
QUANTUM CHAOS AND NUCLEAR SPECTRA

By

Declan Mulhall

AN ABSTRACT OF A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics and Astronomy

2002

Professor Vladimir Zelevinsky



ABSTRACT

QUANTUM CHAOS AND NUCLEAR SPECTRA

By

Declan Mulhall

The regularities in nuclear spectra, especially the spin-zero ground states of even-even

nuclei are usually ascribed to the effect of the nuclear pairing interaction. This is seen to
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Hamiltonians. The largely ignored role of geometric chaoticity is shown to be the driving

force behind this. A system of N spin- j fermions under the influence of a random two-body

angular momentum conserving interaction is studied. The spectra exhibited a propensity

for the ground states to have spin-zero or maximum spin. The role of pairing was eliminated

unambiguously as the cause. A statistical theory based on equilibrium statistical mechanics

was developed and an expression for the equilibrium energy derived. The theory was used

to successfully describe the salient features of the ensembles studied.
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Chapter 1

Introduction

Classical nonlinear dynamics became the poster-child of the physics community with the

advent of the computer. Numerical experiments, impossible without a computer, in the

1960’s led to some remarkable discoveries. The so called ”Butterfly effect” of Lorentz [29]

arising from the sensitive dependence on initial conditions of a particular set of nonlinear

equations, and the subsequent ”strange attractor” in phase space, and Feigenbaum’s work

on pitchfork bifurcations were among the exciting topics of this period. Laboratory stud-

ies of turbulence and convection currents and other nonlinear phenomena were producing

interesting results. The Russian physicist Chirikov, in his studies of the beam instabilities

in accelerators, established criteria of the exponential divergence of trajectories in Hamil-

tonian dynamics [10]. This was a boom time for the growing field of classical chaos, and

by the mid 1980’s the field had captured the imagination of the general public, as is ev-

idenced by the number of popular articles on the topic and the huge success of popular

books like Gleick’s Chaos: the making of a new science[22] which was short-listed for

both the Pulitzer prize and the national book award. The world of art (and kitsch) was

affected also. Peitgen [37] made an industry based on churning out images of fractals and

the (by then ubiquitous) Mandelbrot set [31].

The situation in quantum physics was quite different. The key question is what proper-
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ties of a quantum system indicate that the corresponding classical system will be chaotic.

The quantities of interest in classical chaos have no clear definition in quantum mechanics

and are often meaningless (although the notion of a periodic orbit in phase space and a

Lyapunov exponent has some meaning in the mean field picture). Taking the classical limit

of a quantum system the operations lim h̄→ 0 , lim t → ∞ do not commute. Where is one

to get chaos from the linear Schrodinger equation? The notion of sensitive dependence to

initial conditions is not so obvious here as the uncertainty principle makes the notion of dis-

tance between trajectories blurry. The answer lies in statistical spectroscopy. This was first

studied in quantum systems by the Russian physicist Gurevich in 1939 when he investi-

gated the regularities of level spacings in nuclear spectra [24]. Although Bohr’s compound

nucleus description [8] is similar to what we call quantum chaos, one could argue that the

first application of the ideas of quantum chaos was in the derivation of Bethe’s level density

formula [5] where a statistical approach was used for the structure of nuclear spin states.

What is clear is that the real pioneer of quantum chaos as it is known today was Wigner. He

proposed that as the theoretical nuclear Hamiltonian is too complex to be studied directly,

the local fluctuation properties of random matrices with the same global symmetries could

be studied. Modern random matrix theory was made a separate branch of science by the

works of Dyson.

The basic idea is simple. The exact nuclear Hamiltonian is unknown. Even for non-

interacting particles the level density is huge just from combinatorics; with interactions

exact calculations even in a reasonably truncated space quickly become impossible. In

lieu of the real Hamiltonian and assuming that the physical system is both time-reversal

invariant and complicated in any basis except for some exceptional ones which form a

manifold of measure zero, one can study an ensemble of random real Hamiltonians, the

distribution function of which is invariant under any orthogonal transformation (change of

basis). This leads us to the Gaussian Orthogonal Ensemble (GOE). The properties of the
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GOE can be derived from P(H) = P(H ′) where P(H) = ∏i≥ j Pi, j(Hi, j) is the probability

of a given Hamiltonian and H ′ = OTHO is the Hamiltonian in a different arbitrary basis,

with O being the transformation matrix and OT its transpose. This requirement leads to a

Gaussian distribution of independent and uncorrelated matrix elements with the standard

deviation of the off-diagonal matrix elements being twice that of the diagonal elements. If

H is not time reversal invariant, for example a system of charges in an external magnetic

field, we come to the Gaussian Unitary Ensemble (GUE). Finally the Gaussian Symplectic

Ensemble (GSE) deals with systems with Kramers degeneracy (systems of an odd number

of spin-1/2 particles). The study of these ensembles is the main concern of Random Matrix

Theory (RMT) [32]. There are other ensembles of interest which will be mentioned later.

The secular (long range) behavior of the level density is not the domain of RMT. Ob-

servable quantities can exhibit variations within a few level spacings. These variations,

known as fluctuations, are the bread and butter of RMT. The similarities between the fluc-

tuation properties of experimental data and those of the GOE lead us to accept RMT as a

working definition of quantum chaos: a quantum system is deemed chaotic if its spectra

exhibit the same local fluctuation properties as those of the appropriate Gaussian ensemble.

This definition frees us from the need to work backwards from classical mechanics. The

connection to classical mechanics is given by the famous Bohigas conjecture [36]: ”Spec-

tra of time reversal invariant systems whose classical analogs are chaotic show the same

fluctuation properties as the GOE”. For systems without time-reversal invariance GOE can

be replaced by GUE.

A different point of view is provided by one-body quantum systems. In this situation

one can take some classically chaotic systems like a Newtonian particle in a Sinai bil-

liard and look at an analog, for example a microwave cavity. This electromagnetic analog

is described by the Helmholtz equation which has a correspondence with the stationary

Schrodinger equation. Here the shape of the cavity (billiard) leads to chaotic trajectories,
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playing the role of weak residual interactions in many-body quantum chaos. Much work

has been done in this area of analog systems [41], all in agreement with RMT.

As stated earlier the field of quantum chaos has its origins in nuclear physics. This

is no accident because while the spectra involved are very complex and level densities

high, individual states can be studied and statistical methods used, the so-called mesoscopic

situation. RMT demands a level spacing distribution well approximated by

P(s) = Γ
(

β+1
2

)−1

(
π
2
)β+1√πsβ exp(−π

4
s2) (1.1)

where β = 1,2 and 4 for the orthogonal, unitary and symplectic ensembles [32], respec-

tively. The case where β = 1 gives the famous Wigner distribution. Early studies of neutron

resonances agreed with RMT in this respect [7].

At high level densities even weak interactions can be effectively strong compared to the

local level spacing. In shell model calculations, parameterizing the interaction strength by

λ ∈ [0,1] a given class of levels (a set of levels with the same quantum numbers) can be

studied as a function of λ. A plot of E(λ) for all levels in the class shows a turbulent flow

of the energy levels [44] with many avoided crossings. At each avoided crossing or level

repulsion, the colliding states become mixed. After a few such collisions the states become

highly mixed. We are now in the domain of quantum chaos, and statistical quantities like

entropy, temperature, spreading width etc. become meaningful [44]. Some individual states

in the chaotic regime can be studied. High resolution neutron and proton scattering give us

details of quasistationary states for a brief energy range.

One may question the wisdom of comparing physical Hamiltonians to random matrices.

In physical systems a natural ordering of the basis is in energy. The two-body interaction

used in shell model calculations leads to sparse matrices as states distant in energy are un-

connected by the relatively weak interaction strengths. The Gaussian Ensembles on the

other hand are everywhere dense, allow all particles to interact through all possible n-body
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interactions. Furthermore non-zero matrix elements in the physical system are generated

by relatively few numbers (interaction parameters) and geometrical quantities (Clebsch-

Gordan coefficients). Research on the Two-Body Random Ensemble (TBRE) [43], where

only two-body interactions are allowed and the interaction parameters are random Gaussian

distributed quantities, still reproduced the fluctuation properties of the GOE. It is important

to note that RMT results for local level statistics are largely independent of the precise dis-

tribution of the matrix elements. This is a direct consequence of the law of large numbers,

as each eigenvalue is a complicated function of these random matrix elements.

A decade after its inception, the applicability of RMT to nuclear spectra was an open is-

sue. In 1963 Dyson and Mehta lamented: ”We would be very happy if we could report that

our theoretical model had been strikingly confirmed by the statistical analysis of neutron

capture levels. We would be even happier if we could report that our theoretical model had

been decisively contradicted . . . Unfortunately our model is as yet neither proved nor dis-

proved” [15]. Almost two decades later Haq et al. performed a careful and sophisticated

analysis on an ensemble of high quality data from neutron and proton scattering experi-

ments [38]. They calculated a selection of RMT statistics and showed that RMT describes

nuclear spectra.

There has been a significant practical output from the theory of quantum chaos. Pos-

sibly the most elegant example of this is the statistical enhancement of parity violation in

nuclear physics, see the review by Flambaum and Gribakin [19]. The basic idea is a very

simple mechanism whereby the chaotic structure of eigenfunctions at high energies can

enhance the effect of a weak interaction. An informal account of this mechanism follows.

Suppose Π = ∑Πνν′a
†
νaν′ is an operator that mixes states of different parity, for example

|s〉 and |p〉. Near the ground state

〈p|Π|s〉 ∼ Πsp

Ep−Es
∼ 1 in some units. (1.2)
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At high excitation energies the wave functions are chaotic, and |s〉= ∑i C
s
i |i〉, with the same

for |p〉. The assumption of chaos means |Cs
i | ∼ |Cp

i | ∼ 1/
√

N where N is the number of

significant components in the wave function. Writing Π in the second quantized form we

have

〈p|Π|s〉 ∼ 〈p|Πa†
νaν′ |s〉

Ep−Es

=
Π ∑i C

p
i Cs

i′

Ep−Es
,

where i and i′ are simple states connected by the single-particle operator a†
νaν′ . Already, be-

cause of the high level density there is a huge enhancement from the small size of (Ep−Es).

But a further enhancement comes purely from the assumption of chaotic wave functions as

∑i C
p
i Cs

i is the incoherent sum of N terms of order 1/N which is 1/
√

N. On the other hand,

the typical size of the matrix element between two regular (non-chaotic) wave functions is

1/N. Thus an enhancement of
√

N, typically 102 −103 is achieved.

Another practical application by Kilgus et al. [42] is in spectroscopy. In an exper-

iment with insufficient resolution, the assumption of a Wigner level spacing distribution

and Porter-Thomas distribution of multipole strengths makes possible a statistical analysis

to recover the missing strengths.

The complexity of a wave function

|α〉 = ∑
k

Cα
k |k〉 (1.3)

in some physically preferred (unperturbed or shell model) basis, {|k〉}, can be measured by

the basis-dependent Shannon (or information) entropy

Iα = −∑
k

wα
k lnwα

k (1.4)

where wα
k = |Cα

k |2. Shannon entropy, being sensitive to Nα , the number of significant com-

ponents of |α〉, is a measure of the delocalization of the wave function in {|k〉}. Izrailev
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[26] defines the localization length of |α〉 as the ensemble average of lα = exp Iα . In the

GOE limit, because of orthogonality constraints, lα = 0.48N, whereas a fully delocalized

wave function would have lα = N. Zelevinsky et al. [44] showed that for shell model eigen-

states lα approaches the GOE value, but does not reach it for realistic interactions. Being

basis-dependent, the Shannon entropy by itself is not an indication that a wave function is

chaotic. Collective excitations have coherent components, and their wave functions are not

chaotic. Enders et al. [27] used this point in their study of the level spacing distribution

P(s) = exp(−s) of the scissors mode in heavy nuclei. Their observation of a Poissonian

distribution for P(s) lead them to conclude that this mode is collective in nature.

A useful quantity for analysis of wave functions in this situation is the strength func-

tion Fk(E) [44] of a simple mode |k〉 or local density of states, LDOS, as it is known in

condensed matter physics,

Fk(E) = ∑
α

wα
k δ(E−Eα). (1.5)

Experimental data do not resolve dense individual states, so Fk(E) is an important tool

for connecting experiment to the theory of quantum chaos. Frazier et al. [34] established

the generic shape of the strength function of shell model states: Gaussian at the center

with exponential tails. Suppressing the interaction strength, they observed a return to the

Breit-Wigner shape. The transition between these two regimes was explained by them in

agreement with the theory of quantum chaos. The exponential tail of the strength function

was exploited by Horoi et al. [33] to develop a method of calculating low-lying shell model

levels. The method consists of the diagonalization of successfully larger truncations of the

Hamiltonian, and extrapolating the values of the lower energy levels, thus avoiding the

intense task of diagonalizing the full Hamiltonian.

This leads us to another very important application of quantum chaos. Multiple gi-

ant dipole resonances are analogs of zero sound in Fermi-liquids. In nuclear matter, the
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energy of a single quantum is large compared to the temperature. The widths of pure n-

quanta states are estimated by the standard model of strength functions ?? as Γn/Γ1 = n.

However, deviations from the standard model and Breit-Wigner shape are amplified in the

convolution of strength functions for multiple sequential excitations, leading to an almost-

Gaussian strength function. Now the widths are added in quadrature, and Γn/Γ1 =
√

n, in

agreement with experiment.

