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ABSTRACT

EMISSION TEMPERATURES FROM THE DECAY OF PARTICLE
UNSTABLE COMPLEX NUCLEI

BY

Tapan Kumar Nayak

Relative populations of particle-unstable states were measured for complex frag-
ments emitted in the reaction 1*N+Ag at /A = 35 MeV by using a position sensitive
high resolution hodoscope. The hodoscope consisted of 13 telescopes, four of these
telescopes were designed to isotopically resolve fragments with 3 < Z < 10 and the
other nine to resolve hydrogen and helium isotopes. In order to optimize the excita-
tion energy resolution of the hodoscope, each telescope con'tained an r — y position
sensitive gas proportional counter. A position resolution better than 0.5 mm was
obtained for 5.8 MeV a-particles. For the a-decay channels of the particle unstable

198 nucleus produced in the reaction, an excitation energy resolution of about 50 keV

(FWHM) was achieved.

Experimental population probabilities of particle-unstable states were extracted
by fitting the coincidence spectra of the decay products by an appropriate R-matrix
or Breit-Wigner formalism. According to thermal models, the populations of excited
states at freezeout are expected to follow a Boltzmann distribution weighted by the

emission temperature of the system. Tests of this freezeout assumption were made by



comparing the experimental population probabilities to the predictions of statistical

calculations.

Extensive statistical calculations which include the effect of sequential feeding from
heavier particle unstable nuclei were performed to estimate the population proba-
bilities of the states starting with a thermal distribution of primary fragments at
an initial temperature, Tem. A global comparison of the measured and calculated
population probabilities and the ratios of population probabilities indicate emission
temperatures of about 3—4 MeV. But a detailed comparison for individual fragments
for a calculation with T, = 4 MeV reveals that about half of the measured popu-
lation probabilities and one third of the ratios of the population probabilities differ
significantly from the predictions of statistical calculations. Calculations which in-
clude rotational effects could not satisfactorily account for this discrepancy. These
results suggest a possible breakdown of the assumption of local thermal equilibrium

at freezeout.
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Chapter 1

Introduction

I Motivation

The emission of intermediate-mass-fragments [IMF’s, 6 < A < 30] is an important
decay mode of highly excited nuclear systems. This decay mode has been observed in
proton-nucleus and nucleus-nucleus collisions for a broad range of incident energies
[Gelb 87a, Lync 87). Dynamical [Bert 88] and statistical [Gelb 87b] models suggest
that a variety of mechanisms could be responsible for fragment production. For ex-
ample, IMF emission has been related to the occurrence 'of adiabatic instabilities
[Bert 83, Schl 87, Snep 88, Boal 89a] which may lead to the liquid-gas phase sepa-
ration of highly excited nuclear matter [Lope 84b, Finn 82, Jaqa 83]. Other models
which do not incorporate a phase transition have been equally successful at reproduc-
ing many features of the fragment data. To distinguish between the many models of
fragment emission for a given reaction, one must determine whether binary or multi-
fragment breakup configurations are predominant, whether thermal approximations
may be appropriate, and determine the density and excitation energy (or tempera-
ture) at breakup. It may be necessary to invoke different models to describe fragment

production for different reactions. For example, models which may be appropriate to

describe fragment production at low incident energies may be inappropriate for the



most violent nuclear collision and vice versa.

For nuclear reactions at low incident energies (E/A < 10 MeV), the dominant
reaction process occurs through the formation and decay of a fully equilibrated com-
pound nucleus. Fragment emission from such compound nuclei has been observed
[Sobo 83, Sobo 84] and can be described by the sequential decay mechanism that pro-
ceeds through binary decay configuration [Frie 83, More 75]. The excitation energy
or temperature of the compound nucleus required by these models can in principle be
deduced from the slope of inclusive kinetic energy spectra of evaporated light parti-
cles. As the incident energy increases to about £/A = 20 MeV, formation of a unique
compound nucleus becomes unlikely; and more importantly, faster fragment produc-
tion mechanisms become jmportant. As an example, figure 1.1 shows the kinetic
energy spectra of '°B nucleus emitted in a reaction of 1*N on Ag at E/A = 35 MeV.
The data are presented for four angles as listed in the figure. The slopes of the exper-
imental energy spectra become steeper with the increase of the emission angle. The
feature of the data seems to be quite different from the solid curves which represent
a parameterization that assumes !°B nuclei are emitted from an equilibrated single
moving source formed by the fusion (vspurce = Vem and T = Tcn) of N and Ag, and
characterized by a Maxwell Boltzmann distribution with a temperature comparable
to that expected for the compound nucleus. Indeed, the data can be better described
by a superposition [Fiel 89] of more than one moving sources [see chapter 3]. The
energy integrated cross sections are strorgly forward peaked even in the center-of-
mass frame, further indicating that most of the fragments are emitted prior to the

attainment of statistical equilibrium of the full compound nucleus.

Statistical models for such non-equilibrium processes often assume the existence of
a local thermal equilibrium in the vicinity of the fragment at the time of its emission

[Fiel 84, Fai 82]. Information is needed to assess the validity of this approximation
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Figure 1.1: Inclusive differential cross section for 1°B at the laboratory angles shown in
the figure. The solid curves are described in the text. The dashed curves correspond to
fits with a “three moving source” parametrization which will be discussed in chapter 3.



and to provide appropriate values for the excitation energy. Temperatures have been
estimated from fits to inclusive spectra which assume thermal emission from a sub-
system. Such fits usually provide higher source velocities and temperatures than
would be consistent with the compound nucleus [Fiel 84, Fiel 86]. Temperatures
extracted from such fits are likely to be misleading, however, because of their sen-
sitivity to the Coulomb barrier fluctuations [Ban 85], sequential feeding from higher
lying states, as well as strongly time dependent phenomena such as collective motion

[Siem 79, Tsan 84, Tsan 86], and equilibration [Frie 83, Fiel 84].

Information about the intrinsic excitation of the fragmenting system at breakup
may be obtained alternatively from the relative populations of ground and excited
states of emitted intermediate mass fragments. Statistical models frequently assume
that the intrinsic degrees of freedom are fully thermalized and the asymptotic excited
states of these fragments are populated statistically with weights determined by the
excitation energy or “temperature” of the emitting system [Gros 82, Gros 86, Frie 83,
Rand 81, Fai 82]. If the internal excitation energy of the system is large at freeze-
out, many of the fragments are emitted in excited states; if the internal excitation
energy is small, few fragments are excited. The relative p;)pulations of states of a
given fragment therefore provide a measure of the internal excitation energy of the
fragmenting system at freezeout. The ratio n;/n; of the populations of two relatively

narrow excited states of a fragment is given approximately by

ﬂ_(2J1+1) (_AE)

ne 2L+l T

Here AE = E}—E3, J; and E! are the spin and excitation energy, respectively, of the

(1.1)

i-th state of the fragment, and Ty, is the “emission temperature” which characterizes
the internal excitation energy of the system at freezeout. If the excited states are
thermally populated and the feeding from sequential decay of heavier nuclei is not

significant, one may in principle, determine Ty from the population of two states of



a fragment via equation (1.1).

The method of measuring emission temperatures from the relative populations
of states have been applied to decays from particle stable excited states by y-rays
[Morr 84, Morr 85, Xu 86, Xu 89] and to decays from particle-unstable states [Poch 85a,
Chit 86, Poch 87, Chen 87a, Chen 87b, Chen 87c, Fox 88, Deak 89]. Figure 1.2 sum-
marizes results obtained from the measurement of relative populations of particle
unstable states in Li and Be isotopes in three different reactions [Chen 88a). Two
striking features are immediately evident from the figure. First of all, the emission
temperatures derived from the ratio of populations is about 4 — 5 MeV, which is
significantly smaller than the temperatures (T = 12 — 18 MeV) one extracts by fit-
ting the kinetic energy spectra. This difference could be due to complications arising
from collective motion [Tsan 84, Tsan 86] which influences the slopes of kinetic en-
ergy spectra [Frie 89, Boal 89]. A more interesting aspect of the measurement is the
fact that the emission temperatures obtained in the three reactions are very similar,
even though the incident energies vary widely. If one takes the emission tempera-
ture in figure 1.2 to be the temperature of the system at freezeout and allows for an
adiabatic expansion dynamics, this implies that freezeout occurs at nearly constant

temperature rather than constant density as assumed by certain models.

One would like to know whether this is a general phenomenon which would find its
manifestation in the relative populations of excited states of heavier IMF’s. All pfevi-
ous measurements of the emission temperaﬁure derived from the relative populations
of states (with the exception of [Xu 89]) were based on comparison involving only
few states of a single fragment. Such comparisons do not test in detail the internal
consistency of the approach. More stringent tests of the freezeout assumption can be
performed by comparing the measured population probabilities of a large number of

states of a single isotope to statistical model predictions. This requires the study of
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IMF’s which have many well resolved excited states.

This dissertation research was undertaken to investigate the relative populations
of the particle unstable excited states of intermediate mass fragments. For this pur-
pose a position sensitive detection array was designed and the population of particle
unstable excited states of intermediate mass fragments with 2 < Z < 9 were measured
for the 1*N + Ag reaction at E/A = 35 MeV. Detailed sequential feeding calculations
were performed to assess the influence of sequential decay on the measured excited
state yields. The comparison between calculated and measured excited state popula-
tions revealed non-equilibrium effects inconsistent with the concept of local thermal
equilibrium.

-~

II Organization

This thesis is organized as follows. An overall description of the position sensitive
high resolution hodoscope, the energy and position calibrations of its individual de-
tector telescopes, particle identification, and other experimental details are given in
chapter 2. In chapter 3, single particle inclusive spectra and two particle coincidence
cross sections are presented. Methods used for extracting the relative populations of

states of particle unstable nuclei are also described in this chapter.

Sequential feeding from high lying states has a significant effect on the observed
populations of excited states of fragments. Since it is not possible to accurately
determine the amount of feeding experimentally, it has to be calculated. We have
performed extensive calculations to determine the effect of feeding starting with a
thermal distribution of primary fragments. The details of the statistical calculations

which assess the influence of sequential feeding are presented in chapter 4.

In chapter 5, tests of the freezeout assumptions using particle-unstable states of



198 nuclei are discussed in detail. The measured populations of these states differ
significantly from those predicted by statistical models which include the sequential
decay of heavier particle unstable nuclei. Here it is also discussed whether angular
momentum effects due to rotation of the emitting system can account for the dis-
crepancy between experimental data and model predictions. Experimental results for
the decay angular distributions of the decays from 1°B nucleus are presented in this
chapter. These angular correlations suggest that rotational effects do not significantly

influence the excited states populations.

In chapter 6, apparent temperatures for 40 groups of particle unstable states of
Li, Be, B, C, N, and O isotopes are extracted and compared to the predictions of
statistical feeding calculations. Using a least squares analysis, global comparisons
between experimental data and results from statistical calculations are obtained and

presented.

Finally, the thesis is summarized in chapter 7. Conclusions and suggestions are
provided. The electronics set up and details of the efficiency calculation for the

position sensitive high resolution hodoscope are given in the Appendices.



Chapter 2

Experimental Setup

A position sensitive high resolution hodoscope [Mura 89] was designed for measuring
the populations of particle unstable states of intermediate mass fragments. Since
the cross sections and the energies separating the excited states of these fragments
are often small, the detection apparatus must have both a high efficiency and a
high excitation energy resolution. Computer simulations revealed that the excitation
energy resolution of the hodoscopes is limited primarily by the angular resolution
of the detectors which detect the coincident daughter fragments from the particle
decay of the excited nucleus. To achieve both high efficiency and resolution, we have
constructed a position sensitive detection array which can be placed rather close to
the target. An overall description of the various components of the detection array
is given in the next section. Details of the construction and operation of the position
sensitive gas detector elements are presented in the second section. The choice of
filling gas and its importance for controlling :aging effects in the gas detectors are also
discussed in this section. The position calibrations of the proportional counters is
discussed in the third section, and the energy calibration is discussed in the fourth
section. In the last section of this chapter techniques used for particle identification

obtained are presented.
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I Description of the Detection Array

A schematic front view of the detection apparatus is shown in Figure 2.1. The ho-
doscope consists of nine light particle telescopes (LP) and four heavy fragment tele-
scopes (HF). One light particle telescope is situated at the center of the array. The
four heavy fragment telescopes are situated above, below and to the left and right of
the central light particle telescope. At the periphery of the array are situated eight
additional light particle telescopes. The light particle and heavy fragment telescopes
have solid angles of 4.5 msr and 5.7 msr, respectively. The angular separation between

adjacent telescopes is 8°.

A cross sectional view of the array including the central light particle telescope
is shown in Figure 2.2. The light particle and heavy fragment telescopes are located
at different distances from the target. Expanded views of the two types of telescopes
are shown in Figure 2.3. Both light particle and heavy fragment telescopes consist
of two independent single wire proportional counters, providing position information
along two orthogonal coordinates (here denoted by = and y), followed by triple element
energy loss telescopes. The defining apertures for the telescopes were located between
the x-y position sensitive proportional counters and the triple element telescopes and
were situated at distances of 27.3 cm and 20.3 cm from the target for the light particle
and heavy fragment telescopes, respectively. The staggering of the light particle and
heavy fragment telescopes allowed a maximization of the detection efficiency because
it minimized the dead area between telescopes normally occupied by the detector

cases and mounts.

For the detection of light particles, a non-planar 200 pgm silicon surface barrier
detector of 450 mm? surface area was used for the first element, a non-planar 5 mm

thick Si(Li) of 500 mm? surface area was used for the second element and a 10 cm
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Figure 2.1: Front view of the hodoscope showing all the nine light particle(LP) and
four heavy fragment (HF) telescopes. The actual dimensions of heavy fragment de-
tectors are displayed. Since they are closer to the target, however, they cover larger
solid angles than suggested by this projection.
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Figure 2.2: Schematic cross sectional view of the hodoscope.
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Figure 2.3: Expanded drawing showing the LP (top) and HF (bottom) telescopes.
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thick Nal(T1) scintillation detector was used for the third element. The 5 mm Si(Li)
detectors were fabricated with a total dead layer less than 15 um [Walt 78]. The silicon
detectors for these telescopes were mounted on the front and the Nal(Tl) detectors
on the rear of a mounting plate consisting of a spherical section subtending a half
angle of 16°. For the detection of heavy fragments, planar 75 ym and 100 pm silicon
surface barrier detectors of 300 mm? surface area and 1.5 % thickness uniformity were
used for the first and second elements; a 5 mm thick Si(Li) detector of 400 mm? was
used for the third element. The heavy fragment telescopes were positioned in front
of the light particle telescopes by cylindrical rods which were bolted to the mounting

plate.

The experiment was performed at the National Superconducting Cyclotron Labo-
ratory of Michigan State University using N beam at E/A = 35 MeV from the K500
Cyclotron. The experiment was set up in the 60 inch diameter scattering chamber.
A natural silver target of 0.5 mg/cm? areal density was placed in the target ladder
at the center of the chamber. The hodoscope was placed on the base table of the
chamber with the center at an angle of 35° with respect to the direction of the beam
and at an angle of 16° above the plane of the scattering cha;mber as shown in Figure
2.2. Consequently, the target was rotated by 35° to the beam axis and 16° in vertical
direction so that target plane is parallel to the vertical plane of the hodoscope. A
photograph of the assembled detection array is shown in Figure 2.4, and a photo-
graph of the actual setup in the scattering chamber is shown in Figure 2.5. Cables
connecting to the silicon and gas detectors and the urathane tubes supplying gas to
the proportional counters can be seen in these figures. The preamplifiers for the gas
detectors were placed in vacuum close to the detectors. The block diagram of the

electronics is given in appendix A.



Figure 2.4: Photograph of the assembled hodoscope. The four HF
telescopes are in the foreground. Eight out of nine LP telescopes can be
seen at a larger distance from the target.



Figure 2.5: Photograph of the full experimental set up in the scattering chamber
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II Position Sensitive Gas Proportional Counters

Position information for each individual telescope was obtained with two single wire
gas proportional counters each providing one coordinate of a two-dimensional Carte-
sian readout. A photograph of the individual components of these counters is shown
in Figure 2.6. Each counter was cylindrical in shape with length of 1.2 cm and diam-
eters of 3 cm and 2.3 cm for LP and HF detectors, respectively. The anode wire was
situated in the middle of each counter along the circular diameter and insulated from
the detector case by G-10 feedthroughs. The position along each wire was obtained
by resistive charge division. This readout scheme appeared to be more linear and
more space efficient than a comparable drift chamber configuration. The front and
rear windows consisted of 6 ym Mylar ((C10H304),) aluminized on the interior to
provide a cathode surface. A 1.5 um Mylar foil, aluminized on both sides, separated
the z and y position counters. The anode wire was made by 7.6 um Nichrome wire
having total resistances of approximately 600 and 400 2 for the light particle and

heavy fragment telescopes, respectively.

Choice of Filling Gas and the Aging Rates of Gas Counters

The efficiency and long term stability of the gas counters were tested with a variety of
gas mixtures and pressures. Isobutane ((CH3);CHCHj;) offered both high efficiency
and high resolution, but the performance of the gas detectors with isobutane was
degraded seriously after about 4 x 108 counts, with the gas gain decreasing by at least
a factor of 2. Such deterioration in counter performance is caused by hydrocarbon

polymerization on the electrodes [Saul 77, Vavr 86).

Detector lifetimes can be improved by adding non-polymerizing quenchers, such

as isopropyl alcohol ((CH3);CHOH) or methylal (CH,(OCHjs),), to the gas mixture.



18

34 3
meLssraRmetrce. @

34367809 {
Lalgh Ly !

Figure 2.6: Photograph showing individual components of the HF position sensitive
gas detector. From left to right one sees the entrance window, front cylinder, middle
foil, back cylinder, and exit window which also serves as a mount for AE and E silicon
surface barrier detectors. A ruler provides the scale in inches.
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We tested our detectors with different mixtures of isobutane and methylal. For prac-
tically all mixing ratios, the counters had good efficiency — even for pure methylal.
Better resistance to aging effects appeared at higher methylal concentrations. Since
high methylal concentrations may adversely affect counter and gas handling system

components [Vavr 86], a mixture of 20% methylal, 80% isobutane was used in the

actual experiments.

During experiments, the heavy fragment telescope was operated at a pressure of
40 torr and a voltage of 900 V, while the light particle telescope was operated at
100 torr and 1250 V. At these pressures, the detection efficiencies for light particles
and heavy fragments were 100% over the energy range of interest (5 MeV < E/A
< 40 MeV). These high operating voltages correspond to the upper portions of the
proportional regime approaching the domain of limited proportionality. A constant
gas flow rate was maintained for all telescopes such that 20 % of the counter gas was

replaced every minute.

