the entries
in the first column provide the number assigned to each of the coefficients in the

Taylor expansion to easily identify them. The entries in the second column provide
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the numerical value of the coefficients. The entries in the fourth, fifth and the sixth
columns provide the expansion orders with respect to the volume variables(z,y, 2).
And the entries in the seventh and eighth column provide the expansion orders with
respect to the surface variables (z5,ys). The total order for each coefficient is the
sum of all the orders in columns four through eight, which is given in the third
column. Since we compute the Taylor expansion about a particular point (0.1,0.1,0.1)
frozen in the volume of interest in two surface variables (zg,ys), we notice that the
entries in column four, five, six are all zero. It can be seen that in this expansion,
the contributions of higher order terms depending on the surface variables decrease
rapidly, and thus the expansion shown would lead to a result of very high accuracy.

We now present the Taylor expansion of the contribution of the equation (3.1.6)
for one surface element and over one volume element inside the volume of interest
in the table 3.1.2. The center of the surface element is at (—0.39,-0.39,0.4) and
the center of the volume element is at (0.1,0.1,0.1). The surface element and the
volume element can be fully described by (—0.39 +0.5Azz5, —0.39 + 0.5Ayys, 0.4)
and (0.1 + 0.5p,2,0.1 + O.Spyy, 0.1+ 0.5,ozz), respectively, where Az, Ay represent
the length and width of the surface element, and Pxs Py: Pz represent the length,
width and height of the volume element, and zs,ys,2,y,2 € [~1,1]. In this case
the coefficients of the Taylor expansion depend on both the surface (zs,ys) and the
volume variables (z,y, z). The coefficients depending only on the surface variables
and the coefficient of the zeroth order term are same as in the previous example of the
expansion in just the surface variables. Once again we notice that the contributions of
higher order terms decrease rapidly for higher order, showing that also the expansion
in volume variables leads to a very accurate representation.

We now study the error dependency on the size(length) of the volume element, or
equivalently the number of volume elements chosen for the computation. For the order

of computation 3,5,7 and 9, Figure 3.1.7 and Figure 3.1.8 provide the dependence of
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I COEFFICIENT ORDER EXPONENTS
1 0.1430015055365947E-01 O 00 00 O
2 -.9590481459719686E-02 1 10 00 O
3 -.9590481459719686E-02 1 01 00 O
4 -.9768082968233012E-02 1 00 10 O
5 0.6922600731781813E-03 1 00 01 O
6 -.9437452710153340E-03 1 00 00 1
454 =-.4509222359486833E-07 6 01 00 5
455 -.3067430813781439E-07 6 00 10 5
456 0.8960505971632865E-10 6 00 06 ©0
457 0.1890553337467643E-08 6 00 05 1
458 ~-.9792219471281489E-09 6 00 04 2
1283 -.2417698920692647E-10 8 00 04 4
1284 0.7717865636738462E-10 8 00 03 65
1285 -.2640803372019148E-11 8 00 02 6
1286 -.,2661415687161455E-10 8 00 01 7
1287 0.8506329051477271E-10 8 00 00 8

Table 3.1.2. A sample eighth order Taylor expansion in two surface variable and three
volume variables.

the average error on the length of the volume element and the total number of volume
elements. As an example, for cell lengths of 0.1, which leads to a total number of only
550 finite elements, an accuracy of 10710 can be reached with a ninth order method.
Similarly, for a seventh order method with a cell length of 0.2, corresponding to 125
boxes, accuracies of about 1076 can be reached. Compared to the conventional 3D
Laplace solvers which typically utilize in the order of 108 cells to achieve accuracies

in the order of 10"3, these results are quite promising.
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Figure 3.1.7. The plot shows the dependency of the average error on the length of
the volume element.

