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Chapter One

1.1 Prospectus

Shortly after the discovery of the neutron, Heisenberg [Hei 32]
proposed the existence of an intrinsic quantum number, similar to
intrinsic spin, which expressed a symmetry between protons and neutrons.
This concept was based on several similarities between the two nucleons.
Both are spin 1/2 particles with approximately the same mass (the
neutron is only 0.14% héévier) and are the essential building blocks of
nuclear matter. In fact, the principal difference between the proton and
neutron is their electric charge; protons have a charge e (e=1.6019 x
10—19 Coulombs), while the neutron is electrically neutral.

Heisenberg's hypothesis was to regard protons and neutrons as
different charge states of the same particle. That is, they form a
charge doublet of essentially identical particles. This property can be
described by introducing a new spin, say g, whose quantized z-component
is related to the electric charge. Recall that the multiplicity of
states with angular momentum j is 2j+1. The nucleon doublet, therefore,
has the following new "spin" quantum numbers: t=1/2, and tZ= +1/2. The
choice as to whether the z-component of the isospin for the proton is
plus or minus one-half is arbitrary, and in this work it is taken to be
positive. With this convention the nucleon charge is then q = (1/2 +
tz)e.

An essential feature of this new spin is to introduce a mechanism
for labeling nuclear states of a particular symmetry. If indeed protons

and neutrons are identical particles (that is, the nuclear Hamiltonian

is charge independent), the energy spectrum of a system containing A




2
nucleons with A/2+n protons and A/2-n neutrons (foﬁ even A, n =1, 2,
3,...; and for odd A, n = 1/2, 3/2, 5/2, ...) should be identical to
that for the system containing A/2-n protons and A/2+n neutrons. A

typical example of this behavior is shown in Figure 1.1, where it is

A
seen that the T, = + n nuclei (TZ =y tz(i)) are essentially mirror

z i
images of one another. The small differences in the excitation energies
are due to a violation of pure charge—independence; primarily due to the
Coulomb force between ptotons.

In addition to mirror symmetry, we also expect to find analogs of
states in TZ = + n nuclei to be present in nuclei with ]Tzl < n. These
states have also been observed experimentally, andgexamples are also
shown in Figure 1.1.

This new "spin" quantum number can then be used to label states of
a given symmetry in isospin space for various isotopes, and was,
therefore, originally referred to as isotopic spin. The idea of isotopic
spin, however, had to be expanded after the discove?y of other charged
multiplets of essentially identical particles (w-meSons, A-isobars, A-
particles, and etc.). In fact, this new "spin" was found to be a general

property of all strongly interacting particles (hadrons) and is now

referred to as isospin. The relation between the electric charge and the

B + S
2 i

z-component of the isospin is now given by q = ( +tz)e, where B is

the baryon number and S the strangeness quantum number. For nucleons B=i
and S=0.
It is useful at this point to introduce some of the basic

principles of isospin operators. In a manner completely analogous to

angular momentum [Edm 60], it is possible to build up states with
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n

definite isospin. The total isospin vector for a syétem containing A

nucleons is given by

3

[}
[l e B

cty

~~

-

N’

and the z-component is

1
tz(i) =3 (z - N).

3
@
1 2

(1.1.1)

(1.1.2)

Here the quantities Z and N are the total number ofiprotons and neutrons

present, respectively. In addition, we define the réising and lowering

operators T, and T_ by

3
]

A
+ Z t+(i)
1

—3
]

A
Yot (i),
i

where

£, (1) = £y (1) *+ it (1)

(1) = £ (1) = it (1),

(1.1.3a)

(1.1.3b)
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Analog states are then found by operating with the raising and lowering
operators on states with a given TZ. For example the state |T, TZ=T-1>
is obtained by
]"1/2

|T, T,=T=1>

T_ |T, T,=T> (1.1.4a)

[(T-TZ)(T+TZ+1) 7

or

|T, T, =T-1> 17172

. [(T+TZ)(T—TZ+1)

T, [T, T,=T-2>.  (1.1.4b)

The principal difference between isospin and angular momentum is
that the z-component of the isospin vector distinguishes between members
of an isobaric multiplet, rather than a specified orientation in space.
This is because the space spanned by isospin vectors is not a physical
Space, but rather, a fictitious space in which proton and neutron
symmetry properties can be distinguished.

The concept of an isospin quantum number used to label nuclear
states is useful only if isospin is a conserved quantity, or failing
that, is very nearly conserved. Any quantum mechanical operator, say A,
will have values (eigenvalues) associated with it which are conserved if
it commutes with the Hamiltonian H, i.e. [A,H] = 0. Assuming only two
body interactions between nucleons, the Hamiltonian for a nucleus

consisting of A nucleons is

A
yov... (1.1.5)
i
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The first term in eq.(1.1.5) is simply the sum of kinetic energy (here
mp is taken to be equal to mn), while the second is the sum of the

potential energy, which can be rewritten as

A z N Z N
T R R R I ROl
i=] i=j i=] i=1 j=1
Z
) . (1.1.6)

The sums inside the brackets in eq.(1.1.6) are due to the strong
interaction between nucleons (proton-proton (pp), neutron-neutron {(nn),
and proton-neutron (pn)), while the last term is due to the Coulomb
interaction between protons. Introducing isospin formalism, the sums in

eq.(1.1.6) can be extended to include all particles, and the two-body

interaction Vij can be written as

B T2 .0 2. {pn) .
vij = {(E t(i)-t(j)) vij (1.1.7a)
2+ Ty v . (1.1.7b)
g J ij e
1 . . (1)
E(tz(l) + tz(J)) vij + (1.1.7¢)

_— B R (2)
I_tz(l)tz(J) -———3—~—] vij} (1.1.74d)

where

Ol (vPP) o, ylen) | Con) | e? )
1] 3 1] 1] 1 r

- (1.1.8a)
ij
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V(1) - v(pp) _ () | e? )

(1.1.8p)

ij ij ij Py
(2) _ (pp) (nn) ___(pn) _ e?
vij = Vij + Vij 2vij A ). (1.1.8¢)

ij

Before proceeding with a discussion about isospin-symmetry
violation, it is perhaps useful to describe briefly the procedure in
which the many-nucleon wave functions are obtained from eq.(1.1.5).
Since the total Hamiltopian is a sum of one-body and two-body operators,
the total matrix element of eq.(1.1.5) can be written as sum of one-body
and two-body matrix elements. In practice, this is done by adding and
subtracting an appropriate single-particle potential U(i) to eq.(1.1.5),
and thus obtaining the states wnzj(;) = Rnlj(r) [Yz(;) x g]j, which are

eigenstates of the single-particle Hamiltonian

- p2(i)
sp % [“"EE_ + U]

Then, the two-body matrix elements can, at least in principle, be
evaluated with these single-particle wave functions by constructing the
antisymmeterized two-particle states psp';Jd,T>, where p represents the
single-particle orbit quantum numbers nlj, J is the total angular
momentum of the two-nucleon system, and T is the total isospin (T=0, or
1). Using these two-nucleon wave functions we evaluate the matrix
elements <pipj;JT| Vi ]pipj;JT'>. By examining the structure Ofbthe
operators in eq.(1.1.7), we find that eq.(1.1.7a) contributes only when
T=T'=0, and that egs.(1.17b), (1.1.7e¢), and (1.17d) contribute when

T=T'=1. In addition to these components of the two-body potential, there
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are also those which give nonzero matrix elements between T=0 and T'=1
systems [Hen 79]. However, these are thought to be small and are

neglected in the present work.
The total many-body wave functions are then found by first

constructing basis states, each with angular momentum Jtot’ from the

many-body Slater determinants. Using the expectation values

<p] p2(i)/2m + U(i) |p> and <p,p';d,T| Vi |psp';d,T'>, we evaluate the
matrix element Hik between the ith and kth basis state, and by
diagonalizing the resulting matrix Hik obtain the eigenstates of the

Hamiltonian.

The importance of writing vij in terms of equation (1.1.6) is that
the isospin-space transformation properties are readily apparent. The
terms (1.1.7a) and (1.1.7b) are scalars, while (1.7.7¢) and (1.1.7d)

transform like a vector and a tensor of rank 2 in isospin space,

respectively. The quantities vi?), vig), and vgi) are referred to as the

isoscalar, isovector, and isotensor parts of the T=1 components of the
interaction. Note that any two-body interaction between nucleons can at
most be isotensor because the maximum isospin of two nucleons is T=1,
which can then couple to at most T=2 to give back T=1. In addition,

G (PP) _ ,(nn) and vPP) | V(nn) _ v(pn)

2 are referred to as the charge-

ey (CD)

asymmetric ( ) and charge-dependent (v ) nuclear interactions,
respectively.

To determine whether isospin is a conserved quantity in nuclear
systems we evaluate the commutator of the mth component of % (the labels
X, Y, and Z are equivalent tom = 1, 2, and 3, respectively) with the

Hamiltonian, giving



A
[Tm,H] = e, .2. { [t (1) + £ (1w
1#]

(1M
ij

(8, (1)E5(3) + £5(1)E, ()] vii)} (1.1.9)

where Eijk i1s the antisymmetric Levi-Civita tensor (note that [Ti,Tj] =
ieijka)' Clearly Tz commutes with H, indicating conservation of
electric charge. The components Tx and Ty, however, commute with H only
if v(1) and v(2) are zero. Note, however, that even if the nucleon-
nucleon interaction is charge independent, the presence of the Coulomb
interaction is enough to break pure isospin symmetry.

The objective of this work is a theoretical study of isospin-
symmetry violation (isospin-mixing) caused by the isospin-nonconserving

components of the nuclear Hamiltonian, V The strategy applied is to

INC®
determine VINC empirically and then to evaluate the effects of isospin-

mixing on:

(1) corrections to the Fermi matrix element in superallowed B-
decay,

(2) isospin-forbidden Fermi transitions, and

(3) decay of T=3/2 states in A=4n+1 nuclei (21 < A < 37) by

isospin-forbidden proton and neutron emission.

This dissertation is organized in the following manner. First, a
description of each problem under consideration here is given in the
remaining part of the first chapter. In the second chapter, isospin-

nonconserving interactions used throughout this work are determined
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empirically by requiring that they reproduce experimentally determined
isotopic mass shifts. Corrections to the Fermi matrix element for
superallowed B-decays are presented in Chapter Three, while results
obtained for isospin-forbidden B-decay are given in Chapter Four. In the
fifth chapter, the decay of T=3/2 states via isospin-forbidden proton
and neutron emis§ion is discussed. Since the last three chapters are
independent, a discussion of the results presented is given in each
chapter, and a summary of results and further concluding remarks will be

presented in Chapter Sik.

1.2 Isotopic Mass Shifts

Perhaps the strongest effect due to the isospin—nonconserving part
of the nuclear Hamiltonian is the mass difference between members of the
same isobaric multiplet. From eq.(1.1.7) we see that the Hamiltonian
exhibits a TZ dependence, and therefore the eigenenergies E(a,T,TZ),
should also exhibit this dependence. In fact, the energies E(a,T,TZ) can

De parameterized [Wig 57] in terms of the isobaric mass multiplet

equation (IMME) as

E(a,T,TZ) = a(a,T) + b(a,T) T, + c(a,T) Ti (1.2.1)

where the a(a,T) is due to both the isoscalar and isotensor
Hamiltonians, and b(a,T) and c(a,T) are due only to the isovector and
isotensor components, respectively (the derivation of the IMME is given
in Chapter Two, section 1).

The IMME was first verified by the measurement of the ground state

and excitation energies of the four members of the T=3/2 quartet in the



11
A=9 system by Cerny [Cer 64]. Tﬁe masses and excitation energies of
thirteen other isobaric quartets have also been measured and were found
to be in excellent agreement with the IMME [Ben 79].

The source of the mass splittings among the members of an isobaric
multiplet is of course the isovector and isotensor parts of the
Hamiltonian, given by egs.(1.1.8b) and (1.1.8¢), respectively. The
precise form of these interactions, however, is still unknown. It has
been shown [Nol 69] that the Coulomb force alone cannot account for the
observed mass splittings‘in T=1/2 mirror nuclei. This discrepancy
between experimental and calculated Coulomb mass spiittings is known as
the Nolen-Schiffer anomaly. Many explanations for this anomaly have been
suggested (a review of these is given by Auerbach [Aue 83]), but at
present, calculations of the mass splittings are still consistently
three to six percent smaller than experiment [Aue 83]. Therefore, in the
present work, an explicit form for the isovector and isotensor
interactions is postulated. The parameters of these potentials are then
determined empirically by performing a least-squares fit to experimental
b~ and c-coefficients (defined in eq.(1.2.1)).

With the isospin-nonconserving potential determined empirically, we
then make predictions as to the extent of isospin-symmetry violation,

and compare with experimental observations.

1.3 Corrections to the Fermi Matrix Element

As can be seen from eq.(1.2.1), one member of an isotopic multiplet
has the highest binding energy, and therefore it is ‘not unreasonable to
expect the other members of this multiplet to decay in some fashion to

this nucleus. This decay, however, involves a change in the total
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charge, which is not permitted by the nuclear Hamiltonian (see

eq.(1.1.9)). The weak interaction, however, allows this transition to

occur through the processes
n->p+e +y

p >n+ et + v
"
Note that free protons dénnot decay because of energy conservation, and
that only through interactions with the nuclear medium is this
transition permitted. The weak interaction has two 'components, vector
and axial-vector, which allow two types of nuclear transitions. These
are Fermi (vector) and Gamow-Teller (axial-vector), and are mediated by

>
the operators T, and 0T, respectively. The selection rules for these

decays are:

(1) Fermi: AJ = 0, no change in parity; AT = 0

(2) Gamow-Teller: AJ

0, 1 (0 » 0 forbidden), no change in parity;

AT = 0, 1.

The general form for the transition rate for nuclear B-decay is

K
£,07 Ml + £,G5 M

t1/2/BR = (1.3.1)

ol

where K = 27% 1n2 #’c®/(mc?)s, t1/2 is the half-life, BR is the

branching ratio for the decay (t = t1/2/BR is the partial half-life), fv
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and fA are the statistical rate functions for the Fermi and Gamow-Teller
transitions, respectively, GV and GA are the effeciive vector and axial-
vector coupling constants for single nucleon B—decay, and MF and MGT are
the matrix elements of the Fermi and Gamow-Teller bperators. In this
work, the conventional value of 1.251+0.009 is taken for the ratio GA/GV
[Wil 73]. (This is consistent with the more recent value of
1.2606+0.0075 reported by Wilkinson [Wil 827.)

Fermi transitions between Jn=0+, T=1 analog states have been the
subject of much study [Bli 67, Hal 68, Bli 69, Dam:69, Bli 70, Tow 73,
Har 75, Tow 77, Wil 77 and Tow 78] over the past years. An important
feature of these transitions is that, since they are purely vector,

their ft values are given by

f t = 2 22 (1.3.1)
R GV MF

where the statistical rate function f is evaluated by solving the Dirac
equation for the lepton in the static Coulomb potential of the residual
nucleus, and is corrected with the nucleus-dependent "outer" radiative
correction 5R of Sirlin [Sir 671, i.e. fR = (1 + SR). Once all nucleus-
dependent corrections have been evaluated, it is possible to extract

from eq.(1.3.1) empirical values of G This is important because the

v
effective vector coupling constants for nucleon and muon B-decay are

related by

2 2 2
= 1 + - ,
GV Gu cos eC( AB Au)



14
where eC is the Cabibbo angle, and AB and Au are the nucleus-independent
"inner" radiative corrections to nucleon and muon B-decay, respectively.
With GV/Gu and eC determined from experimental quantities, it is then
possible to test current theoretical estimates for AB - Auf
At present, the most uncertain nucleus dependent correction to
eq.(1.3.1) is that for the Fermi matrix element MFi If the initial and

final nuclear states have definite isospin, then the Fermi matrix

element is model independent and given by

= [T(T + 1) - T, Tl Sip (1.3.2)

Mro
where the Kronecker delta insures that only transitions between analog
states, defined by eq.(1.1.4), are allowed. Values?for GV could then be
extracted from measured ft values with eq.(1.3.1). The most accurately
determined th values [Kos 85], however, are not cdnstant within
experimental uncertainty as eq.(1.3.1) would indicate, and are shown in
Figure 1.2. This suggests the possibility of the breaking of analog
symmetry between the initial and final nuclei due to the presence of
isospin-nonconserving interactions.

The extent to which analog symmetry is broken is embodied in the

correction factor 5C defined by
2 _ 2 —
Mo |2 = [Mpo 2 (1 8:) - (153'3)

From experimental th values relative estimates of BC can be obtained.
Koslowsky [Kos 83] has determined the relative corrections GC(Z) -

4
6C(1u0) from the quantity (th(Z) - th(1uO))/th(1‘O), and are shown in
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Figure 1.3. Here it is seen that in order for the th values to be

constant, it is necessary that an additional correction, on the order of

0.5% for higher Z values, be applied to the experimental data.
Theoretical estimates of GC can be determined either empirically
(Wil 77], or by performing a microscopic calculation [Tow 73, Har 75,
Wil 76 and Tow 77]. The first approach is based on the Behrends-Sirlin-
Ademollo-Gatto (BSAG) theorem [ﬁeh 60 and Ade 64], which states that
corrections to the denominator of eq.(1.3.1) within an isospin multiplet
are proportional to the'équare of the mass splittings due to symmetry
breaking no matter what the origin of the symmetry breaking may be. For
nuclei, these mass splittings g0 roughly as Z. Wilkinson and Alburger
(Wil 76a] have found that the square of the mass splittings for the
superallowed transitions under investigations are proportional to 21'86.
The microscopic approach makes use of a model which describes the many-
body nuclear wave functions as well as the single-particle radial wave
functions. By performing a fit to the proportionality constant, and
comparing with the results of a microscopic calculation [Wil 767,
Wilkinson [Wil 77] concluded that the empirical approach was superior.
Towner and Hardy [Tow 78], on the other hand, concluded that the data
showed no preference for either approach, and that in particular, they
SawWw no reason to reject microscopic calculations. Since the nuclei in
question are relatively light, ranging from 1uO to 5“Co, it is not
unreasonable to expect shell effects to play a significant role in dc.
The basis for microscopic calculations of 6C in this work, and for
those in the past [Tow 73, Har 75, Wil 76 and Tow 77], is the nuclear

shell model. Shell-model wave functions consist of many-body Slater

determinants obtained within the spherical single-particle basis
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> L,- J o :
|¢nzj(r)> = anj(r)[Y (r) x 817, in which (A - C) nucleons occupy n
valence orbits outside a spherically closed core of C nucleons. Due to
the truncation of the shell-model space (i.e. limitations on the number
of active valence orbits) it is necessary to consider the effects of
isospin mixing due to the INC interaction between states which are
contained in the model space as well as with those outside. Isospin
mixing within the shell-model configuration space is accounted for by
adding the INC interaction onto the isoscalar Hamiltonian in proton-
neutron formalism. Then;‘by diagonalizing the resuitant matrix, one
obtains states of mixed isospin. Mixing with those states which 1lie
outside the configuration space is accounted for by realizing that the
effect of these states is to alter the radial wave functions. The
repulsive nature of the Coulomb potential tends to push proton radial
wave functions out relative to neutrons, and therefbre, breaks analog
symmetry. These two corrections can be factored [Tow 73 and Chapter

Three, section 1] to give
§, =8 + § (1.3.4)

where GIM is due to mixing between states contained in the configuration
space, and GRO is the correction due to the differepce between the
proton and neutron radial wave functions.

A simple estimate for 5RO can be obtained using harmonic oscillator
wave functions [Dam 69, Lan 73, Fay 71, and Tow 771, The change in the
proton radial wave function can be described with first-order
perturbation theory by the admixture of a state Wwith one more radial

node, i.e.
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T TR L NETY (1.3.5)

where

Wpaqgl Vo lvpy
- AE ’

AE = E E = 2hw.

n+1%  “ng

The two-body Coulomb potential can be replaced with the effective one-

body potential of a uniformly charge sphere of radius R

Cl
Ze? r?
V. = (3-2),
C 2RC RC
giving
Z?2 e"n"
= w2 = wI =z
GRO a (Mw)“Ré (n + j)(n + 4 +3/2) TenZ - (1.3.6)
1/3 1/3 -
If we assume fw = 414 MeV and RC = 1.2 fm, eq.(1.3.6) exhibits
the behavior GRO « 24/3 with some shell structure superimposed by the

orbital quantum numbers n and &. Given in Table 1.1 are the values

; . 2
obtained by Lane and Meckjian [Lan 73] where R; was taken to be g<rch>

where <r§h> is the mean square radius of the proton charge distribution
determined from experimental electron scattering data.

A better approach to evaluating § is to obtain the radial wave-

RO

functions from a realistic nuclear single-particle potential, and to
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Table 1.1
Radial-overlap (RO) and isospin-mixing (IM) corrections

to the Fermi matrix element ‘

Decaying GRO(%) GIM(%) ‘ 8o (%)
Nucleus .~ _HO WS

14

s 0.04 0.28 0.05 0.18
26y 0.11 0.27 0.07 0.34
34, 0.18 0.62 0.23 0.85
38 - 0.54 0.16 0.70
2g, 0.25 0.35 0.13 0.48
46, 0.29  0.36 0.04 0.40
50Mn 0.33 0.40 0.03 0.43
51

Co 0.38 0.56 0.04 0.60
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include effects due to structuré of both the parent and daughter nuclei.
This approach was taken by Towner, Hardy, and Harvey [Tow 771, in which
they used wave functions obtained from a Woods-Saxon parameterization of
the single-particle potential. These values are given in Table 1.1, and
are compared with those obtained with harmonic oscillator wave
functions. The principal effect of this method is to increase GRO
relative to the harmonic oscillator values.