III Position Calibrations of the Gas Counters

The position spectra of the gas counters were calibrated with the 5.805 and 5.763
MeV « particles from a 1 mm diameter 2*Cm source which was placed at the tar-
get location. A calibration mask with holes of 1 mm diameter, separated by 1.5
mm, was placed in front of the hodoscope at a distance of 16.5 cm from the target
center. Because of the higher energy loss of low energy a-particles, the operating
voltage of the light particle telescopes was lowered to 1150 Volts during the calibra-
tion. Non-linearities of the z-y posﬁion spectrum were corrected by the empirical

transformations;

X = ag+ a1 Xm + aYm + a3X2 4+ ay X Vo + asY;
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+ GGX,?.L + a7X3lYm + angYn": + GQY"?, (21)
Y = bo + lem + b'ZYm + b3X72n + b4)(mYm + b5Y"21

+ b6 X2 + b7 X2Y,, + bs X, Y2 + bY2. (2.2)

Here, X, and Y, denote positions directly obtained by the charge division method,
and X and Y represent the actual positions. Coeflicients a; and b; were determined
via fitting the position spectrum measured with the mask. Figure 2.7 shows the two
dimensional calibration spectrum for a heavy fragment telescope after correction for
non-linearities. This spectrum and the spectra of other heavy fragment telescopes
are consistent with a position resolution of 0.33 £ 0.02 mm FWHM. The spectra for
light particle telescopes are consistent with a slightly worse resolution of 0.50 £+ 0.01
mm FWHM. The position resolution was limited primarily by the preamplifier noise;
it scales inversely with the signal height and therefore inversely with the energy loss
in the detector gas. An image of the full calibration mask is shown in figure 2.8. The
missing points seen in the spectra correspond to holes that were blocked in the mask

in order to identify and establish the orientation of different telescopes.

The proportional counters proved to be rather sensitive to electrons and soft pho-
tons produced by the beam in the target. The corresponding background could be
reduced to a tolerable level by installing 5 mg/cm? Au foils in front of the gas detec-
tors and adding a magnetic electron suppression system midway between the target

and the detector array.

IV Energy Calibrations

Computer simulations described in the Appendix B, indicate that accurate energy
calibrations of the detector telescopes are much more critical than good energy reso-

lutions to the achievement of optimal excitation energy resolution. Before and after
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Figure 2.7: Two dimensional position spectrum of the calibration mask for one of the
heavy fragment detectors. The missing points were used to identify and establish the
orientation of the different detectors.
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Figure 2.8: Image of the full calibration mask for all the telescopes. The missing
points seen in the spectra correspond to holes that were blocked in the mask in order
to identify and establish the orientation of different telescopes.
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the experiment the detectors were calibrated at low energies with 2*!Am and *'?Po o
sources. These calibrations were extrapolated to energies of several hundred MeV by
injecting a signal from a precision BNC pulser into the input stage of the preampli-
fiers. In this fashion, relative calibrations of all the silicon detectors were established
to an estimated accuracy of about 0.5%. Dead layers of the silicon detectors were
measured with an 24! Am source by rotating the detectors with respect to the direction

of the incident « particles.

Most light particles originating from the decay of nuclei with 10 < Z < 16 were
stopped in the second (5mm) element of the light particle telescope. Light particles
from the decay of lighter nuclei (A < 9) frequently penetrated the 5 mm detector and
stopped in the Nal(Tl) detector. The Nal(Tl) detectors have energy resolutions of
about 1-2%, adequate to resolve the states of the lighter nuclei. Calibrations for the
Nal(T1) detectors were obtained by converting the AE information from the 5 mm
Si(Li) detectors to corresponding energies. To assess the accuracy of this conversion,
the thicknesses of the 5mm Si(Li) detectors were measured by the method of X-ray
attenuation. Calibrations were cross checked by the measurement of energies of recoil
protons backscattered from a polypropylene target by a 490 MeV 14N beam. The
energy calibrations of NaI(Tl) detectors are estimated to be accurate to within 5%.
Gain shifts of the Nal(Tl) detectors were stabilized by using the AE information

produced by Si(Li) detector {Poch 87].

V Particle Identification

For ions with E/A > 5 MeV, the héavy fragment energy loss telescopes, constructed

with planar silicon surface barrier detectors, provided accurate charge and mass iden-
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tification via the empirical relationship [Goul 75],
R o E*[[Mqlg], (2.3)

where E, R, M and g.g denote the energy, range, mass and effective charge state of
the fragment, respectively, and b is an adjustable constant with a typical value of
about 1.7. For a planar AFE detector of thickness T' and a stopping E detector, one
obtains from Eq. (2.3)

Mg o< ( (E+AE) - E* ) T. (2.4)

Following Shimoda et. al. [Shim 79] we have adopted a number of empirical im-

provements. Particle identification (PID) is obtained, instead, using

= In(bAE)+ (b—1)In(E + cAE) — b In(300), (2.5)
AE[MeV]

b = 1.825—0.18 :
T{pm]

¢ = 0.5.

Figﬁre 2.9 shows the particle identification achieved for particles which stop in the
second (100 um) element of the telescope. Isotopic resolution is achieved for all
elements displayed. Similarly, good resolution is obtained for heavy fragments which
stop in the third element (5 mm Si(Li)) of the telescope. The PID resolutions were
also adequate to separate Helium isotopes (not shown). Experimental data for the
decay of 3Li, ®Li, “Li, ®Be were also obtained by analyzing helium ions stopped in the

heavy ion telescopes.

Because of cost-efficiency reasons, non planar fully depleted detectors of 200 um
thickness were used as first elements of the light particle telescopes. The detec-
tors were fabricated by a technique producing convex shaped Si wafers with non-

uniformities of up to 25%. If the variation of detector thickness is a function only of
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Figure 2.9: Sample particle identification spectrum for a heavy fragment telescope.
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the radial distance from the center of detector p (mm), we can replace T in Eq. (2.4)

by

T(p) = Tof(p), (f(p) £1) (2.6)

where Ty is the thickness of the detector at the center. Good particle identification
can still be achieved by correcting for the thickness variation using the position in-

formation provided by the gas detectors. Taking into account the dependence of the

PID on thickness, one obtains

PID = In(bAE)+ (b—1)n(E + cAE) — b1n(300) — In(f(p)), (2.7)
_ - AE[MeV]
b = 1.825 0.18————T0[um] ,

¢ = 0.65.

Figure 2.10 shows the particle identification in the central region of a typical
detector as a function of p?, obtained with f(p) = 1. The PID values decrease
linearly with p? by 28% from the center to the periphery of the active area. All the
first elements of the nine light particle telescopes displayed similar thickness variations

ranging from 25% to 30%. We adopted the functional form

F(p) = exp(—Xp?) (2.8)

with A = 5.3 x 1073 mm~2. This improved the particle identification in Figure 2.11.

Moderately clean isotope resolution was obtained for helium isotopes.
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Figure 2.10: Particle identification in the central region of a light particle telescope
as a function of p?, where p is the radial distance from the center of the detector.
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Figure 2.11: Upper part: particle identification spectrum without correction.. Lower

part: particle identification spectrum for a light particle telescope after correcting for
non-uniformity of AE detector.



Chapter 3

Data Analysis and Reduction

In this chapter, the data for single particle inclusive spectra and two particle coinci-
dence cross section will be presented. In the first section we discuss the data for single
particle kinetic energy spectra, and fits to the data using a “moving source” parame-
terization. The second section of this chapter deals with the two particle coincidence
cross section. The detection and resolution of the hodoscope will be described as
well as the details of fitting the resonance curves using compound nucleus R-matrix
theory. We next present the data for the particle decay of excited lithium, beryllium,
boron, carbon, nitrogen and oxygen isotopes. There we describe details relevant to

the extraction of the relative populations of particle unstable states in these nuclei.

29
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I Single Particle Inclusive Cross Sections

Single particle inclusive energy spectra for hydrogen and helium isotopes are shown in
figure 3.1. Kinetic energy spectra for selected isotopes of lithium, beryllium, boron,

carbon, nitrogen, and oxygen are given in figure 3.2.

All the spectra in figures 3.1 and 3.2 are Maxwellian in shape, display maximum at
energies ciose to the exit channel Coulomb barrier and then decrease exponentially at
higher energies. Single particle inclusive energy spectra have been measured for N
induced reactions on Ag over a wide angular range and for a variety of incident energies
[Fiel 89]). These measurements demonstrate that the emission from the equilibrated
compound nucleus makes only a small contribution to the energy spectra measured at
forward angles. For the present data set, this can be illustrated by fitting the energy

spectra using a “moving source” parameterization given by

d*o 3 ‘ ;
TE = 2 N E = U. exp{—[E —U.+ E; — 2\/ E{(E — U.) cos 8]/ T:} (3.1)

=1

where, N; is a normalization constant, U, is the kinetic energy gained by the Coulomb
repulsion from the residue assumed for simplicity to be stationary in the laboratory
system, and T; is the kinetic temperature parameter of the ith source. E; = %mv?,
where m is the mass of the emitted particle and v; is the velocity of the :th source
in the laboratory system. Fits to the data are shown by the solid lines in figures 3.1

and 3.2, obtained with the use of three “moving sources”, and the parameter values

for the fits are listed in Table 3.1.

In calculations of the efficiency for detecting decay of the unstable fragments, the
angular distributions of the excited ffégments are assumed to be the same as that for
the corresponding stable nucleus. Therefore, accurate fits to the single particle kinetic
energy spectra are required for the extraction of the relative populations of the excited

states of IMF’s. These fits have also been used in the simulations of the backgrounds
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Figure 3.1: Inclusive differential cross sections for H and He isotopes as shown for
laboratory angles listed in the figure. The solid lines represent “moving source fits”.
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Figure 3.2: Inclusive differential cross section for selected isotopes of Lithium, Beryl-
lium, Boron, Carbon, Nitrogen and Oxygen are shown for laboratory angles listed in
the figure. The solid lines represent “moving source fits”.
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Table 3.1: Source parameters of three moving-source fits. The Coulomb repulsion
energies U, and the temperature parameters T; are given in units of MeV, and the
normalization constants N; are given in units of ub/(sr MeV?3/2).

U. T n/c N T, vafc | N, Ts vzfc | N3
6.23 | 3.46 | 0.036 |{ 33490 | 9.27 | 0.168 | 618 | 3.98 | 0.27 | 4159
8.56 | 4.04 | 0.03 | 4372 | 12.07] 0.12 | 164 | 7.30 | 0.223 | 1862
8.33 | 549 |0.035| 1421 |12.24 | 0.14 | 892.7] 6.11 | 0.242 | 804.5
e 13.08] 5.35 | 0.04 | 530.5 [ 12.80 | 0.158 | 411.1 | 4.96 | 0.26 | 1601

a 12821 5.38 | 0.045 | 11060 | 12.91 | 0.138 | 2101 | 6.43 | 0.232 | 4289
6He | 15.54 | 6.14 | 0.043 | 96.32 | 14.49 | 0.116 | 28.82 | 9.56 | 0.193 | 32.16
6Li | 16.00 | 9.17 | 0.064 | 74.54 | 16.73 | 0.114 | 50.96 | 11.22 | 0.207 | 106.2
Li|15.81 {19.57 | 0.023 | 79.10 | 4.64 | 0.089 | 121.2 | 12.17 | 0.139 | 83.81
"Be | 20.66 | 8.97 | 0.06 | 14.98 | 18.77 | 0.107 | 14.87 | 11.08 | 0.198 | 57.83
9Be | 20.24 | 10.24 | 0.055 | 32.98 | 17.97 | 0.114 | 12.53 | 10.89 | 0.200 | 41.32
88 13041 | 9.09 | 0.053] 0.63 |18.90|0.113 | 0.40 | 11.33 | 0.207 | 2.54
108 129.86 1 9.09 | 0.053 | 24.62 | 18.90 { 0.113 | 9.33 | 11.33 | 0.207 | 55.98
1C 14097 | 772 10.054 | 7.12 | 16.82]0.105| 2.46 | 12.02]0.193 | 13.62
12C 1 40.67 { 7.38 {0.053 | 33.17 | 16.28 | 0.091 | 7.15 | 13.75 | 0.176 | 12.57
140 140.15| 9.53 | 0.051 | 7.31 {14.9710.101 | 1.25 | 16.11 | 0.155 | 0.84
13N | 46.15 | 10.43 | 0.061 | 0.57 | 16.69 | 0.118 | 0.13 | 9.88 | 0.194 | 2.06
14N | 45.87 | 10.43 | 0.061 | 6.21 | 16.69 | 0.118 | 1.41 | 9.88 [ 0.194 | 11.93
160 | 50.74 | 12.22 | 0.057 | 4.25 | 3.42 | 0.091|31.0812.34|0.114 | 1.24
180) 1 50.25 | 12.22 | 0.057 | 1.43 3.42 10.09119.36|12.34{0.114 | 0.06

o e o'
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to the coincidence yields from particles which are emitted independently and are not
the decay products of a heavier particle unstable IMF. Details of the calculation of

the efficiency function and the coincidence background are given in the next section.

Although the fragment kinetic energy spectra are rather well described by the
superposition of the contributions from three sources, the range of angles covered
in this experiment was not sufficient to unambiguously establish the parameters of
these sources. Indeed, the representation of these spectra by the superposition of an
equilibrium plus two non equilibrium sources is an approximation which we justify
mainly by the accuracy of our fits. As an illustration of the decomposition into
equilibrium and non equilibrium sources imposed by our fits, we show the measured
energy spectrum for '°B fragments as the solid points in figure 3.3 along with the full
three moving source fit (solid line) and the best fit assumptions for the equilibrium fit
(dashed line). Consistent with [Fiel 89], these fits suggest that equilibrium emission
plays only a minor role in the emission of the more energetic fragments. The precise
magnitude of the equilibrium contribution, however, can not be established without

additional measurements at backward angles.
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Figure 3.3: Inclusive differential cross section for 1°B fragments. The solid curves

describe the full “three moving source” fits and the dashed curves show the emission
from a slow moving “target like” source.
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II Two Particle Coincidence Cross Sections

A Detection Efficiency and Resolution

Products from the decay of particle unstable nuclei are detected as coincident par-
ticles. The energies of the coincident particles are combined to obtain the relative
energy and, by accumulating all the measured events, the relative energy spectrum

Yiot(Ef.,) is obtained, E;;

ea . being the measured excitation energy. This total excita-

tion energy spectrum has contributions from the following two parts :
Y;JO"(E:nea) = }/C(Er:\ea) + Yi’&Ck(Er:\ea) (32)

where Y. is the yield from the decay of the particle unstable nucleus, and Ypack is the
background yield due to coincidences which do not proceed through the decay of the

particle unstable nucleus being investigated.

The coincidence yield, Y, can be related to the normalized excitation energy spec-
trum |dn( E*)/dE*|. in the rest frame of the unstable fragment for decay into channel ¢
by the equation,

dn(E*)
dE~

Yl Bpea) = [ dE” (E", )

mea

(3.3)

c

where e(E*, EX

* ) is called the efficiency function, E* being the actual excitation

energy. The decay yield |dn(E*)/dE*|. is normalized so that [*° dE*|dn(E*)/dE*|. is
the total yield into channel ¢ divided by the total yield of the corresponding particle-
stable nucleus. A detailed description of the decay yield will be given in the next

subsection.

The efficiency function is calculated for the complete detector geometry of the
hodoscope by taking into account the position and energy resolutions of the tele-
scopes. It also includes the target beam spot size, multiple scattering and energy

loss in the target and the gas detector windows. This calculation assumes that the
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particle unstable nucleus decays isotropically in its rest frame, and the energy and
angular distributions of the excited nucleus are identical to those measured for the
corresponding particle-stable nucleus. Details of the efliciency calculation is given in

Appendix B.

As an example, let us consider calculations for the decay *N —3C+p for uN
induced reactions on "**Ag at E/A = 35 MeV. In these calculations, the energy
spectra and angular distributions for particle unstable N nuclei are assumed to be
the same as those measured for stable N nuclei, shown in figure 3.2. The geometry
and resolution of the hodoscope elements, and target and detector foil thicknesses were
taken from conditions encountered during the experiment. Results of calculations for

the total efficiency

C(E*) = /dE:;lea C(E*’ Er:lea) (34)
and the root mean square resolution
tot * * * »* *\2 1/2
ot = ( [ dEqen €(E*, Eea) (Efyea — E7)? ) (3.5)

are shown in Figure 3.4. The total efficiency (shown in upper part of the figure) is
normalized to 1 at the relative kinetic energy of 0.42 MeV, which corresponds to the
27 (E* = 7.97 MeV) excited state in *N. The resolution shown in Figure 3.4 is mainly

limited by the position resolution of the individual telescopes.

The position resolutions of the gas counters for the LP and HF telescopes were
adjusted for getting optimum fits to the c;)incidence yields. We have used position
information from the gas detectors in the expression for PID (see equation 2.8) in
order to achieve good particle identification for H and He isotopes using the LP
telescopes. The regions close to the periphery of the silicon detectors, where only
poor isotopic resolution could be attained, were avoided by utilizing software gates

on position information. The efficiency function, turned out to be somewhat sensitive
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Figure 3.4: Calculated total efficiency (upper part) and rms resolution (lower part)
for the detection of p-'*C pairs resulting from the decay of particle unstable *N. The
efficiency has been normalized to 1 at E,, = 0.42 MeV (E* = 7.97 MeV)
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to the position resolutions of the gas counters. The uncertainties in the efficiency
calculations due to the uncertainties in the position resolution of the gas counters
were therefore, estimated and included in establishing the uncertainties in the excited

state yields.

The background yield, Yiack( Ex,,) which appears in equation (3.2) can be written

in an approximate form as

Yoack = C12 0103(1 + Roack( Eret)), (3.6)

where C}; is a normalization constant, oy and o, are the single particle inclusive cross
sections for particles 1,2 interpolated by moving source fits as discussed in the last
section, E is the relative energy of the two particles, and [1 + Ruack(Era)] is the
background correlation function. The background correlation function is assumed to
vanish for Fq — 0 and to go to unity at large F.. where final state interactions
can be neglected. To get an approximate description of the background, we have

parameterized the background correlation function as

14+ Rback(Erel) =1- eXp{—(E* - Eb)/Ab} (37)
where Ej, is the threshold energy for an excited nucleus to decay by a given decay
channel and the fit parameter Ay, governs the width of the minimum at Ej.

The accuracy of the above approximation can be easily assessed by constructing

the total correlation function, {1 + Rioi(Ere1)], defined by
Kot(Erel) = 012 0109 [1 + Rtot(Erel)] (38)

and investigating the correlation function at relative energies for which no particle
unstable states exist, and consequently at those energies Rio(Erel) = Rback(Eret). The
experimental correlation function [1 + Riot( Erer)] is obtained by summing both sides

of the above equation over all values of energies of the two particles corresponding to
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a fixed relative energy E,. and choosing Cy; such that the total correlation function

is unity at large relative energies.