3.2 Verified solution of the 3D Laplace equation

For various practical problems, very precise and verified solutions of this PDE are
required; but with conventional finite element or finite difference codes this is difficult
to achieve even without validation because of the need for an exceedingly fine mesh
which leads to often prohibitive CPU time. The method presented in the section
3.1 can used to build an alternative approach based on high-order quadrature and
a high-order finite element method to find a verified solution to Laplace’s equation.
Both of the ingredients become accessible through the use of Taylor model methods
[53, 50] and the corresponding tools in the code COSY INFINITY [24, 23]. The
solution in space is first represented as a Helmholtz integral over the two-dimensional
surface. The latter is executed by evaluating the kernel of the integral as a Taylor

model [53, 50] of both the two surface variables and the three volume variables inside
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Figure 3.1.8. The plot shows the dependency of the average error on the number of
volume element.

the cell of interest. Finally, the integration over the surface variables is executed as a
mere polynomial integration, resulting in a local Taylor model of the solution within
one cell. The final solution is provided as a set of local Taylor models, each of which
represents an enclosure of a solution for a sub-box of the volume of interest, Examples
of the method and the precision that can be achieved will be given.

To obtain a verified solution to Laplace’s equation we start from equations 3.1.6 and
3.1.7. Using the fact that if & # &5, we have V (1/ | — &5|) = — (# — &5) /|7 ~ 3,'"'5|3?
and similar relationships, it is possible to explicitly obtain the gradient of the scalar

potential, and with some more work the curl of the vector potential; the results have
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the explicit form

1 (@-3) (7(3) - B (@)

v ) = —— 3.2.1
Vouldy= g | g (321)
Lo | [ (@) x (@) x B (7))
¥ xdy (3) = — / ds (3.2.2)
4 Jaq |7 — &3

From the equation (3.1.5) we know that the field inside the volume of interest is just
a sum of the irrotational (equation (3.2.1)) and the solenoidal (equation (3.2.2)) part.
This is then the solution for the magnetic field as surface integrals. But to numerically
integrate the kernel and get the verified solution as the local Taylor model we need
a specialized numerical scheme. In the next section we introduce one such scheme
based on the Taylor models of the code COSY INFINITY (24, 23]. The anti-derivation
operation on the Taylor models discussed in section 2.4 will be extensively used in

implementation of the scheme,

Solution of the Helmholtz Problem using Taylor models

In the following, we develop a verified method based on Taylor model methods to
determine sharp enclosures of the field B and the potential ¢ utilizing the Helmholtz
method.

Utilizing Taylor model arithmetic, the following algorithm now allows to solve the

Laplace equation for the Helmholtz problem.

1. Discretize the surface J(2 into individual surface cells S; with centers s; and the

volume ( into volume cells VJ,. with centers ;.
2. Pick a volume cell Vj

3. For each surface cell S;, evaluate the integrands in the equation (3.2.1) and
(3.2.2), the so-called "kernels”, in Taylor model arithmetic to obtain a Taylor
model representations in BOTH the surface variables of S; AND the volume

variables of Vj, Le. in a total of five variables.
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4. Use the Taylor model anti-derivation operation twice to perform integration

over the surface variables of each cell S;.

5. Add up all results to obtain a three dimensional Taylor model enclosing the

field B over the volume cell VJ

6. If a verified enclosure of the potential ¥ to B over the volume cell Vjis desired,

integrate the field B over any path using the anti-derivation operation.

As a result, for each of the volume cells Vi, Taylor model enclosures for the fields
B and potentials 1 are obtained. All the mathematical operations to evaluate these
Taylor Models and surface integration are implemented using the Taylor Model tools
available in the code COSY INFINITY [24, 23].

Apparently the computational expense scales with the product of the number of
volume elements and the number of surface elements; of these, the number of volume
elements is more significant because of their larger number. In practice one observes
that when using high-order Taylor models, a rather small number of volume elements

is required, in particular compared to the situation in conventional field solvers.

3.2.1 An analytical example: the bar magnet

Once again, we consider the bar magnet example described in the section 3.1.3. Now
we compute the validate solution to Laplace’s equation with the boundary conditions

described in this example.