As mentioned above, the correction GIM can be evaluated using
isospin-mixed wave functions obtained by adding the INC interaction onto
the isoscalar interaction and diagonalizing the resulting Hamiltonian.
GIM is then determined by evaluating MF with the iéospin—mixed wave

functions, and is simply

dlM =1 - MF/2. (1.3.7)
This procedure was used by Towner and Hardy [Tow 73]. They accounted for
the INC interaction by : (1) adding Coulomb matrix elements to the
proton-proton two-body matrix elements, (2) increaéing the T = 1 part of
the proton-neutron matrix elements by 2%, and (3) using isovector
single~particle energies determined from the energy difference between
the closed-shell-plus-proton and -neutron systems. Values of 6IM

obtained by Towner and Hardy are also given in Table 1.1, where it is

seen that GRO dominates the total. The contribution due to §

M’ however,

is not insignificant, and improvements in the values of GC can only be
expected by making improvements to both GRO and 5IM'
With the corrections GRO and GIM’ it is possidle to extract values

of GV from eq.(1.3.1). Shown in Figure 1.4 are values of GV/Gu obtained
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for the th values shown in Figure 1.2 using the vélue Gu determined
from muon g-decay [PDG 84 and Gio 84] and the values of 8¢ of Towner and
Hardy. Far from being nucleus independent, these values exhibit a
discrepancy between low- and high-Z values. There dppear to be two
consistent values, one for Z < 21, and another for Z 2 21.

There are at least three sources which can cause the discrepancy
between low- and high-Z values of GV/Gp‘ These are: faulty experimental
ft values, incorrectly accounting for the "outer" radiative correction
6R, and uncertainty in the corrections to the Fermi matrix element. At
first, it might be tempting to suspect the first source, as ft values
require the accurate measurement of the mass of the parent and daughter
nuclei, the half-life, and the branching ratio of the decay. These
measurements are indeed difficult, and in the past the ft values shown
in Figure 1.2 have changed outside the limits of experimental
uncertainty due to improved experimental techniques, Recently, however,
a concerted effort has been made to measure these quantities as
accurately as possible [Kos 85]. In fact, these masses have been
measured relative to one another, and the measured pairs are indicated
by the bars in Figure 1.2. By measuring the masses‘in this fashion, it
is hoped that random errors, which can cause fluctuations as a function
of Z in the ft values, are reduced. The remaining uncertainties are then
expected to be due to errors in the lifetime and branching-ratio
measurements and the mass of MO. This last error, however, is
systematic in all ft values, and will therefore leave the relative Z-

dependence unaltered.
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experimental ft values and the corrections GC of Towner,

Hardy, and Harvey.
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Similarly, the correction GR to the statistical rate function has
been under extensive study [Sir 67, Beg 69, Dic 70, Jau 70, Jau 72, Sir
74, and Sir 781]. GR is independent of both strong and weak interaction
models to within 0.03% [Sir 67], and may be expressed as a perturbation
series in Za, with all terms z"&" (m < n) being present [Beg 69] (a is
the fine structure constant, o = 1/137). At present, GR has been
evaluated to order Z%a®, and is incorporated in the ft values shown in
Figure 1.2. Higher order corrections are expected to contribute 1less
than 0.05%, while the déviation in GG/G; is of the order 0.4%.

Corrections to the Fermi matrix element, however, are sensitive to
explicit nuclear models. With this in mind, it is prudent to
reinvestigate the corrections 6IM and 5RO’ making use of recent advances
in our understanding of nuclear structure, before turning to the two
previously mentioned possibilities as a source of the high- and low-Z
discrepancy.

In this work, the correction GRO is evaluated using radial wave
functions obtained from a self-consistent Hartree-Fock calculation using
a Skyrme-type interaction. The advantage of this pfocedure over the
Woods-Saxon parameterization is that it includes an isovector single-
particle potential which is induced by Coulomb repulsion. In the
Hartree-Fock procedure, the effective single-particle potential is
dependent on the proton and neutron densities. As the Coulomb force
pushes the proton densities out, an isovector potenﬁial is thereby
induced, countering the effects of Coulomb repulsion, and therefore,
reducing the extent of analog symmetry breaking. With this in mind, we

expect the correction GRO to be reduced relative to previous estimates.
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The isospin-mixing correction GIM is calculated using the same
procedure as Towner and Hardy, with the exception that the INC
interaction is determined using the fitting procedure outlined in
section 1.2. In addition, improved isoscalar Hamiltonians have been
developed recently (for example, the mass-dependent sd-shell Hamiltonian
of Wildenthal [Wil 84]), and have been used in this work. These changes
in the method of evaluating GIM are important because, as will be shown
in Chapter Three, GIM is sensitive to both the isoscalar Hamiltonian and
the isovector single—pafticle energies.

With these improvements in the procedure in determining GC, it is
hoped that the low- and high-7Z discrepancy in GV/Gu can be resolved, or
alternatively, that some indication as to where the solution might lie

can be given,

1.4 Isospin-forbidden Fermi B-decay

As was shown in eq.(1.3.2), Fermi transitions between states which
are analogs of one another are forbidden in first prder. For such a
decay to take place, it is necessary that the parent and/or daughter
state contain admixtures of the analog of the daughter and/or parent
states, respectively. This is possible only under the influence of
isospin-nonconserving interactions. A schematic view of these types of
transitions are shown in Figure 1.5. There are two classes of B-decays
in which isospin-forbidden Fermi transitions can occur. The first is a
purely Fermi (vector; 0" » O+) transition, and is greatly suppréssed
relative to the allowed decay. In this case the mere observation of the
decay is evidence of isospin mixing. The second class includes mixed

Fermi, Gamow-Teller (axial-vector: AJ = O ,1 and AT= 0,
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Figure 1.5: Schematic energy level diagram which illustrates a typical

isospin-forbidden Fermi transition.
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1; O+ > 0+ forbidden) transitions. Since the Gamow-Teller operator is
free to connect states which are not analogs, these decays are not
necessarily suppressed relative to that to the analog state. Here more
subtle techniques must be used to distinguish between the allowed Gamow-
Teller and the forbidden Fermi components of the decay.
The first class of transitions has been observed in the decay of

u2Sc [Ing 77, Del 78, San 80, and Dae 85] and 28Mg [Alb 79]. The matrix

-4
elements for these transitions were found to be (9.4 + 1.6) x 10 and

(6.7 + 0.8) «x 10—4, respectively. In this work, results for the isospin-
42
forbidden B-decay of 28Mg, 3“Ar, 3“01, and Sc will be presented.

For the second class of decays, the ft value is given by

K

't = 3 2 b3 29
GyIMeT® + oMo, 2

(1.4.1)

where we have assumed fA = fv (which is valid to within 0.5% [Wil 741]).
Since the Fermi (vector) and Gamow-Teller (axial-vector) matrix elements
do not interfere, it is clear that the transition rate will not in
general provide unambiguous information about the small isospin-
forbidden Fermi matrix element. Therefore, it is more useful to measure
pseudoscalar quantities, such as the B-Y circular polarization
correlation, which are sensitive to vector, axial-vector interference.
This type of experiment has been performed for many nuclei. The decay of
2L‘Al, however, is of particular interest because this transition has the

largest isospin-mixing matrix element yet observed in B—-decay. A

comparison between experiment and the results of a shell-model
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calculation which utilizes the fitted INC interaction determined in

Chapter Two is presented in Chapter Four.

1.5 Isospin-forbidden proton and neutron emission of T=3/2 states
Another clear indication of isospin mixing in light nuclei is the

decay of T=3/2 states in A=4n+1 nuclei to T=0 states in A=in nuclei by

proton or neutron emission [Wei 76, Hin 81, Hin 84, McD 69, Adl 72, Iko

76, and Wil 83]. Previous conclusions [McD 78 and Wil 83] based on

p(n)

experimental data were Ehat the spectroscopic amplitudes, eINC ,

for
these isospin-nonconserving decays systematically increase with mass A;
have an oscillation with period AA=8 superimposed on the proton
amplitudes; are generally greater for neutron emission; generally do not
increase as a function of excitation energy.

Perhaps the most striking feature of the experimental data is the
oscillation as a function of A. Shown in Figure 1.6 are the
spectroscopic amplitudes for the lowest T=3/2 state in each nucleus. The
data show a gradual increase as a function of A, and a clear oscillation
with a period AA=8 superimposed on this increase (the experimental
errors are typically less than 10% and are suppressed from the figure).
The cause of this oscillation is not understood at present, and is of
considerable interest [McD 78 and Wil 83].

As is the case for the corrections to the Fermi matrix element,
there are two principal sources of isospin impurities which are
responsible for these decays. The first is the mixing between thé T=3/2
parent state and those states which lie outside the shell-model basis.
This is commonly referred to as mixing with giant isovector monopole,

and is also responsible for the correction GRO to Fermi matrix element.
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The second is due to mixing between nearby states (those contained in
the shell-model basis) in both the parent and daughter nuclei. Here it
is necessary to consider mixing between T=1/2 and T=3/2 parent states,
and T=1 and 2 daughter states with T=0 ground state. (This last source
of mixing is also the mechanism which produces the correction § to the

M

Fermi matrix element). The contribution to O?NC due to the giant
isovector monopole state has been evaluated [Lev 73] for several nuclei
using an harmonic-oscillator basis, and was found to be "small but not
negligible" [Aue 83] coﬁpared to experimental values. The harmonic-
oscillator basis, however, tends to predict more isospin mixing in the
ground state than does a more realistic Hartree-Fock calculation [Aue
83]. Therefore, this work concentrates on the contributions due to
mixing with nearby states, and assumes that the isovector monopole
contribution is negligible. A typical level scheme which illustrates the
relative location of nearby states in both the parent and daughter
nuclei is shown in Figure 1.7

In the past, there has been only a limited amount of theoretical
analysis dealing with the contribution due to nearby states [Aue 71, Ari
71, and McD 78]. The most detailed work, was that of Arima and Yoshida
[Ari 71] for the A=13 system. Their approach was to take into account
the entire Op shell and to determine the mixing with nearby states via
perturbation‘theory. Their results generally agree with experiment, and
were found to depend strongly on the location of the, then unknown,
thirq J"=3/2—, T=1/2 state. The approach of McDonald and Adelberger [McD
78] and Auerbach and Lev [Aue 71] was to assume that the source of the

isospin impurity was mixing with the anti-analog state (A T, state whose

<

spatial and spin wave functions are similar to those of the T> analog
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state. For a further discussion see page 309 of [Law 80]). Within the
framework of this simple model, they were able to reproduce the
qualitative behavior of the data, but were unable tq explain the
observed oscillation.
The isospin-forbidden spectroscopic amplitudes can be evaluated

using perturbation theory (see Chapter Five, section 1), giving

p(n) p(n)

OING

=) a(j,T=1/2;T=3/2) o (j,T=1/2,T=0) +
J

p(n)

L I a(y,1';T=0) 0”7/ (T=3/2;],T") (1.5.1)

where a(j,T=1/2;T=3/2) is the isospin-mixing amplitude between the

nearby T=1/2 states and the T=3/2 parent, a(j,T';T=0) is the mixing
ampl itude between T=1 and 2 states and the T=0 ground state, and the
Op(n) are the isospin-allowed spectroscopic amplitudes of the mixed

states. In first-order perturbation theory the amplitude of the state

|j,T'> contained in the state ]i,T> is simply

<j,T'| Vige 11T
E(1,T) - E(3,T") ~

(1.5.2)

Clearly, those states |j,T'> which satisfy the condition E(i,T) -
E(j,T') is small, can contribute significantly to the total value. AS
can be seen from Figure 1.7, this condition is satisfied for those T=1/2
states which are near the T=3/2 parent state. Unfortunately, both the
allowed spectroscopic amplitudes and the exact location of these nearby

T=1/2 states is uncertain theoretically and experimentally for all but
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one case [Iko 76]. With this in mind, it is necessary to estimate the

error in a calculation of Ogég). In this work, this was done by shifting

the T=1/2 spectrum relative to the T=3/2 parent state by an amount AE in

p(n)

small steps, and evaluating GINC at each step with eq.(1.5.1). The

"best" estimate of e?ég) is then the unweighted average of the absolute

value of O?ég) obtained at each step, while upper and lower limits of
the uncertainty are determined from the upper and lower rms deviations

from this "best" value.

Results of the first detailed shell-model calculation for efég) in

the region 21 € A £ 37, in which the full or nearly full 1s-0d shell-
model space was taken into account, are presented here. The G?ég) are
evaluated using perturbation theory (eq.(1.5.1)), and the influence of
nearby states in both the parent and daughter nuclei is analyzed. The

principal objective of these calculations is to give some insight into

the cause of the observed oscillatory behavior.



Chapter Two

2.1 Introduction

In this chapter, a method for determining the isospin-nonconserving
(INC) components of the nuclear Hamiltonian is developed. The procedure
used is to assume an empirical form for the isovector and isotensor
interactions, and, by performing a least squares fit to a set of
experimental b- and c-coefficients (defined by eq.(1.2.3)), determine
the parameters of these ‘interactions.

The chapter is organized in the following manner. In section two,
the isobaric mass multiplet equation (eq.(1.2.3)) is derived, and the
procedure used to evaluate the b-and c-coefficients within the framework
of the nuclear shell model is given. In the third section, the
parameters of the isovector and isotensor interactions, determined from
least-squares fits to experimental data, are presented for four separate
configuration model spaces. Finally, the formalism needed to combine the
isoscalar, isovector, and isotensor components of the Hamiltonian, in

order that states of mixed isospin may be obtained, is given in the last

section.

2.2 Isobaric Mass Multiplet Equation (IMME)

Wigner [Wig 57] was the first to demonstrate that the mass
differences between members of the same isobaric multiplet can be
parameterized by eq.(1.2.1). As was shown in Chapter One, the nuclear
Hamiltonian can be decomposed into isoscalar, isovector, and isotensor

components, i.e.

34
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2
(k)
H = )Y H. (2.2.1)
tot k=0

Since the dominant contribution to the total energy is due to the
isoscalar part of the Hamiltonian, we start with states wA(v,J,T,Tz)
which are eigenstates of H(O), and evaluate the energy shift due to the
isovector and isotensor components using first-order perturbation theory
(the label v represents all other relevant quantum numbers and A is the

total number of nucleons). Applying the Wigner-Eckart theorem [Edm 601,

the energy of the state wA(v,J,T,TZ) is then

E(A,v,J,T,TZ) = <wA(v,J,T,TZ)| Hy e IwA(v,J,T,TZ)>
1 ; (_1)T_Tz (T kT
IAETT DI -T, 0 T,

(k)

< 0, 3D HT vy (0,0,T)>, (2.2.2)

where the three bars denocte a reduction in both isospin and angular
momentum space. Substituting explicit values for the 3-j coefficients

into eq.(2.2.2), we obtain
E(A,V,J,T,TZ) = E(o)(A,v,J,T) + E(1)(A,v,J,T) TZ
(2)

+ [3T§ - T(T+1) JE" " (4,v,d,T), (2.2.3)

where
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(0) 1 (0)
E"(A,v,J,T) = TEFTGE] W, (v, 3, ||]| H vy (v, 3,7,
(1) 1
B AT = o Y ety (e |
« <p, (0, D EY e, (000,
A 14 4 A ’ ’ 14
(2) 1
BT - R T D e () (2R ]
. o (2)
x <y, (v,3,D ||| H HHwy(v,3,1)5. (2.2.4)

Eq.(2.2.3) has the same form as eq.(1.2.1), i.e.

E(A,v,J,T,TZ) = a(A,v,J,T) + b(A,v,J,T) T, + c(A,v,J,T) T%

with
a(a,v,d,1) = En,v,0,1) - 7(1+1) 9 (a,0,5,1), (2.2.52)
b(A,v,d,T) = E(1)(A,v,J,T), (2.2.5b)
e(h,v,,m) = 382 (a,v,0,T). (2.2.5¢)

Deviations from the parameterization of the isobaric mass multiplet
equation are an indication that we must consider corrections due.to
higher-order perturbation theory, and/or the possibility of three-body
interactions. For states with T 2 3/2 these effects can be accounted for

by adding the term dTg to eq.(1.2.3). As was mentioned in Chapter One,
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fourteen isobaric quintets have been analyzed to see if they fit the
systematics of the IMME. In all but one case (A=9), the d-coefficients
were found to be consistent with zero, with upper limits on their
absolute values being approximately 5 keV [Ben 79]. This absence of
experimental d-coefficients is a strong indication that a first-order
perturbation theory calculation of the isotopic mass differences, which
utilizes only two-body interactions, is adequate.

In this work, the reduced many-body matrix elements of the isospin-

nonconserving components of H hereafter referred to as V cr are

tot’ IN

evaluated within the framework of the nuclear shell model. As was
mentioned in Chapter One, the starting point of shell-model calculations
is the many-body Slater determinants obtained within the spherical basis
Iw(n,l,j)> = anj(r)[Yg x s]j, in which (A-C) nucleons occupy n valence
orbits outside a spherically closed core of C nucleons. Within this
basis we need to account for the two-body interaction between particles

occupying the valence orbits as well as with those inside the closed

k
core., The reduced matrix element of VéNg is then [Bru 77]

(k)

<wA(v,J,T)[l| Vine

vy (v,0,1)> =

(k)

) OBTD,  (p,p';k) <core, o] || Viye

orbits

|| |core,p'>

+ Z IBIDA v(plpz;xlz:pap“;xah;k)
3 H
orbits

(k)
x <plpz;)‘12H| VINC Hlpapu;)‘au>’ (2.2.6)
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where the one-body matrix element <core,p [11 y (K || [core,p> represents
the sum of two-body interactions between particles in the closed core
and a particle in the pth valence orbit, and lop'sA> is the
antisymmetric two-nucleon wave function with particles occupying the
orbits p and p', coupled to the intermediate state A. The labels p and A
denote all the available angular-momentum and isospin coupling quantum
numbers. The general form of the one-body transition density (OBTD) and

two-body transition density (TBTD) matrices are [Bru 77]

1 t - 1
OBTD, 1 (psp':A) = EITD] <Y, (v, J, T[] [ap x ap,] lllwA(v',J',T')>,

1

TBIOL pur (PrP2idiaiapuidanid) = = JTm s )]
Pi1P2 PaPu
t A ~ = A,
x <Y, (v,J,T) a a 12 a a 34 VLI, T D,
Ya 1 Lag xag 272 LR AR A )

(2.2.7)

where Y(2x+1) is shorthand for /[(2J+1)(2T+1)}, and a: and ip are tensor
operators which create and annihilate a nucleon in the pth orbit,
respectively. In eq.(2.2.6), the intermediate couplings A,, and i,, are
restricted by the requirement that the final coupling A must have
angular momentum AJ=0 and isospin AT=k.

A perturbative calculation of the isotopic mass differences within
the framework of the shell model is then reduced to detgrmining the

(1) (1)

isovector single-particle energies e ' (p) = <core,p| VIne |[core,p>, the

two-body matrix elements of the isovector (k=1) and isotensor (k=2)
(k)

components of VINC’ and the OBTD and TBTD matrices using wave functions

obtained with a suitable isoscalar Hamiltonian.
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2.3 Determination of the INC interaction
The starting point of a calculation of the b- and c-coefficients

are the shell-model wave functions wA(v,J,T) (the label T, is

YA
unnecessary, as the matrix elements evaluated with these wave functions
are reduced in isospin space) which are obtained with an appropriate
1soscalar Hamiltonian. Due to the wide range of nuclei (14 s A 5 54)

under investigation in this work, four separate configuration spaces and

isoscalar Hamiltonians are used. These are:

(1) Op3/2 and 0p1/2 orbits (Op shell) and the interaction of Cohen
and Kurath (referred to as CKPOT) [Coh 65],

(2) od

5 and 0d orbits (1s-0d shell) and the mass-

s5/2* 181, 3/2
dependent sd-shell Hamiltonian of Wildenthal (W) [Wil 8417,

(3) Od3/2 and Of7/2 orbits and the isoscalar Hamiltonian of Hsieh
and Wildenthal (HW) [Hsi 85], and

(4) Of7/2, 1p3/2, Of5/2, and 1p1/2 orbits (0f-1p shell) and the

van Hees interaction (FPV) [van 811].

Listed in Table 2.1 are the configuration spaces, isoscalar
Hamiltonians, and the mass number A of the isobaric multiplets
considered in this work.

The many-body wave functions wA(v,J,T) used to evaluate the one-
body and two-body transition density matrices were obtained with the
Oxford-Buenos Aires-MSU shell-model code [Rae 85]. In order that the
calculation of the TBTD matrices remain tractable, some truncations on
the configuration space were found necessary, and are also listed in

Table 2.1. The effects of the model space truncations were checked by
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Table 2.1
List of configuration spaces, isoscalar Hamiltonians, and model-space

truncations used for each isobaric multiplet.

Configuration Isoscalar Mass Model Space
Space Hamiltonain Number A Truncations
Op Shell CKPOT 10-15 None
15-0d Shell W o No mor-e than four partlgles
outside the 0d orbit
5/2
3y No more than two holes
in the Od5/2 orbit
35-39 None
0d3,,70f; /5 HW 36-41 None
orbits

43 & 53 No more than two holes

in the Od3/2 orbit

0f-1p Shell FPVY) 42 None

M3,M5,M6} No more than one particle
53, & 55 outside the Of7/2 orbit
No more than one hole

in the Of‘7/2 orbit

57 & 59

a)This isoscalar interaction was designed to be used with the model

space truncations indicated.
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adding the empibically determined INC interaction onto the isoscalar
Hamiltonian, and obtaining the eigenenergies in proton-neutron formalism
(see section 2.4). The isotopic mass shifts evaluated using perturbation
theory and the truncated model spaces were found to be in good agreement
with those of the full-space proton-neutron calculation.