Wang et al. [45], in their study of the structure of the eigenstates and LDOS of a

schematic three-orbital shell model found excellent agreement with RMT. They went on to

derive analytic expressions for the observed exponential tail of both the eigenstates and the

strength function. It is pleasant to note that, in this instance, the classical counterpart of this

system is chaotic. An important development in the theory of chaotic wave functions was

the statistical theory of Flambaum and Izrailev [17]. Their theory, which considered finite

systems of interacting fermions, is based on the properties of chaotic eigenfunctions. A

partition function based on the average shape of the eigenstates was developed and from it

was derived an expression for the average occupation numbers of the single-particle states.

Until recently, RMT dealt with correlations within a sequence of levels with the same

set of quantum numbers. The question of correlations between different sequences in the

spectra of random matrices has not been fully investigated. It was noticed by Johnson et al.

[11], [12], that a rotationally invariant random two-body Hamiltonian showed a surprising

regularity in its spectra, namely J = 0 occurred as the spin of the ground state with a huge

probability. Furthermore they noticed that the gap to the next highest level was much larger

than expected. The mean yrast line (mean of the lowest spin-J energy) was parabolic, and

claims for vibrational/rotational bands were also made. These are prime examples of inter-

sequence correlations. Not surprisingly this work generated a flurry of activity, with many

daring suggestions as to the origin of this effect. The undisputed presence of a pairing

force in the atomic nucleus was the previously accepted reason for the observed spin-zero
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ground state of all even-even nuclei. Now it seemed that other, hitherto unknown, effects

could disguise themselves as pairing. Horoi et al. [30] compared random and realistic

interactions in the shell model and found that while the random interaction generated an

abundance of JπT = 0+0 ground states, they had small overlaps with those of the realistic

interaction, and their B(E2) values were unreasonably small. In short, these chaotic wave

functions didn’t look similar to realistic nuclear wave functions. Clearly there are many

open questions regarding these phenomena.

The purpose of this dissertation is to use the ideas of quantum chaos to shed light on

nuclear structure. The main issue is that of the origin of the regularities in nuclear spectra

and in particular, the zero spin of the ground state of all even-even nuclei. Conventional

wisdom is that specific features of the nuclear interaction explain observed properties of the

spectra. This picture is incomplete. Even an ensemble of random Hamiltonians with just

global symmetries can have spectral regularities. Such a system is studied here, and after

analyzing numerical data and distilling all features of interest, a theory is developed based

on equilibrium statistical mechanics which succeeds in explaining many of the regularities.

Preceding this, however, is an analysis of neutron resonance data. In the guise of RMT, we

use quantum chaos to glean information from neutron resonance data. A more traditional

statistical analysis of the neutron resonance widths is also carried out.

Chapter 2 deals with the analysis of neutron resonance data. The data is from four

odd-A targets and consists of two sequences of levels with angular momentum J1 and J2,

in proportions α and (1−α). The goal is modest, simply to get an estimate of α. Naively,

from the 2J+1 degeneracy of angular momentum states, one would expect

α =
2J1 +1

(2J1 +1)+(2J2 +1)
. (1.6)

The level density is compared to the back-shifted Fermi-gas model, and the results suggest

that (1.6) is indeed sensible. Next, the level spacing distribution P(s) is calculated and a
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value of α extracted. The results were poor. However, paydirt was hit with the more robust

spectral rigidity statistic, ∆3(L), where the data and theory agreed nicely. An analysis

of the resonance widths follows, where values of α are extracted from the second and

third moments of the distribution of widths, based on the assumption of a Porter-Thomas

distribution for a single sequence of widths.

Chapter 3 starts with a discussion of randomly interacting fermions, describing the

current state of research and posing the main question of the dissertation: How can a

rotationally invariant random interaction generate spectral regularities in the ensemble

average ?The stage is set for the answer with two illustrative examples. The system to

be studied, N fermions on a single level of angular momentum j is introduced next. The

fermions have angular momentum conserving pairwise random interactions. The striking

features of the spectra are described. These include: very high fractions, f0 and fJmax, of

spin zero and maximum ground state spin, J0 = 0 and Jmax ; a parabolic yrast line with

a pronounced staggering for small values of total angular momentum Jtot disappearing for

higher values; a Wigner P(s); non-Gaussian distribution of off diagonal Hamiltonian matrix

elements; a simple particle-hole structure in the low energy states; smoothly oscillating

single-particle occupancies; and finally some very strong correlations between the spin-

zero ground states of the j = 11
2 , N = 4 and 6 systems.

In chapter 4, a first attempt is made to explain these features; pairs of fermions coupled

to angular momentum L are treated as spin-L bosons. An enhancement of f0 is observed,

but not of fJmax. Then theory based on equilibrium statistical mechanics is developed,

with an expression for the equilibrium energy of states with a given angular momentum.

The empirical observations of chapter 3 are tackled by the theory. The distribution of

ground state spins is well explained, as is the distribution of interaction parameters that

give J0 = Jmax. The equilibrium energies of given angular momentum given by the theory

are beautifully correlated with the lowest energies for each value of Jtot, differing only by a
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constant negative shift in the theoretical energies which disappears for high values of Jtot.

The ground state wave functions are examined and the role of pairing is addressed. The

theoretical single-particle occupancies compare nicely with the empirical values, which

oscillate around them. The moment of inertia given by the theory is in excellent agreement

with the numerical data, as is the standard deviations of the total level densities.

Appendices are included containing derivations of expressions used in the text.

The main results of this thesis were published in the following:

• D. Mulhall, A. Volya and V.Zelevinsky, Geometric Chaoticity Leads to Ordered

Spectra for Randomly Interacting Fermions, Phys. Rev. Lett. 85 (2000) 4016.

• D. Mulhall, V. Zelevinsky and A. Volya, Spin Ordering of Nuclear Spectra from

Random Interactions, Acta Physica Polonica B, 32 (2001) 2491.

• D. Mulhall, A. Volya and V. Zelevinsky, Random Interactions: Shedding Light on

Nuclear Structure, Nuclear Physics A682 (2001) 229c-235c, 64 (2001).

• V. Zelevinsky, D. Mulhall and A. Volya, Do We Understand the Role of Incoherent

Interactions in Many-body Physics, Physics of Atomic Nuclei, 64 (2001) 579.
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Chapter 2

Neutron Resonance Data

Amongst the first successes of RMT was in the 1970’s with its application to the Nuclear

Data Ensemble (NDE) [43], which was a collection of much of the neutron resonance data

available at the time. The data was scant, and a test of RMT on a superposition of two

sequences, or a decent statistical analysis of one long sequence of levels was impossible.

The current availability of higher quality neutron resonance data provides an excellent op-

portunity to test the predictions of quantum chaos.

The absorption cross-section of thermal neutrons (neutrons with energy range 0 ∼ 10

keV) show narrow peaks with energy separations ∼ 1 eV. The absorbtion peaks broaden

until eventually they overlap and become indistinguishable. This phenomenon was the

impetus for Bohr’s compound nucleus model [8], in which a resonance corresponds to a

single-particle configuration with all the kinetic energy concentrated in one neutron. This

configuration rapidly melts through residual interactions into a chaotic nuclear wave func-

tion. Thus, neutron resonances correspond to eigenvalues of the full nuclear Hamiltonian,

and neutron resonance data furnish us with a portion of the nuclear spectrum at high level

densities, where quantum chaos reigns.

The angular momentum of the resonance will be a sum of that of the incident neutron,

jn, and the target nucleus, jN. For low energy neutrons, the orbital angular momentum will
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be predominantly zero so jn = 1/2 and the total angular momentum jT can have one of two

values, jT = jN ±1/2. A sequence of neutron resonances, from experiments not sensitive

to polarization observables, on odd-A targets is a superposition of two pure sequences of

eigenvalues. A fraction α will have angular momentum j1, and a fraction (1−α) will have

angular momentum j2, (see Eq. (1.6)).

With this in mind, data for 239Pu, 241Pu, 233U and 235U neutron resonance reactions at

Los Alamos National Laboratory and RIKEN was analyzed. The data came in the form

of a list of triples {E,J,Γ} containing the energy of a level, E, its spin assignment, J, and

its width, Γ. Our ambitions with the data was were modest, simply to extract the relative

density α of spin states using the machinery of RMT. This analysis is described in the

remainder of this chapter. The level density was checked against some theoretical models.

The distribution P(s) of nearest-level spacings, s, was calculated and from it was extracted

α. A ∆3(L) analysis was next performed (see section 2.4 for a definition of ∆3(L)). An

analysis of the reduced neutron widths Γ0 = Γ/
√

E yields information on the quality of the

data and its consistency with the Porter-Thomas distribution.

Spin assignments were randomly made by the experimentalists, with the exception of

the 544 235U levels in the energy interval 0 → 300 eV. Table 2.1 shows the characteristics

of the data sets.

2.1 The Level Density

The Bethe level density formula (based on the Fermi-gas model) remains the foundation

for interpreting experimental data. Although it has been elaborated to include states of a

given spin J, the assumptions remain the same, namely, independent particles (no residual

interaction), equidistant spacing of single-particle states near the Fermi level, ε f , and the
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validity of the saddle-point approximation. The end result is ??:

ρ(E,J) =
π
48

g0 (2J+1)

(6g0)
1
4

(
g0h̄

2

I

) 3
2
(

E− J(J+1)h̄2

2I

)− 7
4

exp



√

2π2

3
g0

(
E− J(J+1)h̄2

2I

) . (2.1)

Here g0 = 3A
2ε f

is the single-particle level spacing and ε f ≈ 40 MeV is the Fermi energy;

I = 2
5MR2 is the rigid body moment of inertia (M is the nuclear mass); and a nuclear radius

R of 1.25A
1
3 fm is assumed, where A is the atomic number. This expression for the level

density consistently underestimates the level density calculated from the data, typically by

a factor of 10.

While the Bethe formula (2.1) captures the main features of the nuclear level density,

in particular the exp(
√

AE) dependence, it does not include odd-even effects of the mass

number A in its assumptions. An improved model was developed, based on the functional

form of (2.1) but with added free parameters chosen empirically to improve the fit to exper-

imental data. This model is based on the conventional shifted Fermi-gas modeldeveloped

by Newton and Cameron [46], [35], [9]. The key feature is that odd-even effects are ad-

dressed by means of a pairing energy shift where the excitation energy is measured from

a fictive ground state energy. The level spacing at the Fermi-level is parameterized by an

energy-dependent fitting parameter a. A further refinement is the back shifted Fermi-gas

model, where the fictive ground state energy is treated as an adjustable parameter ∆.

ρ(E,J) =
1

24
√

2

2J+1

σa
1
4


exp

(
2a(E−∆)

1
2 −J(J+1)/2σ2

)
(E−∆+ t)

5
4


 (2.2)

Here t is the thermodynamic temperature defined by (E−∆) = at2 − t, and I is the ef-

fective moment of inertia. I was calculated, and σ2 = I t
h̄2 ≈ 0.0150A

5
3 t . The two empirical
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239Pu 241Pu 233U 235U
j1, j2 0,1 2,3 2,3 3,4
size 825 237 184 544
αth 0.25 0.42 0.42 0.44
αP(s) 0.08 0.0 0.06 0.15

2ndmoment
αΓ0 0.5 0.5 0.05 0.43

Γ0
1 1.45 1 -10 0.54

Γ0
2 0.55 1 1.59 1.35

3rdmoment
αΓ0 0.13 0.05 0.05 0.42

Γ0
1 -0.7 1.18 12.21 0.65

Γ0
2 1.25 0.99 0.41 1.25

Table 2.1: Data characteristics and results for α.

parameters, a and ∆ were taken from [46], where two values of each are listed correspond-

ing to I equal to the rigid-body moment of inertia and half the rigid-body moment of inertia.

Also, in lieu of actual data, the 242Pu values for a and ∆ were used for the 240Pu data. This

expression does better, agreeing with the data to within a factor of two.

The rotational kinetic energy term in eq. )2.1) is

J(J+1)h̄2

2I
≈ 10−1 MeV (2.3)

This is tiny compared to the typical neutron separation energy involved, so the ratio

ρ(E,J1)
ρ(E,J2)

≈ 2J1 +1
2J2 +1

(2.4)

in eq.(2.2), at the neutron separation gives no information about the mixing parameter, α,

beyond the naive estimate can be extracted.
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2.2 The Level Spacing Distribution

We attempted to extract the mixing parameter α from the level spacing distribution P(s).

