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ABSTRACT 
 

EXPERIMENTAL STUDY OF AN 
ION CYCLOTRON RESONANCE ACCELERATOR 

 
by 
 

Christopher T. Ramsell 
 

 

  The Ion Cyclotron Resonance Accelerator (ICRA) uses the operating principles of 

cyclotrons and gyrotrons.  The novel geometry of the ICRA allows an ion beam to drift 

axially while being accelerated in the azimuthal direction.  Previous work on electron 

cyclotron resonance acceleration used waveguide modes to accelerate an electron beam 

[5].   This research extends cyclotron resonance acceleration to ions by using a high field 

superconducting magnet and an rf driven magnetron operating at a harmonic of the 

cyclotron frequency.  The superconducting solenoid provides an axial magnetic field for 

radial confinement and an rf driven magnetron provides azimuthal electric fields for 

acceleration.  The intent of the ICRA concept is to create an ion accelerator which is 

simple, compact, lightweight, and inexpensive.  Furthermore, injection and extraction are 

inherently simple since the beam drifts through the acceleration region.  However, use of 

this convenient geometry leads to an accelerated beam with a large energy spread.  

Therefore, the ICRA will be most useful for applications which do not require a mono-

energetic beam.  An ICRA designed to accelerate protons to 10 MeV would be useful for 

the production of radioisotopes, or neutron beams, as well as for materials science 

applications. 



 

 

  As a first step toward producing an ICRA at useful energies, a low energy ICRA 

has been designed, built, and tested as a demonstration of the concept.   Analytical theory 

and a full computer model have been developed for the ICRA.   Beam measurements 

taken on the ICRA experiment have been compared with theory.  

  The ICRA computer model uses realistic fields of the solenoid, magnetron, and 

electrostatic bend.   This code tracks single particle trajectories from the ion source 

through the entire system to a target face.   A full emittance injected beam can be  

modeled by tracking many single particle trajectories. 

  The ICRA experiment is designed to accelerate a proton beam from 5 keV to 50 

keV in 5 turns.   A superconducting solenoid provides a 2.5 Tesla axial magnetic field.   

The accelerating structure built for the experiment operates at 152 MHz (4th harmonic) 

and provides 3 kV across 8 gaps.   Measurements of the accelerated beam current vs. 

beam orbit radius indicate an energy distribution ranging from near zero to near the full 

design energy, with 7% of the beam current above 24 keV and 1% above 42 keV. 

  Energy distributions generated using the ICRA computer model show reasonable 

agreement with the experimental data.   After a small correction of the bend voltage, the 

computer model shows good agreement with the magnitude and shape of the 

experimental data for a wide range of turn number.  

  Finally, a scheme for optimization of the basic ICRA design is given.  Design 

parameters are identified which minimize cost and which maximize the accelerated beam 

current.  Three 10 MeV proton designs are given which offer a compromise between low 

cost and a high quality beam. 
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1. INTRODUCTION 

  The Ion Cyclotron Resonance Accelerator (ICRA) is an ion accelerator which 

uses novel geometry.  It combines the principles of cyclotrons and gyrotrons and uses an 

rf driven magnetron as the accelerating structure.   The intent of the ICRA concept is to 

create an accelerator which is simple, compact, and lightweight. An ICRA designed to 

accelerate protons to 10 MeV would be useful for the production of radioisotopes, or 

neutrons, and may also have applications in materials science.   The ICRA concept and 

10 MeV design were first published in 1997 [1].  

  As a demonstration of the concept, a computer model has been developed to study 

particle trajectories in the ICRA, and a 50 keV proton ICRA has been built and tested. 

The first experimental results were published in April 1999 [2].  This thesis describes the 

theory that has been developed for the ICRA, then presents the design of the 50 keV 

prototype, and compares the experimental results with the theory.  Finally it gives 

recommendations for future research, and presents an improved 10 MeV design.  

  This chapter begins by introducing the reader to cyclotrons, gyrotrons, and 

magnetrons.  In section 1.4 an overview of the ion cyclotron resonance accelerator and its 

basic components are given.  Section 1.5 discusses the applications for which the ICRA is 

the most well suited.   

  Chapter 2 covers the theory which has been developed for the ICRA, including 

both analytical and computer model.  Chapter 3 then presents the specific design of the 

50 keV experiment.  Chapter 4 shows the experimental results, and compares with the 

theory.  Chapter 5 then gives recommendations for future research, presents the design of 

a 10 MeV ICRA, and gives a conclusion. 
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1.1 Cyclotrons 

  In 1931 Ernest Lawrence demonstrated the cyclotron, by accelerating protons to 

an energy of 80 keV.  This new tool for probing the nucleus fueled our understanding of 

the atom and lead to the rise of nuclear and high energy physics.  Today, synchrotrons 

achieve much higher energies than cyclotrons, however cyclotrons are still the leading 

choice in fields such as the production of radioisotopes for medical applications, proton 

and neutron beam therapy for treatment of cancer, as well as nuclear physics.  

  Cyclotrons use time varying electric fields to accelerate charged particles in the 

azimuthal (θ) direction, and an axial )ẑ( dc magnetic field to bend the particle beam into a 

closed orbit so that it will pass through the same accelerating structure many times.  The 

geometry and coordinate system for a simple cyclotron are shown in Figure 1.   The 

accelerating structure is a set of hollow conductors called “dees”, which serve the same 

function as drift tubes in a linear accelerator.  As a particle passes through a dee, the 

voltage potential is changing with time, but is constant with respect to position so the 

electric field inside the dee is zero.  However, since each adjacent dee has a different 

voltage, particles are accelerated by electric fields across the gaps between the dees.  

Figure 1. An example of a two dee cyclotron and the coordinate system used. 
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  The voltage on the dees alternates at a constant rf frequency (frf).  In order to be 

continuously accelerated, the beam must cross each gap only at times when the E-field is 

pointing forward (azimuthally).  Thus, the rf frequency must be a harmonic of the 

cyclotron orbital frequency (fc).  This is the resonance condition required for acceleration. 

   Because of the “drift tube” nature of the dees, the beam will strike the inner 

surface of a dee if it is not kept in the median plane (z=0).  For this reason, weak axial 

focusing was used to confine ions.  At higher energies relativistic effects prevented the 

use of weak focusing.  Therefore, strong axial focusing was developed using steel pole 

tips to create an azimuthal variation in the magnetic field.   

  As the beam gains kinetic energy, its orbit radius in the magnetic field increases. 

Extraction is usually achieved by allowing the beam that reaches full radius to pass 

behind a thin septum into a region where a strong dc electric field pulls the beam in the 

radial direction.  At large radius, the radial spacing between turns may become extremely 

small )Er( ∝ , in which case, some beam current will be lost by scraping on the 

septum.  Beam current hitting the septum creates thermal and radiation issues which 

contribute to limiting the beam current in the cyclotron.   An alternative extraction 

method is to accelerate a negative ion beam, then use a foil to strip ions to positive charge 

state which changes the radius of curvature of the beam.   In either case, only the beam 

that reaches full radius is extracted, so the cyclotron has a relatively narrow energy 

spread in comparison with the ICRA which has no such constraint.  
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1.2 Gyrotrons 

  Gyrotrons are a source of high power coherent microwaves.  Theoretical gyrotron 

research began in the late 1950’s by Twiss in Austrailia, J. Schneider in the U.S. and 

A.Gaponov in the U.S.S.R., though experimental verification was not obtained until the 

mid 1960’s [3]. Today gyrotrons are available from industry with average rf power levels 

of a megawatt and efficiencies greater than 50%.   

 

 
 

Figure 2.  Side view of a gyrotron.   

 

 

  Gyrotrons convert the kinetic energy of a dc electron beam into high frequency 

electromagnetic fields by exciting waveguide modes in a cylindrical resonant cavity.  A 

magnetic field in the direction of the cavity z axis, confines an annular electron beam to 

spiral around B-field lines.  The e- beam is hollow in the center and contains many tiny 

beamlets around the circumference as shown in Figure 3.    

  The source of the electron beam is an electron gun located outside the resonant 

cavity in the fringe field region of the magnet.  Here the velocity component parallel to 
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the B-field is set so that the beam will drift along field lines into the high field region of 

the resonant cavity where the interaction occurs.  Inside the waveguide structure, the 

relativistic electron beam interacts with azimuthal electric fields which causes bunching 

within each beamlet. [4]  

 

 

 

 

 

 

Figure 3. Cross section of the annular electron beam in a gyrotron 
Copied from reference [4] 

 

  Bunching and the transfer of energy from the electrons to the cavity fields both 

depend on a resonance between the cyclotron frequency of the electron orbits and the 

frequency of the cavity fields. 

  Even at the time that gyrotrons were being investigated as a source of 

microwaves, it was recognized that the inverse should also be possible, i.e. to accelerate 

electrons by driving a gyrotron structure with microwave power.  This was demonstrated 

by Jory and Trivelpiece in 1968.  Using electric fields from the TE11 mode of a circular 

waveguide, they accelerated a 10 mA electron beam and measured an energy gain of  

460 keV [5]. 
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1.3 The Magnetron 

  Magnetrons, like gyrotrons, generate microwave radiation by converting the 

kinetic energy of an electron beam into electromagnetic fields in a resonant cavity which 

is immersed in an axial magnetic field [6].  Development of the magnetron in the late 

1930’s and early 1940’s was instrumental in the successful use of radar during World 

War II [7].  Today magnetrons generate microwaves at 2.45 GHz in microwave ovens all 

over the world, and are so common that you can purchase a replacement tube for about 

$50.  

 

 

 

 

 

 

 

Figure 4.  Electric a) and magnetic b) fields in a magnetron structure with 8 oscillators. 
Copied from [8] 

 

 

  The magnetron structure itself is a resonant cavity, but it is much different than 

the open waveguide structure of the gyrotron.  The cavity is comprised of several coupled 

oscillators as shown in Figure 4.  The hole and slot configuration of each oscillator means 

that the magnetron structure behaves like a lumped circuit with isolated inductance and 
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capacitance (Figure 5).  The additional inductance and capacitance lowers the resonant 

frequency and allows the magnetron to be much smaller than a wavelength. Our interest 

in the magnetron is as an accelerating structure because an rf driven magnetron can be 

used to generate electric fields in the azimuthal direction.   

 

 

 

 

 

 

 

Figure 5.  Hole and slot configuration of a single oscillator and its equivalent LC circuit. 
Copied from [9]. 

 

 

 

1.4 Ion Cyclotron Resonance Acceleration  

  The ion cyclotron resonance accelerator (ICRA) combines the principles of 

cyclotrons and gyrotrons.  Like the cyclotron, ions are confined radially (r) while being 

accelerated in the azimuthal (θ) direction.  However, in the axial (z) direction, the beam 

is not confined.  Instead, the beam is allowed to drift through the accelerating structure 

just as the electron beam drifts through the waveguide of a gyrotron.  For this reason, an 

appropriate name for the ICRA is an “axial drift cyclotron”. 
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  As mentioned previously, Jory and Trivelpiece demonstrated cyclotron resonance 

acceleration by accelerating an axially drifting electron beam in a waveguide.  The 

research documented here extends cyclotron resonance acceleration to ions for the first 

time.  The waveguide structures used in gyrotrons are on the order of a wavelength and 

would be too large at the low frequencies required to accelerate ions.  However, by using 

an rf driven magnetron operating at a harmonic of the cyclotron frequency, together with 

a high field superconducting magnet, the accelerating structure becomes small enough to 

fit into the bore of a common superconducting magnet.  This means that a magnet which 

is available from industry can be used.  

  The main components of an ICRA are shown in Figure 6.  These are the 

superconducting magnet, ion source, electrostatic bend, accelerating structure, and the 

target. A dc ion beam is extracted from the ion source directly along a B-field line so that 

the Bv
�

� ×  force on the beam is zero.  The electrostatic bend deflects the beam so that it 

has a component of momentum perpendicular to the B-field which causes it to orbit 

around field lines.  The remaining momentum parallel to the B-field causes the beam to 

spiral axially into the high field region.  At the acceleration region, the B-field is 

relatively flat and the beam drifts axially through the magnetron structure.  While inside 

the magnetron, rf electric fields accelerate the beam in the azimuthal direction so that the 

radius of the beam orbit increases.  Upon exit from the magnetron, the beam spirals into 

the lower field of the extraction region, until striking a target downstream.  A detailed 

description of the beam trajectory is given in section 2.5.  
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Figure 6.  Basic components of an ICRA 

 

  This acceleration scheme is inherently simple, compact, and inexpensive.  

In principle, the rf driven magnetron can be cut out of a single piece of copper.   

Superconducting magnets of the proper size are available from industry.  The high 

magnetic field means the machine is very compact.  Furthermore, because of the lack of 

axial focusing, no steel is needed to shape magnetic fields so the entire machine is 

lightweight.  Since an ICRA would be compact and lightweight, it might be designed to 

be portable which could open up some field applications for accelerators.  Beam 

extraction is inherently simple because nearly all of the beam drifts through the 

accelerating cavity to the target region where it can be isolated from the accelerator 

mitigating maintenance and radiation shielding issues.    

  As we will see, the penalty for all of these advantages is that the beam accelerated 

by the ICRA contains a large energy spread.  In fact the extracted beam will contain 

energies ranging from near zero to the full design energy.   This is caused by three 
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factors.  1) For simplicity the injected beam is dc, therefore the part of the beam which is 

in phase with the rf is accelerated, while the rest of the beam is decelerated.  2) Any 

spread in the axial momentum through the acceleration can cause a difference in the 

number of kicks an ion receives.  3) A radial dependence of the accelerating fields in the 

rf driven magnetron causes radial defocusing.  The large energy spread simply means that 

the ICRA will be most useful for applications in which an energy spread does not matter, 

such as the production of radioisotopes, or neutron beams.   

 

 

1.5 Applications  

  Today proton and heavier ion beams at energies below a few MeV are typically 

produced by electrostatic accelerators or radio frequency quadrupoles.  Beams above a 

few MeV are typically produced by cyclotrons, or linacs, with the highest energies being 

attained by synchrotrons.  In principle, an ICRA could be designed to accelerate any ion 

to any energy range.  However, for the purpose of limiting the scope of this discussion, 

we will concentrate on a particular energy regime from 3 to 12 MeV.  In particular, an 

ICRA designed to accelerate protons or deuterons to 10 MeV would be useful for many 

applications.  Three areas for which the ICRA is the most well suited are 1) production of 

short lived radioisotopes, 2) as an accelerator based neutron source, and 3) for materials 

science applications.   

  The use of radioisotopes in medicine and industry has experienced steady growth 

over the past two decades.  Medium energy accelerators (10 < E < 30 MeV) are used in 

commercial production of radioisotopes with half lives long enough for shipment.  Lower 
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energy machines (E < 10 MeV) are used in hospitals for on site production of relatively 

short lived isotopes.  The most common of these are the positron emitters: 11C, 13N, 15O, 

and 18F which are used for positron emission tomography (PET) [10,11].  A 10 or 12 

MeV ICRA delivering 10 to 50 µA of protons to the upper half of the energy range would 

be useful for production of these PET isotopes.  If that ICRA were designed to be 

portable, it could be shared by several institutions.  

  Applications for neutron beams include thermal neutron radiography, fast neutron 

radiography, fast neutron analysis, and neutron activation analysis.  Of these, fast neutron 

analysis has recently gained attention as a method for rapidly identifying materials in 

applications such as bomb/drug/weapon detection for airport security.   A more common 

application of neutron beams, thermal neutron radiography, is used to produce an image 

of the internal components of an object by passing neutrons through the object and 

imaging the neutrons on film.  The majority of neutron radiographs are made at nuclear 

reactors where high neutron fluxes are available. The disadvantage here is that equipment 

to be radiographed must be brought to the reactor site.  Accelerator based neutron sources 

produce somewhat lower neutron fluxes than reactors, but offer the possibility of being 

portable and therefore would be more useful for field applications.  A 10 MeV ICRA 

producing only 10µA of protons (upper half of ∆E) would produce a neutron rate useful 

for neutron radiography or as a research tool for fast neutron analysis.  

  Finally there are numerous materials science applications for which a 10 MeV 

ICRA would also be useful including: ion implantation, charged particle activation 

analysis, and radiation damage studies.  
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2. THEORY 

  This chapter covers the theory needed to understand and design an ion cyclotron 

resonance accelerator (ICRA).  Sections 2.1, 2.2, and 2.3 explain basic considerations for 

the magnetic field, vacuum, and ion source.  Section 2.4 covers the theory of resonant rf 

cavities.  The last two sections comprise the majority of the chapter.  Section 2.5 covers 

all aspects of the beam trajectory that can be calculated analytically.  Section 2.6 covers 

those aspects of the beam trajectory which can only be calculated using a full computer 

model.  

 

2.1 Magnetic Field 

  Consider a positive ion with charge (q) and mass (m) in a region of constant 

magnetic field, B.  If the ion has some momentum in a direction perpendicular to the B-

field (p⊥ ), then the Bv
�

� × term of the Lorentz force equation provides a centripetal force 

which causes the ion to move in a circular path.  The radius (r) of this orbit is given by: 

      qBrp =
⊥

    (2.1) 

The angular frequency, called the cyclotron frequency, is given by:  

      m
qB

c γ=ω     (2.2) 

where γ is the relativistic mass factor.  Notice that for γ =1 the cyclotron frequency 

depends on the B-field and on 
q
m  of the ion, but does not depend on the ion velocity.   

  In the direction parallel to magnetic field lines, force on the ion is zero and the ion 
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 will simply drift ( ||p = constant).  Therefore in a region of constant magnetic field, an ion 

with momentum )pp(p ||
��� += ⊥  will move in a helical path. 

 

 

 

 

Figure 7.  An ion moving in a helical path in a constant axial B-field. 

  As in the cyclotron, acceleration in the ICRA requires a resonance between the rf 

accelerating fields and a harmonic of the cyclotron frequency, (section 2.5.6).  However, 

since ions in the ICRA will also drift along B-field lines (z direction), the magnetic field 

must be nearly constant over the axial (z) length of the acceleration region (for γ ≅  1).  At 

higher energies, the cyclotron frequency will decrease as γ becomes greater than 1.  In 

this case it will be necessary to add a slope (dB/dz) to the B-field, which matches the 

increase in γ, in order to maintain resonance.  Since the focus of this work is a low energy 

50 keV proton accelerator, the reader should assume that γ = 1, for the remainder of this 

document unless stated otherwise. 

  A Helmholtz coil pair provides a longer axial flat field length than a solenoid of 

equal coil radius (Rc) and axial length (zc).   However, either coil geometry will work.  

The B-field on the z axis (r=0), of a single current loop is given by:   

     
2
3

)zR(
RB)z(B

22
c

3
c

0z
+

=     (2.3) 
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where the field has been normalized to the central field value B0.  This equation can be 

used to calculate the fields on the axis of a Helmholtz coil or a solenoid by simply 

placing coils at appropriate locations and then superimposing the B-field of each coil.  

Solving for the magnetic field off axis (r ≠ 0) is more difficult (see section 2.6.1).    

Figure 8 shows the geometry of a Helmholtz coil and a solenoid coil.  Figure 9 shows the 

axial profile of each B-field.  Notice the Helmholtz coil provides a significantly longer 

flat field length.  

 

 

 

 

 

 

Figure 8.  Cross sections of a Helmholtz coil (left) and a solenoid (right) with equal coil dimensions 

 

 

 

 

 

 

Figure 9.  Axial field profile for a Helmholtz coil (left) and a solenoid (right) with equal dimensions. 
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  For the ICRA, the choice of B-field profile is an important consideration because: 

1) the flat field length limits the axial length available for acceleration, and 2) the ion 

source must be able to operate in the chosen fringe field region.  Furthermore we will see 

in section 2.5.2 that the ratio of field at the acceleration region to field at the source is 

involved in determing the increase in the transverse momentum spread of the beam. 

 

 

 

 

 

2.2 Vacuum 

  Preferably the vacuum system for any accelerator should maintain a complete 

absence of atoms.  In reality, the pressure in the ICRA will be dominated by the mass 

flow of gas fed into the ion source, and to a smaller extent by outgassing from materials 

inside the vacuum chamber.  The mean free path (λ) is the average distance that a particle 

travels before colliding with another particle.  For this experiment, it is sufficient to have 

a mean free path longer than the path of the beam.   Details of the vacuum system are 

given in section 3.2.2.  
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2.3 Ion Source 

  A wide variety of ion sources are adequate to supply the beam for an ICRA.   The 

only requirement is that the source must operate in the fringe field of the magnet at the 

chosen location.   However, a high brightness source is preferred because the acceptance 

phase space of the rf driven magnetron together with the brightness of the injected beam 

are crucial parameters which determine the final accelerated beam current. 

  In most ion sources, the energy spread in the extracted beam is small, because all 

ions are accelerated through nearly the same potential from the extraction aperture to the 

puller electrode.   However, the beam will have some finite spread in transverse and 

longitudinal position and momentum.  These beam dimensions occupy a 6 dimensional 

volume in phase space.  The transverse spread in position and momentum is normally 

described in terms of two dimensional areas called the beam emittance.  The computer 

model of the injected beam emittance is discussed in section 2.6.7 of this chapter.   

  In chapter 3, we will see that the ion source chosen for the 50 keV ICRA is a 

simple electron impact ion source.  Electrons emitted from a hot filament are accelerated 

through approximately 100 volts toward an anode.  The electrons impact and ionize H2 

gas creating H+ and H2
+.   An ion beam is extracted from the source at 5 - 10 keV.  The 

energy spread in this type of source is due to both the temperature of the ions and 

variations in the potential at which the ion was created.  The maximum energy spread is 

still small.   The computer model of section 2.6 uses the assumption that ∆E = 0. 

  The source chosen for the 50 keV ICRA also includes an Einzel lens for focusing 

the beam before injection into the ICRA.  This electrostatic lens provides azimuthally 

symmetric electric fields, which are effective for focusing the low velocity beam, and 
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also has an adjustable focal length.   For the purposes of this chapter on theory, the Einzel 

lens should be thought of as part of the ion source apparatus.   Details of the ion source 

and the Einzel lens are given in section 3.2.3 of the chapter on design. 

 

 

 

 

2.4 RF Cavity 

  Initial designs for the ICRA used an rf driven magnetron in an 8 Tesla axial dc 

magnetic field [1].  In chapter 3 on the design of the 50 keV ICRA we will see that the 

availability of a 2.5 Tesla superconducting magnet created the opportunity to build a 

proof of principle device at very low cost.  The disadvantage of this lower magnetic field 

is that a pure magnetron would not fit into the bore of the available magnet.  The solution 

was to build a hybrid coaxial - magnetron cavity.  

  This section covers the electromagnetic theory needed to design the rf 

accelerating structure of the ICRA.  The theory is well known and is given here as 

background.   Section 2.4.1 begins with plane waves, then reviews waveguide TE and 

TM modes.  Section 2.4.2 covers TEM waves in a coaxial cavity, then the fields in a 

coaxial quarter wave cavity are derived.  Section 2.4.3 gives the fields in the central 

region of the magnetron structure. Section 2.4.4 simplifies the theory by representing a 

resonant cavity as an equivalent lumped circuit.  Finally, the method used to describe the 

hybrid cavity is given in section 2.4.5.  
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2.4.1 Waveguides 

  We begin with the time harmonic form of Maxwell’s equations in a source free 

region of empty space.  

        BiE
���

ω−=×∇     (2.4) 

     E
c
iB 2

��� ω=×∇     (2.5) 

         0E =∇ •
��

    (2.6) 

         0B =∇ •
��

    (2.7) 

In this form, oscillatory time dependence is assumed.  Therefore it is only necessary to 

solve for the spatial dependence, )r(E �

�

, then the full time dependent solution is recovered 

by multiplying by an oscillatory factor: tie)r(E)t,r(E ω−= �

�

�

�

.  This approach is correct in 

general because any non-oscillatory time dependence can be constructed with a Fourier 

series.  However, for this work we are only interested in oscillatory solutions.    

  Taking the curl of equation 2.4 and substituting equations 2.5 and 2.6 gives:  

)B(iE
�����

×∇ω−=×∇×∇  

)Ec
i(iE)E( 2

2
������ ωω−=∇−∇∇ •  

E
c

E 2

2
2

��� ω−=∇  

Where the total wave vector is defined as: 

ck ω=
�
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This gives the vector Helmholtz wave equation: 

         0E)k( 22 =+∇
��

    (2.8) 

Similarly for the magnetic field:  0B)k( 22 =+∇
��

    (2.9) 

Where each vector equation actually represents three scaler wave equations.  An 

important solution of the wave equation in open space (no boundary conditions) is the 

plane wave.  The electric field for a plane wave can be expressed in the form:  

       )trk(i
oeE)t,r(E ω−•=

�

�

�

�

�

    (2.10) 

The direction that the wave propagates is given by the wave vector, k
�

, but the direction 

of the actual electric field is given by oE
�

.  The velocity of propagation is c
k

v =ω= .   

Notice that imposing 0E =∇ •
��

 on equation 2.10 gives 0Ek o =•
��

.  This means that the  

E-field cannot point in the direction of propagation [12, 13].  Furthermore, Using 

equation 2.4 to solve for the magnetic field leads to: 

      )]t,r(Ek[1)t,r(B �

��

�

�

×
ω

=     (2.11) 

Evidently the magnetic part of the wave has the same form, but points in a direction  

perpendicular to the direction of propagation and to the electric field.  For this reason 

plane waves are referred to as transverse electric and magnetic or TEM waves.   For 

example, if the wave propagates in the z direction, then kzrk =•
�

�

 and yxo EŷEx̂E +=
�

   

so the plane wave would be written as: 

)tkz(i
yx e)EŷEx̂()t,r(E ω−+=�

�
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and the B-field would be: 

)tkz(i
yx e)Ex̂Eŷ(k)t,r(B ω−−ω=�

�

 

Waveguides 

  Waveguides are hollow conductors with cross section of any shape that remain 

constant along their axial (z) length.  Examples are shown in Figure 10.  Of course 

electrostatic fields cannot exist inside a waveguide because the metal walls all have the 

same potential.  However, if plane waves are introduced into a waveguide the waves will 

reflect off of the conducting walls.  The incident and reflected waves superimpose to 

create a standing wave pattern along the transverse dimensions, and a travelling wave 

along the axial dimension as shown in Figure 11.  

 

Figure 10.  Examples of waveguides 

 

Since the wave pattern must satisfy the boundary conditions at the conducting walls, 

either E
�

 or B
�

 must have a component in the direction of propagation.  Thus fields in a 

waveguide are either TE (transverse electric) or TM (transverse magnetic), but 

waveguides do not support TEM waves.  Notice that whether the waves are TE or TM 

depends on the initial polarization of the wave (or the orientation of the driving probe).  
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Figure 11 

a) A TE field pattern in which E is transverse only, but B has transverse and axial components. 

b) A TM field pattern in which B is transverse only, but E has transverse and axial components. 

 

 

In the usual treatment of waveguides [12, 13] the fields are separated into transverse and 

axial dependence using separation of variables.   

Assume that any of the six components Ex, Ey, Ez, Bx, By, or Bz can be written as:  

     )z(g)y,x(f)r( =Ψ �     (2.12) 

The wave equation can be broken into: 

0)y,x(f)k( 22 =+∇ ⊥⊥

�

  and       0)z(g)k
z

( 2
z2

2
=+

∂
∂  

where       222
z kkk ⊥−=     (2.13) 
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If kz is real, the solution for g(z) is oscillatory, so the electric and magnetic fields are both 

of the form:  

    )tzk(i ze)y,x(E)t,r(E ω−=
�

�

�

   (2.14) 

Where )y,x(E
�

 could have components in both the transverse )ˆ(⊥  and longitudinal ( ẑ ) 

directions.  When solving for the fields in a specific waveguide geometry, forcing 

)y,x(E
�

 to satisfy the boundary conditions leads to an expression for k⊥  in terms of the 

transverse waveguide dimensions. 

  Obviously, propagation down the waveguide depends on kz being real, but notice 

the implication of equation 2.13.  The wave vectors, k, k⊥ , and kz, are related by a triangle 

equality (see Figure 11).  Therefore, if k depends on frequency of the wave (k=ω/c), and 

k⊥  is fixed by the cross sectional dimensions of the waveguide, then kz, is simply the 

remaining side of the triangle.  The result is that, if the frequency (or k) becomes small 

enough, kz will become imaginary and the wave will not propagate through the 

waveguide.  

  For this reason, waveguides have a cut off frequency, below which waves 

introduced into the waveguide will not propagate along the length. The cut off frequency 

occurs when k = k⊥ , and depends exclusively on the transverse dimensions of the 

waveguide being used.  

π
= ⊥

2
kcfc  

Since the z dependence is only in the exponential factor, we can write  

     )ẑik( z−∇=∇ ⊥

��

    (2.15) 
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where:  
y

ŷ
x

x̂
∂
∂+

∂
∂=∇ ⊥

�

    for Cartesian coordinates. 

This allows field components to be separated into transverse and longitudinal directions.  

Substituting equation 2.14 into equation 2.4 and then using 2.15 to separate terms in the 

transverse and longitudinal directions gives : 

  Longitudinal:    ẑBi)E( zω−=×∇ ⊥⊥

��

   (2.16) 

  Transverse:   ⊥ω−=×−×∇ ⊥⊥⊥
ˆBi)Eẑ(ik)Eẑ( zz

��

   (2.17) 

Where two analogous equations come from substituting B(r,t) into (2.5).  Equations 2.16 

and 2.17 relate the transverse and longitudinal components of the fields in a waveguide.  

Notice that equation 2.16 says that the longitudinal magnetic flux through the cross 

sectional area of the waveguide causes a transverse electric field. 

  Now consider the special case of a TEM wave by letting Ez and Bz both go to 

zero.  Equations 2.16 and 2.17 reduce to: 

       0)E( =×∇ ⊥⊥

��

     (2.18) 

       )Eẑ(kB ⊥⊥ ×
ω

=
�

    (2.19) 

Where we have let kz = k since k⊥  will be zero.  From equation 2.18 we see that without 

any magnetic flux through the cross sectional area of the waveguide, the transverse field 

( ⊥E
�

) can only be caused by an electrostatic potential ( Φ∇−=⊥

��

E ).  In other words TEM 

waves cannot exist inside a waveguide, unless there is a voltage difference between the 

walls to support a transverse electric field.  Notice that equation 2.19 is the same result as 

for TEM plane waves in equation 2.11.  

  Since the conducting walls of a waveguide are all at the same potential, TEM 

waves cannot exist in waveguides.  However, a transmission line with a voltage 
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difference between two separate conductors can support TEM waves.   In the next section 

we begin by studying one example of a two conductor transmission line, called the 

coaxial transmission line.  

 

 

2.4.2  Coaxial Quarter Wave Cavity 

 

  TEM waves can exist in transmission lines which have two conductors.  An 

example is the coaxial transmission line.  The cross section of a coaxial line is shown in 

Figure 12.  Where the radius of the inner conductor is “a” and the radius of the outer 

conductor is “b”. 

 

 

 

 

Figure 12.  Cross section of a coaxial transmission line 

 

  Recall that the solution of the wave equation is separable into transverse and 

longitudinal dependence (equation 2.12), and that the fields of a TEM wave can be 

derived from an electrostatic potential (equation 2.18).  This means that we can solve the 

Laplace equation for the electrostatic potential, and the transverse electric field, then 

multiply by the z dependence )e( ikz± and the time dependence )e( tiω−  to obtain a 

complete solution.  
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  Solving the Laplace equation for the transverse dependence only gives: 

02 =Φ∇
�

 

)baln(
)brln(V)r( 0=Φ  

Differentiating gives the electric field: 

)r(E Φ∇−= ⊥

�

 

       
r
r̂

)baln(
V

)r(E 0=
�

    (2.20) 

and the magnetic field can be found using equation 2.19. 

       
r
ˆ

)baln(c
V

)r(B o θ=
�

    (2.21) 

The surface current (Js) can be found using the boundary condition which comes from 

Ampere’s law:    )Bn̂(1J
o

s

��

×
µ

=     (2.22) 

where n̂ is a unit vector normal to the surface.   For the inner conductor ( r̂n̂ = ) the 

surface current is:    

       ẑ
)abln(a

V
Z
1J o

o
s =
�

 

Where Ω=εµ= 377Z ooo  is called the “impedance of free space”.   

Integrating around the circumference of the inner conductor gives the total current in 

terms of the voltage.     

         sJa2I π=  

)abln(
V2

Z
1I o

o
o

π
=  
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Therefore, we can solve for the ratio of the voltage to the current.  

      )abln(
2
Z

I
V

Z o

o

o
c π

==    (2.23) 

Zc is known as the characteristic impedance of a coaxial transmission line. Zc relates the 

peak voltage to the peak current (or the E-field to the B-field) and depends only on 

geometry of the transmission line. 