Results and analysis As a first step in the analysis of the influence of the dis-

cretization of the surface and volume on the result, we study the contributions of
the surface elements towards the remainder interval part of the total integral. The
volume expansion point is chosen as ¥ = (.1,.1,.1), and the size of the volume box

around it is chosen zero. Thus after the surface integration, the polynomial part of
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the dependence on volume vanishes except for the constant term, and the accuracy
is only limited by the width of the surface element, which after integration over the
surface variables influences the width of the remainder bound. We plot the width
of the remainder interval versus surface element length for the scalar potential in
Figure 3.2.1. The center of the surface element is chosen as 7s = (.034,.011,.5). It
is observed that for high orders, the method quickly reaches an accuracy of around
10716 for about 25 surface subdivisions, which correspond to about 210 % 1000 sur-
face element cells per surface. Under the assumption that each of these surface cells
brings a similar contribution, the accuracy due to the surface discretization will be

in the range of approximately 6 - 1000 - 10716 < 10-12,

0 L] T T L] 1 I L T L}
Order8  ——
Order7  —>—
Order 6 e A
_5 _()rdEf 5 S f'
QOrder 4 - _-____.-A' -
Order 3 By -4 et
Orger2 - A I
£-10 | ] -
2
=
[
E 45 b - |
£ .
5 | "
§ 20 F e -
_25 L 1 1 Il 1 1 1

13 12 11 10 -9 -8 -7 -8 -5 -4 -3
LOG2(Surface Element Length)

Figure 3.2.1. The remainder interval width versus the surface element length for
integration over a single surface element and vanishing volume size.

We now study the dependency of the polynomial part and width of the remainder
interval of the magnetic field on the volume element length. In all these plots the

surface element length is kept fixed at 1/128. Figure 3.2.2 shows the remainder
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interval width for the y component of the magnetic field versus volume element lengths
for different orders of computation. The other components of the magnetic field

exhibit a similar behavior.
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Figure 3.2.2. The remainder interval width versus the length of volume element for
y component of the magnetic field.

We see that a verified accuracy in the range of 104 can be achieved for a vol-
ume element width of around 10_1, corresponding to a total of around 1000 volume
elements. This number compares very favorably to the above-mentioned numbers
for the commercial code TOSCA (3, 4]. An accuracy in the range of 10~7 can be
achieved for a width of around 10~ 14, corresponding to a total of around 200,000
volume elements.

Overall, we see that the method of simultaneous surface and volume expansion
of the Helmholtz integrals leads to verified tools for the solutions of PDEs which
when executed in the Taylor model arithmetic can lead to very sharp enclosures. It is

obvious that the method can be generalized to other surface-integral based approaches
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to the solution of PDEs.

3.3 Parallel implementation of the Laplace solver

Recently the code COSY INFINITY has been ported to support large scale computa-
tions for beam dynamics simulation and design optimization, including verified global
optimization. Test results with some of the COSY tools adapted to parallel execu-
tion have shown that they scale linearly to about 1000 processors [46]. Along this
line of high performance computing efforts with COSY INFINITY, a parallel imple-
mentation of the Laplace solver has been practiced on the NERSC (National Energy
Research Scientific Computing Center) IBM RS6000 Seaborg Cluster consisting of
6080 processors [2].

In our implementation of the Laplace solver, we first discretize the surface enclosing
the volume of interest into surface elements, and then the magnetic field contribu-
tion of each surface element at a given observation point or volume is computed
independently. We then sum up the magnetic field contributions of all the surface
elements to obtain the magnetic field at the observation point or volume. The large
summation over all the surface elements can be trivially parallelized. However, if
trivially parallelized, the large summation over all the surface elements at the end
may take significant time and render the algorithm inefficient. Also, to utilize the
computational resources productively and minimize the cross communication between
processors, which may potentially slow down the computation, we need to contrive
an efficient algorithm.

An efficient parallel algorithm to some extent depends on the architecture of the
cluster that we use. For example, the Seaborg cluster, on which we implement our
parallel algorithm, has 380 computing nodes with each node having 16 processors.

Processors on each node have a shared memory pool of 16 to 64 GBytes. The commu-
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nication between the processors within a node is much faster than the communication
between the processors of different nodes. Hence, care must be taken in designing an
algorithm to minimize the communication between the processors of different nodes.
Also, the Seaborg cluster supports several optimization modes that further improve
the performance of the algorithm. The detailed discussion is beyond the scope of this
work, but can be found in [2].