As was mentioned in the first Chapter, the explicit form of the
isovector and isotensor components is unknown, and must therefore be
determined empirically. With this in mind, the isospin-nonconserving

potential is assumed to have the form

ORI (k) (k)

k K
®) (y 1 100

VC(P) +P Iso

V“(r) + R , (2.3.1)

V(r) + A
[y

where VC(r) is the Coulomb potential e?/r, V"(r) and vp(r) are Yukawa

potentials of the form

~ur
e M

pr

1

V (r) =
M

. -1 -1
with Wy = 0.7fm and “p = 3.9fm , and V represents the T=1 two-body

Iso

matrix elements of the isoscalar Hamiltonian. The strength of each part

(k)

4

of the interaction in eq.(2.3.1) is embodied in the coefficients C

K
P(k), R(k), and A( ), which are assumed to depend only on the isospin

tensor rank k (note, however, that the condition C(1)=C(2)

(k)

satisfied). I is an isospin operator whose form permits the

components Vigg to correspond to the T=1 part of the proton-proton

(V(pp)) (nn)

must be

(pn))

, neutron-neutron (v ), and proton-neutron (v

interactions by



b2

V(1) - V(pp) _ V(nn) N

(1) e?
INC T F

r

Viﬁé - y(PP)  (an) o (pn) |

In this work, the two-body matrix elements of

ol

2

2) e

T

the Coulomb and

Yukawa-1like potentials are evaluated using harmonic-oscillator radial

wave functions [Law 80]. These wave functions are used because they are

a good approximation to more realistic wave functid
obtained with a Woods-Saxon potential, the separati
mass and relative coordinates is straightforward, a
mass number A is easily accounted for by the oscill
Here the matrix elements were evaluated for value A

multiplied by the scaling factor

Huw(A)

)1/2
Rw(39)

SF(A) = |

to account for dependence on A. For most nuclei und

<

this work (20 A £ 50) the oscillator parameter ca

-1/3

= 454 22 3

nw(A) - 25 V.
For other nuclei (A < 20 and A > 50), however, this

inadequate, and values of Aw determined from experi

ns, such as those

on into center-of-

nd the variation with

ator parameter Huw.

=39, and then

(2.3.2)

er consideration in

n be approximated by

(2.3.3)

formula is

mental root mean

square (rms) charge radii must be used. The procedure followed to

determine Nw from rms charge radii is outlined by B

Wildenthal [Bro 80], and a review of the most recen

rown, Chung, and

t experimental data

is given by Brown, Bronk, and Hodgson [Bro 84] and Sherrill [She 85].
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Table 2.2

Comparison between experimental and parameterized values of Huw.

A Exp. Eq.(2.3.3)) A Exp. Eq.(2.3.3)

* *
10 15.408  15.501 39 10.982 11.173
1 15.687°  15.179 50 10.760 11,021
12 15.667,  14.886 ¥ 10.746,  10.948"
13 16.239  14.616 42 10.687 10.877
14 15.194" 11,367 43 10.629° 10.808°
15 15,7500 14.136 45 10.572°  10.675
22 12.528  12.876 46 10.516  10.612
34 11.820 11.508" 53 10.608°  10.208
35 11.310 11.“21* 55 10-652* 10.104
36 11.090 11.335 57 10.559°  10.005
37 11.304 - 11.253" 59 10.272" 9.910
38 10.982 11.173"

*
Indicates the values of Ww used in the present work.

a This value was used for A=43 for the fit in the 0f-1p shell.
° This value was used for A=43 for the fits in the 0d3/2 and 0f7/2

orbits.
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Values of Mw determined from experimental rms charge radii and
eq.(2.3.3) for the isobaric mass multiplets considered here are listed
in Table 2.2, and are shown graphically in Figure 2.1. The values of Hw
used in the present work are also indicated in Table 2.2.

Using egs.(2.2.4) and (2.2.6) the b~ and c-coefficients can be
written as a sum of terms depending on the isovector single-particle
energies s( )(p) and the strength parameters C s R , and A

Hence, the b- and c-coefficients of the analog states wA(v,J,T)

(-T s TZ £ T) can be written as

(M (1 (M v

b(A,v) =3 SP° "(A,v,p) e ’‘(p) +C (A,v,V.)
p
POy v m YO  a vy 203030
eta,v) = ¢ Py vy« ey vy
R(z)Y(Z)(A,v,Vp) R A(Z)Y(Z)(A,v,VISO), (2.2.3p)

(1) (k)

where the quantities SP (v,A,p) and Y (v,A,VU) are given by

(1) SF(A) )
SP T (A,v,p) = /L(2Ji+1)Ti(2T1+1)(Ti+1YT OBTDA,V(p,p,1) (2.3.4a)
(1) SF(A)
Y (A’V’V ) = + + +
U /[(ZJi 1)Ti(2Ti (T, 1]

x ) TBTD, (313239,T=1:3,3,:J,T=1;Ad=0,k=1)
. ] \Y B
orbits

(k) pk) (k) (k)
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(1

x <1 Jp3d,T=1]]] VuI [lljaj“;J,T=1>A=39, (2f3.ub)

SF(A)
(2Ji+1)(2Ti-1)(2Ti+1)(Ti+1)(2Ti+3)]

(2)
Y (A'v’vu) = /[

x ) TBTD, (313259, T=1:J,4,3Jd,T=1;40=0,k=2)
s 'V
orbits

(2)

x <J,323Jd,T=1]}| v I |||jaj“;J,T=1>A=39. (2.3.4¢)

The reduced two-body matrix elements in eq.(2.3.4) are given by

. 1 .. 1/2
<J1dzsd,T=1]]]| vul( ) [ 3:d43d,T=1> = [§(2J+1)]
x <j1j2,Jl VU ljsj»;J>r
- - (2) - 5 172
a3, TV DY ] 353050, T=1> = [F(20+D) ]
x <3135, 9| v, |33da:d>.
. . . (M) (k)
The single-particle energies ¢ (p) and the strength parameters C ,
P(k), R(k), and A(k) can then be determined by performing a least-

Squares fit to a set of experimental b~ and c-coefficients.

2.3a Fit to b-coefficients
In this section, results of the least-squares fit to experimental

b-coefficients are presented. Four separate isovector interactions were
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determined, and the results are given in Tables 2.3 (Op shell), 2.4 (1s-
0d shell), 2.5 (0d3/2 and Of7/2 orbits), and 2.6 (Of-1p shell). Given in
each table are the fitted parameters, the uncertainty of each parameter,
and the rms deviation between fitted and experimental values for each
fit. The data base for each of the fits was determined from the ground-
state binding energies tabulated by Wapstra and Boos [Wap 82] and the
excitation energies compiled by Endt and Van Der Leun [End 78] and

Ajzenberg-Selove [Ajz 82]. The free parameters were taken to be the

(1

isovector single-particle energies, ¢ (p), for each valence orbit, the

(1) (1)

the Coulomb strength coefficient C and any one of coefficients P )
g (n

, and A - The restriction on the number of parameters was imposed
because the experimental data were not sensitive to the determination of

more than one parameter of the charge-asymmetric interaction (V(A) =

v(pp) - V(nn)). In addition, fits to Of-1p-shell b-coefficients were

(1) (1) (n

performed while requiring that ¢ ’'(0f, ,.) = e '’ (Of ) = ¢ "(0f) and

3 7/2
(1) (1)

572

(1) B _ . - )
€ (193/2) =€ (1p1/2) = ¢ "(1p). This last condition was imposed

because of the insensitivity of the experimental data to the single-

(1 (1)

particle energies ¢ (or ) and ¢ (1p ). This assumption, however,
1/72

5/2
is not unheasonable, as the single-particle energies of the orbits nij,
J=2-1/2 and $+1/2, are identical when evaluated with harmonic-oscillator
wave functions.

As can be seen from Tables 2.3, 2.4, 2.5, and 2.6, an optimal fit
is obtained for all configuration spaces except the Op shell by varying

(1)

the isovector single-particle energies and restricting C to unity and
(1 (1 M e

P » R and A to zero. Subsequent variations of these parameters

do not lead to a significant reduction in either the rms deviation or

the parameter uncertainties. For the Op shell, however, the inclusion of
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Table 2.3
Single-particle energies and potential strength parameters obtained from

fits to Op-shell b-coefficients.

(1) ) (1) (1) (1) (1) A(1)

£ (133/2 € (p1/2) C P R . L RMS
(MeV) MeV) (x10 7) (keV)
0.909(uy) 0.887(45) 1.00 - - - 73.2
1.001(139) 0.964(111) 0.94(7) - - - 70.3
0.909(131) 0.887(117) 1.00 0.0(5) - - 73.2
0.829(71) 0.786(84) 1.00 - 58(142) - 64.8
0.941(30)  0.804(38) 1.00 - - -3.5(1)  44.6
1.052(88)-  0.914(71)  0.49(14) 2.9(8) - - 4.0
0.052(88)  0.914(71)  0.83(6) - 122(36) - 41.0
1.057(82) 0 0.93(H) - - -3.6(1)  38.1

.891(68)

Single-particle energies are given in MeV, while potential
Strengths are defined in eq.(2.3.1) of the text. Uncertainties for each
parameter are given in parenthesis. Note that the single-particle

energies are appropriate for A=39.
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Table 2.4

Single-particle energies and potential strength parameters obtained from

fits to 1s-0d-shell b-coefficients.

(1

(1) (n (1

g A(1

)

Miag 0 e Pis, ) e (45,5 ' p Dooms

(Mev) Mev) (x10 ) (keV)
3.325(15) 3.305(16) 3.346(7) 1.00 - - - 26.5
3.348(74) 3.445(18) 3.484(12) 0.96(2) - - - 25.0
3.348(81) 3.418(18) 3.454(15) 1.00  -0.2(2) - - 25.8
3.323(43)  3.294(17) 3.337(17) 1.00 - 4(18) - 26.5
3.312(18) 3.291(16) 3.330(11) 1.00 - - -0.8(7) 25.8
3.345(80) 3.430(18) 3.473(15) 0.94(4) 0.2(4) - - 24.8
3.342(78) 3.426(18) 3.469(15) 0.96(2) - 11(18) - 24.8
3.351(78) 3.440(22) 3.476(15) 0.96(2) -~ - -0.6(7) 24.5

Single-particle energies are given in MeV, while potential

Strengths are defined in eq.(2.3.1) of the text. Uncertainties for each

parameter are given in parenthesis. Note that the single-particle

energies are appropriate for A=39.
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Table 2.5
Single-particle energies and potential strength parameters obtained from

fits to b-coefficients in the 0d and of orbits.

3/2 7/2

5(1)(d3/2) 5(1)(f7/2) C(1) P(1) R(1) A(i; RMS

(MeV) (MeV) (x10 ) (keV)
6.262(10)  6.019(13)  1.00 - - - 28.8
6.262(20)  6.018(35) 1.00(2) - - - 28.8
6.256(20)  6.008(23) 1.00 0.1(2) - - 28.7
6.253(17)  6.006(23) 1.00 - 13(18) - 29.1
6.254(11)  6.015(13)  1.00 - - -1.6(10) 30.5
6.250(20)  6.013(35) 0.93(7) 0.5(6) - - 31.3
6.259(21)  6.022(35) 0.98(3) - 23(25) - 31.2
6.247(22)  6.003(35) 1.01(2) - - -1.7(11) 29.4

Single-particle energies are given in MeV, while potential
strengths are defined in eq.(2.3.1) of the text. Uncertainties for each
parameter are given in parenthesis. Note that the single-particle

energies are appropriate for A=39.
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Table 2.6
Single-particle energies and potential strength parameters obtained from

fits to 0f-1p-shell b-coefficients.

() 8(1)(p) C(1) p(?) R(1) A(1) RMS

(MeV)  (MeV)  (x10°2)  (keV)

N

7.460(10)  7.200(84)  1.00 - - - 30.5
7.454(13)  7.176(92)  1.01(1) - - - 29.7
T.454(14)  7.175(95)  1.00 0.1(1) - - 29.7
7.462(17)  7.210(99)  1.00 - ~4(2) - 30.7
7.467(18)  7.209(89) 1.00 - - 0.6(13) 31.0
7.461(18)  7.199(105) 1.04(6) =-0.4(7) - - 30.5
T.H64(17)  7.202(98)  1.02(2) - -25(29) - 30.6
T.460(21)  7.184(99)  1.01(1) - - 0.5(13) 30.2

Single-particle energies are given in MeV, while potential
strengths are defined in eq.(2.3.1) of the text. Uncertainties for each
parameter are given in parenthesis. Note that the single-particle

energies are appropriate for A=39.
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Table 2.7

Parameters for the "best" isovector interaction for each configuration

shell-model space.

Op Shell
(1) (1) (1) (n (1 (1
€ (p3/2) € (p1/2) C S— E_— A
1.057(82) 0.891(67) 0.93(4) 0.0 0.0 -3.6(1)
1s-0d Shell
(1) (1) (1) (1) (1) (1) (1)
(d5/2) £ (51/2) € (d3/2) o P R A
3.325(15) 3.305(16) 3.346(7) 1.00 0.0 0.0 0.0
Od3/2 and 0f‘7/2 orbits
(1) (1) (1) (1) (1) (n
£ (d3/2) € (f7/2) C E__ E_; f__
6.262(10) 6.019(13) 1.00 0.0 0.0 0.0
0f-1p Shell
e(])(f) 5(1)(p) C(1) P(1) R(1) A(1)
7.460(10) 7.200(84) 1.00 0.0 0.0 0.0

The parameters are given in the same units as they appear in Tables

2.3 (0Op shell), 2.4 (1s-0d shell), 2.5 (d and Of

3/2
(0f-1p shell).

7/2

orbits), and 2.6
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Table 2.8
Comparison between fitted b~coefficients and experimental values for

Op—shell nuclei.

A J T b (exp) b (fit)

(MeV) (MeV)

10 0o 2.329(2) 2.306
1 172 1/2 2.640(2) 2.682
: 3/2° 1/2 2.765(2) 2.724
(E D 2.767(1) 2.795
2 1 2.770(1) 2.787

13 1/2_ 172 3.003(2) 2.951
3/2° 172 2.829(2) 2.894

1 o g 3.276(4) 3.228
15 1/2_ 172 3.536(1) 3.550
3/2° 1/2 3.388(10) 3.387
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Figure 2.2: Plot of Op-shell b-coefficients. Experimental data are
represented by open boxes, while the fitted values are
given by the line and the solid diamonds. The coefficients

are plotted in the same order as they appear in Table 2.8.
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Table 2.9

Comparison between fitted b-coefficients and experimental values for

18-0d-shell nuclei.

A Jd T b (exp) b (fit)
(MeV) (MeV)
22 0. 1 4.597(2) 4.593
2. 1 4.583(2) 4.586
4yt 4.573(10) 4,587
2¥ 1 4.571(10) 4,58
38 0, 1 6.559(1) 6.546
2+ 1 6.541(1) 6.525
2, 1 6.551(2) 6.533
0 1 6.537(2) 6.521
35 372, 1/2 6.747(2) 6.736
1/2, 1/2 6.712(2) 6.677
5/2, 1/2 6.734(2) 6.716
3/2+ 1/2 6.654(2) 6.673
5/2. 172 6.727(3) 6.659
1/2+ 1/2 6.664(2) 6.661
372" 372 6.666(10) 6.673
36 2. 1 6.830(4) 6.832
30 6.836(7) 6.833
17 6.806(7) 6.821
ot 2 6.827(13) 6.837
37 372, 172 6.931(1) 6. 921
1/2+ 1/2 6.890(10) 6.929
5/2. 1/2 6.884(10) 6.966
3727 372 6.983(10) 6.997
1/2% 372 6.947(12) 6.969
38 00 1 7.109(5) 7.116
2 1 7.129(6) 7.159
39 372, 172 7.313(4) 7.317
/2 1/2 7.257(4) 7.292
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Figure 2.3: Plot of 1s-0d-shell b-coefficients. Experimental data are
represented by open boxes, while the fitted values are

given by the line, The coefficients are plotted in the same

order as they appear in Table 2.9.
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Table 2.10
Comparison between fitted b-coefficients and experimental values for

nuclei in the 0d and Of orbits.

3/2 7/2

A JN T b (exp) b (fit)
(MeV) (MeV)
36 2. 1 6.830(4) 6.838
3, 6.836(7) 6.837
1 1 6.806(7) 6.825
37 3727 172 6.931(1) 6.945
38 0, 1 7.109(5) 7.103
2. 1 7.129(6) 7.11
o, 1 6.951(6) 6.962
2 1 6.989(6) 6.933
39 3727172 7.313(4) 7.284
3/2_ 172 7.318(L) 7.286
7/2 1/2 7.295(4) 7.300
4o 2. 7.272(5) 7.311
Vo 7.286(6) 7.313
5 1 7.289(6) 7.310
w1 7/27 172 7.278(4) 7.321
43 7/2° 172 7.644(4) 7.631

53  7/2 1/2 9.086(18) 9.060
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Table 2.11
Comparison between fitted b-coefficients and experimental values

O0f-1p~shell nuclei.

A J T b (exp) b (fit)
(MeV) (MeV)
b2 ol 1 7.495(1) 7.515
2, 1 7.510(7) 7. 484
4o 7.457(7) 7.474
6 1 7.421(7) 7.473
43 7720 172 7.644(1) 7.667
45 7/2° 172 7.902(27) 7.900
3727 1/2 7.929(27) 7.875
6 o' g 8.113(13) 8.057
53  7/2 1/2 9.086(18) 9.082
55  7/2° 1/2 9.473(10) 9. 462
57 3/2° 1/2 9.510(50) 9.530

59 372 1/2 9.882(40) 9.877




60

8.25 lllllllllllllllll- -lllllllllllllllll-lo.o
i e 1 T ?
8.00 — — — —1 9.8
_ i ad 1 L )
= _ 1 € i
> i 1 C ]
\2; 7.75 — ] — —1 9.6
i A I ]
2 ; I B
o 750 -4 F -
9 i i 10 ] %4
b i 1 L A
) - . A ]
8 7.25 — ] — — 9.2
| N
0 i 1 [ &
7.00 F llllllllll]lllllll i llllllllllllllllllq 90
40 42 44 46 48 52 54 58 58 60

A
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a two-body charge—asymmetric interaction proportional to the isoscalar
two-body matrix elements is necessary to improve the rms deviation of
the fit. The "best" set of parameters for each isovector interaction
studied is given in Table 2.7. Experimental b-coefficients and those
obtained with these isovector interactions are presented in Tables 2.8
(Op shell), 2.9 (1s-0d shell), 2.10 (0d3/2 and 0f7/2 orbits), and 2.11
(Of-1p shell), and are shown graphically in Figures 2.2, 2.3, 2.4, and
2.5.

As can be seen from the figures, the results of the fits are
generally good. There are, however, a few salient features which must be
pointed out. The fitted isovector single-particle energies extrapolated
to A=17 (1s-0d shell) are e(?)(Od ) = 3.697 Mev, 8(1)(1

Fit 1 5/2 Fit' %172
(1) . )
fit(0d3/2) = 3.721 MeV. These are not in good agreement with

) = 3.674

MeV, and ¢

the experimental values of 3.543 Mev, 3.168 MeV, and 3.561 MeV,

e ana "o [Wap 82 and Ajz 82]. The

respectively, determined from
tendency for the experimental values to be smaller than those needed for
the upper sd shell is most likely due to the fact that these levels are

17

loosely bound relative to O (unbound in the case of the 0d orbit in

3/2
17F), and, therefore, have a larger rms radius and a smaller Coulomb
energy. This effect is particularly large for the 031/2 orbit because of
the absence of a centrifugal barrier.

Another feature of the 1s-0d shell fits is that better results were
obtained using values of hw given by eq.(2.3.3) than with the
experimental values shown in Table 2.2. The parameters of the isovector
interaction were also determined using the experimental values shown in

Table 2.2. The rms deviation of these fits, however, were generally 20

keV greater than those obtained using Mw given by eq.(2.3.3). The cause
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of this discrepancy is not understood, but since the parameterization of

hw gives generally better results, it is assumed that this procedure

(1)
INC

between fits using experimental and parameterized values of hw in the

leads to a better determination of V in the 1s-0d shell. A comparison
Od3/2 and 0f‘7/2 orbits was not performed, but good results were obtained
using the parameterized values. It should be remarked, however, that the
fits in the 1s-0d shell and the Oci3/2 and 01“7/2 orbits are in stark
contrast with those in the Op and 0f-1p shells, where experimental
values were essential in order to reduce the rms deviations.

The somewhat larger rms deviation of the fit in the Op shell is
most likely due to limitations of the configuration space and the
loosely bound nature of these light nuclei. There is strong experimental
evidence (low lying J=1/2 and 5/2 positive parity states in odd-A
nuclei) which indicates that the 1s and 0d orbits contribute

1/2 5/2

significantly to the structure of nuclei in this mass region (12 £ A £
16). At present, however, there is no reliable isoscalar interaction
which accounts for configurations due to both the Op and 1s5-0d shells
(the interaction of Zucker, Buck, and McGory (ZBM) [Zuc 69a and Zuc 69b]
allows excitations into the 131/2 and Od5/2 orbits, but excludes
particle-hole excitations of the Op3/2 orbit). An additional feature of
these light nuclei is that they are rather loosely bound to particle
breakup, indicating that particle clustering effects are important. This
shows that perhaps some correction to the matrix elements evaluated with
harmonic-oscillator wave functions is needed.

In all but the Op shell the fits do not give a strong indication

that a charge-asymmetric interaction is necessary. The importance of the

charge-asymmetric interaction in the Op shell, however, can be partly
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interpreted as being an effect due to differences between proton and
neutron radial wave functions (radial-wave-function (RWF) correction).
Coulomb repulsion tends to push proton radial wave functions out

relative to neutrons, and therefore, matrix elements of V(pp) will

(nn) (pp) _  (nn)

differ from those of v even if v . This effect can be
particularly important for light nuclei because of their loosely bound
nature. Lawson [Law 79] has estimated the RWF corrections for the Op
shell by assuming that the Cohen-Kurath two-body matrix elements are
effected in the same manner as a §-function potential. With this
assumption he finds that the two-body matrix element

<(0p3/2)%;3=0| V |(0p3/2)2%;J=0> for the neutron-neutron system is 5.6%
larger than that for the proton-proton system. The value of 3.6%
obtained with the fitting procedure is not inconsistent with the results
of Lawson. Unfortunately, however, it is impossible to determine how
much of this 3.6% correction is due to the RWF correction or the
presence of a charge-asymmetric two-body interaction. With this, and the
results of Lawson in mind, the charge asymmetric potential obtained for
the Op shell is taken to be due to the RWF correction.