 

The Quarter Wave Cavity 

  Now consider a coaxial quarter wave cavity, i.e. a section of a coaxial 

transmission line whose length (�) is one quarter of a wavelength (¼λ).   A shorting plate 

at one end connects the inner and outer conductors while the other end is left open, as 

shown in Figure 13.  The short forces the voltage difference between the inner and outer 

conductors to be zero at all times, but the open end can oscillate between ±Vo.  Therefore, 

we expect the voltage profile to look like a quarter of a wave as shown in Figure 14.   

  As with any electromagnetic oscillator, stored energy is transferred back and forth 

between the electric and magnetic fields.  It is useful to think of charge as bouncing back 

and forth between the inner and the outer conductor, where the shorting plate provides a 

path for current to flow between the two.   At the moment of maximum charge 

separation, the voltage difference is maximum and the electric field points in the radial 

direction.  One quarter of a cycle later, charge flowing along the conductors and across 

the shorting plate causes a magnetic field in the azimuthal direction.  The expected 

current profile is also shown in Figure 14.  Obviously the magnetic field is largest at the 

short, and the electric field is largest at the open end.   
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Figure 13.  Geometry of a quarter wave cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Voltage and current profiles for the quarter wave cavity 
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  Since fields in the quarter wave cavity are TEM, they satisfy an electrostatic 

solution. Thus, we can solve for the transverse electrostatic fields, then add on the z 

dependence and time dependence last.  The axial dependence can be found by 

superimposing the left and right moving waves.  

ikzikz BeAe)z(V −+=  

ikzikz DeCe)z(I −−=  

Where voltages add, but currents moving in opposite directions subtract.   Applying 

boundary conditions (V = 0 at z = 0) at the shorted end, and (V = V0 at z = �) at the open 

end gives:    )
2

zsin(V)z(V 0
�

π=     (2.24) 

Similarly, maximum current (Io) flows on the short, and I = 0 at the open end. 

       )
2

zcos(I)z(I o
�

π=     (2.25) 

Combining the radial, and the axial dependence, together with the time dependence, the 

electric field becomes. 

     r̂e)
2

zsin(
r
1

)baln(
V)z,r(E tio

r
ω−π=

�

�
  (2.26) 

Notice that this electric field is entirely in the radial direction, thus it does not account for 

fringe fields at the open end of the quarter wave cavity.   Similarly the magnetic field is: 

     θπ= ω−
θ

ˆe)
2

zcos(
r
1

)baln(c
V)z,r(B tio

�

�
  (2.27) 

 When calculating the capacitance (C), we must account for the axial profile.  It can be 

found from the total energy stored in the electric field (UE). 

       2
0E CV2

1U =  
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Where the stored energy is:  

rdE
2
1U 3

2

oE �ε=
�

 

Substituting equation 2.26 and integrating gives: 

2
0

o
E V

)abln(2
1U �

�

�
�
�

� πε
=

�
 

Therefore the total capacitance of a quarter wave coaxial cavity is: 

       )abln(
C o�πε

=     (2.28) 

The inductance (L) is more difficult to calculate.  Although equation 2.25 correctly 

accounts for the axial current distribution on the inner and outer conductors, the current 

which flows on the shorting plate (at z = 0) also makes a significant contribution to the 

magnetic field near z = 0.  A much simpler method is to use the relationship between 

wavelength and frequency oo fc=λ and the fact that the resonant frequency of the cavity 

(fo) is related to the inductance and capacitance by:  

        
LC2

1fo π
=  

Thus the total inductance is: 

             )abln(
4

L 3
o

π
µ

=
�

   (2.29) 

The Quality factor, or the “Q” is defined as: 

losspoweraveragedtime
)fieldscavityinstoredenergy(

Q o ×ω
=  

or           
loss

o

P
U

Q
ω

=     (2.30) 
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The full analytical expression for the Q of a coaxial quarter wave cavity can obtained by 

first calculating the time averaged power loss caused by surface currents flowing on the 

conductors.   

  The surface current (Js) on the inner conductor is obtained from equation (2.22): 

)Bn̂(1J
ar

o
s =

×
µ

=
��

 

 Substituting the B-field of equation 2.27 gives: 

       ẑe)
2

zcos(
)abln(aZ

V
J ti

o

o
s

ω−π=
�

�
   (2.31) 

The general expression for power loss due to current flowing through a resistive material 

is:       rdEJP 3

vol
loss � •=

��

 

where J
�

 is the current density and d3r is a differential element of volume.  Ohm’s law can 

be used to express the electric field in terms of J
�

. 

EJ
��

σ=  

       rdJP 3

vol

2

loss � σ=     (2.32) 

where σ is the conductivity of the metal.  The power loss on the inner conductor is 

obtained by assuming that the current flows with uniform density over a depth of one 

skin depth (δ).  

       
σµπ

=δ
oof

1      (2.33) 

Using δ= sJJ
��

 for case of the inner conductor, equation 2.32 reduces to: 
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� σδ
π=

�

0

2
s

inner dzJa2P  

Substituting equation 2.31, then integrating, and taking the time average gives: 

 ��
Τ

ωΤ
π

σδ
π=

0

2

0

2
2
o

2

2
o

inner dt)t(sin1dz)2
z(cos

Z)ab(ln
V

a
2P

�

�
 

      �
�
��

�
�

δσπ
=

a2Z4
V

P 2
c

2
o

inner
�     (2.34) 

where Zc is the characteristic impedance from equation 2.23.    

Similarly the power loss due to current on the outer conductor is: 

      �
�
��

�
�

δσπ
=

b2Z4
V

P 2
c

2
o

outer
�    (2.35) 

  Since maximum current flows at the z=0 end of the cavity, we must also account 

for power loss on the shorting plate.   Again, using equation 2.22 for z=0: 

)Bn̂(1J
0z

o
s =

×
µ

=
��

 

Substituting the magnetic field from equation (2.27) gives: 

      ti

o

o
s e

r
r̂

)abln(Z
V

J ω−=     (2.36) 

As before, the power loss is calculated assuming the current has uniform density over one 

skin depth ( δ ).  For the shorting plate the general expression for power loss reduces to: 

drrJ2P
b

a

2
sshort �σδ

π=  

Substituting equation 2.36 for the surface current, then integrating, and taking the time 

average gives: 
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      )abln(
Z4

V
P 2

c

2
o

short δσπ
=    (2.37) 

The total power loss is then: 

shortouterinnerloss PPPP ++=  

Substituting equations 2.34, 2.35, and 2.37 yields: 

     
��
�

��
� ++

πσδ
= )abln(2

b
1

a
1

2Z4
V

P 2
c

2
o

loss
�

�   (2.38) 

Finally we can calculate an analytical expression for the Q using  

loss

Eo

P
U

Q
ω

=  

Where 2
oE VC

2
1U = , and the capacitance was given in equation 2.28.  After significant 

rearrangement we arrive at: 

      

��
�

��
� ++δ

=
)abln(2

b
1

a
1

)abln(2Q

�

   (2.39) 

  When using equations 2.38 and 2.39 one should be aware that in real resonant 

cavities, the conductivity of most conductors is significantly reduced from that of the 

pure metal [14].  Machining, cutting, and bending metal create crystalline defects that 

reduce the conductivity of metal [15].  Furthermore the conductivity of metal decreases 

as the operating temperature of the cavity increases. 

  Finally, it is useful to consider the ratio of Rs/Q, where Rs is the shunt resistance. 

In section 2.4.4 the shunt resistance is defined in terms of the power loss and the peak 

cavity voltage by the expression:  
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s

2
o

loss R2
V

P =     (2.40) 

Thus, the (Rs/Q) becomes: 

)PQ(2
V

Q
R

loss

2
os =  

Substituting equations 2.38 and 2.39 and rearranging, we find that the conductivity 

cancels and Rs/Q depends only on the geometrical factors a and b. 

             )abln(Z2
Q
R

o2
s

π
=     (2.41) 

Using equations 2.28 and 2.29 it is easy to show that 
C
L  gives the same result.   

Therefore:      
C
L

Q
R s =      (2.42) 

  Although equation 2.41 is specific for the geometry of the quarter wave cavity, in 

general Rs/Q depends only on geometry.   This is useful because although the effective 

conductivity is difficult to determine, the power loss can still be calculated very simply 

by measuring the Q, and either measuring or calculating
C
L , to determine Rs.   

C
LQR s =  

Once Rs is known, equation 2.40 can be used to calculate the power loss for any cavity 

voltage.   
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2.4.3  RF Driven Magnetron  

  As explained in section 1.3, the magnetron structure is normally used to generate 

microwave power, by converting the kinetic energy of an electron beam into oscillating 

electromagnetic fields in the resonant cavity.  However, the inverse is also possible.  RF 

power can be used to drive oscillating electric and magnetic fields in a magnetron 

structure.  We wish to use those fields to accelerate an ion beam.  

  Figure 15 shows an example of a four gap magnetron structure. The fields in a 

magnetron are most easily understood if one thinks of the charge which bounces back and 

forth from one side of an oscillator to the other.  At the moment of maximum charge 

difference across a slot (+/-), the electric field in the slot is maximum.  However, when 

charge is flowing from one side to the other, the current around the hole creates a 

magnetic field which points into the page.  Thus the slot acts like a capacitor and the hole 

acts like an inductor.  

 

Figure 15.   A four gap magnetron structure showing the ππππ-mode at two different times 

The z axis points into the page.  
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Figure 16.   Geometry of a single oscillator and its equivalent circuit 

 

  In this example, the magnetron structure is a set of four coupled harmonic 

oscillators. There are four modes of oscillation, however only the π-mode is of interest 

here.  Strapping can be used to eliminate unwanted modes [6].  Figure 15 illustrates the 

π-mode in which the charge on each adjacent electrode is opposite.  In other words each 

oscillator is 180° out of phase with the one next to it, hence the name “π-mode”.   

  Each oscillator behaves like an LC circuit.  The geometry and equivalent circuit 

for a single oscillator are shown in Figure 16.   A good estimate for the inductance and 

capacitance of a single oscillator can be calculated from the geometry alone.  

       
c

cavc
o g

C
��

ε=      (2.43) 

Where �cav is the cavity length into the page. 

       
cav

2
L

o
rL

�

πµ=      (2.44) 

The resonant frequency of a single oscillator is evidently: 

      
c

c

L
o

g
r
c

LC
1

�π
==ω     (2.45) 
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where little c is the speed of light and all other geometrical parameters are defined in 

Figure 16.   

 

Figure 17.  Equivalent circuit for a four gap magnetron in the ππππ mode. 

 

Figure 17 shows the equivalent circuit for the entire magnetron operating in the  

π-mode.  The total inductance, L ′ , is: 

4
LL =′  

and the total capacitance, C′ , is:  

C4C =′  

oo LC
1

CL
1 ω==

′′
=ω′  

Thus, in the π-mode, the resonant frequency of the entire magnetron is the same as the 

resonant frequency of a single oscillator.   

  We are interested in the electric fields in the central region because they will be 

used to acceleration ions.  The magnetic fields in the central region are negligible 

therefore 0E =×∇
��

 so the electric fields can be solved in terms of an electrostatic 

potential.   The voltage potential is a solution to the Laplace equation in cylindrical 
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coordinates with radial and azimuthal dependence only.  Matching to the boundary 

conditions, leads to a Fourier series in θ.  

tin3
n3

n2
n2

n
no rfe)n3sin()

R
r(A)n2sin()

R
r(A)nsin()

R
r(AV)t,,r(V ω

��
�

��
� +θ+θ+θ=θ �

 

Where:    )
2

fmsin(
m
1

f
8A 22nm

π
�
�

�
�
�

�

π
=  for:  m = 1,2,3, …   

Here n is the harmonic number and f is a fraction which defines the gap width in terms of 

the angle subtended by a gap (θg) and the angle subtended by the remaining wall (θw) at  

r = R (see Figure 15). 

gaps

g

gw

g

N/2
f

π
θ

=
θ+θ

θ
≡  

Or written more compactly  

   timn
2

1m
2o rfe)mnsin()R

r()2
fmsin(

m
1

f
8V)t,,r(V ω

∞

=
�
�

�
�
�

� θπ
π

=θ �   (2.46) 

 

  A good estimate of the voltage can be obtained by using only the lowest order 

term.   For m = 1 only:   

      tin
o rfe)nsin()R

r(V)t,,r(V ωθ=θ    (2.47) 

This expression represents the voltage due to hyperbolic vanes as shown in Figure 18 

The azimuthal electric fields and energy gain of an ion accelerating through the electric 

field will be derived in section 2.5.6.  
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Figure 18.  A four gap magnetron made of hyperbolic vanes 
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2.4.4 Equivalent Circuit Representation  

  Generally resonant cavities have electric and magnetic fields which exist in the 

same volume, therefore their inductance and capacitance are distributed.  On the other 

hand, a lumped LC circuit has inductance and capacitance which are separated spatially.   

In spite of this difference, the frequency response of any resonant cavity can be 

accurately represented by an equivalent lumped LRC circuit, at least in the region near 

resonance.   

  The equivalent circuit representation is important because it presents the theory in 

terms of gross quantities such as L, R, C, and Q which can be measured.  This section 

draws these quantities together and presents a simpler scheme for the theory of resonant 

cavities.  

   The circuit which most accurately represents the frequency response of a 

resonant cavity is the parallel-series combination shown in Figure 19.   However, this 

circuit is complicated mathematically, and the series resistance (Ro) is difficult to 

measure directly. The common practice among rf engineers is to use the parallel circuit of 

Figure 20. This circuit is much simpler to solve, and although the shunt resistance (Rs) is 

a fictitious quantity, Rs can be measured directly.  The two circuits are equivalent at 

resonance if we choose Rs = Q2Ro . 

 

 

 

 

 

Figure 19. The C||(Ro+L) circuit which represents the frequency response of a resonant cavity 
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Figure 20.  The parallel RLC circuit representation of a resonant cavity uses a fictitious shunt 
resestance (Rs) 

 
 

First consider the impedance (ZLC) of only the parallel LC combination from the circuit 

of Figure 20.  

2
o

2
1

Li

Li
1Ci

1ZLC

ω
ω−

ω=

ω
+ω

=  

Where the resonant frequency is:  

         
LC
1

o =ω  

The impedance of the parallel LC combination becomes infinite when (ω→ωo).   

Therefore, at resonance the parallel circuit reduces to Rs in series with Vo, as shown in 

Figure 20.  This means that the power loss at resonance is due to the current through the 

shunt resistance only.  

       
s

2
o

loss R2
V

P =     (2.48) 

In the full parallel RsLC combination, the voltage across the capacitor is the same as the 

voltage across the resistor.  Therefore, the Q can be found using UE = ½ CVo
2 and 

equation 2.48 for the power loss. 
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Substituting these into:  
loss

Eo

P
U

Q
ω

=  

gives three useful expressions for the Q 

     CRQ soω=     (2.49) 

using 
LC
1

o =ω :    L
R

Q
o

s

ω
=     (2.50) 

or eliminating ωo :   L
CRQ s=      (2.51) 

Recall that this same relationship was found for the quarter wave cavity (equation 2.42). 

Thus the power loss can be calculated using two simple equations:  

   
s

2
o

loss R2
V

P =   where     C
LQR s =        (2.52) 

 

 When designing a resonant cavity to be used as an accelerating structure, the 

bottom line is usually “how much power does it take to generate a voltage Vo ? ”.  

Therefore the shunt resistance is an important quantity to know.  For experimental 

measurements it is useful to think of the shunt resistance as the Q times CL .  

The Q depends on the resistivity of the metal and on cavity geometry both [16], but can 

be measured directly from the frequency response of the cavity.  CL  depends only on 

the cavity geometry and usually can be calculated (equations 2.28, 2.29 or 2.43, 2.44).           

If expressed in terms of the resonant frequency, then fo can be measured and only one of 

L or C must be calculated. 

Cf2
1

C
L

oπ
=  
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2.4.5 The Hybrid Coaxial – Magnetron Cavity 

   Section 2.4 mentioned that the rf cavity used for the 50 keV ICRA is a hybrid 

between a coaxial quarter wave cavity and a magnetron structure.  The chosen rf 

frequency of 152 MHz meant that the inductors of a pure magnetron would extend too far 

in the radial direction to fit into the warm bore of the available 2.5 Tesla superconducting 

magnet.   The solution was to attach the vanes of a magnetron to the open end of a quarter 

wave cavity.  In this way the vanes of the magnetron supply the electric fields needed for 

acceleration and the quarter wave cavity acts as the resonant structure needed for rf 

oscillation.    

  The specific geometry of this hybrid cavity will be shown in section 3.2.4.   For 

the rf theory it is only necessary to know that adding the vanes of the magnetron adds a 

large capacitance to the end of the coaxial cavity as shown in Figure 21.  The additional 

capacitance means that the coaxial cavity must be shortened to less than λ/4.  

 

 

 

Figure 21.  An extra capacitance added across the end of a foreshortened quarter wave cavity 
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Figure 22.  Assumed voltage profile and lengths of the hybrid cavity for the 50 keV ICRA 

 

  The capacitance of the magnetron section (Cm) is large compared to the remaining 

capacitance of the coaxial section (C
�
). The approach used here is to assume that the 

inductance of the magnetron vanes is negligible since they are in the low magnetic field 

region.   Under this assumption the voltage profile would be as shown in Figure 22. 

The new length of the coaxial section can be found from the desired resonant frequency. 

       
LC
1

o =ω  

or       fixed1LC 2
o

=
ω

=  

where both L and C are proportional to the length of the coaxial section, but Cm is a 

constant.  Thus the length (�) can be found by solving the quadratic equation: 

     fixed1)CC)(L( 2
o

m =
ω

=+′′ ��    (2.53) 
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  In order to calculate the power needed to generate the voltage Vo, we need to 

know the shunt resistance 
C
LQR s = .   Then the power can be calculated using 

equation (2.48) 
s

2
o

loss R2
V

P = .  Thus we need to know the change in
C
L  and in the Q 

caused by the additional capacitance (Cλ/4  →  C
�
 + Cm).  

The change in Rs is dominated by the new
C
L .  Luckily this is simple to calculate. 

            )CC(f2
1

Cf2
1

C
L

mo4/o +π→π=
λ �

  (2.54) 

The new theoretical Q can be calculated by repeating the procedure of section 2.4.2 with 

two changes.  First, the integrals over currents on the inner and outer conductors will be 

taken over the new shorter length of the coaxial section and second, the current must be 

scaled up due to the additional capacitance.  Since the charge on a capacitor at any time 

is:  q = CV, 

differentiating gives:  CV
dt
dVC

dt
dqI ω===  

Thus the current is proportional to the capacitance, so the new current is simply: 

       �
�

�
�
�

� +→
λ 4/

m
oo C

CCII �  

  Although the theoretical expression for the Q is straight forward to derive, it is of 

little use because the Q depends on the conductivity (σ).   In practice the conductivity of 

the cavity depends on the resistance of joints, connections, and surface oxidation on the 

conductors.  The conductivity of the pure conductor is almost never achieved. 
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Furthermore, the Q can be measured from the frequency response curve of the actual 

cavity.   

  The method used to determine the power loss and Vo in the hybrid cavity is to 

measure fo, measure the Q, and measure Cm. then calculate the remaining capacitance of 

the coaxial section.  With these quantities known, the shunt resistance can be calculated 

so that the power required to generate Vo is known (equation 2.52).  These measurements 

are given in chapter 4.  
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2.5 Analytical Model of the Beam Trajectory 

 

See Chap2B.doc 

 

 

 

MOVE TO CHAPTER 3 

Vacuum 

  The mean free path (λ) is the average distance that a particle travels before 

colliding with another particle.  A useful rule of thumb is that for air at 20°C  [17]: 

]mTorr[P
5]cm[ =λ  

For this experiment, it is sufficient to have a mean free path longer than the path of the 

beam.  The beam in the 50 keV ICRA will travel about 3 meters.  Therefore, for a mean 

free path of at least λ = 5 meters, the pressure should be below of P = 10-5 Torr. 
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2.3 Ion Source (old version) 

  For this chapter on theory, the ion source should be thought of as a black box 

with a hole in the front which supplies a beam of ions.  All ions are accelerated through 

the same initial voltage potential (Vbeam) from the source aperture to the puller electrode,  

where Vbeam is in the range of 5 – 50 kV.   Any variation in energy, due to temperature of 

the ions inside the source, is small.  Therefore, it is a good approximation to assume that 

all ions, in the initial beam supplied by the ion source, have the same kinetic energy       

(E = qVbeam). 

  However, the beam does have some finite spread in transverse and longitudinal 

position and momentum.  These beam dimensions occupy a 6 dimensional volume in 

phase space.  The transverse spread in position and momentum is normally described in 

terms of two dimensional areas called the beam emittance.  The computer model of the 

beam emittance is discussed in section 2.6.7 of this chapter.  Specifics of the ion source 

design are given in section 3.2.3. 
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2.5 Analytical Model of the Beam Trajectory 

  This section covers all aspects of the beam trajectory that can be calculated 

analytically.  The analytical model describes only the central ray through the system, i.e. 

a beam of zero emittance.   Multi-particle trajectories are dealt with using the computer 

model in section 2.6.   Limitations of the analytical model are discussed in the beginning 

of section 2.6. 

  We begin with a detailed overview of the beam trajectory which includes some 

motivation for each sub-section below.   Figure 23 shows a top and side view of the entire 

beam trajectory through the ICRA.  The basic components of the ICRA are the ion 

source, electrostatic bend, superconducting magnet, rf driven magnetron, and a target.    

Notice that the trajectory is divided into three distinct regions: the injection region, the 

acceleration region, and the extraction region.   

  A superconducting magnet provides a B-field which is constant in time.  The ion 

beam is extracted from the source directly along a B-field line so that the Bv
�

� ×  force on 

the beam is zero.  We will see in chapter 4, that this beam actually contains multiple ion 

species.  The beam passes between a pair of electrostatic bending plates which are 

located at some radius away from the z axis.  All ion species in the beam are deflected to 

the same angle θbend (section 2.5.1).  After the beam is deflected, it will have momentum 

components perpendicular (p⊥ ) and parallel (p||) to the local magnetic field.   

)sin(pp bendtotal θ=⊥   )cos(pp bendtotal|| θ=  

The perpendicular component causes the beam to orbit at radius qBpr ⊥= , and the 

parallel component will cause the beam to move in the axial direction toward the high  

B-field region as shown in Figure 23.   
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Figure 23.  Top and side view of the trajectory through an ICRA with   

trajectory shown in red, and magnetic field lines shown in blue.  

The axial magnetic field profile is plotted below. 
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  Imagine for a moment what happens if we begin with zero voltage on the bending 

plates and then gradually turn up the bend voltage.   Obviously the bend angle will 

increase, which increases p⊥  and decreases p||.  Since p⊥  increases, the radius of the beam 

orbit will grow.  Figure 24 shows that if we look in the axial direction, we see that the 

point on the orbit where the beam initially passed through the bending plates is a fixed 

point. As the orbit radius increases, the center of the orbit shifts over in a direction 

perpendicular to the direction of the kick given by the electrostatic bend.  We want the 

beam to be centered around the z axis so that it will be centered in the magnetron when it 

arrives at the acceleration region, and there is only one bending voltage (or bend angle) 

for which the beam is centered around the z axis.  Therefore, the initial field line with 

which the ion source is aligned must be at the proper radial distance away from the z axis 

so that the beam will be centered when the desired ratio of (p⊥ /p||) is reached.  

 

 

 

 

 

 

 

 

 

Figure 24.  Beam orbit as seen looking in the axial direction as bend voltage is increased 
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  As the beam spirals into the high B-field region, the orbit radius follows magnetic 

field lines.  This means that r and p|| decrease, but p⊥  increases.  Section 2.5.2 shows that 

assuming conservation of magnetic moment, these three parameters can be easily 

calculated at any point in the injection trajectory if the magnetic field profile is known.   

If the peak B-field is high enough to drive the axial momentum (pz) to zero, the beam will 

mirror (section 2.5.3).  This condition is important because it gives an experimental 

reference point from which we can determine the axial momentum.  As mentioned above, 

the beam actually contains multiple ion species, however we are only interested in 

accelerating the H+ (proton) portion of the beam.  Section 2.5.4 shows how the injection 

region of the ICRA can be used as a mass spectrometer to measure the constituents in the 

beam and to eliminate all but the H+ for injection into the acceleration region.   

  After traveling through the injection region, the ratio of p⊥ /p|| has been  

transformed so that the proton beam arrives at the entrance to the acceleration region with 

the desired radius and axial momentum. The B-field is relatively constant through the 

acceleration region, so pz can be assumed to be constant.  The axial velocity determines 

the number of turns the beam goes through while traversing the cavity length (section 

2.5.5).  Inside the magnetron rf electric fields accelerate the beam in the azimuthal (θ) 

direction.  If the cyclotron frequency remains in resonance with the rf frequency, the 

beam is accelerated across every gap in the magnetron.  This causes the orbit radius to 

increase while the beam continues to drift axially.  Because of the radial dependence of 

the E-field, the inner diameter of the magnetron should be tapered (dR/dz) for maximum 

energy gain (section 2.5.6). The acceleration trajectory is ideal when the ion skims along 

the inner diameter of the cavity. 
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  When the beam exits the magnetron it continues to drift axially into the 

extraction region.   Since the extracted beam has a large energy spread from nearly zero 

to the full design energy, the beam in the extraction region should be thought of as a solid 

rotating cylinder of ions with high kinetic energies at large radius and the lowest energy 

at the center (E ∼  r2 ).   

  The equations of section 2.5.2 that were used for the injection region, can now be 

applied to each energy component of the beam in the extraction region.  As the B-field 

drops off, the beam follows field lines.  The perpendicular momentum decreases while 

the parallel component and the orbit radius grow.  The axial length between turns is 

calculated in section 2.5.8.  This is important to consider when designing a target or beam 

diagnostics in the extraction region.     
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2.5.1 Electrostatic Bend 

 Let us derive the bending equation for an electrostatic bend in a region with no 

magnetic field.  The electrostatic bend is essentially two flat plates which are separated 

by a gap, g, and with voltage difference Vbend.  Using the bending geometry illustrated in 

Figure 25, we assume that the beam will follow a curved path with radius of curvature ρ, 

and that the electric field always points radially toward the center of this curvature.  

 

 

 

 

 

 

Figure 25.  Geometry of the electrostatic bend 

 

Equating the centripetal force with the electric force supplied by the E-field 

between the bending plates gives: 

ρ
ρ

== ˆvmEqF
2

bend
��

 

where q, m and v are the charge, mass and velocity of ions in the beam passing between 

the bend plates.   The electric field between the bend plates is approximately 

g
V

E bend
bend =

�

 and the beam from the ion source has kinetic energy K = ½ mv2 = qVbeam 

therefore, we can write:   
ρ

= beambend qV2
g

V
q  
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so the bending radius is: 

bend

beam

V
V

g2=ρ  

We can solve for the bend angle in radians: 

    ]radians[
gV

Vs eff

beam

bend2
1

bend �
�

�
�
�

�=
ρ

=θ
�

  (2.55) 

where a change in notation has been introduced from the arc length (s) to the effective 

length of the bending plates (�eff). There are two important points to notice about equation 

2.55.  First, the bend angle does not depend on the mass or charge of the ion.  Therefore,  

different ion species are all bent to the same angle.  Second, the bend angle (θbend) is 

proportional to the bend voltage Vbend.   This will be useful when calculating the 

trajectory through the injection region.  In practice we do not need to know �eff because as 

we will see in section 2.5.3, the mirror condition can be used to solve for this constant 

(see equation 2.69). 

  Of course a real electrostatic bend has fringe fields and edge effects that focus 

the beam.  Since the analytical model deals only with the central ray, these higher order 

effects are not dealt with analytically, but will be accounted for in the computer model.  
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2.5.2 Conservation of Magnetic Moment 

  After the beam leaves the electrostatic bend, it has momentum perpendicular (p⊥ ) 

and parallel (p||) to the magnetic field.  The perpendicular component causes the beam to 

orbit around the B-field lines at radius 
qB
p

r ⊥= , and the component parallel to the B-field 

causes the beam to move axially into the high field region.  In order to calculate the 

trajectory of a single ion through the fringe field of the solenoid, we use the fact that the 

magnetic moment (µmag) is conserved in slowly varying magnetic fields [18, 19].   

That is: 

       µmag  =  constant    (2.56) 

The magnetic moment is the current (I) times the area (A) encircled by an orbit. 

          µmag = IA     (2.57) 

Using I = qfc , and p⊥ =qBr, this can be expressed as 

B
E

mB2
p2

mag
⊥⊥ ==µ  

Or substituting directly into equation 2.57. 

 2
cmag r

m2
qBqAfqAI π�

�

�
�
�

�
π

===µ  

This means that the magnetic flux (Φmag) is also conserved.  

      Φmag  =  BA  =  constant   (2.58) 

Thus, the beam orbit follows magnetic field lines as shown in Figure 26. 

Therefore:        2
22

2
11 rBrB =  

            
2

1

1

2

B
B

r
r =     (2.59) 
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Figure 26.  Geometry of conservation of magnetic moment  (copied from reference 19). 

  

This means that if we know the radius of the orbit (r1) in the low field region (B1), then 

the radius (r2) in the high field region (B2) will be reduced by the square root of the ratio 

of the B-fields.   Similarly we can calculate the perpendicular momentum by substituting: 

qBrp =⊥  for r.  

           
1

2
B
B

p
p

1

2 =
⊥

⊥     (2.60) 

Notice that p⊥  increases as the square root of the B-field ratio.  Finally we can calculate p|| 

using the fact that kinetic energy of the beam is conserved in magnetic fields.  

Therefore:      22
total

2
|| 22

ppp ⊥−=     (2.61) 

     �
�

�
�
�

�−= ⊥
1

222
total|| B

B
ppp

12
   (2.62) 

Since p⊥  increases while spiraling into the high field, and the total momentum remains 

constant, then p|| must decrease.  
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  As a check of the accuracy of this approximation, Figure 27 shows the 

analytical calculation of the orbit radius through the injection trajectory.  The result is 

compared with data from the computer model of section 2.6. The computer model 

contains no approximations of this kind and should be considered completely accurate for 

the purposes of this comparison.  The two calculations were started at the same radius in 

the high B-field region and then calculated backwards though the injection region so that 

the error can be seen in the region of large radius.   The error in the analytical 

approximation (relative to computer model) grows to 1.5 % for the magnetic field profile 

shown.  The error will be greater for a field which drops off faster or for a trajectory 

which is relatively more parallel (fewer turns).  

 

 

 

 

 

 

 

 

 

 

 

Figure 27.  A comparison of the beam orbit radius through the injection region calculated using the 

analytical model and using ICRAcyclone.  The magnetic field profile is shown in blue.  
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  At the beginning of section 2.5 we said that the analytical model of the beam 

trajectory deals only with the central ray through the system, i.e. a beam of zero 

emittance.   However, conservation of magnetic moment has some implications on how 

the spreads in the beam radius and momentum change.  Therefore we will diverge briefly 

to discuss these here.  

  Imagine that a real beam entering the solenoidal fringe fields contains a spread 

in beam radius, ∆r.  From the geometry of the field lines alone, it is easy to see that the 

radial spread in the beam will decrease as the beam spirals into the high field (Figure 23).  

This can also be seen by differentiating equation 2.59. 

     
2

1
12 B

Brr ∆=∆     (2.63) 

So the radial spread (∆r2) in the high field region (B2) is less than the radial spread (∆r1) 

in the low field region (B1) by a factor of 
2

1

B
B .  

The spread in the perpendicular momentum is found by differentiating equation 2.60. 

     
1

2
12 B

Bpp ⊥⊥ ∆=∆     (2.64) 

Hence, the spread in p⊥  increases by a factor of 
1

2

B
B . 

There is no simple form for ∆p||.  However, if we use 2.60 to express 2.61 in terms of 

parallel momentums only: 

�
�

�
�
�

� −
−�

�

�
�
�

�=
1

122
tot

1

22
1||

2
2|| B

BB
p

B
B

pp  
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then differentiating gives: 

     ��
�

�
��
�

�
�
�

�
�
�

�∆=∆
2||

1||

1

2
1||2|| p

p
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Although the actual parallel momentum decreases while spiraling into the high field 

region, both (B2/B1) and (p||1/p||2) are greater than 1, so the spread in p|| increases.   
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2.5.3 Mirror Condition  

  As discussed in section 2.5.2, when the beam goes from a region of low 

magnetic field to a region of high field adiabatically, the perpendicular momentum 

increases by the root of the B-field, and the parallel momentum decreases such that the 

kinetic energy of the beam is conserved.  If the magnetic field becomes high enough, 

eventually the parallel momentum goes to zero and all of the momentum will be 

perpendicular to the B-field.  At this point, the axial motion of the beam has come to a 

stop, but the axial force on the beam ( ẑBqvF rθ−=
�

) is still in the negative z direction 

(see Figure 26), so the beam will be reflected.  This is referred to as “mirroring”.    

