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ABSTRACT

SCATTERING PROCESSES
IN ATOMIC PHYSICS, NUCLEAR PHYSICS, AND COSMOLOGY

By

Gavriil Shchedrin

The universal way to probe a physical system is to scatter a particle or radiation off the

system. The results of the scattering are governed by the interaction Hamiltonian of the

physical system and scattered probe. An object of the investigation can be a hydrogen atom

immersed in a laser field, heavy nucleus exposed to a flux of neutrons, or space-time metric

perturbed by the stress-energy tensor of neutrino flux in the early Universe. This universality

of scattering process designates the Scattering Matrix, defined as the unitary matrix of the

overlapping in and out collision states, as the central tool in theoretical physics.

In this Thesis we present our results in atomic physics, nuclear physics, and cosmology. In

these branches of theoretical physics the key element that unifies all of them is the scattering

matrix. Additionally, within the scope of Thesis we present underlying ideas responsible for

the unification of various physical systems. Within atomic physics problems, namely the

axial anomaly contribution to parity nonconservation in atoms, and two-photon resonant

transition in a hydrogen atom, it was the scattering matrix which led to the Landau-Yang

theorem, playing the central role in these problems. In scattering problems of cosmology and

quantum optics we developed and implemented mathematical tools that allowed us to get a

new point of view on the subject. Finally, in nuclear physics we were able to take advantage

of the target complexity in the process of neutron scattering which led to the formulation of

a new resonance width distribution for an open quantum system.
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Chapter 1

Introduction

In this Thesis we summarize our results in atomic physics, quantum optics, nuclear physics,

and cosmology unified by various aspects of quantum scattering theory.

In Chapter 2 our object of investigation is the scattering matrix corresponding to the

axial anomaly contribution to parity nonconservation in atoms. Here we explain physics of

parity nonconservation in complex atoms and discuss the contribution of the axial anomaly to

parity nonconservation in atomic cesium. The main result is the prediction of the emission of

an electric photon by the magnetic dipole which has not been observed yet. The probability

of this process is very small but the non-zero result is important from theoretical point of

view.

The main aspect of our calculation is related to the well known theorem of axial anomaly

cancellation in the Standard Model. According to the Landau-Yang theorem, it is impossible

for the real Z-boson of spin J = 1 to decay into two real photons in contrast to the allowed

two-photon decay of the spinless π0-meson. However, if one of the photons that connects

the triangular graph of the axial anomaly with the electron atomic transition, e.g., 6s − 7s

transition in cesium, is virtual, the axial anomaly does not vanish. We have shown that one

can see the impact of the axial anomaly in atomic physics through the parity violation in

atoms.
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Chapter 3 is devoted to the electron scattering process off an arbitrary central potential

in the presence of strong laser field. Here we introduce a new method that allows one to

obtain an analytical cross section for the laser-assisted electron-ion collision. As an example

we perform a calculation for the hydrogen laser-assisted recombination. The standard S-

matrix formalism is used for describing the collision process. The S-matrix is constructed

from the electron Coulomb-Volkov wave function in the combined Coulomb-laser field and

the hydrogen perturbed state. By the aid of the Bessel generating function, the S-matrix

is decomposed into an infinite series of the field harmonics. We have introduced a new step

that results in an analytical expression for the cross section of the process. The theoretical

novelty is in the application of the Plancherel theorem to the Bessel generating function.

This allows one to perform summation of the infinite series of Bessel functions and thus

obtain a closed analytical expression for the laser-assisted hydrogen photo-recombination

process.

In the field of nuclear physics presented in Chapter 4 we investigate the resonance width

distribution for low-energy neutron scattering off heavy nuclei. Our interest was ignited by

the recent experiments that claimed significant deviations from the routinely used chi square,

or the Porter-Thomas, distribution. The unstable complex nucleus is an open quantum

system, where the intrinsic dynamics has to be supplemented by the coupling of chaotic

internal states through the continuum. We propose a new width distribution based on

random matrix theory for a chaotic quantum system with a single decay channel as well

as for an open quantum system with an arbitrary number of open channels. The revealed

statistics of the width distribution exhibits distinctive properties that are characteristically

different from the regularities shared by closed quantum systems.
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In Chapter 5 our object of investigation is the space-time metric perturbed by the stress-

energy tensor of neutrino scattering in the early Universe. In this Chapter we have developed

a mathematical machinery that allows one to evaluate gravitational wave damping due to

freely streaming neutrinos in the early Universe. The solution is represented by a convergent

series of spherical Bessel functions derived with the help of a new compact formula for

the convolution of spherical Bessel functions of integer order. These calculations can be

compared to the tensor fluctuations of the Cosmic Microwave Background in order to reveal

direct evidence of the presence of gravitational waves in the early Universe. The developed

technique can be applied for the analysis of the scalar Cosmic Microwave Background

fluctuations which provides a direct test of the standard inflationary cosmological model.

Finally, Chapter 6 summarizes the results of our investigation on scattering processes in

atomic physics, quantum optics, nuclear physics, and cosmology. Basic governing principles,

such as conservation laws and detailed balance principle, unitarity and gauge invariance of

the scattering matrix are given special attention throughout the Thesis.
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Chapter 2

Atomic Physics

In this chapter the main interest is parity violation in atomic physics. Parity operation

is defined as a coordinate inversion ~r → −~r, which tests the coordinate symmetry of the

physical system, as well as intrinsic symmetries of fundamental physical objects. In quantum

electrodynamics (QED) that fully describes electron-photon interaction, parity is conserved

due to the invariance of the QED action under the spatial inversion.

However, in the Standard Model that treats electromagnetic and weak forces as a unified

electroweak interaction, which led to a prediction and subsequent discovery of the W and Z

bosons, parity is violated. The W and Z bosons are the carriers of the so-called weak axial

currents which are responsible for the parity violation.

In addition to the high energy experiments, that aim at the verification of the Standard

Model on a very high energy scale, one can test its predictions on a low energy scale by

running tabletop experiments. In particular, we are interested in parity non-conservation

effects in atoms, driven by the effective parity nonconserving interaction of electrons with

the nucleus.

This chapter is organized as follows. In the first subsection we briefly review the general

scope of the problem. In the section on the Furry theorem we provide an important result

for the fermion loop diagrams with an odd number of interaction vertices, e.g. one on Fig.

2.1. Next subsection stands for a general physical idea behind axial anomaly calculation in

atomic physics. The actual calculation is presented in section Axial Anomaly S-matrix. In
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this section we explicitly write the S-matrix for the decay of the Z-boson into two photons

and apply it to our calculation. We show that due to the transversality conditions and

on-shell constraint for real photons and the Z-boson, the axial anomaly diagram identically

vanishes, in a full accordance with the Landau-Yang theorem. However, if one of the photons

that connects the triangular graph of the axial anomaly with the electron atomic transition,

e.g., 6s−7s transition in cesium, is virtual, the axial anomaly does not vanish and contributes

to the effect of parity nonconservation.

The results of this chapter are based on our paper,

GS and L. Labzowsky, Phys. Rev. A 80, 032517 (2009).

2.1 Standard Model in low-energy physics

The problem of testing the Standard Model (SM) in the low-energy physical phenomena is

one of the interesting topics in physics actively pursued in the last few decades. The SM

in the low energy limit is tested in nuclei, where significant many-body enhancement of the

parity nonconservation (PNC) effects was predicted and confirmed. Along with the PNC

effects in nuclei, atomic physics experiments offer a high precision for validating the SM

predictions. The most accurate of atomic experiments is the one with the neutral cesium

atom, first proposed in [1] and performed with the utmost precision in [2].

The basic atomic transition employed in the cesium experiment was the strongly

forbidden 6s − 7s transition of the valence electron with the absorption of a magnetic

dipole photon, M1. In the real experiment this very weak transition was opened by the

external electric field but it does not matter for our further derivations. The Feynman
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graphs illustrating the PNC effect in cesium are given below in Fig. 2.2.

The atomic experiments are indirect and require very accurate calculations of the PNC

effects to extract the value of the characteristic parameter of the SM, the Weinberg angle,

which can be compared with the corresponding high-energy value. The main difficulty with

the PNC calculations in neutral atoms is the necessity to take into account the electron

correlations within the complex atom. Therefore the experiments with much simpler systems,

such as few-electron highly charged ions (HCI) would be highly desirable. Several proposals

on the subject were considered in [3–6]. At the same time relativistic corrections make

heavy-Z atoms preferable due the enhancement factor for electronic wave functions.

The radiative corrections to the PNC effect are important in cesium calculations to reach

the agreement with the high-energy SM predictions. These radiative corrections include

electron self-energy, vertex and vacuum polarization Feynman diagrams. They are even

more important in the case of the HCI. The entire set of these corrections for the neutral

cesium atom was calculated in [7–10]. The electron self-energy and vertex corrections for

HCI were obtained in [11]; the vacuum polarization correction was given in [12].

The full set of radiative corrections including Z-boson loops has not been calculated,

neither for a neutral atom nor for the HCI. Therefore the problem still cannot be considered

as fully solved.

2.2 Furry theorem

In quantum field theory Feynman diagrams with a high number of vertices are notoriously

difficult for calculation. However, in the special case of a fermion loop diagram with an odd

number of identical interaction vertices, its contribution, according to the Furry theorem,

6



γ

γ

γ

γµ

γν

γλ

p

k1

k2

p− k2

p+ k1

q

Figure 2.1: Proof of the Furry theorem on the example of a triangle Feynman graph.

is identically zero. To illustrate the proof of the Furry theorem we recognize that the Dirac

matrices γµ change sign and get transposed, γ̂µ, under charge conjugation C,

C−1γµC = −γ̂µ, (2.1)

while the charge conjugated fermion propagator modifies according to

C−1G(p)C = C−1
[
pνγ

ν +me

p2 −m2
e

]
C =

[−pν γ̂ν +me

p2 −m2
e

]
= Ĝ(−p). (2.2)

Therefore a typical triangle amplitude will change sign under charge conjugation,
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Aµνλ(k1, k2) = (2.3)∫
d4p Tr

[
γµ
6 p +me

p2 −m2
e
γν
6 p− 6 k2 +me

(p− k2)2 −m2
e
γλ
6 p+ 6 k1 +me

(p+ k1)2 −m2
e

]
−→ (−1)3

∫
d4p Tr

[
γµ
6 p +me

p2 −m2
e
γν
6 p− 6 k2 +me

(p− k2)2 −m2
e
γλ
6 p+ 6 k1 +me

(p+ k1)2 −m2
e

]
≡ 0.

The same argument holds for a Feynman diagram with an arbitrary number of odd fermion-

boson vertices, and we thus prove the Furry theorem.

However, if a Feynman diagram has an odd number of vertices of a different kind, for

instance, two vector photon vertices, and a single π0 pseudo-scalar vertex, or a single Z-boson

pseudo-vector vertex, the corresponding Feynman diagram has a non-zero value.

2.3 Axial Anomaly

In the present work we consider a very special radiative correction to the PNC effect,

presented by a triangular Feynman graph, or axial anomaly (AA). We understand the triangle

AA as a fermion loop with at least one weak vertex [13]. Our conclusion will be that in a

neutral atom the contribution of the axial anomaly is non-zero albeit relatively small.

The leading contribution of the AA to the atomic PNC effect is depicted in Fig. 2.2 (c).

This contribution corresponds to the Adler-Bell-Jackiw anomaly [14]. In this work we will

concentrate exclusively on this term.

The final answer, that looks like the emission of the electric photon by the magnetic

dipole, can be easily understood before any real calculations are made. Suppose we have the

6s-7s transition in cesium. The virtual photon in this transition that connects the atomic

electron line with the triangular graph of the axial anomaly must be of a magnetic dipole

type M1. This virtual photon is absorbed by the fermion current in the axial anomaly
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a

M1

7s

6s

7s

6s

Z

E1

6p, 7p

7s

6s

Z

b c

E1

Figure 2.2: The Feynman graphs that describe PNC effect in cesium. The double solid line
denotes the electron in the field of the nucleus. The wavy line denotes the photon (real or
virtual) and the dashed horizontal line with the short thick solid line at the end denotes the
effective weak potential, i.e. the exchange by Z-boson between the atomic electron and the
nucleus. Graph (a) corresponds to the basic M1 transition amplitude, graph (b) corresponds
to the E1 transition amplitude, induced by the effective weak potential. The latter violates
the spatial parity and allows for the arrival of p-states in the electron propagator in graph
(b), of which the contributions of 6p and 7p states dominate. The standard PNC effect
arises due to the interference between graphs (a) and (b). Graph (c) corresponds to the
axial anomaly. The thin solid lines represent virtual electrons and positrons. To graph (c),
the Feynman diagram with interchanged external photon and Z-boson lines should be added.
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triangle, through a first vertex, and cannot change the parity of the fermion current flowing

through this vertex. Now, the second vertex in the axial anomaly triangle that is responsible

for exchange of the Z-boson between the fermion line and the cesium nucleus has the Dirac

matrix γ5 that changes the parity of the fermion line. As the result, the third vertex in the

axial anomaly triangle that connects two fermion lines with an opposite parity must emit

the electric photon type E1.

2.4 Axial Anomaly S-matrix

We employ the standard expression for the effective parity nonconserving interaction of the

atomic electron with the nucleus [15] in the form

HW = APNCρ0(~r)γ5, (2.4)

with parity nonconservation vertex APNC,

APNC = −GFQW
2
√

2
, (2.5)

Dirac pseudoscalar matrix γ5,

γ5 = iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ =

 0 1

1 0

 , (2.6)

and contact electron-nucleus interaction ρ0(~r), where one can neglect the finite size of an

atomic nucleus,

ρ0(~r) = δ(~r). (2.7)
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GF is the Fermi constant given in terms of the proton mass mp by

GF = 1.027× 10−5 1

m2
p

= 1.166× 10−5 1

GeV2
. (2.8)

QW is the weak charge of the nucleus,

QW = −N + Z(1− 4 sin2 θw), (2.9)

while Z and N are the numbers of protons and neutrons in the nucleus, and θw is the

Weinberg angle. The currently accepted value for this parameter is

sin2 θw ' 0.23. (2.10)

The singular δ-function potential acting in the space of Dirac electron wave functions does

not vanish only when electron and nucleon coordinates coincide. This approximation is valid

if the transferred momentum q is much less than the mass of Z-boson, which is clearly valid

for the atomic electron. For the electron in the loop this approximation is valid due to the

fact that the momentum transfer to the nucleus, as one can see on Fig. 2.3, is (q − k)

where q2 � m2
Z , and as the consequence (q− k)2 � m2

Z . Therefore we can parametrize the

coupling of the electron-nucleon interaction by the contact interaction (2.4).
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p
′
1

p1

q
p

p + q

k

p + k

q − k

γν

γµ

γλγ5

γρ

Figure 2.3: Flow of momenta in the axial anomaly.

We write down the S-matrix corresponding to the amplitude Fig. 2.2 (c) in the

momentum representation (see Fig. 2.3):

S = (ie)3
∫

d4p′1
(2π)4

d4p1

(2π)4

d4p

(2π)4
Ψn′s(p1)γρΨns(p

′
1)

gρν

q2 + iε
(2.11)

×Tr

[
γµ
6 p+me

p2 −m2
e
γν
6 p+ 6 q +me

(p+ q)2 −m2
e
γλγ5 6 p+ 6 k +me

(p+ k)2 −m2
e

]
V PNC
λ (q − k)Aµ(k).
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Here e and me are the electron charge and mass,

Ψns(p) = Ψns(~p)δ(p0 − εns) (2.12)

is the wave function of the bound atomic electron in the state |ns〉 with εns being the energy

of this state, the transferred momentum q is

q = p1 − p′1, (2.13)

gρν is the pseudo-Euclidean metric tensor,

gρν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


, (2.14)

γµ are the Dirac matrices,

γµ =

 0 σµ

−σµ 0

 ≡
 0 σ

−σ 0

 , (2.15)

γ0 ≡ β =

 1 0

0 -1

 , (2.16)

and Aµ(k) is the wave function of the emitted photon,

Aµ(x) =

√
2π

ω
εµe
−ikx, (2.17)
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in the momentum representation. Here εµ and k = (ω,k) are the four-vectors of the

polarization and the momentum of the emitted photon, correspondingly.

In the momentum representation the potential V PNC
λ for the parity-nonconserving

interaction of the electron with the nucleus is

V PNC
λ (q − k) = APNCρ0(q − k)δλ0, (2.18)

where the nucleon density in the particular case of the point-like nucleus is

ρ0(q − k) = 2πδ(q0 − k0). (2.19)

In this chapter we use the relativistic units with h̄ = c = 1.

2.5 Z-boson decay

The central element in the Feynman diagram of Fig. 2.3, the fermion triangle, involves

two photon vertices and a single Z-boson vertex. First we consider the Z-boson (with spin

J(Z) = 1) decay [16] into two photons, Fig. 2.4. The Landau theorem forbids this decay

because a two-photon system cannot exist with angular momentum J = 1 [17,18], in contrast

to the allowed decay π0 → γγ since J(π0) = 0 [19], see Fig. 2.5. We shall derive this result

in the Feynman diagram language for the S-matrix of Fig. 2.4, and see implications for the

diagram in Fig. 2.3.

The S-matrix of the Z-boson decay into two photons, Fig. 2.4, is proportional to

Sµνλ(k1, k2) =

∫
d4p Tr

[
γµ
6 p +me

p2 −m2
e
γν
6 p− 6 k2 +me

(p− k2)2 −m2
e
γλγ5 6 p+ 6 k1 +me

(p+ k1)2 −m2
e

]
. (2.20)
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Z

γ

γ

γµ

γν

γλγ5

p

k1

k2

p− k2

p+ k1

q

Figure 2.4: Feynman diagram of Z-boson decay into two photons.

A simple change of variables in the Z-boson amplitude (2.20),

k1 → k, (2.21)

k2 → −q,

leads to the loop integral in the original PNC-amplitude, eq. (2.11).

Here we shall note that the trace of a product of the Dirac γ5 matrix with the four other

distinct Dirac matrices leads to a non-vanishing result,

Tr
[
γ5γτγµγνγλ

]
= 4iετµνλ, (2.22)
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π0

γ

γ

γµ

γν

γ5

p

k1

k2

p− k2

p+ k1

q

Figure 2.5: Feynman diagram of π0-meson decay into two photons.

where ετµνλ is the unit antisymmetric fourth rank tensor defined as ε0123 = −1. All other

combinations return zero result. Therefore the most general expression for the Z-boson

decay amplitude Sλµν(k1, k2) is

Sµνλ(k1, k2) = A1k1τετµνλ + A2k2τετµνλ + A3k1νk1ξk2τεξτµλ (2.23)

+A4k2νk1ξk2τεξτµλ + A5k1µk1ξk2τεξτνλ + A6k2µk1ξk2τεξτνλ.