The statistical arguments and the calculation of the level density suggest that α will be close

to 2J1+1
(2J1+1)+(2J2+1) . We expect the level spacing distribution P(s) to follow the predictions

of RMT. In our case we have a superposition of two pure sequences of levels. Again, in the

parlance of RMT, a pure sequence is a list of levels with the same quantum number, in this

case spin J. Here each sequence is assumed to have

P(s) =
π
2

se−
π
4 s2

, (2.5)

the famous Wigner distribution. Two such sequences superimposed, with relative abun-

dances α and β = (1−α), are expected to have

Pth(α, s) = e(αs) e(βs)
(

α2 p(αs)
e(αs)

+β2 p(βs)
e(βs)

+2 α β
f (αs)
e(αs)

f (βs)
e(βs)

)
(2.6)

where p(s) = π
2 se−

π
4 s2

, f (s) = e−
π
4 s2

and e(s) = 1−Erf
(√

π
2 s
)

. The derivation of this

formula is very technical and can be found in [32]. In order to separate the local properties

of a spectrum from global (or secular) behavior (for example the exp(
√

E) increase in the

level density,) the spectrum must be unfolded. In its simplest form, which is quite adequate

in this case, the unfolding process is simply a matter of expressing each nearest neighbor

spacing in terms of the local average. Accordingly, the set of level spacings {si}, were

extracted from each spectrum, {Ei}, by the following unfolding procedure,

si = n
Ei+1 −Ei

Ei+ n
2
−Ei− n

2

(2.7)

Thus {si} is just the average spacing over an n-level interval. The results were not so

sensitive to the value of n. The procedures were run for n= 5,10,20,50 with no noticeable

difference in P(s), so a value of n= 10 was used. Since, from N levels you only get N−2n

spaces, so a smaller value of n gives better statistics (as there are more spaces).
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The spacings, {si}, were binned and the counts per bin dNdata were compared with

theoretical counts per bin. The theoretical count for a bin bound by s and s+dsis

dNth(α) =
∫ s+ds

s
Pth(α, s)ds (2.8)

The difference between data and theory for a given value of α is characterized by a number,

∆(α), which was minimized with respect to α.

∆(α) = ∑
i
(dNdata

i −dNth
i (α))2 (2.9)

The subscript i labels the bins. This scheme was verified for mixtures of GOE spectra and

worked well (see Fig. 2.2). However the values of α obtained from the data were very low,

(see Table 1).
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Figure 2.1: The level spacing distribution for each data set. For the 235U data only the first
544 levels were included and an analysis was performed for the J = 3 and 4 resonances
taken together and separately.
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Figure 2.2: The procedure for extracting α from P(s) was tested on GOE spectra (N =
1000). The measured values αmeasuredwere systematically lower than the actual values
αtest by approximately 0.05 . However the slope of the graph is unity up to a value of
α = 0.42

2.3 Spectral Rigidity: the ∆3(L) Statistic

The level spacing distribution P(s) of the data gave limited information, but P(s) is sensitive

to missed and spurious levels. Another statistic, the spectral rigidity or ∆3(L) statistic, is

far more robust, being insensitive to missed and spurious levels. The spectral rigidity is

a measure of the extent that the unfolded spectrum deviates from a rigid, or picket fence,

spectrum. We know that chaotic dynamics lead to level repulsion, hence a rigid spectrum,

where the levels “crystalize” . The level of crystallization, or rigidity is measured by ∆3(L),

which is just the mean deviation of the cumulative level number N (E) =
∫ E
−∞ ρ(E′)dE′

from a straight line, over an energy interval of length L. The mean is taken with respect to

the position of the interval on the unfolded spectrum.
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∆3(L) = 〈minA,B
1
L

∫ E+L

E
( N (E′)−AE′ −B)2 dE′ 〉 (2.10)

For regular dynamics where P(s) is Poissonian (P(s) = exp(−s)), ∆3(L) = L/15. For

the GOE, with its Wigner distribution of level spacings, level repulsion means a smaller

deviation from a purely rigid spectrum, so ∆3(L) is linear for small L and then grows

logarithmically for large L,

∆3(L) ≈ 1
π2

(
ln(2πL)+γ− 5

4
− π2

8

)
, (2.11)

where γ is Euler’s constant. RMT tells us that for a superposition of two pure sequences

mixed in proportion α and β = (1−α) we have ∆3(L) = ∆3(αL)+∆3(βL).

Calculations of the ∆3(L) statistic are shown in Fig. 2.3. Only for the 235U data is

the calculated value value of α consistent with 2J1+1
(2J1+1)+(2J2+1) . The Pu data sets have a

linear ∆3(L) which suggest a number of possibilities. Maybe the neutrons weren’t just s-

wave so more than two spin assignments are required. There may have been missed or

spurious levels. There is an additional quantum number in deformed nuclei, namely the K

quantum number. If this is conserved there may be more subsequences, for example K = 0

for Jtot = 0 and Jtot = 1, and K = 1 for Jtot = 1. This would result in 3 subsets, and the

fluctuation properties would be closer to those for the Poisson case. The 233U data looks

more rigid than one would expect for a mixture of J = 2 and J = 3 resonances, but it is not

clear why.

2.4 The Reduced Width Distribution

The picture of neutron resonances is based on Bohr’s idea of a compound nucleus. The

neutron is absorbed by the target nucleus. The combination of the target in its ground

state and the barely free neutron corresponds to one distribution of energy in the compound
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Figure 2.3: The ∆3(L) statistic for the data sets. The solid lines in each plot are the RMT
results for spectra with the Poissonian level spacing distribution, ∆3(L) = L/15, and for the
GOE (lower logarithmic curve Eq. (2.4)). The long-dashed line in each plot corresponds to
the RMT prediction for a superposition of two sequences in the proportions 2J1+1

(2J1+1)+(2J2+1) .

The short-dashed lines are the results for the data. In the 235U plot the lower dotted lines
are the ∆3(L) calculations for the J = 3 and 4 sequences separately. The 235U data agrees
well with the RMT result both for individual sequences and their combination. The 233U
data has a logarithmic ∆3(L) which looks more rigid than one would expect from simple
angular momentum considerations.

nucleus with all the kinetic energy concentrated in one neutron. The kinetic energy of

the incident neutron is rapidly spread out. In order to re-emit a neutron, all the kinetic

energy must again be concentrated in one particle. This corresponds to a tiny region in

phase space. The typical time needed for the excited target to revisit this tiny region is

the Poincare recurrence time, whic is quite long, corresponding to a narrow width for this

decay mode.

There are two aspects of the physics contained in Γ. On one hand, it is related to the

overlap of the target-neutron initial state with the compound nucleus states. The assump-
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tion of quantum chaos means that Γ is proportional to the square of Hamiltonian matrix

elements, which have a Gaussian distribution. On the other hand, the local density of states

for a neutron in the continuum increases as
√

E, as dp∼ 1/sqrtEdE. This kinematical

effect can be separated from the intrinsic (chaotic) dynamics by studying the reduced width

Γ0 = Γ√
E

. If

P(x) =
1√

2πσ2
exp(

−x2

2σ2 ) (2.12)

then

P(Γ0 ∝ x2) =
1√

2π〈Γ0〉Γ0
exp(

−Γ0

2〈Γ0〉), (2.13)

the famous Porter-Thomas distribution which is just a χ2 distribution with ν = 1 degrees

of freedom. Each set {Γ0} was scaled so that 〈Γ0〉 = 1 as we are interested in fluctuations.

An immediate test on the quality of the data is described in 2.4.1, where P(Γ0) is examined

graphically. Then, in section 2.4.2, an attempt is made to extract the mixing parameters α

from each data set {Γ0
i }.

2.4.1 A graphical search for missing levels

The α values extracted from the level spacings are too low compared with the Wigner

Surmise. If there were levels randomly deleted or spurious levels detected, or if there were

more than 2 sequences of levels in the data, then P(s) would move towards the Poisson

limit, and α would look higher then expected, not lower. But if especially close levels were

selectively missed, the spectrum could be made to look more rigid than it is.

The data was examined for evidence of missed levels. A convenient method, after

Garrison [21], of testing the data for missed levels is to plot ln(xP(x)) vs. ln(x). These plots

are sensitive to the number of narrow widths missed. Narrow levels appear everywhere in

the spectrum, as seen in Fig. 2.4, independent of their neighbors. The resulting histograms

tell us that if levels were missed, they were missed uniformly in Γ0. Small Γ0 were no more
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likely to be missed than larger ones.

The assumption that ν = 1 is not valid for such a superposition. However for the pur-

poses of Fig. 2.4 the difference is not significant. The data was analyzed using the maxi-

mum likelihood method. An array of graphs for the datasets is shown in Fig. 2.4.
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Figure 2.4: The distribution of reduced widths Γ0 for all four data sets. The dotted line is
P(x) = χ2(x|ν = 1)

2.4.2 Higher moments of the reduced widths

The distribution of Γ0 values is a weighted sum of two Porter-Thomas distributions with

means Γ0
1 and Γ0

2,

P(Γ0) = αPPT(Γ0,Γ0
1)+(1−α)PPT(Γ0,Γ0

2). (2.14)
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The nth moment xn of a distribution P(x) of a random variable X is

〈xn〉 =
∫ ∞

∞
xnP(x)dx. (2.15)

For the χ2 distribution with ν degrees of freedom and mean value x = 1

P(x) =
ν
2x

ν
2−1

Γ(ν
2)

ν
2

e−
ν
2 x (2.16)

where Γ is the factorial function. The nth moment is

xn = xn (
2
ν
)n Γ(n+ ν

2)
Γ(ν

2)
(2.17)

The empirical moments of the data can be used to extract the best values of α, Γ0
1 and

Γ0
2.

Γ0n = 2n Γ(n+ 1
2)

Γ(1
2)

(α Γ0
1

n
+(1−α)Γ0

2

n
) (2.18)

After many false leads a procedure was found which gave encouraging (i.e. unam-

biguous) results. Writing the nth moment of a data set Γ0n
data and the theoretical value

calculated with Eq.(2.18) as Γ0n
th (which depends on α and Γ0

1), a function δ(α,Γ0
1) was

defined the minimum of which occurred at the optimum values of α and Γ0
1,

δ(α,Γ0
1) = |Γ0n

data−Γ0n
th| (2.19)

The initial rescaling of the data to ensure Γ0 = 0 imposed the constraint

α Γ0
1 +(1−α)Γ0

2 = 1, (2.20)

giving Γ0
2 as a function of Γ0

1 and α.

δ(α,Γ0
1) was evaluated for α in the range (0.05,0.95) and Γ0

1 in the range (.3,2). For

each value of Γ0
1 the value αmin of α that minimizes δ was selected and the corresponding

triples {δ(αmin,Γ0
1) ,αmin Γ0

1} were saved. A plot of Γ0
1 vs. lnδ(αmin,Γ0

1) was made and the

value of Γ0
1 that minimized lnδ(αmin,Γ0

1) was read off, see Fig. 2.5. The value of αmin was
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then read off a graph of αmin vs. Γ0
1, see Fig. 2.6. The resulting values of α and Γ0

1 for the

second and third moments of all the data sets are listed in Table 2.1.

The negative values of Γ0
1,2 in Table 2.1 show a breakdown of the method. Once again

the procedure worked well for the 235U. For the other data sets no analysis worked. This

could be interpreted as an indictment of the quality of the data. These experiments are

notoriously difficult to perform.
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Figure 2.5: The minimum lnδ(〈X1〉) vs. 〈X1〉, (here Γ0
1 is written as 〈X1〉). The left hand

panels correspond to the second (n = 2) moment of the data, and the right hand panels
correspond to the third (n = 3) moment of the data.
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to get the values of α that best fit the data.
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Chapter 3

Randomly Interacting Fermions

The complexity of the spectra of many-body systems can originate from completely differ-

ent sources. There are dynamic and kinematic effects that are fundamentally different. For

example, even weak residual interactions at high level densities can give strong mixing of

the mean field configurations; this is a dynamic effect. On the other hand, the complexity

of states of good angular momentum forces us to treat the coupling of many single-particle

angular momenta as a pseudo-random process i.e. not random per se but so hopelessly com-

plicated that it must be treated as such. This kinematic effect leads to geometric chaoticity,

introducing immense complexity into our system without any interaction at all. The roles

of these disparate effects in shaping spectra are not easily distinguishable.

The standard methods used in understanding global features of nuclear spectra vary

with excitation energy. To include angular momentum, the early nuclear level density

formulae used this approximation of random coupling of angular momentum, reducing

the problem to one of a random walk in the space of the angular momentum projection.

Although the concept had not yet been invented, this was the earliest application of quantum

chaos. RMT clarified the role of the global symmetries of the Hamiltonian in shaping

the local features of the spectra. Its main successes have been in deriving expressions

for correlations between levels with fixed quantum numbers for the Gaussian ensembles.
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While traditional studies of random spectra concentrate on correlations within such pure

sequences of levels, the important question of correlations between different sequences of

levels (for example levels with different angular momentum) in random systems has not

been thoroughly explored. These correlations could be quite rich in physical information.

For example a highly excited deformed nucleus will mix states of the same J. Higher

excited states very close in energy but differing in J by one or two unit will probably

have a very similar structure, if the energy difference is rotational in nature. This idea led

Mottelson to suggest the existence of the so-called rotational compound bands [40] which

were seen in the shell model calculations but not yet in nature.

Recently there has been much interest in the spectra of small many-body rotationally

invariant systems with a random two-body interaction, stimulated by the work of Johnson

et al [11], [12]. They examined such spectra and discovered strong correlations between

different J classes. The yrast energies (the lowest energy of spin-J) showed an increase

with J(J+1), and a huge probability to have a spin zero ground state. The initial knee-jerk

interpretation was that the random interaction effectively had a strong pairing component.

They also investigated the distribution of energy gaps in the low-lying levels and claimed

evidence of ”rotational/vibrational band structures”.

There are many interesting results in the flurry of research that ensued. Mulhall et al.

[14] discovered that in some cases there was also a huge abundance in the number of maxi-

mum spin ground states. Furthermore they showed that when the pairing component of the

interaction is switched off the excessive appearance of spin zero and maximum spin ground

states is only slightly affected. All even-even nuclei have J = 0 ground states, and this fact

is routinely explained by the formation of Cooper pairs. It has been an irresistible tempta-

tion to reverse the rule Cooper pairs give J = 0 ground states in Fermi systems

of even particle number, and say that J = 0 ground states in Fermi systems

of even particle number imply the existence of Cooper pairs. This is a trap
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into which many a researcher has fallen.