  In the case of the injection region of the ICRA, we want to determine what 

conditions, back in the low field region at the electrostatic bend, will lead to a beam 

which mirrors when it reaches the high field region.  Here, we take B1 to be the low field 

and B2 to be the high field.  Since we know the conditions at B2 for mirroring, we simply 

need to impose the mirror condition ( 0p 2|| → ), and then solve for the conditions at B1 in 

terms of those at B2.  Begin by conserving kinetic energy between region (1) and (2). 

      2
2

2
1 pp �� =  

2
2

2
2||

2
1

2
1|| pppp ⊥⊥ +=+  

Now impose the mirror condition ( 0p 2|| → ). 

2
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2
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2
1|| p0pp ⊥⊥ +=+  

Use (2.60) to express the p⊥  in the high field region in terms of p⊥  back at the bend. 
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We are interested in the bend angle which causes mirroring, so solve for the ratio of 

perpendicular to parallel momentum, then use:  
1||

1
bend p

p
)tan( ⊥=θ  

     
12

1

mirror1||

1

BB
B

p
p

−
=⊥     (2.66) 

so that:        
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−
=θ −

12

11
mirror BB

Btan    (2.67) 

  Notice that the momentum ratio at the electrostatic bend, which leads to 

mirroring at the high field region, is known from the magnetic fields alone. This is the 

form that is most useful for the ICRA.  However, this result can be understood intuitively 

if we invert and square equation (2.66) to obtain a kinetic energy ratio.   
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mirror1
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BB
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K −

=
⊥

    (2.68) 

The ratio of parallel to perpendicular energy needed to reach the high B-field region (B2) 

is simply the fractional increase in the B-field.   In fact this expression is exactly 

analogous to what one would derive for a golf ball rolling up a hill (zero rotational 

energy), in which the ratio of initial kinetic energy (K) to potential energy (U) is simply 

the fractional increase in height (h). 

211 U0UK +=+  
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12

1

1

h
hh

U
K −

=  

This analogy occurs because in the process of rolling up the hill, K is converted into U 

(just as K|| is converted into K⊥ ) while the total energy is conserved, and because U 
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changes linearly with h (just as K⊥  changes linearly with B (eqn 2.53) ).  Therefore, if one 

is willing to think of K⊥  as a potential energy that is stored in the radius of the beam, and 

of K|| as the kinetic part of the energy, then equation 2.68 says that the kinetic energy 

needed to reach the top of the hill is simply the potential energy times the fractional 

increase in the B-field.  

  The mirror condition provides a simple way to solve for the constants in 

bending equation 2.55.   The mirror voltage (Vmirror) will be measured experimentally 

(section 4.5.3), and the mirror angle is easily calculated from the B-field.   Therefore, 

since the bend angle (θbend) scales linearly with bend voltage (Vbend) equation 2.55 can be 

expressed as: 

     �
�

�
�
�

�θ=θ
mirror

bend
mirrorbend V

V
    (2.69) 

 

 

 

Figure 28. Mirroring the beam is analogous to when a ball does not have enough kinetic energy to 

make it to the top of a hill. 
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2.5.4 Mass Spectrum of the Injected Beam 

  In the ICRA, beam is extracted from the ion source along a B-field line so that 

the Bv
�

� ×  force on the beam is zero.   All ions are accelerated through the same voltage 

(Vbeam) from the ion source aperture to the puller.  However, because different ions may 

have different charge or different masses, different ions will have different total 

momentum.  

       beamtotal mqV2mE2p ==    (2.70) 

When entering the electrostatic bend, the beam is parallel to the B-field, p⊥  = 0, and p||  = 

ptotal.   In section 2.5.1 we showed that the electrostatic bend will bend all ions to the 

same angle (θbend) regardless of their mass or charge (equation 2.55).  Refer to Figure 25 

to see that: 

       )sin(pp bendtotal θ=⊥     (2.71) 

As soon as the beam obtains a component of momentum perpendicular to the B-field, 

ions will experience a Bv
�

� ×  force tending to make them orbit around a gyro center with a  

radius of:      
qB
p

r ⊥=  

This can be expressed in terms of the bend angle, and beam energy using equations (2.70) 

and (2.71) 

)sin(
qB

mqV2
qB

)sin(p
r bend

beambendtotal θ=
θ

=  

Therefore: 

       )sin(
qB

mV2
r bend2

beam θ=    (2.72) 
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  Equation 2.72 gives the radius of the orbit immediately after the beam exits the 

electrostatic bend.  Next, let the beam spiral from the bend (B1) to the high B-field region 

(B2).  Using equation (2.59) gives: 

    )sin(
BqB

mV2
B
Brr bend

21

beam

2

1
12 θ==   (2.73) 

  The important thing to notice here is that the radius of each different ion beam is 

proportional to the root of its mass to charge ratio, but the radius of all ions will increase 

as we increase the bend angle.   Figure 29 shows the relative sizes of each constituent in 

an ion beam containing H+, H2
+ and Ar+ ions for a fixed bend angle.  

 

 

 

 

 

 

 

Figure 29.  Axial view of a beam containing three ions species. 

The bend voltage is fixed at the point for which the Argon orbit is centered around the z axis. 

 

In the 50 keV ICRA, the narrowest aperture for the orbiting beam in the entire 

system is at the entrance to the magnetron.  Experimentally we can turn up Vbend while 

measuring the beam current on a Faraday Cup at the extraction end.  As each ion beam 

clips on the entrance to the magnetron, the current will drop at discrete bend voltages.  
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The resulting graph of beam current vs. bend voltage gives a spectrum of each ion species 

in the beam.   

The voltages where each constituent in the beam clips can be calculated from 

equation 2.73.  First we simplify by lumping all the known constants into a constant C.   

)sin(
q
mCr bend2 θ=  

Setting r2 equal to the radius at which the beam will clip and solving for the bend angle 

we obtain: 

      �
�
�

�
�
�
�

�
=θ −

m
q

C
r

sin clip1
bend    (2.74) 

Finally, the bend angle can be converted to the bend voltage using equation (2.55 or 

2.69).    Section 4.5.1 shows an ion spectrum measured experimentally and compares 

with the theoretical results using equation 2.7.4.  
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2.5.5 Number of Turns Through the Acceleration Region 

  After spiraling through the injection region, the beam arrives at the entrance to 

the acceleration region with r, p⊥ , and p|| which have been transformed according to the 

equations in section 2.5.2.  We now wish to calculate the number of turns (Nturns) that the 

beam goes through as it traverses the axial length of the cavity (�cav).   

  The magnetic field must be relatively constant over the length of the accelerating 

region in order to maintain resonance.  Therefore, it is a very good approximation to 

assume the field is constant in the analytical model.   The number of turns through the 

acceleration region is simply the ratio of the total time spent traversing the cavity length 

to the period for one revolution.   

c

cav
turns T

t
N =  

The total time spent in the cavity depends on the axial velocity (
cav

cav
z t

v
�

= ) and the 

period for one revolution is related to the cyclotron frequency by:  
m2

qBf
T
1

c
c π

== . 

So the number of turns becomes:       

      
z

cav

z

cav
cturns p2

qB
v

fN
π

==
��

   (2.75) 

  When using this formula, one should be aware that equation 2.75 gives the 

number of turns through the length of the acceleration region only when the rf is off (no 

acceleration).  When the rf is turned on, axial components of the electric field (caused by 

the tapered inner diameter of the magnetron) lead to an axial momentum change which 

depends on the phase of the beam. This effect is explained in section 2.6.2.  
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2.5.6 Acceleration Region  

  Section 2.4.3 showed that the electric fields in the central region of the rf driven 

magnetron can be written as a Fourier series in the azimuthal dependence. The lowest 

order contribution is for the case of hyperbolic vanes  (refer to equation 2.47 and Figure 

18).  Using this first order term gives a good approximation of the cavity voltage and is 

useful for illustrating the important aspects of acceleration through the magnetron.   

  The lowest order term in the voltage, as a function of radius (r) azimuthal 

position (θ) and time (t), is given by: 

     tin
o

rfe)nsin()R
r(V)t,,r(V ωθ=θ    (2.76) 

Here R is the inner radius of the cavity, Vo is the voltage on the cavity wall and n is the 

azimuthal mode number of the cavity, which comes from the number of gaps (Ngaps)  

Ngaps  =  2n 

The azimuthal component of electric field is found by differentiating equation (2.76). 

VE ∇−=
��

 

     ti1no rfe)ncos()
R
r(

R
nV

E ω−
θ θ−=    (2.77) 

 

  Consider an 8 gap magnetron structure as shown in Figure 30.  For this case  

n = 4.   The azimuthal electric field (Eθ) is plotted as a function of θ in Figure 31.  The dc 

magnetic field points out of the page, so ions orbit in a counter-clockwise direction at 
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Figure 30.  An rf driven magnetron structure with n=4 oscillating in the ππππ-mode. 

 

Figure 31.  Azimuthal component of the E-field vs azimuthal position. 

 

the cyclotron frequency 
m
qB

c =ω  (for γ = 1).  The phase of the rf signal is defined as: 

τ = ωrf t 

and assuming the orbit is perfectly centered, the azimuthal position is: 

θ = ωct. 
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If an ion crosses the first gap (θ = 0) at time t = 0, the electric field is maximum and the 

ion will be accelerated in the forward (θ) direction.  If the cyclotron frequency is such 

that the ion arrives at the second gap (θ = 45o) at the time when the rf phase has changed 

by half a cycle (τ = 180o) then the electric field points forward and the ion is accelerated 

again.  Setting the time to travel between gaps (
cgapsN

2t
ω

π= ) equal to the time for one 

half of an rf cycle (
rf

t
ω
π= ), leads to the resonance condition required for acceleration.  

      crf n ω=ω      (2.78) 

  The kinetic energy gained in crossing a single gap can be found by integrating 

along a path at constant radius. 

� •= sdFKgap
�

�

 

�
π

π− θθ−= ωn2

n2

rf de)ncos()
R
r(VnqK tin

ogap  

n
ogap )

R
r(qV

2
K π=  

If we define the total voltage difference across a gap as Vgap = 2Vo , the energy gained 

across a single gap becomes  

      n
gapgap )

R
r(qV

4
K π=    (2.79) 

where π/4 = 0.79 is the transit time factor.   

  Notice that the multipole nature of the magnetron, leads to an rn radial 

dependence in the energy gain.  This radial dependence is plotted in Figure 32 for n=4.  
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The beam will gain maximum energy if it remains as close as possible to the cavity wall 

(r ≈ R) throughout the acceleration trajectory.  For this reason the inner diameter of 

magnetron should be tapered with z so that the beam will remain close to the cavity wall 

as its orbit radius increases.  For this research, a linear taper was chosen (dR/dz = 

constant), so that the actual magnetron would be simple to manufacture.  

 

 

 

 

 

 

Figure 32.  Lowest order term for the radial dependence of cavity voltage in an 8 gap magnetron. 

 

  Equation 2.79 can be used to calculate the orbit radius and energy gain through 

the acceleration region.  One method is to choose the cavity slope (dR/dz), initial radius 

fraction (r/R), and axial momentum (pz), then let the particle gain energy Kgap across the 

first gap, then recalculate: r, z, and R, so that Kgap can be calculated for the second gap.  

Continue this iteration until the cavity length has been traversed.  If this is done as a 

simple spread sheet calculation, then the cavity voltage (Vo) can be adjusted until an ideal 

trajectory is obtained.  Figure 33 shows a calculation of orbit radius using this method. 

  A quicker estimate of the total energy gain can be made by estimating the 

average radius fraction throughout the acceleration trajectory 
R
r and assuming that the 
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Figure 33.  Beam orbit radius from spread sheet calculation plotted next to magnetron inner radius 

 

energy gained across each gap remains constant throughout the trajectory.  In this case 

using the number of gaps per turn (Ngaps = 2n) and the total number of turns, (Nturns), the 

total energy gain is simply: 

     turns

n

gapgain Nn2
R
rqV

4
K π=   (2.80) 

  Finally, note that in this discussion the radial component of the E-field has been 

completely neglected (see Figure 15).  This is a valid approximation because when 

averaged over time, Er does not cause any net acceleration.  Furthermore, the tapered 

inner diameter of the magnetron will cause a component of electric field in the z 

direction.  Similarly the end fields, resulting from the finite axial length of the magnetron, 

will certainly have components in the z direction.  For the most part these effects have 

been found to be small, however they will be discussed in sections 2.6.2 and 2.6.3.  The 

full 3 dimensional solution of the electric field in the magnetron is accounted for in the 

computer model (see section 2.6).   
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2.5.7 RF Phase and Magnetic Field Flatness Criterion 

  The analytical model of the beam trajectory does not account for any variation in 

rf phase.  In fact, the discussion and the timing arguments of section 2.5.6 describe the 

case in which the phase of the ion is constant relative to the rf ( crf n ω=ω ).  Furthermore 

the derivation of the energy gain across a gap (equation 2.79) uses the assumption that the 

phase relative to the rf is φ = 90° so that the ion crosses a gap when the cavity voltage is 

at its maximum.   However, in section 2.6.2 we will see that the computer model shows 

that the ICRA exhibits significant phase bunching.  Also the experimental results show a 

resonance width that is much wider than expected (section 4.6.2).  Therefore, it is 

necessary to derive analytical expressions for phase changes, as a basis for comparison.  

  This section first gives an introduction to rf phase and then covers phase changes 

caused by detuning of the magnetic field.  Next the magnetic field flatness criterion is 

defined and an equation is found for the phase change caused by the magnetic field 

profile over the acceleration region .   

 

  The general equation which describes the phase of a particle during acceleration 

is: 

       )nt()t( rfo θ−ω+φ=φ  

or simply 

          )nt()t( rf θ−ω=φ∆     (2.81) 

If the beam orbit is centered, then the azimuthal position is: 

θ = ωct. 
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so that:          t)n()t( crf ω−ω=φ∆     (2.82) 

In this form it is easy to see that the phase equation is simply a comparison of two rates. 

At resonance (ωrf  = nωc), the phase will remain constant at its initial value (φo).  

However, if ωrf  ≠ nωc then the phase will drift over time.    

   The time dependence of the rf signal is taken to be sin(ωrf t), therefore we expect 

optimum acceleration across any gap to occur when φ = 90o.   We wish to determine how 

far the phase will drift through the acceleration region if the magnetic field is not at 

resonance.   

 

 

Phase Change Caused by Magnetic Field Detuning 

  Consider the case where the rf frequency is fixed at corf nω=ω , but the B-field 

(constant with respect to z) is detuned away from Bo by an amount ∆B.  In this case 

equation 2.82 becomes: 

t)](nn[)t( ccoco ω∆+ω−ω=φ∆  

Where 
m

qBo
co =ω , and the zero subscript indicates the B-field required for resonance 

with the rf.   In terms of the fractional change in the B-field this becomes: 

      t
B

Bn)t(
o

co
∆ω−=φ∆     (2.83) 

Here ∆φ is the total change in phase over the time, t, caused by ∆B.  This equation is 

valid for any time (t).  However, if we want the phase change over the time the ion 
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spends in the accelerating cavity, it is useful to express φ∆  in terms of the number of 

turns in the cavity length. Using: 

     cavco
co

cav
turns tf

t
N =

τ
=  

we obtain:    turns
o

cav N
B

Bn2 ∆π−=φ∆  in radians  (2.84) 

or:    turns
o

o
cav N

B
Bn360 ∆−=φ∆  in degrees  (2.85) 

These equations describe the phase change that occurs through the cavity length if the  

B-field is constant (no z dependence), but is detuned away from resonance with the rf 

frequency.  These equations are valid only if acceleration does not cause a phase change. 

However, in section 2.6.2 we will see that electric fields in the rf driven the magnetron do 

cause a phase shift.  

 

 

Phase Change Caused by Magnetic Field Profile 

  The characteristics of Helmholtz and solenoidal fields were shown in section 2.1.   

The ideal magnetic field for the ICRA would be perfectly flat over the acceleration region 

in order to maintain resonance.  However, this is not possible for any real coil. Therefore, 

it is useful to characterize the magnetic field flatness in terms of the percent drop off 

(δB/Bo) at the ends of the acceleration region.  The geometry is shown in Figure 34. 
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Figure 34.  Magnetic field profile for the 50 keV ICRA with 

flatness of δδδδB/Bo < 0.5% over the 5 cm acceleration region 

 

 

  Assume that the central value of the B-field (Bo) is at resonance with the rf.  

Therefore, the subscript ‘zero’ will now indicate both the central field value and 

resonance.  In this case, ∆B is a function of z.  Therefore, the total phase change requires 

integration.  Using equation 2.83. 

�
∆ω−=φ∆ dt

B
)z(Bn)t(

o
co  

The equation can be converted to an integration over z, by assuming that the axial 

velocity (vz) is constant. 

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

Z (cm)

B
z/

B
o



 

 74

�∆
ω

−=φ∆ dz)z(B
vB

n
)t(

zo

co  

The B-field profile of any coil over this central region can be closely approximated as a 

parabola.     2
cav2

1

2

o )(
zBB)z(B
�

δ−=  

Now integrating over this B-field profile from -½ �cav  to  +½ �cav and simplifying gives: 

cav
o

cocav t
B

Bn
3
1 δω−=φ∆  

Once again, expressing this in terms of Nturns, gives the same result as equation 2.85 but 

reduced by a factor of 1/3.  

    turns
o

cav N
B

Bn2
3
1 δπ−=φ∆  in radians  (2.86) 

    turns
o

o
cav N

B
Bn360

3
1 δ−=φ∆  in degrees  (2.87) 

Keep in mind that these equations are for when the central field value (Bo) is matched for 

resonance with the rf.  Certainly ∆φ over the acceleration region can be further reduced 

by increasing the central field (Bo) so that resonance occurs at some compromise between 

Bo and (Bo - δB).   Again, equations 2.86 and 2.87 are valid only if acceleration does not 

cause the phase to change, however in section 2.6.2 we will see that electric fields in the 

rf driven the magnetron do cause a phase shift.  
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2.5.8 Axial Turn Length in the Extraction Region 

  Once the beam exits the acceleration region it spirals into the lower B-field 

region of the target.  This is the extraction trajectory (refer to Figure 23).  An important 

quantity to know in this region is the axial distance between turns, or the axial turn 

length.  The axial turn length (∆zturn) can be calculated by multiplying the axial velocity 

(vz) times the time for a single turn. 

czturn vz τ=∆  

Using the cyclotron frequency (
c

c
1f
τ

= ) and expressing vz in terms of the axial 

momentum, we obtain a convenient expression: 

      qB
p

2z z
turn π=∆     (2.88) 

Where, B = Bz(z) and pz are both local variables, and pz can be calculated using the 

adiabatic approximation discussed in section 2.5.2.   Recall that as the B-field drops off 

through the extraction region, p⊥  is converted into p||, and therefore pz increases.   

Immediately after acceleration, nearly all of the energy is in p⊥ ,  (p⊥ / p|| is large so p|| is 

negligible).   Therefore, in a region far enough downstream that the B-field has dropped 

off significantly, the value of pz depends almost entirely on what has been converted from 

p⊥  to p|| .  Thus pz will depend strongly on the total energy of the beam.  The result is that 

in the extraction region, the beam at large radius has a larger axial turn length than the 

beam near the center.   In fact after pz has grown significantly, ∆zturn goes roughly as the 

root of the beam energy and therefore is roughly linear with radius.  The analytical 

calculation plotted in Figure 35 shows the axial turn length vs. beam orbit radius for  

B/Bo = 0.34 in the 50 keV ICRA. 
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Figure 35.  Axial turn length depends on beam radius (or energy) in the extraction region 

 

  It is important to understand the axial turn length when designing a target or a 

beam diagnostic for measurement of the extracted beam.  In fact this result will be used 

for the corrections to the radial probe data in sections 3.2.5 and 4.6.1. 

  One should also be aware that equation 2.88 gives only the instantaneous value 

of the axial turn length.  The actual length of a turn in the extraction region depends on 

the value of the B-field at every point throughout the orbit.  This means that if there is a 

large change in B-field over a single turn, then the axial turn length will grow 

significantly and equation 2.88 will give a poor estimate of the actual length of a turn.  
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2.6 Computer Model of the Beam Trajectory 

 

See Chap2C.doc 

 

δB 

����cav 

 

NOT USED 

 

2.5.6 Summary of Injected Beam Equations 

The point is that in the analytical model, the entire beam trajectory can be specified in 

terms of 2 parameters: Nturns → pz   and (r/R) → p⊥  . 

 

Take this opportunity to make it clear that if Nturns is known, then pz (at cav entrance) is 

known.  They are inversely proportional. so we will use the two quantities 

interchangeably. 
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2.6  Computer Model of the Beam Trajectory 

  This section covers the computer model used to study the beam trajectory 

through the ICRA.  A complete computer model is necessary for two reasons:  

1) There are several effects which are not accounted for in the analytical model (listed 

below) and 2) the computer model allows the capability to simulate a beam of finite 

emittance by running thousands of single particle trajectories, each with slightly different 

initial conditions.  Modeling a full emittance beam is the ultimate goal of the computer 

model because this allows the accelerated beam current to be estimated. 

  The analytical model discussed in section 2.5 gives a good estimate of the 

trajectory, but there are several approximations made which limit the accuracy, especially 

in the acceleration region.  In the analytical model, the beam is assumed to remain 

centered on the z axis and it would be difficult to accurately account for an off centered 

beam.  During acceleration, ions are assumed to remain in phase with the rf (at φ = 90o).  

In reality, acceleration at each gap causes motion of the orbit center, and whenever the 

beam is off center there is a corresponding oscillation in the phase (section 2.6.4).  Most 

importantly, the analytical model cannot accurately predict (r/R) at every step through the 

acceleration trajectory and this ratio has major impact on the cavity voltage needed for 

optimum acceleration because the slope of voltage vs. position is so steep (Figure 32).  

For this reason, the average r/R in equation 2.80 is useful only as a first approximation.  

The computer model makes no assumptions of this sort and all of the effects mentioned 

above are accounted for.  Accuracy of the computer model is limited mainly by the 

accuracy of the electric and magnetic fields that are input into the code.   



 

 78

  Section 2.6.1 below describes the computer model.  This section then begins 

with the simple case of acceleration through the magnetron in a flat magnetic field.  Each 

section thereafter adds realistic effects, until the entire system is accounted for.  Section 

2.6.2 shows the dependence of final energy on the initial phase.  End fields of the 

magnetron are added in section 2.6.3.  A realistic magnetic field is added in section 2.6.4.  

At this point, the beam can be launched from the location of the ion source and pass 

through the entire system using realistic fields.  Section 2.6.5 shows several views of 

single particle trajectories through the entire system.   

  Multi-particle trajectories begin in section 2.6.6.  Here, initial conditions of each 

particle are adjusted in order to map out the acceptance phase space of the rf driven 

magnetron.  Next a full emittance beam is launched from the ion source and 

characteristics of the injected beam (rf off) are discussed in section 2.6.7.  Finally, the full 

emittance beam is accelerated and the energy distribution is obtained in section 2.6.8.  
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2.6.1 The Computer Code 

  A complete computer model has been developed for the ICRA.  This model uses 

three computer codes: ICRAcyclone, RELAX3D, and BRZcoil.   

  ICRAcyclone is a modified version of Z3CYCLONE which was developed here 

at the NSCL and has been used for many years to model particle trajectories in cyclotrons 

at this lab [20, 21].  ICRAcyclone uses 4th order Runge Kutta integration to step an ion 

through its complete trajectory in three dimensions.  An ion can be started from the ion 

source, then passed through the electrostatic bend, through the injection, acceleration, and 

extraction regions, until it stops at the target face.  This code handles only single particle 

trajectories.  However, a beam of finite emittance can be simulated using many single 

particle trajectories.   Space charge forces are not accounted for.  

  The complete off axis analytical solution of the magnetic field [12 pg.177] is 

calculated using a code named BRZcoil [22, 23].  These Helmholtz, or solenoidal 

magnetic fields are two dimensional (azimuthal symmetry).  BRZcoil calculates the 

magnetic field arrays for Br and Bz over the entire volume of interest, including injection, 

acceleration, and extraction regions.  These arrays are then imported by ICRAcyclone. 

  The full three dimensional solution for voltage potentials in the magnetron and 

the electrostatic bend are computed using RELAX3D, a code developed at TRIUMF in 

Vancouver, Canada [24].  RELAX3D uses successive overrelaxation to solve the Laplace 

equation for electrostatic potentials.  The voltage arrays are imported to ICRAcyclone 

where electric fields are obtained by numerical differentiation.   

  The electric field of the electrostatic bend is constant in time.  However, when 

modeling the electric fields in the magnetron, the electrostatic voltages are scaled by 
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sin(ωrf t).  Using an electrostatic solution to model the fields in the magnetron is valid 

because only the central region is modeled where electric fields are dominant.  The time 

varying magnetic fields of the magnetron are negligible in the central region which 

means that 0E =×∇
�

.  Therefore, the fields can be derived from an electrostatic potential.  

Furthermore, the lumped circuit nature of the magnetron allows the cavity to be much 

smaller than a wavelength.  Figure 36 below shows the RELAX3D solution of voltage 

potentials for a tapered magnetron with 8 gaps.   

 

 

 

 

 

 

 

 

 

 

    

Figure 36.  Equipotential lines in an 8 gap magnetron structure at  

entrance (left) and exit planes (right).   Solution computed using RELAX3D. 
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2.6.2 Phase Dependence and Acceleration 

  This section deals only with acceleration through the rf driven magnetron.  All 

trajectories through the magnetron use a flat B-field so that the effects discussed here can 

be isolated.   In this section, graphs of final energy vs. initial phase are used to illustrate 

two topics which are very central to understanding acceleration in the ICRA.  The first is 

the dependence on two operating parameters: cavity voltage and number of turns.  The 

second, is a look ahead at the why the spread in (p⊥ /p||) of the injected beam has 

important implications on the amount of beam current that can be accelerated.   This 

section then covers two unique effects caused by acceleration through a magnetron 

structure.  These are:  1) a change in axial momentum which is phase dependent, and     

2) a change in phase which tends to bunch the beam. 

 

  Recall from section 2.5.7, that the general equation which describes the phase of 

a particle during acceleration is given by: 

        )nt()t( rfo θ−ω+φ=φ  

or simply 

      )nt()t( rf θ−ω=φ∆    (2.89) 

Since the time dependence of the rf signal is sin(ωrf t), optimum acceleration across any 

gap occurs for φ = 90o.  If φ > 90o the ion lags the rf (arrives at the gap late), but if φ < 90o 

the ion leads the rf (arrives at the gap early).    

  Figure 37 shows a graph which is very important for understanding the 

characteristics of the ICRA.  Ions are started from the cavity entrance plane and 

accelerated through the magnetron.  The initial phase (φo) of each ion is varied, and the 
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final energies are plotted.   As expected, ions that enter the magnetron with initial phase 

near 90o are accelerated across every gap and continue to gain energy until they leave the 

acceleration region.  Ions with initial phase near 270o are decelerated.  Note that 

deceleration is less effective than acceleration because if ions loose energy, their radius 

decreases and they fall toward the central region where cavity voltages go to zero. 

  Now consider the three different curves in Figure 37.  Obviously as the cavity 

voltage increases, the beam gains more energy until it eventually strikes the wall.  

Remember that at every point throughout the acceleration region, the maximum orbit 

radius of the beam is limited by the inner radius of the magnetron.  Any beam that goes 

beyond this boundary is lost.    

 

 

 

 

 

 

 

 

 

Figure 37.  Final proton energy vs initial phase for single particle trajectories through the computer 

model of the 50 keV  ICRA.   The curve is repeated for three different rf cavity voltages. 
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  Next consider what would happen if the axial momentum (pz) is increased.  The 

voltage required for the beam to strike the wall would be higher because the beam goes 

through fewer turns in the cavity.   This means that there is a one to one correspondence 

between Vo and Nturns (or between Vo and pz).   In order to proceed, it is necessary to have 

a reference point which defines how to set the cavity voltage.  Therefore, let us define 

“optimum acceleration” as the single particle trajectory at the peak of the E-φ curve 

which reaches maximum final energy without striking the cavity wall.   Figure 38 shows 

the cavity voltage required for optimum acceleration, vs. Nturns (or 1/pz).  This is just the 

same inverse relationship between Vo and Nturns that is evident in equation 2.80 for a 

fixed final energy.  

 
 
 
 
       Some beam hits 
            the wall 
 
 
    Beam not fully 
     Accelerated 
 
 
 
 

Figure 38.  Cavity voltage required for “optimal acceleration” vs. number of turns through the 

acceleration region of the 50 keV  ICRA 

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nturns

V
o 

(k
V

)



 

 84

  Keep in mind that since Nturns ∝  1/pz, the information in Figure 38 could also be 

presented as Vo vs. pz.   Nturns was chosen here, only because the graph seems more 

intuitive.   Figure 38 is a map of the operating parameters, Vo and pz.   Notice that for any 

operating point which is below the curve, the beam will not be fully accelerated.  For any 

operating point above the curve, some portion of the beam will strike the wall.  

  The width of the peak of the E-φ curve in Figure 37 has direct impact on how 

much beam current is accelerated by the ICRA.  For an actual device using a dc injected 

beam, ions will enter the acceleration region at all phases.  In the limit that the beam 

emittance goes to zero (central ray only), the fraction of the beam which is accelerated is 

simply the width of the E-φ curve (above some chosen cutoff energy) divided by the full 

360° range.  For this reason, time is an important parameter in the beam phase space for 

determining what fraction of the beam is accelerated (see section 2.6.6). 

  At this point we must focus on a point that is more subtle, but also very central 

for understanding the ICRA.  While the E-φ curve does contain information about gross 

operating parameters, such as the cavity voltage (Vo) and the Nturns setting, it also 

contains important implications on the full emittance beam which can be accelerated.  

Specifically, the range of (p⊥ /p||) must be small in order for significant current to be 

accelerated.  To see why, consider the E-φ curve shown in Figure 39 below.  This time 

the cavity voltage (Vo) is held constant and the initial ratio of (p⊥ /p||) is varied.  Here we 

use the notation: 

      
||p

p ⊥≡α     (2.75) 
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Figure 39.  Final proton energy vs initial phase for fixed Vo in the 50 keV ICRA.   As αααα is increased, 

the beam gains more energy and eventually strikes the wall.  Here ααααo indicates p⊥⊥⊥⊥ /p|| of the central 

ray. 

  Figure 39 clearly shows that as the initial ratio of α is increased, the beam is 

accelerated to higher energies until it eventually strikes the wall.   Recall that in the 

computer model all ions are injected at the same initial energy.   

     =++= θ
2
z

22
r

2 pppp� constant for all ions 

Therefore, increasing pθ decreases pz, and vise versa.   Here we see that acceleration in an 

rf driven magnetron causes radial defocusing.  Any initial spread in α leads to a radial 

spread and therefore a corresponding energy spread.   To understand the source of the 

spread, consider two effects which determine how much energy the beam gains.   

Obviously, the beam will gain more energy if Nturns is high (pz low) and less if Nturns is 

low (pz high).  This effect is then compounded by the radial dependence of the cavity 
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voltage.  Throughout the trajectory, the ion whose radius fraction (r/R) is high (large p⊥ ), 

sees a higher cavity voltage and moves to a higher (r/R).  On the other hand the ion with a 

lower radius fraction (smaller p⊥ ) sees a relatively lower cavity voltage, therefore it 

moves to a smaller (r/R) relative to the first ion.  These two coupled effects work together 

to cause the beam to gain more energy if (p⊥ /p||) is high, and less energy if (p⊥ /p||) is low.  

The result is that, the ICRA will accelerate maximum beam current to full energy when 

the beam entering the acceleration region has the minimum spread in (p⊥ /p||).  

  The radial defocusing is seen more clearly in Figure 40 below.  Here the beam 

radius vs. axial position is plotted for the same three trajectories at the peak of the E-φ 

curve in Figure 39 above.  The ion with initial ∆α/αo = +2% strikes the wall, while the 

ion with initial ∆α/αo = -2% is not fully accelerated. 

 

 

 

 

 

 

 

 

 

Figure 40.   Beam orbit radius vs z position for the three trajectories in Figure 39  

with φφφφo=68°°°° and ∆∆∆∆αααα/αααα = (+2%, 0, and -2%) . 
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Phase Dependent Axial Momentum Change 

  In sections 2.5.5 and 2.5.6 of the analytical model, the axial momentum (pz) was 

assumed to remain constant through the acceleration region.  In the absence of any axial 

forces, this would be the case.   However, notice that in Figure 39 the maximum energy 

gain actually occurs at φo = 68o, rather than φo = 90o.   This occurs because the taper of 

the cavity inner radius causes a change in the axial velocity which depends on phase.  