The expressions for Ai with 3 ≤ i ≤ 6 represent convergent integrals and are evaluated using

the standard Feynman technique. The first step is to introduce Feynman variables ξi which

16



simplify the loop integral (2.20),

1

α1α2α3
= 2!

∫ 1

0
dξ1

∫ 1

0
dξ2

∫ 1

0
dξ3

δ(1− ξ1 − ξ2 − ξ3)

(α1ξ1 + α2ξ2 + α3ξ3)3
(2.24)

≡ 2!

∫ 1

0
dξ1

∫ ξ1

0
dξ2

1

(α1ξ2 + α2(ξ1 − ξ2) + α3(1− ξ1))3
.

In our specific case the variables αi are

α1 = (p+ k1 + k2)2 −m2
e, (2.25)

α2 = (p+ k2)2 −m2
e, (2.26)

α3 = p2 −m2
e. (2.27)

Therefore the loop integral becomes

1

α1α2α3
≡ 1

[(p+ k1 + k2)2 −m2
e][(p+ k2)2 −m2

e][p
2 −m2

e]
(2.28)

= 2!

∫ 1

0
dξ1

∫ ξ1

0
dξ2

1

(α1ξ2 + α2(ξ1 − ξ2) + α3(1− ξ1))3
.

First we shall simplify the denominator in eq. (2.28) as follows:

[(p+ k1 + k2)2 −m2
e]ξ2 + [(p+ k2)2 −m2

e](ξ1 − ξ2) + [p2 −m2
e](1− ξ1)

= p2 − 2p(−k2ξ1 − k1ξ2) + (−m2 + 2k2k1ξ2 + k2
1ξ2 + k2

2ξ1). (2.29)
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Further we notice a common integral

∫
d4p

(p2 + l − 2pk)3
=

iπ2

2(l − k2)
, (2.30)

and the loop integral becomes

∫
d4p

1

[(p+ k1 + k2)2 −m2
e][(p+ k2)2 −m2

e][p
2 −m2

e]
(2.31)

= 2!

(
iπ2

2

)∫ 1

0
dξ1

∫ ξ1

0
dξ2

1

−m2 + 2k2k1ξ2 + k2
1ξ2 + k2

2ξ1 − (k2ξ1 + k1ξ2)2
.

Finally the expression of eq. (2.31) can be simplified by the change of variable

ξ1 −→ 1− ξ1, (2.32)

and the denominator in eq. (2.31) becomes

−m2 + 2k2k1ξ2 + k2
1ξ2 + k2

2(1− ξ1)− (k2(1− ξ1) + k1ξ2)2 (2.33)

= −m2 + k2
1ξ2 + k2

2ξ1 − (k2ξ1 − k1ξ2)2.

Finally the expressions for Ai with 3 ≤ i ≤ 6 will be expressed in terms of the convergent

integrals

Jrst(k1, k2) =
1

π2

∫ 1

0
dξ1

∫ 1

0
dξ2

∫ 1

0
dξ3

(ξ1
rξ1

sξ3
t)δ(1− ξ1 − ξ2 − ξ3)

(ξ1ξ2(k1 + k2)2 + ξ1ξ3k
2
1 + ξ2ξ3k

2
2 −m2)

. (2.34)

In order to obtain a convergent and gauge invariant expression for the amplitude Sµνλ we
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impose the Ward identities,

k1µSµνλ = 0, (2.35)

k2νSµνλ = 0. (2.36)

In terms of the general expression (2.23), eqs. (2.35) and (2.36) lead to the desirable

constraints on the divergent integrals

[−A2 + k2
1A5 + (k1k2)A6]k1ξk2τεξτνλ = 0, (2.37)

[−A1 + k2
2A4 + (k1k2)A3]k1ξk2τεξτµλ = 0. (2.38)

In this way the amplitude Sµνλ will be finite and gauge-invariant if we choose A2(k1, k2)

and A1(k1, k2) in the form

A2(k1, k2) = k2
1A5 + (k1k2)A6, (2.39)

A1(k1, k2) = k2
2A4 + (k1k2)A3. (2.40)
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Finally we come to the Z-boson amplitude Sµνλ,

Sµνλ(k1, k2) = J110(k1, k2)εµναβk1αk2β(k1 + k2)λ (2.41)

+J101(k1, k2)(ελναβk1αk2βk1µ + k2
1ελµναk2α)

+J011(k1, k2)(ελµαβk1αk2βk2ν + k2
2ελµναk1α),

with the integrals Jrst(k1, k2) given by eq. (2.34).

Due to the transversality conditions for the Z-boson and on-shell photons expressed as

(k1 + k2)λελ = 0,

ε1µk1µ = 0, (2.42)

ε2νk2ν = 0,

and conditions for the real photons,

k2
1 = 0, (2.43)

k2
2 = 0,

we arrive at the result of the Landau theorem SZγγ = 0. But in our case one of the photons

(e.g. with index 2) is virtual, as well as the Z-boson. Therefore the initial S-matrix (2.11)

returns a nonzero result.

20



2.6 PNC amplitude

The next step is to contract the Z-boson amplitude Sµνλ with the Z-boson δ-potential,

photon polarization vector, and photon propagator,

Sµνλ(k, q)δλ0ε1µa2ν , (2.44)

where

a2ν =
γ0γρgρν

q2
=
αρgρν

q2
=
αν
q2
, (2.45)

with Dirac α-matrices

αµ = γ0γµ =

 0 σ

σ 0

 . (2.46)

By noticing

ε0µνα = −εµνα, (2.47)

we finally arrive at the axial anomaly amplitude,

Sµνλ(k, q)δλ0ε1µ
αν
q2

= J011(k, q)[εµαβkαqαε1µ(α, q) + εµναε1µkααν ]

= J011(k, q)

{
(ε, [k × q])(α, q)

q2
+ (ε, [α×k])

}
, (2.48)
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and S-matrix for the PNC effect is

S = (ie)3APNCδ(Ef − Ein − ω0)

√
4π

2ω0
(2.49)

×
∫

d3p′1
(2π)3

d3p1

(2π)3
Ψ+(p1)J011(k, q)

[
(ε, [k × q])(α, q)

q2
+ (ε, [α×k])

]
Ψ(p′1).

Next we turn our attention to non-relativistic analysis of the S-matrix. The lower component

of the Dirac electron wave function χ is expressed in terms of the upper one ϕ via

χ =
(σp)

2m
ϕ. (2.50)

Dirac α-matrices mix these components,

(
ϕ∗1 χ∗1

) 0 σ

σ 0


 ϕ

′
1

χ
′
1

 , (2.51)

which reduces to

ϕ∗1

[
σ

(σp′1)

2m
+

(σp1)

2m
σ

]
ϕ
′
1. (2.52)

The first term in square brackets in eq. (2.49) can be simplified to

(q, [ε× k])(σ, q)

q2
(σp′1) + (σp1)

(q, [ε× k])(σ, q)

q2
, (2.53)

while the second term reduces to

(σ, [k×ε])(σp′1) + (σp1)(σ, [k×ε]). (2.54)
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Further we employ the well-known identity for the Pauli matrices,

(σa)(σb) = (ab) + i(σ, [a× b]), (2.55)

and owing to the transferred momentum is q = p1 − p′1, eq. (2.53) becomes

(q, [ε× k])(σ, q)

q2
(σp′1) + (σp1)

(q, [ε× k])(σ, q)

q2
= (q, p1 + p′1)

(q, [ε× k])

q2
. (2.56)

In order to simplify eq. (2.54) we use the identities

(σ, [k × ε])(σp′1) = ([k × ε], p′1) + i(σ, [[k × ε]× p′1]]), (2.57)

(σp1)(σ, [k × ε]) = (p1, [k × ε]) + i(σ, [p1 × [k × ε]]). (2.58)

Therefore the sum of these terms is

(σ, [k × ε])(σp′1) + (σp1)(σ, [k × ε]) (2.59)

= (p1 + p′1, [k × ε]) + i(σ, [q × [k × ε]])

= (p1 + p′1, [k × ε]) + i(σk)(qε)− i(σε)(qk),

which represents the final expression for eq. (2.54). For the sake of convenience we introduce

P = p1 + p′1, (2.60)
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and then the square brackets of the S-matrix in eq. (2.49) will be represented as

(q, P )
(q, [ε× k])

q2
+ (P, [k × ε]) + i(σk)(qε)− i(σε)(qk). (2.61)

Now we have to explore how the obtained expression changes under change of integration

variables

p1 −→ −p1, (2.62)

p′1 −→ −p′1.

The expression in eq. (2.59) changes sign and therefore we shall turn our attention to the

integral (2.34) which simplifies in the case for a real emitted photon k2
1 = 0,

I(k, q) =
1

π2

∫ 1

0
dξ1

∫ 1−ξ1

0
dξ2

ξ1(ξ1 + ξ2 − 1)

−m2 + 2ξ1ξ2(kq) + ξ1(1− ξ1)q2
, (2.63)

and in the non-relativistic limit we obtain

1

m2 − 2ξ1ξ2(kq)
=

1

m2

[
1 +

2ξ1ξ2(kq)

m2
+O

(
1

m4

)]
. (2.64)

Finally, we have the expression which is even under the inversion (2.62),

(q, P )
(q, [ε× k])

q2
(qk) + (P, [k × ε])(qk) + i(σk)(qε)(qk)− i(σε)(qk)2. (2.65)

After integration over
(
p1, p

′
1

)
or similarly over (P, q), the first two terms in eq. (2.65) vanish

because of the contraction with the external vectors εµ and kµ. The third term in eq. (2.65)
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will disappear in the final expression due to the Wigner-Eckart theorem as we show later.

The only nonvanishing term in eq. (2.65) that contributes to the probability of the PNC

effect is

−i(σε)(qk)2, (2.66)

and therefore the S-matrix in the nonrelativistic limit is

S = (ie)3APNCδ(Ef − Ein − ω0)

√
4π

2ω0
(2.67)

×
∫

d3p′1
(2π)3

d3p1

(2π)3

I

m5
Ψ+(p1)[−i(σε)(qk)2]Ψ(p′1),

where

I = − 1

π2

∫ 1

0
dξ1

∫ 1−ξ1

0
dξ2(ξ2

1ξ2)(ξ1 + ξ2 − 1) =
1

360π2
. (2.68)

After performing the Fourier transformation,

∫
d3p′1
(2π)3

d3p1

(2π)3
ϕ∗6s(p1)[(qk)2]ϕ7s(p

′
1) (2.69)

= m6ϕ∗6s(0)[−(k∇)2]ϕ7s(0) = −m6ϕ∗6s(0)k2 d
2ϕ7s(r)

dr2

∣∣∣∣
r=0

For brevity we will write

d2ϕ(r)

dr2

∣∣∣∣
r=0
≡ ϕ′′(0), (2.70)
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and the S-matrix takes the form

S = e3mAPNCδ(Ef − Ein − ω0)

√
4π

2ω0

(
1

360π2

)
(σε)k2ϕ∗6s(0)ϕ

′′
7s(0) (2.71)

= −e3 (GFm
2
p)QW

2
√

2
δ(Ef − Ein − ω0)

(
me

mp

)2 √2π

360π2

ω
3/2
0

me
(σε)ϕ∗6s(0)ϕ

′′
7s(0),

and, owing to the standard correspondence between the S-matrix and amplitude of the

process F̂PNC,

S = −2πiF̂PNCδ(En′s − Ens − ω0), (2.72)

we obtain for the parity-nonconserving amplitude,

F̂PNC =
e3

2πi

(GFm
2
p)QW

2
√

2

(
me

mp

)2 √2π

360π2

ω
3/2
0

me
(σε)ϕ∗6s(0)ϕ

′′
7s(0). (2.73)

For the Feynman diagrams a and c, Fig. 2.2, we have

F̂7s→6s = F̂M1 + F̂PNC, (2.74)

and the corresponding expression for the probability of the process, after averaging over the

initial electron spin projections and summing over the final spin projections,

W7s→6s = WM1 +
1

2j0 + 1

∑
m0m1

2Re [FM1FPNC] +O
(
F 2

PNC

)
, (2.75)
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where the matrix element for FPNC is

FPNC =
e3

2πi

(GFm
2
p)QW

2
√

2

(
me

mp

)2 √2π

360π2

ω
3/2
0

me
ϕ∗6s(0)ϕ

′′
7s(0) (2.76)

×〈n1j1l1m1s1|(σε)|n0j0l0m0s0〉.

In the specific case of the cesium transition we have

〈n1j1l1m1s1| = 〈6s1/2|, (2.77)

|n0j0l0m0s0〉 = |7s1/2〉.

Following Landau [20] we estimate the electron wavefunction (in atomic units) in the region

r ∼ 1/Z (see Appendix A) as

ϕ(r) ∼ Z1/2, (2.78)

ϕ′′(r) ∼ Z5/2.

Therefore the expression (2.76) becomes

FPNC =
e3

2πi

(GFm
2
p)QW

2
√

2

(
me

mp

)2 √2π

360π2

ω
3/2
0

me
Z3〈n1j1l1m1s11|(σε)|n0j0l0m0s0〉. (2.79)

The matrix element in eq. (2.79) is evaluated by means of the Wigner-Eckart theorem,

〈n′j′l′m′|AJLM |njlm〉 = (−1)j
′−m′

 j′ J j

−m′ M m

 〈n′j′l′||AJL||njl〉. (2.80)
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In the following we shall evaluate the product of two matrix elements,

∑
m0m1

(
〈n1j1l1m1|

∑
q

(−1)qµq[ε×k]−q|n0j0l0m0〉∗ (2.81)

× 〈n1j1l1m1|
∑
q′

(−1)q
′
σq′ε−q′|n0j0l0m0〉

 ,

where µ̂ = µ0ŝ is the magnetic moment of electron. Owing to the orthogonality relation

between 3j-symbols,

(2j + 1)
∑
m1m2

 j1 j2 j

m1 m2 m


 j1 j2 j′

m1 m2 m′

 = δjj′δmm′ , (2.82)

we can perform the summation over the spin projections and obtain the mixed product

i
∑
q

(−1)qεq[ε
∗×k]−q = i(ε, [ε∗×k]) = i(k, [ε×ε∗]) ≡ (ksph), (2.83)

where we have introduced a photon spin variable in terms of the vector product of the photon

polarization vectors,

sph = i[ε×ε∗]. (2.84)

Now we return to eq. (2.65), where we disregarded the term (σk) which corresponds to

∑
m0m1

(
〈n1j1l1m1|

∑
q

(−1)qµq[ε×k]−q|n0j0l0m0〉∗ (2.85)

× 〈n1j1l1m1|
∑
q′

(−1)q
′
σq′k−q′|n0j0l0m0〉

 .
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The orthogonality relation between 3j-symbols leads to

i
∑
q

(−1)qkq[ε×k]−q = i(k, [ε×k]) = 0, (2.86)

and therefore this term does not contribute to the probability of the PNC process.

The expression (2.81) simplifies to a product of the reduced matrix elements,

(ksph)〈n1j1l1||µ||n0j0l0〉〈n1j1l1||σ||n0j0l0〉. (2.87)

Rewriting in terms of the spin operator ŝ,

µ̂ = µ0ŝ, (2.88)

σ̂ = 2ŝ,

and owing to the reduced matrix elements of the spin operator,

〈s1||ŝ||s0〉 = δs0s1

√
s0(s0 + 1)(2s0 + 1), (2.89)

we get the final expression for eq. (2.81) for s0 = 1/2

µ0(ksph). (2.90)

Introducing the probability of the process on Fig. 2.2 (a),

WM1 =
4

3
ω3

0µ
2
0, (2.91)
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we get the final answer in the form

W7s→6s = WM1(1 +R(~ν · ~sph)), (2.92)

where ν = ~k/|~k| is the unit vector in the direction of the emitted photon momentum. In our

case R is equal to the ratio FPNC/FM1, where the amplitudes are expressed via the angular

reduced matrix elements.

Using the estimate ϕ(0)ϕ′′(0) ∼ α5Z3 for neutral atoms [20], we get for the anomaly

contribution to the PNC-amplitudes on Fig. 2.2 (c)

FPNC ∼
1

360π2

(
me

mp

)2

α3/2(GFm
2
p)QWα5Z3. (2.93)

Using a well-known estimate for the PNC-amplitude [15], Fig. 2.2 (b), in neutral atoms

without the contribution from the axial anomaly

F 0
PNC ∼

(
me

mp

)2

α3/2Z2(GFm
2
p)QW , (2.94)

we get for the relative axial anomaly contribution (2.93) in terms of F 0
PNC,

FPNC

F 0
PNC

∼ (10)−3α5Z. (2.95)

We should admit that contribution of the axial anomaly to the PNC effects in neutral atoms

is small for an observation in real experiments but the nonzero result is important from the

theoretical point of view for understanding the axial anomaly mechanism.
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Chapter 3

Quantum Optics

In this chapter we introduce a new method that allows one to obtain in a closed form an

analytical cross section for the laser-assisted electron-ion interaction. As an example we

perform a calculation for the hydrogen laser-assisted recombination.

The results of this chapter are based on our paper,

GS and A. Volberg, J. Phys. A: Math. Theor. 44, 245301 (2011).

3.1 Introduction

Electron scattering processes in the presence of a laser field play a significant role in

the contemporary atomic physics [21]. A simple but sufficiently accurate theoretical

model for laser-assisted atomic scattering would be helpful for many experimental studies.

The standard theoretical approach for laser-assisted electron-ion collisions requires the

construction of the S-matrix for the corresponding process. The electron wave function

in a combined Coulomb-laser field is given by the well known Coulomb–Volkov solution.

The dressed state of the atom is described by the time-dependent perturbation series.

In our work we have developed a new method that allows one to derive in a closed

form an analytical expression for the cross section of a laser-assisted atomic scattering.

The new mathematical step is in using the Bessel generating function as an argument for
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the Plancherel theorem. This allows one to perform the summation over the number of

field harmonics so that the analytical expression for the cross section of the process can be

explicitly written. As an example, we perform a calculation for the laser-assisted hydrogen

recombination.

3.2 Laser-assisted hydrogen recombination

The proposed method will be illustrated on a typical example of the laser-assisted hydrogen

recombination process,

p+ e+ Lh̄ω0 −→ H + h̄ω. (3.1)

The additional term Lh̄ω0, where L is the number of exchanged laser quanta, indicates the

presence of a laser field,

~ε = ~ε0 sinω0t, (3.2)

and points out the conservation of quasienergy. Here ~ε0 is the amplitude of the field and ω0

is the field frequency.

The differential cross section of the reaction for the standard field-free hydrogen

recombination process is known [20] due to the detailed balance between the differential

cross section of photo-recombination, dσfi/dΩf , and that of photo-ionization, dσif/dΩi,

dσfi
dΩf

=
k2

q2

dσif
dΩi

, (3.3)

where k and q are the momenta of the outgoing photon and electron, respectively.