We now highlight some of the aspects of the parallel algorithms for the Laplace
solver. Let NPR be the number of processors we choose to use on the cluster for
parallel execution, and let NSP be the number of surface elements over which the
magnetic field is specified. The master processor will divide the computation of NSP
surface points over NPR processors. The master processor itself is a part of the
N PR processors.

If the summation over all surface clements is trivially parallelized, each processor
computes the partial sum of the magnetic field contributions for the assigned surface
elements, and sends the result of the partial sum back to the master processor, where
these partial sums are summed up to get the total magnetic field. The number of
communications between processors is equal to k x NPR, where k is a constant
depending upon the problem.

‘We now describe a new efficient algorithm for parallelization of the summation over
all the surface clements. The master processor will divide the computation of NSP
surface points over N PR processors. The N PR processors are split into groups of N1
processors each, leading to N2 = NPR/N1 groups. The master processor assigns
one of the processors in a group as the master processor for the group, and these
processors are referred to as sub-masters. The master processor itself is a part of the
N PR processors and also a part of the N2 sub-masters. The number of processors

N1 in each group is given by

N1=1NT(2-WTJ5§),
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where the INT function finds nearest integer smaller than are equal to (2 . \/m) :
However, if NPR is not exactly divisible by N1, then we decrease the value of N1
by one, N1 = (N1 — 1). We repeat the process till NPR is exactly divisible by N1.
This ensures that both N1 and N2 are integers. Each processor computes the partial
sum of the magnetic field contributions for the assigned surface elements, and sends
the computed result of the partial sum back to the sub-master processor. Each sub-
master processor computes the partial sum of the magnetic field contributions for each
group and sends the result of the groups partial sum back to the master processor,
where these group partial sums are summed up to get the final field. The number of
communications between the processors is roughly equal to k x (N1 + N2). Since,
(N1+ N2) < N1 x N2, the communication time is greatly reduced as compared to
the trivial parallelization case.

The above algorithm is implemented using the parallel loop block (PLOOP) avail-
able in the code COSY INFINITY. The steps are highlighted in Table 3.3.1. We
use two nested parallel loop blocks, one over the N2 groups and the other over N1
processors in each group. At the end of a parallel loop a communication option can
be specified to gather computed results from all the processors that have participated
in the parallel loop block on to only one processor, which once again minimizes the
cross communication between the processors. In the section 4.3.4 we present exam-
ple of the parallel implementation to compute the magnetic field for the Super-FRS

quadrupole magnets.

3.4 Magnetic field due to arbitrary current distri-
bution

In this section we describe a method to compute the magnetic field of an arbitrary

current distribution using DA techniques. The motivation to look at this problem
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{Loop over N2 groups}
PLOOP JJ 1 N2;

{Loop over N1 processors}
PLOOP II 1 N1;

{Evaluate the processor number PP}
PP:=I14+(JJ-1)*N1;

[Code to identify the surface elements JBEG through JEND
for which the processor PP will evaluate the partial sum)

{Loop to compute the partial sum of the scalar and vector potential
contributions over surface elements JBEG through JEND}
LOOP IL JBEG JEND;

[Code to compute the scalar and the vector potential
contribution of a surface element IL.]

ENDLOOP;

{End the parallel loop over the group of N1 processors and
send the results to sub-master processor using communication mode 4}
ENDPLOOP 4 PN1_SCLPOT PN1_VECPOT;

{Loop to evaluate group partial sum of N1 processors}
LOOP II 1 N1;

[Summation to get group partial sum GN2 SCLPOT and GN2_VECPOT)

ENDLOOP;

{End the parallel loop over the N2 groups and send the results to master processor}
ENDPLOOP 4 GN2_ SCLPOT GN2_VECPOT;

{Loop to evaluate sum over N2 groups}
LOOP JJ 1 N2;

[Summation to get sum SCLPOT and VECPOT)

ENDLOOP;

[Code to evaluate the divergence of SCLPOT and the curl of VECPOT and sum them
to get the magnetic field)
Table 3.3.1. The code for the parallel algorithm.
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comes from the need to design and optimize an accelerator magnet in a simple and in
an efficient way. Once again the DA based techniques have the advantage of providing
the complete multipole decomposition of the field. It is also straight-forward to verify
the that the field computed in the source free region indeed has identically vanish-
ing divergence and curl. Hence, it is guaranteed that the field computed is always
Maxwellian. Previous attempts to compute the magnetic field using DA techniques

are described in (34, 68].