The formation of Cooper pairs is intimately related to time-reversal invariance of the

Hamiltonian. Bijker et al. [6] added a small time-reversal non-invariant component to

a random two-body Hamiltonian and observed an increase in the number of J = 0 ground

states. These observations should put the role of pairing on a less extravagant footing. Zhao

et al. [47] developed an algorithm for predicting the distribution of ground state spins which

sampled the interaction space by taking different L-components individually and merged

the results. The intriguing aspect of this is, rather like Samuel Johnson’s reaction to a dog

walking on its hind legs, not so much that it does it well, but that it does it at all. It is not

clear even to the authors themselves why the algorithm works. Horoi et al. [30] compared

a realistic interaction with a random one in the shell model and found that although the

random interaction had a large propensity for J = 0 ground states, the states themselves

had a small overlap with those of the realistic interaction. Kusnezov et al. [13] showed

that a system of random interacting bosons in the Interacting Boson Model (IBM) [25]

displayed the now familiar excess of J = 0 ground states and vibrational/rotational bands,

but on comparison with experimental nuclear data there are other physical features not

present in the random ensemble, thereby putting constraints on the random systems. Most

of the researchers worried about fermionic systems in the dilute limit where the single-

particle occupation numbers were small and Pauli blocking was not a strong factor. Santos

et al. [28] went beyond the dilute limit to show that the regular features of these random

spectra were largely independent of whether they were bosons or fermions.

Subsequent investigations found this to be a robust phenomenon with respect to the

choice of ensemble (particle number N, single-particle spin j , and distribution of random

parameters), being driven by the imposition of a global symmetry. Early on in the drama,

a reasonable physical explanation was proposed by Zelevinsky et al. [14]. The effect was

considered to be a consequence of geometric chaoticity, the complexity of a many-body
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state that comes from making a state of good angular momentum. The construction of

an N-body wave function of angular momentum J can be performed by coupling a pair

of particles to spin-J12, coupling this pair to a third particle to get spin-J123 and so on.

The choices for the intermediate spins, J12 etc., are arbitrary and one scheme is related to

another by a unitary transformation whose matrix elements are 3n- j symbols. Again the

reader is reminded that it is this immense complexity of the |JM〉 states in the M-scheme

basis that leaves us with no other choice but to treat the angular momentum coupling as

pseudo-random.

To reiterate, the question can be stated as follows: How can a rotationally-invariant

random interaction generate predominantly spin-0 and maximum-spin ground states as

well as a smooth yrast line and other non-random features in the ensemble average.In

order to answer this question a randomly interacting system was chosen which is rich

enough to exhibit the regular features yet simple enough to tackle analytically. This ap-

proach stripped the question of all less important details and allowed us to concentrate on

the important aspects of the puzzle.

3.1 A Simple System

Before proceeding any further it is instructive to look at a few simple examples, the first

being an analog of the Hund rule in atomic physics. Consider a system of N pairwise

interacting spins with the Hamiltonian

H = A ∑
a�=b

sa · sb = A[S2 −Ns(s+1)]. (3.1)

If the interaction strength A is a random variable with zero mean, then the ground state

of the system will have equal probabilities, f0 = fSmax = 1/2, to have total spin S= 0 or

S= Smax (antiferromagnetism or ferromagnetism).

The second example is the degenerate pairing model [39] where a similar situation takes
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place. In this model the pair creation, P†
0 , pair annihilation, P0, and particle number, N,

operators form an SU(2) quasispin algebra. Now the eigenenergy is simply proportional to

the pairing constant so that, for a random sign of this constant, the ground state quasispin

will take a value of 0 corresponding to an unpaired state of maximum seniority, or the

maximum possible value corresponding to a fully paired state of zero seniority, with each

possibility occurring on average in 50% of cases. For those readers unfamiliar with the

argot of pairing, the seniority of a state is simply the number of unpaired particles in that

state. In the Elliott SU(3) model [16], as well as in any model with a rotational spectrum,

the normal or inverted bands will happen with equal frequency if the moment of inertia

takes positive or negative values with equal probability.

Our system is one of N fermions on a single energy level of spin j which has a 2 j + 1

degeneracy in the single-particle energies. We are free to choose this system because the

regularities we are investigating are robust with respect to the choice of both system and

ensemble. Within this space, the general two-fermion rotationally invariant Hamiltonian

can be written as

H = ∑
LΛ

VLP†
LΛPLΛ, (3.2)

where the pair operators for a pair of fermions coupled to spin L and projection Λ are

defined as

P†
LΛ =

1√
2
∑
mn

CLΛ
mna

†
ma†

n, PLΛ =
1√
2
∑
mn

CLΛ
mnanam; (3.3)

am annihilates a particle with single-particle angular momentum j and projection m, while

a†
m creates such a particle, CLΛ

mn are the Clebsch-Gordan coefficients 〈LΛ| jm; jn〉; and the

two-particle states |2;LΛ〉 = P†
LΛ|0〉 are properly normalized, 〈2;L′Λ′|2;LΛ〉 = δL′LδΛ′Λ.

Because of Fermi statistics, only even values of L for the pair operators are allowed in

the single- j space, as interchanging the particles gives a phase of (−1)L+1. Two particles

with projections m1 and m2 coupled to angular momentum L interact with energy VL and

leave with projections m3 and m4 while the Clebsch-Gordan coefficients ensure conser-
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vation of angular momentum at all times. There are j + 1
2 interaction parameters VL and

these numbers define our ensemble. The ensemble we chose was a uniform distribution of

VL between -1 and 1, which sets the energy scale. The property P(VL) = P(−VL) makes

attraction and repulsion between particles in a spin-L pair equiprobable. Once again we

remind the reader that the results are robust with respect to this choice. In some cases we

used Gaussian ensembles, as they are easier to work with analytically.

3.2 Properties of the Operators

Let’s look at the properties of the pair operators. This will give useful relations which

will be crucial later in the game. In what follows, the fact that L, the angular momentum

of the pair, can be only an even integer, will be expressed by means of the factor ΘL =

[1+(−1)L]/2 if needed. Also, a factor
√

2L+1 is denoted gL.

Using the commutation relations and addition formulae for the single-particle cre-

ation/annihilation operators am and a†
m in appendix A we get the commutation relations

for pair operators of the quasiboson type,

[PL′Λ′ ,P†
LΛ] = ΘLδL′LδΛΛ′ +2ΘLΘL′ ∑

mm′n
CL′Λ′

jm′ jnCLΛ
jn jma†

mam′ . (3.4)

This can be rewritten in terms of multipole (particle-hole) operators as:

[PL′Λ′ ,P†
LΛ] = ΘLδL′LδΛ′Λ (3.5)

−2ΘLΘL′gLgL′ ∑
Kκ

(−)K
{

j L j
L′ j K

}
CKκ

LΛL′−Λ′(−)Λ′
M †

Kκ.

The multipole operators are

M †
Kκ = ∑

mn
CKκ

jm jna†
ma−n(−) j−n, (3.6)
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and inversely

a†
man = ∑

Kκ
CKκ

jm j−n(−) j+nM †
Kκ. (3.7)

Here all values of K from 0 to 2 j are allowed. The hermitian conjugate gives the standard

rule for the multipole moments,

MKκ = (−)κM †
K−κ. (3.8)

The monopole operator, K = 0, is proportional to the number of particles N,

M00 = M †
00 = − 1

gj
∑
m

a†
mam = −N

gj
. (3.9)

The K = 1 component is proportional to the angular momentum operator,

M †
1κ = −

√
3

j( j +1)(2 j +1)
J†

κ . (3.10)

The relevant commutator is

[M †
Kκ,P

†
LΛ] = 2gKgL ∑

L′Λ′

{
j L j

K j L′

}
CL′Λ′

Kκ LλP†
L′Λ′ . (3.11)

The operators {PLΛ,P†
L′Λ′ ,M †

Kκ} form a closed algebra under commutation, but its too

complicated to be practical. For example, for N = 6 fermions of spin j = 11
2 any pair of

particles can couple to L = 0,2,4, . . .8,10 and K can be 0,1,2,3...,9,10, giving us 253

operators in our algebra.

The Hamiltonian can be identically transformed to the particle-hole (p-h) channel where

it is expressed in terms of the multipole operators as

H = εN̂− 1
2 ∑

Kκ
ṼKM †

KκMKκ. (3.12)

The effective single-particle energy in eq. (3.12) is ε = (1/2)∑K ṼK , and the interaction

matrix elements ṼK in the p-h channel (K = 0,1, ...,2 j = Ω−1 can be both even and odd)
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are related to the original matrix elements VL in the particle-particle (p-p) channel as

VL = ∑
K

{
j j L
j j K

}
ṼK (even L), (3.13)

or, inversely,

ṼK = (2K +1) ∑
Leven

(2L+1)
{

j j K
j j L

}
VL. (3.14)

The transition between the p-p and p-h channels (the so-called Pandey transformation)

was studied from the dynamical viewpoint by Belyaev [3]. The channels are complemen-

tary in the following sense: the low L components of the p-p channel contribute mainly

to the high K components of the p-h channel, and vice versa. The pairing part of the

interaction, L = 0, corresponds to the sum of all multipole interactions,

V0 = − 1
Ω ∑

K
(−)KṼK. (3.15)

This complementarity explains the success of the popular interpolating model “pairing +

multipole-multipole interaction” where the effective interaction combines phenomenolog-

ically the lowest components in both channels. Note that the interaction parameters cannot

be assumed to have the same distributions, P(VL) �= P(ṼK). ṼK are functions of VL in eq.

(3.14), and there are more of them.

The relationship between seniority and the pair-creation/annihilation operators gives

us a useful analytical tool. The seniority S of a state is the number of unpaired particles

in that state. We are usually interested in J = 0 states and will restrict our examples ac-

cordingly. Denoting an N-particle seniority-S state by |S,N〉, possible spin-0 states for an

N = 4 system are |0,4〉 , |4,4〉. Notice that |2,4〉 is impossible because the two remaining

unpaired particles must couple to angular momentum zero to have J = 0. Similarly for an

N = 6 particle system the possible J = 0 states are |0,6〉 , |4,6〉 , |6,6〉. P†
0 and P0 do not

change seniority as they create/annihilate a spin-0 pair. A very elegant formalism called

”The Quasispin Model” [23] gives us some very useful relations for dealing with senior-
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ity eigenstates. In the quasispin model operators are constructed which fulfill the angular

momentum commutation rules. Defining

S+ = ∑
m>0

a†
ma†

−m

S− = ∑
m>0

ama−m

S0 =
1
2 ∑

m>0

(
a†

mam+a†
−ma−m−1

)
.

(3.16)

A simple check shows that these operators commute as the angular momentum operators,

J+, J−, and J0. The operator S2 analogous to J2 is defined as

S2 = S+S−−S0 +S2
0

and has eigenvalues 1
4 (Ω−S)(Ω−S+1) where Ω = 2 j + 1. The quasispin model thus

gives

〈S,N+2|P†
0 |S,N〉 =

√
(Ω−N−S)(N−S+2)

〈S,N−2|P0|S,N〉 =
√

(N−S)(Ω−N−S+2)

〈0,4|P†
0 P0|0,4〉 = |〈0,4|P†

0 |0,2〉|2 = Ω−2

〈4,4|P†
0 P0|4,4〉 = 0

|〈6,6|P†
0 |S,4〉|2 = 0 (as S= 6 doesn’t exist for N = 4)

|〈4,6|P†
0 |4,4〉|2 =

1
2
(Ω−8)

|〈0,6|P†
0 |0,4〉|2 =

3
2
(Ω−4).

(3.17)

3.3 The Spectra

A body of empirical information was gathered from numerical simulations in which the

eigenvalues and in some cases the eigenvectors of many random Hamiltonians were cal-
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culated. A wide range of systems, see Table (3.1), was examined in this way. Direct

diagonalization of the Hamiltonian in the m-scheme was used but as the dimensions got

large it was necessary to employ the shell model code OXBASH. What follows is a sum-

mary of the main features of the ensemble. Some of the figures make reference to ”theory”.

This means the statistical theory developed in the next chapter.

Notations:The ground state spin will be denoted by J0. The fraction of ground states

with spin-J is denoted fJ. DJ is the multiplicity of the spin-value J (DJmax = 1 for all our

systems).

3.3.1 The distribution of ground state spins

The strongest feature of the spectra was the huge incidence of ground states with total

angular momentum J = 0 (or J = j in the odd-N systems) and J = Jmax, the maximum

allowed value, shown in Figs. 3.3-3.5. In the right hand panels of Fig. 3.1 (3.2) the

enhancement of J = 0 (J = Jmax) states is given as the ratio of f0 ( fJmax), the observed

fraction of spin 0 (Jmax) ground states, and D0 (DJmax), the fraction of allowed values of J

that are 0 (Jmax). This enhancement is clearly large. From the distribution of allowed values

of total angular momentum J for a given N and j it is clear that J = 0 and J = Jmaxaccount

for a tiny portion of the available states. Moreover, the enhancement of the J = j states for

the N = 5 system, shown in Fig. 3.4, is consistent with a valence spin j particle on a spin

0 core. It is counterintuitive that a random interaction would generate such a distribution.

One would expect something closer to the statistical distribution of allowed values of J.