As an example, Figure 3.5 shows the experimental total p-13C correlation func-
tion. Between 7.55 < E* < 10.27 MeV, 16 states decay only by proton emission. The
distinct structures observed at E* = 7.97, 8.49, 9.0, ~9.4 and ~10.1 MeV corre-
spond to groups of excited states with J > 2: additional states in this region with
J = 0 are not strongly populated. Consistent with Equation (3.8) the correlation
function is very close to unity between the peaks and at large relative energies where
the background correlation is dominant. It also decreases to zero for small E... The
shape of the background correlation function resulting from the above parameteri-
zation (equation 3.7) is shown by the dashed lines in the figure. From this shape,
Ryaci( Erel) may be determined and the background yield can be subtracted from the
total yield. The sensitivity of the excited state yield to uncertainties in the back-
ground subtraction may be explored by making different choices for the background.
One such choice is depicted by the dotted lines in the figure. Details of the calcula-

tions for the correlation functions and the backgrounds are provided in the appendix

B.
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Figure 3.5: p-13C correlation function. The excitation energy in the N nucleus is
indicated on the top. The dashed curve indicates an estimated background and solid
curve is a fit described in the text. The dotted curve shows an alternate description
of the background.
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B Fits to the Resonances : R-matrix theory

To describe the experimental yield for particle unstable nucle; resulting from two par-
ticle coincidence cross sections, one needs the excitation energy spectrum |dn(E*)/dE*|..
For this purpose, one needs to be able to describe the population of an excited state
which can have a total width that is comparable to the temperature of the ensemble

of such fragments.

To find this expression we must consider the modifications of the phase space
density of the decay products due to their mutual interactions. To illustrate these
modifications, we consider the interactions of two spinless non-identical particle. The
density of two particle states containing one of each of the decay products can be

written as

p12(B1, 52) = pr(P) - p.(§) (3.9)

where pr(P) is the density of states associated with the motion of the center-of-mass
of these particles, and p,(¢) is the density of states for the relative motion of the two
particles. Here py, p; are the momenta of the two detected particles, ¢ is the relative
momentum and P is the total momentum. The density of states for center of mass
motion pT(ﬁ) is not affected by the mutual interaction of the two decay products.
We need consider only modifications of the density of states for the relative motion
p-(¢). 1f one considers the number of states in a box of volume V about the center
of mass of the two particles and requires the relative wave function to vanish at the

boundaries of the box, one can obtain

or(@) = pol(@) + Ap(§) “ (3.10)
where
pold@) = 2L (3.11)

27?2
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is the density of states for non-interacting spinless particles, and

- 1 06
Bol@) = LT+ )5
1

(3.12)
describes the modification of the phase density due to the interactions between the
two particles {Huan 63]. In this expression, & is the scattering phase shift for the
partial wave with orbital angular momentum {. Additional quantum numbers are in
general associated with the phase shifts. Each of these phase shifts can contribute to
Ap. If one assigns an index ¢ to each phase shift, one can generalize eq. (3.12) for

particles with non-zero spins :

1

8A(7) = + I+ )5

i

(3.13)

If the two particles are in contact with a thermal reservoir with a tempera-
ture T, the phase space will be populated in accordance with the Boltzmann fac-

tor exp(—E*/T). For the phase space of relative motion, one expects a probability

distribution which has the form [Land 80} :

or() eXp( L ) - pomexp( e ) +A,,(q~)e,<p( S ) (3.14)

where u is the reduced mass of the two body decay channel. The latter term in
eq. (3.14) arises from the interactions between the two fragments. If one isolates
the portion §; res Of the total phase shift §; which corresponds to the modifications of
the two particle phase space due to long lived resonant interactions between the two
fragments, one obtains an expression for the population of resonant excited states.
For a system with a single open channel, the expression for the decay spectrum of

the excited nucleus becomes

dn(E*)
dE~

Ex zres
= Ustable Xi:exp( —'T‘ ) (2J + 1) 8E* (315)

[

where Cyiaple 15 a constant fixed by the requirement that [®° dE*|dn(E*)/dE*|, is

the total decay yield into channel ¢ divided by the total yield for the corresponding
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particle-stable nucleus. Practical details of the evaluation of Cyabie are given in the
discussion of the relative populations later in this section. To proceed further, we
need an expression for 98; rs/E*. We must also consider the possibility that more

than one decay channel may be open for the excited states we encounter.

Most of the phase shifts for thé formation of particle unstable light nuclei are
already experimentally known. Many are parameterized using the R-matrix theory
of nuclear reactions [Lane 58]. We now recapitulate the essential elements of this
theory. Central to this theory is the R-matrix, R,,» which is the multichannel analog
to the logarithmic derivative of the radial wave function %,. One can relate the
external solutions of the Schrodinger equation to the internal solutions using the

R-matrix via the equation

(Muau)—1/2 "/"u(au) = Z(Mu’au')—l/z Ruu’ [ au’gg—"ﬂbv'(ru’) ] (316)

v ri=ay
where M, is the reduced mass of the decay channel', a, is the matching radius (channel
radius) which is usually channel dependent, and 1, is the radial wave function for that
part of the total wave function which is in channel v. The symbol v is a shorthand
which denotes the many quantum numbers (e.g., ¢, [, m, channel spins etc.) required
to completely specify the decay channel. The index ¢ designates two specific daughter
isotopes produced by the decay of the particle unstable nucleus. Due to the existence

of particle unbound states in the fragment, R, is often expressed as a sum of poles :

Yav Tt :
vy! = 3.17
R = ¥ 2 (3.7)

corresponding to resonances at E* ~ E). The terms 7y, are the reduced widths
which contain information about coupling of the resonance A to the decay channel
v. In principle, the locations of the poles E\ correspond to the energy eigenvalues

of eigenstates 1, (r) which satisfy Schrodinger equation at r < a, in addition to a
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boundary condition

d

“ar

[ rn(r) |

= B,x(a,), (3.18)

at the channel radius a,, with the boundary value B,.

Within the R-matrix theory, the scattering matrix S,,. is given by a matrix ex-

pression
S = (ka)/20~![1 - R(L — B)]"}[1 — R(L* — B)]I (ka)~1/2 (3.19)
where

ka)d = (ka)i6u,

0—1 = 0;16,,,,/,

L = LV6UV’3
B = Bu6uu’v
and I = L6, (3.20)

are matrix representations for channel dependent quantities. Here, k, is the channel
wave number, O, and I, are the outgoing and incoming solutions of the radial equation

for channel v, and

L, = al,—O—‘i = a,,(I")

0, (L)

(3.21)

is the corresponding logarithmic derivative. Values for a, and B, are not apriory
specified by the R-matrix theory. In practice, for charged particle decay channels, a,
is often chosen sufficiently large that the outgoing and incoming radial wave functions

O, and I, can be accurately approximated by

I, = (G, —1iF,)exp(w,) (3.22)

-0, = (G, +1F,)exp(—iw,) (3.23)
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where F and G are the regular and irregular Coulomb wave functions and w, is
the reduced Coulomb phase shift. The choices for B, and a, are not by themselves
important, but they do define a convention which must be constantly followed because
B, and a, are coupled to the values of F) and v, obtained from fitting the equation
(3.19) to low energy scattering data. As a consequence, the parameters of a resonance
are not completely specified by Fy and 7,, alone, and one must consistently follow
the conventions for B, and @, when fitting R-matrix expression to the experimental

data.

Little can be gained by further discussing the R-matrix theory in its full generality.

One must now choose limiting cases which are relevant to this dissertation.

One-level approximation

When E* is near an isolated resonance at energy E), the R-matrix is often approxi-

mated by
Ry = R:}u'
T Vvt
AL AL 3.24
E,\ _ E* ( )

where the pole reflects the influence of the resonance at E* = FE). Substituting

equation (3.24) into (3.19), the one-level formula for the S-matrix becomes

. (T, Ty )2
Suu' = exp[l(wu + wyr — ¢u - ¢u’)] 61/1/’ + Z( Av_ ) )

A 3.25
. Ex4+Ax—E-— 3l ( )

where ¢ is the hard sphere phase shift. Here §,,+ is the Kronecker delta function. The
width Ty, and the energy shift Ay, can be expressed in terms of the reduced width

72, as follows

Ty, = 2P}, Iy=) Ty (3.26)

Ay = =- Z(Su - Bu)’7§u' (327)
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Here Ty is the total width of the resonance. P, is called the penetration factor which
is related to the probability that the particles in the exit channel escape from the
interaction region. Mathematically P, and S, can be expressed in terms of F' and G,
the regular and irregular solutions of the radial wave equation in the external region

and their derivatives, all evaluated at channel radius a,. One obtains

P, = pA7%Y,=e, and S, =pA;Y(0A./00)|r=a, (3.28)
where A, = F?+ G2,

and p = kr

The inclusion of the factor Ay in equation (3.25) has the consequence that the level

energy E) is different from the resonance energy Fis of the level A and is given by

[Bark 72] :

E,\ = Eres + A)\- (329)

From equation (3.25) it is clear that the S-matrix has off-diagonal terms which
mix channels » and /. To obtain the modifications of the phase space density due to
unbound resonances, the S-matrix must be diagonalized. In the diagonal representa-

tion, the S-matrix in the resonant channel becomes

Ex+ Ay — E*+ 4T,

S — eXp(2i6,\,res) = E,\ + A,\ — E+ — !_F)\
2

(3.30)

Using eq. (3.30) in eq. 3.15, one can obtain a thermal expression for the excitation

energy distribution of this isolated level :

dnya(EY) ( E*\ (2Jy+1)
dE* - Cstable €xp “? ) T
F,\/? [ dA, E,+ Ay, — E*dTly ]
- 3.31
G EV+I L "B T T T, dbr (3:31)

This state will decay to all available channels v. The branching ratio which governs the

decay to the original channel v is equal to the absolute value of the coefficient which
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describes the contribution to the resonant channel from the vth original channel.
Using the S matrix of the eq. (3.30) we obtain the branching ratio BR, for the vth

channel

BR, = L. S (332)
L'y

For the excited states considered in this dissertation, a given pair of final decay
products, ¢, are emitted with a unique partial wave I, and channel spin z.. Thus the

index v becomes redundant and the decay spectrum for the channel ¢ becomes

______dn,\(E"‘) = N, exp( _E: ) _.___.(2‘]* +1)
dE* . T G
F)\c/2 dA) E, + Ay — E*dl) ]
— 33
“Br+ Br— B2+ 113 [ -t |33

where the constant Cgapie has been replaced by another constant Ny which depends
specifically on the level A. In the absence of sequential feeding from heavier particle
unstable nuclei, the value of Ny should be equal Cyape for all states. Values for N,
for individual excited states can be assessed from fits to the experimental data, and
compared to the prediction of statistical model calculations. Further details of these
fitting procedures are given below in the discussion of the experimental extraction of

the relative populations of excited states.

In many cases the resonance parameters I'y and Ay depend only weakly on the
energy, then a Breit-Wigner description of the S-matrix is frequently used: In this

case, I'y and A, are constants, and |dn/dE*|. becomes

E*\ (21A+1) T»/2 Tae
= —= . 3.34
Ny e"p( T ) T (Bes— E*)? + 113 T, (3:34)

dnA(E*)
dE~

c

where .. is the resonance energy for the level A.
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The Two-level approximation

The analysis of overlapping levels with the same spins and parities is more compli-
cated. For the purpose of this dissertation, however, it is only necessary to obtain
the appropriate expressions for the case of two overlapping levels and two open decay

channels. The R-matrix for this case is given by ([Lane 58] page 329) :

Tv Y1 Yov 2!
Rm/' =
E-EV'E-E

. (3.35)

The relationship between R-matrix and S-matrix given in equation (3.19) can be

written in the form

S =QWQ (3.36)
where
Q =1Y20-1/2 (3.37)

and the components of the matrix W in the case of two levels with two open channels

are
Wi = 14 2P ][Ry — LYRuRy — B,)|dY, (3.38)
Wy = 14 2iPy[Ry — LY(RiyRoy — RY,)]d7Y, (3.39)
Wi, = Wy =2%P*R,PY% 1, (3.40)
where
d = (1- RuLd)(1 - Rul®) — I9RLLS (3.41)

with L% = L,-B,=S,+iP,— B,. (3.42)

To find stationary wave solutions in both the channels, we need to solve the

eigenvalue equation

(@=Wa (3.43)
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for the eigenvectors @ corresponding to the eigenvalues . This yields the two possible

eigenvalues :
1
G = 5{ Wi + Wy, — \/(Wu + Wop)? — 4(W1 Wy — Wi W) } (3.44)
1 [l
(= 5{ Wi+ Wy + \/(Wu + Wa2)? — 4(Wiy Wy — Wi Wo) } (3.45)

for the two levels considered. By substituting these eigenvalues in equation (3.43),
the eigenvectors @ are obtained. The branching ratios for the decay from one of the

levels A by a channel v(=1,2) are then

|[Wh2|?
BR), _, = 3.46
( )/\,u_l IC)\ . ‘/ang + ‘Wl2'2 ( )
IO — Wl
BR), _, = 3.47
(BR)vu—s [Cn — Wiy |2 + |[Wp,|? (3.47)
The two-level decay spectrum for the decay into channel v is given by
dn(E*) ( E* ) 2J+1) | 1dG 1 d(;
T =Ne -y - v i e v
aB~ I, TP T i | Gabr R+ o g (BR):
. (3.48)

where J is the spin of the levels considered. We use a single normalization constant
N for this case because the experimental data do not allow a separate determination

of the emission temperature T and two normalizations.

Evaluation of the Population Probability

In general, the decay spectrum consists of a sum of contributions from the various

levels :

dn(E*)

dE*

dny(E*)

dE~

3

¢ A

. (3.49)

c

By summing the decays from one of the levels in eq. (3.49) over the open decay

channels, one obtains the excitation energy distribution of the level considered :

dnyeot(E*) dny(E™*)
dE* =2 dE*

[

(3.50)

c
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If the branching ratios to the various channels are known, a measurement of a single
dn,\,tot(E*)
dE~

Following [Naya 89], one can define a “population probability”, n,, for this level.

decay channel is sufficient to evaluate

By integrating over excitation energy

_ 1 " dn)‘,tot(E*)
ny = (QJA+1)/dE s, (3.51)

The spin degeneracy factor (2J) + 1) in the denominator of the eq. (3.51) reflects
an unfortunate choice of notation adopted in [Naya 89] which must be kept in mind

during subsequent discussion of the measured and calculated population probabilities.

For the majority of the excitation energy spectra considered in this dissertation,
the excited states are relatively narrow and the Boltzmann factor exp(—E*/T) varies
little over the resonance line shape. Then the Boltzmann factor can be approximated

by exp(—FEres/T'), and taken out of the integral. The population probability becomes

ny = Nyexp(—E*/T), (3.52)

dn(E*)

*

and in the limit that can be approximated by a set of Breit Wigner

C

resonances, one obtains,

. (2JA+1) F,\/2 I\
C——Z/\:n)\ - (Eres"'E*)z'*'i'Fi Iw/\’

(3.53)

' dn(E*)
dE*

and ny can be evaluated directly.

Regardless of the form of the fitting expression, Y.(E%.,) is obtained by folding
dn(E*)

dE~

of the manner in which parameterization of the single particle inclusive spectra are

against the efficiency function e( E*, E

mea
c

) according to eq. (3.3). Because

used to evaluate the efficiency function, the population probability n, is equal to the
yield for the state A divided by the total yield of the particle stable nuclei for the

isotope being considered.
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IIT Excitation Energy Spectra for Particle Un-
stable Nuclei

Particle Unstable States of ®*Li

Figure 3.6 shows the correlation function for the decay *Li — a+p. The lower scale
in the figure gives the relative energy of the proton and «a particle, and the excitation
energy of 5Li is given in the upper scale. At low relative energies, there is a narrow
peak [Poch 85b] at E,q=0.19 MeV due to the two stage decay of °B, where By, —
p+8Beg,s, —p+(a+a). To estimate the contamination due to the 9Bg,s, decays, a Breit
Wigner resonance of width I' = 0.055 MeV was included in the fit. The broad peak
at 1 MeV < E,,; < 3 MeV is due to the decay of particle unbound ground state of
SLi (J™ = 37,T = 1.5 MeV, I',/T = 1.0) [Ajze 88]. Because the state is rather wide,
we explicitly included the Boltzmann factor in fitting this peak. A value of T' = 3
MeV was assumed in the fit. The population probability was extracted according to
equation 3.51 and by using the Breit-Wigner formalism given by equation 3.34. The
value of n) extracted for this state are not very sensitive to the value of T used in this
fit. Because °Li has no particle stable states, the efficiency was calculated using the
energy spectrum for particle stable 6Li. As a consequence the population probabilities
given in table 3.2 are defined relative to the particle stable yield of 6Li. The solid line
in the figure shows fits to the data assuming the background depicted by the dashed
line. The uncertainties in this yield were assessed by varying the background and also
by varying the position resolution assumed in the calculation of efficiency. One such

alternate background is shown by the dotted line in figure 3.6.
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Figure 3.6: Correlation function as a function of relative energy for a-p. The solid

curve is the fit to the data assuming the background designated by the dashed line.
The dotted line shows an alternate background.
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Table 3.2: Spectroscopic information for Lithium and Beryllium isotopes which was
used to extract excited state populations. Branching ratios I'./I' are given in per-
centage. Except for °Li, relative populations ny are defined relative to the particle
stable yields for the same nucleus. The group structure is explained in the text.

] | Group [ E*(MeV) [ J™ | To(MeV) | Pairs [ T./T | Relative population, n, |

SLi| 1 gs. |27 1.5 a-p | 100 *) 0.347 +0.03
2 16.66Y |37 | 020 |®Hed| 86Y | 953x10-3+ 1.4x10"3
SLi| 1 2.186 |3t ] 0.024 a-d | 100 0.1540.01
2 431 |2f 1.7 a-d | 907 0.059+0.02
565 |1t 1.5 ad | T4
Li 1 463 | I7| 0.093" a-t | 1007 0.0474+2.5x10~3
2 6.68° | 27| 0.875Y a-t | 1009 0.03+ 7x10-3
7469 |27 | 0.089Y a-t | 18
3 1124 |37} 0272 |®Hep| 59 4.8x1073+1x10-3
Be| 1 457 [ I7] 01759 |a-*He| 100 0.052+5x 103
2 6.73) |37 129 | a-3He | 100" 0.03140.01
7.219 |27 0.5% a-*He | 3¥
3 721 |27 05 ®Lip | 97 0.021+3.5x10-3

%) Values of n, for °Li are defined relative to the the particle stable yields of SLi.
®) Analysis performed using R-matrix parameters given in the text.
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The d-*He correlation function is shown in figure 3.7. The relative energy of d-3He
is shown in the lower scale and the upper scale gives the excitation energy of °Li. A
pronounced peak corresponding to the 16.66 MeV state in °Li (J* = %+,I‘ = 0.20
MeV) [Ajze 88] can be seen at E, 20.4 MeV. We used the R-matrix expression for
decay from a single level (equation 3.33) to describe this state which has two decay
channels : °Li—d+3He and ®*Li—p+a. The resonance parameters for this state are
Ey =129 keV, v*(d) = 780 keV, lg = 0, ag = 7 fm, 4%(p) = 12 keV, [, = 2,4, = 7
fm [Ajze 79], with boundary conditions B4 = B, = 0. The resonance parameters
however, gave a peak in the excitation energy spectrum which occured at about 280
keV lower in relative energy than the peak observed experimentally. Because the d and
3He have different charge to mass ratios, distortions of the excitation energy spectra
can result from Coulomb final state interactions with the residual nucleus [Poch 86b],
but such effects have not been explored qualitatively for the d-*He system. Also
included in the fit are contributions from the wide state at E* = 20 MeV. The solid
curve in the figure shows fits to the data by assuming the background given by the
dashed line. One alternate background is shown by the dotted line. As in the case
of the 5Li ground state, the population probability n, of this state listed in table
3.2, is defined with respect to the yield of stable ®Li nuclei. The uncertainties in
the population probability reflect uncertainties due to background subtraction, and
uncertainties in the efficiency due to uncertainties in the position resolutions of the

gas counters.