Recently, effects of the radial-wave-function correction have also
been estimated for 1s-0d-shell nuclei by Sagawa [Sag 85], using wave
functions obtained from a self consistent Hartree-Fock calculation
which utilizes a Skyrme-type interaction (a description of this type of
Hartree-Fock calculation is given in Chapter Three, section 3). RWF
correction effects on the 1s-0d-shell two-body matrix elements are
smaller than in the Op shell, being typically 1% or less. To determine
the effect on the previous fits to 1s-0d-shell b-coefficients, the

(1)

components of VINC were redetermined while including the estimates of




Single-particle energies and potential strength parameters obtained
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Table 2.12

from fits to 1s3-0d-shell b-coefficients while including the RWF

correction to the b-coefficients.

Mg, ¢V, ) eMiay, ¢ ) R A(ii RMS
(MeV) (MeV) (x10 7))  (keV)
3.315(17) 3.100(19) 3.168(8) 1.00 - - - 29.5
3.359(73) 3.387(17) 3.450(11) 0.92(2) - - - 23.9
3.356(90) 3.304(20) 3.462(16) 1.00  -0.5(2) - - 27.4
3.300(49) 3.046(19) 3.122(16) 1.00 - 20(21) - 29.0
3.287(20) 3.070(18) 3.132(12) 1.00 - - -1.8(7)  26.6
3.354(74) 3.339(17) 3.411(13) 0.85(4) 0.7(4) - - 22.1
3.340(70) 3.324(16) 3.404(14) 0.91(2) - 36(16) - 21.7
3.320(70) 3.325(16) 3.483(14) 0.93(2) -~ - -1.5(6) 21.4

Single-particle energies are given in MeV, while potential strengths

are defined in eq.(2.3.1) of the text. Uncertainties for each parameter

are given in parenthesis. Note that the single-particle energies are

appropriate for A=39.
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Sagawa. The results of these fits are glven in Table 2.12, where it is
seen that an optimal fit was obtained by renormalizing the Coulomb
strength to 0.93, and including a charge asymmetric interaction equal to
-1.5 x 10-2VISO. This is consistent with the results of Negele [Neg 711,
Sato [Sat 76], and Shlomo [Shl 78], where it was found that a small
(approximately ~1%) phenomenological nuclear charge-asymmetric
interaction could account for at least part of the Nolen-Schiffer
anomaly. It should be pointed out, however, that at present, there is no
theoretical model for a charge—-asymmetric interaction which can account
for the Nolen-Schiffer anomaly. A recent experiment by Winfield et al.
[Win 85] also indicates that the nucleon-nucleon interaction between
neutrons is slightly more attractive than it is for protons. Their
results, however, do not rule out the possibility that v(pp) is equal to
v(nn). In addition, these studies are not contradicted by free nucleon-
nucleon scattering data. The nucleon scattering lengths are: a(pn) =
~23.715£0.015 fm [Hen 791, a ™) . -18.640.5 rm [Gab 811, and a PP’ .
~17.14£1.0 fm (corrected for electromagnetic effects; the error reflects
the uncertainty in this correction) [Hen 73]. The change in the

potential AV is related to change in the scattering length, Aa, for

Yukawa potentials by [Hen 69]

Using this relation, the proton-proton and neutron-neutron scattering

lengths indicate that the v(nn) is 0.6+0.4% times more attractive than

v(pp).
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The choice as to which isovector interaction to use in the 1s-0d
shell is somewhat arbitrary, and must be checked. The calculations in
the present work were performed using the interaction given by the
parameters in Table 2.11. This is because the RWF corrections of Sagawa
are rather recent and that the 1s-0d-shell calculations reported here
are quite time consuming. Therefore, rather than re-performing all the
calculations reported here, a comparison is made between results
obtained using both interactions for a simple case. This comparison then
gives some indication of the uncertainty that is caused by the two
alternative isovector interactions.

A final feature of the fits is that in some cases a renormalization
of the Coulomb strength is needed in order to reduce the rms deviation
between fitted and experimental values. Renormalizing the Coulomb
strength, however, is not unreasonable, as a number of corrections are
expected. These are primarily due to neglecting short range
correlations, higher order Coulomb effects ((v/c)? corrections to the
Coulomb interaction and vacuum polarization), and the fact that
harmonic-oscillator wave functions were used. It should be kept in mind,
however, the strengths of the isovector and isotensor parts of the

Coulomb interaction must be the same.

2.3b Fit to c-coefficients

In this section, results of the least-squares fit to experimental
c-coefficients for Op- and 1s-0d-shell nuclei are presented. Fits to
nuclei in the Od3/2—0f‘7/2 orbits and the 0f-1p shell were not performed

because there is very little experimental data in this region. There is,
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however, evidence [Hen 69] that the isotensor interaction can be

accurately approximated by

(2) _
INC

2

v Vo + (-4 x 10 <) v._ . (2.3b.1)

Iso

- v(nn)

Note if V(pp) » this parameterization is equivalent to increasing

the T=1 proton-neutron matrix elements by 2%. With this in mind, a fit
to Op and 1s-0d shell c-coefficients is made to test whether eq.(2.3b.1)

can be applied to 0d -0f, ,,-orbit and the O0f-1p-shell nuclei.

3/2 7"1/2

The data base for the fits was again determined frdm the ground
state masses tabulated by Wapstra and Boos [Wap 82] and the excitation
energies compiled by Endt and Van Der Leun [End 78] and Ajzenberg-Selove
[(Ajz 82]. The free parameters were the Coulomb strength coefficient
C(z)and any one of coefficients P(Z), R(Z), and A(2). This restriction
was imposed because, as in the case of the b-coefficients, the
experimental data were not sensitive to the determination of more than

one parameter of the nuclear charge-dependent interaction (V(CD) = v(pp)

+ V(nn) -2 v(pn)). Results of the fits are given in Tables 2.13 (Op
shell) and 2.14 (1s-0d shell), where it is seen that a charge-dependent
interaction is necessary in order to reduce the rms deviation between
fitted and experimental values. Clearly, the results of the 1s-0d-shell
fits support the parameterization of Véﬁé given by eq.(2.3b.1), while
those of the Op shell do not. It should be noted, however, that the
results in the Op shell are not expected to be as good as those in the
15-0d shell because of model-space limitations and the loosely bound

nature of these nuclei. These effects, however, are not as strong as

they are in the case for the b-coefficients because c-coefficients are




68

Table 2.13

Fitted parameters obtained from fits to Op-shell c-coefficients.

(2) (2) (2) (2)

C P R A RMS
(MeV) (MeV) (x1072) (keV)
1.00 - - - 27.5
1.06(4) - - - 24,5
1.00 0.4(1) - - 20.1
.00 - 36(8) - 141
1.00 - - -1.5(2) 10.8
0.75(5) 1.4(2) - - 8.3
0.92(3) - 60(9) - 8.3
0.98(2) - - -1.6(3) 10.3

Strengths are defined in eq.(4.3.1) of the text. Uncertainties for

each parameter are given in parenthesis.



Table 2.14
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Fitted parameters obtained from fits to 1s-0Od-shell c-coefficients.

C(2) P(2) R(2) A(2) RMS
(Mev) (MeV) (x107%) (keV)
1.00 - - = 35.0
1.17(3) - - - 20.1
1.00 1.05(8) - - 12.8
1.00 - 78(4) - 8.2
1.00 - - ~4.2(2) 7.0
0.82(H) 2.0(2) - - 8.2
0.99(2) - 81(9) - 8.1
1.00(2) - - -4.1(3) 7.0
Strengths are defined in eq.(4.3.1) of the text. Uncertainties

each parameter

are given in parenthesis.

for
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Table 2.15
Parameters of the best isotensor interaction for each configuration

shell-model space.

(2) (2) (2) (2)

Configuration c P R A
space (MeV) MeV) (x10—2)

0p Shell 0.93(3) 0.0 60(9) 0.0

15-0d Shell 1.00 070 78(4) 0.0

Od3/2-0f7/2 orbits 1.00 0.0 0.0 -4.0

Of-1p Shell 1.00 0.0 0.0 ~-4.0

The strength coefficients are defined in eq.(4.3.1) of the text.
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Table 2.16
Comparison between fitted c-coefficients and experimental values for

Op—-shell nuclei.

A J T c (exp) ¢ (fit)
(keV) (keV)

10 0 1 363(2) 369

12 1 1 244(2) 232
2 1 203(2) 209

13 3/2° 3/2  258(10) 266

ool 1 337(8) 325
2 1 264(7) 265
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Table 2.17
Comparison between fitted c-coefficients and experimental values for

18~0d-shell nuclei.

A JT T ¢ (exp) ¢ (fit)
(keV) (keV)
22 0. 1 316(2) 315
27 1 282(2) 272
+

Ao 235(10) 226

2" 1 231(10) 228
3800 1 284(2) 282
2. 1 235(2) 228

2, 1 19%(2) 197

00 1 235(2) 252

35 3/2° 372 214(10) 204

36 2, 1 1u6(4) 145
3, 1 2147 229
1,1 188(7) 199
0" 2 201(13) 204

37 3/2, 3/2  196(10) 204
1/2° 3/2 210(14) 218

3800 1 285(5) 282
2" 1 199(6) 198
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less effected by the differences in the radial wave functions. Heavier
nuclei (22 s A s 60), on the other hand, are not as sensitive to model
space limitations and are not as loosely bound. Therefore, the results

obtained in the 1s-0d shell are expected to be typical for the 0d and

372

1f orbits and the 0f-1p shell.

7/2
The "best" parameter set for each isotensor interaction is listed
in Table 2.15, while a comparison between experimental values and those
obtained with these interactions for Op and 1s-0d shell nuclei is given
in Tables 2.16 and 2.17 and Figures 2.6 and 2.7, respectively. Note that
(1 (2) (1) _ (2

since C must equal C the values C = 0.93 are chosen.
2.4 The Total Hamiltonian

Once the isovector and isotensor components of H have been
determined the total Hamiltonian is obtained by inverting eq.(1.1.8).
The T=1 part of the proton-proton, neutron-neutron, and proton-neutron

matrix elements is given by

pePp) _ (0) L1, 1 (2)

ikt = Vige (T * 3 ijkt T8 Vijkle (2.4.1a)
() _ (0) v 1 (1) 1 (2)

ijkl = Vigk (=D - 3 Vijki T Vijk1e (2.4.10)
(pn) oy _ (0 o .y 1 (2)
hijkl(T_]) -.vijkl(T—1) 3 Vijkl’ (2.4.1¢)

where the subscript ijkl represents the antisymmetric two-body matrix

element <j(i),j(j);Jd| v |j(k),j(l);J>, and vi?il(T=1) represents the T=1

two-body matrix elements of the‘isoscalar Hamiltonian. The total proton-

neutron two-body matrix elements are given by
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<), )39 n (P ij(k),jn(lv);J> -
(=07 sy 92 SR L
x {<1—<—1)J+‘aj3j“)2 . (1+(-1>J<s.1 2)2}‘”2
x [(1—(—1>J*‘ajlj2>(1—(—1)J*’sjaj“> h i o (T=1)
. (1+<—1>Jsjljz>(1+(~1>Jsj3j“) vggil(T=O)] R

(0)

Wwhere v (T=0) represents the T=0 two-body matrix elements of the

; +1
isoscalar Hamiltonian. Note the that terms (1—(—1)J 6jj') and (1+

(-T)Jéjj,) are due to the Pauli exclusion principle. The proton and

neutron single-particle energies are

(p) (0)

€ = € +

32-5“), (2.14.3a)

(1)

(n) E(O) 3 . (2.4.3b)

-

From the total Hamiltonian, determined from the procedure outl ined
by egs.(2.4.1), (2.M;2), (2.4.3), one obtains the states wA(v,J,TZ)
which have mixed isospin and eigenenergies which can be very accurately
parameterized by eq.(1.2.1). With these isospin-mixed wave functions it
is then possible to make predictions as to the extent of isospin-

symmetry violation in nuclei.



Chapter Three

3.1 Introduction

In this chapter, corrections to thevFermi matrix element for
Superallowed B-transitions due to isospin impurities are investigated.
The important feature of these decays is that once all nucleus dependent
corrections have been applied to the experimental ft values, these

quantities should be constant and given by

f‘t=—-%;, (3.1.1)
Vv

where K = 21 1n2 W7 c¢®/(mc?)®, and Gv is the effective vector coupling
constant for nucleon f-decay. Although many superallowed transitions
have been observed experimentally, at present,ft values for only eight
transitions have been measured with sufficient accuracy to permit a test
of eq.(3.1.1). For this reason, this work concentrates on corrections

for the ground state B-decay of 1MO, 3“01, MZSC, u6v, 50Mn, and 5L‘Co and

38K.

the decay of the metastable state in 26Al and
As was mentioned in the first chapter, there are two classes of
corrections which must be evaluated within the frame work of the nuclear
shell model. The first arises because the i1sospin-nonconserving (INC)
force mixes states of different isospin which are contained within the
shell-model configuration space. The second is due to mixing with states
which lie outside the range of the configuration space. The effects of

this last type of isospin mixing is to change proton radial wave

functions relative to neutrons. These corrections have been evaluated

77
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previously by Towner, Hardy, and Harvey [Tow 73, Har 75, and Tow T77],
and héve failed to yield constant ft values for the eight transitions
mentioned above. There have been many improvements, however, in nuclear
models since these first calculations, and therefore it is prudent to
re-evaluate these corrections, making use of these recent advances in
our understanding of nuclear structure. Perhaps the most important
improvement in regards to this problem are radial wave functions
obtained from a self-consistent Hartree-Fock calculation utilizing a
Skyrme~type interaction. In addition, revised isoscalar Hamiltonians and
an INC interaction which reproduces experfmental 1sotopic‘mass shifts
(Chapter Two) are used in this work.

In the second section of this chapter, the matrix element of the
Fermi operator is derived within the formalism of the nuclear shell
model, taking into account the two corrections mentioned above. In the
third section, values of the correction due to the difference in the
radial wave functions are presented, while those due to configuration—
space mixing are presented in the fourth sectioﬁ. A comparison between
values obtained in the present work with those evaluated previously [Tow
73, Har 75, and Tow 77] is given in the fifth section. Finally, in the
sixth section, the implications of the corrections evaluated here on

eq.(3.1.1) are given.

3.2 Corrections to the Fermi Matrix Element, GC

The starting point of a shell-model calculation of the Fermi matrix

element are the states WA(F,J,TZ), which are eigenstates of the total

Hamiltonian, that is [H(O) sy v§§é

NG ] ¥, (1) = E(i)wA(;). Within the
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frame work of the nuclear shell model, the Fermi matrix element for the

positron decay of the state WA(P,J,TZ) to WA(P',J,TZ-1) is

= ' - ‘ =
Mo = <Y (0,0, T~ |wA(r,J,TZ)>

-1/2

(2J+1) ZOBTD(Jn,Jp;AJ=0) Y(23+1) 2y <n] T [p>, (3.2.1)

J

where

[ 2
.= d ,
Ry = | dr r R (r) R (r)
<n| t_ |p> = 1.

The analogous formulae for the electron decay are obtained by operating
with T, and interchanging the n/p labels. The general form of the one-
body transition density matrix (OBTD) in eq.(3.2.2) is given in proton-

neutron formalism by [Bru 77]

OBTD(j'n',ju;Ad) =

7T§X%IT7 w(r, g, | [ag,u,x ;juJAJ [l¥(r, 0,15, (3.2.2)

where a}u is the tensor operator that creates a nucleon with 1. = 2u in

Z
the orbit j, and aju is the tensor operator that destroys a nucleon in
the orbit j. Here we freely interchange the values u=1/2(-1/2) with the

labels p(n). The double bar in the reduced matrix element in eq.(3.2.2)

denotes a reduction in angular momentum space.
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If the effects of the INC forces are neglected, the states
WA(F,J,TZ) have definite isospin T, and the sum in eq.(3.2.1) is given
Just as:
M =[M(t+1)-7

8 (3.2.3)

FO|2 21Tz ] Sp0
where the Kronecker delta insures that only transitions between analog
states are allowed. Deviations from this value occur at two levels.
First, the one-body transition density matrix is slightly changed
because of isospin mixing among shell—model configuration‘states, and
second, the radial overlap integral Qj differs from unity because the
proton single-particle wave functions are pushed out relative to the
neutron wave functions. This last correction is due to the one-body
Coulomb potential causing mixing with states which are not contained in
the shell-model configuration space (see Chapter One).

The correction to the one-body transition density matrix can be

accounted for by the quantity B(jn,jp;AJ=O), defined as
A, T, . . .
B(Jn,Jp,O) = OBTD (Jn,Jp,,O) OBTD(Jn,Jp,O) (3.2.4)

where the superscript T denotes the one-body transition density matrix
obtained when both the initial and final states possess good isospin.
The proton and neutron single-particle wave functions used to
evaluate Qj are dependent on the selection of the single-particle
potential parameters, such as the well depth. In order to specify the
separation energies needed for the calculations of the radial wave

functions we insert a complete set of states ¥(w) of the A-1 nucleon
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system between the creation and annihilation operators of
T T
OBTD (jn,Jp;O). The one-body transition density matrix OBTD (j'u',ju;Ad)

is then

T Jpotd_+3*ad
OBTD (J'w',ju;Ad) = § (=1) VI(2d+1)(29,,+1) ]
i
Jpy I, A
X {j' j g FvDosirursr',m S(iu;r,m) 1. (3.2.5)
™

The spectroscopic factor S(ju;T,w) is given in terms of the matrix

element of a}u, reduced in angular momentum space, by

1.

<¥(r, T || ay || ¥v(m> 2

S(jusr,m) = Z Ju .
/(2Jr+1)

The proton-neutron spectroscopic factor, S(ju;T,m), is related to the

spectroscopic factor in isospin formalism by
. 2 :
S(ju;T,m) = C (u) S(j;r,m (3.2.6)
where
Cluw) =(T_T 1 u T, T..)
T 2 :

mZ

S(j;Tr,m) is given in terms of the matrix element of a;, reduced in

angular momentum and isospin space, by
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<¥(m ||| a; ] ¥(m> 2

S(j;r,m = T2 #1) (2T #1) ] )

The proton and neutron radial wave functions are then evaluated with the
appropriate separation energy of the intermediate parent state ¥(w), and
the radial integral of these wave functions, QJ T’ is weighted by the

1

factor v[S(j;r',msS(j;r,m 1.

Utilizing equations (3.2.4), (3.2.5) and (3.2.6), with AJ=0, the

Fermi matrix element can now be rewritten as

1/

MF = (2J+1) 2 [2 OBTDT(jn,jp;O) Y(25+1)

J

- E B(Jn,Jp;O) Y(25+1)

1 1 3 A j . -
- 10 o0 ) /20 AST st m I ¢ a; 01 .2

For superallowed decays, eq.(3.2.7) gives

2 2 2
IMFI = IMFOI (1 -8 = |MF0| (1= (8g * 6py))  (3.2.8)
where GRO and 6IM are given by
890 = —— I C(1/2)C(-1/2) /(23+1)
M Jym r
FO !
x /[S8(3;r,ms(j;r,m] (1 ~-a, ), (3.2.9a)

Jom
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N

Spy = = L B(J,»d530) Y(25+1). (3.2.9p)
Mpo

3.3 Radial-Overlap Contribution, GRO

Previously [Tow 73, Har 75, and Tow 77], values for GRO have been
calculated using proton and neutron radial wave functions obtained with
a central Woods-Saxon plus Coulomb potential. This procedure
overestimates the difference between the proton and neutron radial wave
functions by neglecting an induced isovector interaction that arises
from the difference between the proton and neutron densities. To take
into account the effects of this induced interaction a self-consistent
Hartree-Fock calculation utilizing a Skryme-type interaction has been
performed.

Skyrme proposed [Sky 56 and Sky 59] that interactions between
nucleons within the nuclear environment can be approximated by an

effective force which is composed of two parts. The first is a two-body

potential of the form
> > > >
vir,,r,) = t (1 + XOPO)G(r‘1 -r,)
1 > > 2
t s t, [8(r, - r)k™ + k°
> > > > > > > > >
* Ek'ed(ry - rdk o+ 1wy (o, + og,)k'x8(r, - r,)K,
where t,, t,, t,, x,, and w, are adjustable parameters, Q denotes the

operator (6, - 32)/21 acting on the right, K' is the operator —(61 -

> 1
V,)/2i acting on the left, and P0 = 5(1 + 31-32) is the spin exchange
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operator. The second component of the interaction is the three-body

potential
> > > > > > >
V(rlrrzrrg) = ta‘s(r'l - rz)ﬁ(rz - r‘a)’

where t, is a free parameter. The qualitative effect of t, and t, is to
determine the strength of that part of the interaction which acts on
relative even states (s- and d-states), while t, determines that part
acting on relative odd states (p-states). Since the operator xoP0 is
equivalent to —xoPT (PT is the isospin exchange operator)'when acting on
antisymmetrized states, the parameter X, determines the strength of the
component which is sensitive to proton-neutron asymmetries. The one-body
spin-orbit potential is governed by the parameter w,. The potential
v(?l,;z,ga) should not be thought of as a real three-body interaction,
but rather a convenient way of simulating the density dependence of the
effective interaction. In fact, in Hartree-Fock calculations this three-
body potential is equivalent to a two-body zero-range interaction with a
linear density dependence {Vau 72].