For the N = 4 case there was a staggering of f0 as j varied which had a period of 3,

as shown in Fig. 3.1. Systems with different N were correlated in the sense that the local

minima of f0 ( f j in the N = 5 case) occurred at j = 7
2 , 13

2 , 19
2 for all values of N. The origin

of this effect lies in the behavior of D0, the multiplicity of J = 0, which for N = 4 increases

by 1 each time j increases by 3, see Table (3.1).
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j N = 4 N = 6 N = 8 N = 10 N = 12
3/2 1 0 0 0 0
5/2 1 1 0 0 0
7/2 2 1 1 0 0
9/2 2 2 1 1 0
11/2 2 3 2 1 1
13/2 3 4 4 2 1
15/2 3 6 7 6 3
17/2 3 8 12 12 8
19/2 4 10 20 24 20
21/2 4 13 31 52 52
23/2 4 16 47 97 127
25/2 5 20 71 177 291
27/2 5 24 102 319 639
29/2 5 29 144 540 1330
31/2 6 34 201 887 2634
33/2 6 40 272 1429 4998
35/2 6 47 365 2219 9113

Table 3.1: The multiplicity D0, of J = 0 for various values of particle number, N, and
single-particle spin, j .

3.3.2 The role of pairing

As mentioned in the introduction, the high values of f0 were initially assumed to be con-

nected in some way to pairing. There is no obvious dynamical reason for the regularities

seen in the spectra, yet pairing was assumed by many investigators as a possible culprit.

Switching off the pairing interaction by setting V0 = 0 has a very limited effect in the N = 6,

j = 11/2 system. As shown in Fig. 3.6, the value of f0 did decrease but only by a small

amount, from 59% to 55%. Setting V0 = −1 increased f0 by 25%, but this is hardly un-

expected, as the pairing force is now strong and attractive. Of course the J = Jmax state

contains no spin-0 pairs so isn’t directly influenced by the value of V0.

The effect could be kinematical. If the regularities in f0 are due to random spin cou-

pling, the ground state wave functions are expected to be chaotic and the coherent features

of a realistic ground state absent. A point of reference is the totally paired state, |0, p〉 of
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Figure 3.1: The left hand panels (a-c) show values of f0 (vertical axis) vs the single-particle
angular momentum j (horizontal axis). In the right-hand panels f0 has been divided by D0,
the fraction of the total dimension of the space (ignoring the 2J+1 degeneracy) accounted
for by J = 0

seniority zero which would be the ground state for the pure pairing attractive interaction

corresponding to a choice of parameters V0 = −1, VL �=0 = 0. For any set of the parame-

ters from the random interaction ensemble which leads to the zero ground state spin, we

calculate the overlap

x = |〈J = 0,g.s.|0, p〉|2. (3.18)

The histogram of the distribution P (x) is presented in Fig. 3.7(b) for the case of N = 6

particles on the j = 11/2 level. Clearly, the overlap is very low.

In the extreme chaotic limit the eigenfunctions are expected to be nearly random super-

positions of the basis states |k〉 with the uncorrelated amplitudes Ck constrained only by the

orthonormality requirements. The distribution function of the (real) components of a given

eigenfunction is the same as that of a multidimensional vector uniformly spread over a unit

sphere, P ({Ck}) ∝ δ (∑kC2
k − 1). For the dimension d, this leads to the distribution func-

tion of any given component C (a projection of the eigenvector onto a specified direction in
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Figure 3.2: Same as Fig. 3.1 but this time we show fJmax

Hilbert space)

P (C) =
Γ(d/2)√

πΓ[(d−1)/2]
(1−C2)(d−3)/2Θ(1−C2). (3.19)

In the limit of d � 1, eq. (3.19) gives the Gaussian distribution with 〈C2〉 = 1/d while the

weights x = C2 are distributed according to the Porter-Thomas law. Complicated nuclear

shell model wave functions obtained in realistic calculations with no random parameters

are close to the chaotic limit. The typical d-dependence can be unfolded [20] into a regular

scheme of approximations, the so-called N-scaling, which allows one to classify various

processes going through the compound nucleus stage. The statistical enhancement of weak

interaction effects observed via parity non-conservation in neutron resonances, described

in chapter 1, and [18], is one of the most convincing illustration of statistical regularities

seen on the level of individual wave functions.

In our examples the dimensions d are typically not very large, but the statistical features

are brought about by random interactions. We can look at the distribution of overlaps (3.19)

as the representative of the distribution of components of eigenvectors along the pairing

basis vector |0,p〉. Six particles on a j = 11/2 level give rise to d = 3 states of spin J = 0.
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Figure 3.3: The distribution fJ of ground state spins J0 for various systems of N = 4 parti-
cles.

In the chaotic limit, this would lead to P (C) = const, and therefore

Pd=3(x) =
1

2
√

x
, 0 < x≤ 1. (3.20)

This distribution appears in the problem of pion multiplicity from a disordered chiral con-

densate [1], [2]. This prediction, the dashed histogram in Fig. 3.7(b), is in agreement with

the numerical results. Another situation is shown in Fig. 3.7(a) where the data, a solid

histogram, are taken for the ensemble which contains regular attractive pairing, V0 = −1,

plus uniformly random interactions in all channels with L > 0. The presence of pairing

generates a significant probability for the paired ground state, a peak at x = 1. However, it

is possible to show that there exist an “antipaired” state with J = 0 but a vanishingly small

”probability” to be a ground state so that the space of the candidates for the ground state
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Figure 3.4: The distribution fJ of ground state spins J0 for various systems of N = 5 parti-
cles.

position is effectively two-dimensional. For d = 2

Pd=2(x) =
1

π
√

x(1−x)
, 0 < x≤ 1, (3.21)

which agrees qualitatively with the data, Fig. 3.7(a).

3.3.3 The yrast line

Until recently the question of correlations between different classes of levels in random

spectra has largely been ignored. RMT has little to say on this topic, yet it is a compelling

question. Our ensemble exhibited such a correlation in the form of regular average yrast

lines. From the ensemble for each N-body system of spin-J particles, two groups of spectra

were extracted, those with J0 = 0 ( or j in the N = 5 case) and J0 = Jmax. From these groups

the average lowest energy for a given J was extracted. The results for each N, j system were
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Figure 3.5: The distribution fJ of ground state spins J0 for various systems of N = 6 parti-
cles.

fitted to the form

E(J) = E0 +αJ(J+1). (3.22)

Fig. 3.8 shows the yrast line for a representative system, with the zero of the energy scale

taken as the ground state energy. Large fluctuations are especially apparent at small J, with

the J = 0 and 2 energies, which are on opposite sides of the parabola, while the higher J

energies are well approximated by it. This behavior is quite general, being present in all the

N = 4 and 6 particle systems. Fig. 3.9 refers to the ensemble average of all the six-particle

systems.

Any set of VL will create a mean field which will not, in general, be spherical. This,

and the fluctuation of the yrast levels about the parabola, mean that the low lying states are

connected by non-collective rotation.
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3.3.4 The ground state energy gap

In even-even nuclei the ground-state is pushed down with respect to neighboring nuclei.

This is a result of pairing, but it is not a signature of pairing. Pairing correlations lead to a

depressed ground state, but a depressed ground state does not imply pairing.

The energy difference between the ground-state and the first excited state, E2 −E1, is

the ground state gap. The distribution of the ground state gap was compared with the next

gap in the spectrum, E3 −E2. The resulting numbers for each ensemble were divided into

three groups corresponding to J0 = 0 (or j for the N = 5 cases), J0 = Jmax, and the rest. The

gaps from the first two groups were divided by those of the last group so that they could all

be compared sensibly.

The result is that the gaps from the J0 = 0 (or J) sets are larger then those from the

J0 �= 0, Jmax set, their ratio being consistently close to 2. An examination of the left panels
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of Fig. 3.11 suggests that while the pairing force is attractive for these spectra, it is still

quite small. Furthermore, the interaction parameters for low L tend to be small or negative.

The value of V0 is not the sole driving force behind the depression of the ground state

energy. For a given value of j , there are j − 1/2 two-body Slater-determinants with total

projection M = 0, and there are j −5/2 with total projection M = ±2. In general there are

( j −1/2−L) two-body Slater-determinants with total projection M =±L. This means that

a J0 = 0 state is more sensitive to lower-L interaction parameters as more low-L pairs can

be involved.
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2 .

The ratio of gaps from the J0 = Jmaxsets to those from the J0 �= 0, Jmaxsets is close to 1;

the ground state is not pushed down significantly when J0 = Jmax. The right panels of Fig.

3.11 indicate that the interaction parameters for high L are large and negative. The ground

state energy is not expected to be depressed here because, from simple combinatorics, the

Jmax states cannot form many high-L pairs.

The behavior of the ground state gaps can thus be qualitatively explained an effect

of spin projection combinatorics. If this picture is accurate it is another very interesting

example of an intra-sequence correlation generated by geometry.

3.3.5 The level density

In our model, we expect the level density for a given class of states with angular momen-

tum J to be Gaussian, centered at 0, and with a standard deviation σJ, as for the two-body

random ensemble (TBRE) [43]. Initially it was suggested that the source of the regularities
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in the ground state spin was the behavior of σJ for the different classes J. If σJ is dra-

matically larger for J = 0 and J = Jmax, then the ground state would be biased in favor of

these values, as the distribution of energies with these spins would stretch to very negative

values. Even if this was correct, it would be just a reformulation of the problem rather than

an explanation. The actual value of σJ was extracted from the ensemble by superimposing

all the levels of angular momentum J from the spectra, and fitting the resulting normalized

distribution, ρ(E), to a Gaussian centered at 0.

Indeed, σJ is larger for J = 0 and J = Jmaxclasses, see Fig. 3.12, but the degeneracy, DJ,

of these values of J is small, and the effect of the larger size of σJ is not nearly large enough

to explain the distribution of J0. To illustrate this the following experiment was performed.

“Spectra” with the appropriate J degeneracy, DJ, were made, each of the energies generated

from a Gaussian distribution centered at 0 and with σ = σJ, taken from the N = 6, j = 11/2
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ensemble. The resulting fJ is shown in Fig. 3.14. It follows DJ closely until Jmax. fJmax

is greater than the statistical weight of Jmax by a factor of 4. This is the closest similarity

to the ensemble result. The conclusion is that σJ by itself plays no perceivable role in the

predominance of spin-0 ground states, but goes some way in explaining the high incidence

of Jmax ground states.

3.3.6 The distribution of level spacings and off-diagonal matrix ele-
ments

So far the ground state wave functions have exhibited chaos, and the fluctuations of the

yrast states suggested non-collective rotation. Now we come to another signature of chaos,

this time on the level of spectral fluctuations within a class of states, namely the level

spacing distribution, P(s), discussed in 2.2. To study P(s), a value of J was chosen with

large enough DJ to give a dozen or so spacings, the sequence was unfolded and a set of

spacings {s} extracted. The resulting distribution P(s) agreed well with the parameter-free

46



0 5 10 15
L

−1

−0.5

0

0.5

1

<VL>

−1

−0.5

0

0.5

1

<VL>

−1

−0.5

0

0.5

1

<VL>

0 5 10 15
L

(a)j=13/2 J=0 (b)j=13/2 J=24

(c)j=15/2 J=0 (d)j=15/2 J=30

(e)j=17/2 J=0 (f)j=17/2 J=36

Figure 3.11: The mean value, 〈VL〉, of the subsets of {VL} vs. L that give J0 = 0 or J0 = Jmax,
for all the N = 6 systems. The panels are labelled with the value of the single-particle spin,
j . On the left are the J0 = 0 data, and on the right are the J0 = Jmax data.

universal Wigner distribution (1.1), see Fig. 3.15.

The distribution of the off-diagonal matrix elements of the Hamiltonian is Gaussian,

as expected from RMT. If the basis is changed from the m-scheme to the |JM〉 basis, the

Hamiltonian is block-diagonal, and orthogonal invariance is lost. The off-diagonal matrix

elements in a given block no longer have a Gaussian distribution. In shell model calcula-

tions with realistic two-body interactions, the distribution of off-diagonal matrix elements

is close to the Porter-Thomas form,

PJ(Hi �= j) =
α1+q

2 Γ(1+q)
|Hi �= j |q e−α|Hi �= j |. (3.23)

Actually, this distribution arises in a variety of systems, including nuclear and atomic shell

models, and may be generic for these many-body interactions [44].
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Our Hamiltonians for the j = 11/2, N = 4 and 6 systems have J = 0 blocks of 2 and 3

dimensions, respectively. The matrix elements in a randomly chosen basis were calculated

explicitly in terms of the interaction parameters {VL}. To compare Hi �= j from different sets

{VL}, they must be brought to the same scale. A reasonable scaling procedure is to divide

by
√

Tr(H −〈H〉)2. Statistically Tr(〈H〉) ≈ 1
D0

Tr(H), where D0 is the dimension of the

J = 0 block. Our procedure is to divide each Hi �= j by
√

Tr(H2)+( 1
D2

0
− 2

D0
)Tr(H)2. As

we are concerned with the J = 0 block of the Hamiltonian we have an additional quantum

number at our disposal, namely S, the seniority. An ordering of the seniority basis is chosen

such that the diagonal elements H11,H22, and H33 correspond to S= 0, 2, and 6 respectively.