The beam which slows down axially, goes through more turns and therefore gains more 

energy.  

  It is not critically important for the reader to understand this effect because in 

practice we do not care which phase of the beam gets accelerated.  However, since the 

magnitude of this effect does depend on the cavity slope, it is conceivable that this could 

place a limit on the maximum slope used.  Therefore the effect is explained here.    

  Consider an ion orbiting in the counter clockwise )ˆ( θ+ direction as shown in 

Figure 41 below.  For acceleration in the θ+ ˆ direction the ion will always pass through 

an E-field just before each gap which has a component in the ẑ+  direction, and an        

E-field just after each gap which has a component in the ẑ−  direction.  If the ion is in 

phase with the rf (φ = 90°), then it receives an axial kick forward just before each gap, 

and backwards just after each gap, and the net change in the axial momentum is zero.  

However, if the ion lags the rf (φ > 90°), then it will experience the maximum electric 

field just before passing the gap.  Hence, its net change in axial momentum will be 

positive.  Likewise, if an ion leads the rf (φ < 90°), it will experience maximum electric 

field just after passing the gap, so it will have a net decrease in axial momentum.   Figure 

41 shows a schematic drawing which aids in visualizing the geometry.  The decreased 



 

 88

axial momentum causes the ion which leads the rf to go through more turns and gain 

more energy.  Obviously if the ion leads the rf by too much (for example φ→0°), then the 

energy gain across each gap is reduced.  The phase for peak energy gain (φ=68° in this 

case) occurs for an optimum gain in Nturns, yet an insignificant degradation in Kgap.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41.  A snapshot in time of an ion (red dot) at the moment of peak electric field across the gap.  

Two cases are shown.  On the left the ion lags the rf and on the right the ion leads the rf. 
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  Figure 42 shows the evolution of the axial momentum through the acceleration 

region for three ions with initial phases φo= 60°, 90°, and 120°.  The ion which leads the 

rf shows reduced pz and the ion which lags the rf shows an increase in pz.  The magnetron 

cavity used here had 8 gaps.  The small oscillations within each curve occur because the 

ion gets pushed forward then backward 8 times per turn. 

 

 

 

 

 

 

 

 

 

 

Figure 42.  Axial momentum through the acceleration region (rf on) for three different initial phases.  
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Phase Bunching 

  Using the computer model to track the phase through the acceleration region 

reveals a phase change which tends to bunch the beam near φ = 90°.   The source of the 

phase shift is the radial component of electric field in the magnetron which causes a 

rotation in the motion of the orbit center.   Figure 43 shows an example in which three 

ions started at three different phases each migrate towards φ = 90°.   The oscillation in the 

phase occurs whenever the beam is off center from the accelerator center (acceleration 

always shifts the orbit center).   Notice that the general trend is to bunch the beam near 

90°.    An additional view of the phase bunching with all computer modeling effects 

present can be seen in Figure 66 of chapter 3 

 

 

  

 

 

 

 

 

 

Figure 43.  Three ions are started with different initial phases.    Tracking their phase  

through the acceleration region reveals phase pulling toward 90°°°°.    Notice the red line  

goes through the greatest number of turns and the green line goes through the fewest turns. 
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  A more global view of this effect can be seen by plotting the final phase after 

acceleration vs. the initial phase when entering the cavity for the full range of initial 

phases.  Figure 44 shows the result.  If no phase bunching occurred, then the final phase 

would be equal to the initial phase.  A black line with slope = 1 has been plotted to show 

this case.  However, results using the computer model (red line) show that a wide range 

of initial phases migrate toward φ = 90°.  

 

  

 

 

 

 

 

 

 

 

 

 

Figure 44.  The red line shows final vs. initial phase of protons accelerated through the magnetron. 

(50 keV ICRA design).  The solid black line represents final phase equal to the initial phase.  

Dotted lines have been placed at φφφφ=90°°°° and φφφφ=(360°°°°+90°°°°) for comparison. 
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2.6.3 Cavity End Field Effects 

  Just before entering the acceleration region, the injected beam will pass through 

the electric end fields of the magnetron.  These end fields are accounted for in the 

computer model because in the 3D solution of the electric fields (using RELAX3D) the 

magnetron has finite axial length, and ground plates are placed one cm away from each 

end.   Allowing an ion to travel through the end fields before entering the acceleration 

region causes two effects.  Both effects are relatively insignificant.  They are mentioned 

here for completeness.  All trajectories in this section use a constant magnetic field so 

that the effects of the end fields can be isolated. 

   The first effect is a small additional energy gain through the end field region.  

This causes the beam to enter the magnetron at a slightly higher energy.  Therefore, since 

the peak energy is limited by the inner diameter of the accelerating cavity, the voltage 

must be decreased so that the ion does not hit the wall.  Figure 45 shows an E-φ curve  

which compares a beam that has passed through the end fields, with the beam that did not 

pass through the end fields.  The cavity voltage was held constant in each case, so the 

small additional energy gain through the end fields sets the beam on a different trajectory 

towards a much higher energy gain.    

  The second effect is a shift in the optimum initial phase.   This occurs because 

the end fields, just before entering the magnetron, have large z components.  If an ion 

lags the rf (φ > 90°), then the ion will experience the peak electric field just before it 

passes the gap.  On the other hand if the ion leads the rf  (φ < 90°) then it will experience 

the peak electric field just after passing the gap (review Figure 41).  In the end field 

region, the electric field just before the gap has an axial component in the ẑ−  direction, 
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but the E-field just after the gap has an axial component in the ẑ+  direction.  Therefore, 

the ion which lags the rf (φ > 90°) will have a net decrease in axial momentum (pz) and 

therefore gains more energy than the ion which leads the rf.    

  

 

 

 

 

 

 

 

 

 

Figure 45.  Final proton energy vs. initial phase for a fixed Vo in the 50 keV  ICRA. 

The beam which passes through the end fields before entering the cavity  

shows a higher energy gain and a shift in optimum initial phase. 

 

  Figure 46 shows the change in axial momentum through the end fields and 

acceleration region.  The acceleration region is between the dotted lines.  The particle 

moves from left to right so the entrance end fields are in the region to the left of the 

acceleration region.  Although the ion with  φo = 60° has decreasing pz in the acceleration 
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region, it is the ion with φo = 120° which has decreased axial momentum through the 

entrance end fields.  

 

 

 

 

 

 

 

 

 

 

Figure 46.  The ion with initial φφφφ>90°°°° gets a decrease in pz through end fields, but the ion with initial 

φφφφ<90°°°° gets an increase in pz.  The particle moves left to right.  The acceleration region is between the 

dashed lines.  The entrance end fields are just to the left of the acceleration region. 

 

  End fields at the exit side of the acceleration region cause a similar additional 

energy gain, however the effect is less significant since the beam is now at high energy. 

Notice the large oscillation in pz caused by the exit fields in Figure 46.  The net axial 

momentum change (∆pz) caused by the exit end fields is not significant because phase 

bunching (section 2.6.2) through the acceleration region causes ions to have phase near 

90°.   
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2.6.4 Magnetic Field and Phase 

  From this point forward in this chapter, a realistic magnetic field is used in the 

computer model (either solenoidal or Helmholtz).  This section discusses phase changes 

caused by the B-field profile over the acceleration region.  The characteristics of 

Helmholtz and solenoidal fields were discussed in section 2.1.   The full off axis solution 

of magnetic fields was discussed in section 2.6.  

  Recall that the magnetic field flatness is characterized in terms of the drop at the 

ends of the acceleration region (δB).   B-field flatness criterion was defined in section 

2.5.7, and the field profile over the acceleration region of the 50 keV ICRA was shown in 

Figure 34. 

  Using a realistic field introduces a phase drift anywhere where nωc ≠ ωrf .  In the 

ICRA it is useful to plot phase vs. axial position.  Figure 47 shows φ vs. z as the ion 

accelerates through the magnetron.  Notice that the oscillation in phase has one cycle per 

turn.   This occurs because acceleration at each gap pushes the center of the beam around, 

and whenever the beam is off center there is a corresponding oscillation in the phase.  

This effect is well known in cyclotrons.  The phase oscillation is of no great consequence, 

although it should be minimized by centering the beam.   

  More important is the overall phase drift caused by regions where the B-field is 

not in resonance with the rf frequency.  Whenever the B-field is low (nωc < ωrf ), equation  

2.81 (section 2.5.7) predicts that the phase will increase in time.  The reader should 

compare the phase diagram in Figure 47 with the B-field profile shown in Figure 34 to 

see that the phase drift past the ends of the cavity makes sense.  
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Figure 47.  Phase vs. axial position over the acceleration region. 

 

  Phase graphs like the one in Figure 47 are useful for checking that the beam 

remains in resonance and will be particularly important when designing an ICRA with a 

sloped B-field for acceleration to relativistic energies.  

  The addition of the realistic magnetic field over the entire volume of the 

accelerator allows particles to be shot through the entire system from ion source to target.  

A set of complete single particle trajectories is shown in the following section.   
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2.6.5 Complete Single Particle Trajectories 

  The previous three sub-sections (2.6.2 – 2.6.4) covered the complete computer 

model, starting from acceleration through the magnetron in a flat magnetic field, and then 

adding end fields of the magnetron and a realistic solenoid.  Section 2.6.6 will begin 

discussion of multi-particle trajectories used to model a beam of finite emittance.  

However, before leaving single particle trajectories, we wish to show a series of views of 

the beam.   In this section the electrostatic bending plates have been added, so that all 

realistic fields are now in place.  The figures which follow show several examples of 

single particle trajectories shot through the entire system using the ICRA computer 

model.  
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List of views: 

Fig 48.  top and side view - mirroring beam – rf off 

Fig 49.  top and side view - Nturns = ∞ – rf off 

Fig 50.  Axial view - Nturns = ∞ – rf off 

Fig 51.  top and side view – Nturns = 20 – rf off 

Fig 52.  top and side view – Nturns = 5 – rf off 

Fig 53.  top and side view – Nturns = 5 – rf ON 

Fig 54.  Axial view – acceleration region only – rf ON 
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Caption for Figure 48 goes here 
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Figure 48 goes here 
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Caption for Figure 49 goes here 
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Figure 49 goes here 
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Caption for Figure 50 goes here 
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Figure 50 goes here 
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Caption for Figure 51 goes here 
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Figure 51 goes here 
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Caption for Figure 52 goes here 
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Figure 52 goes here 
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Caption for Figure 53 goes here 
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Figure 53 goes here 



 

 110

Caption for Figure 54 goes here 
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Figure 54 goes here 
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2.6.6 Acceptance Phase Space of the RF Driven Magnetron 

  Any serious analysis of the maximum amount of current that could be accelerated 

by an ICRA, must be based on an understanding of the acceptance phase space of the 

acceleration region used.  The acceptance phase space can be mapped out by using 

ICRAcyclone to start particles at the entrance plane of the magnetron, then accelerating 

each particle, and tabulating their final energies.  The initial conditions of each trajectory 

are varied over some range in order to map out the boundaries of the phase space of the 

beam which is accelerated to the desired energy.   Since the ICRA accelerates beam to 

some large energy spread, a cutoff energy must be chosen as a criterion for an acceptably 

accelerated beam.  Obviously if you choose Ecut = 0.9 Emax the acceptance phase space 

will be smaller than if you choose Ecut = 0.5 Emax .   

  It may be tempting to describe this phase space in terms of Cartesian variables  

(x, y, z, px, py, pz, t), but attempts at this have proven to be futile.  The natural coordinate 

system for the magnetron cavity in an axial B-field is cylindrical.  Therefore, the 

acceptance phase space must be mapped in (r, θ, z, pr, pθ, pz, t,) using a coordinate system 

whose origin is at the center of the magnetron.  This “accelerator-centered coordinate 

system” is shown in Figure 55.  To see why this is true, imagine that you have just run 

the trajectory for some chosen central ray, then you change the initial position of the 

particle by ∆y to see the effect on the final energy.  In doing this, the initial conditions of 

the particle have actually changed, by r and θ both.  As we will see, the acceptance phase 

space does depend on r but it does not depend on θ, therefore in changing y, you have 

missed the azimuthal symmetry.   
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Figure 55.  Initial particle coordinates at the ion source are expressed in a Cartesian coordinate 
system centered on the central ray, but the acceptance phase space at the entrance plane of the 

magnetron must be expressed in an accelerator-centered cylindrical coordinate system. 

 

  Before proceeding, four cautionary statements are given here:  

1)  Once the initial acceptance phase space of the magnetron has been mapped out, that 

does not necessarily mean that a beam can be produced to fill that space.  In fact a large 

source of optimization for the ICRA is in tailoring a beam to fill the desired phase space 

as much as possible.  

2)  The method used here to relate the injected beam to the acceptance at the entrance 

plane of the magnetron, was to choose an emittance back at the ion source, then shoot 

each particle from the ion source, forward through the fringe fields, and stop the beam at 

the entrance plane of the magnetron.  When doing this, the initial coordinates of each 
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particle at the ion source should be expressed in a Cartesian coordinate system with the 

origin at the central ray of the beam as shown in Figure 55.  The coordinates of each 

particle can then be expressed in the cylindrical accelerator-centered system so that the  

beam can be shot forward, then stopped at the entrance plane of the magnetron, and 

compared with the acceptance plots to determine the fraction of particles that landed 

inside the acceptance phase space. 

3)  And finally, notice that it is not necessary to map out the acceptance phase space.   

It is only a tool for comparing what beam the injection region produces with what beam 

the magnetron could accelerate if that beam could be produced.  The accelerated fraction 

of the beam can also be determined by completely bypassing this pit stop and simply 

running particle trajectories through the entire system.  

 

Results of the analysis of the acceptance phase space.  

  In order to map out a 7 dimensional coupled phase space (r, θ, z, pr, pθ, pz, t,) we 

first scan over one variable at a time to see its effect.  Those parameters whose effects are 

negligible are then dropped.  Three variables can be eliminated.  The effect of θ is 

negligible, and z was chosen to be constant at the entrance plane of the magnetron.   

One momentum can be eliminated because all ions in the computer model begin with the 

same energy, therefore pz, pθ and pr are not independent.  Thus mapping all three would 

be redundant.  The arbitrary choice was made to drop pz, therefore the relevant phase 

space parameters become: r, pr, pθ, and time (or φo).  We already know that the 

accelerated beam depends on rf phase (review section 2.6.2) and we must sum over the 
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full 0o – 360o phase range because the injected dc beam will contain all phases.  Scanning 

each of the remaining three parameters independently shows that the acceptance phase 

space is very sensitive to pθ, and only moderately sensitive to r and pr.  Recall the 

discussion of the spread in (p⊥ /p||) in section 2.6.2 

  Figure 56 shows the results of scans over two planes through the remaining three 

dimensional phase space volume.  These are ∆pθ, vs. ∆r, and  ∆pθ, vs. ∆pr.  Here ∆ 

indicates a change relative to the central ray.  Each data point on the graph includes a 

summation over all rf phases.  In other words each point represents the width of the E-φ 

curve of Figure 39 for a cutoff energy of E > 0.9 Edesign.  Thus if a beam of zero emittance 

was placed at one of the red data points, then the fraction accelerated would be between 

5% - 10 % (see the legend of Figure 56). 

  Figure 57 shows the final positions of particles tracked from the ion source, 

forward through the injection region, and stopped at the entrance plane of the acceleration 

region.  For comparison, the boundary of the acceptance phase space is outlined with a 

dotted line in Figure 57.   The beam outside this boundary is not accelerated above the 

cutoff energy.  Notice that the injected beam has a wider pθ spread, and a narrower radial 

spread, than what the magnetron will accept.  This tendency occurs because the injection 

trajectory causes a decrease in the radial spread of the beam, and an increase in the 

momentum spreads (∆pθ, and ∆pz).   This is explained at the end of section 2.5.2. 

  This particular result was for an 8 Tesla, 1 MeV proton design.  The injected 

beam had an emittance of 2π mm mrad (unnormalized) and the fraction accelerated 

above 0.9 MeV was 1.9 %. 
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Figure 56.  Two planes through the acceptance phase space at the entrance plane of the magnetron 

for a 1 MeV proton ICRA.   Each data point represents a summation over all rf phases. 
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Figure 57.  Final positions of protons shot forward from the ion source through the injection 

fringe fields and stopped at the entrance plane of the magnetron.   

The acceptance phase space from Figure 56 is outlined with dotted lines for comparison.   
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2.6.7 Injected Beam Emittance 

  This section deals with characteristics of the injected beam only.  Although the 

beam will pass through the injection, acceleration, and extraction regions, the rf power in 

the accelerating cavity is off for all cases.  All trajectories in this section are tracked from 

the ion source, through the electrostatic bend, and through the realistic magnetic field.   

  A beam of some finite emittance can be modeled by using ICRAcyclone to run 

many single particle trajectories, one after another.  Recall that ICRAcyclone does not 

account for space charge effects (section 2.6.1).  Initial conditions for each particle back 

at the ion source are expressed in a Cartesian coordinate system with the origin at the 

central ray of the beam (see Figure 55 section 2.6.6).  The 4 transverse phase space 

dimensions are ssss y,y,x,x ′′ , where totalxss ppx =′  is simply the slope of a particular ray 

relative to the central ray.  In the plots which follow, the injected beam emittance was 

modeled by a fully coupled set of 3×3×3×3 = 81 particles.  The )x,x( ss ′  and )y,y( ss ′  

planes are shown in Figure 58.  

 

 

 

 

 

 

Figure 58.  The emittance used at the ion source is a coupled phase space of  3××××3××××3××××3=81 particles  
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  In section 4.5.3 we will see that the axial momentum spread of the beam (∆pz) 

can be measured experimentally in two ways; the arc length at the extraction end, and the  

mirror curve (both discussed below).  These measurements can be reproduced using the 

computer code and used to determine whether the beam emittance has been chosen 

correctly. 

Arc Length at the Extraction Faraday Cup 

  The extraction Faraday Cup (EXFC) is a phosphor screen that is used for 

viewing the beam at the far downstream extraction end of the 50 keV experiment.  The 

EXFC is oriented perpendicular to the z axis so the image seen is in an x-y plane.  The 

reader may want to look ahead to Figure 72 in Section 3.2.  If the beam were a single 

particle trajectory, one would expect to see the beam hit at a single point on the extraction 

Faraday cup.  However, for a real beam, any spread in the axial momentum causes the 

image on the extraction Faraday cup to spread in the θ direction.  This spread (∆θ) is 

referred to here as the “arc length”.   

  In order to check the arc length in the computer model, the full emittance of 81 

particles was tracked from the ion source, through the entire system, to the z plane of the 

extraction Faraday cup.  The x-y positions are then plotted.  An example is shown in 

Figure 59.  

  It is simple to see how a spread in axial velocity causes the image of the beam to 

smear out in θ if the magnetic field were constant.  However, the solenoidal fringe fields 

in the extraction region of the ICRA are certainly not constant.  Therefore, it is necessary 

to check whether the arc length is a good measure of the spread in axial momentum at 

z=0.  This was done by using the computer code to track the full emittance beam from the 
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ion source, through the entire system, to the extraction Faraday cup.  The axial 

momentum of each ion was obtained at z=0 as the ion passed through the center of the 

system.  Then the final angle of each ion on the extraction Faraday cup is plotted vs.1/pz .  

The results in Figure 60 below show that the relation between 1/pz and θ is extremely 

linear even with the solenoidal field.  Therefore, the arc length is a direct measure of ∆pz. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 59.  Final x, y positions of protons on the extraction Faraday Cup  

after being shot from the ion source through the entire system.   

Here the bending voltage is high enough to give an arc length of more than 360°°°°. 
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Figure 60.  Final θθθθ position of protons on extraction Faraday Cup vs their axial momentum at z=0. 

 

Mirror Curve 

  The second useful experimental measurement of ∆pz is the mirror curve.  

Experimentally, beam current on the extraction Faraday cup is measured while the 

bending voltage is increased.  If the spread in pz were zero, then the axial momentum 

would continue to decrease until the mirror angle is reached at which point the current 

reaching the extraction end would instantly drop to zero (section 2.5.3).  On the other 

hand, if the beam contains a spread in pz, then different components of the beam will 

mirror at different bend voltages.  This causes the beam current to drop over some finite 

range of bending voltage.  The plot of current vs. bend voltage is called a “mirror curve” 
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  The mirror curve can be reproduced with the computer model by first selecting 

an injection emittance, then tracking all particles through the entire system.  The number 

of ions which arrive at the extraction Faraday cup are plotted as a function of bend 

voltage.  An example is shown in Figure 61. 

 

 

 

 

 

 

 

 

 

Figure 61.   A mirror curve generated using ICRAcyclone.  The fraction of particles,  

which reach the extraction Faraday cup without being mirrored, is plotted vs. bend voltage.  

 

  In order to check whether the mirror voltage is a good measure of axial 

momentum at z=0, an entire emittance was tracked through the system for one constant 

bend voltage, and the value of pz for each particle is obtained as it passes z=0.  Then the 

mirror voltage of each particle is obtained and plotted vs. pz at z=0.   Figure 62 shows 

that the result is fairly linear, indicting that mirror voltage also is a good measure of the 

axial momentum at z = 0.   
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Figure 62.  Mirror voltage of 81 protons vs. their axial momentum at z=0 at Vbend = 690 V. 

The solid line is included for visual comparison with linear.  
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2.6.8 Energy Distribution of the Accelerated Beam 

  All trajectories in this section are tracked from the ion source through the entire 

system with rf on.  The injected beam emittance used is the one shown in section 2.6 7.  

A fully coupled emittance of 3x3x3x3=81 particles is shot through the system for every 2 

degrees in phase.  After the full emittance beam is accelerated, the number of particles at 

each energy are counted and the percent of particles is plotted vs. energy.  Figure 63 

shows the result.   Here Vbend = 700V which corresponds to Nturns ≅  11. 

  The large energy spread is a basic characteristic of the ICRA because nearly all 

of the beam (except what strikes the wall) drifts through the accelerating cavity whether it 

is accelerated or not.  Specifically two factors cause the spread.  First, since the dc 

injected beam contains ions over the full range of rf phase, even part of the beam near 

φ=270° which is decelerated still contributes to the energy distribution curve.  Second, 

the radial defocusing discussed in section 2.6.2 causes an energy spread in the accelerated 

portion of the beam. 
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Figure 63.  An integrated Energy distribution for the 50 keV ICRA generated 

using the computer model.  Emittance of the injected beam was 2.2ππππ mm mrad. 

 

  Figure 63 is an integrated distribution, meaning that any point on the curve 

represents the percentage of particles accelerated above a given energy.  Thus, if zero 

particles hit the wall, then the number of particles above E = 0 would be 100%.  Notice 

where the curves intersect the percent particles axis (E = 0).  Figure 63 shows that for    

Vo = 1.0 kV, the current above E=0 has dropped to 50%, meaning that 50% of the 

particles were intercepted by the cavity wall.   As the cavity voltage is increased, the 

beam current at high energy increases (right hand side increases), but also more of the 

beam strikes the wall (left hand side of the curve drops).  Thus, for any cutoff energy 
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chosen, the beam current will pass though a maximum.  The curve in Figure 64 shows the 

peak in the current for ions accelerated above 42 keV.    

 

 

 

 

 

 

 

 

 

 

Figure 64.   Scanning over cavity voltage shows a peak in the beam current accelerated above a given 

energy.   Emittance of the injected beam was 2.2ππππ mm mrad.  Data generated using the computer 

model for the 50 keV ICRA design . 
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NEED THIS FOR RESONANCE WIDTH  

 

Notice that if ωrf  = nωc the phase will remain constant at all times, however if ωrf  ≠ nωc 

then the phase will drift with time. 

  Consider the case where the rf frequency is fixed at corf nω=ω but the B-field 

(constant with respect to z) is allowed to change by ∆B, then equation XXX gives: 

t)](nn[)t( ccoco ω∆+ω−ω=φ∆  

In terms of the variation in B-field this becomes: 

t
B
Bn)t( co

∆ω=φ∆  

Here ∆φ is the total change in phase over the time, t, caused by ∆B.  This equation is 

valid for any time (t).  However, if we want the phase change over the time the ion 

spends in the accelerating cavity, it is useful to express φ∆  in terms of the number of 

turns in the cavity length. Using: 

     cavco
co

cav
turns tf

t
N =

τ
=  

we obtain:   turnsN
B
Bn2)t( ∆π=φ∆   in radians 

or:     turns
o N

B
Bn360)t( ∆=φ∆  in degrees 

These equations describe the phase change that occurs if the B-field is constant (no z 

dependence), but is de-tuned away from resonance with the rf frequency.   And for the 

case where acceleration does not cause phase pulling.  At the end of this section we will 
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see that acceleration in the magnetron does cause phase pulling.  These equations are also 

needed for section XXX on resonance width.    

Some beam hits  
       the wall 
 
 
Beam not fully 
  Accelerated 
 
With End Fields 
 
 
Without End Fields 
 

 

Move this to chapter 3 

  Recall that the magnetic field flatness is characterized in terms of the percent drop 

at the ends of the acceleration region (δB).   B-field flatness criterion defined was defined 

in section 2.5.7, and the field profile over the acceleration region was shown in Figure 34.  

For the case of a 1 MeV design, the computer model was used to study several values of 

B-field variation and it was found that for Nturns = 10,  δB < 0.5% induced an insignificant 

degradation in the final energy of the beam.   Obviously for a higher number of turns the 

B-field flatness criterion will be more stringent.  

 

 

From the energy distributution section  
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I need to vary the resolution of each variable to see which ones make a difference.  Maybe phase does 

not need to be every 2 degrees.  or maybe I get different results if I increase x from 3 particles to 10.  

I should use the resolution that gives consistent results.  

 

 

 

Not used 

After we add realistic B-field the phase will slip all the way through the injection region, 

therefore the value of the initial phase becomes meaningless.  

Centering Effect 

  It seems intuitive that the radial dependence of the cavity voltage would cause a 

centering effect.  This is because if the beam is initially off center, it receives a biggest 

kick where it passes closest to the wall and a smaller kick where it passes further from the 

wall.  Since each kick shifts the orbit center in the BE
��

×  direction, the net force should 

push the orbit center toward the center of the cavity.  In other words, since the cavity 

voltage is maximum at the cavity wall (r = R) and goes to zero at the center (r = 0), the 

voltage profile effectively acts like a potential well.  In fact, a simple spread sheet model 

for a two gap magnetron (n = 1) can be made which tracks the orbit center as it oscillates 

back and forth in one dimension only.  This simple model shows that the magnetron does 

exhibit the centering effect as expected.  However, if a magnetron has more than 2 gaps, 

the centering effect is destroyed.  The additional gaps, in the direction perpendicular to 

the direction that the beam is off center, have a radial electric field which pushes the orbit 

center back to its original location.  Hence, for magnetrons with 4, 6, 8… gaps the 
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centering effect is nulled out.  Results from the computer model for the 50 keV ICRA    

(n = 4) show no significant centering effect.  Except for some small oscillations, the orbit 

center remains pretty much frozen to magnetic field lines at its original location.  

 

 

  

  

The computer model shows that acceleration through the rf driven magnetron causes a 

centering effect which pushes orbit centers toward the z axis.  Consider an ion moving in 

an orbit which is centered on the z axis.  The orbit radius in terms of energy is:  

qB
mE2

qB
p

r == ⊥  

If the ion receives an instantaneous kick in the θ̂  direction, the orbit radius will increase 

by:      
E
E

qB2
m2r ∆=∆  

or simply    
K

K
E
E

r
r gap=∆=∆  

Therefore the orbit center has shifted by ∆r in a direction 
BE
BE
��

��

×
×  

If the orbit is off center, the ion will pass closer to the wall on one side if its orbit than on 

the other side.  The radial dependence of the cavity voltage (Figure 68) means that the ion 

will receive a larger kick when it passes closer to the wall, and a smaller kick when it is 

further from the wall.  The net effect is to push the orbit center back toward the z axis.   
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Thus, the orbit center experiences a restoring force which pushes the orbit center toward 

the accelerator z axis.    

  A simple spread sheet can be made to calculate the change in center position for 

each kick, and track the x position of a particle back and forth iteratively.   The result 

shows that the magnitude of the centering effect depends on the radial dependence of the 

cavity voltage. 
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3.  DESIGN 

  From the outset of this research, the intent was to build an operating device as a 

demonstration of the ICRA concept.  Initial designs for a 1 MeV demonstration ICRA 

used a 488 MHz magnetron operating in an 8 Tesla Helmholtz coil with a 10 cm flat field 

length.  Although this Helmholtz coil is available from industry, it would have been the 

single most expensive component in the system (~ $100K).  However, a superconducting 

solenoid available at the NSCL made it possible to perform this research at very low cost. 

This solenoid has an operating magnetic field of 2.5 Tesla and a flat field length of 5 cm.  

In order to use this solenoid for the ICRA experiment, the beam energy was scaled down 

to 50 keV to accommodate the lower B-field and the shorter acceleration region, and the 

rf cavity was redesigned to operate at 152 MHz.  

   This chapter details the design of the 50 keV proton ICRA.  Section 3.1 walks 

the reader through the choice of all basic system parameters.  Section 3.2 begins with an 

overview of the actual components and then discusses the main components in greater 

detail in sub-sections.  Section 3.2.1 covers the superconducting magnet.  Section 3.2.2 

covers the vacuum system.  Section 3.2.3 covers the ion source, the Einzel lens, and the 

electrostatic bend.  Design of the rf cavity is given in section 3.2.4.  Section 3.2.5 

discusses the beam diagnostics used to determine the location of the beam and make 

beam measurements.  Finally, section 3.2.6 covers the mounting structure used to 

position and align all components.   
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3.1 Basic System Parameters 

  This section gives a brief account of how the basic system parameters were 

chosen for the 50 keV ICRA.  The discussion is primarily meant to be a guide to how one 

would design any ICRA.  Unfortunately, during the building process some experimental 

realities (chapter 4) forced changes in the final system parameters.   In these cases, the 

explanation has been given in footnotes so as not to confuse the continuity of the main 

discussion.  If the reader is interested only in how to design an ICRA, these footnotes 

should be ignored.  Table 4 lists the final system parameters which may differ slightly 

from those initial values in the discussion.  

 

  The design process begins at the exit plane of the acceleration region and works 

backwards to the ion source.  Figure 65 shows a useful graph of proton orbit radius vs. 

magnetic field for a range of energies.  The choice of 50 keV at 2.5 Tesla1 means that the 

final r = 1.3 cm, easily fits inside the 8” bore of the solenoid (section 3.2.1).   The ICRA 

is capable of operating over a wide range of Nturns (review Figure 38).   For example        

5 – 15 turns is a reasonable choice for the 50 keV ICRA.  Since the fewest Nturns requires 

the highest Vo, we use Nturns = 5 to check the E-field in the cavity for vacuum sparking 

across a chosen gap width. 

  The choice of injection energy limits the cavity gap width.  For example, if we 

choose E⊥ o = 5 keV, the orbit radius at the cavity entrance is: ro = 0.41 cm.  Using the 

computer model, an initial radius fraction of  ro/Ro ≈ 0.75 works well and allows the  

 
1)  The original design used an 8 gap magnetron operating at 154 MHz in Bo = 2.53 Tesla, however the 
final resonant frequency of the rf cavity is 152 MHz, thus Bo =  2.49 Tesla.  Since the rf cavity was already 
built with exit radius R = 1.27cm, this small drop in B-field restricts the final energy to 48 keV. 
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Figure 65.  Beam radius vs. magnetic field for several beam energies. 

 

curved acceleration trajectory to come close to the linear taper of the magnetron yet exit 

near r/R = 0.98 for full energy gain.   So the cavity radius at the entrance plane is chosen 

to be: cm55.0
75.0

r
R o

o == .   At the entrance plane, assume that the gap between 

magnetron vanes is the same as the width of the vane.  Thus, the gap width for an 8 gap 

magnetron follows from the circumference2.  

 =
π

=
gaps

o

N2
R2

g 0.216 cm. 

 

 

2)  Note that since g can increase with Ro , this means that the maximum cavity voltage (limited by vacuum 
sparking) increases with the injection energy.   
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  Now check the electric field for this choice of Nturns and gap width.  Using 

equation 2.75, the parallel injection energy for 5 turns is E||o = 0.8  keV, so the total 

injection energy3 is Eo = 5.8 keV.   The total energy gain is:  Egain = (50 – 5.8 keV) = 44.2 

keV and the energy gain across a single gap is about 1.1 keV.   The average radius 

fraction throughout the acceleration region can be estimated by: 

87.0
2

98.075.0
R
r =+=  

Using equation 2.80 for the energy gain gives Vo = 2.5 kV across a gap4.  Therefore, the 

E-field is E
�

≈ Vo/g = 12 kV/cm.  Even after field enhancement (due to sharp corners) 

this is far below the Kilpatrick criterion for vacuum sparking which is E
�

 = 100 kV/cm 

for dc, and several times higher for rf E-fields [25] .   For higher turn numbers the cavity 

voltage will be less of course.  Table 1 lists Vo for several Nturns. 