The differential photo-ionization cross section dσif/dΩi is given by [18,30]
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dσif
dΩi

= 27πe
2

h̄c

(
h̄2

mZe2

)2(
W0

h̄ω

)4 e−4ξarccotξ

1− e−2πξ
(1− cos2 θ), (3.4)

where W0 is the ionization potential of the hydrogen atom from the continuum threshold to

the ground state. Here ω is the frequency of the photon emitted at an angle θ relative to

the incoming electron, and m and e are the mass and electric charge of the electron. The

dimensionless parameter ξ is defined as

ξ =
Zh̄

a0q
=
η

q
, (3.5)

where Z is the nuclear charge (Z = 1), a0 is the Bohr radius, and η = Zh̄/a0.

3.3 S-matrix

The S-matrix describing the photo-recombination process (3.1) in the presence of the laser

field (3.2) is given by [18,28,29]

S = −ie
∫
dt〈ΨH

0 (~r, t)|(~ε · ∇)e−i(~k·~r/h̄−ωt)|χe(~r, t)〉, (3.6)

where χe(~r, t) is the Coulomb-Volkov wave function of the electron in the field of the proton

and external laser field, ~ε,~k and ω are the polarization vector, momentum and frequency of

the emitted photon, respectively, and ΨH
0 (~r, t) is the electron wave function in the hydrogen

atom in 1s state in the laser field ~ε, eq. (3.2).

Using the standard technique of transformation to the rotating frame we can obtain the
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electron wave function in the total Coulomb-laser field [31]

χe(~r, t) = e
πξ
2 Γ(1− iξ)F (iξ, 1; i(qr − ~q · ~r)/h̄) (3.7)

× exp

[
− ie

h̄mc

∫ t

0
~q · ~A(τ)dτ − ie2

2h̄mc2

∫ t

0
A2dτ +

i~q · ~r
h̄
− iEit

h̄

]
,

where ~q is the asymptotic value of the incoming electron momentum, q = |~q|, r = |~r|,

F (a, b;x) is the confluent hypergeometric function, Ei is the initial kinetic energy of the

incoming electron, and c is the speed of light.

In the harmonic laser field (3.2) the vector-potential ~A is defined as

~A(t) =
c~ε0

ω0
cosω0t ≡ ~A0 cosω0t. (3.8)

The quadratic term in the square brackets (3.7), (ie2/2h̄mc2)
∫ t

0 A
2dτ = O

(
1/c2

)
, will be

neglected [31]. Evaluation of the remaining integral over τ in (3.7) yields

χe(~r, t) = Γ(1− iξ)F (iξ, 1; i(qr − ~q · ~r)/h̄) (3.9)

× exp i

[
~q · ~r
h̄

+ z sinω0t−
Eit

h̄
− iπξ

2

]
,

where the atomic parameter ξ was defined in eq. (3.5), and the field parameter z is given by

z =
e

mh̄

(~q · ~ε0)

ω2
0

, (3.10)

The exact solution for the electron wave function in the discrete spectrum of a combined

Coulomb-laser field is known. However, in our calculation we will assume that laser field

introduces only a small perturbation for the ground state of electron in hydrogen. Therefore
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we can use first-order perturbation theory for deriving the hydrogen wave function in the

presence of the laser field [20,28,29],

ΨH
n (~r, t) = e−iWnt/h̄ (3.11)

×

ψn(~r)− 1

2

∑
m6=n

(
eiω0t/h̄

ωmn + ω0
+

e−iω0t/h̄

ωmn − ω0

)
〈m|e

~A0 · ~p
h̄mcω0

|n〉ψm(~r)

 ,

where ψm(~r) is the wave function for the atomic electron in the field-free state |m〉 with

energy Wm, and ωmn = (Wm −Wn)/h̄. The summation in (3.11) is extended over the full

set of atomic electron states in the absence of the laser field. In the derivation of (3.11) it

was assumed that none of the denominators were close to zero [20].

For the optical frequency of the laser we have ω0 � ωn0 and therefore we get the following

expression for ΨH
0 (~r, t), which holds true even over a broader frequency range [28],

ΨH
0 (~r, t) = e−iW0t/h̄

(
1 +

ie(~ε0 · ~r)
h̄ω0

cosω0t

)
ψH0 (~r), (3.12)

where

ψH0 (~r) =

√
Z3

πa3
0

e−ηr/h̄ ≡ C0e
−ηr/h̄. (3.13)
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3.4 The Coulomb-Volkov wave function

In order to perform the time integration in the S-matrix (3.6) we decompose the electron

wave function χe(~r, t) given by (3.9) over the Bessel functions JL(z) of integer order L and

argument z given by (3.10). For this purpose we introduce the Bessel generating function

exp [iz sinu] =
L=+∞∑
L=−∞

JL(z) exp(iLu). (3.14)

To simplify the S-matrix (3.6) we use the recurrence relation for the Bessel functions

JL+1(z) + JL−1(z) =
2L

z
JL(z). (3.15)

Performing the time integration in eq. (3.6) and applying the Gauss theorem we obtain the

following expression for the S-matrix in the dipole approximation, (~k · ~r)/h̄� 1,

S = −2πi
L=+∞∑
L=−∞

fLδ(W0 + h̄ω − Ei + Lh̄ω0), (3.16)

where

fL = e
πξ
2 Γ(1− iξ)C0

[
JL(z)ω(L)

(
I1 +

L

z
I2

)]
. (3.17)

Here we have introduced the following notations:

I1 = ηh̄

∫
d~rψH0 (~r)

(~ε · ~r)
r

χe(~r), (3.18)

I2 =
ie

ω0

∫
d~rψH0 (~r)

(
−(~ε0 · ~ε) +

η

h̄

(~ε0 · ~r)(~ε · ~r)
r

)
χe(~r), (3.19)
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and

h̄ω(L) = Ei −W0 − Lh̄ω0 ≡ Ei0 − Lh̄ω0. (3.20)

Exploiting the integral involving the confluent hypergeometric function [18,32],

∫
d~rei(~q−~p)·~r/h̄−ηr/h̄

F (iξ, 1, i(qr − ~q · ~r))
r

= 4πh̄2 [~p2 + (η − iq)2]−iξ

[(~q − ~p)2 + η2]1−iξ
, (3.21)

we obtain the following expression for the integral I1, eq. (3.18),

I1 = 8πih̄4(~ε · ~eq)
ξ(1− iξ)
q2(1 + ξ2)2

e−2ξarccotξ, (3.22)

and the corresponding expression for the integral I2, eq. (3.19),

I2 = −8πih̄4 ξe

ω0

e−2(1+ξ)arccotξ

q3(1 + ξ2)2

(
(~ε0 · ~ε)− 2(~ε · ~eq)(~ε0 · ~eq)

(2− iξ)
(1− iξ)

)
, (3.23)

where ~eq ≡ ~q/q is a unit vector along the electron momentum.

3.5 The partial cross section

The partial cross section of the reaction (3.1) with fixed L is given by

dσL = 2π
e2

2qω(L)
|fL|2δ(W0 + h̄ω − Ei + Lh̄ω0)

d3k

(2π)3
. (3.24)
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The integration over ω yields

dσL
dΩ

=
e2C2

0

8π2q(1− e−2πξ)
(Ei −W0 − Lh̄ω0)3 (3.25)

×|JL(z)|2
(
|I1|2 +

2L

z
Re(I1I2) +

L2

z2
|I2|2

)
.

The conservation of quasi-energy uniquely specifies the frequency of the emitted photon, eq.

(3.20), in terms of the number of exchanged laser quanta L. In order to obtain the total

cross section of the reaction (3.1) in the laser field (3.2) we must count all possibilities for

the number of exchanged laser quanta. In other words, we have to perform the summation

over all possible L,

dσ

dΩ
=
L=+∞∑
L=−∞

dσL
dΩ

. (3.26)

3.6 The summation procedure and cross section

We introduce a new step that allows one to analytically sum up the infinite series (3.26).

The summation over L in (3.26) is performed with the aid of the Plancherel theorem [33],

1

2π

∫ 2π

0
|f(x)|2dx =

n=+∞∑
n=−∞

|cn|2, (3.27)

where cn are the Fourier coefficients of the function f(x),

cn =
1

2π

∫ 2π

0
f(x)eiπnxdx. (3.28)
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The application of the Plancherel theorem to the Bessel generating function (3.14) leads to

the following equalities [34] :

L=+∞∑
L=−∞

J2
L(z) = 1, (3.29)

L=+∞∑
L=−∞

L2J2
L(z) =

z2

2
, (3.30)

L=+∞∑
L=−∞

L2n−1J2
L(z) = 0, n ∈ Z+ (3.31)

L=+∞∑
L=−∞

L4J2
L(z) =

z2(4 + 3z2)

8
. (3.32)

Performing the summation over the photon polarizations we obtain the closed analytical

expression for the cross section of the process (3.1)

dσ

dΩ
=

e2C2
0E

3
i0

8π2q(1− e−2πξ)

[
|I1|2 + F

]
,

F =
|I2|2

2
+

3h̄ω0z
2

2E2
i0

(
2Ei0
z

Re(I1I2) + h̄ω0|I1|2
)

(3.33)

+
h̄2ω2

0z
2(4 + 3z2)

8E3
i0

(
3Ei0
z2
|I2|2 +

2h̄ω0

z
Re(I1I2)

)
.

In the zero-field limit, corresponding to z ≡ 0 and I2 ≡ 0, the correction term F in (3.33),

that is responsible for the laser-modified cross section, identically vanishes. To the best of
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our knowledge, such a closed expression for the laser-assisted hydrogen recombination was

not given in the literature.

An explicit summation over the photon polarizations is performed as

∑
λ

ελ∗µ ελν = δµν , (3.34)∑
λ

(~a · ~ελ)2 = a2(1− cos2 ϑ),

where ϑ is the angle between the vector ~a, and the momentum of the outgoing photon ~k.

The corresponding expressions for the integrals in eqs. (3.22) and (3.23) with an explicit

summation over the photon polarizations are given by

∑
λ

|I1|2 = 26π2h̄8 ξ
2e−4ξarccotξ

q4(1 + ξ2)3
(1− cos2 θ), (3.35)

∑
λ

|I2|2 = 26π2h̄8 e
2ξ2

ω2
0

e−4(1+ξ)arccotξ

q6(1 + ξ2)5
(3.36)

×
[
ε2
0(1− cos2 φ)(1 + ξ2)− 4(~ε0 · ~eq)2(2 + ξ2) + 4(~ε0 · ~eq)2(4 + ξ2)(1− cos2 θ)

]
,

and for the interference term we find

∑
λ

Re(I1I2) = 26π2h̄8 eξ
2

ω0

e−2(1+2ξ)arccotξ

q5(1 + ξ2)4
(~ε0 · ~eq)(4 cos2 θ − 3), (3.37)

where θ is the angle between the momentum of the incoming electron ~q and the momentum

of the outgoing photon ~k. The angle φ is formed by vectors ~ε0 and ~k.
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3.7 The soft photon approximation

The cross section given by eq. (3.33) is an exact result for the laser-assisted hydrogen

recombination process under the used approximations for the electron and hydrogen laser-

modified wave functions. To clarify the meaning of the obtained result we shall introduce

a soft photon approximation. This allows one to reveal the meaning of each term in the

expression for the cross section of the process given by (3.33). With this approximation the

frequency of the emitted photon is independent of the number of the field harmonics L,

h̄ω = Ei −W0 − Lh̄ω0 ' Ei −W0. (3.38)

In this approximation the partial “soft photon” cross section is given by

dσsL
dΩ

=
e2C2

0

8π2q(1− e−2πξ)
(Ei −W0)3 |JL(z)|2

(
|I1|2 +

2L

z
Re(I1I2) +

L2

z2
|I2|2

)
. (3.39)

Performing the summation (3.26) over L by means of the equalities (3.29)-(3.31) we obtain

the following simple result:

dσs

dΩ
=

e2C2
0

8π2q(1− e−2πξ)
E3
i0

(
|I1|2 +

|I2|2
2

)
. (3.40)

Here the first term |I1|2 corresponds to the standard laser-free recombination process whereas

the second term |I2|2 is responsible for the field-modified electron (3.9) and hydrogen (3.12)

states. In the zero-field limit I2 ≡ 0 and (3.40) recovers the standard field-free recombination

cross section. We have to note that within the limits of the present approximation (3.38)

the interference terms Re(I1I2) are absent. In this and only this particular case does the
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square of the S-matrix (3.16) equal the sum of the squares of its terms.

3.8 Summary

In this chapter we have developed a new method that allows one to obtain an analytical cross

section for the laser-assisted electron-ion collision. The standard S-matrix formalism is used

for describing the atomic collision process. The S-matrix is constructed from the electron

Coulomb-Volkov wave function in the combined Coulomb-laser field, and the hydrogen laser-

perturbed state. By the aid of the Bessel generating function, the S-matrix is decomposed

into an infinite series of the field harmonics.

We have introduced a new step to obtain the analytical expression for the cross section

of the process. The main theoretical novelty is the application of the Plancherel theorem to

the Bessel generating function. This allows one to obtain analytically the cross section of

the laser-assisted hydrogen photo-recombination process. This process has been chosen in

order to verify the proposed method. The field-enhancement coefficient is evaluated in an

analytical way and the final expression for a laser-assisted hydrogen recombination process is

presented by the sum of the field-free hydrogen cross section and the laser-assisted addition.

The developed method will allow one to reconsider a wide range of problems related to

electron-ion collisions in an external field with the goal of obtaining analytical expressions for

the cross sections of the corresponding scattering processes. The time-dependent problem

generated by the infinite series of the Coulomb-Volkov wave function is exactly separated

from the spatial dependence and thus can be analytically solved by the proposed method.
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Chapter 4

Nuclear Physics

In this chapter we present our results for the resonance width distribution in open quantum

systems. Recent measurements of resonance widths for low-energy neutron scattering off

heavy nuclei claim large deviations from the routinely used chi square, or the Porter-Thomas

distribution. We propose a new “standard” width distribution based on the random matrix

theory for a chaotic quantum system with a single open decay channel. Two methods

of derivation lead to a single analytical expression that recovers, in the limit of very

weak continuum coupling, the Porter-Thomas distribution for small widths of experimental

interest. The parameter defining the result is the ratio of typical widths Γ to the energy level

spacing D. Compared to the Porter-Thomas distribution, the new distribution suppresses

small widths and increases the probabilities of larger widths. In the case of a neutron

scattering with open multiple photon channels we derive the resonance width distribution

which happens to be shifted compared to the Porter-Thomas distribution by an average

photon width. The experimental data are very sensitive to a shift of the distribution and

therefore the obtained results might be useful in comparison random matrix theory with the

nuclear experimental data.

The results of this chapter are based on our paper,

GS and V. Zelevinsky, Phys. Rev. C 86, 044602 (2012).
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4.1 Introduction

Random matrix theory as a statistical approach for exploring properties of complex quantum

systems was pioneered by Wigner and Dyson half a century ago [37]. This theory was

successfully applied to excited states of complex nuclei and other mesoscopic systems [38–41],

evaluating statistical fluctuations and correlations of energy levels and corresponding wave

functions supposedly of “chaotic” nature.

The standard random matrix approach based on the Gaussian Orthogonal Ensemble

(GOE) for systems with time-reversal invariance, and on the Gaussian Unitary Ensemble

(GUE) if this invariance is violated, was formulated originally for closed systems with no

coupling to the outside world. Although the practical studies of complex nuclei, atoms,

disordered solids, or microwave cavities always require the use of reactions produced by

external sources, the typical assumption was that such a probe at the resonance is sensitive

to the specific components of the exceedingly complicated intrinsic wave function, one for

each open reaction channel, and the resonance widths are measuring the weights of these

components [42]. With the Gaussian distribution of independent amplitudes in a chaotic

intrinsic wave function, the widths under this assumption are proportional to the squares of

the amplitudes and as such can be described, for ν independent open channels, by the chi-

square distribution with ν degrees of freedom. For low-energy elastic scattering of neutrons

off heavy nuclei, where the interactions can be considered time-reversal invariant, one expects

ν = 1 that is usually called the Porter-Thomas distribution (PTD) [43],

χ2
ν(x)

∣∣∣
ν=1

=
e−x/2x(ν−2)/2

2ν/2Γ[ν/2]

∣∣∣∣∣
ν=1

=
e−x/2√

2πx
, (4.1)

where Γ[z] is the gamma function.
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Recent measurements [44,45] claimed that the neutron width distributions in low-energy

neutron resonances on certain heavy nuclei are different from the PTD. As a rule, the

fraction of greater widths is increased, while the fraction of narrow resonances is reduced

which, being approximately presented with the aid of the same standard class of functions

χ2
ν , would require ν 6= 1. The literature discussing the scattering and decay processes in

chaotic systems, see for example [46–49] and references therein, does not provide a detailed

description of the width distribution for the region of relatively small widths observed in

low-energy neutron resonances.

There are various reasons for possible deviations from the simple statistical predictions

[50–52]. First of all, the intrinsic dynamics, even in heavy nuclei, can be different from that

in the GOE limit of many-body quantum chaos. If so, the detailed analysis of specific nuclei

is required. As an example we can mention 232Th, where for a long time a sign problem

exists [53] concerning the resonances with strong enhancement of parity nonconservation

in scattering of longitudinally polarized neutrons. The observed predominance of a certain

sign of parity violating asymmetry contradicts to the statistical mechanism of the effect and

may be related to the non-random coupling between quadrupole and octupole degrees of

freedom [54]. The width distribution in the same nucleus reveals noticeable deviations from

the PTD. The presence of a shell-model single-particle resonance serving as a doorway from

the neutron capture to the compound nucleus can also make its footprint distorting the

statistical pattern. Another (maybe related to the doorway resonance) effect can come from

the changed energy dependence of the widths that is usually assumed to be proportional

to E`+1/2 for neutrons with orbital momentum `. Finally, the situation is not strictly

one-channel, since, along with elastic neutron scattering, many gamma-channels are open

as well. However, apart from structural effects, even in one-channel approximation, there
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exists a generic cause for the deviations from the PTD, since the applicability of the GOE is

anyway violated by the open character of the system [55]. The appropriate modification of

the GOE and PTD predictions, which should be applied before making specific conclusions,

is our goal below.