For N = 6 in the seniority basis only H12 survives, reason being that according to (3.17),

the spin-0 block of H cannot mix S= 6 states with S= 0 or 4 states and consequently

the value of D0 must be changed to 2. The results for N = 6, Fig. 3.16, show that in
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the seniority basis P(H12) is far from Gaussian, it is more like a sum of two negative

exponential functions, and it is quite close to P(H12) for the random basis. In the random

basis P(H13) and P(H23) fall off rapidly, suggesting that the random basis is accidentally

close to the seniority basis where H13 and H23 are zero. In a three-dimensional system such

an accident is quite plausible. In the N = 4 system the distribution in both bases has two

peaks, a surprising result and most likely an artifact of the scaling procedure, see Fig. 3.17.

An alternative scaling procedure was tried where H12 was divided by
√

Tr(H2). This gave

a negative exponential distribution, with q = 0 and α = 1.8 in (3.23), Fig. 3.18.

3.3.7 Multipole moments and transition collectivity

The structure of the low-lying states generated by random interactions is of interest. We

have already seen in section 3.3.2 that the spin-0 ground states are chaotic in nature, hav-
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ing none of the coherent properties of a physical ground state. Nor do the J = 0 ground

states have any of the characteristics of a paired condensate. One can ask if the low-lying

states are built of single-particle-hole excitations or if, for example, Slater determinants of

a particular seniority play a special role in the J = 0 ground states. With this in mind the

low energy wave functions were probed with multipole operators, M †
Kκ , defined by

M †
Kκ = ∑

mn
CKκ

jm jna†
ma−n(−) j−n, (3.24)

and the spin-0 pair operators P†
0 and P0. The multipole operators are creation-annihilation

operators for particle-hole excitations of a given angular momentum. Here we will define a

quantity, XK(i → f ), with which we can gauge the collectivity of an excited state in terms

of the reduced transition probability. The reduced transition probability between an initial
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state |i〉 and a final state | f 〉, i → f , of multipolarity K is defined as

BK(i → f ) = ∑
Mf κ

∣∣∣〈 f Jf Mf |M †
Kκ|iJiMi〉

∣∣∣2 , (3.25)

The average fluctuation of M †
Kκ in the initial state |i〉 is

SK[i] = ∑
f Jf

BK(i → f ) = ∑
κ
〈iJiMi|MKκM †

Kκ|iJiMi〉. (3.26)

The fractional collectivity of a given state, labelled f , is

XK(i → f ) =
BK(i → f )

SK[i]
. (3.27)

XK(i → f ) will be peaked around 1 if the final state consists of simple particle-hole excita-

tions of the initial state. However, if the lowest J = 4 state is connected to a J = 0 ground

state by ∑µµ′ C
4κ
2µ2µ′M

†
2µM

†
2µ′ , this would indicate a two particle two hole structure which

has more potential for collectivity. The N = 4,6 j = 11/2 systems were thus analyzed, and
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there was no evidence of such a structure. The distribution of values of XK(i → f ) were

peaked at unity indicating that the excited states were simple particle-hole excitations.

The J2 and ∑κ MKκM †
Kκ matrices were calculated for the N = 4,6 j = 11/2 systems.

The degeneracy of the J = 0 states, D0, is 2 for the N = 4 particle system, and 3 for the

N = 6 particle system. The J = 0 states that maximized and minimized S2[0] and S4[0]

were made by diagonalizing ∑κ MKκM †
Kκ in the J = 0 block. Having found these states,

the single-particle occupation numbers nm were extracted for each state. The contributions

to nm from Slater determinants of specific seniority were separated. It is immediately clear

that the states that maximize S2[0] and S4[0] consist mainly of seniority zero Slater deter-

minants, while the states that minimize S2[0] and S4[0] mix all seniorities, see Figs. 3.19

and 3.20.
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2×2 J = 0 block of the N = 4, j = 11/2 Hamiltonian in the |JM〉 basis rescaled according
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To further examine the structure of the lowest J = 4 states we looked at the operator

Q†
LΛ;KK′ = ∑

κ1,κ2

CLΛ
Kκ1;K′κ2

M †
Kκ1

M †
K′κ2

(3.28)

which is just a pair of spin-K particle-hole excitations coupled to angular momentum L.

In analogy with (3.25) and (3.26), we define

BQ;L(i → f ) = ∑
Λ

∣∣∣〈 f Jf Λ|Q†
LΛ|0〉

∣∣∣2 , (3.29)

and

SQ;L[0] = ∑
Λ
〈0|QLΛQ†

LΛ|0〉. (3.30)

Now the same questions we asked about the single-particle-hole excitation nature of wave

functions can be asked for two-particle-two-hole excitations. When B4(0 → 4) compared

to BQ;4(0 → 4) we see a strong correlation. If one quantity is large, the other is small. This
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is especially true of the N = 6 systems. An obvious interpretation of this is that a state can

have either one nature or another, but seldom combination of both.

Another geometric effect is that the pairs {SQ;4[0], S4[0]} form an ellipse, see Fig.

3.21. This is to be expected as the J = 0 block is two dimensional, and the operators

∑Λ Q4ΛQ†
4Λ, and ∑κ M4κM †

4κ have different eigenvalues and eigenvectors. If we take the

two eigenvectors of ∑κ M4κM †
4κ as a basis, and call the corresponding eigenvalues M 1 and

M 2, any spin zero state of the system can be specified by an angle θ in this space. The

eigenvectors of ∑Λ Q4ΛQ†
4Λ make an angle φ with the axes, and have eigenvalues Q 1 and

Q 2, now the pairs {SQ;4[0], S4[0]} are just { M 1 cos2(θ) + M 2 sin2(θ), Q 1 cos2(θ−φ) +

Q 2 sin2(θ−φ)}, which is the equation for an ellipse parameterized by θ. The distribution

of points {SQ;4[2], S4[2]} can be explained by a similar argument for three dimensions as

there are three J = 2 states again see Fig. 3.21. One must exercise extreme caution when
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interpreting combinations of single-particle operators. There can be striking correlations

begging to be misinterpreted as exciting physics instead of the subtle geometric effects that

they so often are.

3.3.8 Pairing and fractional pair transfer collectivity

Previous investigators [11], [12], tried to pinpoint the role of pairing in this problem in a

number of ways. So far we have seen that the pairing component of the random interaction,

in the sense of the magnitude and sign of V0, plays a minimal role. When set to 0 it doesn’t

impact the fraction of spectra with spin 0 ground states, Fig. 3.6(c). Furthermore the ground

state wave functions are close to the chaotic limit, they are not oriented in the Hilbert space

along the vector of the pure pairing wave function, Fig. 3.7. Following the example of
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Ref.[11], [?], we examine fp, the so-called fractional pair transfer collectivity. fp is defined

by

fp =
〈N−2|P0|N〉2

〈N|P†
0 P0|N〉 . (3.31)

The states |N〉 and |N+2〉 are spin zero ground states of N and N+2 particle systems with

the same interaction parameters VL, and single-particle spin j . The numerator is a mea-

sure of the extent that |N + 2〉 is built by adding a spin zero pair to |N〉. The denominator

counts the number of spin zero pairs in |N〉. A significant pairing interaction would favor

a high degree of pairing in the ground state, making the distribution of fp peaked at 1, and

it is. This was interpreted as a signature of pairing. However a plot of 〈N− 2|P0|N〉2 vs

〈N|P†
0 P0|N〉 reveals an interesting structure which may be a purely geometric effect, see

Fig. 3.22. The structure is unaffected by setting V0 = 0. In Fig. 3.22, the pair creation

operator P†
0 connects the spin zero multiplets of the N = 4 and 6 particles which have di-

mensions 2 and 3 respectively. Conversely one can examine the opposite case, connecting

the 6 particle state to a 4 particle state by the action of P0 (which would leave the numer-

ator unchanged in (3.31) but the denominator would then be 〈6|P†
0 P0|6〉. In this case the

structure in Fig. 3.22 is only slightly modified.

This can be explained by the geometric properties of P†
0 which are summarized in

(3.17).

56



0 10 20 30
<J|M4M

+

4|J>

0

10

20

30

40

50

<
J|

Q
4Q

+

4|
J>

J=0

J=2

J=4

Figure 3.21: The quantities SQ;L[J] and SL[J] are strongly correlated for different values of
J. This is just a geometric effect. The quantities are calculated for the lowest J states. Here
N = 4 and j = 11/2.

Writing the general N = 4, 6 spin-zero states |0〉4 and |0〉6 in the seniority basis, |S,N〉,
as (α|0,4〉+ β|4,4〉), and (γ|0,6〉+ δ|4,6〉+ γ|6,6〉), with the additional constraint that

α2 +β2 = 1, and γ2 +δ2 + ε2 = 1, the plot Fig. 3.22 is the set of points

{6〈0
∣∣∣P†

0

∣∣∣0〉4 = 10α2 +2γ2 , 4〈0
∣∣∣P†

0 P0

∣∣∣0〉4 = 10α2 +2}. (3.32)

Note that for convenience we used P†
0 P0 ( = P0P†

0 + 2) instead of P0P†
0 . The operator P0

cannot connect |6,6〉 to |4,4〉 so the value of ε is either 0 or 1, which accounts for the

points on the horizontal axis in Fig. 3.22. The straight line portion of the plot corresponds

to α = γ. In principle if α and γ are uncorrelated, the points would cover an area on

the plane. The states |0〉4 and |0〉6,ε=0 make angles θ4 and θ6 in their respective two-

dimensional planes. These angles were extracted from the wave functions and plotted

against each other and are highly correlated (as too are α and γ), lying on a tangent to and

on the positive side of the line θ4 = θ6, see Fig. 3.24. When this curve is rotated by π
2 so
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as to lie tangent to the horizontal axis, it is, to a very high degree of accuracy, described

by A+Bcos(ωθ4 +c) where A = 0.0970, B = 0.1028, c = 0.8901Π
2 and ω= 2.8288. The

reason for these phenomena, although qualitatively unexplained, are certainly geometric in

nature.
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Figure 3.22: The numerator of fp vs the denominator in eq. (3.31), evaluated for the N = 4

and 6, j = 11/2 systems with J0 = 0. P†
0 creates a pair of particles coupled to spin zero. It

acts on N = 4, J = 0 ground states to make an N = 6, J = 0 state which is overlapped with
the ground state of the corresponding N = 6 system. The operator P†

0 P0 counts the number
of pairs in the N = 4 state. Note the structure is unchanged by setting VL = 0, again the
effect is geometric.
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Figure 3.23: The distribution of the angles made by the J = 0 g.s. in the 2-dimensional
space {|S= 0〉 , |S= 4〉} for N = 4, 6. Panel a) corresponds to those points on the straight
line portion of Fig. 3.22 while panel b) is for those points on the curved part.
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states are eigenstates of Hamiltonians with the same interaction parameters.
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Chapter 4

A Statistical Theory

The high incidence of J = 0 and J = Jmax ground states can be thought of as a result of

geometric chaoticity, i.e. the inherent complexity of an N-body system with fixed J. This

feature depends only weakly on the ensemble from which the random Hamiltonians are

taken, depending only on the geometry of the Hilbert space of the system. In other words

the effect is determined by the Fermi-statistics of the particles, and the values of N and j . In

the first illustrative example in Section (3.1), the analog of Hund’s rule in atomic physics,

the geometric factors of the system, S and s(s+ 1), have been separated from the details

of the interaction, i.e. the random number A, in a very simple way. We will approximately

achieve a similar separation in our problem for the equilibrium energy of a state of angular

momentum J. The role of A will be replaced by a relatively simple function of N and j ,

resulting from the geometric properties of the finite Fermi-system.

4.1 The Bosonic Approximation

One simple idea is related to the approximate realization of fermion pairs as bosons. The

term beyond the boson-like commutator in (3.4) is of order N
Ω . Here Ω = 2 j + 1 is the

number of single-particle states, and N is the number of particles, so this term is small

for small mean occupancies. Particle-hole conjugation means its analog will be small for
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near full occupation also. For intermediate occupation it is not small but almost constant.

This constant can be absorbed into PLΛ and P†
L′Λ′ by renormalizing them to get the nearly

bosonic operators bLΛ and b†
L′Λ′ . These ‘bosons’ are pairs of fermions, and their number

and spin depend on the system (i.e. the set VL). This simplifies the problem immensely.

Now our Hamiltonian is a sum of random energies, ωL, each of which are proportional to

VL.

H = ∑
LΛ

VLP†
LΛPLΛ = ∑

LΛ
ωLnL , (4.1)

where nL is the number operator of the bosons with spin-L. In each realization of the

system, the fermion pairs form bosons which condense into the level with lowest energy,

ie. the lowest ωL. Once this happens, the total angular momentum J can be anywhere

from 0 to nbL where nb is the number of bosons. We see that already L = 0 is singled out,

because in this case the only value J can have is 0, and this will happen 1
k of the time, where

k = j + 1/2 is the number of values of L. For all other values, J = 0 accounts for a small

fraction of the total space.

In short the bosonic approximation singles out J = 0 but doesn’t account for the full

effect. The values of f0 ∼ 1/( j + 1/2) are much lower than the observed values, and the

j behavior is wrong compared with that seen in, for example, Fig. 3.1. Also, Jmax is not

singled out, and its allowed value is too high. See Fig. 4.1.

4.2 Equilibrium Statistical Mechanics Approach

Our approach is based on equilibrium statistical mechanics which, in the case of degenerate

fermionic states, leads to the Fermi-Dirac distribution. The mean particle number with

projection m on an arbitrary quantization axis is

nm =
1

exp(γm−µ)+1
, (4.2)
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Figure 4.1: f b
J for the bosonic approximation. The situation for N = 6, j = 11/2, is shown.