Particle Unstable states of ¢Li

The correlation function for the decay 6Li—d+a is shown in figure 3.8. ~An iso-
lated peak corresponding to the 2.186 MeV state of ®Li (J™ = 3*,T' = 24 keV,

I'o/T = 1.0) [Ajze 88] is observed at E.o ~ 0.71 MeV. Two overlapping peaks at 4.31
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Figure 3.7: Correlation function as a function of relative energy for 3He-d. The solid

curve is the fit to the data assuming the background designated by the dashed line.
The dotted line shows an alternate background.
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Figure 3.8: The d-a correlation as a function of the relative energy. The fits to the

resonances is shown by solid lines assuming the background shown by dashed line.
The dotted curve shows as an alternative form of the background.
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MeV (J™ = 2+T = 1.7 MeV, T', /T = 0.97) and 5.65 MeV (J™ = 1*,T = 1.5 MeV,
['o/T = 0.74) [Ajze 88] were associated with the second maximum in the 8Li spectra.
Both the states at 4.31 MeV and 5.65 MeV are sufficiently wide, and are affected
by line shape distortions coming from the Boltzmann factor. We therefore fitted the
full spectrum by using a fixed value for T = 4 MeV using one normalization value
for the state at 2.186 MeV and a second one for the states at 4.31 MeV and 5.65
MeV. The population probabilities were extracted according to equation 3.51 using
the Breit-Wigner formalism given by equation 3.34. The fit shown by solid curves
in the figure was obtained by assuming the background shown by the dashed line.
One alternate background, used for assessing the systematic error, is depicted by the
dotted line. Values for the extracted population probabilities ny, with respect to the
ground state yield of ®Li, are listed in table 3.2 for the two groups of states. The un-
certainties associated with these probabilities include uncertainties in the background
estimation, and also the uncertainties arising from the efliciency calculation because

of the uncertainties in the position resolutions in the gas detectors.

Particle Unstable states of “Li

The correlation function for the decay “Li— a+t is shown in figure 3.9. The peak
marked by 7/27 and located at E.q = 2.1622 MeV, corresponds to the 4.630 MeV
excited state of 'Li (J* = 7, = 93 keV, [o/T = 1.0) [Ajze 88]. This peak is
fitted by using the R-matrix theory for decay from a single level (equation 3.33). The
relevant parameters for the resonance are £,=2.80 MeV, 42 = 1.3 MeV,(=3,a =4
fm, B = —3 [Spig 67]. A broad structure can be seen in the a+t spectra of figure 3.9
corresponding to two overlapping states at E* = 6.68 MeV (J™ = 27, T = 875 keV,
[o/T =1.0)and E* =746 MeV (J™ =27, T =89 keV, I'/T = 0.18) [Ajze 88]. The

state at 6.68 MeV has only the a+t channel open. The threshold for neutron decay
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netag(M*N,at)X, E/A=35MeV

Figure 3.9: t-a correlation function as a function of relative energy. Location and
spins of particle-unstable states in "Li are indicated. The insert gives an expanded
view showing the second maximum. The solid curves are the fits to the data assuming
the background designated by the dashed line. The dotted line shows an alternate
background.
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is at £* = 7.25 MeV, and the state at 7.46 MeV decays by both a+t and ®Li+n
channels. Because these states are overlapping and have the same spins and parities,
the phase shift for these states were analysed by using the R-matrix formalism for
two overlapping levels, equation 3.48. For simplicity, we designate the levels at 6.68
MeV and 7.46 MeV as levels 1 and 2 respectively in equation 3.48, o and neutron
channels as channels 1 and 2, respectively. The R-matrix parameters are (E) = 5.730
MeV, v%(a) = 0.98 MeV, I, = 3,a, = 4.4 fm) [Ivan 68] for the level at 6.68 MeV,
and (E) = 5.188 MeV, 7*(a) = 0.024 MeV, [, = 3,a, = 4 fm, ¥3(n) = 1.2 MeV,
In = 1,a, = 4 fm) [Spig 67 for the level at 7.46 MeV. These resonance parameters
were obtained with the boundary conditions B, = —3 and B, = —1. The excitation
energy spectrum was fitted with two normalization parameters, one for the state at
4.63 MeV and another for the doublet at 6.68 and 7.46 MeV. The solid curve in the
figure shows the fit to the data assuming the background designated by the dashed
line. The resonance at £* = 9.67 MeV was included in the fit to better describe the
data. The dotted line shows an alternate choice for the background which was used
for the estimation of systematic errors. The population probabilities n, are listed
in table 3.2. The uncertainties in the population probability reflects uncertainties in
the background as well as uncertainties in the efficiency due to uncertainties in the

position resolution of the gas detectors.

Figure 3.10 gives the correlation function. for "Li—%He+p. The peak seen at
Eres = 8.77 MeV correspond to the proton decay of a state at E* = 11.24 MeV
(J"=27,T =0.272 MeV, I, /T = 0.59) [Pres 69, Ajze 88]. This peak is fitted using
the Breit-Wigner formalism (equation 3.53). The solid curve shows the fit to the
data assuming the background depicted by the dashed line. The dotted line shows an
alternate choice of the background used for the estimation of systematic errors. The

population probability ny is listed in table 3.2. The uncertainty in ny reflects both
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Figure 3.10: p-®He correlation function as a function of relative energy. The excitation
energy in "Li is indicated on the top. Location and spin of a particle-unstable state

in 7Li is shown.
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the uncertainty in the background estimation and the uncertainty in the detection

efficiency as discussed earlier.

Particle Unstable states of "Be

The correlation function resulting from the coincidence of *He+a is given in figure
3.11. Because of isospin symmetry, the analysis of the states in "Be is similar to
the analysis of the "Li states. The peak at E* = 4.57 MeV (J™ = I, = 175
keV, I'y/T' = 1.0) [Ajze 88] was analysed by using the R-matrix formalism for decay
from a single level (equation 3.33). The corresponding R-matrix parameters are
(Ex = 3.885 MeV, 7¥(a) = 1.595 MeV, =3, a, = 4 fm, B, = —3) [Spig 67]. The
states at E* = 6.73 MeV (J™ = 27T = 1.2 MeV, I,/T = 1.0) and 7.21 MeV
(J"=2",T' =05 MeV, I',/T = 0.03) [Ajze 88] were analysed by using the R-matrix
formalism for decay from two nearby levels (equation 3.48). The relevant parameters
for the level at 6.73 MeV are (F,=9.007 MeV, v%(a)=3.1 MeV, I, = 3,a, = 4
fm), and for the level at 7.21 MeV are (E) = 5.993 MeV, v%(a) = 0.023 MeV,
lo = 3,04 = 4 fm, ¥*(p) = 1.2 MeV, [, = 1,a, = 4 fm) [Spig 67, Bark 72]. The
corresponding boundary conditions are of B, = —3 and B, = —1. Solid curve in the
figure shows the fit to the data assuming the background designated by the dashed
line. The dotted line shows an alternate choice of the background used to estimate
the systematic errors. The excitation energy spectrum was fit assuming one free
parameter for the normalization of the state at 4.57 MeV and another for the doublet
at 6.73 and 7.21 MeV. The relative populdtions ny for the first state and the second
group of states are listed in table 3.2. The uncertainties in ny reflect the uncertainties
due to the background estimation and uncertainties in the efficiency calculations due

to the uncertainties in the position resolutions of the gas detectors.

The correlation function for Li+p is given in figure 3.12. A clear peak can be seen
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Figure 3.11: Correlation function as a function of relative energy for He-a.. The solid

curves give a fit to the data with the background shown by the dashed lines. The
dotted line shows an alternate background.
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Figure 3.12: p-®Li correlation function as a function of relative energy. Location and
spins of a particle-unstable state in "Be is indicated. The solid curve shows a fit to
the data with the background designated by the dashed line. The dotted line shows
an alternate background.
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corresponding to the state at E* = 7.21 MeV (J™ = 37, = 0.5 MeV,I';/T" = .97)
[Ajze 88] of "Be. This peak was fitted with the Breit-Wigner formalism (equation
3.53). An additional state corresponding to E*=9.27 MeV was included in the fit,
but the population probabilities was not extracted from this. The solid curve depicts
the fits to the data assuming the background given by the dashed line. The dotted
line shows an alternate background used for estimating the systematic error. The
population probabilities ny are listed in table 3.2. The uncertainties in the population
probabilities include the uncertainties due to the background estimation and the

uncertainties in the efficiency calculation.

Particle Unstable states of ¢B

The correlation function for 8B —7Be+p is shown in Figure 3.13. The relative energy
of "Be+p and the excitation energy in the ®B nucleus are indicated in the lower
and upper scales respectively. Two pronounced maxima corresponding to the excited
states of 8B at E* = 0.774 MeV (J = 1+,T = 37 keV, I';/T" = 1.0) [Ajze 88] and
E* =232 MeV (J™ = 3+, = 350 keV, [',/T = 1.0) [Ajze 88] are clearly seen. The
spin of the 0.774 MeV state is taken to be same as the corresponding state in the
mirror nucleus 8Li. For the 2.32 MeV state, I' = 310 keV was used instead of 350 keV
in the fit which gave a better description of the data. These two peaks were analysed
by using Breit-Wigner formalism (equation 3.53). The solid curves show fits to the
data corresponding to the background de;;icted by the dashed line. An alternate
description of the background is shown by dotted lines. The population probabilities
ny are given in Table 3.3. The associated uncertainties reflect the uncertainties in the
background estimation and also the uncertainties in the efficiency calculation as was

discussed earlier.
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Figure 3.13: ®B —"Be+p correlation function. The excitation energy in ®B is indi-
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Table 3.3: Spectroscopic information for ®B, 1°B, and ''C isotopes which was used
to extract excited state populations. The branching ratios are given in percent, and
ny are defined relative to the particle stable yields for the same nucleus. The group
structure is explained in the text.

| | Group | E*(MeV) | J™ | Tw(keV) | Pairs [ T./T [ Relative population, n) |

°B 1 0.774 1 37 "Be-p | 100 0.152+0.016

2 2.32 3* 310 "Be-p | 100 0.2124:0.085
108 1 4.774 3* | 8.4x1073 | SLi-a | 100 0.013+0.001

2 5.1103 | 2~ 0.98 ®Li-a | 100 9.6x1073+1.5x1073

5.1639 {2+ | 1.76x1073 | ®Li-a 13
5.180 1+ 110 5Li-a | 100

3 59195 |2t 6 °Li-a | 100 0.01440.002
6.0250 | 4% 0.05 6Li-a | 100
6.1272 | 3~ 2.36 5Li-a 97
4 6.56 4= 25.1 5Li-a | 100 1.0x10724+2.1x1073
) 7.430 2= 100 Be-p| 70 4.2x107348x1074
7467 |1+ 65 | °Be-p | 100
7478 |2+ 4 |°Bep| 65
7.5599 | 0% 2.65 °Be-p | 100
6 7.67 1t 250 Be-p| 30 6.1x1073+ 2.1x1073
7819 |1-| 260 | ®Bep| 90
807 |2t| 800 |®Bep| 10
7 8.889 3 84 Bep| 95 3.2x1073+ 4.6x107*
8.895 |27 40 Be-p| 19

1w
1

1nc 1 8.1045 0.011 Be-a | 92 | 5.80x1073+ 4.3x10~*

2
2 8420 |3 0015 |"Be-a| 80 | 5.67x1073% 4.3x10~*
3 8.655 |17 5 "Be-a | 94 | 5.93x1073+ 3.4x10~*
8701 | &* 15 "Be-a | 100
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Particle Unstable states of 1°B

Relative populations n) of particle-unstable states in '°B nuclei were measured by de-
tecting the coincident decay products for the channels *°B—SLi+a and 1°B—2Be+p.
The measured coincidence yields, Y(E*) are shown Figure 3.14 as a function of the
excitation energy of '°B. A number of distinct peaks are identified. In spite of the
good excitation-energy resolution of the hodoscope some states couldnot be resolved
and were analysed as a group. Within a given group of unresolved states, the popula-
tion probability ny is assumed to be same for all states. The upper part of the figure
shows the ®Li+a coincidence spectrum. The first peak corresponds to an excited state
at 4.774 MeV with (J™ = 3*,T = 8.4 eV, I',/T = 1.0) [Ajze 79, Ajze 88, Albu 66].
The second group consists of three states at 5.1103 MeV (J™ = 2~,T = 0.98 keV,
[o/T = 1.0) [Ajze 79, Ajze 88, Fors 66, Meye 58], 5.1639 MeV (J™ = 2*+,T = 1.76
eV, [',/T = 0.13) [Ajze 79, Ajze 88, Fors 66, Meye 58, Albu 66, Spea 79] and 5.18
MeV (J™ = 1*,T = 110 keV, T',/T = 1.0) [Ajze 79, Ajze 88, Dear 62]. The small
shoulder after this group could be explained by the decay of 8.889 MeV and 8.895
MeV states of 1°B to the 3.563 MeV excited state of 6Li* and a. These two states
were included in the fits, but were not analyzed further. The third group is made
of states at 59195 MeV (J™ = 2+,T = 6 keV, [',/T = 1.0) [Ajze 79, Ajze 88,
Dear 62, Fors 66, Youn 69], 6.0250 MeV (J™ = 4%,T = 0.05 keV, I',/T = 1.0)
[Ajze 79, Ajze 88, Fors 66, Youn 69|, and 6.1272 MeV (J™ = 3=, = 2.36 keV,
[,/T = 0.97) [Ajze 79, Ajze 88, Fors 66, Youn 69, Meye 67, Blan 80]. The fourth
peak in this spectrum is an isolated state at 6.56 MeV (J™ = 4=, = 25.1 keV,
['./T = 1.0) [Ajze 79, Ajze 88, Fors 66, Youn 69, Meye 67, Blan 80, Bala 71]. All the
groups of states were analysed by using the Breit-Wigner formalism (equation 3.53).
The solid lines in figure 3.14 depicts a fit using the background shown by the dashed

lines. An alternate background used for the estimation of systematic errors is shown
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Figure 3.14: ®Li+a (upper part) and ®Be+p (lower part) excitation energy spectra.
Location and spins of particle-unstable states in °B are indicated. The solid curves
show the fits to the data assuming the background depicted by the dashed line. The
dotted lines indicate an alternate choice for the background.
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by the dotted line. The population probabilities are given in table 3.3. The uncer-
tainties in the population probabilities ny reflect the uncertainties in the background
subtraction, and uncertainties in the efficiency for detecting products of the particle
unstable '°B nucleus due to uncertainties in the resolution of the position sensitive

detectors.

The lower part of Figure 3.14 gives the coincidence spectra of ®Be+p. The first
group indicated in the figure is a combination of four states at 7.43 MeV (J™ =
27, =100 keV, I, /T = 0.70) [Ajze 79, Ajze 88, Moze 56, Sier 73, Auwa 75, Mo 69),
7.467 MeV (J™ = 1*,T = 65 keV, I',/T = 1.0) [Ajze 79, Ajze 88, Sier 73, Auwa 75,
Hara 80, Bala 71}, 7.478 MeV (J™ = 2+,I' = 74 keV, I'p /T’ = 0.65) [Ajze 79, Ajze 88,
Auwa 75, Mo 69, Hara 80, Horn 64, Elli 62, Rohr 73], and 7.5599 MeV (J™ = 0+,T =
2.65 keV, ', /T = 1.0) [Ajze 79, Ajze 88, Moze 56, Auwa 75, Mo 69, Rohr 73, Elli 62,
Horn 64, Hara 80]. The second group is made of three states at 7.67 MeV (J™ =
1*+,T = 250 keV, I'; /T = 0.30) [Ajze 79, Ajze 88, Mo 69], 7.819 MeV (J™ = 1", =
260 keV, I'y/T = 0.90) [Ajze 79, Ajze 88, Mo 69, Rohr 73], and 8.07 MeV (J™ =
2+, = 800 keV, I';/T" = 0.10) [Ajze 79, Ajze 88, Mo 69]. The last group in this
spectrum consists of two peaks at 8.889 MeV (J™ = 3, = 84 keV, I';/T' = 0.95)
[Ajze 79, Ajze 88, Oele 79] and 8.895 MeV (J™ = 2+, = 40 keV, [,/T = 0.19)
[Ajze 79, Ajze 88, Kiss 77]. In addition, there are two neighboring peaks near the
threshold at 6.873 MeV (J™ = 17,T' = 120 keV,) and 7.002 MeV (J™ = 2+, =
100 keV,). These states were not analyzed because the branching ratios are not
well known. All groups of states in this spectrum were analysed by using Breit-
Wigner formalism (equation 3.53). The solid line in figure 3.14 depict the fit to
the spectrum assuming the background indicated by the dotted line. An alternate
choice for the background is shown by the dotted line which was used to estimate

the systematic errors due to background subtraction. The population probabilities
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ny for the different groups of states are given in table 3.3. The uncertainties in
the population probabilities reflect the uncertainty in the background and from the

uncertainties associated with the efficiency calculation.