The resonances are not the eigenstates of a Hermitian Hamiltonian, they are poles of

the scattering matrix in the complex plane. Their complex energies E = E − iΓ/2 can be

rigorously described as eigenvalues of the effective non-Hermitian Hamiltonian [56]. As shown

long ago, even for a single open channel, the statistical properties of the complex energies

cannot be described by the GOE. The new dynamics is related to the interaction of intrinsic

states through continuum. In the limit of strong coupling this leads to the overlapping

resonances, Ericson fluctuations of cross sections, and sharp redistribution of widths similar

to the phenomenon of super-radiance, see the review [57] and references therein. The control

parameter of such restructuring is the ratio

κ =
πΓ

2D
(4.2)

of typical widths, Γ, to the mean spacing between the resonances, D. In the region of

low-energy neutron resonances, κ is still small but in order to correctly separate the general

statistical effects from peculiar properties of individual nuclei we need to have at our disposal

a generic width distribution that differs from the PTD as a function of the degree of openness.
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4.2 Resonance width distribution

We need a practical tool that would allow one to compare an experimental output for

an unstable quantum system with predictions of random matrix theory. We propose a

new distribution function that is based, similar to the GOE, on the chaotic character of

time-reversal invariant internal dynamics and corresponding decay amplitudes, but properly

accounts for the continuum coupling through the effective non-Hermitian Hamiltonian.

The numerical simulations for this Hamiltonian were described earlier [51, 58] but here we

derive the analytical expression. In the typical case of nuclear applications, the introduced

dimensionless parameter κ is bound from above by one. The super-radiant regime, κ ≥ 1,

can be of special interest, including such systems as microwave cavities, and in the considered

framework the formal symmetry exists, κ→ 1/κ. At a large number of resonances and fixed

number of open channels, after the super-radiant transition the broad state becomes a part

of the background while the remaining “trapped” states return into the non-overlap regime.

However, in heavy nuclei this transition hardly can be observed because earlier many new

channels can be opened; in the modification of the PTD we see only precursors of this

transition.

Our arguments will follow two different routes which lead to the equivalent results. The

final formula for the statistical width distribution can be presented as

P (Γ) = C
exp

[
− N

2σ2 Γ(η − Γ)
]

√
Γ(η − Γ)

sinh
[
πΓ
2D

(η−Γ)
η

]
πΓ
2D

(η−Γ)
η

1/2

. (4.3)

Here we consider N � 1 intrinsic states coupled to a single decay channel, for example,

s-wave elastic neutron scattering. The parameter D is a mean energy spacing between the

47



Χ1

2

D = 4
D = 2

Cnorm Χ1

2 
SinhA Π G

2 D
E

Π G
2 D

2 4 6 8 10
G

0.05

0.10

0.15

0.20

0.25

0.30

PHGL

Figure 4.1: The proposed resonance width distribution according to eq. (4.3) with a single
neutron channel in the practically important case η � Γ. The width Γ and mean level
spacing D are measured in units of the mean value 〈Γ〉. “For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation.”

resonances, and C is a normalization constant. The quantity η is the total sum (the trace

of the imaginary part of the effective non-Hermitian Hamiltonian that remains invariant in

the transition to the biorthogonal set of its eigenfunctions) of all N widths; it appears as a

parameter that fixes the starting ensemble distribution, see below eqs. (4.9) and (4.10). The

possible values of widths are restricted from both sides, 0 < Γ < η. The above mentioned

symmetry κ→ 1/κ is reflected in the symmetry Γ→ (η − Γ) of a factor in eq. (4.3) but, as

was already stated, our region of interest is at Γ� η. Another parameter, σ, determines the

standard deviation of variable Γ evaluated consistently with the distribution of eq. (4.3). In
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the practical region far away from the super-radiance we obtain

P (Γ) = Cχ2
1(Γ)

(
sinhκ

κ

)1/2

, (4.4)

where κ is a new dimensionless combination, eq. (4.2). The PTD is recovered in the limiting

case κ → 0 that corresponds to the approximation of an open quantum system by a closed

one. The new element is the factor explicitly determined by the coupling strength κ. With

growing continuum coupling the probability of larger widths increases. The distribution

(4.3) for different ratios 〈Γ〉/D is shown in Fig. 4.1.

The origin of the square root in the new factor is the linear energy level repulsion typical

for the GOE spectral statistics. Indeed, in the complex plane, E = E − iΓ/2, the distance

between two poles Em and En is
√

(Em − En)2 + (Γm − Γn)2/4; after integration over all

variables of other states we obtain a characteristic square root in the level repulsion, see

below eq. (4.13) and the discussion after eq. (4.22).
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4.3 Effective non-Hermitian Hamiltonian and

scattering matrix

In order to come to the result (4.3), we start with the general description of complex energies

E = E − iΓ/2 in a system of N unstable states satisfying the GOE statistics inside the

system and interacting with the single open channel through Gaussian random amplitudes.

The general reaction theory [59] is constructed in terms of the elements of the scattering

matrix in the space of open channels a, b, ...,

Sba(E) = δba − iT ba(E). (4.5)

Within the formalism of the effective non-Hermitian Hamiltonian H = H − (i/2)W , the

T -matrix is defined as

T ba(E) =
N∑

m,n=1

Ab∗m

[
1

E −H

]
mn

Aan (4.6)

in terms of the amplitudes Aan connecting an internal basis state n with an open channel

a. Here we do not explicitly indicate the potential part of scattering that is not related to

the internal dynamics of the compound nucleus. The anti-Hermitian part of the effective

Hamiltonian is exactly represented by the sum over k open channels,

Wmn =
k∑
a=1

AamA
a∗
n , (4.7)

where the amplitudes can be considered real in the case of time-reversal invariance. It is

important that the factorized structure of the effective Hamiltonian guarantees the unitarity
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of the scattering matrix. The amplitudes Aan are assumed to be uncorrelated Gaussian

quantities with zero mean and variance defined as AanA
b
n′ = δabδnn′η/N . The trace of the

anti-Hermitian part of the effective Hamiltonian, η = TrW , i.e. the total sum of all N widths

used in eq. (4.3), is a quantity invariant under orthogonal transformations of the intrinsic

basis. The detailed discussion of the whole approach, numerous applications and relevant

references can be found in the recent review article [57].

The simplest version of the R-matrix description uses instead of the amplitude T ba

its approximate form, where the denominator contains poles on the real energy axis

corresponding to the eigenvalues of the Hermitian part H of the effective Hamiltonian. Then

the continuum coupling occurs only at the entrance and exit points of the process while the

influence of this coupling on the intrinsic dynamics of the compound nucleus is neglected

(in general, the Hermitian part of the Hamiltonian, H, should also be renormalized by the

off-shell contributions from the presence of the decay channels). Contrary to that, the full

amplitude T ba, eq. (4.6), accounts for this coupling during the entire process including

the virtual excursions to the continuum and back from intrinsic states. The poles are the

eigenvalues of the full effective Hamiltonian in the lower half of the complex energy plane.

The experimental treatment corresponds to this full picture. According to the original

experimental paper [44], the R-matrix code SAMMY [60] had been used in the experimental

analysis where the relevant expression is given in the form

Rcc′ =
∑
λ

γλcγλc′
Eλ − E − iΓλ/2

δJJ ′ , (4.8)

and the treatment included a careful segregation of s- and p-resonances, J = J ′ = 1/2 for an

even target nucleus. In the notations of [60] λ represents a particular resonance, Eλ is the
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energy of the resonance. Here we can identify the intermediate states λ and their complex

energies Eλ− iΓλ/2 with the eigenstates and complex eigenvalues of H, while the numerator

includes the amplitudes transformed to this new basis (under time-reversal invariance the

scattering matrix is symmetric). In terms of the reduced width γ2
λc and the penetration

factor Pc, the partial width is Γλc = 2Pcγ
2
λc. Assuming a single channel and universal

energy dependence of penetration factors, the statistics of the total widths is the same as

that of γ2
λc.

4.4 From ensemble distribution to single width

distribution

For a single-channel case, the joint distribution P ( ~E; ~Γ) of all complex energy poles has been

rigorously derived in [55] under assumptions of the GOE intrinsic dynamics in the closed

system and Gaussian distributed random decay amplitudes. The result is given by

P ( ~E; ~Γ) = CN
∏
m<n

(Em − En)2 +
(Γm−Γn)2

4√
(Em − En)2 +

(Γm+Γn)2

4

∏
n

1√
Γn

e−NF ( ~E;~Γ), (4.9)

where the “free energy” F contains interactions of N � 1 complex poles in the interval

2a = ND of energies,

F ( ~E; ~Γ) =
1

a2

∑
n

E2
n +

1

2a2

∑
m<n

ΓmΓn +
1

2η

∑
n

Γn. (4.10)

For given N , this distribution contains two parameters, the semicircle radius a for the

intrinsic dynamics and η characterizing the total trace of the imaginary part of the effective
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Hamiltonian.

Considering this free energy in the “mean-field” approximation, we see that the original

mean value 〈Γ〉0 = η/N is substituted by 〈Γ〉 that is determined by the competition of two

terms, 1/〈Γ〉 = 1/〈Γ〉0 + 〈Γ〉/4D2. The first product in front of exp(−NF ) in eq. (4.9)

substitutes the GOE level repulsion by the repulsion in the complex plane and interaction of

the poles with their negative-Γ “images” [55]. The structure of this result guarantees that

all widths Γ are positive. The formal difficulty with the distribution of eq. (4.9) is that it is

not an analytic function of complex energies.

Our first step is to specify a single N -th pole (EN ,ΓN ) ≡ (E,Γ) and, using the fact that

the distribution ensures Γn ≥ 0, return to the absolute values of the amplitudes,
√

Γn = ξn

for other roots. In this form we can apply the steepest descent method owing to a large

parameter N � 1 and a saddle point inside the integration interval that was absent in the

initial expression. Integration
∏N−1
n=1 dξn over all but one variable Γ ≡ ΓN = ξ2

N leads to the

following result for P ( ~E; Γ) as a function of multiple energy variables ~E and a single width

variable Γ

P ( ~E; Γ) = CN
∏
m<n

|Em − En|
∏
n

√
(En − E)2 +

Γ2

4
(4.11)

× exp

[
−N
a2

(∑
n

E2
n + E2

)]
exp

[
−N2ηΓ

]
√

Γ

√√√√ 2π

N
(

Γ
a2 + 1

η

)

N−1

Introducing new variables, 2a/N = D and λ = ηN , we shall examine the behavior of one of
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the N -dependent factors in eq. (4.11) in the limit of N →∞,

lim
N→∞

exp
[
−N2ηΓ

]
√

Γ

(
1 +

λΓ

a2N

)−N−1
2

 =
exp

[
−N2ηΓ

]
√

Γ
exp

[
− λ

2a2
Γ

]
(4.12)

The scaling properties of the parameters η, a2, and λ are as follows: η ∝ N , a2 and λ are

both ∝ N2. As a result, the product of two exponents produces a well defined limit that

brings in the desired dependence on the coupling strength κ.

The real energy distribution does not change much in an open system with a single decay

channel being still, at finite but large N , close to a semicircle. We are working in the central

region of the spectrum where the level density is approximately constant and the energy

spectrum is close to equidistant (the maximum of the level spacing distribution is always at

s = δE/D ≈ 1 although the distribution in an open system changes at small spacings, s < 1,

as we will comment later). With En = E − nD, we are able to perform an exact calculation

of the product,

CN
∏
n

√
(En − E)2 +

Γ2

4
(4.13)

= ĈN

 N∏
n=1

[
1 +

Γ2/4

(nD)2

]1/2

N→∞
= ĈN

sinh
[
π
2

Γ
D

]
π
2

Γ
D

1/2

,

where we have used the famous Euler formula,

sinhx

x
=
∞∏
k=1

[
1 +

x2

k2π2

]
. (4.14)

The width-independent factors will enter the normalization constant. Of course, the whole

reasoning is valid in the limit N � 1. Finally, the width distribution for Γ� η is represented
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by

P (Γ) = C

sinh
[
π
2

Γ
D

]
π
2

Γ
D

1/2
exp

[
−N2ηΓ

]
√

Γ
exp

[
− λ

2a2
Γ

]
. (4.15)

4.5 Doorway approach

As an alternative derivation, we will apply the doorway approach [38, 61, 62]. Here we use

the eigenbasis of the imaginary part W of the effective non-Hermitian Hamiltonian, eq.

(4.7). Due to the factorized nature of W dictated by unitarity [55], the number of its non-

zero eigenvalues is equal to the number of open channels. In our case we have only one

eigenvalue, the doorway ε0 − iη/2, that has a non-zero width equal to the imaginary part

η of the trace of the Hamiltonian. Remaining basis states are stable being driven by the

Hermitian intrinsic Hamiltonian; its diagonalization produces their real energies εn. These

states acquire the widths through the interaction with the doorway state; the corresponding

matrix elements will be denoted hn. In this basis, the effective Hamiltonian is represented

as



ε0 − i
2η h1 h2 · · · hN

h∗1 ε1 0 · · · 0

h∗2 0 ε2 · · · 0

· · · · · · · · · · · · · · ·

h∗N 0 0 · · · εN


. (4.16)
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The complex eigenvalues E = E − iΓ/2 are the roots of the secular equation,

E = ε0 −
i

2
η +

N∑
n=1

|hn|2
E − εn

, (4.17)

that is equivalent to the set of coupled equations for real and imaginary parts,

E = ε0 +
N∑
n=1

|hn|2
E − εn

(E − εn)2 + Γ2/4
, (4.18)

Γ =
η

1 +
∑N
n=1

|hn|2
(E−εn)2+Γ2/4

≡ f(Γ, E). (4.19)

For the Gaussian distribution of the coupling matrix elements with 〈|h|2〉 = 2σ2/N (this

scaling was derived in [61]), we obtain

P (Γ) =

∫ +∞

−∞
δ (Γ− f(Γ, E)) exp

−N
σ2

N∑
n=1

h2
n

 N∏
n=1

dhn. (4.20)

The integration in (4.20) via the steepest descent method leads to eq. (4.3). In order to

get this result we use a possibility to find a highest root E = εN which we set as an origin

relative to which the energies εn can be counted as E = εN , εn = εN − nD. An important

intermediate step is the evaluation of the infinite product of the Lorentzian peaks that can
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be simplified as

N−1∏
n=1

1−
Γ2

4 + (E − εN )2

Γ2
4 + (E − εn)2

−1/2

(4.21)

=

N−1∏
n=1

1−
Γ2

4

Γ2
4 + (nD)2

−1/2

=

sinh
[
π
2

Γ
D

]
π
2

Γ
D

+1/2

.

In a similar way one can analyze the resonance spacing distribution P (s) along the real

energy axis; spacings s = δE/D are measured in units of their mean value D. As predicted

in [55] and observed numerically in [58], the short-range repulsion disappears and the Wigner

surmise with the standard linear preexponential factor s is substituted by the square root,

P (s) ∝

√
s2 + 4

〈Γ2〉
D2

exp
[
− const · s2

]
. (4.22)

At spacing s� 1, the probability behaves as a+bs2 with the quadratic dependence on s that,

similar to the GUE, mimics the violation of time-reversal invariance due to the open decay

channel. The absence of short-range repulsion, a 6= 0 (the interaction through continuum,

opposite to a normal Hermitian perturbation, repels widths and attracts real energies [63]),

reflects the energy uncertainty of unstable states.

We demonstrated that two complementary approaches which reflect different physical

aspects of the situation lead essentially to the equivalent (after identification of corresponding

parameters) results which we prefer to write in the form (4.3). We expect that for other

canonical ensembles the width distribution far from the super-radiance can be expressed by

a similar formula with the function (sinhκ/κ)β/2, where the standard index of ensemble is

β = 1 for the GOE, β = 2 for the GUE, and β = 4 for the Gaussian Symplectic Ensemble.
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In the same way we expect the square root in eq. (4.22) to be substituted by the same power

β/2.

The doorway approach naturally indicates the limits of the variable, 0 ≤ Γ ≤ η. It has

also an advantage of the possibility to generalize the answer taking into account explicitly the

rigidity of the internal energy spectrum with fluctuations of level spacings around their mean

value D [in our approximation, only this average value enters eq. (4.3)]. Another direction

of generalization includes the possible influence of a single-particle resonance depending on

a position of its centroid with respect to the considered interval of the resonance spectrum.

In particular, that centroid may be located under threshold of our decay channel. In this

case even the standard energy dependence of the widths can change as was mentioned long

ago [61], see also [50]. The doorway state may or may not coincide with such a resonance

so that the effective Hamiltonian (4.16) may contain two special states coupled with the

“chaotic” background, one by intrinsic interactions and another one through the continuum.

4.6 Photon emission channels

The goal of this section is to estimate in the same spirit the influence of γ-channels on the

resonance width distribution. Only a single open elastic neutron channel was taken into

account in the analysis of data [44,45]. The presence of even weak additional open channels

changes the unitarity conditions. Examples of mutual influence of neutron and gamma

channels are well known in the literature from long ago, see for example [64].

Generalizing the doorway description we allow now each intrinsic state to decay by

gamma-emission which is always possible independently of the position of the neutron

threshold. In the simplest approximation, the effective non-Hermitian Hamiltonian is now
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represented by



ε0 − i
2η h1 h2 · · · hN

h∗1 ε1 − i
2γ1 0 · · · 0

h∗2 0 ε2 − i
2γ2 · · · 0

· · · · · · · · · · · · · · ·

h∗N 0 0 · · · εN − i
2γN


, (4.23)

where we assumed that the intrinsic part of the matrix is pre-diagonalized and introduced

γn as the widths for γ-channels.

Analogously to eq. (4.17), the complex energy eigenvalues E = E − i
2Γ are the roots of

the secular equation,

E = ε0 −
i

2
η +

N∑
n=1

|hn|2

E −
(
εn − i

2γn

) , (4.24)

equivalent to the set of coupled equations,

E = ε0 +
N∑
n=1

|hn|2
E − εn

(E − εn)2 + (Γ− γn)2/4
, (4.25)

Γ =
η +

∑N
n=1 |hn|2 γn

(E−εn)2+(Γ−γn)2/4

1 +
∑N
n=1 |hn|2 1

(E−εn)2+(Γ−γn)2/4

≡ g(Γ, E, γ). (4.26)

The resonance width distribution for an open quantum system with γ-channels included is
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Figure 4.2: The proposed resonance width distribution according to eq. (4.28) with a single
neutron channel and N gamma-channels in the practically important case η � Γ. The
neutron width Γ, radiation width γ, and mean level spacing D are measured in units of the
mean value 〈Γ〉.

given by

P (Γ, γ) =

∫ +∞

−∞
δ (Γ− g(Γ, E, γ)) exp

−N
σ2

N∑
n=1

h2
n

 N∏
n=1

dhn. (4.27)

Estimating the gamma-widths by their average value, γ, and acting in the same manner as

in the case of a single open channel we come to the final expression for the resonance width

distribution,

P (Γ, γ) = C
(η − γ)√

(Γ− γ)(η − Γ)
(4.28)

× exp

[
− N

2σ2
(Γ− γ)(η − Γ)

]sinh
[
π(Γ−γ)

2D
(η−Γ)
η

]
π(Γ−γ)

2D
(η−Γ)
η

1/2

,
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that is shifted by Γ → (Γ − γ) compared to the previous result. The mentioned earlier

symmetry between the ends of the distribution, Γ = 0 and Γ = η, would be substituted

here by Γ→ (η + γ)− Γ. Thus, the effective influence of γ-channels on the resonance width

distribution is reduced here to a shift of the whole distribution by a mean radiation width γ

as seen in Fig. 4.2.