Here Lmax= 10, k = 6. The bosonic approximation gives the solid line while the statistical
distribution of of allowed values of total angular momentum J, gives the dashed line. Note
that f0 only slightly exceeds 1/6.

under the constraints for total particle number N and total angular momentum projection

M,

N = ∑
m

nm, M = ∑
m

mnm. (4.3)

The quantization axis will later be identified with the total angular momentum J. It is rea-

sonable to write this equation down and just start from there. However it can be derived

from very general assumptions using the Darwin-Fowler method. A detailed derivation

of this is included in Appendix (6.1). The quantities µ(N,M), the chemical potential, and

γ(N,M), the cranking frequency, are the Lagrange multipliers associated with the two con-

straints. The equilibrium energy for an N particle state with total projection M is

〈H〉 =
1
2 ∑

L,Λ,1,2,3,4

VLCLΛ
12 CLΛ

43 〈a†
1a†

2a3a4〉, (4.4)
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where as before CLΛ
12 is the Clebsch-Gordan coefficient 〈L,Λ| j,m1; j,m2〉. The assumption

of statistical equilibrium implies the off-diagonal matrix elements of am and a†
m and their

products make an incoherent contribution to the expectation value which sums to zero.

We introduce another approximation at this point by treating the single-particle occupation

numbers as uncorrelated, 〈n1n2〉 → 〈n1〉〈n2〉. This is a key approximation and is based on

the assumption of quantum chaos, where the eigenstates are chaotic. Keeping N fixed, and

using the commutation rules for am and a†
m, (4.4) can be rewritten as

〈H〉 = ∑
L,Λ,1,2

VL

∣∣∣CLΛ
12

∣∣∣2 〈n1〉〈n2〉, (4.5)

For M = 0 the single-particle occupancies nm are uniform,

n0 =
1

1+e−µ0
=

N
Ω

, (Ω = 2 j +1) (4.6)

where µ0 = µ(N,M = 0). For M �= 0 and treating γ as an expansion parameter,

nm =
1

1+e−µ+γm =
1

1+e−µ(1−α(γm+
1
2

γ2m2)+α2γ2m2) . (4.7)

Here

α =
e−µ

1+e−µ . (4.8)

Expanding the chemical potential, µ(N,M) = µ0 +∆µ and using the constraint N = ∑mnm

we get

µ(N,M) = µ0 +(α0 − 1
2
)γ2〈m2〉+O(γ4). (4.9)
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The final expression for nm is

nm =
1

1+e−µ0
[1−α0γm+

α0(α0 − 1
2
)(m2 −〈m2〉)γ2 (4.10)

+α0((2α0 −1)(α0 − 1
2
)〈m2〉m

−(α2
0 −α0 +

1
6
)m3)γ3

+α0(α0 − 1
2
)((α2

0 −α0 +
1
12

)(m4 −〈m4〉)

−(3α2
0 −3α0 +

1
2
)〈m2〉(〈m2〉−m2))γ4] .

(4.11)

where

α0 =
e−µ0

1+e−µ0
=

Ω−N
Ω

= 1−n0. (4.12)

Thus the equilibrium energy for a state with N particles and total projection M is

〈H〉N,M = ∑
L,Λ,1,2

VL

∣∣∣CLΛ
12

∣∣∣2 (
N
Ω

)2[1+

α2
0γ2m1m2 +α0(α0 − 1

2
)(m2

1 +m2
2 −2〈m2〉)γ2

−α2
0[(2α0 −1)(α0 − 1

2
)〈m2〉(m1m2 +m2m1)−

(α2
0 −α0 +

1
6
)(m1m3

2 +m2m3
1)]γ

4

+α0(α0 − 1
2
)[(α2

0 −α0 +
1
12

)(m4
1 +m4

2 −2〈m4〉)−

(3α2
0 −3α0 +

1
2
)〈m2〉(2〈m2〉−m2

1 −m2
2)γ

4] . (4.13)

We use M = ∑mmnm to replace γ to get

γ(N,M) = − M
Nα0 〈m2〉 = − 3M

(Ω−N) j( j +1)
. (4.14)

It is important to note that γ is treated as an expansion parameter, so this procedure is not

good for all values of γ. However it is valid for a wide range as seen in Fig. 4.2. Finally,
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after using the explicit values for the sums, see Appendix (6.2), all this fits together to give

〈H〉N M =
N2

Ω2 ∑
L

(2L+1)VL (4.15)

+M2 3
2j4Ω2 ∑

L
(2L+1)VL (L2 −2j2)

+M4 9(Ω−2N)2

40 j8(Ω−N)2N2Ω2 ∑
L

(2L+1)VL

×(3L4 +3L2 −12j2L2 −6j2 +8j4) .

−100 −50 0 50 100
M

−1.5

−0.5

0.5

1.5

γ

Figure 4.2: The cranking frequency γ vs. M for N=10 and j=27/2. Solid and dotted lines
correspond to exact and approximate values, respectively. This gives an indication of the
range of validity of the expansion that gives eq. (4.14).

Identifying 〈H〉N ,J with 〈H〉N ,M=J we have the main result of the statistical treatment,

〈H〉N ,J = ∑
L

(2L+1)VL (h0(L)+h2(L)J2 +h4(L)J4) , (4.16)
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where

h0(L) = N2

Ω2 ,

h2(L) = 3
2j4Ω2 (L2 −2j2) ,

h4(L) = 9(Ω−2N)2

40 j8(Ω−N)2N2Ω2

×(3L4 +3L2 −12j2L2 −6j2 +8j4
)

. (4.17)

Note that the J2 term in (4.16) can be written down directly from the K = 1 term in eq.

(3.6) as an effective spin-spin interaction i the particle-hole channel,

Ṽ1 = 3 ∑
Leven

(2L+1)
{

j j 1
j j L

}
VL. (4.18)

with {
j j 1
j j L

}
=

L2 −2j2

Ω2 j2 (4.19)

4.3 Ground State Spin

Given that the regular features of the spectra are independent of the choice of ensemble,

the distribution of equilibrium energies (4.16) can be evaluated analytically assuming a

Gaussian distribution for each interaction strength VL

PL(VL) =
1√

2πσ2
L

exp

(
−(VL −〈VL〉)2

2σ2
L

)
. (4.20)

Our Hamiltonian in Eq. (4.16) has a form

〈H〉 = const+aJ2 +bJ4 , (4.21)

where

a = ∑
L

VLaL , b = ∑
L

VLbL , (4.22)
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and

aL =
3

2j4Ω2 (2L+1)(L2 −2j2) , (4.23)

bL =
9(Ω−2N)2

40 j8(Ω−N)2N2Ω2 (2L+1)
(
3L4 +3L2 −12j2L2 −6j2 +8j4) ,

We will first examine the probability that this random system has given values of a and

b. This is given by

P (a,b) =
∫

δ

(
a−∑

L
VLaL

)
δ

(
b−∑

L
VLbL

)
∏
L

PL(VL)dVL . (4.24)

This can be rewritten by using the Fourier representation of the delta function, δ(x) =∫ eiλx

2π dλ and performing all integrals over VL to get

P (a,b) =
1

4π2

∫
dλ dλ′eiλa+iλ′b (4.25)

×∏
L

exp

(
−1

2 ∑
L

(λaL +λ′bL)2σ2
L − i∑

L
〈VL〉(λaL +λ′bL)

)
.

The remaining two dimensional Gaussian integral over λ and λ′ is again relatively easy,

P (a,b) =
1

2π
√

AB−D2
exp

(
−Bξ2

a−2Dξaξb +Aξ2
b

2(AB−D2)

)
, (4.26)

where we have defined

A = ∑
L

a2
Lσ2

L , B = ∑
L

b2
Lσ2

L , D = ∑L aL bLσ2
L , (4.27)

and

ξa = a−∑
L
〈VL〉aL , ξb = b−∑L 〈VL〉bL . (4.28)

Assuming 〈VL〉 = 0 we have

P (a,b) =
1

2π
√

AB−D2
exp

(
−Ba2 −2Dab+Ab2

2(AB−D2)

)
. (4.29)
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This is a two dimensional Gaussian distribution, the independent distribution of one

variable is also Gaussian

P (a) =
∫

dbP (a,b) =
1√
2πA

e−a2/2A . (4.30)

We first address the question of the probability that the ground state has spin zero. The

a≥ 0 in Eq. (4.21) is an obvious necessary condition, and if b> 0 the statement is definitely

true. In the case b< 0 the curve 〈H〉 eventually goes down and there is a possibility to have

a ground state at the maximum possible value of Jmax = ( j − (N− 1)/2)N . Finally the

condition for the zero ground state can be expressed as a ≥ 0 and a+ bJ2
max > 0 . The

probability of the ground state having spin zero is given by the integral over the region

P =
∫

a≥0,b>−a/J2
max

P (a,b)dadb. (4.31)

In spherical coordinates a = r cosφand b = r sinφ the region of integration is

φ∈ [−arctan(1/J2
max), π/2] , (4.32)

which gives

P =
1
4

+
1

2π
arctan

[
D+A/J2

max√
AB−D2

]
. (4.33)

Fig. 4.3 (top panels), dashed line, shows the smooth behavior of the probability f0 as

a function of j for N = 4, and 6 particles. The solid line gives the results of the exact nu-

merical diagonalization. This simple statistical theory captures the excess of J = 0 ground

states but of course it does not explain the observed staggering effects.

It would be premature to conclude from (4.16) that the remaining 50% of cases have a

maximum spin ground state. Indeed, the expansion used for γ in the derivation is not valid

for large angular momenta. However, the wave functions for the largest possible spins are

unique and can be constructed explicitly being independent of the interaction parameters.

Their energies can be compared to the energies of lower spins. In this a slight improvement
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Figure 4.3: f0, the fraction of ground states with J = 0, and (an upper boundary for) fJmax

for N = 4, and 6 for different j . Ensemble results; solid line. Statistical theory; dotted line.

in the results is obtained above for spin f0 (this is taken into account in plotting Fig. 4.3),

and we also extract the upper boundary for the probability of the maximum ground state

spin Jmax, Fig. 4.3, (lower panels).

Thus, the statistical approach provides a natural qualitative explanation and reasonable

quantitative estimate for the dominance of ground states spins J0 = 0 and J0 = Jmax in

our ensemble. Other non-statistical details of the picture, especially the non-monotonous

changes like the odd-even staggering of f0, require a more subtle approach.

4.4 The Distribution of VL for J0 = Jmax

The spin of the ground state in each particular realization is determined by the values of VL

in this realization. The subset of VL that gives J0 = 0 or J0 = Jmax has been discussed in

section 3.3.4. We can use (4.16) to calculate the mean values 〈VL〉 of those subsets that give
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J0 = Jmax. If we assume that the VL’s have a Gaussian distribution this can be achieved by

exact integration. In Fig. 4.4 the theoretical values for 〈VL〉 vs. L were compared with the

mean values of actual sets of random parameters VL which led to J0 = Jmax. The resulting

curve is in total agreement with the statistical theory.
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Figure 4.4: The mean values of VL for the subsets of VL that result in J0 = Jmax ground
states. The theory, solid line, agrees with the ensemble average values, dashed line. Here
N = 4 and j = 15

2 .

4.5 Ground State Energy

The equilibrium energies (4.16) are strongly correlated with the corresponding numerical

values. In a scatter plot of theoretical energies vs numerical energies for a specific value

of J, the points fall about a straight line, as in Fig. 4.5. Two subsets of the spectra were

selected, those with J0 = 0 and J0 = Jmax. The slopes of the lines were independent of J

in both groups, having a value of 0.81±0.03. This is a direct result of treating the single-

particle occupation numbers nm as uncorrelated. When the exact correlated occupancies
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are used to evaluate (4.5) the slopes become 0.98± 0.03. The theoretical energies for a

given ensemble are shifted by a constant negative amount that decreases with J, as in Fig.

4.6. The shift was smaller for the J0 = Jmax set. Using the correlated occupation numbers

only reduced the magnitude of the shift by 15%. This nonstatistical effect is presumably

due to the regular part of the dynamics related to 〈V2
L 〉. The simplest description of this part

can be reached with the aid of the boson expansion technique [4], and corresponds in fact

to boson pairing. For J0 = Jmax, Fig. 4.5(b), the ground state energy (??) is in one-to-one

correspondence to the statistical predictions, although the slope differs slightly from unity

because of the use of the γ-expansion.
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Figure 4.5: Ground state energies E0 for J0 = 0,(a), and J0 = Jmax,(b), vs. predictions of
the statistical model, eq. (4.16). Here N = 6 and j = 17/2. The theoretical energies are fit
to a straight line, included in (a).

4.6 Single-Particle Occupation Numbers

The single-particle occupation numbers nm can be written in terms of the multipole opera-

tors using (3.7) as

a†
mam = ∑

K
CK0

jm j−m(−) j+mM †
K0, (4.34)
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Figure 4.6: The constant shift in the theoretical equilibrium energies of spin J vs. J for the
N = 6 j = 15/2 ensemble.

where 0 ≤ K ≤ 2 j . The average nm oscillate about their theoretical values. These oscilla-

tions indicate a shell structure that is not captured by the statistical theory. This arises from

the effective deformation present in individual realizations and requires a self consistent

mean field approach. The occupation numbers exhibit an oscillatory behavior in Fig. 4.7,

which may follow from the similarity of the Clebsch-Gordan coefficient 〈K0| jm, j −m〉
and the Legendre polynomial PK(m/

√
j( j +1)). In the Legendre polynomial expansion of

nm for a wave function |J, J〉 the coefficients of PK(x) are zero for K > 2J. In other words,

the curves in Fig. 4.7 are precisely described by the first 2J+1 Legendre polynomials.