The parameters of the Skyrme interaction are determined by
requiring that they reproduce bulk properties of closed-shell (magic)
nuclei [Vau 72, Dov 72, Bei 75, Van 81b, and Van 81c], such as ground
state binding energies, proton distributions, excitation energies of the
giant isoscalar monopole and quadrupole resonances, and Gamow-Teller
strengths. The parameters used in this work are those of the SGII
interaction of Van Giai and Sagawa [Van 81b and Van 81c]. For this

interaction, it was found that in order to describe the giant isoscalar
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monopole state, the linear density dependence suggested by the three-
body potential had to be replaced by a dependence on p1/6.

Hartree-Fock calculations using the Skyrme interaction lead to a
set of spherical nonlocal differential equations with eigenfunctions
NL NL .
vy, (r) = u, (r)/r and eigenvalues €y [vVau 72, Dov 72, and Bei 75]. The
nonlocal eigenfunctions and eigenvalues can be obtained from the

following equivalent set of differential equations, which involve a

local energy-dependent potential [Dov T72]

2
AT 2(841) L

(r)
2m r.2 o, U

u (r) +
u

sy Wt ) e W, (3.3.1)
H o, u

’ au o, M

with

*
Vi(r) - [1 - 24 cay t UL+ U0) 5oF v s (r),

’ U 1M VCoul
2

* -1
m (r)/m = {1 + co[pp(r) +p (r)] + 2uC][pp(P) s ()],
NL *( 1172 L
m r
wa,u(r) =N [—_5__] a,u(r)°

N is a normalizing constant determined by the condition

[

] Iwzeu(r)|2r2dr = 1.
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The subscript p denotes the z-projection of the isospin of the nucleon,
and o denotes all other single-particle quantum numbers.
The central and spin-orbit potentials, Uu(r) and Uio(r), are
dependent on the nucleon densities, their derivatives, and the Skyrme

parameters [Bei 75]. The coefficients C. and C1 expressed in terms of

0

the Skyrme parameters t1 and t2 are

2m 2 1
Co = = ]
0 M2 16 !
- B2
1 M2 16

The Coulomb potential, V

Coul’ 1s

(r")
2 [ Pp 3.3 (3,1/3 1/3
v (r) = e | ——— d’r - 5 () p "7(r) ]

Coul ) 120 - 2 2w p

where the first of these contributions is the direct term, and the

second the exchange term in the Fermi-gas approximation [Bei 75] . The

nucleon densities, pu(r), are given by

NL 2
pu(r) = % SRR | q)m.u(r)l

where nj is the occupation number of the jth orbit as determined from
b
the shell model wave functions obtained with the isoscalar Hamiltonian.
The radial overlap correction was evaluated in the following

manner. First, the average central potential Uu(r) was obfained by
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performing the self-consistent calculation with eq.(3.3.1). Then the
single-particle wave functions were obtained by solving eq.(3.3.1) using
this average potential shape, and scaling its overall strength to
reproduce the separation energy. The sepération energies were determined
from experimental ground state masses [Wap 82] and excitation
energies [Ajz 80, Ajz 81, Ajz 83, End 77, and Led 78] of the
intermediate parent state ¥(m). Where experimental excitation energies
were not available, excitation energies obtained with the isoscalar
Hamiltonian were used. The spectroscopic amplitudes S(j,Iw) were also
evaluated using the shell-model wave functions.

The quantities GRO obtained from a Hartree-Fock (HF) calculation
for MO, 26mAl, 3“01, 38mK, u2Sc, “6v, 5OMn, and 5L‘Co are presented in
Table 3.1. The shell-model configuration spaces used for these
calculations are also listed in Table 3.1, while the corresponding
isoscalar Hamiltonians are listed in Table 2.1. The only model-space
truncations imposed were for 4280 (no more than four holes in the Od?’/2
orbit) and the Of-1p-shell nuclei (no more than one particle outside the
Of‘,{/2 orbit). For the purpose of comparison, the calculation was also
performed with the usual method of using a Woods-Saxon (WS) plus Coulomb
single-particle potential [Bro 82]. As can be seen from the table, with

38

the exception of mK, values of dRO obtained from the HF wave functions
are systematically reduced relative to the WS calculation. This
reduction is due to the effects of both the Coulomb and nuclear
potentials used in each calculation. The Coulomb potential of the WS
procedure was that of a uniformly charged sphere containing

Z-1 protons, whose radius was chosen to reproduce the experimental rms

charge radii, with no exchange term. The WS isovector potential is
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Table 3.1
Values for the radial overlap correction, 5R0’ obtained with the Woods-

Saxon (WS) and Hartree-Fock (HF) calculations.

Decaying Shell-Model GRO(%)
Nucleus ‘Configuration Space (WS) (HF)
14
0] Op shell 0.299 0.134
26m, | 1s-0d shell 0.283 0.255
3L‘Cl 1s-0d shell 0.552 0.432
38m .
K Od?)/2 & Of7/2 orbits 0.390 0.453
y2 .
Sc 0(13/2 & Of7/2 orbits 0.413 0.209
4
6V O0f-1p shell 0.470 0.230
5OMn 0f-1p shell 0.586 0.296
54

Co Of-1p shell 0.747 0.359
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generally assumed to be proportional to N-Z, whereas the isovector
interaction in the HF procedure arises from the difference in the
neutron and proton densities, leading to an isovector potential even for
N=Z nuclei.
To understand the difference beﬁween the proton and neutron wave
functions generated with the WS and HF procedures, we consider protons

perturbatively relative to neutrons in 3”01. The perturbing Hamiltonian

in the WS procedure, GHWS, is simply Végﬁi(r), while in the HF procedure

we have

(HF)
Coul

m
GHHF = % (r)y

[U () -Uu(r) ]+v
m(r) P n

where the small isovector spin-orbit term has been neglected. Plotted in

Figure 3.1 are the quantities

(HF), . (WS)
SHoour ™ Yoo (™) 7 Voou ()
m
§H, = [u ) -u_(r) ],
isov m*(r) p n
§H = 6H + 6H (3.3.2)

Coul isov®

SH is then the extra potential exerted on protons in the HF procedure
relative to WS. In Hartree-Fock calculations, protons are effectively in
a potential well which is both deeper at the origin and has a higher
barrier at the nuclear surface than protons in a Woods-Saxon

calculation. The effect on 5RO due to these perturbing potentials can be
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Figure 3.1: Plot of the perturbing Hamiltonians éHCoul’ GHisov’ and

§H, defined in eq.(3.3.2), as a function of r.
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Figure 3.2: Plot of the difference sy = rlwn - wp] x 100 for Hartree-

Fock (HF) and Woods-Saxon (WS) wave functions.
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seen in Figure 3.2 where the difference, §y = r]wn -y |, is plotted for

ol
Od3/2 radial wave functions obtained from both the WS and HF
calculations. This additional potential tends to draw in the proton
radial wave functions relative to the neutrons and thus reduce the value
of GRO'

3.4 Isospin-Mixing Contribution, 6IM

The contribution to GC due to isospin mixing within the shell-model
configuration space can be calculated with two equivalent methods. The
first is to obtain isospin-mixed wave functions from the éhell model by
adding the isospin-nonconserving (INC) interaction directly onto the
isoscalar Hamiltonian. The Fermi matrix element correction GIM can then
be evaluated by simply calculating the OBTD matrix of eq.(3.2.2). The
second method is to consider the effects of the INC potential
perturbatively. The Fermi matrix element is then calculated with wave
functions corrected to first order, and GIM becomes a sum of terms which
are dependent on the matrix element of the INC potential between the
ground state and all other states (see below) .

Since the perturbation is small, the two methods are equivalent.
However, each of the methods have particular advantages and
disadvantages. The primary advantage of the perturbative approach is
that it is easier to determine the contribution to 6IM due to either
specific nuclear states, or particular parts of the interaction, such as
that due to the single-particle energies, the two-body matrix elements,
or the isovector and isotensor components of the interaction. The

disadvantage of the perturbative method is that it involves a sum over

many matrix elements connecting to a large number of excited states. In
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addition, this procedure requires the calculation of the two-body
transition densities (see Chapter Two, section two), which is often time
consuming. The diagonalization procedure has the advantage that
corrections due to higher-order perturbations and the sum over the
matrix elements performed in the perturbative method is done
automatically during the diagonalization of the Hamiltonian.

In the present work, both procedures are used. Since the
diagonalization procedure is generally easier to perform, this method is
chosen for the evaluation of GIM. On the other hand, since the
perturbation expansion lends itself to determining how muéh of GIM is
due to mixing with individual states, this procedure is used to help
understand the differences between the results presented here and those

of previous works.

3.4a Perturbation Expansion for 5IM
In this section, GIM i1s derived using first-order perturbation
theory. Following the method of Blin-Stoyle [Bli 69] and Towner and

Hardy [Tow 73], the wave function W(F,TZ) is given by

W(F.TZ) N(T, T, T,) ¥y (I, T,T,)

+) ) a(v,t,Tz)WO(v,t,TZ), (3.b4a.1)

where the sum over v represents the sum over all quantum numbers other

than isospin, and the states Wo(k) satisfy the eigenvalue equation
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H(O)Iwo(k)> = Eo(k)lwo(k)>. The coefficients a(v,t,Tz) are given in

first-order nondegenerate perturbation theory by

<Ylv,t,T,)| V... |e(r,T,T.>
a(v,t,T,) = 2 INC z, (3.4a.2)

E(Vyt) - E(F;T)

and the normalizing constant N(F,T,TZ) satisfies the constraint

2 T2 2
N(P, T, T} + ) ) a(v,t,T,)}" = 1. (3.4a.3)
v t=|TZ|

To calculate the effects of isospin mixing on superallowed Fermi g-
decay, we square the matrix element of the T_ operator between the state

WA(F,J,TZ) and its analog WA(F,J,TZ—1) to obtain
2 2
Mg |™ = [<¥(r, T -1 | 1_ | ¥(r,7,) >|° =

[T(T+1)—TZ(TZ—1)] { n(r,1, 7 )NCE, T, T~ 1)

Z

T+2 t(t+1)—TZ(TZ-1) 1/2

LD ( - —) alv,t,T.)a(v,t,T
t=lTZI T(T+1) TZ(TZ 1) Z

-1 }2.

7 (3.4a.h)

Expanding eq.(3.4a.4) and keeping terms only up to second order in

a(v,t,Tz) we find

2 2 2
M_|< = [T(T+1)—TZ(TZ—1)] {N°Cr,T,T,) N(T,T,T,~1)

F Z

+ ZN(F’T,TZ)N(F9T7T2—1)
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T+2 t(t+1)—TZ(TZ-1) 1/2
T(T+1)_TZ(TZ_1)), a(v,t,TZ)a(v,t,TZ—1)}f (3.%a.5)

X

v o t=|T,]

By inserting eq.(3.%a.3) into eq.(3.4a.5) we obtain

T+2 5 T+2 5
SimlTy) =10 I {av,e,T)1 + 1 fa(u,T,~1)}
voot=| Ty t=|T,~1]
T+2 t(t+1)-T_(T_-1)
Z 'z 172
"2 " Gy " av,t.T,) alv,t,T,-1 1 (3.%a.6a)
= zI A4

Similarly, it can be shown that, for the forbidden (off diagonal) g-

2
decay of the state W(P,TZ) to ¥(r*,T.-1), IMF[ is given by

Z

2 2
M| = [T(T+1)—TZ(TZ—1)] {a(r,7,1,-1) +a(r',1,1))}" (3.4a.6b)
3.4b Results for 61M
The isospin-mixing correction GIM for the superallowed B-decay of

Y
1L‘O, 26mAl, 3MC , 38mK, M2Sc, u6\/, 50Mn, and > Co have been evaluated

1
and are presented in Table 3.2. The configuration spaces and isoscalar
Hamiltonians used were the same as for the radial-overlap éorrection,
and the isovector and isotensor interactions were determined with the
parameters given in Tables 2.7 and 2.15, respectively.

As was mentioned in the second chapter, there is some uncertainty
in the selection of the isovector and isotensor interactions. At this

point then, it is necessary to discuss the differences between the

isovector and isotensor interactions determined with the parameters
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Table 3.2

Values for the isospin-mixing correction GIM‘

Decaying Nucleus 6IM(%)

T 0.010

26m, 0.012
341 0.056

38my 0.111
"2 56 0.109
46y, 0.013
Oyn 0.004
5l

Co 0.005
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Table 3.3

Comparison between isospin-mixing matrix elements for the lowest J“=1/2+

T=3/2 state in 21Na evaluated with R(z) = 81 MeV and A(Z) = -§.2 x 10-2.
k R(?) - 81 mev A2 Ly« 1072
1 " 15.0 12.0
2 -12.6 -12.1
3 16.1 19.3
4 -6.7 -10.5
5 7.1 6.7
6 32.1 36.7
7 6.7 8.1
8 13.4 19.5

rms deviation 3.4 keV
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Table 3.4
Comparison between isospin-mixing matrix elements for the lowest J"=1/2+
T=3/2 state in 21Na evaluated with parameters given Table 2.7 and the

last row of Table 2.12.

k Table 2.7 Table 2.12
1 15.0 9.5
2 -12.6 -23.6
3 16.1 19.7
4 -6.7 -3.6
5 7.1 9.5
6 32.1 51.4
7 / 6.7 10.2
8 13.4 16.9

rms deviation 8.5 keV
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given in Tables 2.7 and 2.15, respectively, and their alternatives.
Comparisons are made between the isospin-mixing matrix elements obtained
for the lowest J"==1/2+ T=3/2 state in 21Na, and the isospin-mixing
correction for A=3Y4 superallowed decays. The purpose of these
comparisons is to determine what effect these alternative interactions

might have on the present calculation of 5IM‘

+
Isospin-mixing matrix elements between the lowest J“=1/2 T=3/2

+ .21
state and the lowest eight J“=1/2 T=1/2 states in =~ Na have been

(2)

evaluated using the isoténsor interactions in which R = 81 MeV and

A(Z) = -4,2 x 10‘2, and are shown in Table 3.3. The rms deviation of the

isospin-mixing matrix elements evaluated with these interactions is 3.4

y
keV. In addition, values of GIM for the superallowed g-decay of 3 Cl and

3“Ar have been evaluated with these interactions. These are 0.056 x 10_2

and 0.006 x 10-2 for 3“01 and 3“Ar, respectively, with R(2) = 81 MeV,
and are close to the values 0.054 x 10-2 and 0.014 x 10_2, obtained with
A(Z) = -4,2 «x 10_2. Note that the correction for the 34Ar decay does not
appear in Table 3.2 because of the large experimental error in the ft
value for this transition.

The situation with the isovector interactions,.however, is not so
clear-cut. The isospin-mixing matrix elements that appear in Table 3.3
have been re-evaluated using the parameters given in the last row of
Table 2.12, and are shown in Table 3.4, The companion isotensor

2
interaction was obtained by fixing C(Z) to 0.93 and fitting on A( ),

giving A(2) = (-5.510.2) x 10_2 with an rms deviation of 9.7 keV. As can
be seen from the table, the isospin-mixing matrix elements evaluated

with these interactions differ somewhat, with an rms deviation of 8.5
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keV. The valuesvaIM obtained with this INC interaction are 0.080 x 10—2
and 0.014 x 10~2 for 3&01 and 3“Ar, respectively.

When the deviation in SIM found in the above analysis is added onto
the the values of 0.432 x 10-.2 and 0.369 x 10~2 obtained for the SRO’
the total correction GC changes by only 5%/or less. Therefore, it is
expected that the uncertainty in the isovector interactions will not
significantly effect the calculation of the total correction 5C'

3.6 Total Correction 8¢

Shown in Table 3.5 and Figure 3.3 is a comparison of the values for
6§ (IM, RO, and C) obtained in the present work with those obtained
previously [Tow 73 and Tow 77]. The difference that exists between
values of the radial-overlap corrections evaluated from the Woods-Saxon
potential shown in Table 3.1 and those of Towner, Hardy, and Harvey [Tow
77] (also evaluated with a Woods-Saxon potential and eq.(2.10a)) is
primarily due to different Woods-Saxon potential parameters. Using the
Woods—-Saxon potential parameters of Towner, Hardy, and Harvey we find
Sp0 for SuCo to be 0.593%, which is in good agreement with the value
shown in Table 3.5. Again, it is important to note that by including the
effects of the induced isovector interaction the radial overlap
contribution to GC is reduced relative to previous estimates.

In order to understand the difference between the values of GIM in
the present work and those of Towner and Hardy [Tow 73],'we examine the
correction for A=34 superallowed transitions in detail. Shown in Table
.3.6 are the values of Sro and 61y Obtained previously [Tow 73 and Tow

34 3%

773 and in the present work for ° Cl and ° Ar. The discrepancy observed

for GIM can be attributed to different zeroth-order wave functions
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Table 3.5
Comparison of the corrections to the Fermi matrix element obtained in
the present work and those of Towner, Hardy, and Harvey [Tow 73 and Tow

77] (Values of § are given in %).

Decaying Present Work Previous Values
nucleus Stv %m0 Sg S ) aRob) 5
" 0.010 0.134 0.144 0.05 0.23 0.33
26m1y 0.012 0.255 0.267 0.07 0.27 0.34
341 0.056 0.432 0..488 0.23 0.62 0.85
38my 0.111 0.453 0.564 0.16 0.54 0.70
e 0.109 0.209 0.318 0.13 0.35 0.48
46y 0013 0.230 0. 243 0.04 0.36 0.40
*On 0.004 0.296 0.300 0.03 0.40 0.43
540 0.005 0.359 0.364 0.04 0.56 0.60

a) values presented in Table 6 of [Tow 73]

b) values presented in Table 3 of [Tow 77]
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Figure 3.3: Comparison between values of 6c evaluated in the present

work (squares) and those of Towner, Hardy, and Harvey

(crosses).
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Table 3.6
Comparison of the corrections to the Fermi matrix element obtained in
the present work and those of Towner, Hardy and Harvey [(Tow 73 and Tow

771 for A=34 superallowed B-emitters (Values of § are given in %).

Decaying Present Work Previous Values
nucleus GIM GRO 6C GIM GRO GC

34
Ar 0.006 0.369 0.375 0.13 0.91 1.04

381 0.056 0.432 0.488 0.23 0.62 0.85
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and/or the INC interaction used. The zeroth-order wave functions used by
Towner and Hardy were obtained with a modified surface delta interaction
(MSDI) in a truncated 1s-0d shell-model space. The truncation

restriction was that no more than two holes in the 0d orbit were

5/2

allowed. Towner and Hardy's INC interaction (V (Tow)) was obtained by:

INC

(1) adding Coulomb matrix elements evaluated with harmonic
oscillator wave functions to the proton-proton two~body matrix
elements,

(2) increasing the T=1 part of the MSDI proton-neutron matrix

elements by 2%, and

(3) using the A=17 energy levels to determine the isovector single-

(1) (1)

particle energies (i.e. ¢ (0d

(1)

) = 3.544 Mev, ¢ (1s

5/2 1/2)

3.168 MeV and ¢ (od ) = 3.56 MeV).

3/2
In addition, no A dependence in the single-particle energies was
assumed, and the value of Kw for A=34 was 11.2 MeV, while the value of
11.5 MeV is used in the present work.

The effects of the model-space truncation were investigated by
evaluating 6IM with the total Hamiltonian of the present work in the
truncated model space used by Towner and Hardy. The values of §

b
34 3 Cl in the truncated model space are 0.004% and

IM

obtained for Ar and

0.048% respectively, and do not differ significantly from the full-space
values of 0.006% and 0.056%.
In order to determine whether the starting wave functions or the

INC interaction are responsible for the discrepancy in § both the

M’
IMME coefficients and GIM for A=34 were evaluated with all the possible
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Table 3.7
Comparison of IMME coefficients and GIM evaluated with the combinations
of the isoscalar interaction, isovector single-particle energies, and

the two-body INC interaction.

Isoscalar INC S (B
Single- Two=-Body b ] 3“Ar 3“01
Particle (Mev) (keV)
MSDI A A 6.594 277 0.136  0.276%
MSDI A B 6.636 293 0.135 0.276
MSDI B A 6.479 284 0.019 0.078
MSDI B B 5.521 300 0.016 0.076
W A A 6.641 292 0.055 0.186
W A B 6.684 285 0.052 0.178
W B A 6.497 297 0.009 0.061
W B B 6.548 281 0.006 0.056
Experimental IMME Coefficients 6.559 284

The labels MSDI and A refer to the isoscalar and INC interactions
used by Towner and Hardy, while the labels W and B represent the mass-
dependent sd-shell hamiltonian [Wil 84] and fitted INC interaction of
the present work.

a) Values obtained by Towner and Hardy [Tow 84] for these quantities

are b=6.596 MeV, c¢=278 keV, GIM(34AP)=O.13Z%, and GIM(3uCl)=O.234%.
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Table 3.8
Comparison between MSDI, W-interaction, and experimental excitation

energies (in MeV) for A = 34.

J T EXP USD MSDI
0o 1 0.000 0.000 0.00

0 0.146 0.133 -0.13
1 0 0. 461 0.317 -0. 145
1 0 0.666 0.661 -0.19
2 0 1.230 1.142 0.39
2 0 1.887 1.712 1.13
2 1 2.127 2.200 1.99
30 2.181 2.032 1.19
50 2.376 2.394 2.07
2 1 3.303 3.138 2.68
5 0 3.646 3.762 3.59
o 1 3.914 3.905 3.32
¥ 0 3. 964 3.897 3.20
1 1 4,074 4,302 3.87
2 1 4,114 4.89 5.09
3 4,876 4.773 4.18

No more than two excitation energies with a given J and T value are

tabulated.
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combinations of the isoscalar interaction, isovector single-particle
energlies, and the two-body INC interaction of the present work and that
of Towner and Hardy. The results of these calculations are presented in
Table 3.7, along with the experimental IMME coefficients. The values of
GIM evaluated with the mass-dependent sd-shell Hamiltonian of Wildenthal
(W-interaction) are consistently smaller in magnitude than those
evaluated with MSDI, suggesting a dependence on the isoscalar
Hamiltonian in GIM' A comparison of the lowest T=0 and T=1 excitation
energies obtained with.both the MSDI and W~interactions with
experimental values is presented in Table 3.8. A generally better
agreement with experiment is obtained with the W-interaction excitation
energies.