 
 

Table 1.  Gap voltage in the rf cavity required for different turn numbers using  

equation 2.80 with injection energy of 5 keV and final energy of 50 keV.   

 

Nturns Vo 
5 2.5 kV 
10 1.2 kV 
15 0.8 kV 

 

 

 

3)  While running the experiment the total injection energy was increased to 6.4 keV in order to clip the H2
+ 

beam (section 4.5.1).  However the cavity was initially designed based on E⊥ = 5 keV (Etotal = 5.8 keV).  
 
4) Notice that when using equation 2.80 we set Vgap = Vo , rather than Vgap = 2Vo.  This is because the outer 
conductor (and the outer vanes) of the hybrid rf cavity remain at ground so the total gap voltage is Vo , as 
opposed to a pure magnetron, where all vanes would go to ±Vo , giving a total of 2Vo across a gap. 
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  The procedure above uses the analytical model to calculate the basic design 

parameters.  One parameter that requires more attention is the rf cavity voltage (Vo).  

Table 2 below shows a comparison between Vo calculated by four different methods with 

increasing accuracy from left to right.  In each case the injection energy is Eo = 6.4 keV, 

and the initial axial momentum is set for 5 turns. 

  The first column in Table 2 uses the analytical expression for the energy gain 

(equation 2.80) which assumes a constant radius fraction (r/R) throughout the trajectory.   

The second column uses the spread sheet method discussed in section 2.5.6.  Here the 

orbit radius and energy gain (equation 2.79) are recalculated at every gap so that r/R 

varies naturally throughout the trajectory.  Both of these two analytical methods use only 

the first term in the Fourier series to approximate the radial dependence of the cavity 

voltage.   On the other hand the computer model uses the complete electric field and 

allows r/R to vary naturally.  Furthermore, the computer model accounts for the change in 

pz caused by the cavity taper (section 2.6.2).  The third column gives Vo using the 

computer model with a flat magnetic field.   Notice that the accurate electric field and 

variable pz cause significant reduction in Vo.  The fourth column uses the computer 

model, but this time a realistic magnetic field profile over the acceleration region is used 

and the beam passes through the end fields at entrance and exit.  On the surface one 

might think that the cavity voltage should be higher in this case to account for phase drift 

where the B-field is not perfectly in resonance with the rf.  However, the small additional 

energy gain, caused by the end fields at the entrance, means that the cavity voltage must 

be decreased.  Furthermore, the decreased B-field at the end of the cavity causes a slight 

increase in the axial momentum and leads to a curvature in the trajectory so that the beam 
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cannot reach full radius at exit without striking the wall at an earlier point in the cavity.  

The net effect of adding the realistic B-field over the acceleration region is to degrade the 

final energy by 6% to 45 keV.   This small loss in final energy could be regained by 

simply increasing the cavity inner radius.   The choice of magnetic field profile over the 

acceleration region is discussed on the following page.  

 

 

Table 2.   Comparison of the cavity voltage (Vo) calculated from the analytical model with that from 

the computer model.  Notice that in the computer model, the reduced axial momentum causes an 

increased number of turns.  The lower pz and accurate electric field cause a significantly lower cavity 

voltage required   

 

 Analytical 
w/ constant 

r/R 

Analytical 
w/ variable 

r/R 

Computer  
w/ flat 
B-Field 

Computer w/ 
δδδδB/Bo <<<< 0.5% 
and end fields 

Eo 6.4 keV 6.4 keV 6.4 keV 6.4 keV 
Initial  pz 1.19 MeV/c 1.19 MeV/c 1.19 MeV/c 1.21 MeV/c 
Final  pz 1.19 MeV/c 1.19 MeV/c 1.11 MeV/c 1.28 MeV/c 
Nturns 5.0 5.0 5.23 5.0 

Vo 2.16 kV 1.94 kV 1.23 kV 1.08 keV 
Efinal 48 keV 48 keV 48 keV 45 keV 
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Magnetic Field Flatness  

  At this point it is necessary to choose the magnetic field flatness over the 

acceleration region (defined in Figure 34).  Of course the smaller the field variation (δB), 

the more expensive the superconducting magnet will be.  Thus the largest B-field 

variation should be chosen which does not significantly degrade acceleration.   Magnetic 

field flatness can be chosen by considering the phase drift caused by the B-field profile 

over the acceleration region.  The analytical expression was derived in section 2.5.7.   

Since the phase drift depends on the number of turns (equation 2.87), trajectories with 

Nturns ≅  15 are used here as a worst case situation.   

  Comparing the phase drift through the acceleration region with what one would 

calculate analytically is not straight forward because, since acceleration causes phase 

bunching, the total phase change of any trajectory depends on the initial phase.  However, 

we can choose the initial phase which gives optimum acceleration (peak of the E-φo 

curve) for comparison with analytical.   

  Figure 66 shows phase vs. z for particles started at three different initial phases.   

The red, blue, and green curves (oscillating once per turn) have been calculated using the 

computer model.  Each trajectory uses the full solenoidal magnetic field (Figure 34), and 

travels through end fields, and through the acceleration region.  Vertical dotted lines 

mark the ends of the acceleration region.   Even with all effects present, acceleration does 

cause phase bunching (review Figure 43). 
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Figure 66.  Phase vs. z for trajectories started with different initial phases in the 50 keV ICRA.  The 

red, blue, and green curves use the computer model with a solenoidal B-field, cavity end fields, and 

acceleration through the magnetron.   The oscillation (once per turn) is caused by motion of the orbit 

center.   The blue oscillating curve gives optimum acceleration.   The smooth blue curve is the 

analytical calculation of phase based on equation 2.83 which assumes a centered beam and no phase 

pulling.   Vertical dotted lines represent the ends of the acceleration region.   Both blue curves have 

the same initial phase at the cavity entrance so the total phase change over the acceleration region 

can be compared. 
 

  Now consider only the two blue curves shown in Figure 66.  These two curves 

provide a comparison between the analytical calculation and the computer model (for the    

B-field profile of Figure 34).  The smooth blue curve was calculated using equation 2.83 

which assumes a centered bean and no phase pulling.   The blue curve which oscillates 

once per turn is the computer result.   These two curves start with the same phase at the 

entrance to the acceleration region so that the total phase change over the acceleration 

 region can be compared.   Table 3 below summarizes the result.   
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Table 3.  Total phase drift over the acceleration region.  Compares what we would expect  

analytically with the actual computer result (for optimum acceleration case). 

 

 ∆φ V/Vo = sin( 90°+∆φ) 
Analytical Calculation + 30° 0.87 

Computer Model - 15° 0.97 
 

 

  Based on the B-field profile only (analytically) we would expect the phase to drift 

forward, yet the computer model shows that phase bunching dominates and actually 

causes the phase to decrease.   Since the computer model gives a phase change which is 

much less than expected, the analytical result might be taken as the worst case prediction.  

However, an accurate determination of the total phase change certainly requires the full 

computer model.  

  For the 50 keV the B-field flatness was chosen to be δB < 0.5% based on the 

analytical calculation.  This choice does cause a 6% degradation in final energy (of a 

single particle trajectory) as shown in Table 2.   Yet, based on phase change alone, Figure 

66 and Table 3 indicate that this field flatness may be more stringent than was necessary.   

In fact the degradation in final energy is caused by an increase in axial momentum near 

the cavity exit.   This causes a slight increase in the axial momentum and leads to a 

curvature in the trajectory so that the beam cannot reach full radius at exit without 

striking the wall at an earlier point in the cavity.  The final design energy could be 

regained by simply increasing the inner radius of the cavity or changing the cavity slope 

 to allow for the additional curvature in the trajectory. 

  Complete magnetic field mapping results are given in section 4.1. 
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Injection Region  

  Once the magnetic field profile is known, (See Figure 81 in section 4.1) the 

trajectory through the injection region can be completely specified in terms of Nturns and 

ro/Ro at the cavity entrance.   First let’s review what we know about the conditions at the 

entrance plane 

 •  Perpendicular:   For ro = 0.41 cm   →  p⊥ o = 3.1 MeV/c        (equation 2.1) 

 •     Parallel :        For   Nturns = 5     →    p||o = 1.2 MeV/c       (equation 2.75) 

Now (r, p⊥ , p||, and ∆zturn) can be found at any axial position in the lower B-field of the 

injection region using equations 2.59, 2.60, 2.62, and 2.88.  Figure 67 shows the result. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67.   Parallel and perpendicular momentum and beam radius calculated analytically through 

the injection region. 
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Location of the Electrostatic Bend  

  We want the electrostatic bend to approach an instantaneous kick so that the 

beam turns through only a small fraction of an orbit while traversing the bend plates.             

(�eff << ∆zturn).   However, a short axial length of the bend plates requires a high Vbend.  

Moving back to a lower B-field causes a higher induced momentum spread (section 

2.5.2), but θbend is lower so Vbend will also be lower.  Furthermore, the bend plates should 

be at a convenient location (inside the magnet bore would be difficult).  At z = -12”,       

B = 0.35 Tesla , so the bend angle is only o
||

1
bend 20)pp(tan ≈=θ ⊥

−   Using equation 

2.55, with �eff = 2 cm and g = 0.8 cm, gives ½Vbend below  ±1kV.  This allows a 

convenient power supply to be used.  

 

Location of the Ion Source 

  The source should be as close as possible to the high field region in order to 

minimize the induced momentum spread.  However the ion source assembly was made of 

standard components to keep the cost low.  The minimum length for the basic 

components needed (section 3.2.3) pushed the source aperture back to 12.9” behind the 

E-static bend.  Hence, the source location is  z = -26.2” where the B-field is 0.030 Tesla.  

Equation 2.59 can be used to follow the field line back further and place the source 

aperture at a radius of r = 3.66”.   

  The proceeding discussion gives a procedure for designing an ICRA.  As 

mentioned in the beginning of this section, certain experimental realities force small 

changes in the design (see footnotes).  The final parameters for the 50 keV ICRA are 

listed in Table 4 below. 
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Table 4.  Final system parameters for a 5 turn trajectory through the 50 keV ICRA.   The values 

given here differ slightly from those in the text to account for changes made during the experiment.   

See footnotes on the previous three pages for explanation.  

 

Ion Source Aperture
Ion:  protons
z = -26.2”

B/Bo = 0.013
radial position:  r = 3.88 cm

extraction voltage Vbeam = 6.4 keV

Electrostatic Bend
z = -12.25”

B/Bo = 0.141
orbit radius:  r = 1.16 cm

p⊥ /p|| = 0.37
θbend = 20°

� = 2 cm
g = 0.8 cm

Vbend  = ~  ±700 V 

Cavity Entrance
p⊥ /p|| = 2.74

orbit radius:  r = 0.436 cm
cavity radius:  R = 0.55 cm

pz = 1.19 MeV/c 

Acceleration Region
Bo = 2.493 Tesla 

field flattness:  δB/Bo < 0.5 % 
n = 4

frf = 152 MHz
rf off:  Nturns = 5
rf on:  Nturns = 5.23

Vo = 1.08 kV
cavity length  �cav =  5 cm

g = 0.216 cm
peak cavity voltage:  Vo = 3 kV @100W input 

Cavity Exit
cavity radius:  R = 1.27 cm

orbit radius: r = 1.22 cm
Efinal = 45 keV
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  The design presented here is based purely on single particle trajectories.  

Knowledge of the accelerated beam current requires tracking many single particle 

trajectories as discussed in section 2.6.8, and also involves knowledge of the emittance of 

the beam extracted from the ion source.   Theoretical and experimental injected beam 

emittance and accelerated beam currents are presented in sections 4.5 and 4.6.  

 

 

 

 

 

 

 

 

 

 

 

3.2 Components of the System 

  We begin with an overview of the system, then the sub-sections below will cover 

each of the major components in greater detail.   Figure 68 shows a photo of the 50 keV 

ICRA.  The large blue dewar is the superconducting solenoid.  The ion source is on the 

left and the extraction end on the right.  The source is at high voltage, so it is covered 

with a clear box made of polycarbonate.  The entire system is approximately 5 feet long 

and 6 feet tall.  The vacuum turbo pump is just off the top of the photo on top of the 
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vertical tube.  The ion source can be seen more clearly in Figure 69.   In this photo the 

source is aligned with a B-field line, so the angle between the accelerator z axis and the 

source axis can be clearly seen.  Figure 70 shows a close up of the ion source and the 

vacuum junction which connects source to the rf cavity and the turbo pump.   Figure 71 

shows the extraction end of the system.  This view shows the rf cavity mounted inside the 

magnet bore.  The extraction port, which covers the far downstream end, has view ports 

for observing the accelerated beam, and a mechanical feed through on top for moving the 

radial probe (section. 3.2.5). 

 

Figure 68.   Side view of the 50 keV ICRA with the author added to give a sense of scale.  The large 

blue dewar contains the superconducting solenoid.  The ion source is on the left and the extraction 

end is on the right.  The vertical tube leads up to the vacuum turbo pump which is just off the top of 

the photo.   
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The mechanical drawing in Figure 72 shows a top view of a cross section through the    

50 keV ICRA.  The major components are labeled.  The proton beam is shown in red and 

B-field lines are shown in blue.   Figure 73 shows a side view cross section. 

 

Figure 69.  A view looking down on the ion source.  Notice the angle between the accelerator z axis 

and the source axis is because the source is aligned with a B-field line.   The motion feed through 

mounted on the left side of the junction piece (red tape around it) is used for moving the injection 

Faraday cup into the beam.   
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Figure 70.   A side view of the ion source assembly, which shows the four main components.  From 

left to right, these are: the water cooling jacket, the insulating glass break, the electrical feed 

through, and the bellows which connects the source to the vacuum junction.   The actual ion source is 

inside the water cooling jacket, and the Einzel lens can be seen through the glass break.  The 

electrostatic bend is inside the vacuum junction.  Compare this photo with the mechanical drawing of 

Figure 72.   The source is mounted on two V-blocks which are rigidly connected by an aluminum 

plate.   Pusher blocks on the sides of the V-blocks are used to adjust the position and angle of the 

source horizontally, and vertical bolts through the aluminum plate are used to adjust the position 

and angle of the source vertically.     
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Figure 71.  The extraction end of the 50 keV ICRA.  The rf  accelerating cavity (aluminum tube)  is 

mounted in the bore of the superconducting magnet  (blue).   The V-block below the cavity can be 

adjusted in order to align the rf cavity with the magnetic axis.   The extraction port covers the 

extreme downstream end of the system and contains the extraction Faraday cup and viewports for 

observing the beam.  The mechanical feedthrough on top of the extraction port is used to move the 

radial probe, in the radial direction (see Figure 73).    
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Figure 72.   Top view of a cross section through the 50 keV ICRA.  All major components are labeled, 

however the radial probe is not shown in this view (see Figure 73).  B-field lines are shown in blue 

and a trajectory is shown in red.   The magnetron section only is cut through two different planes in 

order to show the inner and outer vanes both.  Figure 76 shows this more clearly.  
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Top view cross section goes here 
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Figure 73.   Side view of a cross section through the 50 keV ICRA.  All major components are 

labeled.   B-field lines are shown in blue and a trajectory is shown in red.   The magnetron section 

only is cut through two different planes in order to show the inner and outer vanes both.  Figure 76 

shows this more clearly.  
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Side view cross section goes here 
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3.2.1 Superconducting Magnet 

  The magnet used is a superconducting solenoid made in the 1970’s by 

Intermagnetics General Corporation.  This solenoid has an 8” diameter warm bore and a 

flat field length of 5 cm for a field variation of less than 0.5%. The NbTi coil is rated at 

3.5 Tesla for 125 Amps.  However, due to the age of the solenoid, it was decided to run 

the field at 2.5 Tesla (89 Amps).   The superconducting solenoid is inside the large blue 

dewar which can be seen in Figure 68.  The 8” warm bore can be seen in Figure 71.  

Magnetic field mapping results are given in section 4.1.   The axial field profile is shown 

in Figure 81.   

 

 

 

3.2.2 Vacuum System 

  The vacuum system consists of a turbo pump, a rough pump, and the vacuum 

walls of 5 main components: the ion source, vacuum junction, vertical extension tube, the 

outer conductor of the rf cavity, and the extraction port.  The system was simplified by 

using the aluminum outer conductor of the rf cavity as a vacuum wall.  All vacuum seals 

have conflat knife edges and use OFE copper gaskets, except the two seals to the 

aluminum outer conductor of the rf cavity which use viton O-rings.  The turbo pump is 

mounted on top of the vertical extension tube (~ one meter long) so that the fan blades 

are in a magnetic field below 50 Gauss.   
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  A simple representation of the vacuum system is shown in Figure 74.  The 

system was initially designed for a throughput of Q = 10-4 Torr Liter/sec, however higher 

pressure was required in the ion source to ignite the hydrogen plasma.  Therefore,           

Q = 10-3 Torr Liter/sec is representative of actual operating conditions.  Pressure in the 

system is dominated by the gas flow into the ion source.   The poor conductance of the 

long vertical tube reduces the pumping speed from 500 L/s at the turbo pump to 85 L/s at 

the vacuum junction.  The conductance of the injection components further reduces the 

pumping speed to 30 L/s near the ion source aperture.   For conductance formulas see 

reference [17].    

  Typical operating pressure at the junction is P2 = 1(10-5) Torr and a typical 

pressure near the ion source is P3 =  3(10-5) Torr.  A calculation of the mean free path (λ), 

using the cross section (σ) for electron capture by an incident proton [26], can be 

expressed in terms of the pressure (P). 

P
metermTorr3

n
1 =
σ

=λ  

Thus, for an average pressure along the beam path of about 2(10-5) Torr, the mean free 

path is:      λ = 150 meters 

The accelerated beam in the 50 keV ICRA has a total path length (�) of 3 meters, so the 

beam lost by charge exchange with gas in the system can be estimated using:  

λ
−

=
�

eII o  

This gives: I/Io = 98 %, therefore about 2 % of the beam is lost to recombination.     
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This calculation shows that the vacuum system is marginal.  However, it is adequate for 

the purposes of the ICRA experiment.   While running the experiment, care was taken not 

to raise pressures higher than those stated here.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 74.  Simple representation of the vacuum system showing typical pressures during 

high gas load into ion source.   Conductances are calculated using formulas in [17]. 
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3.2.3 Ion Source, Einzel Lens, and Electrostatic Bend 

  This section covers all components of the injection region.  The major external 

components of the ion source assembly can be seen in Figure 70.  These are the water 

cooling jacket, the glass break, the electrical feed through, and the bellows, which 

connects the entire source assembly to the vacuum junction.  The major internal 

components can be seen in Figure 72.  The ion source itself is mounted inside the water 

cooling jacket, the Einzel lens is mounted inside the glass break, and the electrostatic 

bend is mounted inside the vacuum junction.  These three components are discussed 

below. 

 

Ion Source 

  The actual ion source is a simple electron filament source purchased from 

Colutron Research Corp.  This component includes the filament, anode, and electrical 

and gas feedthroughs.  A dc current heats the filament so that electrons are emitted. 

Electrons are then accelerated through ~ 100 volts toward the anode.  Gas is leaked in 

through the rear of the source and ionized by the electron beam.  Ions are extracted 

through a 0.020” diameter aperture in the anode.  The gas pressure inside the source 

needed to light a plasma ranges from 30 mTorr for Argon to over 1000 mTorr for pure 

Hydrogen.  The 0.020” aperture is small enough to keep high pressure in the source, yet 

allow low pressure in the beam line.  However, gas flow through the aperture is the major 

gas load to the vacuum system.     

  An electrical schematic is shown in Figure 75.  The power supplies for the 

filament and anode are isolated by an isolation transformer and floated at high voltage   
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(5 – 10kV) so that the ion source can be maintained at high voltage.   The source aperture 

(at high voltage) and the puller (at ground) are separated by a 6 mm gap.   The strong 

electric field across this gap extracts the ion beam from the source and accelerates it to 

the injection energy (qVbeam).  The glass break electrically isolates the water cooling 

jacket from the rest of the beam line which is grounded.   A clear box made of 

polycarbonate covers the water cooling jacket for safety, and a plywood and acrylic box 

covers the power supplies.   Dials on the power supplies have been replaced by long 

plastic rods so that the source can be adjusted while the beam is on.  

 

Einzel Lens  

  The Einzel Lens consists of three coaxial drift tubes called the “puller”, the “mid 

tube”, and the “exit tube”.  The tubes are held on the same axis by being trapped between 

4 ceramic rods.  The 4 ceramic rods are held in place by mounting rings at the entrance 

and the exit.  Set screws in the mounting rings allow alignment of the puller aperture with 

the source aperture.  The puller aperture is D = 0.070”, after which the inner diameter of 

all three tubes opens to D = ¼”.  All three drift tubes are electrically isolated so that the 

beam current hitting each tube can be monitored.  The mid tube is normally placed at 

high positive voltage (2-3kV) while the other two tubes are kept at ground.  Fringe fields 

in the gaps between the drift tubes focus the beam.   The focal length can be adjusted by 

adjusting the voltage of the mid tube (VEinzel).   Einzel lenses are well understood, 

therefore minimal detail is given here [27]. 
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Electrostatic Bend 

  The electrostatic bend is made of two flat copper plates separated by an 8 mm 

gap.  The bend angle for the injected beam is about 20°, therefore the bend plates are 

tilted at 10°.   See the geometry of Figure 25.  The bend plates are also rotated about the y 

(vertical) axis by 4.7 degrees so that the upstream face of the plates is perpendicular to 

the oncoming beam.  Voltage used on the bend plates is less than 800 volts each.  
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Figure 75.  Schematic of the electronics for the 50 keV ICRA. 
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Electrical Schematic goes here 
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3.2.4 RF Cavity 

  At an operating magnetic field of 2.5 Tesla, the cyclotron frequency for protons 

is 38 MHz.  Therefore, a magnetron operating at the 4th harmonic (8 gaps) would have an 

rf frequency of 152 MHz.  At this frequency a pure magnetron will not fit into the 8” 

warm bore of the superconducting solenoid because the inductors extend too far in the 

radial direction.  The solution was to replace the inductors of the pure magnetron with 

some inductance which extends in the axial direction where space is not limited.   A 

coaxial quarter wave cavity has the geometry needed to move the inductance axially.   

Therefore the vanes of the magnetron which are mostly capacitive, have been mounted 

across the open end of a coaxial section which provides the inductance needed.  The 

result is the “hybrid coaxial – magnetron cavity” shown in Figure 76. 

  The structure can be difficult to visualize.  Start by considering Figure 15 which 

shows an example of a 4 gap magnetron operating in the π mode.  Notice that in the π 

mode (frozen in time), the charge difference between each vane alternates, + − + − .  

Thus, every other vane should be connected to the inner conductor of the coaxial section, 

while the remaining half of the vanes should be connected to the outer conductor.  The 

cutaway view of Figure 76 is taken in two different planes (magnetron section only) in 

order to show a cross section through an inner vane which is electrically connected only 

to the inner conductor, and an outer vane which is electrically connected only to the outer 

conductor.   Ceramic insulators allow all vanes to be mechanically connected.  This 

configuration has one additional benefit.  While a pure magnetron is a set of coupled 

oscillators with 2n–1 possible modes of oscillation, the hybrid cavity is naturally strapped 

to allow oscillation only in the π mode.  
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  The vanes of the rf cavity were made by electron discharge machining (EDM).   

Figure 77 shows the individual components of the magnetron section.  Figure 78 shows 

the magnetron and the inner conductor and the shorting plate assembled together just 

before being inserted into the aluminum outer conductor.  Figure 79 shows a view 

looking into the fully assembled rf cavity from the extraction end. 

   The rf cavity has two coupling loops.  The large loop is for coupling power into 

the cavity, and the small loop is a pickup loop which gives a voltage signal that is 

proportional to the cavity voltage (Vo).   Inductive coupling was chosen because high B-

fields at the shorting plate are accessible but the high rf voltage end at the magnetron is at 

the center of the superconducting solenoid and so wound be difficult to access.   During 

construction of the cavity, the area of the drive loop was adjusted in order to obtain an 

impedance match with the 50Ω cables used.   The area of the pickup loop was adjusted to 

obtain an output signal in a convenient voltage range (V≤1volt).   Both final loops are 

rigid (cannot be adjusted).   Furthermore the rf cavity has no tuning mechanism.  The 

resonant frequency is fixed at 152 MHz, therefore the resonance required for acceleration 

is hit by adjusting the magnet current. 

  The rf cavity is designed to generate 3 kV across the gaps of the magnetron for 

an input power of less than 100 Watts (review section 2.4.5).  The experimental results 

are given in section 4.3.  The input rf signal is generated by a Hewlett Packard 8660B 

signal generator and then amplified by a TE Systems 1546RA rf amp.  This narrow band 

rf amplifier has an operating window from 150 – 160 MHz, and a gain of 40 dB  (100W 

output for 10mW input).   Power output of the rf amp is measured with a Bird 43 watt 

meter before going to the drive loop of the rf cavity.  The signal from the cavity pickup 
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loop is read on an oscilloscope.  This pickup voltage is then used to calculate the voltage 

across the magnetron vanes (Vo).  
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Figure 76.  A cutaway view of the rf cavity.  Notice that in the magnetron section only, the cross 

section has been taken through two different planes in order to show a cross section through an inner 

vane and an outer vane both.  
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Cut away view of rf cavity goes here 
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Figure 77.  Components of the magnetron section before assembly. 
 

 
Figure 78.  Components of the hybrid rf cavity.  Here the magnetron is assembled.  The magnetron, 

inner conductor, and shorting plate (all made of copper) are about to be inserted into the aluminum 

outer conductor.  
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Figure 79.  A view of the fully assembled rf cavity looking into the extraction end.  The 8 tapered 

magnetron vanes of the acceleration section can be seen inside the ID of the exit mounting ring. 

 

3.2.5 Beam Diagnostics 

  Beam diagnostics are the tools used to determine the location of the beam and 

make measurements of the beam.  This section will discuss the three main beam 

diagnostics used.  These are: the injection Faraday cup, the radial probe, and the 

extraction Faraday cup (below).    

  Other diagnostics include the bend plates and an aperture on the downstream side 

of the bend plates.  The top and bottom bend plates and the aperture are all 3 electrically 

isolated so that the beam current hitting them can be monitored.   Furthermore, the top 

and bottom bend plates and the aperture all have phosphor coating (KBr).  This is used to 

determine visually if the beam is too high, or too low, or too far left, or too far right.    
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  What follows is a description of the three main diagnostic tools mentioned 

above.  The three most important characteristics of each tool are summarized in Table 5.   

 

Table 5.  A summary of the basic characteristics of each of the 3 main beam diagnostics. 

 

 Electrically 
Isolated 

Phosphor 
Coating 

 
Moveable 

Injection F.C. yes yes yes 
Radial Probe yes - yes 

Extraction F.C. yes yes - 
 

 

Injection Faraday Cup and Viewer 

  The injection Faraday cup is an aluminum plate that is mounted on a motion feed 

through.  It is electrically isolated so that the beam current hitting it can be measured, and 

it has a phosphor coating (KBr) which allows an image of the beam to be seen.   The 

injection Faraday cup can be moved into the beam at a point immediately upstream of the 

electrostatic bend.   It is shown in two positions on Figure 72.   This tool is useful for 

aligning the ion source with a B-field line.  Since the beam actually contains 3 different 

ion species, a misalignment with the B-field causes the beam to split, so that three 

separate beam spots are seen on the injection Faraday cup.  By adjusting the angle of the 

ion source, the three beam spots can be brought together at one point.   (In section 4.5.5 

we will see that the computer model shows that the point at which the three beams come 
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together is actually about 0.5° away from a B-field line.  However, this condition is 

reproducible, and therefore it is useful.)  

 

Radial Probe 

  The radial probe is a Faraday cup which can be moved radially into the extracted 

beam.   Geometry of the radial probe is shown in Figure 73.  The mechanical feedthrough 

which moves the probe can be seen in the photo of Figure 71.   The radial probe is used 

to measure the radial distribution of the accelerated beam (beam current vs. radius).   

Recall that the extracted beam is a rotating cylinder of ions all centered around the z axis 

but orbiting at different radii because they have different energies (E ∝  r2 ).  The energy 

distribution obtained from the computer model was shown in Figure 63.  The radial probe 

is designed for experimental measurement of this same curve so that a comparison 

between theory and experiment can be made (see section 4.6.1). 

  The radial probe has an electron blocker mounted along the upstream edge which 

prevents electrons from reaching the Faraday cup portion of the probe.  The electron 

blocker works on the fact that electrons orbit around B-field lines at such a small radius 

that r can be neglected (~ 0.1 mm).  Hence, electrons effectively move along magnetic 

field lines and therefore the electron blocker casts a shadow that electrons cannot reach.  

The Faraday cup resides in this electron shadow.   However, protons orbit at much larger 

radius (r ≤ 2cm), and therefore can pass behind the e- blocker and strike the Faraday cup.  

A small portion of the proton beam does strike the electron blocker.   This effect on radial 

probe data will be accounted for with a mathematical correction.  
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  Figure 73 shows that the inner edge of the radial probe is sloped (dy/dz).  Since 

the proton beam in the extraction region follows B-field lines (section 2.5.2), and since 

the radial probe has some axial length (∆z), the slope of the inner edge of the probe must 

match the local field line in order for the current at any single energy to be measured 

correctly.  However, field lines at large radius have a steep slope, while the slope goes to 

zero at the z axis.  Therefore, the radial probe has the correct slope only for one energy.  

This was chosen to be the full accelerated beam energy (50 keV).  Measurements at any 

lower energies will require a mathematical correction. 

  Finally, for some conditions, the radial probe is not long enough in the axial 

direction to catch all of the beam (see section 2.5.8).  This will require a third 

mathematical correction.  These three mathematical corrections to the radial probe data 

are discussed in section 4.6.1 and details are given in Appendix A.  

 

Extraction Faraday Cup and Viewer  

  The extraction Faraday cup is a round aluminum plate that is mounted at the far 

downstream end of the 50 keV ICRA.  See Figure 72.   It is electrically isolated for 

measurement of beam current, but more importantly it has a phosphor coating (KBr) 

which allows an image of the beam to be seen through a viewport.  The information 

obtained from visualizing the beam on the extraction Faraday cup has been instrumental 

in understanding much of the behavior of the beam in the ICRA.  The extraction Faraday 

cup allows measurement of the beam arc length (section 2.6.7 and 4.5.4), it is useful for 

understanding the ion spectrum (section 2.5.4 and 4.5.1) and it provided proof that the 

accelerated beam consists of ions orbiting around the z axis at large radius (section 4.6.1). 
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3.2.6 Mounting Structure 

  The purpose of the mounting structure is to hold all components in place and 

allow adjustments so that the components can be aligned relative to each other.   

Alignment consists of the following four criteria. 

 •  The axis of the rf cavity must coincide with the magnetic axis.   

 •  The magnetron must be in the center of the magnet axially so that the  

  acceleration region is in the region of flattest B-field.        

 •  The ion source must be at the correct location relative to the rf cavity so that the 

   spiraling beam will be centered (x,y) when entering the rf cavity.    

 •  The axis of the ion source should be aligned with the local B-field line. 

 

  Four pivot points were chosen which satisfy these criteria and yet can be 

implemented in a simple structure.  The rf cavity and the vacuum junction (contains the 

bend plates) are connected together as one rigid piece.  The entire ion source assembly is 

also one rigid piece.  However, a bellows between the source and the vacuum junction 

allows the ion source to move relative to the rf cavity and the electrostatic bend.  The rf 

cavity/junction assembly has a pivot point at each end.  Similarly, the ion source 

assembly has a pivot point at each end.  All four pivot points allow vertical and 

horizontal motion.  The location of each pivot point is shown in Figure 80.    Notice that 

one pivot point is located at the exit of the Einzel lens and another pivot point is located 

at the electrostatic bend.  This allows these two points to be held stationary while the 

other end of a component is moved.  Pusher blocks are used for horizontal motion and 

threaded rod is used for vertical motion.  Examples can be seen in Figure 70 and 71.   



 

 167

 

 

Figure 80.   Pivot points of the mounting structure 
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4.  EXPERIMENTAL RESULTS  
 

  The major components of the 50 keV ICRA were assembled and aligned during 

December of 1998.  Accelerated beam was first obtained in January of 1999.   This 

chapter covers the experimental results and discusses comparisons with the theory.   

Section 4.1 summarizes the results of mapping the magnetic field of the superconducting 

solenoid.   Section 4.2 covers the ion source.   Section 4.3 covers the rf cavity 

experimental methods (4.3.1) and has a separate summary of results section (4.3.2).   