4.7 Moment of Inertia

The effective moment of inertia can be estimated directly from the rotational term of the

equilibrium energy (4.16),

Hrot = AJ2, A =
3

4Ω2j4 ∑
Leven

(2L+1)VL(L2 −2j2). (4.35)

The contribution to the moment of inertia by the pair interaction for a pair with spin L

changes its sign at L2 = 2j2, which corresponds to the absence of alignment of the paired
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Figure 4.7: The single-particle occupation numbers nm averaged over the lowest energy
spin J wave functions of the 1417 out of 2000 (70%) spectra with J0 = 0 (solid line),
compared to the simplest theoretical expression (4.10) (dashed line)

particles, as their spins are perpendicular to each other. At low L pairs are antialigned,

L2 < 2j2. If these pair states are attractive, VL < 0, the contribution to the moment inertia is

positive, preferring a normal rotational spectrum with angular momentum increasing with

excitation energy. Contrary to that, at high L, the pairs are aligned, L2 > 2j2, so that the

attraction in such pairs leads to the negative contribution to the moment of inertia which

favors the bands with an inverted spin sequence. The moment of inertia was taken from the

coefficient of J2 in (4.35) via

I =
1

2A
, (4.36)

and was nearly independent of N, in agreement with the statistical theory, Eq. (4.35).

Again this implies non-collectivity. What I does depend on is geometry, in the guise of j .

The calculated moment of inertia I is in excellent agreement with the ensemble results for

N = 4 and 6 and all values of j , see Fig. 4.8.
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Figure 4.8: The moment of inertia for the N = 4 and 6 particle systems of a given j plotted
as a function of j . The positive values are for the J0 = 0 systems and the negative values
correspond to the J0 = Jmax systems.
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Chapter 5

Conclusions

The main purpose of this dissertation is to shed light on the origin of the regularities in

nuclear spectra, and the application of quantum chaos theory to nuclear spectra. In principle

the results are also applicable to atomic systems, quantum dots, and other mesoscopic

systems.

After some background on the theory of quantum chaos, a review of current research

on this and related problems was presented. An analysis of neutron resonance data in the

framework of Random Matrix Theory was described, where the problem of finding the

relative fractions of resonances with a given spin was tackled. The results were mixed. Of

the four sets of data analyzed, only the 235U data yielded positive results. The level spacing

distribution, the ∆3(L) statistic, and the distribution of reduced widths all gave realistic

values for this fraction. The problem is assumed to lie in the technical difficulties of taking

high quality uncontaminated data.

Next the main problem of the dissertation was described and formulated. The regu-

larities in nuclear spectra, especially the spin-zero ground states of even-even nuclei, are

usually ascribed to the effect of the nuclear pairing interaction. While no-one doubts this, it

is seen to be an incomplete picture in general. Regularities, similar to those in nuclear spec-

tra, are seen in the spectra of random two-body Hamiltonians. The largely ignored role of
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geometric chaoticity is shown to be the driving force behind this. Some simple illustrative

examples of this mechanism are discussed, where the probability of the ground state spin

for a simple system with a random spin-spin interaction is separated into a product of terms,

one containing the random interaction parameter, and the other the geometric information,

particle spin and particle number. This separation of the different aspects of the interaction

is ultimately achieved for a more complicated system described in Chapter 3. A system of

N spin- j fermions under the influence of a random two-body angular momentum conserv-

ing interaction was studied. The spectra exhibited many interesting features, the strongest

of these was a propensity for the ground states to be magnetically aligned (maximum spin)

or anti-aligned (spin-zero). The role of pairing, the V0 parameter, was unambiguously

eliminated as the culprit. A statistical theory based on equilibrium statistical mechanics

was developed, and an expression for the equilibrium energy derived. The important point

is that the equilibrium energy for the angular momentum-J state was expressed as a sum

of products of two terms, one containing all the random interaction information, the other

containing geometric information. The theory was used to successfully describe the salient

features of the ensembles studied.

The conclusion of it all is that the previously ignored role of quantum chaos in shap-

ing nuclear spectra dominates in systems of randomly interacting spectra. At the very

least, quantum chaos cannot be dismissed in studies of the properties of nuclear spectra.

Although this work was motivated by issues in nuclear spectroscopy, the theory was devel-

oped without specific reference to nuclear structure, only statistical mechanics. The results

concern any small Fermi systems and can be applied to atomic systems, quantum dots,

and other mesoscopic systems of condensed matter physics. For the first time in quantum

many-body chaos correlations between blocks with different quantum numbers were shown

to play an important role. This is a fresh angle on the theory of quantum chaos where the

union between the chaotic structure of the eigenfunctions and the geometry of the finite
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Fermi-system spawn regularity in the spectrum.
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Chapter 6

Appendices

6.1 The Darwin-Fowler Method

This section details a derivation of Eq. (4.2) for the single-particle occupation numbers

which is the foundation of the statistical theory of the text. The method is very elegant, and

can be applied to get the density of levels labelled with any additive quantum number.

The goal is to get an expression for the number of states with angular momentum pro-

jection M, in a system of A fermions, each with spin J. Of course one can immediately

write

ρ(A,M) = ∑
n,i

δ(A−n)δ(M−Mi(n)) (6.1)

where Mi(n) is the ith possible value of M for an N-particle system. This expression is

exact, but not at all useful as it stands. Let’s take the Laplace transform of (6.1):

L [ρ(A,M)] = ∑
n,i

∫ ∞

0
dA
∫ ∞

0
dMexp(−Mλ−Aµ) δ(A−n) δ(M−Mi(n))

= ∑
n,i

e−Mi(n)λ−Aµ

= ∏
m

(1+e−mλ−µ)

= Z(λ,µ) (6.2)
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where m takes all possible values of the single-particle projection.

Now this is something one can handle, because taking the inverse Laplace transform

gets us back to ρ(A,M) but without the nasty δ-function (essentially all thats being done is

using the Fourier representation of the δ-functions).

ρ(A,M) = L−1 [Z(λ,µ)]

=
(

1
2πi

)2 ∫ i∞

−i∞
dλ
∫ i∞

−i∞
dµ eMλ+Aµ∏

m
(1+e−mλ−µ)

=
(

1
2πi

)2 ∫ i∞

−i∞
dλ
∫ i∞

−i∞
dµ eMλ+Aµ+∑mln(1+e−mλ−µ)

=
(

1
2πi

)2 ∫ i∞

−i∞
dλ
∫ i∞

−i∞
dµ eF(λ,µ) (6.3)

where

F(λ,µ) = Mλ +Aµ+∑
m

ln(1+e−mλ−µ). (6.4)

The saddle-point approximation can be used to evaluate this integral:

F(λ,µ) = F(λ0,µ0)+(λ−λ0)Fλ(λ0,µ0)

+(µ−µ0)Fµ(λ0,µ0)+
1
2
(λ−λ0)2Fλλ(λ0,µ0)

+(λ−λ0)(µ−µ0)Fλµ(λ0,µ0)+
1
2
(µ−µ0)2Fµµ(λ0,µ0) (6.5)

where the notation Fλ(λ0,µ0) = ∂
∂λ F(λ,µ)|λ0,µ0

etc has been employed. The point (λ0,µ0)

is the saddle-point, ie. Fλ(λ0,µ0) = Fµ(λ0,µ0) = 0.
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Straightforward differentiation gives the following set of equations:

Fλ(λ,µ) = M−∑
m

m

(1+emλ+µ)

Fµ(λ,µ) = A−∑
m

1

(1+emλ+µ)

Fλλ(λ,µ) = ∑
m

m2 emλ+µ

(1+emλ+µ)2

Fµµ(λ,µ) = ∑
m

emλ+µ

(1+emλ+µ)2
.

(6.6)

From the definition of the saddle-point we have

M = ∑
m

m

(1+emλ0+µ0)

A = ∑
m

1

(1+emλ0+µ0)
. (6.7)

which gives (4.2).

The following definitions clean up the notation a little;

f0 = F(λ0,µ0)

a =
1
2 ∑

m

m2 emλ0+µ0

(1+emλ0+µ0)2

b =
1
2 ∑

m

eλ0+µ0

(1+emλ0+µ0)2

c = ∑
m

m emλ0+µ0

(1+emλ0+µ0)2

(6.8)

Now we are left with

ρ(A,M) =
(

1
2πi

)2 ∫ i∞

−i∞
dλ
∫ i∞

−i∞
dµ ef0+a(λ−λ0)2+b(µ−µ0)2+c(λ−λ0)(µ−µ0).
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Completing the square in the exponent and remembering that (6.7) give us λ0(A,M) and

µ0(A,M) we have the final result:

ρ(A,M) =
ef0(A,M)

2π
√

4a(A,M)b(A,M) −c(A,M)2
. (6.9)

6.2 Sums Involving Clebsch-Gordan Coefficients

In order to evaluate sums like ∑Λ,1,2

∣∣CLΛ
12

∣∣2 mp
1 or ∑Λ,1,2

∣∣CLΛ
12

∣∣2 mp
1mq

2 we’ll need a few

tricks based on the vector model and the following relationships for the Clebsch Gordan

coefficients

Cj3,m3
j1,m1, j2,m2

= (−1) j2+m2

√
2 j3 +1
2 j1 +1

Cj1,m1
j2,−m2, j3,m3

= (−1) j1−m1

√
2 j3 +1
2 j2 +1

Cj2,m2
j3,m3, j1,−m1

,

(6.10)

which means that

∑
Λ,m1,m2

∣∣∣CLΛ
12

∣∣∣2 mp
1

=
2L+1
2 j +1 ∑

Λ,m1,m2

∣∣∣Cj,m1
j,m2,L,Λ

∣∣∣2 mp
1

= ∑
m1

2L+1
2 j +1

〈 j,m1|mp
1(∑

m2

| j,−m2〉〈 j,−m2|)| j,m1〉

= ∑
m1

2L+1
2 j +1

mp
1 (6.11)

For more complicated sums we need the vector model in which, for the coupling of two

momenta j1 + j2 = L, we have

〈LΛ| j1 i j2k|LΛ〉 = 〈aLi Lk +bδi k + i cεi j k Lk 〉, (6.12)
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where a, b and c are coefficients to be found. Evaluating the expectation value of j1
2

and (j1 ·L)2 in the state |LΛ〉 we get

j1
2 = aL2 +3b, (j1 ·L)2 =

(
L2 + j2

1 − j2
2

2

)2

= aL4 +(b+c)L2 , (6.13)

where L2 = L(L + 1) , and j2 = j( j + 1) . Coefficient c can be found by evaluating

commutator [ ji, j j ] and using a usual vector model for 〈LΛ| ji|LΛ〉 , which gives

c =
1
4
− a

2
. (6.14)

In our case j1
2 = j2

2 = j2 and from Eqs. (6.13)

a =
3L2 −4j2 −3

8L2 −6
,

b =
4L2j2 −2j2 −L4 +L2

8L2 −6
,

c =
L2 +3j2

16L2 −12
, (6.15)

where L4 = L2(L+1)2 .

It is convenient to collect the following elements together:
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〈m2〉 =
1

2 j +1

j

∑
m=− j

m2 =
1
3

j( j +1) ,

〈m4〉 =
1
15

j( j +1)(3 j2 +3 j −1) =
1
5
〈m2〉(9〈m2〉−1) ,

∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 m2
1 =

1
3
(2L+1) j( j +1) ,

∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 m1 m2 = ∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 (
1
2

Λ2 −m2
1) =

1
6

L(L+1)(2L+1)− 1
3
(2L+1) j( j +1) ,

∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 m4
1 =

1
15

(2L+1) j( j +1)(3 j2 +3 j −1) ,

∑
1,2

∣∣∣CL,Λ
1,2

∣∣∣2 m2
1Λ2 = aΛ4 +bΛ2 ,

∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 m2
1 m2

2 =
1
15

(2L+1) j( j +1)(3 j2 +3 j −1) +∑
Λ

(
1
2
−2a)Λ4 −2bΛ2 ,

∑
Λ,1,2

∣∣∣CL,Λ
1,2

∣∣∣2 (m3
1 m2 + m1 m3

2) = − 2
15

(2L+1) j( j +1)(3 j2 +3 j −1)

+∑
Λ

(3a− 1
2
)Λ4 +3bΛ2 , (6.16)

Some of these identities follow directly from Λ2 = (m1 +m2)2 .

6.3 An expression for 〈H2〉

For the sake of completion the result of the statistical theory for the equilibrium value of

〈H2〉 is stated here without derivation.
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〈H2〉 is given by the statistical theory as:

〈H2〉 = ∑
L,L′

VLVL′

(
N
ω

)4

[(2L+1)(2L′ +1)(1− 4
2 j +1

)+(2L+1)δLL′

+
9J2

N2j4 ((
1
6

L2 +
1
6

L′2 − 2
3

j2)(1−8
(2L+1)(2L′ +1)

2 j +1
− (2L+1)δLL′)

− 4
3

j2 +4(2L+1)(2L′ +1)∑
L

(2L +1)
{

j j L
L′ j L

}
(
1
6
L2 − 1

3
j2)

− 4(2L+1)2δLL′ ∑
L

(2L +1)
{

j j L
j j L

}
(
1
6
L2 − 1

3
j2))] (6.17)
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