A further difference arises in the selection of the isovector
single-particle energies. From a comparison between the values of 6IM
obtained with the single-particle energies of VINC(Tow) and the fitted
single-particle energies of this work, it is apparent that 51M is
sensitive to the single-particle energies. The isospin-mixing amplitudes
of eq.(4.2.6a) in fact are sensitive to the relative difference in the

(1) 8(1)

isovector single-particle energies, ¢ (p) - (od ). For A=34 the

572

relative difference in the isovector single-particle energies for the
131/2 and Od3/2 orbits are -21 keV and 21 keV, respectively, for the INC

interaction of the present work, and -370 keV and 20 keV for V (Tow).

INC
It is this difference between the isovector single-particle energies
which is primarily responsible for the discrepancy that exists between
the values of 6IM of the present work and those of Towner and Hardy.

Single-particle energies obtained via the fitting procedure, however,
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are perhaps more appropriate thén those determined from closed-core-
plus-proton and -neutron nuclei, because of the loosely bound nature of
these "single-particle" states.

To further understand the values of GIM presented here and those of
Towner and Hardy, the perturbation expansion of eq.(3.4a.6a) was
obtained for the A=34 analogs by evaluating the direct overlap between
the isospin mixed ground state wave functions and 16 J"=O+ states of the
unperturbed system, with 0 § T S 2. Results of the perturbation
expansion are presented-in Tables 3.9 and 3.10 for the interactions of
Towner and Hardy and the present work, respectively., From this expansion
it is apparent that the fitted INC interaction predicts less mixing to
excited states than does VINC(Tow), while both interactions predict that

4 4 4
isospin mixing in 3 S is more pronounced than in either 3 3 o}

Ar or . In
the expansions presented in both tables, the contributions due to these
16 states differ from the total values shown in Table 3.6, indicating
mixing to still higher states. These differences, however, are larger
for the expansion presented in Table 3.9, and in fact, the the total
values are considerably smaller than those shown in Table 3.9. As can be
seen from eq.(4.2.6), negative contributions to the expansion can occur
only via mixing with T=2 and T=3 states, and therefore VINC(Tow)
predicts more mixing to these higher isospin states than does the fitted
INC interaction. Finally, since the contribution to 51M due to T=1
states is the square of the difference between the mixing amplitudes,

34

the small value obtained for Ar with the fitted interaction is

explained by the fact that the mixing amplitudes for the lowest T=1

34 34

states are approximately equal in both Ar and Cl.



109
Table 3.9

Isospin-mixing amplitudes and contribution to § due to the 15 lowest

IM
O+ states (T=0 and 1) and the first T=2 state evaluated with the INC

interaction of Towner and Hardy [Tow 73].

Excitation T Isospin-Mixing Amplitudes Sy (%)
Energy ( x 1O—M)
(MeV) 3 3 3% 3%p 31
3.314 1 47 291 696 0.0595  0.1640
4.924 0 0 -96 0 0.0092  0.0092
5. 400 1 =310 -83 119 0.0515  0.0408
5.437 0 0 2 0 0.0000  0.0000
5.749 0 0 68 0 0.0046 0.0046
6.305 1 -125 182 -222 0.0942  0.1632
7.020 1 69 138 90 0.0048  0.0023
7.812 1 45 =31 -87 0.0058  0.0031
7.950 0 0 8 0 0.0001  0.0001
8.162 1 21 -4 103 0.0006  0.0114
8.943 1 -55 13 =53 0.0046 0.00u44
8.983 0 0 -1 0 0.0000  0.0000
9.335 0 0 1 0 0.0000  0.0000
9.766 0 o -1 0 0.0001  0.0001
9.929 1 14 3 30 0.0003  0.0011
12.538 2 69 80  -67 ~0.0080  0.0295
TOTAL 0.2273  0.4338

Excitation energies are the unperturbed values given by the MSDI

Hamiltonian.
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Table 3.10

Isospin-mixing amplitudes and contribution to § due to the 16 lowest

M
0" states (T=0 and 1) evaluated with the INC interaction of the present

work.
Excitation T Isospin Mixing Amplitudes 5IM (%)
Energy ( x ]O—M)
(MeV) 3pp 381 3% 3 3%
3.905 1 36 36 227 0.0000 0.0365
5.172 1 48 -39 -22 0.0076 0.0003
6.111 0 0 39 0 0.0015 0.0015
7.116 1 ~10  -4Y 3 0.0012 0.0022
7.605 0 0 3 0 0.0000 0.0000
7.919 1 -5 4 5 0.0001 0.0000
8.296 0 0 -8 0 0.0001  0.0001
8.877 1 15 13 -68 0.0000 0.0066
9.881 1 -10 21 -7 0.0010 0.0008
10. 400 0 0 2 0 0.0000 0.0000
11.373 1 ~25 14 -4y 0.0015 0.0034
11.422 1 -3 =7 ~h 0.0000 0.0000
11.949 0 0 0 0 0.0000 0.0000
12,168 2 26 22 12 ~0.0008 0.0015
12.495 0 0 1 0 0.0000 0.0000
12.531 1 16 -22  -16 0.0014 0.0000
TOTAL 0.0136 0.0526

Excitation energies are the unperturbed values given by the W-

interaction.
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Although comparisons of this type have not been made for each
Superallowed B-emitter shown in Table 3.5, it is expected that the
differences in the values obtained in the present work and by Towner and
Hardy are due to the same causes as in the case of A=34, This is because
in all cases Towner and Hardy used a different isoscalar Hamiltonian and
an INC interaction obtained using the procedure outlined above, rather
than an empirical interaction which is constrained to reproduce the
diagonal matrix elements of VINC’
3f6 Determination of GV/Gu

With the total correction 5C evaluated, it is then possible to
invert eq.(1.3.1) and obtain empirical values of the effective vector
coupling constant GV. A more useful relation, however, is the ratio
GV/Gp’ where Gu is the effective vector coupling constant for muon

3

decay, the experimental value of which is Gu/(hc) = (1.166347+0.00013)

- -2
x 10 5 Gev [PDG 84 and Gio 84]. The relationship between these two

coupling constants is

2
= cos eC (1 + AB - Au)' (3.6.1)

a|=e
= o<
\

ec is the Cabibbo angle, whose value determined from hyperon decays is

eC = 0.232+0.003 [Roo T74]. The quantities A. and Au are "inner"

B

radiative corrections to the nucleon and muon decays. The difference AB

- Au is given by [Sir 78]



o1 MZ - MZ
Mg = B, =52 [ 32n(ﬁ;] + 6an(ﬁ;) +20+ ... ], (3.6.2)

with 31n(MZ/Mp] actually being the difference 3[2n[Mw/Mp) - zn(MZ/Mw)],
where Mw is the W-boson mass, MZ = 92.9+1.6 GeV [Arn 83 and Bag 83] is'
the Z-boson mass, and Mp = 938.2592+0.0052 MeV [Tay 69 and Mat 65] is
the proton mass. The first of two these terms is due to the vector
current in the the local V-A theory, while the second is due to Z-boson
exchange between the muon and electron in the muon decay. The remaining
terms, 65Qn[MZ/MA) and 2C, arise from corrections to B-decay due to the
axial-vector current mediated by an axial-vector boson of mass MA =
1.275£0.0030 GeV (the A, meson mass [PDG 84]). Q is the average charge
of the participating quarks (for u and d quarks 6 is 1/6). The quantity

C is the least understood part of eq.(6.2), and present estimates are

C =1 [Sir 74] and C = -0.5 [Abe 68]. Using the conservative estimate C

0+1, we find A8 - Au = (2.10+0.24) «x 10—2. With sufficient accuracy in

the experimental ft values and the nuclear corrections ) it might be

c?
possible to use superallowed Fermi transitions as a test for current
theoretical estimates of C.

Given in Table 3.11 are the experimental ft(1+6R) values [Kos 85]
ror o, 26y, Moy, 38m Mg 6y 50y g Sco, the ratio G,/G
for these transitions determined with the total isospin-mixing
correction SC of Towner, Hardy, and Harvey and that of the present work,
and the unweighted average of these values (the uncertainty quoted is
the standard deviation from the norm). In addition, a comparison between
the results of the present study and those previous works is shown in

Figure 3.4, The quantities A, A6 - Au and C determined for each

B
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Table 3.11

Values of G.,/G
V' ou

a

Decaying ft(1+5R) Present Towner ,Hardy,
Nucleus (sec) ; Work and Harvey
s 3085.7(22) 0.9842(4) 0.9851(4)
26my ) 3083.3(14) 0.9852(3) 0.9855(3)
341 3103.3(28) 0.9831(5) 0.9849(5)
38my 3098. 1(26) 0.9843(4) 0.9849(4)
Y250 3104.2(63) 0.9821(10) 0.9829(10)
u6V 3100.9(19) 0.9822(3) 0.9830(3)
2Oun 3099. 2(38) 0.9828(6) 0.9834(6)
o 3105.9(23) 0.9821 (4) 0.9832(1)
Average values: 0.9833(12) 0.9841(11)

%) [Kos 85]



114

0.986 | —
0.984 b T |

0.982 — ' .

L 1 ] i 1 1 ] L 1 1 L I 1 ] 1 I
3
g 0.986 |— —
5 '
0.984 E i —
f %
0.982 ' ﬁ —

Figure 3.4: Comparison between values of the ratio GV/Gudetermined from
experimental ft values and the corrections to the Fermi
matrix element of (a) Towner, Hardy, and Harvey and (b) the
present work. The value plotted at Z=0 is determined from
egs.(3.6.1) and (3.6.2) with C=0.0+1.0.
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Table 3.12

Values of AB - Au and C

Decaying Present Work Previous Values
Nucleus AB - ALl C AB - Au C
(x 10°%) (x 10°%)
e L27(7)  0.73(30)  2.45(7)  1.51(30)
26m 4y JB(B) 1.64(17) 2.50(4)  1.89(17)
341 ON(9)  -0.26(39)  2.2(9)  1.38(39)
38m 29(8)  0.82(34)  2.42(8)  1.38(3h)
425, .90(20) -0.86(86) 2.00(21) =0.43(87)
46y .86(6)  ~1.03(26)  2.02(6)  -0.34(26)
>Oun .98(13)  -0.52(56) 2.11(12)  0.04(56)
54¢o BT -1.25(30) 2.06(7)  -0.17(30)

Average values:

.08(24) -0.09(104) 2.25(22) 0

.66(97)
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superallowed transition, along with their average values, are presented
in Table 3.12. As can be seen from Figure 3.4a, the corrections GC of
Towner, Hardy, and Harvey yield values of GV/Gp which are consistent for
low Z (Z < 21) or high Z (Z 2 21), but not both. The results of the
calculations reported here are in this sense an improvement; the ratio
GV/Gu for Z=17 is consistent with that for Z = 21 and 25. However, there
are still large variations in this quantity, as those values for higher
Z are still consistently smaller than those for lower Z. Unfortunately,
even though the proceduﬁés used here represent an improvement over those
of previous works, they do not as yet yield corrections §. which can

C

lead to a test of the radiative correction A8 - Au.

At present, the discrepancy between values of GV/Gu for high and
low Z is not yet resolved. As was mentioned in the first chapter,
possible causes of this discrepancy are experimental error in the ft
values, an error in the evaluation of the "particle-physics" corrections
6R’ and of course the nuclear correction 6C' There are, however, some
clues in the present work which point to improvements that can be made
in future calculations of GC' One important question is whether the
model-space truncations in the Of-1p shell are causing the calculated
values of GRO to be too small. In the present work, only one nucleon is
allowed outside the Of‘7/2 orbit, causing the radial-overlap correction
to be dominated by the integral Qj,w of particles in this orbit.
Nucleons in this orbit, however, feel the effects of a strong
centrifugal barrier. The effect of this barrier is to counteract Coulomb
repulsion, thereby reducing the deviation from unity of the integral
Qj,n relative to, say, the Op?)/2 orbit. Therefore, one might expect

values of SRO to increase with an expanded shell-model configuration
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space. Unfortunately, the large number of basis states that exist in
even a moderately expanded configuration space (eg. four particles in
the Op3/2 orbit) renders the calculation of the spectroscopic factors
S(j,I,m) computationally impractical. With this in mind, it is necessary
to turn to another source for the values S(j,T,m), such as experimental
data. A problem that arises with using experimental quantities, however,
is that often these values are normalized arbitrarily, leading to some

uncertainty in the application of eq.(3.2.7). Since values of § may be

RO
too small, it is therefore important to re-investigate these corrections
for O0f-1p-shell nuclei, before turning to the possibility of

experimental error in the ft values or other "particle-physics"

corrections to explain the high- and low-Z discrepancy.



Chapter Four

4.1 Introduction

In this chapter, a comparison between predicted and experimentally
observed isospin-forbidden Fermi transitions is presented. A schematic
of the decay process under study here, the B-decay to a state which is
not the analog of the parent as defined by eq.(1.1.4), is shown in the
level diagram of Figure 1.5. The chapter is separated into two parts. In
the first, a‘discussion on isospin-forbidden Fermi transitions between
J"=O+ states is presented. For this class of decays the ft value gives a
direct measurement of the forbidden Fermi matrix element. In the last
section, the forbidden B+ decay of 2“A1 is discussed. In this case, the
Gamow-Teller matrix element is nonzero, and the transition rate does not
directly give the small Fermi matrix element. Therefore, a comparison
between theoretical and experimental values for the Fermi to Gamow-

Teller mixing ratio is given.

4,2 Isospin-Forbidden O+ > 0+ Fermi Transitions

In this section, results for isospin-forbidden 0+ > O+ Fermi
transitions are presented and compared with experimental results when
these are available. Since these transitions are purely vector, i.e.,
the Gamow-Teller matrix element is zero, the measured ft value directly

gives the forbidden Fermi matrix element, as

ft = i
Gy TMg]

118
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The quantities in this equation are K = 2m*1ln2h7c®/(mc?)®, the effective
vector coupling constant ?V’ and the Fermi matrix element MF’
At present two isospin-forbidden O+ > 0+ Fermi transitions have
been examined experimentally. These are the B+ decay of the T=1 ground
state of u2Sc to the 1.837 MeV, T=1 level in uzCa [Ing 77, Del 78, San
80, and Dae 85] and the g decay of the T=2 ground state of 28Mg to the

0.972 MeV, T=1 level in 28

Al [Alb 79]. Values of |MF|2 obtained from the
experimental ft values are shown in Table 4.1.

A shell-model calculation of the isospin-forbidden Fermi matrix

element is done using eq.(3.2.7), except that the sum

T
) OBTD (jn,jp;AJ=O)/[2j+1]
orbits

is equal to zero. In addition, the radial-overlap contribution to the
-4
matrix element is generally quite small (typically MF(RO) = 10 ), and
. 2 28 42
can be neglected. In this work, ]MFI for the decay of Mg and Sc was
evaluated using the 1s-0d shell and the 0d

and Of orbits,

3/2 7/2

respectively. The corresponding isoscalar interactions are listed in
Table 2.1, while the isovector and isotensor interactions were
determined with the parameters given in Tables 2.7 and 2.15,
respectively. In addition, the MZSC calculation was performed by

allowing no more than four holes in the 0d orbit. The theoretical

3/2
estimates for IMFI2 are compared with experimental results in Table 4.1.
Although these values deviate somewhat from the experiment, they are of

the right order of magnitude, and the MZSO value presented here is a

-4
significant improvement over the previous result of 31 x 10 obtained
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Table 4.1
Comparison between theoretical and experimental values of the isospin-

42
forbidden Fermi matrix elements for 28Mg and Sc.

Decaying IMF|2 x 10—4
Nucleus : Experiment Theory
28yg 6.7 + 0.8 144
250 9.4 £ 1.6% 5.7
34 pp - 4.6 x 107"
3L'Cl - 7.2

#The branching ratio of Daehnick and Rosa [Dae 85] was used to

2

determine |M_|Z
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by Towner [Tow 73a], in which the INC interaction was the same as that

used for the calculation of the isospin-mixing correction, § for the

M’
superallowed transition.

Although both the isospin-forbidden Fermi matrix element and the

correction 6IM are a measure of isospin-symmetry violation, they are in

+ +
a sense measuring different quantities. For isospin-forbidden 0 =+ 0

T=1 decays, the Fermi matrix element is given by

M_|% <2 [a(F,T=1,TZ—1) + a(F',T=1,TZ)]2,

pl

where a(F',T=1,TZ) and a(F,T=1,TZ—1) are the mixing amplitudes between
the ground state and the excited T=1 state in the parent and daughter

nuclei, respectively. On the other hand, the contribution to 61 due to

M

these two states is

2
= ' = P = -_
8y la(rr,T 1,T,) - a(r,T=1,T, 1]

Therefore, a measurement of the forbidden matrix element does not in
general give an indication as to the value of GIM for the superallowed

42
transition, For example, in the case for Sc, the correction GIM for

the superallowed transition is 0.109 x 10—2, while the quantity
]2

[a(F,T=1,TZ-1) + a(r',T=1,TZ) determined for the forbidden decay above

is 0.017 x 10 °.

In addition to the transitions reported above, Fermi matrix

]
elements for the B+ decay of 3 Ar and 34

34 34

T=1 state in Cl and S, respectively, are also given in Table 4.1,

+
Cl to the first excited J"=0 ,

Here we see that the matrix element for 3“Ar is essentially zero. The
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reason for this small value can be seen in Table 3.12, where the mixing
amplitude to the first excited state in both the parent and daughter
nuclei is 36 x 10—4. On the other hand, the forbidden matrix element for

34 3”3 (see Table

Cl is rather large, and is primarily due to mixing in
3.12). This transition, however, is difficult to observe experimentally
because of high-energy background Y-rays which are due to the g-decay of

the J“=3+ metastable state in 34

Cl.
. . S R .24

4.3 Isospin-Forbidden Fermi Transitions in Al

In this section, a comparison between predicted and experimentally

SO ) . . . 4
observed isospin-symmetry violation in the g-decay of 2 Al is presented.
Here we are interested in the p-decay of the J“=u+, T=1 ground state of
24 . Tt .2 . .
Al to an excited J =4 , T=0 state in Mg. A schematic level diagram
for this transition is shown in Figure 4.1. This transition has an
allowed Gamow-Teller component, and an isospin-forbidden Fermi component

which is due to mixing with the Jﬂ=4+, T=1 analog state in 2uMg. The ft

value for this transition is given by

K

£t =
Gy Mgl + GF THg T

(4.3.1)

where GA is the effective axial-vector coupling constant, and MGT is the
Gamow-Teller matrix element. Since the transition is predominantly
Gamow-Teller, the transition rate will not in general provide an
unambiguous measurement of the small Fermi matrix element. Therefore, it

is necessary to measure a quantity which is sensitive to the Fermi to

Gamow-Teller mixing ratio
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Figure 4.1: Level diagram indicating the allowed and forbidden Fermi

4
transitions in 2 Al.
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Such an experiment has been performed by Hoyle et al. [Hoy 83], who
measured the asymmetry coefficient K of the R-Y circular polarization
correlation. The value found in this experiment was ; = -0.145+0.030.
This measured value, however, cannot be directly compared with
theoretical estimates of y for the 8.439 MeV state in 2“Mg, because this
level is fed by the Y-decay of the 9.516 MeV level. In the measurement
mentioned above, it was found that, for each time the 8.438 MeV level is
directly produced by the B-decay of 2ul\l, it was fed f = 0.303+0.019

times by the B-decay to the 9.516 MeV state. The observed asymmetry

coefficient A is given in terms of the coefficients A8 and A9 by

where the subscripts 8 and 9 denote the 8.439 and 9.516 MeV states,

respectively. The coefficients A, and A, are given by [Hoy 83]
8 9

- 1 1
A8=-1—-+—-—y—85 [",1—2-4" y8], (4.3.2a)

~ 0.5 _ 1 .5

(4.3.2b)
To calculate the asymmetry coefficients we start with the states
WO(8) and w0(9) which are eigenstates of the isoscalar Hamiltonian. In

the presence of the INC interaction these two states mix, giving
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¥(8) = aw0(8) - Bw0(9),
¥(9) = Bwo(8) + awo(9).

where

The relationship between the mixing amplitude B and the matrix element

Vg g = ¥ (8] Vie |¥(9)> is

2
v8’9 = /[1-87 1BAE, (4.3.3)

where AE = (9.516 - 8.439) MeV. The Fermi and Gamow-Teller matrix

elements for these mixed states become

M%(S)

B2, ML (8) = M (8) - BM . (9), (4.3.%)

GT

Mé(9) vyla2(1 - dc)], MéT(9) BMop (8) + oM. (9), (4.3.4p)

GT

where GC is the total isospin-mixing correction for the allowed Fermi
transition. Theoretical values for the Gamow-Teller matrix elements are

[Bro 83 and Bro 85]

g M. _(8)

-0.8790,

gAMGT(9) = 0.0850,
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where g, = GA/GVf

The isospin-mixing matrix element was evaluated with proton-neutron
shell-model wave functions, and the total Hamiltonian was obtained by
adding the sd-shell INC interaction determined with the parameters given
in Tables 2.7 and 2.15 onto the mass-dependent sd-shell Hamiltonian of
Wildenthal., Due to the large number of J“=M+ states in a proton-neutron
calculation, a truncation based on the monopole energy of the diagonal
matrix elements was applied. Using this truncation, the number of M+
states in 2“Mg was reduced from the full space value of 15089 to 3113.
The mixing matrix element V8,9 was then determined by evaluating the
direct overlap <WO(9)|W(8)> and inverting eq.(4.3.3), giving V8,9 =
-66.0 keV.