Particle Unstable states of 11C

The excitation energy spectra of '1C obtained from the coincidence cross section of
"Be +a is given in figure 3.15. The relative energy of "Be and «, and the excitation
energy of 1'C are indicated in the lower and upper parts of the figure respectively.
The positions of the first three groups of excited states in 'C and their spins and
parities are indicated in the figure. The first peak is at 8.1045 MeV and corresponds
to (J™=27,T' =11eV, ['o/T =0.92) [Ajze 85, Hard 84]. The second peak shown in
the figure is at 8.420 MeV and corresponds to (J* =37 ,I' = 15.2 eV, I',/T = 0.80)
[Ajze 85, Hard 84]. The third group consists of two peaks at 8.655 MeV (J™ =
I+ T = 5 keV, Ta/T = 0.94) [Ajze 85, Wies 83] and 8.701 MeV (J* = §*,T = 15
keV, I'y/T = 1.0) [Ajze 85, Wies 83]. Although the state at 8.701 MeV is slightly
proton unbound, it decays predominantly by a—particle emission [Wies 83]. Excited
states of 11C at E* = 9.20, 9.65, 9.78, 9.97, 10.083, 10.069, 11.03, 11.44 and 12.65
MeV were also included in fitting the experimental yield. But we did not extract
population probabilities from these because the spectroscopic information for some of
these states are uncertain. The fits to the data were obtained by using Breit Wigner
formalism (equation 3.53). The solid curve in the figure shows the fit corresponding
to the dashed background. An alternate background is shown by the dotted line.
The population probabilities ny for the first three groups are listed in table 3.3. The
systematic uncertainties in these quantities reflect the uncertainties in the efficiency
calculation due to uncertainties associated with the position resolutions of the gas

detectors and by the uncertainties associated with the background determination.
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Figure 3.15: Excitation energy spectrum of ' C obtained from the coincidence cross
section of "Be+a. The excitation energy in '*C is indicated on the top. The solid line
is a fit to the data assuming the background depicted by the the dashed line. The
dotted line shows an alternate background.
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Particle Unstable states of 13N

The excitation energy spectrum of '®N obtained from the coincidence cross section of
12C and proton is given in Figure 3.16. The lower scale in the figure gives the relative
energy of 1?C and proton and the upper scale gives the excitation energy of N
assuming the '?C is emitted in its ground state. Two groups of states were analysed
for extracting relative populations. One group consists of two overlapping states at
3.511 MeV (J™ = 37, T = 62 keV, Tyo/T = 1.0), and 3.547 MeV (J™ = $*,T = 47
keV, I'po/I" = 1.0) [Ajze 85] states of 13N. This group is indicated by the pair of spins
27 and §+. Here the subscript p0 refers to the decays to the ground state of 2C
and a proton, and pl refers to the decays to the first excited state of 12C (E* = 4.44
MeV) and a proton. A second peak indicated by 7/2% in the figure corresponds to
the decay of the 7.155 MeV (J™ = I*.T = 9 keV, I',;/T" = 1.0) [Ajze 85, Bark 63
state of I¥N which decays to an excited '2C* in the 4.44 MeV excited state and a
proton. Additional excited states of 13N at E* = 2.3649, 6.364, 6.886, 7.376, 9.00,
and 9.476 MeV were included in the fit to the experimental data, but population
probabilities are not provided for these states either because they lack statistics or
because we lack the necessary spectroscopic information. The analysis was performed
by using Breit-Wigner formalism (equation 3.53). The solid lines in the figure shows
a fit obtained by assuming the background indicated by dashed line. An alternate
background shown by the dotted line was used to estimate the systematic error in
the background subtraction. Table 3.4 giveé the population probabilities, ny. The
uncertainties in ny include uncertainties in the background subtraction, and also the
uncertainties associated with the efficiency calculations caused by the uncertainties

in the position resolutions of the gas counters.
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Figure 3.16: Excitation energy spectrum of *N obtained from the coincidence cross
section of 2C-p. The solid line is a fit to the data assuming the background depicted
by the dashed line. The dotted curve shows an alternate background.
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Table 3.4: Spectroscopic information for *N and N isotopes which was used to
extract excited state populations. Branching ratios I';/T' are given in percent, and
ny are defined relative to the particle stable yields for the same nucleus. The group
structure is explained in the text.

| [ Group | E*(MeV) | J™ | Tem(keV) | Pairs | I'./T | Relative population, n, ]
BN 1 3511 | &7 62 2¢.p [ 100 0.110+0.02
3.547 |3V 47 2C.p | 100
2 7155 | L7 9 12C-p | 2 100 0.07+0.02
UN| 1 7.9669 | 2- | 2.5x103 | BC-p| 99 [ 7.3x10~% + 1.4x1073
2 8062 | 1- 30 BCp| 100 | 5.3x1073 £ L.7x107°
3 84899 |4~ | 3.46x107° | ®C-p | 179 | 9.8x1073 £ L.Ix1073
8.6197 | 0% 3.8 13C.p | 100
8.776 | 0~ 410 | BC-p| 100
4 89118 | 3~ 16 BC-p| 100 | 6.32x1073 £ 7.9x10~7
8.9638 |5+ | 6.25x10~6 | 3C-p | 80
8.9804 | 2% 8 13C.p | 100
5 9.1289 | 3F [ 18.9x10° | 3C-p | 81 | 5.7x107% £ 1.2x107°
9.1723 |2t | 0135 |3C-p| 95
6 9.3893 | 2~ 13 BCp| 100 | 3.8x102 + 7.1x107*
9.509 | 2- 41 13C.p | 100
7 10.079 |37 10 BCp| 100 | 54x10° £ 1.0x1073
10.101 | 2t 12 1B3C.p | 100
8 10.812 | 5% | 0.39x103 | ®C-p | 96 | 6.2x107% £ 1.5x10™°
9 11.05 | 3" 1.2 BCp| 100 | 4.2x1073 £ 1.3x1073

%) Branching ratio for decay to an excited 12C* nucleus (E* = 4.44 MeV) and proton.
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Particle Unstable states of *N

The correlation function resulting from the decay N —!3C+p was presented in
figure 3.5. Here we show the the experimental yields for *N —!3C+p in Figure
3.17. The relative energy of '3C and proton and the excitation energy corresponding
to the excited states of 14N are indicated in the lower and upper part of the figures,
respectively. We have analysed nine groups of states which are identified in the figures.
The first group corresponds to an isolated state at 7.9669 MeV (J™ = 27,I' = 2.5
eV, I[p/T = 0.99) [Ajze 86a]. The second state is at an excitation energy of 8.062
MeV (J™ = 1-,T = 30 keV, [',/T = 1.0) [Ajze 86a]. The third group is formed by
overlapping states at 8.4899 MeV (J™ = 4-,T = 3.46 x 10~° keV, I';/T' = 0.79) and
8.6197 MeV (J™ = 0+,T = 3.8 keV, I',/T = 1.0). The fourth group is made of three
overlapping states at 8.9118 MeV (J™ = 3-,T = 16 keV, I',/T = 1.0) [Ajze 863,
8.9638 MeV (J™ = 5+,T = 6.25 x 107° keV, [',/T' = 0.80) [Ajze 86a], and 8.9804
MeV (J© = 2+, = 8 keV, I,/T = 1.0) [Ajze 86a]. The fifth group consists of two
states at 9.1289 MeV (J™ = 3+,T' = 18.9 x 10~° keV, ', /T = 0.81) [Ajze 86a] and
9.1723 MeV (J™ = 2+,T = 0.135 keV, [',/T" = 0.95) [Ajze 86a]. The sixth group is a
combination of two overlapping states at 9.3893 MeV (J* =2-,T = 13 keV, [,/T =
1.0) [Ajze 86a], and 9.509 MeV (J™ = 2-,T = 41 keV, I[';/T = 1.0) [Ajze 86a]. The
seventh group is made of two peaks at 10.079 MeV (J™ = 3+, = 10 keV, [,/ = 1.0)
[Ajze 86a], and 10.101 MeV (J™ = 2*,T = 12 keV, I[,/T = 1.0) [Ajze 86a]. The
eighth group is an isolated state at 10.812 MeV (J© = 5t,T = 0.39 x 1072 keV,
[,/T = 0.96) [Ajze 86a]. The ninth. and last group we have taken into consideration
is an isolated peak at 11.05 MeV (J™ = 3*,T = 1.2 keV, [',/T = 1.0) [Ajze 86a].
The fits to the experimental data were performed by using Breit-Wigner formalism
(equation 3.53). Excited states of N at E* = 9.703, 10.226, 10.432, 10.534, 11.761,

12.2, 12.408 were included in fitting the spectra, but population probabilities from
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Figure 3.17: Energy spectrum resulting from the decay of particle unstable *N. Solid

curve is a fit described in the text assuming the background shown by dashed curve.
The dotted curve shows an alternate description of the background.
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these were not extracted. Fits assuming the background depicted by the dashed line
in figure 3.17 are shown as solid curves in figures 3.5 and 3.17. The dotted curve shows
an alternate background used to estimate the uncertainty in background subtraction.
The extracted relative populations n, and the associated uncertainties are listed in
table 3.4. The uncertainty in nj reflects both the uncertainty in the background

subtraction and the uncertainty due to the efficiency function.

Particle Unstable states of 160

We next consider the excitation energy spectrum for ®0 resulting from the coinci-
dence spectrum of *C+a, shown in figure 3.18. The scale on the bottom gives the
relative energy of 1?C and a, and the top scale gives the excitation energy for ¢0.
Four groups of states are identified in the figure. The first peak labelled by 2~ in the
figure corresponds to the 12.53 MeV state (J™ = 27, T = 0.097 keV, [, /T = 0.74)
[Leav 83] of ®0 which decays to a ?C* nucleus in its 4.44 MeV excited state plus an
a particle. The subscripts a0 and al refer to the decays to the ground state and the
4.44 MeV state of 12C, respectively. The second group of peaks at about 9.9 MeV of
excitation energy, is a combination of four states. One of these corresponds to the
9.845 MeV (J™ = 2+, T' = 0.625 keV, ['yo/I' = 1.0) state of ¥0. In addition, there
are three states at 14.1 MeV (J™ = 3-,T = 750 keV, [';/T = 0.8), 14.399 MeV
(J© = 5%, =27 keV), and 14.302 MeV (J™ = 4, = 34 keV) which decay to an
excited '?C* nucleus (E* = 4.44 MeV) and an a particle. Since the branching ratios
for these latter two decays are not known, the sensitivity of our analysis to these
states is explored by varying the branching ratios for these states between 0% and
100%. These variation in the branching ratios causes variations in the population
probabilities for the states, and we use the range of such variations as an estimation

of the systematic uncertainties associated with the unknown branching ratios. The
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Figure 3.18: Excitation energy spectrum of %0 obtained from the coincidence cross
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third group of states which is seen around 10.4 MeV is a combination of five peaks,
the 10.356 MeV state (J™ = 4%, T = 26 keV, [40/T = 1.0) of 10, and the 14.620 MeV
state (J™ = 4%,T" = 490 keV, ['y; /T = 0.2), the 14.660 MeV state (J™ = 5-,T = 670
keV, I'1/T = 0.06) the 14.815 MeV state (J™ = 6+,I' = 70 keV, ['yy/T" = 0.65)
and the 14.926 MeV state (J™ = 2+, = 54 keV, I',;/T = 0.58) [Ajze 86b] of 160.
The last four states in the third group decay to an excited >C* (E* = 4.44 MeV)
and an « particle. The fourth peak in %0 excitation energy spectrum is seen around
11 MeV in the figure and has contributions from four states of 60 at 10.957 MeV
(J" =07, =821 x 1075 keV, [',o/T' = 1.0), 11.080 MeV (J™ = 3+, T = 12 keV,
Fao/T = 1.0), and 11.097 MeV (J™ = 4+, T = 0.28 keV, I',o/T = 1.0) [Ajze 86b].
The state at 15.408 MeV (J™ = 3=,I' = 132 keV) which could contribute to this
group has a very small (=1%) al branch [Ajze 86b]. ©O states corresponding to
E* = 8.8719,9.585,11.52,11.6,12.049,12.440 MeV which decay to the ground state
of 12C and an « particle, and E* = 12.796, 12.97, 13.02, 13.09, 13.129, 13.259, 13.664,
13.869, 13.98, 14.032, 15.196, 15.26, 15.785 and 15.828 MeV which decay to an ex-
cited *C* (E* =4.44 MeV) and an « particle were also included in fitting the spectra,
but unanalyzable either because they lack statistics or because we lack the necessary
spectroscopic information. All the states were analysed by using the Breit-Wigner
formalism (equation 3.53). Fits assuming the background depicted by the dashed
line in figure 3.18 are shown by the solid curve. The dotted line shows an alternate
choice of background used to estimate the uncertainty in the background subtraction.
The relative populations ny and the associated uncertainties are listed in table 3.5.
The uncertainty in ny reflects the uncertainty in the background subtraction, the
uncertainty due to the efficiency function, and the uncertainties due to the unknown

branching ratios to the first excited state of 12C.
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Table 3.5: Spectroscopic information for 150 and 180 isotopes which was used to

extract excited state populations.
ny are defined relative to the partic

structure is explained in the text.

Branching rati

os I';/T are given in percent, and
le stable yields for the same nucleus. The group

[ | Group [E-(MeV) | J” [Tem(keV) | Pairs [ T./T | Relative population, n) |
Bo| 1 5530 |2 | 0097 |Ca|®T4 180103 £7.2x 107" |
2 9845 |2+ | 0625 |“2Ca| 100 TAx10-2 £ 5.2 %x 1072
141 |3 750 | 12C-a | ) 80
14.302 |4~ 32 12C.q
14.399 |5* 27 12C-a |
3 10.356 | 4% 25 G 100 | 45%10° £ 1.1 x 107
14.62 |4 490 12C.q | 9 20
14.66 |5 670 | 2C-a| 6
14.815 | 6% 70 12C.q | 9 65
14.926 |2* 54 12C.q | @) 58
4 10957 10~ | 8.2x1075 | *C-a | 100 34x103 £1.5%x107°
11.080 |3* 12 12C.q | 100
11.097 |4t| 028 |?Caf 100
15.408 |3~ 132 2Cq| Y1
B | 1 7117 |4t | 2.6x1073 | ¥C-a | 53 41x102 £1.0x107°
2 7.864 |5” 8 T | 100 | 6.1x10° £1.5x 107
3 8.039 |1° 2.5 0o | 100 | 2.93x10° £6.7 x 107*
8.125 |5 1 14C.a | 100
8213 |2t 1.6 UC.a | 99
8.282 |3 8 “C.a | 89

2) Branching ratio for decay to excited 120

particle.

nucleus (E* = 4.44 MeV) and an «
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Particle Unstable states of 120

The excitation energy spectrum for 130 obtained from the coincidence cross section
of 1C+a is shown in figure 3.19. The lower scale in the figure indicates the relative
energy of *C and «, and the upper scale shows the excitation energy of 180. Three
groups of states are identified. The first peak is at 7.1169 MeV (J* = 4+ T' = 2.6 x
107° keV, [ /T = 0.53) state of 0 [Ajze 87, Gai 87]. The second peak is identified
as the 7.864 MeV (J™ = 57,T = 8 keV, [,/T = 1.0) [Ajze 87, Gai 87, Beck 73]
state of 1*0. The third group consists of four states at 8.039 MeV (J™ = 1-,T = 2.5
keV, T'o/T' = 1.0), 8.125 MeV (J™ = 5°,T = 1 keV, I,/T = 1.0), 8.213 MeV
(J©"=2%T = 1.6 keV, I'o/T = 0.99) and 8.282 MeV (J™ = 3=, =8 keV, [',/T =
0.89) [Ajze 87, Gai 87, Beck 73].- These peaks are fitted by using the Breit-Wigner
formalism (equation 3.53). Fits assuming the background depicted by the dashed line
in figure 3.19 are shown by the solid curve. A zero background assumption is used
as an alternate choice to estimate the uncertainty in the background subtraction.
The relative populations n, and the associated uncertainties are listed in table 3.5.
The uncertainty in n reflects the uncertainty in the background subtraction and the

uncertainty due to the efficiency function.
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Figure 3.19: Excitation energy spectrum of 20 obtained from the 1*C-a coincidence
cross section. The solid curve describes.a fit obtained by assuming the dashed curve
as one possible background.



Chapter 4

Sequential Feeding from
Higher-lying States

Measurements of the relative populations of excited states of emitted fragments pro-
vide a measure of the intrinsic excitation energy of the emitting system at freezeout. If
the excitation energy is thermally distributed, then the population probabilities n for
excited states within a fragment would follow a Boltzmann distribution. However, the
observed populations of excited states are influenced by the sequential decay of heav-
ler particle unstable nuclei, [Poch 85a, Xu 86, Sobo 86, Hahn 87, Fiel 87, Gome 88,
Xu 89, Deak 89] and the populations and decays of many of these unbound states are
not known experimentally. Since one does not usually know the feeding corrections
experimentally, they must be calculated. We have performed calculations to deter-
mine this effect of feeding on measured values of population probabilities n. In the
calculations, the states of primary fragments are assumed to be thermally populated
characterized by a temperature, T,y [Xu 86, Hahn 87, Fiel 87]. The primary elemen-
tal distributions were adjusted to ensure consistency between the calculated final and

experimental distributions.

In this chapter, we describe the essence of the sequential feeding calculation.

In the first section we discuss how various fragments and their excited states are
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included in the calculation. A method for choosing unknown spectroscopic factors of
low lying states is also discussed. In the second section we give the expressions for
primary populations of states. In the third section, details of decay calculations will

be discussed. We describe the results of calculations in the fourth section.

I Levels and Level Densities

To determine the feeding corrections to the measured relative probability, we per-
formed sequential decay calculations for an ensemble of nuclej with 3< Z <13. A
lookup table containing excitation energies, spectroscopic factors and different decay
channels with corresponding branching ratios for approximately 2600 known levels
for isotopes within this charge range [Ajze 84, Ajze 85, Ajze 86a, Ajze 86b, Ajze 87,

Ajze 88] was constructed.

Since the spins, isospins and parities of many low-lying particle bound and un-
bound levels of nuclei with Z<11 are known, the information for these lighter nuclei
was used in the sequential decay calculations. For known levels with incomplete spec-
troscopic information, values for the spin, isospin, and parity were chosen randomly
according to primary distributions obtained from the non-interacting shell model.
The shell model program ‘OXBASH’ [Brow 88] was used to calculate the number
of states at a given spin, parity and isospin for energies up to 2hw. Single particle
energies, obtained from the Nilson diagram [Tabl 67] were‘combined to obtain the
final energies for a particular particle-hole configuration. The energy of the lowest
level with appropriate spin, parity and isospin was taken as the energy of the ground
state. The distributions were then smodt;hed out to obtain the level density distribu-
tion as a function of excitation energy above this ground state. For a level of a given

excitation energy but unknown spin, parities or isospin, we randomly selected the
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unknown values of spin, parity or isospin according to the level density distributions.
The calculations were repeated with different initial values for the unknown spec-
troscopic information until the sensitivities of the calculations to these spectroscopic

uncertainties were assessed.

The low-lying discrete levels of heavier nuclei with Z>12 are not as well known as
those of lighter nuclei. To calculate the decay of these heavier nuclei for low excitation
energies, E* < €(A;, Z;), we used a continuum approximation to the discrete level
density [Chen 88], modifying the empirical interpolation formula of ref. [Gilb 65b] to

include a spin dependence:

(2Ji + L)exp[—(J; + 1)?/207]

%(2J; + L)exp[—(Ji + 1)2/207)
for £* < ¢,

p(E*,J;) = —exp[(E* — Ey)/Ti]

=7 (4.1)

where
o? = 0.0888[a;(co — Eo)]F A}, (4.2)

and a; = A,/8; J;, A;, and Z; are the spin, mass and charge numbers of the fragment,
and the values for ¢g = €(A;, Z;), Ty = T1(Ai, Zi), and Ey = E\(Ai, Z;) were taken
from ref. [Gilb 65b]. For Z > 12, Ey = Eo(A;, Z;) is determined by matching the level
density at ey provided by Eq. (4.1) to that provided by Eq. (4.3) given below. [Note:
In Eq. (4.1) and also in Eq. (4.7) below, we match the density of levels rather than

the density of states because the spins of many of the discrete levels are not known.|

For higher excitation energies in the continuum for all nuclei, we assumed the level

density of the form
p(E™, J;) = pr(E7)p2(Ji, 03), (4.3)

where

exp{2[a:( E* — Eo)]'/?}
12\/5[(1,’(E' — E0)5]1/40',',

p1(E") (4.4)
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(2J; + 1)exp[—(J; + 1)?/202)

2
20'1'

p2(Ji, 0:) ) (4.5)

o} = 0.0888[a;(E* — Eo))|/24%>. (4.6)

ForZ, > 12, E, = Eo(Ai, Z;) is determined by matching the level density provided by
Eq. (4.1) at ¢ to that provided by Eq. (4.3). At smaller values of Z;, Ey is adjusted
for each fragment to match the integral of the continuum level density to the total

number of tabulated levels according to the equation:

/EZO dE*/dJ p(E™J) = /060 dE*Z5(E — E7), (4.7)

where ¢o, for these lighter fragments, was chosen to be the maximum excitation energy
up to which the information concerning the number and locations of discrete states
appears to be complete. An example [Chen 88a] of determining ¢ for the isotope

%Ne is given in figure 4.1.