3.4.1 Field computations using the Biot-Savart law and DA

We first describe a general frame work that uses the Biot-Savart law to compute the
field due to an arbitrary current distribution. The Biot-Savart law for line, surface

and volume currents is given by

I'(F)x i,
B = ‘—"‘Q/Mdz’, (34.1)

B = K T da, (3.4.2)

By = 8] — T (3.4.3)

where I is a current vector, and the surface current density vector K is the current per
unit width perpendicular to the current flow, and the volume current density vector
J is the current per unit area perpendicular to the flow of the current. The vector
F— *f! points from the current element at F{ to the observation point 7 where we want
to compute the magnetic field. The vector '?IF_ 4 represents the unit vector in this
direction. The magnetic constant, y, is the permeability of vacuum. In ST units,

the value is exactly expressed by pg = 4w x 10-"NA~2. In most cases numerical

integration is usually required to find the total magnetic field at any point.
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The general idea is to discretize the domain and express the integral over the domain
as the sum of integrals over smaller intervals. Depending on the type of the problem,
we express the domain in terms of one, two or three parameters and scale them such
that the new domain is a box [—1, 1], where n is number of parameters. We then
Taylor expand the kernel in terms of the previously defined parameters and integrate
it. We first present two analytical examples to describe the DA approach to obtain
the multipole decomposition of the magnetic field for the line and surface currents.
And, in the section 3.4.4 we describe the technique to find the magnetic field for the

volume current distribution.

3.4.2 Line current example: circular loop

For a circular loop with its axis oriented in the Z direction, the analytic formula for

the magnetic field on the z-axis is given by
po 2wR2I

T )

z.
We choose an example with radius R = 0.4 m and current of ] = 1 A. For this

example, the eighth order expansion of the 2 component of the magnetic field at 2 = 0

is given in Table 3.4.1.

I COEFFICIENT ORDER EXPONENTS
1 0.1570796326794896E-06 0 00 O
2 -.1472621556370215E-04 2 00 2
3 0.1150485590914231E-03 4 00 4
4 -.8388957433749600E-03 6 00 6
5 0.5898485695605188E-02 8 00 8

Table 3.4.1. A eighth order Taylor expansion of the analytic formula for the z com-
ponent of the magnetic field of a circular coil on the central axis.
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In the representation of the Taylor expansion above, the entries in the first column
provide the number assigned to each of the coefficients in the Taylor expansion to
easily identify them. The entries in the second column provide the numerical value
of the coefficients. The entries in the fourth, fifth and the sixth columns provide the
expansion orders with respect to the observation point (z,y,z). The total order for
each coefficient is the sum of all the orders in columns four through eight, which is
given in the third column.

We now use a DA based approach to solve this problem. Let the point 7 = (z,y, 2)
be the observation point. We discretize the length of the current loop into N = 4000
current elements of length (27 R) /N. Let (zn, Yn, 2n) describe a point inside the nth

current element, where n =1,..., N. And let s be a parameter such that

zn = R-cos(Ag-(n—0.5+0.5s)), (34.4)
yn = R-sin(Ag-(n—0.5+0.5s)),

ano,

where Ag = 27 /N and s € [—1,1]. By varying s we can now get all points inside any
given current element which is centered at f‘; = (R-cos(n-Ag),R-sin{n-Ag),0).
We can now compute the contribution due to the current element at 1{1 using the
Biot-Savart law for a line current, the equation (3.4.1), by first expressing the inte-
gral in terms of the new parameter s using the equation (3.4.4), and then expanding
the kernel in terms of the variables z,y,z and s. We then integrate the resulting
polynomial with respect to s in the interval [-1, 1]. Finally, we sum up the contribu-
tion due to all the current elements to get the resulting field at (z,y, 2z) .The Taylor
expansion of the 2 component of the magnetic field, B (z,y,z), computed using the

DA framework available in the code COSY INFINITY is given in Table 3.4.2.

Note that the expansion given in Table 3.4.2 reduces to the expansion for the
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