Finally, the beam measurements are divided into two sections.   Section 4.4 covers 

measurements of the injected beam (rf off), and section 4.5 covers measurements of the 

accelerated beam (rf on).   
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4.1 Magnet Mapping 

  It was necessary to map the magnetic field of the superconducting magnet before 

the design of the 50 keV ICRA could be finalized.  This section gives a summary of the 

magnetic field mapping results.    

 

  The purpose of mapping the magnetic field was to accomplish four main goals.   

1) Locate the magnetic axis of the magnet.   

The magnet coil is mounted inside the dewar, but is not necessarily coaxial with the 

dewar bore. 

2) Locate the axial position of the magnetic center.    

The magnetron should be placed at the correct axial location which provides the 

flattest magnetic field over the length of the acceleration region. 

3) Obtain the full axial magnetic field profile.    

The field profile is needed to calculate the trajectory, and choose locations for the 

ion source and electrostatic bend.   The axial field profile also provides all 

information needed to calculate B-field arrays for the computer model.   

4) Determine the flat field length for ∆∆∆∆B/Bo = -0.5 %.    

The resonance condition requires that the axial length of the acceleration region be 

limited to this flat field length. 

 

  The magnetic field was mapped using a two-axis Hall probe (Bz, Br).  The Hall 

probe is mounted inside an acrylic tube, and two mounting rings hold the acrylic tube 
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inside the magnet bore.  The Hall probe can be mounted at several discrete radial 

positions inside the acrylic tube, and the mounting rings allow the acrylic tube to move 

azimuthally and axially relative to the dewar.  Therefore, the mapping apparatus provides 

motion of the Hall probe in all three dimensions of the cylindrical coordinate system of 

the acrylic tube (r, θ, z).  Position errors are estimated to be less than 1 mm (0.040”).  

Furthermore, the two mounting rings which hold the acrylic tube inside the magnet bore 

are adjustable.  This allows the position of the entire mapping apparatus to be adjusted 

relative to the magnet bore until the mapper axis is aligned with the magnetic axis.   

  The magnetic axis was located by scanning Br and Bz vs. θ for several different z 

planes, and then adjusting the position of the mapper until a location was found which 

gives minimal azimuthal variation in the field.   Table 6 below gives the location of the 

magnetic axis relative to the magnet bore. 

 

Table 6.    Two points on the magnetic axis (relative to the axis of the magnet bore).  Azimuthal 

variation for all z planes is less than 0.15% of the central field value (Bo = 2.5T). 

at  z = +8.25” at  z = -8.25” 
x =  +0.064”  x = +0.046”  
y = -0.186”  y = -0.119”  

 

  The location of the axial center was calculated from three different field profiles.   

The average is zcenter = + 0.35”, with a standard deviation of 0.02”.   Figure 81 shows the 

full magnetic field profile which has been centered in z and normalized to the central 

field value.   Figure 82 below shows the measured B-field over the central field region.  
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A parabola has been fit to the data so that the flat field length can be calculated.   The flat 

field length is 5.3 cm for ∆B/Bo < 0.5%. 

 

 

 

 

 

 

 

 

Figure 81.   Measured axial magnetic field at r = 0.   Data has been centered axially and normalized.  

Figure 82.   Measured axial magnetic field in the acceleration region.  The smooth line is a parabolic 

curve fit to the data.   The flat field length for ∆∆∆∆B/Bo < 0.5% is 2.1 inches = 5.3 cm 
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4.2 Ion Source 

  The design of the ion source was discussed in section 3.2.3.   The filament 

supplies electrons which ionize the gas inside the source, however significant ion beam 

current is extracted only when the source pressure becomes high enough to ignite a 

plasma.  The pressure at which a plasma will ignite depends on the properties of the 

particular gas used.   Pure Argon will ignite with gas pressure inside the source as low as 

40 mTorr.  However, pure H2 gas requires about 2000 mTorr.  In order to keep pressure 

in the rest of the vacuum system below 10-5 Torr it was necessary to use Argon as a 

support gas.  This combination of H2+Ar allows a reasonable proton beam with a source 

pressure of 500 mTorr.  

  With pure Argon in the source, a beam of up to 10 µA can be extracted.  

However, with pure H2 gas in the source, the majority of the beam is H2
+, and only a 

small fraction is H+.   This small fraction of H+ produced is exacerbated by the pressure 

limitations explained above.   Between these two effects, a typical beam used for 

measurements in the 50 keV ICRA contains only about 5 – 50 nA of protons, rather than 

the 1 - 10 µA originally expected.   Table 7 shows typical beam currents for the ion 

source running in this H2+Ar mode.  Section 4.5.1 explains the ion spectrum in greater 

detail.       

Table 7.   

Approximate beam currents of each constituent in typical beams used in the 50 keV ICRA. 

Ion Beam Current 
Ar+ 1 – 10 µA 
H2

+ 50 –500 nA 
H+ 5 – 50 nA 
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  Operating the ion source in a magnetic field creates many concerns such as:  the 

ability to ignite a plasma, and to extract a beam from the source, the performance of the 

Einzel lens, etc.  The magnetic field at the source is about 300 Gauss.  However, 

electrons in the source are pulled along the z axis of the source, and the source is aligned 

with the local magnetic field.   Experimental results show that operating the source in this 

magnetic field is not a problem.   In fact the beam appeared to be more stable with the B-

field on, than with the B-field off.   Furthermore, the Einzel lens provided a wide range of 

focusing capability and whether the B-field was on or off caused no discernable change 

in performance. 

  A major disadvantage of this particular source design is that each filament only 

lasts for about 50 - 100 hours, and replacing a filament requires complete disassembly of 

the source.  After replacing the filament, re-assembly of the source requires re-alignment 

of the Einzel Lens and connection to the ICRA vacuum system.    
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4.3 RF Cavity 

  The purpose of the rf cavity measurements is to determine the gap voltage (Vo) 

for a given input power (Pin).   The rf cavity is a hybrid magnetron / coaxial cavity.  The 

design was discussed in section 3.2.4 and a drawing of a cross section through the cavity 

was shown in Figure 76.  The theory was explained in section 2.4.5.  Section 4.3.1 covers 

the rf measurement techniques used, and presents the experimental results.  A summary 

of the results is given in section 4.3.2. 

 

4.3.1 Experimental Methods 

  The rf cavity gap voltage (Vo)* cannot be measured by attaching a probe directly 

across the open end of the cavity because any measurement, which couples significant 

power out of the cavity, changes the power loss and results in an incorrect measurement 

of Vo.   Even when using probes with impedance as high as 1 MΩ and capacitance as low 

as 1.5 pF, the additional capacitance increases the losses in the cavity and gives an 

erroneous measurement.  

 

 

 

 

 

 

* A pure magnetron would have Vgap = 2Vo.  However the hybrid cavity has Vgap = Vo. 
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  The method used here is to determine Vo indirectly by two independent low 

power methods.  Recall from section 2.4.5 that the power loss (P) can be expressed in 

terms of the shunt resistance (Rs):  

                 
s

2
o

R2
V

P =     (4.1) 

Where:    
)CC(f2

Q
C
LQR

mo
s +π

==
�

  (4.2) 

If Rs is known, then the cavity voltage is known for a given input power.   

 

  Method 1 is to measure Q, fo, and the capacitance of the magnetron section (Cm), 

then calculate the capacitance of the coaxial section (C
�
).  From these, Rs can be 

calculated so that Vo is known for a given input power.  The results of method 1 are 

summarized in Table 8 below. 

 

  Method 2 is a calibration of the pickup and drive loops.  Rather than driving the 

cavity from the drive loop and attempting to measure Vo across the open end.  The cavity 

is driven from the open end so that Vo is known, and the voltage at the drive loop is 

measured.   The results of method 2 are summarized in Table 9. 
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Method 1 (Measurement of Cavity Parameters) 

  If the shunt resistance (Rs) is known, equation 4.1 can be used to calculate the 

cavity voltage (Vo) for a given input power (P).   The shunt resistance can be calculated 

from Q, L, and C.  However, the inductance (L) is difficult to measure, while the resonant 

frequency (fo) is easy to measure.  Therefore, it is convenient to express Rs in terms of Q, 

fo and the capacitance. 

)CC(f2
Q

C
LQ

Q
R

QR
mo

s
s +π

==�
�

�
�
�

�=
�

 

  The inner and outer vanes of the magnetron are electrically isolated, therefore the 

capacitance of the magnetron section (Cm) can be measured with a simple capacitance 

meter.  On the other hand, the capacitance of the coaxial section (C
�
) must be calculated 

using equation 2.28, which accounts for a sin(z) voltage profile along the length of the 

coaxial section (�).  The resonant frequency is easily found as the peak in the 

transmission curve on a network analyzer.  However, accurate measurement of the Q 

takes more care.   

 

Measurement of the Unloaded Q 

  Measurements of the Q were made using a Hewlett Packard 8714C network 

analyzer (NWA).  A brief account of the method is given here.  The signal generator 

inside the NWA scans over frequency and the output signal is transmitted through the rf 

cavity in order to obtain a frequency response curve for the cavity.  The Q is then 
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calculated from the peak in the transmission curve using Q = fo/∆f, where fo is the center 

frequency of the peak and ∆f is the full width at half of the maximum power.  

  The Q must be calculated from a peak in the transmitted signal, not from the dip 

in the reflected signal.  The reason for this becomes obvious if one considers the meaning 

of each curve.  A dip in the reflection curve means that power was sent toward the cavity, 

but did not return to the NWA for whatever reason.  On the other hand the peak in a 

transmission curve means that power was successfully coupled into the cavity which 

excited rf fields in the cavity, then a small portion of that signal was coupled out by the 

pickup probe and transmitted back to the NWA.  Obviously a transmission measurement 

is representative of the actual frequency response of the rf cavity, but a reflection curve is 

not necessarily.  

  Obtaining a true transmission curve also depends on placement of the drive and 

pickup probes inside the cavity.  The purpose of the pickup probe is to obtain a voltage 

which is proportional to the cavity fields.  Therefore it is important that the pickup probe 

be located far enough away from the drive probe that it couples only to the cavity fields 

but does not couple any power from evanescent waves emitted directly from the drive 

probe.     

  The actual Q of the resonant cavity (defined in equation 2.30) is called the 

“unloaded Q” or Qo.  If any power is coupled into or out of the cavity then the cavity 

becomes loaded and the measured Q will be less than Qo.  In other words the loaded Q is 

always less than the unloaded Q (QL < Qo).   Since measurement of the Q requires 

transmitting rf power through the cavity, it is not possible to measure the true Qo.  

However, the measured Q (Qm) does approach Qo asymptotically as coupling to the 
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cavity becomes very weak.  For the specific case that the drive loop is matched to the 

input line (no reflection, so all power flows into the cavity) the half power theorem says 

that ½ of the power will be dissipated in the cavity and ½ of the power will be dissipated 

in the external circuit.  In this case the measured Q is ½ of the unloaded Q  [16]. 

2
Q

Q o
m =  

In order to confirm that the Q is being measured correctly, transmission curves should be 

taken for both a matched condition and for a weakly coupled condition.  If the ratio of 

these two Q measurements approaches 2, then the correct Qo has been found.   

  Figure 83 shows a schematic drawing of two experimental conditions used for 

measurement of Q.  In the matched state the drive loop is matched to the 50 Ω 

characteristic impedance of the input coaxial line so that all power from the NWA flows 

into the cavity.  In this state, the measured Q is ½ Qo.   In the unloaded state power is 

weakly coupled into the cavity through an additional capacitive probe near the open end 

of the cavity.   This probe is adjusted for a poor match (majority of incident power is 

reflected back to the NWA).   “Weakly coupled” means that a negligible amount of rf 

power is coupled into and out of the cavity.  A factor of 1000 at both the input and output 

was found to be sufficient.  In this case –40 dB at input and –40 dB at output gave a 

transmitted signal below –80 dB down from the input.  The frequency response curve for 

the hybrid rf cavity is shown in Figure 84.   
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Figure 83.  Schematic drawing of the experimental setup for measurement of Q. 

The matched state is the condition used when running the cavity at full power and accelerating beam. 

However, measured Q approaches the true unloaded Q only in the unloaded state.  

 

 

 

 

 

   

 

 



 

 180

 

Figure 84.  Transmission frequency response curves used for measurement of the Q.   

The matched state (top) gives fo/∆∆∆∆f = 802, and the unloaded state (bottom) gives fo/∆∆∆∆f = 1550 

151.8 151.9 152.0 152.1 152.2
-45

-44

-43

-42

-41

-40

-39

-38

-37

-36

Frequency (MHz)

Tr
an

sm
itt

ed
 P

ow
er

 (d
B

)

151.8 151.9 152.0 152.1 152.2
-100
-99

-98

-97
-96

-95

-94
-93

-92

-91

-90
-89

-88

-87
-86

Frequency (MHz)

Tr
an

sm
itt

ed
 P

ow
er

 (d
B

)



 

 181

  The measured Q of the hybrid rf cavity is Q ≅  1600.   Therefore, calculation of Rs 

gives 41,400 kΩ, and the cavity voltage for 100 input power is Vo = 2880 V.   The results 

of method 1 are given in Table 8 below.  

 

 

Table 8.  Results of method 1:  Parameters for the hybrid rf cavity. 

Inner conductor radius:  a = ½ (0.75”) = 0.95 cm 
Outer conductor radius:  b = ½ (4.5”) = 5.72 cm 

Length of coaxial section:  � =  9.7 cm 

Capacitance of coaxial section:  C
�
 = 1.5 pF 

Capacitance of magnetron section:  Cm = 39 pF 
Resonant frequency:  fo = 152.02 MHz 

Rs/Q = 25.85 Ω 
Quality factor:  Q = 1600 

Shunt resistance:  Rs = 41,400 Ω 
Gap voltage (for Pin = 100W):  Vo = 2,880 V 
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Method 2 (Calibration of Drive and Pickup Loops) 

  As in method 1, the purpose here is to determine the gap voltage Vo for a given 

input power.  The calibration technique of method 2 provides two important 

measurements.   First, the ratio of gap voltage to pickup voltage (Vo/V2) is measured.  

This calibration factor allows Vo to be determined from the pickup voltage while the rf 

cavity is running at full power.   Second, the ratio of gap voltage to drive voltage (Vo/V1) 

is measured.  This allows the shunt resistance (Rs) to be calculated and therefore is useful 

for confirming Vo that was calculated by method 1.  

  The three experimental conditions used for the calibration method are shown in 

Figure 85.   The matched state is the same configuration that the cavity will run in when 

accelerating the beam.   In this state, the drive loop is matched to the input line so that the 

impedance of the cavity looks like 50 Ω and all power flows into the cavity without being 

reflected.   The pickup loop couples to the cavity fields and provides a small voltage 

signal which is proportional to Vo.  In the forced state, a probe is attached directly across 

the open end of the cavity so that Vo can be forced to a known value.  In this state either 

the drive voltage (V1) or the pickup voltage (V2) can be measured to obtain ratios (Vo/V1) 

and (Vo/V2).  

The three configurations in Figure 85 are used to measure three voltage ratios: 

   (V1/V2) in the matched state 

   (Vo/V2) in the forced state (for the pickup voltage) 

   (Vo/V1) in the forced state (for the drive voltage) 
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Figure 85.  Experimental setup for the calibration of method 2.   

V is a voltage at a probe, and Vʹ ʹ ʹ ʹ is a voltage at the end of a cable. 

 

 

  Voltage ratios are determined from power ratios measured with the network 

analyzer, therefore care must be taken to insure that the power can be related to the 

voltage on the line (i.e. no standing waves).   For example, in the matched state, the 
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voltage at the input loop is known only if the drive loop is matched to the 50 Ω 

characteristic impedance of the input cable.  In that case the voltage is related to the input 

power by: 
)50(2

V
P

2
1

1 Ω
= .    Now consider the forced state for measuring Vo/V2 as shown 

in Figure 85.   The 50 Ω resistor across the open end of the cavity insures that no 

reflections occur and allows Vo to be related to the input power (Po) by: 

)50(2
V

P
2
o

o Ω
=  

Since power coupled out by the pickup loop (P2) is sent to the transmission port of the 

NWA, P2 and V2 are related in the same way.  

)50(2
V

P
2
2

2 Ω
=  

Under these conditions the voltage ratio can be calculated directly from the power ratio. 

2

o

2

o
P
P

V
V

=   

where the power ratio is measured with the NWA in dB.   Similarly for the drive ratio 

(Vo/V1).   The three measured voltage ratios (after correcting for cable losses) are given 

in Table 9 at the end of this section. 

  When running the accelerator, the cavity will be run in the matched state, 

therefore we would like to equate 
2

o
V
V

 measured in the forced state with the actual 
2

o
V
V

 in 

the matched state. However, before making this assumption we must check that the 

measurements in the forced state did not alter the field profile in the cavity.  If the field 
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profile is unchanged, then the drive to pickup voltage ratio (V1/V2) measured in each 

state should agree: 

    
state
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�    (4.3) 

For actual measurements made on the hybrid rf cavity: 

the left hand side gives: 0.58
2.31

1810
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and the right hand side gives:   4.60
V
V
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1 =�
�

�
�
�

�  

The error between these two ratios is 4%, which indicates that measurements in the 

forced state give good agreement with the actual voltage ratios in the matched state.  

 

Thus we can equate:   
state
forced2

o

state
matched2

o
V
V

V
V

=  

and :      
state
forced1

o

state
matched1

o
V
V

V
V

=  

This allows two important conclusions.  

 

1)  The first equation allows us to calculate the gap voltage from the pickup voltage when 

the cavity is running in the matched state.  The measured value of 
state
forced2

o
V
V

 is 1810, 

therefore:    2o V1810V =     (4.4) 
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2)  The second equation allows us to calculate Rs and Vo and therefore make a 

comparison with the results of method 1.   If the drive loop is matched to 50 Ω so that no 

reflections occur, then the power on the input cable is equal to the power which flows 

into the cavity.  

cavityline PP =  

Relating power to voltage in the matched state gives: 

s

2
o

2
1

R2
V

)50(2
V =

Ω
 

 so that:          
2

1

o
s V

V
50R �

�

�
�
�

�Ω=     (4.5) 

The measured value of 
forced1

o
V
V

is 31.2 therefore: 

Ω= 700,48R s  

The shunt resistance allows us to calculate the cavity voltage for a given input power 

using equation 4.1.   Results of calibration measurements using method 2 are summarized 

in Table 9.    

 

Table 9.  Three voltage ratios measured by the low power calibration method. 

Matched State:  V1/V2 = 60.4 
Forced State:  Vo/V1 = 31.2 
Forced State:  Vo/V2 = 1810 
Shunt resistance:  Rs = 48,700 Ω 

Gap voltage (Pin = 100W):  Vo = 3,120 V 
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Comparison Between Methods 1 and 2 

  The rf cavity voltage has been indirectly measured by two independent low power 

methods.    The error in Vo between the two methods is 8%.   Table 10 below gives a 

comparison of the results.  The cavity voltage will be calculated using the average 

between these two methods.  

 

Table 10.   Comparison between low power measurements made by method 1 and method 2. 

Low Power RF Measurements 
Method 1 Method 2 Average 

Vo/V2 = 1670 1810 1740 
Vo/V1 =  31.2  
Rs/Q = 25.85 Ω   

Q = 1600   
Rs = 41,400 Ω 48,700 Ω 45,050 Ω 

(for Pin=100W)   Vo = 2,880 V 3,120 V 3000 V 
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High Power Measurements 

  The two measurement techniques above both use low power signals from a 

network analyzer.   When running the cavity at high power, conditions may change due 

to rf heating.   High power measurements also include errors due to the calibration of the 

Bird Watt Meter used to measure P1, and the oscilloscope used to measure V2.  When 

using high power, the cavity is run only in the matched state, therefore the ratio V1/V2 is 

used to make a comparison between high power and low power measurements.   

High power measurements in the matched state give:   2.62
V
V

Power
High2

1 =�
�

�
�
�

�  

The low power matched state results were found previously:  4.60
V
V

Power
Low2

1 =�
�

�
�
�

�   

The error between low power and high power is 3 %.   Since the uncertainty in the low 

power measurement is greater than 3%, this is considered good agreement.   Therefore, 

the low power measurements summarized in Table 10 will be used to calculate Vo from 

the measured pickup voltage (V2).   

  Finally, it is important to note that while running the cavity at full power, only the 

pickup voltage should be used to determine Vo.   In cases such as multipactoring, or if the 

cavity develops an arc, or even if the input signal is off resonance, then losses in the 

cavity will increase causing a mismatch at the drive loop, therefore some input power 

will be reflected.   In such cases, the gap voltage is not proportional to the drive voltage.  

However since the pickup voltage couples power only from the actual cavity fields, V2 is 

always a reliable indicator of the cavity gap voltage   

 



 

 189

4.3.2 Summary of RF Measurements 

  Section 4.3.1 covered the experimental methods used to determine the cavity gap 

voltage (Vo) by two independent methods.   In method 1 measurements were made of the 

quality factor (Q), the resonant frequency (fo), and the capacitance of the magnetron 

section (Cm), then the capacitance of the coaxial section (C
�
) was calculated.  From these, 

Rs was calculated using equation 4.2, so that Vo is known for a given input power 

(equation 4.1).    Method 2 is a calibration of the pickup and drive loops.   The cavity is 

driven from the open end so that Vo is known, then the voltages at the drive loop (V1) and 

the pickup loop (V2) are measured.  Measurement of (Vo/V1) allows us to calculate Rs for 

comparison with method 1 (equation 4.5).   Measurement of (Vo/V2) allows us to 

calculate the gap voltage from the pickup voltage when operating the accelerator.  The 

error in Vo between these two low power measurements is 8 %.   

  High power measurements include additional errors due to rf heating and 

calibration of the Bird Watt meter and the oscilloscope.   The error between high power 

measurements and low power measurements is 3%.  This is good agreement, therefore 

the average between the two low power results will be used to calculate the gap voltage 

(Vo) from the pickup voltage (V2) during the 50 keV ICRA experiment.   Final rf results 

are summarized in Table 11 below.  

 

Table 11.   Summary of rf cavity measurements. 

fo = 152.02 MHz 
Vo/V2 = 1740  

Rs = 45,050 Ω 
(for Pin=100W)   Vo = 3000 V 
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4.4 Alignment 

  Alignment of the 50 keV ICRA was done in two phases.   

1)  During the initial assembly, all major components of the ICRA were aligned 

according to design specifications.   

2)  Later, the alignment was adjusted based on measurements of the injected beam.   

A brief description of each process is given below. 

 

Alignment to Design Specifications 

  The mounting structure discussed in section 3.2.6 has four pivot points which 

allow vertical and horizontal motion for positioning the major components (review 

Figure 80).  The rf cavity was aligned with the magnetic axis and centered axially based 

on the magnetic field mapping results.   A surveying scope was then aligned along the 

axis of the rf cavity by viewing center marks at each end.  The scope provided a reference 

so that each component could be located relative to the magnetic axis.  The surface of the 

lower ion source table (Figure 70) was shimmed to be level with the magnetic axis.        

A dial indicator standing on this table was used to level the electrostatic bending plates.   

Cross hairs were attached to the bend plates and the bend was shimmed to meet the z axis 

by sighting through the scope.   Next, a square standing up on the table surface was 

viewed through the scope and a line was marked on the table directly below the z axis.   

From this reference line, the angled position of the ion source was plotted on the surface 

of the lower table, and the upper table of the ion source was aligned with the lines below.  

Position errors for this alignment process are estimated to be less than 1 mm.  
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Alignment Based on Beam Measurements 

  The design alignment was sufficient for the injected beam to pass through the 

entire system, however the alignment was improved by making small position 

adjustments based on beam measurements.  The improved alignment is based on two 

criterion: 

 •   The ion source should be aligned with the local magnetic field line. 

 •   The proton beam orbit should be centered on the axis of the accelerating cavity.  

 

  The injected beam contains three different ion species and each ion has a different 

radius of curvature in the B-field.  If the beam extracted from the ion source is parallel 

with the B-field, then the Bv
�

� ×  force is zero and all ions move together in a straight line.  

However, a misalignment with the B-field causes the beam to split so that three separate 

beam spots are visible on the injection Faraday cup.   By adjusting the angle of the ion 

source, these three beam spots were brought together into a single beam spot with a 

diameter of about 1 mm. 

  Later, computer modeling revealed that even when the beam is extracted directly 

along a field line, the curvature of the field line causes separation before the beam 

reaches the injection Faraday cup.  The alignment which brings all 3 beam spots together 

on the injection Faraday cup is actually 0.5° off from parallel with the B-field line.   

Since all experimental data was taken using this condition, the same alignment has been 

used in the computer code.  
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  The rf cavity was centered around the H+ beam by moving the extraction end of 

the entire rf cavity vertically and horizontally until the beam clips at the entrance plane of 

the magnetron (review pivot points Figure 80).  The bend voltage is increased until the 

proton beam is just below mirroring so that there is zero axial spacing between turns.  

The entrance to the magnetron is the narrowest aperture in the system.  When the beam 

clips there, the image observed on the extraction Faraday cup disappears.  The process 

can be described as: up, down, move to center, then left, right, move to center.  The result 

is to center the entrance of the magnetron around the proton orbit, as shown in Figure 86.   

The smallest resolution in the motion of the magnetron is 0.004”, which is less than 1% 

of the entrance diameter (0.433”).  Alignment data also provides a measurement of the 

beam orbit radius (see section 4.5.3) 

  The disadvantage of this method is that since the extraction end of the cavity is 

moved but the injection end is not, the final position of the cavity may be at some small 

angle to the magnetic axis.  For the 50 keV ICRA the magnetron entrance was displaced 

by 0.063” which creates an angle of 5 mrad or 0.3°.   This angle effectively causes a 2% 

degradation in the exit radius of the magnetron which corresponds to a 4% degradation in 

the final beam energy.  A more complicated procedure can be imagined in which the 

injection end and the extraction end are both moved iteratively in order to center the 

cavity vertically and horizontally, while simultaneously keeping the cavity aligned with 

the magnetic axis.  This procedure was not attempted because the degradation in final 

accelerated beam energy was considered insignificant.  
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4.5 Measurements of the Injected Beam 

  The remainder of this chapter covers beam measurements made on the 50 keV 

ICRA experiment.   In this section the goal is to understand the injected beam therefore 

the accelerating rf voltage is off in all cases.   Beam measurements with rf on are covered 

in section 4.6.   

  The ion spectrum of the injected beam is studied in section 4.5.1.   This is 

important so that only the proton beam is injected into the acceleration region because 

other ions can obscure measurements of the accelerated beam in section 4.6.   Section 

4.5.2 shows several measurements of the proton beam orbit radius which verify that the 

correct beam has been injected.   Section 4.5.3 shows measured mirror curves which can 

be used to determine the spread in the axial momentum of the beam.  4.5.4 covers the 

methods used to determine the axial momentum and number of turns through the 

acceleration region.   In section 4.5.5 the mirror curve and arc lengths are each used to 

estimate the emittance of the injected beam.  These two estimates are used to place 

bounds on the emittance of the injected beam that will be used for computer simulation of 

the accelerated beam in section 4.6. 
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4.5.1 Ion Spectrum 

  The purpose of studying the ion spectrum of the injected beam is so that we can 

block all ions from entrance into the acceleration region except the proton (H+) beam.  

This is necessary so that extraneous beams do not obscure measurements of the 

accelerated proton beam made later in section 4.6.   This section begins with a summary 

of the results, then each Figure is discussed in greater detail below.   

 

Summary 

  The full ion spectrum (Figure 87) gives only rough agreement with the theoretical 

calculations because it is plagued with many complexities that are not accounted for by 

the theory.  Results indicate that ions produced by the source are probably Ar+, H2
+, and 

H+, however we cannot draw any definite conclusions.   These three ions are also 

observed visually as three distinct rings on the phosphor screen at the extraction end of 

the system (Figure 88).  Visual observations of the beam are more reliable because they 

allow the user to see exactly when each ion beam clips.  The technique used was to 

increase the bending voltage until all ion beams have clipped except the innermost proton 

beam (see Figure 86).   Later in section 4.5.2, measurements of the beam radius are used 

to confirm that this is the proton beam.  Figure 89 shows a comparison between the visual 

observations and an ion spectrum taken with the radial probe.  This Figure is important 

because it allows us to identify at what bending voltage the H2
+ clips and where the 

mirror curve begins.   The mirror curve is covered in section 4.5.3 
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Current vs. Bending Voltage 

  Recall that both Argon and H2 gas are leaked into the ion source (section 4.2).  

Therefore, the most likely constituents in the ion beam are: Ar+, Ar+2, Ar+3…  and the 

ionized molecules: H+, H2
+, and H3

+.   However, other common ions such as C+, N+, O+, 

CO+, CO2
+, H2O+ and others are also possible.  

  As explained in section 2.5.4, ions with different charge or mass will have a 

different momentum, and therefore will orbit with different radius in the magnetic field.   

According to equation 2.72 the radius of each ion orbit is proportional to the root of its 

mass to charge ratio: 

q
mr ∝  

Protons have the highest q/m available and therefore will have the smallest orbit radius of 

all constituents in the beam.   As the bending voltage is increased, the radius of all ion 

beams increases until the outer beams clip on the entrance aperture of the magnetron.  

Figure 86 shows the geometry.  
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Figure 86.  Geometry of the ion beam as one constituent clips on the entrance to the magntron.   Here 

the bending voltage is turned high enough that the H2
+ beam (larger radius) has clipped on the 

entrance to the magntron and the beam with the H+ (smaller radius) is centered on the z axis.   

 

  Figure 87 shows the full ion spectrum taken by scanning over bending voltage and 

plotting the current on the extraction FC.   We would expect the beam current to stairstep 

downward each time an ion beam clips on the entrance of the magnetron.  Vertical dotted 

lines show the theoretical calculation for where each ion should clip (equation 2.73) 

  Unfortunately the spectrum is plagued with additional complexities which are not 

described by the theory such as secondary electrons, beam scraping on the bend plate at 

low bend voltage, and an entrance aperture that is not perfectly round.   Furthermore, the 

accuracy is limited by the fact that the beam is a spiral, so there is some variation in the 

radius at which the beam actually clips.   This spectrum shows only rough agreement 

with theoretical values.  The major constituents of the ion beam appear to be Ar+, H2
+ and 

H+.  However, we cannot draw any definite conclusions from this graph. 



 

 197

 

     Ar+ 
 
 
 
           H3

+ 

              H2
+ 

 
 
             H+ 

                         MIRRORS 

            H+ 

 
 
 

 

 

 

Figure 87.   Ion spectrum taken on the extraction FC.  The solid black line shows experimental data.   

Theoretical values where each ion should clip have been calculated using equation 2.73 and are 

shown as vertical red dotted lines.  From left to right: Ar+, N2
+, O2

+, C2
+, Ar+2, H2O+, N+, O+, Ar+3, C+, 

H3
+, H2

+, and H+.  The experimental value at which the H+ beam mirrors is shown as a blue dotted 

line.   Using these calculated values, the expected theoretical curve is plotted as a solid red line.   

 

  In theory this technique for analyzing the beam injected into an ICRA should be 

very useful.  However in practice, the method must be improved in order to obtain more 

convincing results.  Since agreement between the ion spectrum and theoretical 

calculations is so crude, it is necessary to rely on visual observations and on 

measurements of the beam orbit radius to identify the proton beam.  
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Visual observations 

  Visual observations were important for understanding the ion spectrum.  Phosphor 

coating on the extraction Faraday cup (described in section 3.2.5) produced an image of 

the beam at the extreme downstream end of the system.  Figure 88 shows a drawing of 

the beam image that was observed.   The Argon ring is not shown here because it clips at 

such a low bending voltage when the image of Figure 88 is still very small.  As the bend 

voltage is increased, the H2
+ beam eventually clips on the cavity entrance and the outer 

ring in Figure 88 disappears.   If the bend voltage is increased still further, the image of 

the inner ring eventually fades away as the H+ beam mirrors.   In order to clip the H2
+ 

beam before the H+ mirrors, it was necessary to increase the injection energy from 5keV 

to 6.4keV.   Even at this beam energy, the H+ beam mirrors before its radius becomes 

large enough to clip on the cavity entrance. 

 

Figure 88.  Drawing of the beam image observed on the extraction Faraday cup.   Here the bending 

voltage is high enough that both ion beams produce a full 360°°°° ring.  At lower bend voltages the 

image observed is less than 360°°°° as will be described in section 4.5.4. 
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The arc lengths shown in Figure 88 are greater than 360° because the bend voltage is 

high (near mirroring), however at lower bending voltages, arc lengths are less than 360°.   

Arc  

length data is used in section 4.5.4 as a measure of the spread in the axial momentum.  