In the practical region far away from the super-radiance, Γ� η, we obtain

P (Γ, γ) = χ2
1 (Γ− γ)

sinh
[
π(Γ−γ)

2D

]
π(Γ−γ)

2D

1/2

. (4.29)

In order to extract the neutron width from the total resonance width, the treatment of

the data has to be modified making in a sense an inverse shift. Of course, a more precise

consideration should use a statistical distribution of the gamma widths.
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4.7 Many-channel case

In the two-channel case the effective Hamiltonian is



ε0 − i
2η0 h1 h2 h3 · · · hN

h∗1 ε1 − i
2η1 v2 v3 · · · vN

h∗2 v∗2 ε2 0 · · · 0

· · · · · · · · · · · · · · · · · ·

h∗N v∗N 0 0 · · · εN


. (4.30)

It can be shown that the Schrödinger equation with Hamiltonian eq. (4.30) for complex

eigenvalue Eα = Eα − i
2Γα can be rewritten in terms of matrix

A =

 ∑N
k=2

h2
k

εk−Eα
+ Eα − (ε0 − iη0

2 ) h1 −
∑N
k=2

hkvk
εk−Eα

h1 −
∑N
k=2

hkvk
εk−Eα

∑N
k=2

v2
k

εk−Eα
+ Eα − (ε1 − iη1

2 )

 , (4.31)

namely the secular equation for the Hamiltonian eq. (4.30) is equivalent to

detA = 0. (4.32)

We shall note that in the general case dimension of the corresponding matrix A is equal to

the number of open channels, i.e. number of rows (or columns) k with random variables in

the original Hamiltonian (see Appendix B).
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Following the general procedure we get the equation for the width,

Γ =

E(η0+η1)
2 − ε1η0+ε0η1

2E − ε0+ε1
2 −∑k

v2
k
ε0+h2

k
ε1

2

(
Γ2
4 +(E−εk)2

) +
∑
k

E(v2
k

+h2
k

)

2

(
Γ2
4 +(E−εk)2

)


≡ f(Γ, hk, vk). (4.33)

By averaging the width Γ, eq. (4.33), over the set of random variables hn and vn we get the

width distribution,

P (Γ) =

∫ +∞

−∞
δ (Γ− f(Γ, hn, vn))

× exp

−N
σ2

N∑
n=1

h2
n

 N∏
n=1

dhn exp

−N
σ2

N∑
n=1

v2
n

 N∏
n=1

dvn. (4.34)

Introducing k = 2 dimensional spherical coordinates

r2
N ≡ v2

N + h2
N (4.35)

and taking into account

Vk(R) =
π
k
2

Γ
[
k
2 + 1

]Rk, (4.36)

dVk(R) =
π
k
2

Γ
[
k
2 + 1

]kRk−1dR ' CkR
k−1dR,
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we obtain

P (Γ) =

∫ +∞

−∞

N−1∏
n=1

dhn

N−1∏
n=1

dvnδ (Γ− f(Γ, hn, vn)) (4.37)

× exp

−N
σ2

N−1∑
n=1

h2
n

 exp

−N
σ2

N−1∑
n=1

v2
n

 exp

[
−N r2

N

σ2

]
π
k
2

Γ
[
k
2 + 1

]krk−1
N drN .

The Dirac δ-function produces a derivative in the denominator which behaves as

∣∣∣∣ dΓ

drN

∣∣∣∣ = C
rN∑k

i=1 ηi/k
. (4.38)

After applying the steepest descent method and in the particular case k = 2 after smoke

clears we have

P (Γ) = C exp

[
− N

2σ2
Γ

(
η0 + η1

2
− Γ

)]
× φ

(
Γ

D

)
, (4.39)

which, except for the factor φ (Γ/D), is nothing but χ2
k

[
Γ
(
η0+η1

2 − Γ
)]

distribution in case

of k = 2 open channels. The factor φ (Γ/D) is evaluated by means of the Euler formula and

is given in terms of the sum of partial width η,

η =

∑k
i=1 ηi
k

, (4.40)

and the number of open channels k,

φ

(
Γ

D

)
=

sinh
[
πΓ
2D

(η−Γ)
η

]
πΓ
2D

(η−Γ)
η


k
2

. (4.41)
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In the general case of k open channels the width distribution is

P (Γ) = C exp

[
− N

2σ2
Γ (η − Γ)

]
(Γ (η − Γ))

k−2
2

sinh
[
πΓ
2D

(η−Γ)
η

]
πΓ
2D

(η−Γ)
η


k
2

. (4.42)

4.8 Conclusion

In this chapter we proposed a new resonance width distribution for an open quantum

system based on chaotic intrinsic dynamics and coupling of states with the same quantum

numbers to the common decay channel. Two approximate methods lead to an equivalent

analytical expression for the width distribution that does not belong to the class of chi-

square distributions with the only parameter ν traditionally used in the analysis of data.

In the limit of vanishing openness and return to a closed system we recover the standard

PTD. The new result depends on the ratio (4.2) of the width to the mean level spacing,

κ ∼ Γ/D, that regulates the strength of the continuum coupling. The deviations from the

PTD grow with κ up to the critical strength κ ∼ 1, when the broad “super-radiant” state

becomes essentially the part of the background, while the remaining “trapped” states return

to the weak coupling regime. This physics was repeatedly discussed previously, especially in

relation to quantum signal transmission through mesoscopic devices [57,65], but it is outside

of our interest here.

In the practical region of low-energy neutron resonances, the effects predicted here are

relatively small. Although at small κ the derived neutron width distribution supports an

experimental trend, the final judgment can be made only after the presence of gamma-

channels was accounted for. We have to attract the attention of experimentalists to the fact

that the data should be analyzed with the aid of the distribution that does not belong to the
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routinely used chi-square class; gamma channels should be included into consideration. We

can also mention that the result agrees with numerical simulations [51] for the full many-

resonance distribution function (4.9). Using the suggested distribution as a new reference

point, one can ascribe the remaining deviations to the specific features of individual systems

(level densities, single-particle structure in a given energy region, shape transformations,

energy dependence of the widths etc.). Unfortunately, we still do not have experimental

tests for the full distribution (4.9). Although in nuclear physics it is hard to make such a

detailed analysis for higher energies and greater degree of resonance overlap, the systems

with tunable chaos, such as microwave cavities, acoustic blocks, or even elastomechanical

devices [66], seem to provide appropriate tools for such studies.
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Chapter 5

Cosmology

In this chapter we present analytical solution for time evolution of the gravitational wave

damping in the early Universe due to freely streaming neutrinos in both early-time and late-

time limit, as well as for the general case. In the extreme cases of early-time and late-time

limits, the solution is represented by a convergent series of spherical Bessel functions of even

order, which is not the case for the general solution. The derivation was possible with the

help of a new compact formula for the convolution of spherical Bessel functions of integer

order.

The results of this chapter are based on our work,

GS, arXiv:1204.1384 (2012).

5.1 Introduction

Thorough analysis of cosmic microwave background (CMB) radiation provides a unique test

for the standard inflationary cosmological model [67–72]. While scalar fluctuations of CMB

serve as an invaluable source for exploring density of matter and radiation and large-scale

structure of the universe [73–78], observations of tensor fluctuations of CMB open a window

for searching after a signature of gravitational waves [79–82].

The CMB observations done by Wilkinson Microwave Anisotropy Probe (WMAP) [83]
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generally support theoretical predictions based on the standard inflationary cosmological

model. The detailed analysis of the experimental data provides more and more accurate

values [84–86] for the most valuable cosmological parameters, such as baryon density, total

matter density, Hubble constant, and age of the Universe.

Independently of WMAP measurements, there is a long quest for a direct observation

of cosmological gravitational waves [87]. The specially designed for this task Laser

Interferometer Gravitational Wave Observatory (LIGO) puts a major effort in this

experimental challenge [88]. A direct observation of cosmological gravitational waves would

serve as a decisive test for validity of the Einstein general theory of relativity in the same

way as the Michelson - Morley experiment served as a major proof for the Einstein special

theory of relativity.

In this chapter we analyze the problem of gravitational wave damping in the early

Universe due to freely streaming neutrinos in both early and late-time regime. The exact

solution in the early-time limit is given by a convergent series of spherical Bessel functions

of even order. In this limit the solution is independent of dimensionless parameter of

momentum Q. The neutrino source perturbation does not change the qualitative behavior of

the homogeneous gravitational wave damping solution but effectively changes its amplitude

from unity to the corresponding asymptotic value.

The late-time limit solution is represented by a convergent series of spherical Bessel

functions of even order and is Q-independent for large values of Q. Thus the prediction made

by S. Weinberg concerning the Q-independent solution for the gravitational wave damping

given by a series of even spherical Bessel functions is valid in both early and late-time limit.

S. Weinberg’s predictions fails in the general case where we were able to construct the

solution in terms of an infinite series of the product of spherical Bessel function and reciprocal
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sum of the time parameter u and the parameter Q. Even though for large Q-values the series

coefficients of the proposed solution are Q-independent, the solution for the gravitational

wave damping depends on Q-value, and in general is represented by a linear combination of

both even and odd spherical Bessel functions.

The constructed solution for the general case was possible due the nontrivial equality for

the differential operator of the gravitational wave damping problem which upon its action

onto the trial function returns the exact sum of its action onto the function in the early and

late-time limits, which we consider as the main result of the present investigation.

5.2 Fluctuations in General Relativity

In this section we are interested in the Einstein field equation for the traceless and

divergenceless part of the metric perturbation tensor hij(x, t) for the metric tensor gµν ,

defined as

g00 = −1, (5.1)

gi0 = 0,

gij(x, t) = a2(t)δij + hij(x, t),

where a(t) is the Robertson--Walker scale factor, which measures the expansion rate of the

Universe.

In the subsequent section we derive the kinetic Boltzmann equation for the neutrino

energy-momentum tensor πTij which will be given in terms of the metric perturbation tensor

hij(x, t). Finally we obtain the integro-differential equation for the metric perturbation
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hij(x, t) which we subsequently build solution for.

The Einstein field equation,

Rµν = −8πGSµν , (5.2)

is given in terms of the Ricci tensor Rµν ,

Rµν =
∂Γλλµ
∂xν

−
∂Γλµν

∂xλ
+ ΓλµσΓσνλ − ΓλµνΓσλσ, (5.3)

the shifted energy-momentum tensor Sµν ,

Sµν = Tµν −
1

2
gµνg

ρσTρσ, (5.4)

and Newton gravitational constant G. Here we have introduced the field Γλµν known as the

affine connection,

Γλµν =
1

2
gλρ

[
∂gρµ
∂xν

+
∂gρν
∂xµ

− ∂gµν
∂xρ

]
. (5.5)

Below we introduce the unperturbed metrics and energy-momentum tensor which we label

by a horizontal bar.

First we introduce the unperturbed Robertson–Walker metrics,

g00 = −1, (5.6)

gi0 = g0i = 0,

gij(t) = a2(t)δij ,
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and the unperturbed energy-momentum tensor that is given in terms of energy density ρ

and pressure p,

T 00 = ρ, (5.7)

T i0 = T 0i = 0,

T ij = δijp.

This parametrization ensures the existence of a local inertial Cartesian reference frame in

which a moving perfect fluid is isotropic.

In terms of the velocity four-vector uµ that is defined in the co-moving inertial reference

frame,

u0 = 1, (5.8)

ui = 0,

the unperturbed energy-momentum tensor can be conveniently written as

Tµν = p gµν + (p+ ρ)uµuν . (5.9)

In Appendix C we derive the fundamental Friedmann equations which are given in terms

of the unperturbed density ρ and pressure p,

ρ =
3

8πG

(
ȧ2

a2

)
, (5.10)

p = − 1

8πG

(
2ä

a
+
ȧ2

a2

)
. (5.11)
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Therefore for the trace of the unperturbed energy-momentum tensor we have

Tλλ = 4p− (ρ+ p) = 3p− ρ = − 3

4πG

(
ä

a
+
ȧ2

a2

)
. (5.12)

The perturbation to the shifted energy-momentum tensor, δSµν , in the Einstein field

equation (5.2) comes from perturbation to the energy momentum tensor δTµν , perturbation

to its trace, δTλλ, and perturbation to the metrics hµν ,

δSµν = δTµν −
1

2
gµνδT

λ
λ −

1

2
hµνT

λ
λ. (5.13)

Taking into account metrics (5.1), the components of the tensor δSµν are

δSjk = δTjk −
a2

2
δjkδT

λ
λ +

3

8πG

(
ä

a
+
ȧ2

a2

)
hjk, (5.14)

δSj0 = δTj0 +
3

8πG

(
ä

a
+
ȧ2

a2

)
hj0, (5.15)

δS00 = δT00 +
1

2
δTλλ +

3

8πG

(
ä

a
+
ȧ2

a2

)
h00. (5.16)

Then the Einstein equation (5.2) for space-space components is

−8πG

(
δTjk −

a2

2
δjkδT

λ
λ +

3

8πG

(
ä

a
+
ȧ2

a2

)
hjk

)
= δRjk (5.17)
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with the perturbation to the Ricci tensor

δRjk = −1

2
∂j∂kh00 − (2ȧ2 + aä)δjkh00 −

1

2
aȧδjkḣ00 (5.18)

+
1

2a2

(
∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)
−1

2
ḧjk +

ȧ

2a
(ḣjk − δjkḣii) +

(
ȧ2

a2

)
(−2hjk + δjkhii) +

ȧ

a
δjk∂ihi0

+
1

2
(∂j ḣk0 + ∂kḣj0 +

ȧ

2a
(∂jhk0 + ∂khj0).

The next step is to introduce the most general parametrization for the metrics perturbation,

hij = a2
[
Aδij +

∂2B

∂xi∂xj
+
∂Ci
∂xj

+
∂Cj

∂xi
+Dij

]
, (5.19)

hi0 = a

[
∂F

∂xi
+Gi

]
, (5.20)

h00 = −E. (5.21)

For the traceless and divergenceless tensor perturbation,

∂Dij

∂xi
= 0, (5.22)

Dii = 0, (5.23)

Dij = Dji, (5.24)

we are left only with

hij = a2Dij , (5.25)

while all other terms contribute only to scalar and vector perturbations. As a consequence,
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the metrics perturbation tremendously simplifies to

3

(
ä

a
+
ȧ2

a2

)
hjk + δRjk =

1

2a2
∇2hjk −

1

2
ḧjk +

ȧ

2a
ḣjk +

(
3ä

a
+
ȧ2

a2

)
hjk

=
1

2
∇2Djk −

a

2

(
3ȧḊjk + aD̈jk

)
. (5.26)

The most general perturbation to the energy-momentum tensor can be written as

δTij = phij + a2
[
δijδp+ ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + πTij

]
, (5.27)

δTi0 = phi0 − (ρ+ p)
(
∂iδu+ δuVi

)
, (5.28)

δT00 = −ρh00 + δρ. (5.29)

where πS , πVj , and πTij are the scalar, vector and tensor perturbations, correspondingly. For

the perturbation to the energy-momentum tensor δTµν , there is only a single term πTij , which

satisfies the traceless and divergenceless conditions,

∂πTij

∂xi
= 0, (5.30)

πTii = 0, (5.31)

πTij = πTji. (5.32)

The explicit form of the tensor perturbation πTij will be found from the kinetic Boltzmann

equation in the subsequent section.

Finally we arrive at the desirable Einstein field equation for the metrics perturbation
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mode Djk [89],

∇2Djk − a2D̈jk − 3aȧḊjk = −16πGa2πTjk. (5.33)

The obtained equation governs the metric perturbation tensor Djk that is driven by the

energy-momentum tensor perturbation πTjk.

5.3 Boltzmann equation for neutrinos

In this section our main interest is to obtain the neutrino energy-momentum tensor

perturbation πTjk from the Boltzmann equation. Following S. Weinberg [89] we argue that

the velocity of cold dark matter and baryonic plasma is too slow to make a contribution to

anisotropic inertia tensor. Therefore the only contributions to the anisotropic inertia tensor

are due to photons and neutrinos. Photons, however, have a short mean free time before the

era of recombination [89], and therefore their contribution to the anisotropic inertia tensor is

relatively small. As the result, we are left with neutrinos, which we assume to be massless,

that represent the main source for perturbation to the anisotropic inertia tensor.

First we define the neutrino distribution function in the phase space as

nν(x,p, t) ≡
∑
r

[
3∏
i=1

δ
(
xi − xir(t)

) 3∏
i=1

δ
(
pi − pir(t)

)]
, (5.34)

where r labels a neutrino trajectory. From the momentum definition

p
µ
r =

dx
µ
r

dur
, (5.35)
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where we used a scalar quantity u that specifies position along the particle trajectory, we

obtain

ẋir =
pir
p0
r
. (5.36)

The space-time trajectory satisfies the geodesic equation

d2xλr
du2
r

+ Γλµν(xr)
dx
µ
r

dur

dxνr
dur

= 0, (5.37)

which together with the affine connection (5.5) given in the components by

Γkij =
1

2
gkl
(
∂gli
∂xj

+
∂glj

∂xi
− ∂gij

∂xl

)
, (5.38)

Γ
j
i0 =

1

2
gjkġki, (5.39)

Γ0
ij =

1

2
ġij , (5.40)

defines the rate of the momentum change,

ṗri =
1

2p0
r
p
j
rp
k
r

(
∂gjk

∂xi

)
x=xr

. (5.41)

The neutrino number density is conserved, which can be expresses as

dnν
dt

=
∂nν
∂t

+
∂nν

∂xi
pi

p0
+
∂nν
∂pi

pjpk

2p0

∂gjk

∂xi
= 0, (5.42)
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where we we have introduced the standard notations,

pi = gij(x, t)pj , (5.43)

p0 =
√
gij(x, t)pipj .