To reduce the computer memory requirements, the populations of continuum
states were stored at discrete excitation energy intervals of 1 MeV for E* <15 MeV,
2 MeV for 15< E* <30 MeV, and 3 MeV for E* >30 MeV. The results of these
calculations do not appear to be sensitive to these binning widths. In this way, the
total number of discrete energy bins including the discrete states came to be about
38,000. Parities of continuum states were chosen to be positive and negative with
equal probability. To save both space and time, the isospins of the continuum states

were taken to be equal to the isospin of the ground state of the same nucleus.

II Primai‘y Populations

For the ith level of spin J; we assumed an initial population P; given by

P: o Po(Ai, Z:)(2J; + 1)exp(=E* | Toum), (4.8)
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Figure 4.1: The level density of ?°Ne as a function of excitation energy [Chen 88a).
The histogram gives the number of known levels whereas the solid curve shows results
of level density predicted by eq (4.3).
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where Po(4;, Z;) denotes the population per spin degree of freedom of the ground
state of a fragment and T., is the emission temperature which characterizes the
thermal population of states of a given isotope. (This temperature is associated
with the intrinsic excitation of the fragmenting system at breakup and is, in general,
different from the “kinetic” temperature which may be extracted from the kinetic
energy spectra of the emitted fragments.) The initial populations of states 6f a given

fragment were assumed to be thermal up to excitation energy of E*

eutoff = A- constant.

This cutoff was introduced to explore the sensitivity of the calculations to highly
excited and short-lived nuclei, some of which may be too short lived to survive the
evolution from breakup to freezeout. Calculations were performed for cutoff values
of E,.q/A = 3 and 5 MeV corresponding to mean lifetimes of the continuum states
of 230 fm/c and 125 fm/c, respectively [Stok 77]. The calculations were qualitatively

similar for the two cutoff energies. All the results presented here were done with

Elion/A =5 MeV.
For simplicity, we parameterized the initial relative populations, Py(A4;, Z;) by
Po(A, Z) o< exp(—fVo [Tem + Q) Tem), (4.9)

where Vi is the Coulomb barrier for emission from a parent nucleus of mass and

atomic numbers A, and Z, and Q is the ground state Q-value

Vo = Zi(Z, — Z:)e* [ {ro A} + (4, — A))1%]} (4.10)
and
Q = [B(A, — A, Z, — Z) + Bi| - B(A,, Z,). (4.11)

We used a radius parameter of ro=1.2 fm, A,=122, Z,=54. The binding ener-
gies, B(A,Z), of heavy nuclei were calculated from the Weizsacker mass formula

[Marm 69).

Z_ (A-22)

2/3
B(A, Z) == COA _ ClA / — 02A1/3 —"'71——, (4.12)
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with Co=14.1 MeV, C,=13.0 MeV, C,=0.595 MeV, and C3=19.0 MeV. For the emit-
ted light fragments we used the measured binding energies, B;, of the respective
ground states [Waps 85]. At each temperature T.n, the parameter, f in Eq. (4.9)
was adjusted to provide optimal agreement between the calculated final fragment
distributions (obtained after the decay of particle unstable states) and the measured
fragment distributions. This constraint reduced the possibility of inaccuracies in the
predicted primary elemental distributions at high temperatures [Hahn 87, Fiel 87].
The values of f obtained for different T, are discussed in the last section of this

chapter.

III Details of the Decay Calculations

The branching ratio for a state to decay by different channels has to be known for
decay calculations. If known, tabulated branching ratios were used to describe the
decay of particle unstable states. If unknown, the branching ratios were calculated
from the Hauser-Feshbach formula, with additional constraints on isospins and pari-

ties. The branching ratio for a channel ¢ in the original Hauser-Feshbach formula is

[Haus 52],
. G,
T~ Y.G (4.13)
where
Z={S+;| I=|J+2Z|

Ge= )Y Yo Ty(E). | (4.14)

Z=|S-j| 1=|J-2Z|
Here, J and j are the spins of the parent and daughter nuclei, Z is the channel spin,
S and [ are the intrinsic spin and orbital angular momentum of the emitted particle,
and T;(F) is the transmission coefficient for the /th partial wave. By incorporating

the parity and isospin conservations, we can write G, as
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Ge = <TipTrrT3)10T(3)rp|TrpT(3)1p >?
Z=|S+i] 1=)J+2]

x 3 > {[l+7prprr(-1)]/2} TUE). (4.15)
Z=[S-j| I=]J-2| ~

The factor, [1 4+ mprprp(—1)]/2 enforces parity conservation and depends on the

parities 7 = +1 of the emitted fragment and the parent and daughter nuclei. The

Clebsch-Gordon coefficient involving Ty,p, Ty p, and Ty r, the isospins of the parent

nucleus, daughter nucleus, and emitted particle, likewise allows one to take isospin

conservation into account.

For decays from states when the kinetic energy of the emitted particle is less than
20 MeV and | < 20, the gransmission coeflicients were interpolated from a set of
calculated optical model transmission coefficients. For decays from continuum states
when the kinetic energy of the emitted particle exceeds 20 MeV, the transmission

coefficients were approximated by the sharp cutoff approximation;

T(E) = 1, for 1<

= 0, otherwise, (4.16)
with

lo = (2n/R)ro[A}* + (4, — A)2)\[2(E — Vi), (4.17)

where p is the reduced mass, and & is Plank’s constant.

The calculation was restricted for the decays via n, 2n, p, 2p, d, t, 3He, « channels.
The decays through v rays were taken into account directly to calculate the final

particle stable yields.
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IV Results

The calculation was performed for Ton= 2, 3, 4, 5, 6, and 8 MeV. The measured
fragment elemental and isotopic distributions and calculated final elemental distribu-
tions for £, g/A = 5 MeV are compared for different values of T.r, in figures 4.2, 4.3
and 4.4. The solid points correspond to the fragment yields at § = 38° summed over
all measured energies. The dashed lines in Figure 4.2 show the calculated isotopic
distributions of primary fragments assumed for each temperature. The fitted param-
eters, f, are indicated in the figure. The solid lines show the calculated final isotopic
distributions obtained after the statistical decay of particle unbound fragments. The
parameter, f, was adjusted at each temperature so that the calculated final isotopic
distribution closely follows the trend of the measured isotopic distribution. Since
these parameters, f, have been adjusted to reproduce the isotopic yields measured
in this experiment, one must be very cautious about applying the results of these
calculations to other reactions. The solid histograms in figure 4.3 and 4.4 represent
final isotopic distributions obtained for each temperature. In general, the trends of

the isotopic distributions are reproduced.

Calculated values for the relative population probabilities for excited states of
fragments were determined at each temperature Tey, from the calculation with full
teeding taken into account. These values are compared in chapter 5 to the experi-
mental data for a variety of emission temperatures and to determine whether these

calculations can explain the observed relative populations.
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Figure 4.2: Element yields at § = 38° summed over measured energies. The dashed
and solid histograms show the primary and final yields of particle stable fragments
produced by the feeding calculations. Results for T.o,=2, 3, 4, 5, 6, and 8 MeV with
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the corresponding parameters f are given in the figure.

14
N+Ag, E/A=35MeV, 6,=38°
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Figure 4.3: Comparisons of measured and calculated isotopic yields at # = 38°. The

solid histograms show final fragment distributions for feeding calculations at T.m=2,
3, and 4 MeV.
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Figure 4.4: Comparisons of measured and calculated isotopic yields at § = 38°. The

solid histograms show final fragment distributions for feeding calculations at T.q=5,
6, and 8 MeV.



Chapter 5

Nonstatistical Excited-State
Populations

Most models for fragmentation and emission of particle unstable complex nuclei in in-
termediate energy nuclear reactions use statistical concepts to explain the experimen-
tal observables such as the fragment mass distributions or the populations of ground
and excited states of the fragments. One stringent test of these statistical models can
be performed by measuring the population probabilities of a large number of states in
a single fragment and comparing those to the predictions of statistical calculations.
In this chapter, we present a series of comparisons involving the particle-unstable
states of ®Li and °B nuclei. Additional results for other nuclei will be discussed in
chapter 6. We will compare yields of excited states of 108 to statistical calculations in
the first section of this chapter. In the second section, we consider effects of rotation
of the emitting system on the calculations of the population for high spin states. To
obtain an independent measure of rotatienal effects, we have investigated the spin
alignment of the emitted fragments by studying the angular distributions for the de-
cays of particle unstable states in 6Li and 1°B nuclei. This will be given in the third

section. A short summary of the chapter will be given in the last section.
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I Non-statistical Populations of States in !'B

The data for particle unstable states of 1°B nuclei were obtained from the coincident
measurements of ®Li+a and ®Be+p as discussed in chapter 3. The excitation energy
spectra of 1B which was given in Figure 3.14 showed the data from our measurement
and the fits to the coincidence yields. In total, seven groups of states are considered,
and within a given group of ﬁnresolved states, the population probability n is assumed
to be the same for all states. Figure 5.1 shows the final relative populations for the
different groups of states as functions of excitation energy. The solid points indicate
the relative populations which are normalized so that Y ,(2Jx + 1)ne = 1, if the
summation is restricted to the particle stable states of °B. The error bars reflect
uncertainties of the background subtraction which were estimated by making different
assumptions about the background coincidence yield and also the uncertainties in the
efficiency which arises from the uncertainties in the position resolution of the gas

proportional counters.

If the intrinsic degrees of freedom of the system are thermalized at low density,
the initial populations of the excited states of intermediate-mass fragments should be
proportional to the Boltzmann factor exp(~E*/Tem), where Tey, is the temperature
of the system at freezeout. The measured relative populations deviate significantly
from this monotonic behavior. Indeed, the group of states at 6.0 MeV even exhibits

a population inversion with respect to the lower-lying states at 5.2 and 4.8 MeV.

The observed populations for °B excited states can be compared with the results
obtained from the sequential feeding calculations to determine whether it can account
for the discrepancy. Calculations discussed in chapter 4 were performed that included
the continuum states of fragments with Z < 13 for excitation energies up to E*=54

MeV, where A is the mass of the fragment. The results of these calculations are
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Figure 5.1: Relative populations, n;, of different groups of particle-unstable states in
9B are plotted as a function of excitation energy. The vertical scale is normalized

so that 3°.(2Jk + 1)ng = 1, where the summation is restricted to the particle-stable
states of 1°B.
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shown as the shaded bands in figure 5.1 for an initial temperature of 4 MeV. These
bands depict the range of values for n; obtained for different assumptions for the spins
and parities of states with incomplete nuclear structure information. Clearly, these
calculations do not reproduce the non-monotonic dependence of n; upon excitation
energy and the uncertainty due to unknown spectroscopic information is much less

than the observed enhancement of the experimental populations at E*=6 MeV.

Thus the measured populations of particle-unbound states of 1°B are inconsistent
with thermal fragment distributions at the instant the fragment separates from the
rest of the system. In the next two sections we consider if rotational effects on high

spin states of emitted fragment can account for such deviations.

II Angular Momentum Effects on Populations of
States

Angular momentum effects due to the rotation of the emitting system can cause the
populations of high spin states of emitted fragments to be selectively enhanced. Such
effects are not only relevant for compound nuclear emission; they can also influence
observables for multifragment breakup processes as well [Snep 88]. We have explored
this effect in the context of a compound nucleus model, and compared the prediction

to our measured values.

A Rotational Effects : Statistical Theory of Compound Nu-
cleus Decay

Let us first discuss these issues within the contest of the statistical theory of compound

nucleus decay. In the statistical theory of the compound nucleus, the yield Y; of an
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excited state of an emitted fragment can be written as [Lu 72]:

oS I+l Z+1;

i=C) Y Y [dEp(EpIp) TiE; + Qee — Ef —Ep).  (5.1)
1=0 Z:llp—” ID=|Z~I"I

Here Cy is a factor independent of the spin and excitation energy of the excited state
of the emitted fragment, [ is the orbital angular momentum, Z is the channel spin,
I, and E; are the spin and excitation energy of the parent nucleus, Ip and Ej, are
the spin and excitation energy of the daughter nucleus, I; and E} are the spin and
excitation energy of the emitted fragment and Qgs. is the ground state Q-value for the
decay. p(Ep, Ip) is the level density of the daughter nucleus and T; is the transmission

coefficient for the emitted fragment.

For the purposes of these illustrative calculations, the level density of the daughter
nucleus can be written in an exponential form [Eric 60} which is approximately valid

for the range of temperatures considered here :

Ey E
p(Ep,Ip) = C (2Ip +1) exp(Z2 — =) (5:2)
Tp Tp

where C' is a constant and Tp is the temperature of the daughter nucleus :

RE;, |
— 5.3
Tp = . (5.3)

where we have taken the level density parameter a = 8 (MeV)~}, and we approximate

E} by
EB = E; + Qg.s. - E: - ‘/coul(Ru)v (54)

where p is the reduced mass of the fragment plus daughter nucleus system, and
Veout(R,) is the Coulomb potential when the fragment and daughter nucleus are sep-
arated by a distance R,. E,o is the rotational energy associated with the daughter

nucleus and is approximated by,

(Ip +1)?

rot — h 2
E ‘ ( C) QIDC2

(5.5)
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where Zp is the moment of inertia of the daughter nucleus. For simplicity, we assume
a rigid body moment of inertia Ip, = 2/5 mpR} where mp and Rp = 1.241° (fm)
are the mass and radius of the daughter nucleus. We also assumed a sharp cut-off

transmission coefficient 7} given by

* * * * * * h2(1+ %)2
TI(Ep + Qgs. —E; —Ep) = O(Ep + Qgs. — E; —Ep - coul(Ru) - “‘W‘) (5-6)
“

The measured quantity in our experiment is the population probability n; defined
by :

Y;
2I; + 1’

n; =

(5.7)

which has to be calculated. Combining the information given above and integrating
over energy, an explicit expression for n; in the limit of full spin coupling is :
e—ElTp o It Z+I; + l)2h2 (Ip + )zhz

Z > > (2Ip + L)exp]— {(12/1332 + }Tp),

=0 Z=|I—I| Ip=|Z-1I;|

z'—BO

(5.8)

where By is a constant which, like Cj is independent of spin and excitation energy
of the fragment. Valués for n; were calculated for the excited states of 19B assuming
I, = 25, 50, 75 and 100 and assuming a mass A, = 118, charge Z, = 50, and
excitation energy E; =200 MeV for the parent nucleus. The overall normalization
constant N(I,) for the calculated values of n; was determined at each value of I, by
minimizing the function x2

pomt 2
2 ( Nexp,i ncal,i)
5.9
Xv = Npomt Z 0'2 ( )

=1 exp,i

where Npgin is the total number of data;(points, Nexp,i and ng,); are the experimental
and calculated values of the population probabilities, respectively, and Oexp,i 15 the ex-
perimental uncertainty. The results are shown in figure 5.2 along with the experimen-

tal values of n;. Values of x2 = 2.4,1.8,1.5,1.7 were obtained for I, = 25,50,75,100
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Figure 5.2: Calculations for n; in the limit of full spin coupling are shown as dotted,
dashed, dot-dashed and solid lines for parent nuclear spins I,= 25, 50, 75 and 100
respectively. The experimental values are same as those shown in figure 5.1.
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respectively. Thus the agreement with experimental data is improved slightly for
larger I,. We see that larger values of the parent nucleus I, lead to larger enhance-
ments in the populations of high spin states of the emitted °B nuclei. I, = 75 and
100 show enhanced populations of high spin states at E ~ 6.0, 6.6, and 8.9 MeV,
but the effects are nevertheless small compared to the experimental variations in n;.
Larger rotational effects are predicted for larger values of I,,, but values of I, greater
than I, = 88 are inconsistent with the conditions of stability for a metastable equili-
brated compound nucleus calculated with the liquid drop model. These calculations
also suggest that it is not possible by rotational effects to enhance the populations of
the group of states at £ = 6.0 MeV without likewise enhancing the high spin state
at Ef = 6.56 MeV or the high spin doublet at E} ~~ 8.9 MeV. Therefore we conclude
that while rotational effects may play some role in the descriptioh of heavy fragment
production, inclusion of these effects appears insufficient to describe the population

probabilities experimentally observed.

B Rotational Effects : Sequential Feeding Calculations

In the last chapter, we have described a calculation to assess the effect of feeding on
primary populations of states. The primary population for a fragment of mass A,

charge Z, spin J, and excitation energy E* was taken to be (equation 4.8)
P x Po(A,Z) (2J + 1) exp(—E* [ Tew),

where Ten, is the initial temperature, and the factor (2J + 1) signifies that the m-
substates of spin J are equally populated. To explore rotational effects we performed
calculations with enhanced populations of selected m substates. In these calculations,

we approximated the primary population by

J

Px Py(A,Z) ( E exp{—

m=-~J

(m = m)?
202

D exp(—E*/Tem)- (5.10)
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where m are the m-substates (—~J < m < +J) of a given J. Here, m and o,, describe
the centroid and width of the distribution, respectively. The centroid and width of
the m-substate distribution was chosen to be proportional to the rigid body moment
of inertia. For simplicity we express m and o,, in terms of the corresponding values

for 12C fragments, i.e.,

T
N = Mg (5.11)
T
Iz
and o, = (0n)nc (5.12)
WATYS

where 7 is the moment of inertia for the specific fragment being investigated, and

m('?C) and 0,,(1?C) are the centroid and width parameters for 12C fragment.

Rotational effects were explored for a variety of values for ¢ and (0, )12¢ and by
using equation (5.10) to provide the primary distribution and following the sequential
decay process as outlined in chapter 4. As for the calculation outlined in chapter 4,
Fy(A, Z) was adjusted so that the calculated and measured particle stable yields were
in agreement. Calculated values for the final population probabilities n; are obtained
from the complete féeding calculations which use these primary distributions. The
calculated values for n; nearest to the experimental data were obtained for mi2c =
6 and (o)1 = 2.5. These calculations were presented by the solid line in figure
9.3. The populations of high spin states are enhanced by this calculation, but the
enhancement for the high spin triplet of statés (J = 2,3,4) at E¥ = 6 MeV can
not be reproduced without simultaneously overpredicting the population of the high
spin state (J = 4) at E7 = 6.56 MeV and the spin doublet (J =3,2) at Ef =9.0
MeV. In this respect, the results of thesé calculations are qualitatively similar to those

obtained for compound nucleus expression and presented in the last subsection.



105

“N+Ag, E/A=35MeV, 0,=38°
llllIllllllllirllllllllllll

0.020 .

0.010 + .

| .