  These visual observations can be used together with the radial probe (which has an 

electron blocker) to obtain a reliable ion spectrum.   Figure 89 shows excellent 

correlation between the visual observations and drops in the beam current measured on 

the radial probe.   This technique shows when the H2
+ beam has clipped, and therefore 

allows us to obtain the range of bending voltage for which only the proton beam is 

injected into the acceleration region.  Furthermore, we can identify the region where the 

proton beam mirrors.   The mirror curve is important because it provides information 

about the axial momentum spread.   Section 4.5.3 will concentrate on the “mirror curve” 

in greater detail.  
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Figure 89.   Experimental data.  Black diamonds represent beam current measured on the radial 

probe which is shielded from electrons showers.   Dotted lines mark the range of bend voltage where 

the H2
+ beam was observed to clip visually, and where the H+ beam mirrors 

4.5.2 Radius of Beam Orbit 

  The radius of the proton beam was measured using three different techniques.  

These measurements provide confirmation that the innermost ring in the beam image is 

the proton beam (review Figure 88).  The results are summarized in Table 12 below. 

 

Table 12.   Comparison between calculation and experimental data of theH+ beam orbit radius  

in the high B-field region.   In each case the beam is just below mirroring  (p⊥⊥⊥⊥  ≈≈≈≈ ptotal)  

 
 

Method 
H+ orbit 
radius 

Error relative 
to calculated 

Calculated from known Vbeam and B-field 4.65 mm - 
Measured using radial probe. 4.5 mm - 3 % 

Measured from alignment data: 4.2 mm - 10 % 
Estimated from size of image on extraction FC 4.3 mm - 8 % 

 

For comparison, the radius of the H2
+ beam is calculated to be 6.58 mm.  The most 

accurate measurement of the H+ orbit radius is done using the radial probe.  An example 

of a radial probe scan is shown in Figures 97 and 98 in section 4.6.1. 

 

Spread in beam radius 

  The radial spread in the injected proton beam (∆r) was measured using alignment 

data (distance rf cavity is moved to cut across the beam).  The result is.   
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∆r = 0.3 ± 0.1 mm (at z = 0). 

 

 

4.5.3 Mirror Curve 

  As explained in section 2.6.7, if an injected beam with zero emittance mirrors, 

then the current will drop to zero at one particular bending voltage.  However the real 

injected beam has some finite emittance which leads to a spread in axial velocity.   

Therefore, when the beam mirrors, current will drop over some range of Vbend.   Section 

2.6.7 showed that the range of Vbend is proportional to the spread in the axial velocity of 

the beam (Figure 62).   Therefore, the mirror curve provides information about the 

emittance of the injected beam.  In section 4.5.4 the mirror curve will be used to 

determine the axial momentum spread, and in section 4.5.5 the mirror curve will be used 

as a measure of the emittance of the injected beam.  
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Figure 90.   Experimental mirror curve.  Proton beam current on the radial probe vs. bend voltage 

for several different Einzel lens settings. 

  Figure 90 shows a measured mirror curve.  Proton beam current vs. bending 

voltage is plotted for several different Einzel lens settings.   The Einzel lens affects the 

axial velocity spread, because it changes how parallel the beam is to B-field lines in the 

region before entering the electrostatic bend.   

  Small changes in the alignment of the ion source cause a significant shift in the 

mirror voltage.   Figure 91 below shows the mirror curve which is relevant to the 

accelerated beam shown in section 4.6.1.   This mirror data will first be used to determine 

the spread in pz and the emittance injected beam in the following two sections.  
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Figure 91.   Experimental data.   Proton beam current on the radial probe vs. bend voltage.  The 

Einzel Lens setting is 3.0 kV.   

 

 

4.5.4 Number of Turns Through the Acceleration Region 

  In this section beam measurements are used to determine how many turns the 

beam goes through in the acceleration region (Nturns).  Recall that if pz is known then 

Nturns is also known (equation 2.75).   Again, our purpose is to quantify only the injected 

beam (i.e. rf is off).  Beam measurements have been made which allow two methods of 

determining Nturns and two methods of determining the spread in Nturns.  

 

  1)  Nturns determined from the mirror curve 

  2)  ∆Nturns determined from the mirror curve 

  3)  ∆Nturns determined from the arc length on the extraction Faraday cup 

  4)  Nturns determined from the change in the total # of turns thru the system 

  

These four methods are discussed below. 
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Nturns from the Mirror Curve 

  The number of turns through the acceleration region (Nturns) is obviously a 

function of the bend voltage (Vbend).  The calculation can be represented conceptually by: 

Vbend  →  θbend  → pz  →  Nturns 

The first step requires knowledge of the actual mirror voltage.  The measured mirror 

curve of Figure 91 shows that the beam mirrors over a range of Vbend from 690V to 740V 

with a center mirror voltage of 715V.   The mirror voltage allows the bend angle (θbend) to 

be scaled linearly with Vbend (equation 2.69).   The parallel momentum at the exit of the 

electrostatic bend is simply )cos(pp bendtotal|| θ= .   The beam then spirals into the high 

field region where pz is given by equation 2.62.  Once pz is known at z = 0, equation 2.75 

gives Nturns. 

  The last step (pz → Nturns) is not in question because the magnetic field in the 

acceleration region is quite flat, and no other assumptions are involved.   However, the 

analytical expressions for the first three steps involve several assumptions, therefore we 

must question the accuracy in calculating: (Vbend → θbend → pz). 

  Figure 92 shows a comparison between pz vs. Vbend calculated analytically and 

with the computer model.  The maximum difference is less than 4% at Vbend = 700V.  

Therefore, pz can be calculated analytically from experimental bend voltage.   Keep in 
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mind that Figure 92 is an extrapolation based on the experimental mirror point to obtain 

pz at lower bend voltages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 92.  Analytical calculation of pz vs bend voltage compared with the result from the full 

computer model.   The analytical calculation depends on the mirror voltage, therefore the two curves 

meet at the mirror point a-priori. 
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  Figure 91 shows that the injected beam mirrors over a range of bend voltages 

from 690V to 740V.   Figure 92 shows that Vmirror can be used to calculate pz analytically 

for lower bend voltages.    Similarly, the spread in Vmirror, allows us to determine ∆pz for 

lower bend voltages.  Figure 93 shows how simply changing the mirror voltage in the 

analytical calculation causes a spread in pz.    
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Figure 93.  Analytical calculation of the spread in pz vs bend voltage 
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effectively changes the length of the bending plates (�eff) in equation 2.55.  Obviously 

changing the effectiveness of the bending plates does cause a spread in pz.  However, the 

source of the spread will be mostly dy/dz while the spread in a real beam is due to the full 

beam emittance which contains spreads in )y,y,x,x( ssss ′′ .   Since section 2.6.7 showed 

that the mirror voltage is nearly linear with pz, regardless of the source of the spread, this 

approximation is thought to be good. 

  Figure 93 is useful for visualizing how the spread in pz changes with bend 

voltage.   The spreads in pz and Nturns both increase with Vbend.   In the limit that the beam 

mirrors, the spread in Nturns becomes infinite, however the spread in pz ranges from 0 to 

pz.   Table 13 summarizes the calculation of pz and ∆pz and gives ∆Nturns and Nturns.  

 

 

Table 13.    pz and ∆∆∆∆pz as well as Nturns and ∆∆∆∆Nturns of the injected beam calculated from experimental 

mirror data of Figure 91. 

 

½ Vbend  
(V) 

pz   
(MeV/c) 

∆∆∆∆pz/pz 
 (MeV/c) 

Nturns ∆∆∆∆Nturns 

650 1.49 38 %  4.0 1.7 
660 1.38 45 % 4.3 2.3 
670 1.26 57 % 4.7 3.5 
680 1.13 76 % 5.3 6.2 
690 0.98 100 % 6.1 ∞  

700 0.79 100 % 7.5 ∞  
710 0.53 100 %  11.1 ∞  
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∆pz from the Arc Length on the Extraction Faraday cup 

  The image of the beam shown in Figure 88 has an arc length (∆θ) greater than 

360° because the bending voltage is high.  However at lower bending voltages, the arc 

length observed is less than 360° as shown in Figure 94.   It was shown that the arc length 

is proportional to the spread in pz (section 2.6.7), therefore arc lengths less than 360° can 

be measured and used to determine ∆pz.  

 

Figure 94.   Drawing of the proton beam image observed on the extraction Faraday cup 
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The arc length can only be measured for low bending voltages, where ∆∆∆∆θθθθ < 360°°°°. 

 

 

  For the 50 keV ICRA, the beam mirrors at 690 – 740 V.  Operating bend voltages 

are in the range of 650 to 710 (4 – 11 turns, Table 13), however above 610 V the arc 

length becomes greater than 360° and therefore cannot be measured.     

 

Table 14.  Arc lengths observed visually on the extraction Faraday cup (VEinzel = 2.8 kV) 

½ Vbend ∆∆∆∆θθθθ 
540 V 120° 
600 V 180° 
610 V 360° 

 

  Since ∆θ is greater than 360° at the operating bend voltages, we must measure ∆θ 

at lower bend voltages and then extrapolate forward to higher Vbend.  The method used 

here is to choose an emittance which produces an arc length that is consistent with the 

measured data, then use the computer code to track this emittance at higher bend 

voltages.  This method is used in section 4.5.5.   

  Measurement of the arc length should be useful for future ICRA designs, 

particularly if the emittance of the injected beam is small enough (or bend voltage low 

enough) that arc lengths are less than 360° at the operating bend voltage.  This would 

provide a direct measure of ∆pz without extrapolating. 
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pz from Total Number of Turns Through the System 

  As the bending voltage increases, the total number of turns through the entire 

system increases.  This means that the image of the beam arc length on the extraction FC 

will rotate in the same direction that the beam turns (clockwise as viewed along ẑ+ ) 

Angular positions of the trailing edge of the image were recorded for several bending 

voltages.  This data provides the rate of change of the final angle vs. bend voltage 

bend

final
dV
dθ

, which can be verified using the computer model.   The results are shown in 

Table 15. 

 

Table 15.  Rate of change of total number of turns (N) through the 50 keV ICRA.   

Visual observations compared with computer result (using Vmirror = 745 V for trailing edge of image). 

 

 
½ Vbend 

Experimental 
Observation  

Computer  
Result 

500 V N 17.2 
530 V N + 0.5 17.2 + 0.70 
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560 V N + 1.0 17.2 + 1.43 
580 V N + 1.5 17.2 + 1.92 

Average ∆∆∆∆N =  0.5 0.64 
 

  The disagreement between observation (∆N = 0.5) and the computer model  

(∆N = 0.64) is small and could easily be attributed to errors in the visual observation.   

Therefore, this data is taken as confirmation that the computer results of Figure 92 are 

correct.   

 

4.5.5 Injected Beam Emittance 

  Section 4.6 will present measurements of the accelerated beam current.  In order 

to compare with theory, an injected beam of finite emittance must be simulated by using 

the full computer code to track many single particle trajectories.   Therefore it is first 

necessary to determine the emittance of the injected beam.  

  In section 2.6.6 we saw that the acceptance phase space of the rf driven 

magnetron is most sensitive to the spread in pθ (or equivalently, the spread in pz).   

Section 2.6.7 showed that the mirror curve and the arc length are both good measures of 

the spread in pz.  Therefore, the method used here is to use the computer model to choose 

an emittance which is consistent with beam measurements of the mirror curve, and the 

arc length.   In this way, the emittance chosen will be consistent with the ∆pz and 

therefore will produce a similar accelerated beam current in section 4.6.   The model used 

for the emittance of the injected beam was shown in section 2.6.7. 
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Mirror Curve 

  Figure 95 shows mirror curves generated for several different injected beam 

emittances using the computer model.   The experimental mirror curve (relevant to the 

accelerated beam in section 4.6) has been normalized to its peak value and is shown in 

black.  The beam with 0.35π mm mrad (red) has a much narrower range of mirror voltage 

than the experimental data.  However, the beam with 3.7π mm mrad (orange) clearly has 

a much wider range of mirror voltage than the experimental data.  The range from 0.8π to 

2.2π mm mrad gives close agreement with the experimental data.    

 
       0.35π mm mrad 
            0.80π mm mrad 
        1.4π mm mrad 
 
          3.7π mm mrad 
 
       2.2π mm mrad 
 
 
    Measured Data 
 
 
 
 
 
 
 
 
 

Figure 95.  Comparison between computer generated mirror curves and experimental data.   

Experimental data (black diamonds) is normalized to its peak value (45 nA).    The 5 solid lines 

represent computer generated mirror curves for 5 different injected emittances. 
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Arc Length 

  Section 2.6.7 described the how the computer model can be used to reproduce the 

arclength on the extraction Faraday cup.  Experimental measurements of the beam arc 

lengths were given in Table 14.   Figure 96 shows a comparison between experiment and 

the computer model for three different injected beam emittances.   Arc lengths indicate 

that the injected beam emittance is roughly 0.35π mm mrad.   

  Comparing the results from the mirror curve and the arc length indicates that the 

emittance of the injected beam is in the range from 0.35π to 2.2π mm mrad 

(unnormalized).   
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    ε = 0.8 π 
 
       ε = 0.35 π 
 
 
               ε = 0.1 π 
 
 
 
 
 
Figure 96.    Arc length increases with bend voltage.   The experimental data from Table 14 is plotted.   

The computer model is used to generate arc lengths for three different injected beam emittances:  

0.1ππππ, 0.35ππππ, and 0.8ππππ mm mrad (emittances are un-normalized) . 

 

4.6 Measurements of the Accelerated Beam 

  In the previous section, measurements of the mirror voltage and the arc length 

were used to place bounds on the injected beam emittance.  Section 4.6.1 below shows 

the measured radial distribution of the beam with rf on and with rf off.   The radial 

distribution is then converted to an energy distribution.   An injected beam emittance is 

selected within the bounded range and used in the computer model to generate energy 

distribution curves.   Computer results for several energy distribution curves are 

compared with measured data. 

  Finally, section 4.6.2 shows the measurement of the accelerated beam current 

while sweeping over the B-field.  This “resonance width” is then compared with the 

theoretical resonance width using the computer model.   

 

 



 

 215

 

 

 

 

 

 

 

 

 

4.6.1 Energy Distributions 

  This section covers the measured radial distribution and energy distributions for 

the accelerated beam.  First, the radial probe data is corrected for errors in order to 

recover the full beam current at each radial position.  Visual data is discussed.  Then the 

energy distribution is calculated from the radial distributions and the result is compared 

with the results from the computer model.  

  Figure 97 shows raw experimental data taken on the radial probe with the rf on 

and off.   The beam current which strikes the radial probe is measured as the probe is 

moved from large radius inward toward r = 0.   When the rf is on, beam current is clearly 

accelerated to a much larger radius than with rf off.  
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Figure 97.   Measured radial distribution with rf on and off (raw data).   Beam current on the radial 

probe is plotted vs. radial position of the radial probe.  Vertical dotted lines mark the calculated 

radius of the injected beam and maximum radius corresponding to the exit diameter of the 

magnetron.    

   The reader may want to review the design of the radial probe as explained in 

section 3.2.5 on beam diagnostics.   Since the radial probe is designed to capture 100% of 

the beam when it is moved all the way in to r = 0, the data is an integrated distribution.    

In other words, every point on the graph represents the sum of all beam current with 

radius equal to or greater than the radius read off the graph.     

  Consider the unaccelerated beam data shown in Figure 97.   According to 

calculations we expect the 6.4 keV proton beam at the radial probe to have an orbit radius 

of  r = 7.9 mm and a radial spread of about ∆r = 0.4 mm.  Thus, we would expect the 

measured beam current to be zero for any radius above roughly 8 mm, but then rise to 

100% and remain constant for all lower radii.  This theoretical curve is shown as a solid 

line in Figure 98 below.   The apparent energy spread in the raw data of Figure 97 is 

caused by the sloped inner edge of the radial probe cutting across the beam orbit radius 

(refer to Figure 73).  This is the first of three effects on the radial probe data which must 
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be mathematically corrected.  Corrections to the radial probe data were explained briefly 

in section 3.2.5.    They are:  

  1) Slope on the inner edge of the probe 

  2) Beam lost on the electron blocker 

  3) Axial turn spacing longer than the probe length 

The effects of 1) and 2) are largest for beams with small radius.  The effect of 3) is largest 

for beams with large radius.  The rf off data has been corrected for all three effects.  The 

rf on data has been corrected for 2) and 3) only.    The effect of 1) on the accelerated data 

has not been corrected for.  The distortion caused by this effect is largest at low radius 

and goes to zero at 22mm (50 keV field line).  Furthermore, the correction would shift 
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Figure 98.  Top graph: Raw data and corrected data are shown for rf on and off.  The solid line 

shows a theoretical curve for the rf off case only.    Bottom graph: The corrected data for rf on      

and off is shown on a log scale in order to show the accelerated data more clearly. 

beam current toward higher radius, therefore neglecting this correction leads to a 

conservative energy distribution.  Details of the radial probe corrections are given in the 

Appendix. 

  In Figure 98 above, the top graph shows raw data, and corrected data from the 

radial probe (rf on and off).  The theoretical curve is shown as a solid line (for rf off 

only).  The lower graph in Figure 98 shows the corrected experimental data on a log 

scale.   The log plot provides a better view of the accelerated beam current and allows 

one to see at what beam radius the current drops off.   The accelerated proton beam 

current is 0.5 nA (3 %) at 19.3 mm and drops to 0.2 nA (1 %) by 20.3 mm.  

  The purpose of the radial probe is to obtain an energy distribution (current vs. 

energy).  The radial distribution can be converted to an energy distribution using E ∝  r2.  

However before doing this, it is first necessary to consider visual observations which 

show that this relation is valid.  
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Visual observations 

  We wish to convert radial probe data to beam energy in order to obtain a current 

vs. energy distribution.  However, relating radius to energy by (E ∝  r2) assumes that each 

orbit in the accelerated beam is centered on the z axis.   Computer modeling indicates that 

the extracted beam is centered around the z axis, however we require experimental 

verification.  Visual observation provides this verification.   

  The ability to observe an image of the beam on the extraction Faraday cup is as 

useful for understanding the accelerated beam as it was for understanding the injected 

beam.   When the rf power is turned on, the image of the injected beam with narrow ∆r 

(see Figure 88) is observed to bloat up into a large diffuse cloud which can cover nearly 

the entire extraction Faraday cup.   When the radial probe is moved into the accelerated 

beam, it casts a shadow into this image as shown in Figure 99.  The shadow observed is 

at approximately 90° azimuthal rotation from the orientation of the radial probe.  

Furthermore, the shadow moves inward as the probe moves in, leaving a circular image 

in the center undisturbed.   These observations are consistent with a spiral trajectory and 

are taken as evidence that the beam does consist of large orbits centered around the z 

axis.  
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Figure 99.   Drawing of visual observations on the extraction Faraday cup.  This axial view shows the 

extraction Faraday cup which is located ≈≈≈≈ 7” further down stream (into the page) than the radial 

probe.   The radial probe casts a shadow at 90°°°° rotation from the probe.  The edge of the shadow 

moves inward as the radial probe is moved inward.  

 

Energy Distribution 

  When converting the beam orbit radius to energy, the radius must first be 

transformed back to the exit of the magnetron (equation 2.59) where the momentum is 

nearly all in the θ direction.   Then using the known magnetic field, pθ can be calculated 

(equation 2.1) and converted to the beam energy.  This method neglects the axial beam 

energy at the exit of the magnetron (about 1 keV in this case).     Figure 100 below, 

shows the data from the corrected radial distribution of Figure 98 which has been 

converted to an energy distribution.  
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Figure 100.   Measured energy distribution with rf on and off.   Data is taken from the corrected 

radial distribution of Figure 98.   Dotted lines mark the injection energy and peak design energy.   

 

The injected beam energy (6.4 keV), and the energy corresponding to the exit radius of 

the magnetron (48 keV) are both marked with vertical dotted lines.  The accelerated 

proton beam current is 7 % above 24 keV (0.5 Edesign), then drops to 1 % above 42 keV    

(≈ 0.9 Edesign).  A smaller fraction may be accelerated as high as 46 keV.  

  Figure 101 shows a comparison between experimental data and the computer 

model.  The experimental data has been normalized using the peak value of the 

unaccelerated beam.   In section 4.5.5 measurements of the arclength and mirror curves 

were used to place bounds on the emittance of the injected beam.   An emittance was 

selected within this range (0.35π - 2.2π) which gives reasonable agreement with the 

experimental energy distribution. The emittance used in Figure 101 is 2.2π mm mrad.    
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Figure 101.   Comparison between corrected experimental data and the computer generated energy 

distribution.   In each case:  Vo = 1.7 kV,  ½Vbend = 740V,  VEinzel = 2.5 kV.  The computer model 

uses a 2.2 ππππ mm mrad injected beam emittance. 

  Figure 102 below shows experimental energy distributions taken for several 

different bending voltages while Vo is held constant.  This data illustrates two important 

characteristics.   First, at low bend voltages (axial momentum is high so Nturns is low) the 

beam is not accelerated to full energy.  As the bend voltage is increased (axial momentum 

decreases so Nturns increases) the accelerated beam current moves to higher energies.  The 

experimental data of Figure 102 shows the expected trend.   The second trend to notice is 

that when the beam is accelerated to higher energies, (high Vbend) the total beam current 

(above E = 0) decreases.  This indicates that a significant portion of the beam strikes the 

wall inside accelerating cavity.  This trend was observed in Figure 63.  
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                 H2
+ beam 

 
             670 V 
        
 
 
 
                      690 V 
 
       650 V 
                 710 V 
    660 V 
 
 
 
 
 

Figure 102.   Measured energy distributions for several bending voltages.   

Cavity voltage is 1.4 kV,  VEinzel = 2.7 kV, Mirror voltage ranges from 690 – 745 V. 

Finally, notice that for Vbend = 650, 660, and 670 V the H2
+ beam is present and shows up 

as a large increase in beam current at about 12 – 13 keV.  The conversion from radial 

distribution to energy distribution is valid only for the proton beam, therefore this data 

should be ignored. 

  Comparison between this experimental data and the computer generated energy 

distributions shows good correlation at high bend voltages but increasingly worse 

agreement at lower bending voltages.   Figure 103 compares computer with experimental 

data for bending voltages of 690 V and 710 V.   Figure 104 shows the comparison for 

650, 660, and 670 V.   The emittance used in the computer code is 2.2 π mm mrad. 

 

 
 
       Measured 
                  Vbend = 690 V 
 

10

100

N
/N

o 
 (%

)



 

 224

             Computer Model  
                Vbend = 690 V 
 
 
 
 
 
      Measured 
   Vbend = 710 V 
 

         Computer Model  
            Vbend = 710 V 
 
 
 
 
 
 
 

Figure 103.   Experimental data from Figure 102 is compared with the computer result.    

Here, bending voltages of 690 V and 710 V are used in the computer and experiment both.   
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         Measured  660 V  
         Computer Model  630 V  
 
 
 
    Measured 

     650 V 
  Computer Model  

       605 V 
 
 

 

 

 

 

Figure 104.   Experimental data from Figure 102 is compared with the computer result.   In the top 

graph the same bend voltage is used for computer and experiment.   In the bottom graph, bending 

voltages in the computer model have been shifted lower to obtain matching energy distributions. 

  Figure 104 shows that the energy distributions can be made to match the 

experimental data, if the bend voltage in the computer code is shifted lower.  The 

maximum discrepancy in bend voltage is 45 volts or 7% of 650V.   The reason for this 

discrepancy is unknown at this time.  The most likely cause is an error in the position or 

the alignment of the ion source.  
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4.6.2 Resonance Width  

  Section 2.5.7 explained the phase drift caused by magnetic field detuning only.  

Using equation 2.85, a beam with Nturns  = 5  would experience a phase drift of ∆φ = 45° 

for a magnetic field error of ∆B/Bo = 0.6 %.  Therefore, we would expect a total 

resonance width of about 1.2% if acceleration through the magnetron does not contribute 

to the phase change.   Experimental measurements of the accelerated beam show a 

resonance width of approximately 3%.   Figure 105 shows the measured data.   If the 

magnetic field is detuned by 1.5% from center, equation 2.85 gives ∆φ = 108° which is 

clearly not compatible with a beam accelerated over 5 turns. 
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Figure 105.   Experimental data showing the accelerated beam current vs. magnetic field.    

The position of the radial probe is 19.3 mm (E > 38 keV), and ½Vbend = 683 V (Nturns ≈≈≈≈ 5).   

 

  The computer model has been used to simulate acceleration of a full emittance 

beam.   Varying the rf frequency to simulate magnetic field detuning indicates a 

resonance width of over 4%.   Figure 106 shows the comparison between the computer 

result and the experimental data.  This is taken as further evidence that acceleration 

through the rf driven magnetron does cause phase bunching as discussed in sections 2.62 

and 3.1.   The ‘wider than expected’ resonance width means a less stringent accuracy in 

setting the magnetic field, and is therefore a desirable characteristic of the ICRA.  
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Figure 106.   Comparison between experimental data and the computer generated resonance width.   

The computer model uses:  ½Vbend = 683 V,  E > 38 keV (for R-probe at 19.3 mm) and injected beam 

emittance of  2.2 ππππ mm mrad.   

 

 

NOT USED  

If one wanted to improve the resolution of the ion spectrum, a moveable beam scraper 

should be added at a point further upstream.  This would allow adjustment of the radius at 

which the beam clips, and the Faraday cup on the extraction end would be shielded from 

electron showers created when ions slam into the scraper because electrons would not go 

forward into the high magnetic field region.  

 

Approximate fractions of the three major constituents in the beam are given in Table X 

Table 10.  Rough fractions of the three major constituents in the beam. 

Ar+ 63 % 
H2

+ 33 % 
H+ 2 % 
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As one might suspect, there is some non-linearity in θbend as a function of Vbend for small 

bend angles (bend designed for 20° deflection so plates are tilted 10°).  However, for 

bend voltages above 630V, the maximum error is only XX%. 

 

 

 

 

 

 

Parameters for the hybrid rf cavity for the 50 keV ICRA 

 

General RF Cavity Parameters 
εo = 8.85 (10-12) C/Vm 
µo = 4π(10-7)  Tm/Amp 
Zo = 377 Ω 

copper:  σc = 58.8 (106)   (Ωm)-1 
aluminum:  σa = 38.5 (106)   (Ωm)-1 

copper:  δc = 5.32 (10-6) m  (for 152 MHz) 
aluminum:  δa = 6.58 (10-6) m  (for 152 MHz) 

 
Parameters for the Hybrid Coaxial / Magnetron Cavity 

Inner conductor radius:  a = ½ (0.75”) = 0.95 cm 
Outer conductor radius:  b = ½ (4.5”) = 5.72 cm 

b/a = 6 
ln(b/a) = 1.79 

Length of coaxial section:  � =  9.7 cm 

C
�
 = 1.5 pF 
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Cm = 39 pF 
fo = 152.02 MHz 

Rs/Q = 25.85 Ω 
ZC = 20.3 Ω 

Current on the Short:  Io =  147.7 Amps (for Vo=3kV) 
Vo = 3 kV (for Ploss = 100 watts) 

  

 

 

 

 

 

 

Low Power Calibration Measurements (with Cables Subtracted Out) 

P′ is a measurement of power which includes cable loss (see figure XXX)   
P without the prime has been corrected for the cable loss.  
 

1) Forced State (Open to Drive Ratio): 

measured: dB51.30
P
P

o

1 −=�
�

�
�
�

�
′
′

       ←  correct this for cable loss 
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  Gives:  2.31
V
V

1

o =  

2) Forced State (Open to Pickup Ratio): 

measured: dB17.66
P
P

o

2 −=�
�

�
�
�

�
′
′

         ←  correct this for cable loss 
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3) Matched State: 

measured: dB98.36
P
P

1

2 −=�
�
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 ←  correct this for cable loss 
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  Gives: 4.60
V
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1 =  

Error in Low Power Calibration Measurements 

  Ultimately the cavity will run in the matched state, with power input at the drive 

loop (P1) and a small output signal taken from the pickup loop (P2).  (see Figure XXX  of 

full power setup).  Therefore we need to determine Vo in the matched state, yet Vo can 

only be measured in the forced state (and at low power).  For this reason, we must 

consider whether the forced state measurements caused any change in the field 

distribution inside the cavity.  If not, then the voltage ratios measured in each state should 

fully agree: 

State
Matched2

1
?

State
Forced2

0

State
Force0

1

V
V

V
V

V
V
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�
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�
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The left hand side gives: 9.57
2.31

1807
V
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V
V
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and the right hand side gives:   4.60
V
V

State
Matched2

1 =�
�

�
�
�

�
′
′

 

These two measurements agree to within 4% 

%4
4.60

4.609.57
1 −=−=σ  

Evidently, the error incurred when using forced state measurements to determine Vo in 

the matched state is 4% 

 

 

 

 

 

High Power Measurements 

  For high power measurements, the ratio of V1/V2 is measured using a Bird Watt 

Meter to measure P1 and an oscilloscope is used to measure V2. High power 

measurements in include any errors due to measuring the input rf power using the Bird 

Watt Meter, and errors in the voltage calibration of the oscilloscope, as well as any 

difference between running at high power or low power. 

****** 

However, conditions may change when running the cavity at full power.  As an example, 

for an input power of watts80P1 =′ read on Bird Watt Meter, a pickup voltage of 

V23.1V2 =′ is read on an oscilloscope.  After correcting for cable losses we obtain: 

2.62
V
V

Power
High2

1 =�
�

�
�
�

�  
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  This ratio includes errors in measuring the input rf power using the Bird Watt 

Meter, and errors in the voltage calibration of the oscilloscope, as well as any difference 

between running at high power or low power.  Comparing this with the low power 

measurement of the matched state (Table 9):   

4.60
V
V

Power
Low2

1 =�
�

�
�
�

�  

we find an error of 3%.   Error in the low power forced state measurements was estimated 

to be 4% (Table 10).   Therefore, the total error in using low power - forced state 

measurements to calculate Vo in a high power - matched state, is the addition of these two 

errors. 

%721 =σ+σ=σ  

***********************************************************************  

My main question here is:   

What I really want is the error in (Vo/V1) because that’s what I use to calculate the shunt 

resistance.  
2

1

o
s V

V
50R �

�

�
�
�

�Ω=    

But we can only find the error in (V1/V2)  

What does the error in V1/V2 tell us about the error in (Vo/V1)  ???? 

***********************************************************************  

 

Table XXX.  Parameters for the beam shown in Figure 98. 
 

Experimental Computer Model 
Vo = 1.7 kV ± XXX 1.7 kV 

½ Vbend = 740 V 740 V 
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Nturns =   
ε = state full range 2.2 π mm mrad 

Beam Current (RF off) =  17.3 nA  
  

 

 

Parameters for each Energy Distribution 
 

 1/28/99  pg (51-52) 2/9/99   pg (88-89) 
Vo = 1.7 kV 1.4 kV 

½ Vbend = 740 V 650, 660, 670, 690. 710 V 
Range:  Vmirror = (730 – 780) V (690 – 740) V 

Mirror Curve pg (47 – 48) pg 99  (or pg 88) 
VEinzel  = 2.5 kV 2.7 kV 

B-field:  IB = 89.1 A 88.7 A 
   

 

 



 

 228

5.  DISCUSSION 

 

5.1 Discussion of Results 

  The Ion Cyclotron Resonance Accelerator uses novel geometry which allows the 

beam to drift axially while being accelerated in the azimuthal direction.   A super-

conducting magnet provides an axial B-field and an rf driven magnetron provides 

azimuthal electric fields.   This accelerator design is simple, compact and lightweight.    

A 10 MeV ICRA would be useful for production of radioisotopes or neutron beams.   

  The objective of this research has been to provide experimental verification of the 

ICRA acceleration method.   This task has two steps: 

1)  Develop analytical theory and a computer model which can be used to predict the 

fraction of beam accelerated by an ICRA  

2)  Design, build, and test a 50 keV proton ICRA.  Then compare the experimental results 

with theory. 

  These objectives have been successfully completed.   The analytical theory shown 

here can be used to calculate single trajectories that are centered on the z axis.  This 

analysis is accurate for most design work.  The computer model developed for the ICRA 

can be used to track particle trajectories from ion source to target.  Many single particle 

trajectories have been used to model a full emittance injected beam and predict the 

fraction of beam current accelerated.   

  An ICRA has been designed to accelerate protons to 50 keV.   The design uses an 

existing superconducting solenoid.  The ion source, vacuum system, accelerating rf 
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cavity, and beam diagnostics have been built for this experiment.  Beam measurements 

have been made in order to understand both the injected and the accelerated beam.   

  Figure 107 shows a measured energy distribution.  A proton beam was injected at 

6.4 keV (rf off).  When the rf is on, the beam is accelerated to a distribution ranging from 

near zero up to near the design energy.   7% of the beam current is accelerated above 24 

keV (0.5 Edesign) and 1 % is accelerated above 42 keV (≈ 0.9 Edesign).   A smaller fraction 

may be accelerated as high as 46 keV. 

Figure 107.  Measured energy distribution of the proton beam with rf on and with rf off. 