Our goal is to derive the kinetic Boltzmann equation in the first order in metrics and

density perturbation, δgij(x, t) and δnν(x, t), correspondingly. In the following we denote

an arbitrary perturbation to the metrics as

gij(x, t) = a2(t)δij + δgij(x, t). (5.44)

For the perturbation of the neutrino density we have

nν(x, t) = nν [a(t)p] + δnν(x, t), (5.45)

nν(p) =
1

(2π)3

1

exp

[
p
a(t)

1
kT (t)

]
+ 1

. (5.46)

Then the Boltzmann equation for neutrinos to the first order in perturbations reads

∂δnν(x,p, t)

∂t
+
∂δnν(x,p, t)

∂xi
pi

a(t)p
(5.47)

+
n′ν(p)

2p

∂

∂t

(
a2(t)δgij(x, t)

)
pipj +

n′ν(p)

2p

∂

∂xk

(
a2(t)δgij(x, t)

)
pipj

pk
a(t)p

+n′ν(p)
pipjpk

2a3(t)p2

∂

∂xk

(
δgij(x, t)

)
= 0,

where

n′ν(p) =
∂nν(p)

∂p
. (5.48)
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Up to the first order the inverse metric tensor is

gij =
1

a2
δij −

1

a4
δgij , (5.49)

and we can greatly simplify the Boltzmann equation due to the following cancellation:

n′ν(p)

2p

∂

∂xk

(
a2(t)δgij(x, t)

)
pipj

pk
a(t)p

+ n′ν(p)
pipjpk

2a3(t)p2

∂

∂xk

(
δgij(x, t)

)
(5.50)

=

(
− 1

a2(t)

)
n′ν(p)

pipjpk
2a(t)p2

∂

∂xk

(
δgij(x, t)

)
+ n′ν(p)

pipjpk
2a3(t)p2

∂

∂xk

(
δgij(x, t)

)
= 0.

Therefore we are left with

∂δnν(x,p, t)

∂t
+
∂δnν(x,p, t)

∂xi
pi

a(t)p
=
n′ν(p)

2p
pipj

∂

∂t

(
1

a2(t)
δgij(x, t)

)
. (5.51)

Introducing the tensor perturbation

δgij(x, t) = hij(x, t) = a2Dij(x, t), (5.52)

and the unit vector along the momentum

p̂i =
pi
p
, (5.53)

p ≡ √pipi, (5.54)

we arrive at the Boltzmann equation in the coordinate space,

∂δnν(x,p, t)

∂t
+
∂δnν(x,p, t)

∂xi
p̂i
a(t)

=
1

2
pn′ν(p)p̂ip̂jḊij(x, t). (5.55)
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The next step is to introduce a dimensionless intensity perturbation J(x, p̂, t),

a4(t)ρν(t)J(x, p̂, t) ≡ Nν

∫ ∞
0

δnν(x,p, t)p3dpd2p̂, (5.56)

ρν(t) ≡ Nν
a4(t)

∫ ∞
0

dpnν(p)4πp3. (5.57)

Multiplying the Boltzmann equation (5.55) by p3dpd2p̂ with subsequent integration over

momentum p and performing integration by parts, we obtain for the right hand side

1

2
p̂ip̂jḊij(x, t)

∫ ∞
0

dpn′ν(p)4πp4 = −2p̂ip̂jḊij(x, t)

∫ ∞
0

dpnν(p)4πp3

= −2p̂ip̂jḊij(x, t)ρν(t)
a4(t)

Nν
. (5.58)

As the result, the Boltzmann equation for the dimensionless neutrino density J(x, p̂, t) is [89]

∂J(x, p̂, t)

∂t
+

p̂i
a(t)

∂J(x, p̂, t)

∂xi
= −2p̂ip̂jḊij(x, t). (5.59)
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5.4 Momentum representation

Now we have all the tools we need to build the solution of the Boltzmann equation for the

neutrino density. We introduce a stochastic amplitude for the single non-decaying mode

with the wave number q and helicity λ,

β(q, λ), (5.60)

together with its local correlation,

〈β(q, λ)β∗(q′, λ′)〉 = δλλ′δ
3 (q− q′

)
. (5.61)

Also we need the polarization tensor

eij(q̂, λ), (5.62)

satisfying the traceless and divergenceless conditions automatically,

eii = 0, (5.63)

qieij = 0. (5.64)

In the following we transform the obtained Boltzmann equation (5.59) into the momentum

representation.

First we need to introduce the notion of helicity, labeled by λ. The wave propagating

in the direction k̂ is said to have a helicity λ if it bears an angular momentum h̄λ in the

direction of flight. The traceless and divergenceless conditions for the metric perturbation
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tensor in the momentum representation D
q
ij are

D
q
ij = D

q
ji, (5.65)

D
q
ii = 0, (5.66)

qiD
q
ij = qjD

q
ij = 0. (5.67)

Under the rotation by an angle θ, the metric perturbation tensor in the momentum

representation D
q
ij transforms as

D
q
11 ∓D

q
12 −→ eiλθ

[
D
q
11 ∓D

q
12

]
, (5.68)

λ = ±2.

Further we introduce the Fourier representation for the metric perturbation tensor Dij(x, t),

Dij(x, t) =
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂, λ)Dq(t), (5.69)

the Fourier representation for the anisotropic inertia tensor πTij(x, t),

πTij(x, t) =
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂, λ)πTq (t), (5.70)

and the Fourier representation for dimensionless neutrino density function J(x, p̂, t),

J(x, p̂, t) =
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂, λ)p̂ip̂jJq(q, p̂ · q̂, t). (5.71)

As the result, the momentum representation of the Boltzmann equation (5.59) for the
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neutrino density Jq(q, p̂ · q̂, t) becomes the first-order differential equation,

J̇q(q, p̂ · q̂, t) + ip̂ · q̂ q

a(t)
Jq(q, p̂ · q̂, t) = −2Ḋq(t). (5.72)

Performing a simple algebra with an integrating factor,

exp

[
−iqp̂ · q̂

∫ t

t0

dt′′

a(t′′)

]∫ t

t0

dt′ exp

[
iqp̂ · q̂

∫ t′

t0

dt′′

a(t′′)

]
Ḋq(t

′) (5.73)

=

∫ t

t0

dt′ exp

[
−iqp̂ · q̂

∫ t

t′
dt′′

a(t′′)

]
Ḋq(t

′),

we obtain the solution of the Boltzmann equation for the neutrino density,

Jq(q, p̂ · q̂, t) = −2

∫ t

t0

dt′ exp

[
−iqp̂ · q̂

∫ t

t′
dt′′

a(t′′)

]
Ḋq(t

′). (5.74)
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5.5 Perturbations to the energy-momentum tensor

In this section we shall find the neutrino stress-energy tensor in the momentum representation

πTq (t). The first-order perturbations to the energy-momentum tensor are

δT ij =
1

a4(t)

∫ (
3∏

k=1

dpk

)
δnν(x,p, t)

pipj
p
, (5.75)

δT 0
j =

1

a4(t)

∫ (
3∏

k=1

dpk

)
δnν(x,p, t)pj , (5.76)

δT 0
0 =

1

a4(t)

∫ (
3∏

k=1

dpk

)
δnν(x,p, t)p. (5.77)

For our purpose we need only the tensor part δT ij that can be simplified as

δT ij =
1

a4(t)

∫ (
3∏

k=1

dpk

)
a2(t)δnν(x,p, t)pp̂ip̂j . (5.78)

Recalling the definition of the dimensionless intensity perturbation J(x, p̂, t), eq. (5.56), we

obtain for the tensor perturbation δT ij

δT ij = (5.79)

=
1

a4(t)

∫ (
3∏

k=1

dpk

)
δnν(x,p, t)pp̂ip̂j = ρν(t)

∫
d2p̂

4π
J(x, p̂, t)p̂ip̂j

= ρν(t)
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)ekl(q̂, λ)

∫
d2p̂

4π
p̂ip̂j p̂kp̂lJq(q, p̂ · q̂, t).

The algebra of the polarization tensor ekl(q̂) simplifies the task,

∫
d2p̂ f(p̂ · q̂)p̂ip̂kejk(q̂) =

1

2
eij(q̂)

∫
d2p̂ f(p̂ · q̂)

(
1− (p̂ · q̂)2

)
, (5.80)
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∫
d2p̂ f(p̂ · q̂)p̂ip̂j p̂kp̂lekl(q̂) =

1

4
eij(q̂)

∫
d2p̂ f(p̂ · q̂)

(
1− (p̂ · q̂)2

)2
. (5.81)

As the result we have for the tensor perturbation

δT ij = ρν(t)
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂) (5.82)

×1

4

∫
d2p̂

4π

(
1− (p̂ · q̂)2

)2
Jq(q, p̂ · q̂, t),

and with the obtained earlier solution of the Boltzmann equation for the neutrino density

Jq(q, µ, t), eq. (5.74), we have

δT ij = ρν(t)
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂) (5.83)

×
(−2

4

)∫
d2p̂

4π

(
1− (p̂ · q̂)2

)2
∫ t

t0

dt′ exp

[
−iq(p̂ · q̂)

∫ t

t′
dt′′

a(t′′)

]
Ḋq(t

′).

In the obtained expression for the tensor perturbation we can perform the surface integration

I(u) ≡
∫
d2p̂

4π

(
1− (p̂ · q̂)2

)2
exp

[
−iq(p̂ · q̂)

∫ t

t′
dt′′

a(t′′)

]
. (5.84)

Introducing the time variable u and the angle variable s,

u = q

∫ t

t′
dt′′

a(t′′)
, (5.85)

s = (p̂ · q̂), (5.86)

and, owing to the azimuthal symmetry,

d2p̂ = 2πds, (5.87)
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we express the surface integral I(u) in terms of spherical Bessel functions jn(u),

I(u) =

∫ 1

−1

ds

2

(
1− s2

)2
exp [−ius]

=

(
− 8

u5

)[
3u cosu+

(
u2 − 3

)
sinu

]
= 8

j2(u)

u2
= 8

(
1

15
j0(u) +

2

21
j2(u) +

1

35
j4(u)

)
. (5.88)

Finally the tensor perturbation simplifies to

δT ij =
∑
λ=±2

∫
d3q exp (iqx)β(q, λ)eij(q̂) (5.89)

×(−4)ρν(t)

∫ t

t0

dt′K
(
q

∫ t

t′
dt′′

a(t′′)

)
Ḋq(t

′),

with the kernel

K(u) ≡ 1

15
j0(u) +

2

21
j2(u) +

1

35
j4(u). (5.90)

Recalling the momentum representation of the anisotropic inertia tensor πTij(x, t), eq. (5.70),

we arrive at the neutrino stress-energy tensor in the momentum representation

πTq (t) = −4ρν(t)

∫ t

0
dt′K

(
q

∫ t

t′
dt′′

a(t′′)

)
Ḋq(t

′). (5.91)

In terms of the time variable u it looks like [89]

πTq (u) = −4ρν(u)

∫ u

0
dUK (u− U)D′q(U), (5.92)

which is nothing but the convolution integral of the kernel K(u), eq. (5.90), and the time

derivative of the metrics perturbation Dq(u).
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5.6 Gravitational wave damping

The Einstein field equation for the tensor perturbation is given by eq. (5.33). Recalling the

Fourier representations for the metric perturbation tensor Dij(x, t), eq. (5.69), and for the

anisotropic inertia tensor πTij(x, t), eq. (5.70), we obtain the gravitational wave damping

equation in the momentum representation

D̈q(t) +
3ȧ

a
Ḋq(t) +

q2

a2
Dq(t) = −64πGρν(t)

∫ t

0
dt′K

(
q

∫ t

t′
dt′′

a(t′′)

)
Ḋq(t

′), (5.93)

where the kernel K(u) is given by (5.90). In terms of the time variable u, eq. (5.85), the left

hand side of the gravitational wave equation transforms as

D̈q(t) +
3ȧ

a
Ḋq(t) +

q2

a2
Dq(t) (5.94)

=

(
q

a(u)

)2 [
D′′q (u) + 2

(
a′(u)

a(u)

)
D′q(u) +Dq(u)

]
.

As the result, we obtain the gravitational wave equation entirely in terms of the variable u,

D′′(u) + 2

(
a′(u)

a(u)

)
D′(u) +D(u) (5.95)

= −64πG

(
a(u)

q

)2

ρν(u)

∫ u

0
dUK (u− U)D′(U).

In terms of the Hubble expansion rate,

H(t) =
ȧ(t)

a(t)
, (5.96)
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and the time variable u, the Friedmann equation for the unperturbed energy density ρ

becomes

ρ =
3

8πG
H2(t) =

3

8πG

(
ȧ2(t)

a2(t)

)
=

3

8πG

(
q

a(u)

a′(u)

a(u)

)2

, (5.97)

and therefore the energy-momentum prefactor in eq. (5.95) can be expressed as

−64πG

(
a(u)

q

)2

ρν(u) (5.98)

= −64πG

(
a(u)

q

)2

H2(t)
ρν(u)

ρ

3

8πG
= −24

ρν(u)

ρ

(
a′(u)

a(u)

)2

.

Finally we obtain the gravitational wave equation

D′′(u) + 2

(
a′(u)

a(u)

)
D′(u) +D(u) = −24

ρν(u)

ρ

(
a′(u)

a(u)

)2 ∫ u

0
dUK (u− U)D′(U). (5.99)

The unperturbed equilibrium neutrino and photon energy density, ρν(u) and ργ(u),

correspondingly, define the ratio

fν(0) ≡ ρν(u)

ρ
=

ρν
ρν + ργ

=
3
(

7
8

)(
4
11

)4/3

1 + 3
(

7
8

)(
4
11

)4/3
' 0.40523, (5.100)

which we refer to Appendix D for details.

It is convenient to use the dimensionless quantity

y ≡ a(t)

aeq
, (5.101)

aeq = a(t = teq),
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where teq is the time of matter-radiation equality, which will be discussed in the next section.

Introducing Q as the ratio of the wave number to its value at the time of matter-radiation

equality,

Q =
√

2
q

qeq
, (5.102)

qeq = aeqHeq,

and owing to

du

dy
=

Q√
1 + y

, (5.103)

we obtain

(1 + y)
d2D(y)

dy2
+

(
2(1 + y)

y
+

1

2

)
dD(y)

dy
+Q2D(y) (5.104)

= −24fν(0)

y2

∫ y

0
K
(

2Q
(√

1 + y −
√

1 + y′
)) dD(y′)

dy′
dy′.

With the change of variable

y =
u(u+ 4Q)

4Q2
, (5.105)

we may rewrite the obtained equation in a more convenient form,

d2D(u)

du2
+

(
4(u+ 2Q)

u(u+ 4Q)

)
dD(u)

du
+D(u) (5.106)

= −24fν(0)

(
4Q

u(u+ 4Q)

)2 ∫ u

0
K(u− U)

dD(U)

dU
dU,
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with the kernel K(u) given by eq. (5.90), and the initial conditions

D(0) = 1, (5.107)

dD(u)

du

∣∣∣∣
u=0

= 0.

5.7 Matter-radiation equality

Matter-radiation equality corresponds to moment at which ratio of the co-moving

wavenumber q to the expansion rate a becomes equal to the Hubble expansion rate H,

q

a(t)
= H(t), (5.108)

t ≡ teq. (5.109)

By integrating eq. (5.108) over time we can express the matter-radiation equality in terms

of the time variable u,

u(teq) = q

∫ teq

0

dt′

a(t′)
=

∫ teq

0
H(t′)dt′ =

∫ teq

0

ȧ(t′)
a(t′)

dt′ = ln

[
a(teq)

a(0)

]
(5.110)

The early-time limit, u � Q, that corresponds to the long wavelengths, or equivalently to

the lower-bound wavenumbers q � qeq, while the late-time limit, u� Q, that is referred to

the short wavelengths, corresponds to the upper-bound wavenumbers q � qeq.

In order to find the value for qeq we must recall the black-body spectrum, which is

formulated in terms of the number density of photons nT (ν) being in equilibrium with
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matter at a temperature T ,

nT (ν)dν =
8πν2dν

exp
(

2πh̄ν
kT

)
− 1

, (5.111)

with Planck constant h̄ and Boltzmann constant k. The energy density of the black body

radiation is

ρ(T ) =

∫ ∞
0

2πh̄νnT (ν)dν = aBT
4, (5.112)

aB =
4σ

c
=

8π5k4

15(2πh̄c)3
, (5.113)

where σ is the Stefan-Boltzmann constant,

σ =
2π5k4c

15(2πh̄c)3
. (5.114)

The maximum of the black-body radiation at the present moment corresponds to the

temperature Tγ0,

Tγ0 = 2.725 K, (5.115)

which specifies the energy density at the present moment,

ρ0 = aBT
4
γ0. (5.116)

For sake of convenience we introduce the Hubble constant H0,

H0 =
ȧ(t0)

a(t0)
, (5.117)
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in units of 100 km
s Mpc and denote it as h,

h = H0 ×
(

100
km

s Mpc

)−1

. (5.118)

In the general case the critical energy density ρ is given by the Friedmann equation and it

consists of a mixture of vacuum energy, non-relativistic matter, and radiation,

ρ =
3

8πG
H2

0

[
ΩΛ + ΩM

(a0

a

)3
+ ΩR

(a0

a

)4
]
, (5.119)

where present date quantities are labeled by a zero index. The present values for energy

density of vacuum, non-relativistic matter, and radiation are given by

ρΛ0 =
3

8πG
H2

0ΩΛ, (5.120)

ρM0 =
3

8πG
H2

0ΩM , (5.121)

ρR0 =
3

8πG
H2

0ΩR, (5.122)

and according to the general Friedmann equation we have constraint for some of Ω-ratios,

ΩΛ + ΩM + ΩR + ΩK = 1, (5.123)

ΩK ≡ −
K

(a0H0)2
, (5.124)

where K is the curvature constant. Owing to eqs. (5.119) and (5.116) we get the expansion

rate for the radiation-dominated universe filled by photons and neutrinos, we have

H(t) =
ȧ(t)

a(t)
= H0

√
ΩR

T 4

T 4
γ0

= 2.1× 10−20 s−1 T
2

T 2
γ0

. (5.125)

91



Now we introduce the ratio of the photon and neutrino mass density to the total mass density

ρM0 = ΩMρ0,

ρR0

ρM0
=

ΩR
ΩM

= 4.15× 10−5 1

ΩMh2
. (5.126)

The redshift of the matter-radiation equality is

1 + zeq =
ΩM
ΩR

=
ΩMh2

4.15× 10−5
. (5.127)

During the radiation-dominated era we get the expansion rate

H(t) = 2.1× 10−20 (1 + z)2s−1. (5.128)

At the matter-radiation equality, the matter energy density is larger then the radiation

energy density, and as the result Hubble constant acquires additional
√

2,

qeq
aeq

= Heq =
√

2× 2.1× 10−20 (1 + zeq)
2s−1 (5.129)

= 1.72× 10−11(ΩMh2)2s−1,

which corresponds to the critical wavelength λ0,

λ0 = 2π
a0

qeq
= 2π

aeq
qeq

(1 + zeq) = 85(ΩMh2)−1Mpc. (5.130)
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5.8 Late-time evolution of the gravitational wave

damping

In the late-time regime, u� Q� 1, the general eq. (5.106) simplifies into

u4
(
d2D(u)

du2
+

4

u

dD(u)

du
+D(u)

)
= α

∫ u

0
K(u− U)

dD(U)

dU
dU, (5.131)

where

α ≡ −24fν(0)(4Q)2. (5.132)

Below we present the analytical solution for eq. (5.131) together with boundary conditions

(5.107).