0'002 llll.:llllI‘lll’llllllllllllll
4 5 6 7 8 9

E*('°B) (MeV)

Figure 5.3: Calculations for n; from the sequential feeding calculation T, = 4 MeV,
mug = 6 and (om)iz¢ = 2.5 are shown as the solid line in the figure. Experimental
values for n; are depicted by the large solid points.
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III Decay Angular Distributions

Most fragmentation models assume isotropic spin distributions for the outgoing frag-
ments. When rotation becomes significant, enhanced populations of angular mo-
mentum substates parallel to the axis of rotation can be expected. This issue has
been explored via the measurements of the angular distribution and circular po-
larization of coincident v-rays which accompany the emission of non-equilibrium
intermediate-mass fragments [Tsan 88]. These experiments have shown that target-
like residues which accompany the emission of intermediate-mass fragments are both
strongly aligned and highly polarized with their spins parallel to the reaction normal,
711 || (Tbeam X Utrag). Spin alignments of the non-equilibrium mass fragments cannot
be precluded. Such spin z;lignrnents can be explored by the measurement of their
decay angular distributions. Previous measurements have shown that the decay of
®Li— a+d in the reaction of “°Ar+'*"Au at E/A = 60 MeV is isotropic, consistent
with a vanishing spin alignment of the excited ®Li [Poch 87]. In this dissertation,
the spin distributions of the heavier fragments have also been explored, and decay

angular distributions for particle unstable states of ®Li and '°B are presented.

A  Experimental Angular Correlations for °Li and YB De-
cays

Figure 5.4 defines the angle convention used for investigating the angular correlations
for the decay 1°B— a+°Li. The reaction normal fi, is a unit vector which is perpen-
dicular to the réaction plane defined by the beam axis and the momentum of the 1°B
fragment. A polar angle 84 is defined to be the angle between the reaction normal fi

and the direction of the velocity vy of the outgoing a-particle in the center of mass
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Figure 5.4: Coordinate system used to describe the a-decay of particle unstable
excited states of °B. §; and ¢, are the decay angles as defined in the text.
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frame of the decaying particle unstable nucleus. Mathematically one has

od — COS—I 170: : ({)‘bemn X T—)’c.m.)
lﬁal I{)'bea.m X Uc.m.l

= cos™! T (Boram x P) (5.13)
» l‘i‘ll{"beamxpl,

where ¢ and P = p1 + P2 are the relative and total momentum of the a particle and
®Li, designated as particles 1 and 2 in this case; and Theam is the beam velocity. An
azimuthal angle ¢4 is defined as the angle between the projection of the vector @,
on the reaction plane and the direction of the total momentum of the °B nucleus.

Mathematically, one has

-

-1 qg-P
| §|| P |sinbg

¢4 = cos if sinfy #0 (5.14)

Thus, ¢q and 64 distributions correspond to correlations in the reaction plane and
correlations as a function of the angle with respect to the reaction normal, respectively.
We have analysed both 84 and ¢4 angular distributions for particle decays from the

excited states of 6Li and 19B.

For 1°B—®Li+a, relative energy spectra are obtained .for specific gates on 4.
Figure 5.5 shows the relative energy spectra for 1°B — o+°Li for 84 values ranging
from 0° — 180° in steps of 20°. The solid circular points with error bars show the
data points. The relative energy spectrum for 83 = 80° — 100° was fitted with the
Breit-Wigner resonance parameters as described in chapter 3. The solid curve shown
in the panel on figure 5.5 for this angular range shows a best fit to the data assuming
the dotted cur\}e for the background. Using the fitted parameters such as the relative
population n;, Cj2 and A, ébtained from the angular range 84 = 80°—100°, calculated
energy spectra were obtained for the other values of 84 using the appropriate efficiency
function calculated for these angles. The solid and dotted curves in the other panels

show these calculations for the relative energy spectra and backgrounds, respectively.
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Figure 5.5: Relative energy spectra for the decay '"B— a+°Li at different values of

the decay angle, 6, .



110

The data are reasonably well reproduced for all cases as shown in the figure, indicating
that the same values of the relative populations can account for the relative energy
spectra at all values of #3. This suggests that anisotropies in the decay angular

distribution for 1°B are small.

Figure 5.6 shows the relative energy spectra of ?’B—®Li+a for different gates
in the angle ¢4. The solid and dotted curves in the figure show the relative energy
spectra obtained by using the appropriate efficiency function assuming isotropic decay
and the parameter n;, C;, Ay obtained in the fit shown in fig 5.5 at the polar angles
64 = 80° — 100°. The data are reasonably well reproduced for all values of dq,

suggesting again that the anisotropies in the decay angular distributions are small.

The decay angular distribution for 6Li— a+d was also investigated. Figures 5.7
and 5.8 show the relative energy spectra of a and deuteron obtained for different
gates on 84 and ¢4 by using parameters n;, C1, and A, obtained by fitting the relative
energy spectrum for gate 84 = 80°—100° shown in the center panel of figure 5.7. These
fitted parameters have been used for other ranges of angles and provided the solid
and dashed curves for the relative energy and background spectra respectively. It
can be seen from this comparison that the anisotropies in the angular distribution
for the decay 6Li — a+d are also small. Similar comparison have been performed
for other nucleus and no significant anisotropies with the decay angular distributions

were observed.

B Comparison with Statistical Calculations

More detailed and precise measurements of the decay angular distributions for °B
were determined by fitting each of the relative energy spectra in figures 5.5 and 5.6
to obtain n; as a function of 4 and @q. Uncertainties in the extracted population

probabilities n; were estimated using different assumptions for the background and
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by considering possible uncertainties in the efficiency function. Angular correlations
are extracted for the first three groups of a-unstable states of °B corresponding to
excitation energies of 4.66 —4.92 MeV, 5.0 — 5.26 MeV, 5.66 — 6.36 MeV respectively.
In figures 5.9 and 5.10, we present the decay angular correlation as a function of 84
and ¢q respectively. These angular correlations were normalized to average values of
unity. The excitation energy ranges and the spins of the states which contribute to
a group are indicated in the figures. The anisotropies in these angular correlations

are small for the first state and negligible for the second and third groups of states.

The decay angular distributions were calculated using the statistical theory of the
compound nuclear decay as discussed in section (IIA). In general, anisotropic decay
angular correlations require non-uniform m-substate populations of the fragment ex-
cited states. To explore this issue, m-substate populations were calculated. Within
the statistical theory of compound nuclear decay, the population for each m-substate

is given by

ni(m;) = Z e~ BlTo < Iim;Ipmp|Zv >2< lmyZv| L1, >2

l,ml,Z.u.ID,mD

(I+3)7r  (Ip+13)°H°
2uR? 27

X(2lp +1) expl—{ }/To) (5.15)

The various quantities are as defined before. Next we calculate the decay probability

from the fragment nucleus !°B by two coincident particles a and 6Li. This is given

by
e Y < hmbm|Zuy; < lymy Zygllm; >?
dQ lf'mf 1va."f9ms'
‘ T,z
IYIJM/(Q)|2 Tif [Pi(m)] (5.16)
E Tiyzy

where the subscript 7 refers to the values for 1°B fragment, and the subscripts 1 and

2 refer to the relevant values for the emitted particles a and ®Li respectively. [y and
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Figure 5.9: The 8, dependence of the decay angular distributions are shown for
various excited states of 1B. The vertical scale is normalized to the average value of
the distributions for each case. The dashed line shows the prediction from an isotropic
decay.
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the distributions for each case. The dashed line shows the prediction from an isotropic
decay.
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my are the orbital angular momentum and corresponding m-substate value for the
decay of °B by a and ®Li; Z; and v; are the channel spins and the corresponding
m-substate values for this decay. P;(m;) is calculated according to equation (5.15).
The transmission coefficients 7'/ are obtained from the optical potential calculations
as discussed in chapter 4. The decay angular distributions for *®’B— a+SLi using
the parent spins [,=25, 50, 75, 100 were calculated by assuming all the m-substates
of the fragment spin to be populated according to equation 5.15. The results for
04-angular correlations for the first group of states are shown in figure 5.11. The
small anisotropy seen for the first group is consistent with the prediction for I, to
be between 50 and 75. The data from other group of states are consistent with the
prediction of isotropic population of m-substates. The constraint I, < 75 suggests
that the rotational enhancement of n; s‘hould be small, and cannot account for the
large deviations of experimental relative populations from statistical calculations in

which rotational effects have been neglected.

IV Discussion

We find that the populations of pafticle-unbound states of 1°B cannot be reconciled
with the thermal excited state populations. The measurement of decay angular distri-
butions reveal the anisotropies in the angular correlations to be small, and rotational
effects cannot be accounted for the magnitude of the observed discrepancy. Since
the mass of the 1°B is relatively close to that of projectile, simpler non-statistical

production mechanisms cannot be excluded with certainty.
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Figure 5.11: The 8, dependence of the decay angular distributions is shown for the
first excited state of 1°B. The vertical scale is normalized to the average value. The
predictions from statistical calculations with I, = 25,50, 75,100 are shown by dotted,
dashed, dot-dashed and solid lines respectively.



Chapter 6

Emission Temperatures

In chapter 3, we have presented experimental data for the population probabilities
of particle unstable states of intermediate mass fragments. In chapter 4, we have
described sequential feeding calculations to determine theoretical estimates of the
population probabilities of states starting with a thermal distribution of primary
fragments at an initial temperature, Tep,. Information about the emission tempera-
ture can be obtained by direct comparison of the measured and calculated population
probabilities. Because the particle stable states of the fragments are strongly pop-
ulated by sequential feeding, the sensitivity of these comparison to sequential decay
correction may be somewhat reduced by comparing ratios of population probabili-
ties of states within the same fragment. In this chapter, we present the results of
such comparisons between the experimental and theoretical population probabilities

calculated for a range of emission temperatures.

Experimental population probabilities for. 40 groups of particle unstable states of
intermediate massifragments are presented in Tables 3.2, 3.3, 3.4 and 3.5 of chapter 3.
Before comparing these results individually to feeding calculations, it is instructive
to make overall comparisons between the measured and calculated population prob-

abilities and ratios of population probabilities. To provide a global test for statistical

119
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calculations, we have performed a least-squares analysis by computing

v
2= %; (Yexpsi O_-izycal,i)z. (6.1)
for each initial temperature in the calculation. Here yexp,; and yca; are the experi-
mental and calculated values of the populations or ratios of populations and v is the
number of data points. In the case of the ratios of population probabilities, these data
points are not completely independent. This form of comparison was chosen in order
to provide a measure of the agreement between measured and calculated quantities.
Restricting the summation to only the mathematically independent quantities, such
as the population probabilities would have made the x2 function unduly sensitive to
the feeding correction to the population of particle stable states. The uncertainty
o; in equation 6.1 is giver by o} = o2, + 02,; where 0Oexi is the experimental
uncertainty, and o, reflects the range of calculated values obtained for different
assumptions for the spins, isospins, and parities of low-lying states where these infor-
mations are incomplete. The range of calculated values was determined by repeating

the calculation with different spectroscopic assumptions until the sensitivity of the

calculation to those uncertainties could be assessed.

Values of x2 according to equafion (6.1), were computed for combinations of
population probabilities and the ratios of population probabilities. The results are
presented for four groups : Z = 3,4; Z = 5,6; Z = 7; and Z = 8, according to
the fragment charge. Figure 6.1 shows values for x2 as functions of temperature
(Tem = 2 — 8 MeV) of the primary distribution in the feeding calculation. The solid
lines depict valués for x2 where both the independent population probabilities and
all the ratios of populations have been included, and the dash-dotted lines show x?
where just the ratios of population probabilities are included. Results for lithium and
beryllium isotopes are shown in the upper left hand window of the figure. The x2

functions for these isotopes display a minimum at about Tem = 3 MeV for only the
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Figure 6.1: Results of the least-squares analysis for four groups of fragments. The
solid lines depict x? calculated for a combination of population probabilities and the
ratios of population probabilities. The dashed lines show x> when just the ratios of
population probabilities are included.
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ratios of population probabilities and Tew = 4 MeV for all the quantities combined.
Similar calculations for Boron and Carbon isotopes are shown in the upper right hand
window. Minimum value of x? occur in the neighborhood of T¢,, ~ 3 MeV for both
cases. In the lower left hand window, the results for nitrogen isotopes are presented.
For this case, a minimum in the neighbourhood of Ter, = 3 MeV is obtained for 2
when both the population probabilities and the ratios of population probabilities are
included. This minimum shifts to Te & 4 MeV when x2 is restricted to just the ratios
of population probabilities. In the lower right hand window, the results for oxygen
isotopes are given. Here very few groups of states are detected, and the location of

the minimum in the x?2 functions are not well determined.

Comparisons of the temperature dependence of x2 for different elements do not
reveal any unambiguous trends. The values of Ter, that correspond to the minimum
value of x2 do not appear to be strongly dependent on the charge of the fragment.
To get an improved measure for T.y,, we have combined the results for all fragments.
Figure 6.2 shows the corresponding values of x2. The solid curve in the figure depicts
the values of x2 where both the independent population probabilities and the ratios
of population probabilities have been included. In additio;x, the dashed line in the
figure indicates the values for x2 where the sum in equation 6.1 runs over only the
independent population probabilities, and the dash-dotted line shows the correspond-
ing values where the sum includes all the ratios of population probabilities which may
be constructed. Minimum value of X2 in these comparisons occur for emission tem-
peratures of Top, &~ 3 — 4 MeV. Also shown as the dotted line in the figure is the
x2 value for the single comparison involving the *Li ground state and 16.66 MeV
excited state. Calculations indicate that the relative populations of °Li excited states
are rather insensitive to the sequential feeding from heavier particle unstable nuclei

[Chen 88]. For the 5Li states, the minimum value of x2 occurs at Tem = 4 MeV,



123

““N+Ag, E/A=35MeV, 6,=38°

RO - l :
! \ ) i
\ J
- \ -
L \ B
- \ :
\ : A
15— \ : -
i \ :
\ .
" Q \ -
L ]
o
(\1>2 8 \ 7
10 -
5.— —
O L I i 1 llél 1 1 1 l 1 i 1 L ll
2 4 6 8
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dashed, dash-dotted and solid lines depict x2 calculated for the population proba-
bilities, the ratios of populations probabilities, and the summation of the population
probabilities and ratios of population probabilities respectively.



124

consistent with the emission temperature extracted from the 4N+197Au system at
E/A = 35 MeV (see figure 1.2). Thus the emission temperatures of T,, = 3 — 4 MeV
obtained from heavier particle unstable nuclei are in average slightly lower than those

extracted from SLji.

Even for Tup ~ 3—4 MeV, the values of x2 shown in figures 6.1 and 6.2 are rather
large indicating significant discrepancies between measurement and calculation. This
issue was investigated in greater detail for states of 1°B in chapter 5. To explore this
issue for other nuclei, we now present detailed comparisons between the experimental
and calculated population probabilities and the ratios of population probabilities at
Tem = 4 MeV. For these comparisons, we adopt the conventions in figure 1.2, in which

an apparent temperature 7T,;, is defined by the relation

™~ exp(~[E; — EX1Bapp), (6.2)

n;
where Bapp = 1/Tup,. If j denotes the ground state, from equation (6.2) and the

definition of population probability, we obtain

(2Jgs. + 1)n; = exp(—E} Bapp), (6.3)

where Jg . is the spin of the ground state. Equations 6.2 and 6.3 define Tapp in terms
of ratios on measured or calculated values of n; and n;. Sometimes the values for
T,pp provided by equations 6.2 and 6.3 are negative or infinite. To avoid this singular
behavior of the apparent temperature, we will extract and assign an uncertainty to

Bapp rather than Tp.

In figures 6.3, 6.4, 6.5, and 6.6, we present values for f,5, (on the lower axis)
and Tapp = 1/Bapp (on the upper axis) for population probabilities and ratios of
population probabilities for isotopes with Z = 3,4; Z = 5,6; Z = 7; and Z = 8,

respectively. The solid points represent the values for f,pp obtained for experimental

population probabilities or the ratios of population probabilities. The histograms
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re;ﬁresent corresponding values for f,,, obtained from sequential feeding calculations
starting with an initial temperature T,m = 4 MeV. The uncertainties in the calculation
are designated by the spread of the histogram which is shaded in the figure. In this
figure, only those cases are plotted for which both the calculated or experimental

uncertainties are smaller than the dynamic range of the figure.

Values for Bapp, and T,y obtained from the population probabilities of two groups
of states in °Li and ®Li, and three groups of states in 7Li and "Be are shown in figure
6.3. (The relevant populations were given in table 3.2 of chapter 3). The experimental
data in figure 6.3 for the population of states in ®Li, SLi, and Li are comparable to
the results shown in figure 1.2 obtained in previous measurements at similar energies
(see figure 1.2 and [Poch 87, Chen 88]). The effect of sequential feeding is minimal
on the widely separated ground state and 16.66 MeV state of °Li [AE = 16.66 MeV].
From these two states, an apparent temperature of 4.0 + 0.26 MeV can be obtained
from the ratio of population probabilities. This value for T,y is identical to the value
of Tem = 4 MeV which was used to compute the corresponding quantities in the
sequential feeding calculation. In general, the calculated apparent temperatures are
similar to the measured ones for most other transitions. Notable exceptions are the

ratios involving the 6.64+7.47 and 11.24 MeV excited states of 7Li.

The values for Bapp and T, obtained from measured and calculated population
probabilities for two groups of states in ®B, seven groups of states in 1°B and three ‘
groups of states in 1'C are presented in figure 6.5. For convenience of presentation, the
ratios are labelled in the figure in terms of the groups of states discussed in chapter 3.
Compared to the first group of excited states of 8B, the measured populations for
the second group of excited states of 8B were larger than one would expect from
the sequential feeding calculation. Much larger discrepancies are observed for the

excited states of 1°B. Measured ratios involving the second group of excited states at
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Figure 6.3: Experimental values for 3,5, and T,p, are shown as the solid points for
excited states of Li and Be isotopes. The histograms represent the results of sequential
feeding calculation with an initial temperature T.,, = 4 MeV.
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Figure 6.4: Experimental values for Bapp and Typp ate shown as the solid points for the
groups of excited states of B and C isotopes described in table 3.3. The histograms
represent the results of sequential feeding calculation with an initial temperature

Tem =4 MeV.



—2 o 5 2 1 0.67 0.5
l

| [
grp_9/grp_7 7
grp_8/grp_7 |
grp_9/grp_6 |
grp_8/grp_6
grp_9/grp_5 |
grp_8/grp_5 |
grp_7/grp_5
grp_9/grp_4 |
grp_8/grp_4
grp_7/grp_4 |
grp_9/grp_3 |
grp_8/grp_3 |
grp_7/grp_3 I
grp_6/grp_3
grp_9/grp_2 |
grp_8/grp_2 |
grp_7/grp_2 |
[
|
I
I
[
|
|
|
|
I
I
[
|

“N

grp_6/grp_2
grp_5/grp_2
grp_4/grp_2
4 grp_9/grp_1
grp_8/grp_1
S M grp_7/grp_1
..... T grp_6/grp_t

ST I grp_5/grp_1
............ grp_4/grp_1
grp_9/stable
grp..8/stable
grp_7/stable
grp_6/stable
grp_5/stable
grp._4/stable
grp_3/stable
grp_2/stable
grp._1/stable_|

grp_2/grp_1

grp_Z/stable:} 13'N
rp_1/stable

I 5 1 1 i 1 L 1 i 1 %

1 ) i 'l L i

-0.5 0 0.5 1 1.5 2
Bapp (MeV™H)

Figure 6.5: Experimental values for (,,, and T,,, are shown as the solid points for
the groups of excited states of >N and !*N described in table 3.4. The histograms
represent the results of sequential feeding calculation with an initial temperature

Tem = 4 MeV.,
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Figure 6.6: Experimental values for Bepp and T,p, are shown as the solid points for
the groups of excited states of 0 and 80 described in table 3.5. The histograms
represent the results of sequential feeding calculation with an initial temperature

Tem =4 MeV.
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E* 7~ 5.1 MeV and the third group of excited states at E* ~ 6 MeV are very strongly
in disagreement with the calculations. In fact the ratios between the third and second
groups give large negative apparent temperatures in contrast to the predictions from
the calculation. The groups of states for 11C on the other hand, are well described by
the calculations. Because of the large uncertainties in the calculation for the ratios

between excited states of 1C, however, these ratios are not plotted.