The correction 6C to the allowed Fermi transition was evaluated
using the procedure outlined in Chapter Three. The values are GRO =

2

0.14% and GIM =1 -8 =0.38%, giving 8o = 0.52%.

Before evaluating the asymmetry coefficients A8 and Kg’ it is
instructive to compare theoretical and experimental values of the Fermi
and Gamow-Teller matrix elements. Values of |Mk;|2 + gAlMéle determined
from experimental ft values are 0.722+0.034 [War 81 ] and 1.977+0.020
[Ade 85] for the B-decay to the 8.439 and 9.516 MeV states,
respectively. Theoretical values for these transitions are 0.786 and
1.991. The theoretical value for the allowed Fermi transition to the
9.516 MeV state is in good agreement with the experimental value. The
theoretical value for the 8.439 MeV level, however, is significaﬂtly
larger than the experimental result. Since MGT(8) and MGT(9) add
coherently in eq.(4.3.4a) (B = -0.0614) and MGT(8) dominates the total

2 ..
value of |M'|2 + gAlMéT| » it is not unreasonable to suspect that M.._.(8)

F GT
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is too large. Therefore, we renormalize MGT(8) to reproduce the
experimental ft value, giving gAMGT(S) = ~0,867+0.020. The Fermi to

Gamow-Teller mixing ratios are then

Vg =-0.107+0.002,

y9 by 0+1.2,

~

and the asymmetry coefficients A8 and A9 are:

A8 = -0.162+0.001,
A9 = 0.015+0.001.
The total asymmetry coefficient is then A = -0.1211+0.001, which is in

fair agreement with the experimental value of -0.145+0.030. Taking
MGT(9) = 0.0 and assuming Spo = 0-0, Hoyle et al. [Hoy 83] determined
the isospin-mixing matrix element between the 8.439 and 9.516 MeV levels
to be 106+40 keV. The theoretical value for this quantity given above is
in agreement with this measurement.

In addition, to the transition mentioned above, the isospin-
forbidden Fermi component has also been measured in the B— decay of 2uNa
to the 4.123 Mev J“=M+, T=0 state in 24Mg [(Ram 75]. This transition
gives an isospin-mixing matrix element between the 4.123 MeV, T=b state
and 9.516 MeV, T=1 level of 5.4+2.2 keV. Using the INC interaction of
the present work, this matrix element is found to be 10.4 keV. The

explanation for the large isospin-mixing matrix element for the 8,439
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MeV state relative to that of the 4.123 MeV level is that the former
state is thought to be the anti-analog of the M+, T=1 state in 2uMg.
It should also be pointed out that the calculations presented here
were performed within a truncated shell-model space. It would therefore

be interesting at some point to examine the effects of the model-space

truncations on the results reported above.



Chapter Five

5.1 Introduction

In this chapter, the decay of T=3/2 states in A=4n+1 (21 S A S 37)
nuclei to the J"=0+, T=0 ground state in A=i4n nuclei by proton and
neutron emission is discussed. As was mentioned in the first chapter,
this decay process is forbidden in first order because it violates
isospin symmetry, and can only téke place by mixing T=1/2 states into
the T=3/2 parent state,‘ér by mixing T=1 and 2 states with the T=0
daughter ground state. One of the most striking features of these decays
is that the experimentally determined spectroscopic amplitudes, @?NC,
exhibit an oscillation with period AA=8 (see Figure 1.6). The cause of

this oscillation is not yet understood. In this work, contributions to

p(n)
INC

daughter nuclei are studied with the hope that some indication as to

C] due to mixing with individual states in both the parent and

cause of this oscillation might be given.

The organization of this chapter is as follows. In the second

Section, the perturbation theory expansion for @?ég) is derived, and a
discussion about one of the principal uncertainties in the calculation
of @?;2) is presented. In the third section, the method used to
determine the isospin-mixing matrix elements is described. Results of a
calculation of e?ég) for A = 21, 25, 29, 33, and 37 nuclei are presented
in the fourth section. In the fifth section, G?NC for the lowest_

i +
J =1/2 , T=3/2 state in 3301 is evaluated using experimental values for
the excitation energies of the nearby T=1/2 states and the allowed
Spectroscopic amplitudes of these states and of the lowest T=1/2 state

(this is the only case under investigation in the present work in which

129
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these quantities have been measured experimentally). In section six, a
recently developed procedure for determining the decay width T from the
spectroscopic amplitudes is discussed, along with the application of

33

this method to the decay of the J"=1/2+, T=3/2 state in Cl. Finally,

suggestions for future work are given in the seventh section.

p(n)

INC
A calculation of the spectroscopic amplitude Ogég) starts with the

5.2 Isospin-Forbidden Spectroscopic Amplitude ©

isospin-mixed states, W(T,J,TZ), which are eigenstates of the total

(0) , (1), (2

Vine * Vine

Hamiltonian, i.e. [H ] l¥(k)> = E(k) |¥(k)>, and have
definite angular momentum J and z-projection of the isospin TZ (all
Other relevant quantum numbers are represented by T). The spectroscopic
amplitude which connects the parent and daughter states W(F,J,Tz+u) and

W(F',J',TZ) is given by [Bru 77]

e?NC(r,J;r',J';ju)

- 7f§%173 <¥(r,d,T,+uw) || a;u lly(re,a0,10> (5.2.1)
where a;u creates a nucleon with z-component of the isospin y in an
orbit with angular momentum j.

Since the transitions of interest are isospin-forbidden, it is
useful to expand the isospin-mixed states ¥ in terms of wave functions
with good isospin, WO(F,J,T,TZ), which satisfy the eigenvalue equation

1(®) ¥ (1)> = E (1) |¥5(1)>, giving
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¥(1) = N(1)y (1) + ) a(i;k)¥, (k). (5.2.2)
ki

Inserting eq.(5.2.2) into eq.(5.2.1) and specializing to the decay of

T=3/2 states to the J“=0+ T=0 daughter ground state we have

u ST J'=0: i =
OINC(F,J,F yd O,Ju)

L N(I',J',T=0,T,) a(T,T=3/2;Y,T=1/2) 0"(Y,J,T=1/2;T,J'=0,T'=0;j )
YT Z" "

2
) ) N(r,J,T=3/2,T, ) a(T',T=0;Y',T")
Y!al! T'=1 s

x O“(F,J,T=3/2;Y',J'=O,T';ju), (5.2.3)

where the allowed spectroscopic amplitudes @“ in the right-hand side of

eq.(5.2.3) are given by eq.(5.2.1), with ¥ replaced by ¥ The first sum

0
p(n)

in eq.(5.2.3) is the contribution to GINC

due to mixing between T=3/2
and T=1/2 parent states, while the second is that due to mixing between
the T=0 ground state and T=1 and 2 daughter states.

In first-order nondegenerate perturbation theory the mixing

ampl itudes a(F1,T1;F2,T ) are given by

2
N (LI, T T ) | Ve | ¥ (r,,d,T,,T,)> -
1771772772 E(F1,J,TZ) - E(F2,J,TZ) ! T
(1) (2) . S .
where V =V + Y From equations (5.2.3) and (5.2.4) it is clear

INC INC INC®

that @?ég) is sensitive to those T=1/2 parent states whose excitation
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energies are comparable with the T=3/2 state. There are at least three

sources of uncertainty in these nearby states which can influence the

p(n)

calculation of GINC'

These are:

(1) the exact location of these states relative to the T=3/2
parent,

p(n)

(2) their allowed spectroscopic amplitudes © , and

(3) their isospin-mixing matrix element with the T=3/2 state.

Unfortunately, the exact location of these states relative to the T=3/2

parent and the allowed amplitudes @p(n)

are uncertain both
experimentally and theoretically. At present, these quantities have been
determined experimentally for only one of the cases considered in this
work [Iko 76], and this case will be discussed in detail in section 5.5.
Unfortunately, there is no reliable way of estimating the uncertainty in
theoretical values of the allowed spectroscopic amplitudes. On the other
hand, theoretical estimates of excitation energies are generally
uncertain by several hundred keV (for example, excitation energies
obtained with the mass-dependent sd-shell Hamiltonian of Wildenthal are
uncertain by at least 150 keV for low lying states [Wil 84]). In the
present work, the effects of this uncertainty are studied by shifting
the T=1/2 excitation energies relative to the T=3/2 state, and then, by
evaluating eq.(5.2.3) estimate the theoretical uncertainty in O?ég) due
to the unknown location of the nearby T=1/2 states. As was mentioned in
Chapter Two, there are two isovector interactions which can be applied

in the 1s-0d shell. It was shown in Chapter Three, that for A=21, the

isospin-mixing matrix elements obtained with these interactions differ
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on the average by 8.5 keV. Therefore, it is also necessary to determine

what effects these alternative interactions have on the final result.

p(n)
INC

interactions for the case in which the most experimental information is

This is done by comparing values of 0 obtained using both

known, and is presented in section 5.5.

5.3 Isospin-Mixing Matrix Elements
One method to evaluate the isospin-mixing matrix elements appearing
in eq.(5.2.4) is that used to calculate the b~ and c-coefficients in

is then

Chapter Two. The reduced many-body matrix element of VINC

<WO(F1,J,T1,TZ)|| Vine IIWO(FZ,J,TZ,TZ)> =

Y OBTD(p,p") <core,p|| V
orbits

ING | |core,p'> +

Z TBTD(pxrpz;Alzzpa’pui)\au)q)upz;)‘lzl' VINC Hpaypu;)\al)r (5.3.1)
orbits

where again the one-body (OBTD) and two-body (TBTD) transition density
matrices are given by eq.(2.2.7) (note that the matrix elements of the
creation and annihilation operators are reduced only in angular momentum
space and that /{(2x+1) = /(2J+1)),

The principal drawback of this procedure is that it involves the
calculation of OBTD and TBTD matrices for each isospin-mixing amplitude
appearing in eq.(5.2.3). This is a difficult and often time consuming
process. Another, and perhaps easier, procedure is to evaluate the

direct overlap <w0(k)|w(i)> = a(i;k), and, by inverting eq.(5.2.1)
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obtain the isospin-mixing matrix element. Care, however, must be
exercised when applying eq.(5.2.4) to states in which AE(i;k) = E(i) -
E(k) is small. This difficulty can be avoided by noting that the matrix
element V, =<¥ (1)| V. [¥,(k)> is genefally small relative to AE(i;k),
and that the mixing between these two states can be approximated by a

two-level mixing model.

In this two-level model the mixed states ¥(i) and ¥(k) are given by

¥(i)

I

N(i)WO(i) + a(i;k)WO(k).

¥(k)

a(k;i)WO(i) + N(k)WO(k), (5.3.2)

where N(i) = N(k)= N, and a(i;k) = -a(k;i)= a = Vik/[N(E(i) - E(k))].

2172

Noting that N = [1 - a , We have

1

alizk) = o> [1- {1 - U(Vik/AE(i;k))2}1/2]1/2

(5.3.3)
where the sign of a(i;k) is the same as the ratio Vik/AE(i;k).

One indication of the validity of applying the two-level model to
determine Vi) 1s the condition a(i;k) = —a(k;i). Shown in Table 5.1 are
values of a(i;k) obtained for the lowest ten J"=1/2+ states in 21Na
(these values are typical for all the nuclei studied in the present
work). The shell-model configuration space used for this calculation was
the 1s-0d shell, and the total Hamiltonian was obtained by adding
isovector and isotensor interactions determined with the parameters
given in Tables 2.4 and 2.14 onto the mass-dependent sd-shell

Hamiltonian of Wildenthal. As can be seen from the table, the condition
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Table 5.2
Comparison between isospin—mixing matrix elements Vik evaluated with

perturbation theory (eq.(5.3.1)) and the two-level model.

k Perturbation Two-Level
Theory Model
(keV) (keV)

1 15.0 14.8

2 12.6 12.0

3 -16.6 -17.5

b 6.7 -6.4

5 ~7.1 -7.2

6 -32.1 -34.0

7 -6.7 -6.6
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a(i;k) = —a(k;i) is generally satisfied. In addition, the average

deviation of matrix elements Vik and V, . evaluated with a(i;k) and

ki
a(k;i), respectively, is only 0.6 keV.

An additional, and perhaps better indication of the validity of the

two—level model is a comparison between values of Vik obtained with

eq.(5.3.1) and the two-level mixing approximation. Shown in Table 5.2 is
such a comparison for the isospin-mixing matrix elements for the lowest
J“=1/2+ T=3/2 state in 21Na. The rms deviation between the two-level

model and perturbation theory values is 0.8 keV. This, coupled with the

results given above, indicates that the mixing due to VI can be

NC

approximated by the two-level mixing model without loss of accuracy.

p(n)
5.4 Results for OINC
In this section, the results of a calculation of the isospin-

p(n)

forbidden spectroscopic amplitudes OINC

are presented and compared with

. n
experiment. O?éc) was evaluated using the perturbation expansion of

eq.(5.2.3), where typically 20-30 states in both the parent and daughter
nuclei were included in the sum. The wave functions Wo(i) and the

allowed spectroscopic amplitudes @p(n)

were obtained with the Oxford-
Buenos Aires-MSU shell-model code. The shell-model configuration space
consisted of the 0d

151/2, and 0d orbits, and the total

572’ 3/2

Hamiltonian was obtained by adding the isovector and isotensor

interactions (determined with the parameters given in Tables 2.4 and
2.14) onto the mass-dependent sd-shell Hamiltonian of Wildenthal. In
addition, the validity of the perturbation expansion was verified by

comparing the values obtained with eq.(5.2.1) with those of eq.(5.2.3).
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Due to the large number of basis states that occur in proton-
neutron formalism for nuclei in the middle of the 1s~0d shell, some
model-space truncations for A=25 and 29 were necessary. The truncations
were made according to the monopole energy of the diagonal matrix
elements, and were selected so that the calculations of the Jﬂ=5/2+
States were feasible (the number of 5/2+ states in A=29 were reduced
from the full space value of 12878 to 2236). The excitation energies
obtained with these truncations were found to deviate systematically
from the full space values [Wil 84]. To account for these effects of the
model-space truncations, the T=1/2 excitation energies uséd to evaluate
the isospin-mixing amplitude (eq.(5.3.3)) were shifted relative to the
ground state by the average deviation from the full-space values.

Shown in Table 5.3 are the results obtained for Op

INC

of the lowest T=3/2 state in each nucleus. Tabulated are the individual

for the decay

contributions in eq.(5.2.3) due to the lowest T=1 and 2 daughter states,
the lowest T=1/2 parent state, and those T=1/2 states which are within
+500 keV of the T=3/2 state (except for A=37, where the contribution due
to the two closest T=1/2 states is given). The isospin-mixing amplitudes
were obtained by first determining the matrix elements Vik from the
direct overlaps <W0(k)[w(i)>, and then evaluating eq.(5.3.3) using
experimental T=3/2 excitation energies. Since experimental T=1/2
excitation energies are generally unknown, theoretical values for these
states were used. The states shown in the table are the principal
contributors to the total value; the remaining contributions are

typically less than unity and tend to cancel with one another. In

addition, note that contributions due to mixing in the daughter nucleus
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and the lowest T=1/2 state tend to cancel, thereby amplifying the
importance of contributions due to nearby T=1/2 states,

As can be seen from Table 5.3, those states which lie within 1500
keV of the T=3/2 state contribute significantly to the totalf As was
mentioned in section 5.2, however, the exact location of these T=1/2
states relative to the T=3/2 state is uncertain both experimentally and

theoretically. Therefore, it is necessary to determine how sensitive

p(n)
O1ne

in the present work by shifting the T=1/2 energy spectrum by an amount

p(n)
INC

is to the uncertainty in the T=1/2 energy spectrum. This is done

ep(n)

ING (8e). The "best"

de, and evaluating using eq.(5.2.3), giving o

p(n)

estimate of GINC

is then the unweighted average of the values

p(n)

IG)INC

(8e)| obtained within a total interval :AE (note that experiments

p(n)
INC

can then be estimated by evaluating the upper

are sensitive only to the absolute value of 0 ). The uncertainty in

p(n)

the calculation of GINC

and lower rms deviations of the values obtained at each increment &e¢
from the average value. In the present work AE was taken to be 500 keV,
and sufficient accuracy was achieved by choosing the increment for §e to
be 10 keV.

As an additional illustration of the importance of the location of
nearby T=1/2 parent states, the value IG?NCI is plotted as a function of
§e in Figure 5.1 for the lowest Jﬂ=1/2+ T=3/2 state in 33Cl. Here it is
seen that as AE=(E(T=3/2) - E(k,T=1/2)) becomes smaller, O?NC gets
larger, with the maximum value being approximately v(2) Op(k,T=1/2).

A comparison between experimental data and the calculated values is
shown in Table 5.4 and Figure 5.2. The experimental results were

determined from (n,n) [Wei 76 and Hin 84] and (p,p) [McD 69 and Wil 83]
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in 33Cl.



Comparison between calculated and experimental values of ©

142

Table 5.4

p(n)
INC

x 1000

for the lowest T=3/2 state of each spin, 2J = 5, 1, and 3.

Protons Neutrons
A J" Ex(MeV) Exp Calculated EX(MeV) Exp Calculated
+ +0.3 +10.2 +10.5
5/2° 8.970 7.4 " 6.1 5 ¢ 8.860 11.5+ 1.2 4.9 3
21 ]/2+ 9,219 10.9 + 7.“jlséo 9.1“0 22.3 + 1.5 10.7:éué1
3/2+ 10.825 - 1.7j$'§ 10.726 7.8 + 1.1 1')":(1).2
5/2° 7.898 3.1 1 6.4030:7  1.786 6.4 x 0.4 2,979
25 172" 8.858 - 9.9711:%  8.810 - 75133
372" 7.968  11.2 & 117320 7.867 - 10.871%:2
5/2° 8.384  11.6 & 3.6i;°g6 8.331 B °'6j;'g
29 172" 9.659 18.2 s 5.7 9.678 - 10037
3/2" 10.480 5.3 « 4-1fg'§ 10.498 - 3'6:2°3
5/2° 7.390 9.6 = 2-9:?°§ 7.337 - 3'0:?'2
33 1727 5.548 7.5 4 8.1f38§5 5. 475 - 2"7j§7%u
372" 6.848 11.8 & 7.1i;26u 6.903 - “-8j§9}1
572" 8.071 - o.2f1éf 8.066 - 2-7f?'§
37 1727 6.692 12.9 & 0-7jg'i 6.657 - ‘*0:8'3
3/2% 5,052 16.8 + ’2.1:?'8 4.993 - “'Ojg':
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Comparison between experimental and theoretical spectro-
scopic amplitudes for the isospin-forbidden decay of the
T=3/2 states by (a) proton emmision and (b) neutron
emission. For each A, one value of each spin is given and
is plotted in the order: 2J = 5, 1, 3. Experimental data
are represented by squares (filled in for the lowest T=3/2
state for each A, and open for the remaining states).
Crosses with error bars denote the "best" estimate and its

upper and lower l1imits as described in the text.
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resonance data. The conventional method of relating the spectroscopic

amplitudes to the decay width ru, which is also used in previous works

(eg. [Wil 83 and Hin 84]), is that " is given by
r

¥ = 55—, (5.4.1)
C'sp .
where the penetration factor PC removes the angular momentum and
kinematic factors from the width I'u and Y;p is the single-particle
" reduced width. In this work, as in that of Wilkerson et al.,, the value
Y;p = W/MR? was used, where M = A/(A+1) and R = 1.NA1/3fm, There is some
uncertainty in this method, however, as 1.5 times this value has been
used by Hinterberger et al. [Hin 84]. This uncertainty, however, should
be systematic and tend to shift all experimental values by the same
amount. Experimental errors are typically less than 10% and have been
suppressed from the figure. Experimental excitation energies for the
T=3/2 states were used to evaluate the isospin-mixing amplitudes given
by eq.(5.3.3). In the absence of experimental values, excitation
energies of the analog states in the neighboring TZ = -3/2 (neutron
rich) nuclei were used. The excitation energies of the T=3/2 states are
given in Table 5.4,

In Figure 5.2, it is seen that there is generally good agreement
between experimental and calculated values, with the noted exception of
A=37. This disagreement, however, is most likely due to nearby T=1/2 0f-
1p-shell configurations which are not included in the calculations. The
results show that e?NC is roughly constant as a function of A, with

seemingly random fluctuations about this constant value. This is

consistent with the known experimental data. Although the data for the
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lowest T=3/2 states in each nucleus show an oscillation with period
AA=8, the data for the remaining T=3/2 states fail to show this feature,

p
INC are due to the

Our results indicate that the observed variations in ©

precise location of the nearby T=1/2 states, and that the oscillation in
the lowest T=3/2 states is, in fact, part of these "random" variations.

p n

Any difference between eINC and GINC

different energy denominators used in eq.(5.3.3) is attributable to the

that is not due to the

charge-dependent (isotensor) part of the INC interaction, as the charge-
asymmetric (isovector) part can only produce AT=1 mixing, and would
therefore give identical spectroscopic amplitudes for both proton and
neutron emission. Although there is relatively little data available for
neutron emission (see Figure 5.2b), some comparisons can still be made.
First, the neutron amplitudes are on the order of 2 to 3 times greater
than their proton counterparts. This is consistent with results obtained
for A £ 17 [McD 78]. The calculated values of e?ég) do not show a
systematic asymmetry between the proton and neutron spectroscopic
amplitudes, although individual cases may differ significantly. A
comparison between the calculated and experimental values for the
neutron decays (see fig. 5.2b) indicates that the theoretical values of
O?NC are perhaps smaller than experiment. To fully determiné this,
however, more experimental data are necessary.