We need to find a specific function that would “absorb” all derivatives d/du and all

powers of u in the left hand side of eq. (5.131). For the differential operator that appears in

the left hand side of eq. (5.131),

L = u4
(
d2

du2
+

4

u

d

du
+ 1

)
, (5.133)

these conditions can be satisfied with the function

fn(u) =
n(n+ 3)

2n− 1
[jn−2(u) + jn(u)] +

(n− 2)(n+ 1)

2n+ 3
[jn(u) + jn+2(u)], (5.134)

where jn(u) is the spherical Bessel function of the order n.

Applying the differential operator (5.133) to the function (5.134) we obtain a single
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spherical Bessel function

L[fn(u)] = n(n− 2)(n+ 1)(n+ 3)(2n+ 1)jn(u) (5.135)

which is exactly what we are looking for.

Here we shall note that the functions fn(u), eq. (5.134), are not eigenfunctions of the

differential operator L, eq. (5.133), as one can see from eq. (5.135). However, the system of

spherical Bessel functions forms a complete set and therefore one can decompose any function

fn in a linear combination of those. The differential operator L is linear and therefore its

action onto a sum of spherical Bessel functions returns a sum of those. We will see that the

right hand side of eq. (5.131) can be represented by a series of spherical Bessel functions. As

a result we will have to identify coefficients in front of each spherical Bessel function. Each

of these coefficients is evaluated by the orthogonal property of spherical Bessel functions and

therefore determined uniquely.

Therefore we can look for the solution of eq. (5.131) in terms of the expansion

D(u) =
∞∑
n=0

cn

(
n(n+ 3)

2n− 1
[jn−2(u) + jn(u)] +

(n− 2)(n+ 1)

2n+ 3
[jn(u) + jn+2(u)]

)
. (5.136)

The left hand side of eq. (5.131) transforms into

∞∑
n=0

n(n− 2)(n+ 1)(n+ 3)(2n+ 1)cnjn(u). (5.137)

The regular at the origin solution for the homogeneous part of eq. (5.131),

D′′0(u) +
4

u
D′0(u) +D0(u) = 0, (5.138)
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10

Figure 5.1: Graphical representation for the upper but one triangular structure of the matrix
B2k,2l, eq. (70). The matrix indices l and k define a position of the matrix element in the
xy-plane, while along z-axis we plot its value.

is the sum of the two spherical Bessel functions,

D0(u) = j0(u) + j2(u). (5.139)

The homogenous part D0(u) of the general solution D(u) can be already seen as a linear

combination of the first two terms in the expansion (5.136) for n = 0 and n = 2.

The right hand side of eq. (5.131) is represented by the convolution of the kernel (5.90)

with the first derivative of the unknown function D(u) which we are looking for in terms

of the series (5.136). We must have a mathematical tool that relates a convolution of

spherical Bessel functions to a series of those. In Appendix E we prove a useful formula

for the convolution of spherical Bessel functions, that is not presented in the mathematical
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Figure 5.2: Late-time evolution of the gravitational wave dampingD(u) in the early Universe.

literature:

Jn,m(u) ≡
∫ u

0
dUjm(u− U)jn(U) = (5.140)

=
4(−i)n+m

2i

∞∑
l=0

(2l + 1)iljl(u)

×


L=l+m∑
L=|l−m|
L−n−1≥0

〈l, 0,m, 0|L, 0〉2
L+ L2 − n(1 + n)

+
L=l+n∑
L=|l−n|
m−L−1≥0

〈l, 0, n, 0|L, 0〉2
L+ L2 −m(1 +m)

 ,

where 〈l, 0,m, 0|L, 0〉 are the Clebsch-Gordan coefficients.

The right hand side of eq. (5.131) is

α

∫ u

0
K(u− U)

dD(U)

dU
dU = α

∞∑
l=0

l∈even

jl(u)
l+2∑
k=0

k∈even

Bk,lck. (5.141)

By the aid of eq. (5.140) matrix Bk,l is generated by the convolution of the first derivative

of the function D(u),
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D′(u) = (5.142)

=
∑
n

cn

(
jn−3(u)

(−2 + n)n(3 + n)

(−3 + 2n)(−1 + 2n)
+ jn−1(u)

n
(
−3− 4n+ n2

)
(−3 + 2n)(3 + 2n)

+jn+1(u)
(−1− n)

(
2 + 6n+ n2

)
(−1 + 2n)(5 + 2n)

+ jn+3(u)
(−1− n)(−2 + n)(3 + n)

(3 + 2n)(5 + 2n)

)
,

with the kernel (5.90) and for integer k ∈ [0, 10] and l ∈ [0, 10] is given by eq. (70) in

Appendix F.

We should notice an unpleasant feature of the matrix of coefficients (70): the first row up

to a factor k = −5 is identical to the second row. This is a direct response to the symmetry

of the introduced function fn(u), eq. (5.178). The functions fn(u) for n = 0 and n = 2 are

exactly the same up to the factor k = −5,

f0(u) = −2

3
(j0(u) + j2(u)), (5.143)

f2(u) =
10

3
(j0(u) + j2(u)).

Therefore the rank of the matrix (70) is Rank[B] = N − 1. This is a real obstacle because

it leads to inconsistency with the boundary conditions. Indeed, the boundary conditions

(5.107) are met if we set

−2

3
c0 +

10

3
c2 = 1. (5.144)

On the other hand, the linear dependence of the matrix is equivalent to

−2

3
c0 +

10

3
c2 = 0. (5.145)
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In order to avoid this unpleasant feature we can start summation in the series (5.136) from

n = 2 instead of n = 0 which is equivalent to setting

c0 ≡ 0, (5.146)

and thus the boundary conditions (5.107) are met if we set

c2 =
3

10
. (5.147)

Absence of the j2(u) term in the left hand side of eq. (5.137) leads to a restriction on the

first coefficients in eq. (5.141)

−1

3
c2 +

4

15
c4 = 0. (5.148)

Finally we get the system of linear equations for even integers n ≥ 0,

n(n− 2)(n+ 1)(n+ 3)(2n+ 1)cn = α
n+2∑
k=0

k∈even

Bk,nck (5.149)

that returns the solution (for even n and k)

cn+2 =

n(n− 2)(n+ 1)(n+ 3)(2n+ 1)cn − α
∑n

k=0
k∈even

Bk,nck

αBn+2,n
. (5.150)

In the limit Q� 1 and owing to α ≡ −24fν(0)(4Q)2 we have the Q-independent solution

cn+2 = −

∑n
k=0

k∈even
Bk,nck

Bn+2,n
, (5.151)
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and therefore for n ∈ [0, 9] we have

c2n =

{
0,

3

10
,
3

8
,

5

16
,

35

128
,

63

256
,

231

1024
,

429

2048
,

6435

32768
,
12155

65536

}
(5.152)

which completes our series solution (5.136).

5.9 Early-time evolution of the gravitational wave

damping

In this section we rederive the known solution [92] for the graviational wave damping in the

early-time limit, u� Q. In this limit eq. (5.106) becomes

u2
(
d2D(u)

du2
+

2

u

dD(u)

du
+D(u)

)
= β

∫ u

0
K(u− U)

dD(U)

dU
dU, (5.153)

where

β ≡ −24fν(0). (5.154)

We shall present the analytical solution for eq. (5.153) together with boundary conditions

(5.107). Recalling the differential equation for the spherical Bessel function jn(u),

u2
(
d2jn(u)

du2
+

2

u

djn(u)

du
+ jn(u)

)
− n(n+ 1)jn(u) = 0, (5.155)

we will look for a solution in terms of a series of spherical Bessel functions

D(u) =
∞∑
n=0

cnjn(u). (5.156)
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Figure 5.3: Graphical representation for the upper triangular structure of the matrix F2k,2l,
eq. (72). The matrix indices l and k define the position of the matrix element in the xy-plane,
while along z-axe we plot its value.

The left hand side of eq. (5.153) transforms into

∞∑
n=0

n(n+ 1)cnjn(u). (5.157)

The right hand side of eq. (5.153) is represented by the convolution of the kernel (5.90) with

the first derivative of the unknown function D(u) which we are looking for in terms of a

series (5.156).

The right hand side of eq. (5.153) is

β

∞∑
l=0

l∈even

jl(u)
l∑

k=0
k∈even

Fk,lck, (5.158)

where the matrix Fk,l is obtained by the convolution of the kernel (5.90) with the first
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derivative of the spherical Bessel function,

djn(u)

du
=

n

2n+ 1
jn−1(u)− n+ 1

2n+ 1
jn+1(u), (5.159)

and for integer k ∈ [0, 10] and l ∈ [0, 10] is given in the Appendix G.

Combination of eq. (5.158) and eq. (5.153) leads to the set of linear equations,

n(n+ 1)cn = β

n∑
k=0

k∈even

Fk,nck, (5.160)

which returns a convergent solution (for even n and k) [92]

cn =

β
∑n−2

k=0
k∈even

Fk,nck

n(n+ 1)− βFnn
. (5.161)

The boundary conditions (5.107) are met if we set

c0 = 1. (5.162)

The values for the coefficients c2k in the proposed series (5.156) are

c2 =
5β

2(−90 + β)
, (5.163)

c4 =
27
(
−40β + β2

)
8(−300 + β)(−90 + β)

,

c6 =
13
(
−756000β − 60960β2 + 469β3

)
1680(−630 + β)(−300 + β)(−90 + β)

,
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Figure 5.4: Damping of gravitational wave as a function of conformal time u in the early-
time limit. Solid line corresponds to the exact solution of the gravitational wave damping
in the early-time limit and dashed line is the approximate solution, A0j0(u), eq. (5.166).

and the corresponding numerical values of the coefficients {c2k} for integer k ∈ [0, 10] are:

{
1.00, 2.43807× 10-1, 5.28424× 10-2, 6.13545× 10-3, 2.97534× 10-4, 6.16273× 10-5,

−4.99866× 10-6, 2.33661× 10-6,−8.58529× 10-7, 3.76664× 10-7,−1.79692× 10-7
}
.

The asymptotic expansion for large argument u� 1 of spherical Bessel function,

lim
u→∞ [jn(u)] =

cos
[
u− π

2 (n+ 1)
]

u
, (5.164)

defines value of the amplitude [92]

A0 ≡
k=10∑
k=0

(−1)kc2k = 0.803127, (5.165)

and the solution in the early-time limit has an asymptotic form
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D(u) = A0j0(u). (5.166)

Here we have got a numerical value for A0 that differs from S. Weinberg’s [89, 90] value by

about 0.065%. The solution (5.166) is the asymptotic one, which could not be the exact

solution for the problem (5.153). Indeed, the differential operator on the left hand side of

eq. (5.153), being applied to (5.166) returns identical zero, which of course is inconsistent

with the perturbation presented by the right hand side of eq. (5.153). The exact solution is

given by an infinite linear combination of spherical Bessel functions (5.156) with coefficients

(5.164) and asymptotically approaches (5.166). In other words, the perturbation on the

right hand side of eq. (5.153) does not change the behavior of the homogeneous solution eq.

(5.153) but effectively changes the amplitude A0 from unity to the value given by (5.165).

To summarize, the series solution (5.156) with the coefficients (5.164) for the damping

of gravitational wave as a function of conformal time u in the early-time limit is shown in

Fig. 5.4. We note the strict upper triangular structure of matrix F2k,2l that guarantees

the convergent solution for eq. (5.153) in the early-time limit. In this limit the anisotropic

inertia tensor hij(t) never exceeds by absolute magnitude unity and therefore can be treated

as a small perturbation to the metric (5.1). Therefore in the limit u � Q the problem

(5.153) leads to damping of a gravitational wave independently of the Q value.
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5.10 General solution for the gravitational wave

damping

In this section we would like to build the solution for the general gravitational equation

(u(u+ 4Q))2
(
d2D(u)

du2
+

(
4(u+ 2Q)

u(u+ 4Q)

)
dD(u)

du
+D(u)

)
(5.167)

= −24fν(0)(4Q)2
∫ u

0
K(u− U)

dD(U)

dU
dU.

Here we define the differential operator

L ≡ (u(u+ 4Q))2
(
d2

du2
+

4(u+ 2Q)

u(u+ 4Q)

d

du
+ 1

)
, (5.168)

and consider the function

fn(u) =
n(3 + n)jn−1(u)

4Q+ u
+

(−2 + n)(1 + n)jn+1(u)

4Q+ u
, (5.169)

then we have equality

L[fn(u)] = 4Q
[
(−1 + n)n2(3 + n)jn−1(u) + (−2 + n)(1 + n)2(2 + n)jn+1(u)

]
+(−2 + n)n(1 + n)(3 + n)(1 + 2n)jn(u). (5.170)

We shall explain the meaning of the obtained eq. (5.170).

First we consider the early-time limit that simplifies the differential operator eq. (5.168)
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into

lim
u�Q

[L] ≡ L0 = (4Qu)2
(
d2

du2
+

2

u

d

du
+ 1

)
, (5.171)

and the trial function eq. (5.169) reduces to

lim
u�Q

[fn(u)] ≡ f0
n(u) =

n(3 + n)

4Q
jn−1(u) +

(−2 + n)(1 + n)

4Q
jn+1(u). (5.172)

By acting the operator (5.171) on the function (5.172) we obtain

L0[f0
n(u)] = (5.173)

= 4Q
[
(−1 + n)n2(3 + n)jn−1(u) + (−2 + n)(1 + n)2(2 + n)jn+1(u)

]

that exactly coincides with the square brackets (5.170).

Repeating the analogous procedure in the late-time limit, we obtain for the operator

(5.168),

lim
u�Q

[L] ≡ L1 = u4
(
d2

du2
+

4

u

d

du
+ 1

)
, (5.174)

and for the function (5.169),

lim
u�Q

[fn(u)] ≡ f1
n(u) =

n(3 + n)jn−1(u)

u
+

(−2 + n)(1 + n)jn+1(u)

u

=
n(n+ 3)

2n− 1
[jn−2(u) + jn(u)] +

(n− 2)(n+ 1)

2n+ 3
[jn(u) + jn+2(u)], (5.175)
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we arrive at the identity

L1[f1
n(u)] = (−2 + n)n(1 + n)(3 + n)(1 + 2n)jn(u), (5.176)

that exactly coincides with a single term outside of the square brackets (5.170).

Thus we have proved a nontrivial equality

L[fn(u)] = L0[f0
n(u)] + L1[f1

n(u)], (5.177)

which means that action of the general operator L, eq. (5.169), onto the trial function fn(u),

eq. (5.170), returns the exact sum of its action onto the function in the early-time, L0[f0
n(u)],

and the late-time, L1[f1
n(u)], limits.

As the result of the obtained eq. (5.177) we will be looking for a solution in terms of a

series

D(u) =
+∞∑
n=0

cn

(
n(3 + n)jn−1(u)

4Q+ u
+

(−2 + n)(1 + n)jn+1(u)

4Q+ u

)
. (5.178)

Naturally we have to integrate the right hand side eq. (5.167) for arbitrary n,

−24fν(0)(4Q)2
∫ u

0
K(u− U)

d

dU

[
n(3 + n)jn−1(U)

4Q+ U
+

(−2 + n)(1 + n)jn+1(U)

4Q+ U

]
dU.

(5.179)

We can break the integral (5.179) into two parts,

∫ u

0
−→

∫ u0

0
+

∫ u

u0

, (5.180)
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bearing in mind that u0 � Q. This procedure separates the early-time limit, representing

the first integral, from the late-time limit of the second integral

In the early-time limit eq. (5.179) reduces to

−24fν(0)(4Q) (5.181)

×
∫ u

0
K(u− U)

d

dU
[n(3 + n)jn−1(U) + (−2 + n)(1 + n)jn+1(U)] ,

while in the late-time limit it corresponds to

−24fν(0)(4Q)2
∫ u

0
K(u− U) (5.182)

× d

dU

[
n(n+ 3)

2n− 1
[jn−2(U) + jn(U)] +

(n− 2)(n+ 1)

2n+ 3
[jn(U) + jn+2(U)]

]
dU.

Recalling the convolution integral formula (5.140) we will be able to transform the Einstein

field equation (5.167) into a set of linear equations.

After breaking the integral into two parts eq. (5.167) transforms into

+∞∑
n=0

cn

[
(4Q)

{
(−1 + n)n2(3 + n)jn−1(u) + (−2 + n)(1 + n)2(2 + n)jn+1(u)

}
(5.183)

+ (−2 + n)n(1 + n)(3 + n)(1 + 2n)jn(u)] = −24fν(0)(4Q)2

×
({

+∞∑
n=0

cn

∫ u

0
K(u− U)

d

dU

[
n(3 + n)jn−1(U) + (−2 + n)(1 + n)jn+1(U)

4Q

]
dU

}

−
+∞∑
n=0

cn

∫ u

0
K(u− U)

× d

dU

[
n(n+ 3)

2n− 1
[jn−2(U) + jn(U)] +

(n− 2)(n+ 1)

2n+ 3
[jn(U) + jn+2(U)]

]
dU

)
.

The early-time limit case that corresponds to the equation formed by the terms inside the
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curly brackets,

+∞∑
n=0

cn

[
(−1 + n)n2(3 + n)jn−1(u) + (−2 + n)(1 + n)2(2 + n)jn+1(u)

]
= (5.184)

−24fν(0)
+∞∑
n=0

cn

∫ u

0
K(u− U)

d

dU
[n(3 + n)jn−1(U) + (−2 + n)(1 + n)jn+1(U)] dU,

exactly reproduces the solution for the early-time evolution of the gravitational wave, and

the late-time limit evolution represented by the differential equation formed by the terms

outside the curly brackets,

+∞∑
n=0

cn [(−2 + n)n(1 + n)(3 + n)(1 + 2n)jn(u)] = −24fν(0)(4Q)2 (5.185)

×
+∞∑
n=0

cn

∫ u

0
K(u− U)

× d

dU

[
n(n+ 3)

2n− 1
[jn−2(U) + jn(U)] +

(n− 2)(n+ 1)

2n+ 3
[jn(U) + jn+2(U)]

]
dU,

exactly reconstructs the late-time evolution of the gravitational wave.

5.11 Evaluation of the convolution integrals

Here we shall calculate the convolution integrals in the right hand side of eq. (5.183). The

first integral is

−24fν(0)(4Q)
+∞∑
n=0

cn

∫ u

0
K(u− U) (5.186)

× d

dU
[n(3 + n)jn−1(U) + (−2 + n)(1 + n)jn+1(U)] dU

= −24fν(0)(4Q)

 ∞∑
l=0

j2l(u)
l∑

k=0

A2k+1,2lc2k+1 +
∞∑
l=0

j2l+1(u)
l+1∑
k=0

A2k,2l+1c2k

 ,
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where the matrices A2k+1,2l and A2k,2l+1 are obtained by the convolution of the kernel K(u)

given by eq. (5.90) with the first derivative of the function

d

dU
[n(3 + n)jn−1(U) + (−2 + n)(1 + n)jn+1(U)] = (5.187)

= jn−2(U)

(
(−1 + n)n(3 + n)

−1 + 2n

)
+ jn(U)

(
−(1 + 2n)

(
−2 + 5n+ 5n2

)
(−1 + 2n)(3 + 2n)

)
+jn+2(U)

(
−(−2 + n)(1 + n)(2 + n)

3 + 2n

)
,

and for integer k ∈ [0, 10] and l ∈ [0, 10] are given in Appendix H.