In figure 6.5, we present 8,,, and Tpp for two groups of states of N and nine
groups of states of 1*N. The structure and the population probabilities of these groups
were listed in table 3.4. The experimental populations for the first group of ¥N are
In agreement with the calculations. The deviation for the second group is large. The
populafion probabilities which are defined with respect to particle stable yield in case
of N deviate significantly from the calculation for Tem = 4 MeV. For these cases,
the calculation predicts somewhat more feeding to the particle stable states than
observed. Slightly better agreement for the population probabilities are obtained for
Tem = 3 MeV. For the ratios of population probabilities, however, the agreement is
actually better for Ter, = 4 MeV, and with the exception of the ratio of group 6 to

group 3, the overall agreement is rather good.

In figure 6.6, we have plotted Bapp and Ty, for the populations of four groups of
states in %0 and three groups of states in '8Q. The structure of the groups and the
corresponding population probabilities are given in table 3.5. The overall agreement
between the data and calculation in case of 180 states is somewhat better than that
of the states of 0. The second and third groups in %0 are combinations of states
that are far apart in excitation energy. The median energies obtained for the groups

are rather close to each other which make the discrepancy large.

To summarize, it is observed that about half of all the experimental population

probabilities and and one-third of the ratios of population probabilities showed signif-
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icant deviations from the predictions of statistical calculations. The largest discrep-
ancies in the ratios of excited state population probabilities are observed for 1°B, and
for the population probabilities, the largest discrepancies were observed N. Whether
these discrepancies would be less in experiments with heavier or lighter beam where
simple fragment production modes are suppressed is an open question which should

be addressed by future investigations.



Chapter 7

Summary and Conclusion

In this dissertation, we have presented a detailed study of the relative populations of
particle unstable states of intermediate mass fragments for the reaction N on "Ag
at E/A = 35 MeV. In many thermal models, the populations of excited states at
freezeout are expected to follow a Boltzmann distribution weighted by the emission
temperature of the system, T.n,. Tests of this freezeout assumption were made by
comparing relative populations of a large number of particle unstable states to the

predictions of statistical calculations.

Experimentally, the populations of particle unstable states were obtained by mea-
suring the decay products in coincidénce using a new high resolution position sensitive
hodoscope. Numerical techniques were developed to model the detection efficiency of
the hodoscope. Experimental population probabilities were extracted by fitting the
spectra for the true coincidence yield to an appropriate R-matrix or Breit-Wigner
formalism. Even with good energy resoluti.on of the hodoscope (50 keV for 4.774
MeV state of 1°B), it was not possible to isolate each of the excited states in the
experiment, and some neighboring states were grouped together statistically. In this
fashion, relative populations with respect to the corresponding particle stable yields

were obtained for 40 groups of states in Li, Be, B, C, N and O isotopes.

132



133

Extensive calculations were performed to predict the relative populations of these
states while taking into account the sequential feeding effect from heavier particle
unstable nuclei. In these calculations, discrete and continuum states of nuclei with
Z < 13 were thermally populated and allowed to decay sequentially. Unknown spins,
parities and isospins of lower lying discrete states were assigned according to pri-
mary distributions obtained from the non-interacting shell model. Calculations were
repeated with varying assumptions until their sensitivity to unknown spectroscopic

information could be assessed.

Comparisons were made between the measured relative populations of particle
unstable states and the corresponding calculated values for different initial temper-
atures, Tem. To allow a global comparison between the experimental data and the
calculated results, x? functions were computed for the population probabilities and
for the ratios of population probabilities between states of the same fragment. By
examining the temperature dependence of these x? functions, the best agreement

between calculated and measured quantities occured at Topy = 3 — 4 MeV.

Even for emission temperature T, = 3—4 MeV, the magnitude of the x? functions
were rather large suggesting that many of the excited states of intermediate mass
fragments may not be thermally populated. The relative populations of the excited
states were studied in detail for excited °B nuclei. Large discrepancies between
the calculated and measured population probabilities were observed. Calculations
were performed to see if rotational effects when imbedded in a statistical description
can account for this deviation. These calculations indicate that rotational effects
can make the population probabilities deviate significantly from calculations which
neglect rotational effects. The trends induced by rotation however, still differed from
the the trends observed experimentally. Rotational effects were further explored by

measurements of the decay angular distributions of 1°B fragments. The anisotropies
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of these decay angular distributions were observed to be small. When this information
was used to construct the calculated values of the population probabilities, it could
be considered that rotational enhancements of high spin states are also likely to be
small. All this evidence indicates that rotational effects are not likely to be the sole
explanation for the discrepancies between the measured population probabilities and

statistical calculations which neglect rotational effects.

Assuming an emission temperature T., = 4 MeV, comparisons were made be-
tween the measured and calculated population probabilities and the ratios of popu-
lation probabilities for states of other fragments. For roughly half of the population
probabilities and one third of the ratios of population probabilities, the disagreement
between calculated and measured quantities were substantial. This observation is not
presently understood. Several explanations can be offered.

1) Since the masses of the fragments considered in our analysis are close to the mass
of the projectile, simple non-thermal production mechanisms cannot be excluded.
These mechanisms may not thermally populate the fragment excited states. This
possibility should be explored via additional measurements with heavier or lighter
projectile nuclei.

2) There is a possibility that the spins or branching ratios of some of the states ana-
lyzed in this dissertation may be incorrectly assigned in the literature. The extracted
populations are sensitive to this spectroscopic information. Incorrect spectroscopic
information will result in incorrect extraction of the corrésponding population prob-
abilities. For the states of '°B where large discrepancies were observed, however, the
relevant spectroscopic information appears well established and the discrepancies ap-
pear to be real.

3) Some of the measured peaks could contain background peaks from three body

decays or from the decays to daughter fragments in particle stable excited states.
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Additional measurements with improved excitation energy resolutions would help to
clarify this issue.

4) Some heavier particle unstable nuclei could decay to nuclei we observed with
branching ratios which differ significantly from those predicted by the Hauser-Feshbach
model of statistical decay. This could lead to an enhancement or a depletion of the
populations of selected excited states.

5) It is conceivable that the excited states of the fragments could be thermally popu-
lated at a high density where the energies of the levels differ significantly from their
asymptotic values. If the evolution of the system to zero density is adiabatic, the
level population could be preserved while the ordering of the levels could be changed

leading to the appearance of non-thermal populations of the isolated fragments.

It is not presently clear how to best address questions 4 and 5, and therefore the

question remains open.

The best overall agreement between the measured and calculated population prob-
abilities occurred for emission temperatures of about Top = 3 — 4 MeV. The emission
temperature extracted for °Li fragments is slightly higher (T ~ 4 MeV), and is
consistent with the systematic incident energy dependence of emission temperatures

extracted from ®Li fragments previously reported.



Appendix A

Electronics

The block diagram of the electronics set up for a pair of Light particle and Heavy
fragment telescopes is shown in figure A.1. The analog signals from the z — Yy position
sensitive detectors, silicon detectors and Nal detectors were preamplified, shaped and
amplified, and then were sent to the peak sensing ADC’s. Logic signals were extracted
from fast signals derived from the second element of the Si telescopes. These logic
signals were split into a two-way splitter. One signal from the splitter was sent to a
discriminator with high threshold which provided the energy threshold for different
particles. The other signal was sent to a constant fraction discriminator with low
threshold, which was used to obtain the timing information. The output signals of
both discriminators were sent to a coincidence unit and the output from this unit
was fanned out to generate telescope logic signals. One of the signals was sent to a
downscale unit to get particle inclusive data. The second signal was used to generate
input signals for TDC stops and bit registers. The third output from the fanout
was sent to a 32 channel majority logic unit which provided a coincidence output for
coincidence between any two pair of light particle or heavy fragment telescopes. The
fourth signal from the fanout was sent to a logic OR unit whose output was sent to a
coincidence module, which generated an output for coincidence between light particle

and heavy fragment telescopes. In this way the trigger levels could be adjusted for

136



137

r"Xl—D AMp | ADC
™ -XZ—% AP ALC
[=9
O XY
l(-(ﬁ -YI% AMP pm  ADC
o
| — Y2 AP ADC
1]
| =]
% Oown =
< 24
o —AEl—b— AMP ADC Scaler
o o [ ADX Timing
Q Tiw [ OIS TIC
- —AEZ—b— e e L CFD g
AN ANOUT I
_EQ—b-‘ AP ADC CED ; 9

Energy Threshold %
Pre-
IMaster
X 1 —b— AMP ADC

-AEl—% AP ADC
Timing Al -

[ AX wc\ | AN
' AND S EANOUT
—&Z—b- AP Wy CFD |- ‘
Seliger _'1 S |- 1ne

—Es—b—m_..wc CFD — i

Energy Threshold

HEAVY FRAGMENT TELESCOPE
|
<
N
z
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individual signals if the rates of different types of signals are different. In practice,
the rates turn out to be not so different in our experiment and a majority logic
unit was used for all triggers. The trigger for the experiment consisted of downscale
telescope events, coincidence between light particle detectors, coincidence between
heavy fragment detectors, and coincidence between light particle and heavy fragment
detectors. A dead time circuit (not shown in the figure) was used to inhibit the

CAMAC data acquisitions system while the computer was busy.



Appendix B

Details of the Efficiency
Calculations

The efficiency functions ¢(E*, E*

mea) are usually obtained by performing Monte Carlo

simulations for the emission and decay of the respective particle unstable nuclei. For
most detection geometries, such simulations are very time consuming because of low

detection efficiencies.

We have avoided the inherent inefficiencies of such Monte Carlo simulations by
calculating the efficiency function through direct integration of the two particle co-
incidence cross section over the detector geometry. For simplicity we assume the
decay to be isotropic in the rest frame of the particle unstable nucleus and the lab-
oratory production cross section of the particle unstable nucleus to be independent
of the excitation energy E*. The laboratory two particle coincidence cross section
can then be given in terms of the center of mass excitation energy spectrum and

the “common” laboratory production cross section for the particle unstable nucleus

do (Etot, Qtot)/ dEyotdQtot by

dO'(EH, QH’ EL7 QL) _ a(E’relv Qcma Etota Qtot) da(Etot, Qtot) __1___ dn(E*)
dEHdQH, EL, dQL) B a(EH, QH, EL, QL) dEtotthot 4r dE* ’

(B.1)

where 9(Erel, Qemy Erot, Qeot/ O En, U, ELQL) is the Jacobian for the transformation

from the center of mass coordinates E., Q. and the laboratory coordinates o, Dot
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of the parent particle unstable nucleus to the laboratory coordinates for the detected

heavy (H) and light (L) decay products. This Jacobian is given by

O(Erel, Qemy Eror, Qror) - pupu(EL + mu)(Ex + my)
(B, s B, ) PEpeot (EE™ + mL)(EF® + my)

X [ 1—{ {(pt + pL - Pu)(En + my)
— (PR AL B (B +mu) Y )
X { (EvL + En + my + mu)?*(Ey + my)
X (Eu + mu)(Era + my + my)? }_1
— { 0+ Fu) (Bu + mn)?
+ Gk +p By +mu)? )

. x { (Bu+ Bu+my + mu)?

X (By+mu)(Ba+mg) ) ] (B.2)

Here my, and my are the masses and Fi, and Fy are the kinetic energies of the light
particle and the heavy fragment, respectively. To convert the two particle cross section
into the measured two particle distribution function d N /d EgmdQumd ErmdQim at the
measured laboratory angles, Qu, and Qun,, and the deduced laboratory energies,
Fum and Ein,, which include a correction for energy loss in target and detector
foil, one must consider the distribution of interaction points, h(rig), in the target
beam spot which causes the actual emission angles (1, and Qy to differ from the
values, Q. and Qy,, deduced by assuming the reaction to occur at the center of
the target. In addition, one must account.for the difference between the corrected
energies, Ey, and Ey, of the particles after the entrance foil of the detector telescopes
(calculated by assuming the reaction to occur at the center of the target) and the
original energies, E;, and Ey, inside the target. These differences are represented by
the distributions, Ar(Fy, Ev, tige) and Ay(Ew, Ey, tigt), of energies losses (including

energy loss straggling) in the target and entrance foil of the telescope, where #.g
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is the position inside the of the target. Likewise, the angles, (), and Q, of the
particles at the entrance foil of the detector telescopes differ from the angles inside
the target according to the distributions, 5L(QLc,f2L,ttgt) and 6H(QHC,QH),ttgt, for
multiple scattering in the target. Finally, one must consider the detector angular
resolution functions, AH(QH, Qtm, E’H) and AL(QL, QLm, EL) (which include the effects
of multiple scattering in the entrance foil of the telescope and the energy dependence
of the position resolution), the detector energy resolution functions, Ry(Ex, Fyy)
and Ry(FEy, Fym), and the detector efficiencies DL(E’L,QL) and DH(EH,QH) which
account for the loss of efficiency in the telescope due to multiple scattering in the
telescope stack. In terms of these quantities, one obtains

dN
dEHmdQHdeLmdQLm

- caN@E/dayduydEHdEidnHaﬁhdethkdﬂHdﬁL
X Du(Ew, Q) Dy, (Ev, ) Ru(Ex, Eyie)
X RL(EL, Evm) Au(Q, Qm, Ex) Au(Qr, Qum, Er)
X Au(Ey, By, tig) AL(Ev, Ev, tige) S(Qutc, i, tigt)

X8L(Qnc, My tege) J (Qnt, Qi) J (U, Ae)

W )dU(EH, Qu, £, )
) 4 EqdQudd ELdQy

(B.3)

where () is the number of beam particles which traverse the target during the experi-
ment, Nig is the number of target nuclei per unit area and J(Qx, Quc) and J(Qr, Qrc)
are the Jacobians of the transformation from the spatial coordinate system centered
at point of interaction in the target and the coordinate system whose origin is at the

center of the target.

To obtain the yield Y.(EX.,) experirﬁentally, one bins the data with respect to the

measured energies and angles, calculates the mean excitation energy E* . correspond-

ing the energies and angles of these bins and stores the data in the correct element

of the array Y,(E:

mea) corresponding to calculated value of EY_,. We designate this
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operation as

dN
Y.(E;.) = dEHmd B d QHmd Qumd Qi .(B.4
(Boves) Z /bini Fbtmd B d Qi dQhtm d 2, B dmd Emdii B4
(E:=Er‘nea.)
Finally, to simplify the calculation further, we approximate Eq. (3.3) by
* E;+A/2
VB = Yo $E) L dEe(E", By,)
7 dE* pe=ss A JB-af2
= Ta &) aE R, (B5)
7 dE* E*=E*

J

Here E;,, — E* = A, and A is chosen sufficiently small that this approximation is

accurate. Then, the averaged efficiency ¢ becomes

~ * * 1
C(Ej,Emea) = Qtht Z /b 'dELdeHmdQHmdQLmX
(Er=Bg)

Er+a/2
X / dE”
E;-4/2

x { [ d%Fd End BrdQncdQod By By dhudfhy

x Dia( By, O41) DL( v, €00 ) Rua( B, Evt)

X RL(EL, Evm) Au(Qt, Qttm, Br) AL(Or, Qan, Er)
x An(Ey, By, tig ) Au( B, B, teg)6u(Quic, Qu, brge)

X6L(QLC7 QL’ tt;gt)j(ﬂﬂa QHC)j(QL’ QLC)

a(E‘rel, Qcma Et.ot, Qt.ot;) dU(Etota Qtot) __]_-_ }
a(EH, QH; Ey, QL) dEiidQoy 47 .

X h(Teg) (B.6)

This expression is relatively straightforward to evaluate. For the efficiency calcu-
lations given here, the integrations over E*, Tegts L, ELy Que, QLe, Ey, Ep, O, S, are
performed by a Monte Carlo sampling algorithm. The cross section,

do(Eiot, Qor)/d EordQoc, used in Eq. 17, was deterrhined by fitting the inclusive
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data for particle stable nuclei of the same mass. The detector resolution and depen-
dence of this resolution on the particle energy and mass were determined from the

experimental and calibration runs.

Since no time is spent calculating the trajectories of particles which pass between
detectors, direct integration.proves to be considerably more efficient than Monte Carlo
event simulation for calculating the efficiency. Direct comparisons between the two
techniques have been made using calculations for an 18 element hodoscope used in
measurements of '°0 induced reactions on *”Au at E/A = 94 MeV. The Monte Carlo
event simulation was performed with the simulation program of Ref. 2. To better
than 1% accuracy the present efficiency calculation agrees with calculations using the
event simulation program. For this case, however, direct integration is about a factor

of 20 faster than Monte Carlo event simulation.

For determination of the background yield, Yoack(E2

-~ ea)y 1t 18 necessary to perform

an identical event binning for the product, ooy, of single cross sections (see Eq. 13)
as was performed in Eq. 17 for the coincidence yield. For position sensitive detectors,
it is considerably easier to fit the singles cross sections oy, and oy with a moving source
parameterization and integrate the parameterized cross sections than to perform a
mixed single-particle event analysis. Since the excitation energy E* is rather trivially
related to the relative momentum Ap, it is equivalent and actually easier to define a

correlation function [1 + Rback(E*)] = [1 + Rback(Ap)], which satisfies the equation

Yoaek(Pit, BL) = Cor(pr)ou(Pu)(1 + Roack(E™)). (B.7)

Summing both sides of equation for a fixed excitation energy E; .. provides
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YbaCk(E;lea) = C[1+Rb86k(E:nea)]

X Z dEHdeLmdQHmdQLm
; bin;
(B{=Efea)

E‘+A/2
A / -—A/2
X { /dzﬁgtdEHdELdQHCdQLCdEHdELdQHdQL
x Du(Ey, Q) Du(EL, OL) Ru( Ex, Btim)
x Ri(Ev, Erm) Au(Q, Qtim, Ex)AL(Qr, Qim, Ep)

x Au(Ex, B, tegt) OL(EL, Ev, tig)0u(QHes Qu, tigt)

><(SL(QLca ﬁL, ttgt)j(QHa QHc)j(QL7 QLc)

dou(Eu, Qu) dow (B, QL) } (B.8)
dEgdQu  dELdQL '

X h(Fig)

Away from the peaks corresponding to the decay of excited states, where Y; is small,

KO‘(E;lea)

=1. B.9
Vour B (B9)

Using this relationship {1 + Rpack( mea)] is determined empirically.
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