The forbidden amplitudes for higher excited states have also been
evaluated and are shown in Table 5.5 and Figure 5.3. The calculations
indicate that e?ég) tends to decrease slightly as a function of
excitation energy and fluctuates in the same manner as the lower states.

This is in agreement with experiment [Wil 83]. Although the density of

background states is higher, and the isospin-mixing matrix elements are
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Table 5.5

Comparison between calculated and experimental values of ep(n) x 1000

INC

for the second T=3/2 state of each spin, 2J = 5, 1, and 3.

Protons Neutrons

A J" EX(MeV) Exp Calculated EX(MeV) Exp Calculated
12.633 - 1.6j§'g 12.549 - 3.0f3'2

21 1/2% 12.804 1.6:3'2 12.737 - 1.8jg'g
L] u.1

12,475 - 3.6f; g 12.377 - 3.3;_9

572" 10,777 - 187270 0.772 - R

25 1/2% 11.976 - u.sjg'g 11.934 - TR
322" 9.978 - 8.0, T 950 - 7.553 73

5/2° 11.356 5.0 + 0.8 2.3f?'§ 11.369 - 3.5_?'3

29 172" 11.700 - 3.6i2'? 11.720 - 6.ojg'g
3727 11.346 - u.of;'g 11.371 - 3.4:2'2

+ +2.1 +2.6

5/2 8.988 - 1.2_0.6 7-337 1'3_0.9

33 172" 11.877 - 0.8:8f2 11.842 - 3.7:?'3
372" 8.100 - 2.5f?'§ 8.107 - 7.1jg:;

_ +2.3 _ o =t1.3

5/2 11.164 0.57073  11.186 0.5.4"3

37 172" 13.339 - 0.01i8:882 13.284 - 0-5ig:81
372" 9.183 - 0.07:8f882 9.114 - 1.5:8:8§
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Figure 5.3: Same as Figure 5.2, except that the isospin-forbidden

Spectroscopic amplitudes for the second state of each J
are plotted.
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of the same order of magnitude as for lower states, the decrease in

p(n)
eINC

which appear in eq.(5.2.3).

is due to a reduction in the allowed spectroscopic amplitudes

5.5 Detailed Analysis of 33Cl

In this section, the isospin-forbidden spectroscopic amplitude for
the decay of the first J“=1/2+, T=3/2 state in 33Cl is discussed in
detail. This is the only state under investigation in this work where
both the excitation energies and the allowed spectroscopic amplitudes
have been determined experimentally for the nearby T=1/2 states [Iko
76]. Shown in Table 5.6 are the theoretical values for the excitation
energies, the isospin-mixing matrix elements, the allowed spectroscopic
amplitudes for the lowest T=1/2 state and the two T=1/2 states (fourth
and fifth states) which are within +500 keV of the T=3/2 state, and the
contributions to ep

INC

due to mixing in the daughter nucleus and all other parent states are

due to these states. In addition, contributions

also given in the table.

The experimental excitation energies for the fourth and fifth T=1/2
states are E(Y4) = 5.451 MeV and E(5) = 5.7U40 MeV, respectively. The
experimental decay widths for these states are rp(u) = 30 + 4 keV and

Pp(S) = 40 + 5 keV [Iko 76]. Using Coulomb penetrabilities tabulated by

It

Marion and Young [Mar 68] and Y;p 2.16 MeV (see eq.(5.4.1)), we find

o (4) = 0.135:0.009 and o°_ (5)

exp exp 0.143+0,008. These differ somewhat

from the theoretical values shown in Table 5.6. However, the sum of the
squares of the experimental spectroscopic amplitudes (0.039) does not
differ much from the sum of the squares of the corresponding theoretical

values (0.045), indicating that perhaps the fourth and fifth states
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Table 5.6

List of excitation energies, isospin-mixing matrix elements, and allowed

spectroscopic amplitudes for the principal contributors to the lowest

J"=1/2% T=3/2 state in 33C1.

i E(1) v, o (1) e
(Mev) . (keV) (x 1000) (x 1000)

1 0.815 43.7 -479.6 -4y

4 5.598 -2.2 190.5 8.4

5 6.017 -13.7 91.8 2.7

All other states 5.5

Total

12.2
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should be mixed. This mixing is not due to isospin-symmetry violation,
but rather to a residual component of the isoscalar Hamiltonian. Recall
that excitation energies of the mass-dependent sd-shell Hamiltonian are
uncertain by at least 150 keV [Wil 84]. Therefore, it is not
unreasonable to expect that some correction to the isoscalar interaction

1s necessary. We construct mixed states ¥'(4) and ¥'(5)
Yr(8) = ay(ld) + BY(5) (5.5.1a)
¥1(5) = -g¥(4) + a¥(5) (5.5.1b)

: p p 2 p p 2 .
R ' - = 0.891,
equiring that |e"(4)'/e"(5)"| IOexp(N)/eexp(S)l 0.891, we find

two solutions:

(I) o

il

0.9339 and B = -0.3575, and

(II) a

=0.3023 and B = -0.9532.

The residual isoscalar-mixing matrix elements for solutions I and II are
then -98.2 keV and 84.7 kev, respectively. Note, however, that the
second solution actually produces a level crossing between these states.
Shown in Table 5.7 are the isospin-mixing matrix elements for the states
¥'(4) and ¥'(5) using solutions I and II and the contribution to egNC
due to these states. In addition to the allowed spectroscopic amplitudes
for the fourth and fifth states, Op for the lowest T=1/2 level has also
been measured experimentally, @p(1) = -0,7+0.2 (this is an average of

the values obtained by Bobrouska et al. [Bob 69 and Bob 70] and Mermaz

et al. [Mer 71]). The new contribution to ep

INC due to this state is also
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Table 5.7

p(n) 33

INC
due to the mixed states ¥(4)' and ¥(5)' and the lowest T=1/2 state.

Contributions to 8 for the lowest J"=1/2+, T=3/2 state in “°Cl

P
i Eexp(i) eexp(i) Solution I Solution II
p P
(MeV) (x 1000) Viv Orne Vi O1nC

(kev) (x 1000) (keV) (x 1000)

1 0.811 ~700+180 3.7 -6.3+1.8 43.7 -6.3+1.8
Yy 5.451 135+9 2.8 3.9 13.7 -18.8
5 5.740 14348 -13.6 9.8 -2.0 -1.4
All other states 5.5 5.5
Total 12.941.8 ~21.0+1.8°%

aNote that for solution II the sign of both the mixing matrix

elements and the allowed spectroscopic amplitudes change.



152

given in Table 5.7. The total value of (80,

for solution I and -21.0+1.8 for solution II. Since the later solution

?NC which is three times the experimental value, and

x 1000) is then 12.9+1.8

gives a value for o
it requires a level crossing between the fourth and fifth T=1/2 states,

it is perhaps not unreasonable to reject this possibility. On the other

p
INC

small isospin-mixing matrix element of the fourth T=1/2 state (this is

hand, for the first solution, we see that o is very sensitive to the

due to AE = 97 keV). In fact, the isoscalar mixing causes this matrix

p
INC

this in mind, it is important to consider the effects of the alternative

element to change sign,.and therefore gives a larger value of @ . With
isovector interaction discussed in Chapter Two.

With the INC interaction determined with the parameters given in
the last row of Table 2.12 and C(z) = 0.93 and A(z) = =(5.5+0.2) «x 10-2,
the isospin-mixing matrix elements for ¥(4) and ¥(5) are -6.1 and -10.1
keV, respectively. Using solution I, these matrix elements for the
isoscalar-mixed states ¥'(4) and ¥'(5) are then -2.1 and -11.6 keV. The
isospin-forbidden amplitude (egNC x 1000) is then 4.0+1.8 (for the
second solution (P

INC

The results of this last calculation indicate that not only is it

x 1000) = -23.041.8).

necessary to know the exact location and the allowed spectroscopic

amplitudes for these nearby states, but it is also important that we
know the isospin-mixing matrix elements for these states to within 5
keV! This, unfortunately, is quite difficult. Meaningful information

has, however, been gained from this study. The calculations reported

p(n)
INC

influenced by the nearby T=1/2 levels, and that, therefore, the observed

here are strong evidence that the amplitudes © are greatly
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oscillation in these quantities is in fact due to details of the

structure of the parent nucleus.

5.6 Relationship Between the Decay Width and the Spectroscopic
Amplitude

Recently, a new procedure for determining the decay width Fu from
the spectroscopic amplitude has been developed by Bertsch [Ber 85]., In
this section, this procedure is outlined briefly, and the application of
this method to the isospin-forbidden decay of the lowest J"=1/2+, T=3/2

33

state in Cl is discussed.

The partial decay width is given by [Mer 61]

dn
. = c 2 e
AT I5T,0,5) = 2m [<¥(r,J, T o) | v |¢J.u‘{’(I",J'=0,TZ)>| 3 (5.6.1)

where V is the potential which causes the particle emission, ¢§u is a
continuum wave function normalized in a box of radius R (for r > 0, ¢§
= V(2/R)sin(kr+§)/r, where § is the potential phase shift), dnc/dE =
Rm/mh 2%k is the density of continuum states, and @(F,J,Tz+u) excludes the

ampl itude ¢juw(r',J'=O,Tz), and, therefore is given by
" u .
W(F,J,Tz+u) = W(P,J,Tz+u) - 0 (P,J;F',J'=O;J) ¢qu(F',J'=O,TZ).

Here ¢Ju denotes the normalized bound state wave function for the

particle in the orbit j and @ (T,J;I'',J'=0;j) is given by eq.(5.2.1).
H

The exact continuum wave functions ¢§§act are normalized for r >> 0 as

sin(kr+8)/Y/(k)r, and therefore, the decay width ru is given by
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4m | - | exact 2
AT I5r,0,5) = gz [<¥(,J, T+ | ¥ |¢ju ¥(r',J'=0,T,)>|%. (5.6.2)

For small distances, r Rn (Rn is the nuclear radius), we postulate

that ¢§ta°t = b ¢Ju' In addition, first-order perturbation theory gives

c y . e
€. = €, )0 (T,J;T',J'=0;3) = <¥(T,J,T +u| Vv ¥(Y',J'=0,T,)>,
( Ju T €500 ¢ 3) ¥(Tr,J, T +u| |¢Ju ( ' T,)

where e?u is the continuum energy and €Ju is the single-particle bound-
state energy. The relatjonship between the spectroscopic amplitude e“

and the decay width Fu is then

)2 b2

ru(r,J;rﬁ,J'=0;J) = % (e, le“(r,J;r',J'=o,j)|2. (5.6.3)

- €.
H? " “ju Ju

2 .2
Note that in this procedure the factor (sju - eju) b~ Um/h? replaces
the quantity ZPCY;p given in eq.(5.4.1).
+
As an example, this method is applied to the decay of the J"=1/2 ,

T=3/2 state in 3301, which was discussed in detail in section 5.5. The

single particle wave functions ¢Ju and ¢§§act Wwere obtained using the

standard Woods-Saxon procedure. The potential V(r) is

V(r) = = vy £(r) = Vg g(r) £e5 + Vo (r),

where

1]

£(r) = {1 + exp((r - Rn)/a)}—1,
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glr) = () 1 exp[r _ Rs) [1 + exp((r - R_)7a_)} 72
me’ ar a s s ’
™ s s
Ze*/r forr 2 RC
Vc(r‘) =
Zez 2
>R (3 - %;) for r s RC.
C C

For this case, the following parameters were used:

3}

V, = 53.0 Mev, vs(a;a) = 15.65 MeV
1/3

R, =Ry =R, =1.254"" fm,

a=a_ = 0.,65"fm,

s
A =32, and Z = 16.

The continuum energies were determined from the proton separation
energies [Wap 82, Iko 77 and Wil 83]. The bound-state energy of the 1s

orbit was found to be -5,998 MeV. The quantities b were obtained by
exact
Ju Ju

0srs Rn‘ Shown in Table 5.8 are the experimental excitation energies,

minimizing the rms deviation between ¢ and b¢. over the range
the decay widths Pp (including the isospin-forbidden width for the T=3/2
state), E?u (in the center-of-mass system), the coefficients b, and the
extracted spectroscopic amplitudes for the fourth and fifth T=1/2 states
and the lowest T=3/2 state, respectively. Note that the amplitudes

presented in Table 5.8 differ from those in Tables 5.4 (experimental

isospin-forbidden) and 5.7 (theoretical allowed). In addition, we now

|%

exp(5)|2 = 1.0. Applying the isoscalar-mixing model of

have Iep (4)/0
exp

eq.(5.5.1), we find a = 0.9440 and B = -0.3329. Using these mixed states
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Table 5.8
Experimental excitation energies, experimental decay widths Pp, e?p, the
coefficient b, and spectroscopic amplitudes for the lowest J“=1/2+,

T=3/2 state and the fourth and fifth J“=1/2+, T=1/2 states in 33Cl.

. ¢ p
i T Eexp(i) Fp(i) £ip b eexp(i)
(MeV) (keV) (MeV) {x 1000)
4 1/2 5. 451 30+U4 3.078 0.718 85+6
5 1/2 5.740 40+5 3.363 0.805 85+6

1 3/2 5.548 0.098+0.009 3.172 0.748 4.6+0.2
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and the "new" experimental values for the allowed amplitudes, the
isospin-forbidden amplitudes (eII)NC x 1000) are found to be 7.2+1.8 and
2.1+1.8 for the isovector interactions with and without the nuclear
charge—-asymmetric potentials, respectively. Again the experimental
isospin-forbidden amplitude of (G?NC x ?OOO) = 4.6¢0f2 lies between the
values obtained with the two isovector interactions.

Finally, it should be noted that the procedure given above has been
developed recently, and that the dependence on the single-particle
potential parameters has not yet been determined. With this in mind,
this method should be studied extensively in order that a judgement as
to whether it is better than the conventional procedure, given by

eq.{(5.4.1), can be made.

5.7 Suggestions For Future Work

This section concludes the fifth chapter by making some suggestions
for future work in this field. As was pointed out in the section 5.5,
when experimental excitation energies and allowed spectroscopic
amplitudes are used in the perturbation expansion of eq.(5.2.3) for the

decay of the lowest J“=1/2+, T=3/2 state in 33

for e?NC lies within the the limits set by the two alternative isovector

Cl, the experimental value

interactions. Although these limits may be large in some cases, it would
still be interesting if excitation energies and allowed spectroscopic
amplitudes for nearby T=1/2 states could be determined experimentally
for some of the other cases shown in Figure 5.2. From the standpoint of
the calculations presented here, the most interesting cases would be
those in which the density of background T=1/2 states is not too high.

This is generally true for J"=1/2+ states, and not for J“=5/2+ and 3/2+
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states. An additional feature of these 1/2+ states is that, since they
have £ = 0, it is experimentally easier to determine their spin
assignments, as compared to J"=5/2+ and 3/2+ states which both have % =
2. In addition, in order to isolate the role of the isotensor part of
the interaction, it wou}d be necessary to measure the relative locations
and allowed amplitudes for both proton and neutron backgroupd states for
a few cases.

In section 5.5, it was indicated that in order to evaluate 9?;2)
for T=3/2 states, it is necessary that the isospin-mixing matrix
elements be known to within 5 keV. This type of precision may be
impractical. However, another solution is to find isospin-forbidden
decays which are not as sensitive to the mixing matrix element, Possible
candidates are the decay of T=5/2 states in Tz=t1/2 nuclei, and decay of
J"=O+, T=2 states in TZ=O and -1 nuclei. An important feature of the
first set of transitions is that although the density of background
T=1/2 states is high, both the allowed spectroscopic amplitudes and the
isospin-mixing matrix elements are quite small. In addition, these
matrix elements sample only the isotensor interaction, which is perhaps
better understood than the isovector part. Unfortunately, preliminary
observations indicate that at least one nearby level may contribute
significantly to the total forbidden amplitude. In the case of the decay
of T=2 states, the density of nearby T=0 and 1 levels is not very high.
For example, in the theoretical excitation energy spectrum for A=20,
there is only one T=1 level and three T=0 levels within 2 MeV of the

™

+
J =0 , T=2 parent. Since the mixing with T=0 states is only isotensor,

and the density of background T=1 states is low, it is quite possible
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that the problems encountered with the T=3/2 states in the present work

+
may not be as important for the decay of these J“=o sy T=2 states.



Chapter Six

6.1 Summary of Chapter Two

In Chapter Two, isospin-nonconserving Hamiltonians were determined
empirically for the Op, 1s-0d, Od3/2-0f7/2, and Of-jp model spaces by
requiring that these interactions reproduce experimental b~ and c-
coefficients of the isotopic mass multiplet equation. The empirical
Hamiltonians reproduce the experimental data rather well, with rms
deviations between theory-and experiment being approximately 30 and 10
keV for the b~ and c-coefficients, respectively.

A general feature of the fits to b-coefficients was that only the
isovector single-particle energies and the Coulomb potential were
necessary to reproduce the experimental quantities. However, when the
contribution due to differences in proton and neutron radial wave
functions for 1s-0d-shell nuclei were included, a nuclear charge-
asymmetric interaction was needed. The effect of this interaction was to

(nn)

increase v by 1.5% relative to V(pp).
In order to reproduce experimental c-coefficients a nuclear charge-
dependent interaction was necessary. It was found that this interaction

can be accurately parameterized by increasing proton-neutron T=1 matrix

elements by 2%.

6.2 Summary of Chapter Three

The subject of Chapter Three was the theoretical evaluation of
corrections to the Fermi matrix element for superallowed B8-decays. The
procedure followed was essentially the same as that of previous works,
except that many recent improvements in nuclear models were used. Among

160
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these are: recently developed isoscalar Hamiltonians, radial wave
functions obtained from a self-consistent Hartree-Fock calculation using
a Skyrme-type interaction, and the empirical INC interactions determined
in Chapter Two. Values of radial overlap (GRO) and isospin-mixing (SIM)
corrections presented here are systematically smaller than those of

previous studies. The reduction in § M Was found to be related to the

I
selection of the isovector-single particle energies, while the reduction
in the radial-overlap correction was found to be due to a previously
neglected single-particle isovector potential which counteracts the
effects of Coulomb repulsion. The purpose of this study was to apply the
calculated corrections to experimental ft values, and then determine
empirical values of the ratio of the effective vector coupling constants
for nucleon and muon B~-decay, GV/Gu' The calculated corrections
presented here, like those of the previous studies, fail to yield
constant values of GV/Gu’ However, the suggestion is made that that
perhaps the calculated corrections for Of-1p-shell nuclei are too small
because of configuration-space truncations, and that experimental

spectroscopic amplitudes may be able to resolve the current discrepancy

between values of GV/Gu determined from high- and low-Z transitions.

6.3 Summary of Chapter Four

Comparisons between experimental and predicted isospin-forbidden
Fermi transitions are made in Chapter Four. It was found that the INC
interactions developed in Chapter Two give isospin-mixing matrix
elements and forbidden Fermi matrix elements which are‘comparable to

experimentally observed quantities.
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6.4 Summary of Chapter Five

p(n)
INC

decay of T=3/2 states in A=in+! nuclel (21 S A S 37) to J"=0", T=0

In Chapter Five, calculated spectroscopic amplitudes o for the
states in A=Un nuclei by isospin-forbidden proton and neutron emission
are presented and compared with experimental values. The forbidden
amplitudes are given in terms of contributions due to isospin-mixing in
both the parent and daughter nuclei. It was found that the calculations
are sensitive to the properties of nearby T=1/2 parent states. These
properties are the exact location of these states relative to the T=3/2
parent and the allowed spectroscopic amplitudes for these states.
Unfortunately, these properties are uncertain both experimentally and
theoretically. In order to perform a systematic study of the isospin-
forbidden amplitudes across the entire 1s-0d shell, these uncertainties
in the nearby T=1/2 states were estimated by shifting the T=1/2 energy
spectrum relative to the T=3/2 parent by +500 keV in small steps. The

forbidden amplitudes were then evaluated at each step. The best estimate

p(n)

eINC

was taken to be the unweighted average of the values obtained at
each step, and the uncertainty in the calculation was determined by
evaluating the upper and lower rms deviations of the values obtained at
each step from the average. Taking this uncertainty into account there
is generally good agreement between theory and experiment., With this
mind, it is proposed that the observed oscillation in the lowest T=3/2
states is not due to a global phenomenon, but rather to the specific
properties of nearby T=1/2 levels. These properties include the
excitation energies relative to the T=3/2 parent, the isospin-allowed

spectroscopic amplitudes, and the isospin-mixing matrix elements, and

are statistical rather than global in nature.
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The decay of the lowest J"-1/2+, T=3/2 state in 3301 is the only
case under investigation in this work where experimental data on the
nearby T=1/2 states are avallable, and, was therefore examined in
detail. In order to explain the experimental allowed spectroscopic
amplitudes it was found that mixing between the fourth and fifth T=1/2
states, due to residual isoscalar components of the Hamiltonian, was

necessary. With this, it was determined that e? c is very sensitive to

N
the small isospin-mixing matrix element of the fourth T=1/2 state,
indicating that even a 5 keV error in this quantity may be unacceptable,
As a check, O?NC was re-evaluated using the isovector interaction which
includes a nuclear charge-asymmetric interaction. The experimental value
for the forbidden amplitude was found to lie between the theoretical
values obtained using the two alternative isovector interactions. This
again supports the postulate that the experimentally observed values are
due to the specific properties of the nearby T=1/2 states.

A recently developed procedure which relates the spectroscopic
amplitudes and the observed decay width ru is also presented. The

3301

application of this procedure to the lowest J"=0+, T=3/2 state in
is discussed.

Suggestions for future experimental and theoretical work were made.
With perhaps the most promising of these being an investigation into the
decay of J"=0", T=2 states in T,=0 and -1 nuclei.

As a final remark, it is noted that the procedure used in this work
to predict isospin-symmetry violation in light nuclei was generally
successful. With this in mind, we are therefore encouraged to continue

working on this problem with the hope that many of the unanswered

questions of today may be resolved.
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