 

  All beam parameters needed for input into the ICRA computer code have been 

determined from beam measurements, rf cavity measurements, magnetic field mapping, 

and alignment measurements.  These include: cavity gap voltage (Vo), bend voltage 
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(Vbend), injection energy (Eo), B-field profile, and the location of all components.      

Beam measurements have been used to estimate a range of emittance of the injected 

beam.   An emittance was selected in this range which gives the best match with the 

measured energy distributions.   
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Figure 108.   Comparison between measured energy distributions and computer generated energy 

distributions for two different bend voltages. 

 

  Using these input parameters, the computer code has been used to reproduce 

energy distributions for the accelerated beam.   Figure 108 shows a comparison between 

the computer results and measured energy distributions for two different bend voltages.   

The computer data shows good agreement with the magnitude and shape of the measured 

energy distributions, and even correctly predicts the drop in beam current caused by the 

beam striking the inner diameter of the magnetron.  With a small correction to Vbend, the 
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computer model yields good agreement over a wider range of bend voltages.  This 

agreement indicates that the ICRA computer code can be used to correctly predict the 

energy distribution of the beam accelerated in an ICRA.  

  Finally, having benchmarked the ICRA computer model, the code should be a 

useful tool for designing the next higher energy ICRA.  This topic is addressed in section 

5.2 below. 
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5.2 The Next Step for the ICRA 

  The 50 keV ICRA experiment successfully demonstrated the ICRA. The 

analytical model is adequate for most of the design work.   The computer model has been 

used to estimate the faction of the accelerated beam current.  Clearly, the next step should 

be to design and build an ICRA which will accelerate beam to useful energies.  The final 

energy was chosen at 10 MeV.   Beam currents of 10 – 50 µA in an energy range of        

5 ≤ E ≤ 10 MeV would be useful for the applications discussed in section 1.5.   The goal 

here is to optimize the design parameters to obtain a compromise between maximum 

accelerated beam current and minimum cost of the components.  This section presents a 

scheme for optimization of basic design equations.  After which, three 10 MeV proton 

ICRA designs are presented.   

 

Magnetic Field Profile 

  A proton at 10 MeV has a relativistic mass factor of γ = 1.01. Therefore, relativity 

begins to significantly affect the cyclotron frequency.   Since the energy gain in the ICRA 

trajectory is roughly linear with axial (z) position, simply sloping the B-field at a rate of 

≈1% over the cavity length will match γ so that the beam remains in phase with the rf.  

The B-field slope can be obtained by using a Helmholtz coil pair with independent 

current control, or by simply adding a trim coil to a flat field configuration.  The designer 

should be aware that this slope in the B-field will cause the axial momentum to decrease 

throughout the acceleration region, which creates the possibility of mirroring the beam 

inside the acceleration region.   This effect should be compensated for by increasing the 

axial momentum at the cavity entrance.   
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Magnetron Taper  

  Since the energy gain in the ICRA trajectory is roughly linear with z position, the 

orbit radius of the beam is roughly proportional to the square root of z.   Thus, if the inner 

radius of the magnetron increases linearly with z (dR/dz = constant), the beam will move 

away from the wall to lower voltage n
o )

R
r(V ∝  during the latter part of the acceleration 

region.  This effect is negligible in the 50 keV ICRA; therefore only one linear taper was 

used.  However, the 10 MeV should have at least two different linear tapers as shown in 

Figure 110.   The slopes are chosen to approximate the natural shape of the acceleration 

trajectory so that the beam remains close to the inner diameter of the accelerating 

structure.   

 

Figure 110.  Cross section of a magnetron with two linear tapers used to approximate the square root 

shape of the acceleration trajectory. 
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Two Cost Saving Technologies 

  Ideally, the 10 MeV ICRA should utilize two technological developments which 

will lead to significant cost savings.  

1)  Cryogen free superconducting magnets utilize high Tc current leads in order to 

minimize heat transfer into the liquid helium.  This allows a compact refrigeration system 

mounted directly on the side of the magnet to produce a closed helium system.  Cryogen 

free magnets such as this would be particularly beneficial in the design of a portable 

ICRA.  Superconducting magnets which use NbTi coils produce magnetic fields up to 

about 8 Tesla and are relatively inexpensive.  The cost scales roughly with the volume of 

the warm bore.  Magnetic fields higher than 8 Tesla, require more advanced 

superconducting materials (i.e. Nb3Sn), therefore the cost rises significantly.  

 

2)  Industrial magnetrons at 460 MHz and 950 MHz and output powers in the range of  

50 to 100 kW would provide an inexpensive rf power source for the ICRA. 
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Energy Spread Caused by Radial Dependence of the Cavity Voltage 

  One challenge in designing a 10 MeV ICRA is that the radial defocusing 

discussed in section 2.6.2 will have a larger effect because the induced energy spread 

depends on the energy gain.   This means that a smaller fraction of the beam will be 

accelerated above the desired cutoff energy for the same injected beam emittance.  In 

order to design an ICRA which will accelerate significant current to the desired energy 

range, it is important to understand the source of the energy spread, so that we can 

determine which design parameters affect the spread. 

  In order to determine the absolute energy spread which will be induced over the 

entire acceleration trajectory, it is necessary to choose a particular cavity geometry and 

run computer simulations.   However, it is possible to gain some insight into the relative 

energy spread by considering only the spread induced by an infinitesimal energy gain at 

the entrance of the cavity.  

  As the beam spirals through the injection region (toward higher B-field), the ratio 

of α = p⊥ /p|| increases.  Assuming that all ions in the injected beam have the same energy 

but a slightly different angle relative to the local B-field, we have: 

2
||

22
total ppp += ⊥  

Differentiating gives:     |||| pppp0 δ+δ= ⊥⊥  

Rearranging yields a convenient expression.  

            
⊥

⊥δ
α−=

δ
p
p

p
p 2

||

||     (5.1) 
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  Equation 5.1 is valid through the injection region, up to the cavity entrance, 

however it is not valid in the acceleration region (where α increases, yet δp||/p|| remains 

roughly constant).  We define αo as the ratio of p⊥ /p|| at the entrance to the acceleration 

region.   For an ICRA of any reasonable length, αo will be greater than 1.  Therefore, at 

the entrance to the acceleration region, the fractional spread in p|| is greater than the 

fractional spread in p⊥  by a factor of αo
2.  

  Now consider equation 2.79, which gives an analytical expression for the energy 

gained across a single gap.        
n

ogap R
rqV

4
E �

�
��

�
�π=  

Two particles with different orbit radii (r) will see two different gap voltages.  This leads 

to a spread in the energy gained.   Differentiating with respect to r gives: 
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  Similarly, a spread in the number of kicks (N = 2nNturns) leads to a spread in the 

energy gain.  This can be found using equation 2.80.   
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Differentiating with respect to N gives: 
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If we take N to be continuous rather than discrete, then this equation is also true for the 

energy gain across a single gap.  

N
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Since r/R is constant in equation 2.80, equation 5.3 neglects any variation in r/R due to 

variation in p|| .   If we neglect this coupling term, the infinitesimal energy spreads caused 

by spreads in parallel and perpendicular momentum can be added directly. 
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Substituting equations 5.2 and 5.3 leads to: 
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This equation is valid for an infinitesimal energy spread at any point in the acceleration 

region.   At the entrance to the cavity δp|| and δp⊥  are related by equation 5.1.  It is 

convenient to express the energy spread in terms of the perpendicular momentum spread 

rather than the parallel momentum spread since 
⊥

⊥δ
p
p  remains constant throughout the 

injection region, while 
||

||

p
pδ

 does not (section 2.5.2).   
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Equation 5.4 shows that for a particular choice of harmonic number (n), this initial energy 

spread will never go below n.   Figure 111 shows the ratio of 
⊥⊥δ

δ
p/p
E/E gapgap  for several 

values of n and for a range of αo.   For αo greater than about 2, the energy spread is 

dominated by αo (or δp||).  While for αo less than 2, the spread is dominated by n (or δp⊥ ).   

Obviously, for high accelerated beam current, n and αo should both be as low as possible.  

However, it is more important to have low αo because the second term in equation 5.4 

varies as αo
2. 

 

 
 
 

 
 
           n = 3   4   5      
 
 
 
 
 
 
 
 
 
Figure 111.   The infinitesimal energy spread caused by an infinitesimal spread momentum spread is 

plotted vs. ααααo and for several values of n. 

 

 

 

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Alpha

(d
E

/E
) /

 (d
p 

/p
 )



 

 239

Optimization of ICRA Design Parameters 

  Optimization of ICRA design parameters requires two criterion. 

   1) Minimize cost 

   2) Maximize the accelerated beam current 

The cost can be minimized by: small magnet volume, and low rf power, and by using the 

cryogen free superconducting magnet as well as an industrual magnetron for an rf power 

source.  High accelerated beam current requires low harmonic number (n) and low α as 

discussed above. 

  In the optimization scheme below, the ICRA design parameters have been divided 

into natural input parameters, and output parameters. 

  Input parameters:  Eo,  α,  Bo,  n,  F,  Egain, R/r , 
⊥

⊥δ
p
p ,  Q,  �c 

  Output parameters:  frf ,  Vo ,  �cav,  rbeam ,  Rmagnetron,  Prf,  

 

Where Eo is the injection energy, α is the ratio of ⊥p  to ||p  at the cavity entrance, Bo is 

the central magnetic field,  n is the harmonic number,  F is the ratio of the rf cavity 

voltage (Vo) to the maximum cavity voltage set by the Kilpatrick criterion for sparking,  

Egain is the total energy gained through the acceleration region (Egain = Efinal – Eo). R/r  

is the average radius fraction throughout the acceleration trajectory, 
⊥

⊥δ
p
p  is the spread in 

the perpendicular momentum of the injected beam,  Q is the quality factor of the rf driven 
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magnetron,  and �c is the radial length of the capacitor gap in the magnetron (defined in 

Figure 16, pg 35). 

  Two input parameters should be ignored or taken as constant because we do not 

have much choice in their values. For an average trajectory through the acceleration 

region R/r  ≅  0.85, and in order to obtain the lowest possible capacitance (and a high 

Rs/Q),   �c should be no more than ≅  0.5 cm. 

  The output parameters are the rf frequency (frf), and the cavity voltage (Vo), the 

length of the acceleration region (�cav), the orbit radius of the final accelerated beam 

(rbeam), the radial distance needed for the resonators of the magnetron (Rmagnetron), and the 

rf power needed to run the magnetron (Prf).   Notice that �cav , rbeam , and Rmagnetron 

together define the volume of the superconducting magnet, because �cav is also the 

magnet flat field length, and the diameter of the magnet warm bore is given by D = 

2(rbeam + Rmagnetron).  

  In an effort to be brief, all design equations have been summarized in Figure 112, 

and Figure 113.  All equations have been presented previously in this dissertation, except 

the Kilpatrick criterion (below). The equations in Figure 112 deal only with the trajectory 

through the acceleration region.  The equations in Figure 113 deal only with the resonant 

structure of the magnetron and the rf power required to run the magnetron.  The equations 

represent the simplest analytical approach to relate all design parameters.   Only lowest 

order effects are used.  For example, the trajectory equations assume a centered proton 

orbit, the electric field in the magnetron is represented by first harmonic only, and 

relativistic effects are neglected. 
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Inputs 
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Figure 112.   A graphical map of the basic design equations for the acceleration trajectory of the  

ICRA.  Input parameters are Eo αααα, Bo, n, F, Egain, and the average radius fraction (r/R). 
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Figure 112 
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Figure 113.   Design equations for the resonant structure of the rf driven magnetron.  Input 

parameters are: ����c , n , and Q.    Parameters taken from Figure 112 are: g , ����cav , frf , and Vo .   
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  Using the equations of Figure 112, we see that choosing Eo and α defines p⊥  and 

||p  at the cavity entrance. Choosing Bo sets the beam orbit radius at the cavity entrance 

(ro).   The beam should enter the magnetron at an initial radius fraction of about ro/Ro = 

0.75, therefore choosing Bo also sets the initial radius of the magnetron (Ro).  The width 

of a gap is limited by the circumference of the magnetron at its entrance.   A good 

assumption is to divide the circumference equally among 2n gaps and 2n vanes.  

Choosing the harmonic number defines the gap width (g) and the rf frequency (frf).   

Using the Kilpatrick criterion for vacuum sparking, the maximum cavity voltage (Vo) 

depends on frf but also on the gap width [Kilpatrick, Humphries].   The actual cavity 

voltage should be set to some fraction (F) of the Kilpatrick voltage (Vo = FVK) to allow 

for field enhancement and a safety margin.  Once Vo is known, choosing Egain sets the 

number of turns through the acceleration region (Nturns).  Finally, the flat field length 

(�cav) is known from Nturns, ||p , and Bo.   

  In Figure 113, the capacitance of the magnetron (C) is calculated from geometry 

(review Figure 16).  Once C, frf, n, and the Q of the cavity are known, we can calculate 

the shunt resistance (Rs).  The rf power required to run the magnetron is then calculated 

from Vo and Rs.  Since the capacitance and frf are both known, the radius of the required 

inductor (rL) can be calculated.  This simple geometry assumes a round hole for the 

inductor (Figure 16),  However, the inductor can always be deformed to reduce its radial 

extent, therefore the equation for rL assumes a reduction by a factor of ½.  Finally, the 

radial distance needed for the magnetron oscillators (Rmagnetron ) can be calculated from �c 

and rL.   As mentioned above, the magnet diameter required is simply 

D = 2(rbeam + Rmagnetron). 
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  Using the equations in Figure 112 and 113, it is straightforward to derive 

expressions for each output parameter in terms of only input parameters and constants.  

This allows us to look at the effect of each input parameter on the output parameters. 
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  We want �cav and Rmagnet both small to reduce the cost of the superconducting 

magnet.  Similarly, the rf power should be low to reduce the cost of the rf power system. 

And the energy spread should be low in order to maximize the accelerated beam current.  
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  From these equations we can make several useful observations about the effect of 

each input parameter.   For this example, Egain ≅  10 MeV has been chosen because it is a 

useful beam energy for the applications discussed in chapter 1.  As stated previously, 

R/r  ≅  0.85, and in order to obtain a high Rs/Q without causing an unreasonably low 

capacitance we require �c ≅  0.5 cm.   No claims about the Q of the magnetron structure 

will be made until rf after measurements are done.  If an estimate of the rf power is 

needed, then a conservative value for the Q would be 2000.   Furthermore, 
⊥

⊥δ
p
p  is the 

result of the injected beam emittance and the electrostatic bend.  Again, if an estimate is 

needed, then the value from the 50 keV ICRA could be used %7.8
p
p

≅
δ

⊥

⊥ . 

This leaves only 5 input parameters: Eo, Bo, F, n, and α.  The effect of these 5 input 

parameters is summarized below.  

 

Effect of Injection Energy (Eo) 

1) High Eo causes shorter �cav (cheaper magnet) 

2) High Eo causes smaller injected beam emittance (higher accelerated beam current) 

3) High Eo allows larger gaps and higher Vo (potentially higher rf power).  However we 

can still choose F low to counteract this effect. 

 

Effect of Magnetic Field (Bo) 

4) High Bo causes shorter �cav (cheaper magnet). 
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5) High Bo causes smaller rbeam (cheaper magnet). 

6) High Bo causes higher rf frequency / smaller Rmagnetron (cheaper magnet). 

7) High Bo causes higher rf power. 

8) High Bo may require smaller injected beam size. 

 

Effect of Cavity Voltage Fraction (F) 

9) High F causes high Vo (high rf power). 

10) High F causes shorter �cav (cheaper magnet). 

 

Effect of Harmonic Number (n) 

11) High n requires higher rf power (Prf ~ n2  because Rs ~ n-2). 

12) High n causes a larger energy spread (lower accelerated beam current). 

13) High n causes higher rf frequency and a smaller Rmagnetron (cheaper magnet). 

14) High n causes shorter �cav (cheaper magnet). 

 

Effect of Alpha (α) 

15) High α causes a larger energy spread (lower accelerated beam current) 

16) High α causes a shorter �cav (cheaper magnet) 

17) High α lowers the rf power. 
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  Using the observations listed above we are now in a position to choose some input 

parameters.  It is obvious from points 1-3 that Eo should be as high as is convenient.  We 

choose Eo = 100 keV.   Similarly, Bo should be as high as possible without inducing 

excessive cost.  Current NbTi technology allows Bo = 8 Tesla.  Above this level the cost 

rises steeply.  Therefore, we choose Bo = 8 Tesla.The harmonic number n should be low 

for a high beam quality, however we want n high so that the magnetron fits inside the 

magnet bore.  The choice of n = 4 gives frf = 488 MHz which allows the use of an 

industrial magnetron as the rf power source.   Furthermore, frf = 488 MHz makes the 

radius of the magnetron resonators less than 2 inches.  Together with the final beam 

diameter, this leads to a warm bore of roughly 8 inches which is a convenient size. Figure 

114 shows the magnet bore diameter as a function of magnetic field for n = 4.  
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          Magnetron Resonators Only 
 
 
 
 
 
 
 

Figure 114.   The dotted line shows the diameter required for resonators of the magnetron (n=4)  

as a function of magnetic field.  The solid line shows total diameter D = 2(rbeam + Rmagnetron)   

( for a 10 MeV beam) needed for the warm bore of the superconducting magnet.    
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  The two remaining input parameters are F and α.  Since the beam quality has 

already been pushed low by using n = 4, it is important to have α as low as possible.  

However, low α causes a long cavity length.  Since high F will lower �cav, and F is the 

only parameter left to adjust, we should choose F as high as possible so that we can 

choose α as low as possible and yet still obtain a reasonable cavity length.  Choosing F 

high requires higher rf power, therefore F controls the trade off between rf power and 

cavity length.  The highest possible voltage fraction is F = 0.25  (0.5 for field 

enhancement, and 0.5 for a safety factor).   Table 16 below shows the resulting three 

designs with α = 2, 4, and 8. 
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Table 16.  Three different 10 MeV ICRA designs with αααα = 2,4,8. 

  

α 2 4 8 

ion  proton proton proton 
Efinal 10 MeV 10 MeV 10 MeV 
Eo 100 keV 100 keV 100 keV 
Bo 8 Tesla 8 Tesla 8 Tesla 
n 4 4 4 

Ngaps 8 8 8 
fc 122 MHz 122 MHz 122 MHz 
frf 488 MHz 488 MHz 488 MHz 
g 2.7 mm 2.9 mm 3.0 mm 
F 0.25 0.25 0.25 
Vo 56 kV 66 kV 69 kV 

Nturns 54 46 44 
ro 0.51 cm 0.55 cm 0.57 cm 
Ro 0.68 cm 0.74 cm 0.76 cm 
rexit 5.7 cm 5.7 cm 5.7 cm 
Rexit 6.0 cm 6.0 cm 6.0 cm 

�cav 34 inches 16 inches 8 inches 

C 14 pF 6 pF 3pF 
L 7×10-9 Henry 2×10-8 Henry 4×10-8 Henry 

Rs/Q 3 Ω 7 Ω 14 Ω 
Q 2000 2000 2000 
Rs 5.7 kΩ 13.3 kΩ 28.0 kΩ 
Prf 270 kW 160 kW 84 kW 

�c 0.5 cm 0.5 cm 0.5 cm 

rL 2.02 cm 2.10 cm 2.13 cm 
Rmagnetron 4.5 cm 4.7 cm 4.8 cm 

Magnet ID 8.3 inches  8.4 inches 8.5 inches 
n +α2 8 20 68 
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Discussion  

  The three ICRA designs presented in Table 16 all use an 8 Tesla central field,  

4th harmonic, and an injection energy of 100 keV.  Varying α = 2, 4, 8 controls the trade 

off between cavity length and quality of the accelerated beam.  Each design has a magnet 

bore of reasonable diameter (ID ≈ 8”).  However, the α = 2 design requires a flat field 

length of 34” while the α = 8 design fits into a very reasonable 8” length.  The α = 2 

design will certainly accelerate higher beam current because (n + α2) = 8, while the α = 8 

design will accelerate much lower beam current since (n + α2) = 68.  The longer cavity 

design also requires significantly more rf power because of the increased capacitance of 

the accelerating cavity. 

  It is useful to compare these results with a previous 10 MeV design which was 

computer modeled, but not put through this optimization process [1].  This design also 

used an 8 Tesla B-field, n = 4, for a 488 MHz magnetron, and had α = 4.1.  However the 

injection energy was 54 keV, and the fraction of Kilpatrick voltage was F = 0.5 which 

caused a cavity length of only 10 inches.   Computer modeling results showed 13µA 

(0.67 %) of the beam accelerated to the range from 5 to 10 MeV, assuming an injected 

proton beam of 2 mA in an emittance of 2π mm mrad (unnormalized) [1, 26].  

  The α = 4 design in Table 16 should do better than the previous 10 MeV results  

for several reasons.  The factors which control the energy spread (n, α, and Egain) are the 

same in both designs.  However, the optimized design in Table 16 has a higher injection 

energy, which causes a lower beam emittance at injection.  Also the previous 10 MeV 

results were obtained for a condition where the beam is not scraping the wall.  Experience 
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from the 50 keV ICRA experiment shows that peak accelerated beam current is obtained 

for a condition such that the beam current is scraping the wall (section 2.6.8).  

Furthermore, the analysis of the acceptance phase space in section 2.6.6 showed that the 

acceptance is independent of azumuthal (θ) position.  This leaves open the option of 

using multiple ion sources at different azimuthal positions, or a single source with 

multiple extraction apertures.    

  As a conservative goal, if the α = 4 design in Table 16 accelerated only 2% of the 

beam current to an energy distribution between 5 – 10 MeV, this would produce a 40 µA 

beam which would be useful for applications.  The α = 2 design would accelerate higher 

current and the α = 8 design would accelerate less. 

  All three designs in Table 16 have the distinct advantage of being able to utilize 

an existing industrial magnetron for the rf power source.  If a cryogen free magnet is also 

used, this combination would lead to an inexpensive accelerator.  At this point, the main 

question is how much current each design will accelerate.   In order to answer this 

question, the ICRA computer code (section 2.6) should be used to model a full emittance 

beam through each of the three designs.  In this way a proper analysis can be made 

between cost vs. accelerated beam current.  This task is recommended as future research.  

 

 

 

 

 



 

 252

6.  CONCLUSION 

  This experimental study of a 50 keV Ion Cyclotron Resonance Accelerator 

(ICRA) has successfully demonstrated ion acceleration using the same axial drift 

geometry that is characteristic of gyrotrons.  Although, cyclotron resonance acceleration 

has been previously demonstrated using electrons [5], this experiment marks the first 

time that this geometry has been used to accelerate an ion beam.   

  An rf driven magnetron operating at 152 MHz was mounted in 2.5 Tesla axial 

magnetic field supplied by a superconducting solenoid.   A 6.4 keV proton beam was 

injected into the high magnetic field region such that the beam spirals around magnetic 

field lines while continuing to drift axially through the acceleration region.  RF electric 

fields of the magnetron accelerated the beam in the azimuthal direction.   Measurements 

of the accelerated beam show an energy distribution with 7% of the beam current above 

24 keV and 1% above  42 keV. 

  Measurements of the injected beam were used to determine the radius of the 

proton orbit (r) and the number of turns through the acceleration region (Nturns) as well as 

the spreads in r and Nturns.  Beam measurements have also been used to estimate the 

emittance of the injected beam between 0.35π and 2.2π mm mrad (unnormalized).   

  Analytical theory and a complete computer model have been developed for the 

ICRA.  A full emittance injected beam has been simulated using the computer model to 

track many single particle trajectories.   The computer model was used to obtain energy 

distributions of the accelerated beam.  

  Computer generated energy distributions show reasonable agreement with the 

experimental energy distributions.  After a small correction of the bend voltage the 
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computer model gives good agreement with the magnitude and shape of the experimental 

data over a range of turn number.  

  The agreement between the computer model and experiment is considered a 

benchmark of the ICRA computer code.  Therefore the code will be a useful tool for 

designing a higher energy ICRA.  

  A scheme for optimizing an ICRA design has been given.  Design parameters 

which minimize cost and maximize the accelerated beam current have been identified.   

Three different 10 MeV designs have been proposed which offer a range of the trade off 

between cost vs. accelerated beam current.   A full cost analysis and prediction of the 

accelerated beam current using the ICRA computer code for each design is suggested as 

future research. 
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APPENDIX 
 

 

Radial Probe Corrections  

  Ideally the radial probe should block all of the beam current above a certain radius 

and read an integrated current vs radius.  Errors in the radial probe data were explained in 

section 3.2.5.  Three mathematical corrections are needed to correct the radial probe data:  

  1) Account for the slope on the inner edge of the probe 

  2) Account for beam lost on the electron blocker 

  3) Account for axial turn lengths which are longer than the probe length  

The slope on the inner edge of the radial probe matches the slope of the B-field for the   

50 keV orbit radius.   At any smaller radius, the slope on the probe induces an apparent 

energy spread in the measured data.  Corrections for the electron blocker and for the axial 

turn spacing both depend on the beam energy.  Therefore, correction 1) must be made 

before 2) or 3).   The order of 2) and 3) does not matter.  

 

Slope on the Inner Edge 

  The slope on the inner edge of the radial probe matches the slope of the B-field 

for the 50 keV orbit radius only.   At any radius smaller than this, the slope of the field 

line is less than the slope of the probe.  Thus the probe induces an energy spread on the 

measured data.   Unaccelerated beam data can be corrected using the simple thin shell 

model.   Accelerated beam data can only be corrected using the thick shell model.   
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Thin Shell Model 

  The thin shell model is only valid for the unaccelerated beam.   We begin with a 

simple example for constant magnetic field.   Assume the beam is a uniform rotating 

cylindrical shell with radius ro and zero thickness (∆r = 0).  According to Figure A1, the 

beam current measured on the R-probe (Im) is simply the total beam current (Io) times the 

fraction intercepted by the probe. 

      �
�
��

�
� ∆=
�

zII om      (A.1) 

Using the triangle at the tip of the probe, ∆z can be expressed in terms of the beam radius 

(ro), the measured radius (rm) and the probe slope (mp). 

zm)rr( pmo ∆=−  

 

 

 

 

Figure A1.  Geometry of the radial probe showing how the sloped inner edge cuts across an  

un-accelerated beam of radius ro.   In this example the magnetic field is constant. 
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Therefore, the measured beam current as a function of rm becomes: 
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Solving for Io gives a formula to recover the actual beam current from the measured data. 
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If the B-field is not constant, but the field line has slope mB, then the length intercepted 

by the probe (∆�) is more complicated.   
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This formula can be applied directly to the measured data (Im vs. rm). 
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Thick Shell Model 

  Radial distributions of the accelerated beam have not been corrected for the 

distortion caused by the slope on the inner edge of the radial probe.  The distortion is 

largest in the lower energy portion of the distribution and goes to zero at 50 keV.  

Correcting for this effect would shift current toward higher energies, therefore neglecting 

this correction leads to conservative energy distributions.   Furthermore, some of the 

beam is never picked up at the low end of the energy spectrum (0 – 5 keV), therefore not 

enough information is known to correctly perform the correction.   For completeness, the 

effect is explained below. 

  The accelerated beam is not concentrated at one radius, but rather is spread out in 

a radial distribution which ranges from near r = 0 to the radius of the maximum energy.  

Therefore, correcting accelerated data for the effect of the probe slope requires a thick 

shell model. 

  As an example, assume that the B-field is constant (horizontal field lines) and the 

beam current is distributed over a range from r = (0 – 20) mm.  The radial probe is moved 

inward in 2mm steps.   As the probe moves from rm = 6 mm to rm = 4 mm, a 2 mm wide 

strip along the sloped inner edge of the probe picks up some additional beam current  

(∆I4 = I4 - I6).   Although this measured current has been recorded at rm = 4 mm, the slope 

on the inner edge of the radial probe has cut across shells with radius 6,8,10,12,and 

14mm.  Therefore the proper correction must take a fraction of the current measured at 

low radius, and redistribute it to higher radii.   
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Figure A2.  The slope on the inner edge of the radial probe cuts across shells at several radius. 

The probe is shown here as it moves from rm = 6mm to 4mm.   

 

  For each radial step, the additional current measured (∆Ii) can be decomposed into 

the contribution from each shell.  The contribution from each shell is the area times the 

current density of that shell (Ai Ji). 

      ∆I2 = A3J3 + A5J5 + A7J7 + A9J9 + … 

      ∆I4 =  0   + A5J5 + A7J7 + A9J9 + … 

      ∆I6 =  0   +  0   + A7J7 + A9J9 + … 

Thus, the transformation is a matrix equation. 

jiji JAI =∆  

If the total number of radial steps taken is “n”, then Aij is an nn × matrix with zeros 

below the diagonal.   Jj is the actual current density in each radial shell and ∆Ii is the 

measured increase in current in going from r = i+2 to i.    
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The actual beam current can be recovered by inverting this matrix equation: 

j
1

iji IAJ ∆= −  

  The distortion in the measured radial distribution is less for the actual B-field than 

for the constant magnetic field case illustrated in Figure A2.   In reality the slope of the 

radial probe matches the 50 keV field line, therefore the distortion goes to zero at full 

energy.     Figure A3 shows the range of energies that are mixed.  

 

 

Figure A3.  The measured beam current at a particular energy actually contains a spread in beam 

energies bounded by the two lines shown here.  For example, the beam current measured at 24 keV 

actually contains energies ranging from 24 keV  to 31 keV.   The spread goes to zero at 50 keV. 

Vertical dotted lines mark the injected beam, half maximum, and the full the beam energy (48 keV) 
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Beam Lost on the Electron Blocker 

  The electron blocker is mounted along the upstream edge of the radial probe as 

shown in Figure A4.   Since electrons are trapped on magnetic field lines, the electron 

blocker casts a shadow over the Faraday cup portion of the probe that electrons cannot 

reach.  On the other hand, ions orbit around the z axis with large radius therefore they can 

pass behind the electron blocker and strike the Faraday cup.   

 

 

 

Figure A4.   Geometry of the radial probe and the electron blocker. 

 

  Since the ion beam moves forward in z as it rotates azimuthally, a small portion of 

the ion beam will be intercepted by the electron blocker.   Figure A5 shows the geometry.  

The fraction (f) of the beam that is lost is just the arc length across the width of the 

blocker divided by the circumference of the entire orbit ( πθ=π= 2r2sf ).  Since the 

width of the blocker is constant, error induced will be largest for beams with small 

diameter.   If the e- blocker has width (w) and the beam has radius (r) then: 

)
2

sin(rw
2
1 θ=  
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Figure A5.  Geometry showing the fraction of an ion orbit 

circumference which is intercepted by the electron blocker. 

 

So the fraction (f) of the orbit that is blocked is 

          )
r2

w(sin1f 1−

π
=     (A.4) 

The measured current (Im) is reduced from the actual current (Io) by: 

)f1(II om −=  

Therefore the corrected beam current is: 

              )f1(
I
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=     (A.5) 

  Notice that this correction depends on knowing the radius of the beam correctly.  

Therefore, the energy spread caused by the slope on the leading edge of the probe must 

be corrected for before the electron blocker correction is applied.  

  The electron blocker correction must be applied only to the current at a particular 

radius.  Therefore, since data taken with the radial probe is an integrated distribution, the 

currents must first be unstacked to recover the actual beam current at each radius  

(∆Ii = Ii –Ii+1) then correction factor is applied, then data is resummmed (Ii = Ii+1+∆Ii).  
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Axial Turn Length  

  In the extraction region, the axial momentum of the beam (pz) increases as the 

magnetic field drops off .  The axial length between turns (∆zturn) is proportional to pz.  

This relation was derived in section 2.5.8.   Furthermore, the increase in ∆zturn depends on 

the energy of the beam upon exit from the acceleration region.   Section 2.5.8 showed 

that ∆zturn is approximately linear with the beam orbit radius in the extraction region.  

  If the axial turn length is longer than the axial length of the radial probe (�), then 

the Faraday cup on the radial probe will intercept only a fraction of the total beam current 

(Io).   The measured beam current (Im) is simply: 

turn
om z

II
∆

= �  

Therefore the corrected beam current is: 
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where ∆zturn must be calculated for each beam energy in the distribution using equations 

2.62 and 2.88.   Since ∆zturn increases with beam energy, this correction effects mostly the 

upper energy portion of the radial distribution.  

  This correction depends on knowing the radius of the beam correctly.  Therefore, 

the energy spread caused by the slope on the leading edge of the probe must be corrected 

for before correcting for the axial turn spacing.  Correction for the axial turn spacing must 

be applied only to the current at a particular radius.  Therefore, since data taken with the 

radial probe is an integrated distribution, the currents must first be unstacked to recover 

the actual beam current at each radius (∆Ii = Ii –Ii+1) then correction factor is applied, then 

data is resummmed (Ii = Ii+1+∆Ii).  
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