The second integral that constitutes the right hand side eq. (5.183) is (without the factor

−24fν(0)(4Q)2)

+∞∑
n=0

cn

∫ u

0
K(u− U) (5.188)

× d

dU

[
n(n+ 3)

2n− 1
[jn−2(U) + jn(U)] +

(n− 2)(n+ 1)

2n+ 3
[jn(U) + jn+2(U)]

]
dU

=

 ∞∑
l=0

j2l(u)
l+1∑
k=0

B2k,2lc2k +
∞∑
l=0

j2l+1(u)
l+1∑
k=0

B2k+1,2l+1c2k+1

 ,
where the matrices B2k,2l and B2k+1,2l+1 are obtained by the convolution of the kernel K(u)

(5.90) with the first derivative of the function

d

dU

[
n(n+ 3)

2n− 1
[jn−2(U) + jn(U)] +

(n− 2)(n+ 1)

2n+ 3
[jn(U) + jn+2(U)]

]
(5.189)

= jn−3(U)

(
(−2 + n)n(3 + n)

(−3 + 2n)(−1 + 2n)

)
+ jn−1(U)

(
n
(
−3− 4n+ n2

)
(−3 + 2n)(3 + 2n)

)
+

jn+1(U)

(
−(1 + n)

(
2 + 6n+ n2

)
(−1 + 2n)(5 + 2n)

)
+ jn+3(U)

(
−(−2 + n)(1 + n)(3 + n)

(3 + 2n)(5 + 2n)

)
,

and for integer k ∈ [0, 10] and l ∈ [0, 10] are given in Appendix F.
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Finally eq. (5.183) can be written as a set of linear equations

∑
n

n(n+ 1)jn(u) (5.190)

× [(4Q)n(n− 3)cn−1 + (n+ 3)(n− 2)(2n+ 1)cn + (4Q)(n+ 1)(n+ 4)cn+1]

= −24fν(0)(4Q)

 ∞∑
l=0

j2l(u)
l∑

k=0

A2k+1,2lc2k+1 +
∞∑
l=0

j2l+1(u)
l+1∑
k=0

A2k,2l+1c2k


−24fν(0)(4Q)2

 ∞∑
l=0

j2l(u)
l+1∑
k=0

B2k,2lc2k +
∞∑
l=0

j2l+1(u)
l+1∑
k=0

B2k+1,2l+1c2k+1

 .
Specifying even spherical Bessel functions in eq. (5.190) leads to

2n(1 + 2n) [(4Q)2n(−3 + 2n)c−1+2n + (−2 + 2n)(3 + 2n)(1 + 4n)c2n+ (5.191)

(4Q)(1 + 2n)(4 + 2n)c1+2n] j2n(u)+

+

(
24fν(0)(4Q)j2n(u)

n∑
k=0

A2k+1,2nc2k+1 + 24fν(0)(4Q)2j2n(u)
n+1∑
k=0

B2k,2nc2k

)
= 0,

which returns the recurrence relation for even coefficients

c2n+2 = − 1

24fν(0)(4Q)2B2n+2,2n
× {2n(1 + 2n)[(4Q)2n(−3 + 2n)c−1+2n

+(−2 + 2n)(3 + 2n)(1 + 4n)c2n + (4Q)(1 + 2n)(4 + 2n)c1+2n]+

+

(
24fν(0)(4Q)

n∑
k=0

A2k+1,2nc2k+1 + 24fν(0)(4Q)2
n∑
k=0

B2k,2nc2k

)}
. (5.192)
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Orthogonality between odd spherical Bessel functions in eq. (5.190) returns

(1 + 2n)(2 + 2n) [(4Q)(−2 + 2n)(1 + 2n)c2n+ (5.193)

(−1 + 2n)(4 + 2n)(1 + 2(1 + 2n))c1+2n + (4Q)(2 + 2n)(5 + 2n)c2+2n] j1+2n(u)+

+

(
24fν(0)(4Q)j2n+1(u)

n+1∑
k=0

A2k,2n+1c2k+

24fν(0)(4Q)2j2n+1(u)
n+1∑
k=0

B2k+1,2n+1c2k+1

)
= 0,

that leads to the recurrence relation for the odd coefficients,

c2n+3 = − 1

24fν(0)(4Q)2B2n+3,2n+1
{(1 + 2n)(2 + 2n) [(4Q)(−2 + 2n)(1 + 2n)c2n+

+(−1 + 2n)(4 + 2n)(1 + 2(1 + 2n))c1+2n + (4Q)(2 + 2n)(5 + 2n)c2+2n] +

+

(
24fν(0)(4Q)

n+1∑
k=0

A2k,2n+1c2k + 24fν(0)(4Q)2
n∑
k=0

B2k+1,2n+1c2k+1

)}
. (5.194)

As we see the coefficients of the general solution depend on the value of the parameter Q.

However, in both early-time and late-time limits the parameter Q� 1, and we return to the

Q-independent coefficient values found in the late-time regime, eq. (5.152). Even though

the coefficient ck become Q-independent, the series solution given by (5.178) still depends

on Q-value, and in general is represented by a combination of even and odd spherical Bessel

functions. This is the main conclusion of the general solution of gravitational wave damping

which is in a contradiction with the prediction made by S. Weinberg [89] concerning the

behavior of gravitational wave damping in the early Universe.
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5.12 Conclusion

We have analyzed the problem of gravitational wave damping in the early Universe due

to freely streaming neutrinos in both early-time and late-time limits. The derivation was

possible with the help of a new compact formula for the convolution of spherical Bessel

functions of integer order.

The exact solution in the early-time limit is given by a convergent series of spherical Bessel

functions of even order with Q-independent coefficients. The neutrino source perturbation

does not change the qualitative behavior of the homogeneous gravitational wave damping

solution but effectively changes its amplitude from unity to the corresponding asymptotic

value.

As in the early-time limit, the late-time limit solution is represented by a convergent

series of spherical Bessel functions of even order and is Q-independent for large values of

Q. Thus the prediction made by S. Weinberg concerning the Q-independent solution for the

gravitational wave damping given by a series of even spherical Bessel functions is valid in

both early-time and late-time limits.

S. Weinberg’s predictions fails in the general case where we were able to construct the

solution in terms of an infinite series of the product of spherical Bessel function and inverse

time parameter u shifted by the value of Q parameter. Even though for large Q-values the

coefficients of the proposed solution are Q-independent, the solution for the gravitational

wave damping depends on Q-value, and in general is represented by a linear combination of

even and odd spherical Bessel functions.

The constructed solution for the general case was possible due the nontrivial equality for

the differential operator of the gravitational wave damping problem which upon its action
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onto the trial function returns the exact sum of its action onto the function in the early-time

and late-time limits, which we consider as the main result of the present investigation.

Thus we conclude that the problem of gravitational wave damping in the early Universe

due to freely streaming neutrinos is completely solved in an analytical way in both early and

late-time limits, and in the general time case.
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Chapter 6

Conclusions

In this Thesis we exposed our results in atomic physics, nuclear physics, and cosmology

presented in the quantum scattering language and unified within the framework of the

scattering matrix formalism. Basic governing principles, such as conservation laws and

detailed balance principle, unitarity and gauge invariance of the scattering matrix were

given special attention throughout the Thesis.

In the Atomic Physics chapter we presented the calculation of the axial anomaly

contribution to parity nonconservation (PNC) in atoms. The main result is the prediction

of the emission of an electric photon by the magnetic dipole which has not been observed

yet. The probability of this process is very small but the non-zero result is important from

theoretical point of view.

The Ward identities were imposed on the S-matrix before the calculation of the loop

integral. This allowed us to express the divergent integrals in terms of the convergent ones

and thus obtain the gauge-invariant expression for the S-matrix. We emphasize the vital

difference between the axial anomaly contribution to the PNC effects and the impossibility

for the real Z-boson of spin J = 1 to decay into two real photons, the result known as the

Landau-Yang theorem. The difference is in the virtual photon that connects the triangular

graph of the axial anomaly with the electron atomic transition, e.g., 6s − 7s transition in

cesium, that contributes to the nonzero axial anomaly S-matrix. We have shown that one

can see the impact of the axial anomaly in atomic physics through the parity violation in
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atoms.

The chapter on Quantum Optics was devoted to the electron laser-assisted scattering

process off an arbitrary central potential. Here we introduced a new method that allowed

us to obtain an analytical cross section for the electron-ion collision in a laser field. For the

illustration of the general method we performed a calculation for the hydrogen laser-assisted

recombination.

The S-matrix of the scattering process was constructed from the electron Coulomb-Volkov

wave function in the combined Coulomb-laser field and the hydrogen perturbed state. By

the aid of the Bessel generating function, the S-matrix was decomposed into an infinite

series of the field harmonics. The new step that resulted in a closed analytical expression

for the cross section of the process was the Plancherel theorem application to the Bessel

generating function. This allowed us to sum the infinite series of Bessel functions and as the

result obtain the cross section of the laser-assisted hydrogen photo-recombination process in

a closed form.

In the Nuclear Physics chapter we investigated the resonance width distribution for low-

energy neutron scattering off heavy nuclei. We used the language of Random Matrix Theory

for describing the nuclear scattering process. Random Matrix Theory that based on the

unitarity of scattering matrix was originally formulated for closed quantum systems. The

unstable complex nucleus is an open quantum system, where the intrinsic dynamics has to

be supplemented by the coupling of chaotic internal states through the continuum. In our

work we proposed a new width distribution based on random matrix theory and the doorway

approach for a chaotic quantum system with a single decay channel. The revealed statistics

of the width distribution exhibits distinctive properties that are characteristically different

from the regularities shared by closed quantum systems. The obtained results directly relate
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the Porther-Thomas distribution for multiple narrow nuclear resonances to a resonance,

collectivized by the coherent coupling of intrinsic states through the continuum, a nuclear

analog of the Dicke superradiant phenomena in quantum optics.

In the Cosmology chapter our main object of investigation was the space-time metric

perturbed by the stress-energy tensor of neutrino scattering in the early Universe. We have

analyzed the problem of gravitational wave damping in the early Universe due to freely

streaming neutrinos in both early-time and late-time limits.

The Einstein field equation was derived for the traceless and divergenceless tensor

component of the metrics perturbation. The energy-momentum tensor that governs the

neutrino scattering in the early Universe was derived from the kinetic Boltzmann equation. In

the linearized Boltzmann equation neutrinos interact through the metrics perturbation. As

the result, the solution of the Boltzmann equation is given in terms of the tensor component

of the metrics perturbation. Finally we arrived at the intergo-differential Einstein field

equation for the tensor component of the metrics perturbation which we subsequently built

solution for.

The Einstein field equation for the tensor component of the metrics perturbation D(u) is

given in terms of the time parameter u and the dimensionless wavenumber Q. The obtained

equation we analyzed in two extreme cases, the early-time limit, u � Q, that corresponds

to the lower-bound wavenumbers q � qeq, and the late-time limit, u � Q, that is referred

to the upper-bound wavenumbers q � qeq. In these cases we were able to build the exact

solution in terms of a convergent series of spherical Bessel functions of even order with Q-

independent coefficients. In the early-time limit, the neutrino source perturbation does not

change the qualitative behavior of the homogeneous gravitational wave damping solution

but effectively changes its amplitude from unity to the corresponding asymptotic value. As
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in the early-time limit, the late-time limit solution is represented by a convergent series of

spherical Bessel functions of even order and is Q-independent for large values of Q.

Based on the obtained solutions in the extreme cases, we were able to construct the

solution for the general time case due the nontrivial equality for the differential operator

of the gravitational wave damping problem. Its action onto the trial function returns the

exact sum of its action onto the function in the early-time and late-time limits. Even though

for large Q-values the coefficients of the proposed solution are Q-independent, the general

solution for the gravitational wave damping depends on the parameter Q, being represented

by a linear combination of the product of the spherical Bessel function and the inverse sum

of time variable u shifted the parameter Q.

Thus we conclude that the problem of gravitational wave damping in the early Universe

due to freely streaming neutrinos is completely solved in an analytical way in both early and

late-time limits, and in the general time case.

Here we would like to stress that the found property of the general differential operator

is the property of the Einstein field equation for the traceless and divergenceless tensor

component of the metrics perturbation that is independent of the specific form of the energy-

momentum tensor. This means that the developed technique can be equally applied for the

tensor perturbations obtained from the kinetic Boltzmann equation for photons or non-

relativistic matter. We thus hope that the developed method would be helpful for the

corresponding calculations.
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A Electron wave function behavior near the nucleus

Suppose we have the field of the nucleus

U(r) = −Z
r
, (1)

and we would like to find the behavior of the electron wave function in the region close to

the nucleus,

r ∼ 1

Z
. (2)

The semiclassical description in the region

1

Z
� r � 1 (3)

is valid due to small variation of the wavelength,

d

dr

(
1

p

)
∼ d

dr

(
1√
|U |

)
∼ 1√

rZ
� 1. (4)

For the spherically symmetrical semiclassical wave function we obtain

|ψ(r)| ∼ 1

r
√
p
∼ 1

r 4
√
|U |
∼ 1

Z1/4r3/4
, (5)∣∣∣∣ψ(r =

1

Z

)∣∣∣∣ ∼ Z1/2, (6)∣∣∣∣ d2

dr2

[
ψ

(
r =

1

Z

)]∣∣∣∣ ∼ 1

Z1/4r11/4
∼ Z5/2. (7)
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Finally the probability to find an electron in the region close to the nucleus in a nonrelativistic

limit is

W ∼ |ψ(r)|2 r3 ∼ 1

Z2
. (8)

B Secular equation in the general case

The secular equation for the rotationally invariant Hamiltonian



ε0 − i
2η0 h1 h2 h3 h4 · · · hN

h∗1 ε1 − i
2η1 v2 v3 v4 · · · vN

h∗2 v∗2 ε2 − i
2η2 l3 l4 · · · lN

h∗3 v∗3 l∗3 ε3 0 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

h∗N v∗N l∗N 0 0 · · · εN



(9)

can be written in terms of the matrix

A = (10)

=


h2
k

εk−Eα
+ Eα − (ε0 − iη0

2 ) h1 −
hkvk
εk−Eα

h2 −
hklk
εk−Eα

h1 −
hkvk
εk−Eα

v2
k

εk−Eα
+ Eα − (ε1 − iη1

2 ) v2 −
vklk
εk−Eα

h2 −
hklk
εk−Eα

v2 −
vklk
εk−Eα

l2k
εk−Eα

+ Eα − (ε2 − iη2
2 )

 ,

and is given by

detA = 0. (11)
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C Friedmann equations

In this Appendix we give a detailed derivation of the fundamental Friedmann equation.

We start from the Ricci tensor that in components looks like,

Rij =
∂Γkki
∂xj

−
[
∂Γkij

∂xk
+
∂Γ0

ki

∂t

]
+
[
Γ0
ikΓkj0 + Γki0Γ0

jk + ΓlikΓkjl

]
−
[
ΓkijΓ

l
kl + Γ0

ijΓ
l
0l

]
, (12)

R00 =
∂Γii0
∂t

+ Γi0jΓ
j
0i. (13)

First we separate the spatial-spatial part of the Ricci tensor, R̃ij ,

R̃ij =
∂Γkki
∂xj

−
∂Γkij

∂xk
+ ΓlikΓkjl − ΓkijΓ

l
kl. (14)

On the other hand the spatial part of the spherically symmetric and isotropic metrics is

given by

g̃ij = δij +K
xixj

1−Kx2
, (15)

g̃ij
∣∣
x=0 = δij , (16)

where K is the curvature constant. We note that the spatial components of the 4D affine

connections Γkij are proportional to the affine connection calculated in the 3D from the spatial

part of the metric tensor g̃ij ,

Γkij = Kxkg̃ij . (17)
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Further we calculate the spatial Ricci tensor at x = 0,

R̃ij

∣∣∣
x=0

=
∂Γkki
∂xj

−
∂Γkij

∂xk
= Kδij − 3Kδij = −2Kδij . (18)

Recalling the metrics (15) we reconstruct the spatial Ricci tensor for every point,

R̃ij = −2Kg̃ij , (19)

which is valid for all spatial coordinate systems.

The space-time components of the affine connections appearing in the Ricci tensor,

∂Γ0
ij

∂t
= g̃ij

d

dt
(aȧ), (20)

∂Γii0
∂t

= 3
d

dt

(
ȧ

a

)
,

Γ0
ikΓkj0 = g̃ij ȧ

2,

Γ0
ijΓ

l
0l = 3g̃ij ȧ

2,

Γi0jΓ
j
i0 = 3

(
ȧ

a

)2

.

As the result, we have for the Ricci tensor,

Rij = R̃ij −
[
g̃ij

d

dt
(aȧ)

]
+
[
2g̃ij ȧ

2
]
−
[
3g̃ij ȧ

2
]

(21)

= R̃ij − 2ȧ2g̃ij − aäg̃ij ,

R00 = 3
d

dt

(
ȧ

a

)
+ 3

(
ȧ

a

)2

= 3
ä

a
. (22)

Recalling the space-space components of the Ricci tensor eq. (18), we arrive at the final
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expression for the Ricci tensor,

Rij = −
[
2K + 2ȧ2 + aä

]
g̃ij . (23)

The energy-momentum tensor is given in terms of energy density ρ and pressure p,

T00 = ρ, (24)

Ti0 = T0i = 0,

Tij = a2pg̃ij .

Therefore the shifted energy-momentum tensor Sµν ,

Sµν = Tµν −
1

2
gµνT

λ
λ, (25)

in components looks like

Sij = Tij −
1

2
g̃ija

2Tλλ = a2pg̃ij −
1

2
g̃ija

2(3p− ρ) =
1

2
(ρ− p)a2g̃ij , (26)

S00 = T00 +
1

2
Tλλ = ρ+

1

2
(3p− ρ) =

1

2
(3p+ ρ). (27)

Finally the Einstein equations are,

−
[
2K + 2ȧ2 + aä

]
g̃ij = −4πG(ρ− p)a2g̃ij , (28)

3
ä

a
= −4πG(3p+ ρ). (29)
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Simple algebra leads to the fundamental Friedmann equations,

ρ =
3

8πG

(
ȧ2

a2
+
K

a2

)
, (30)

p = − 1

8πG

(
2ä

a
+
ȧ2

a2
+
K

a2

)
, (31)

In the case when we can neglect the curvature constant termK, Friedmann equations simplify

to

ρ =
3

8πG

(
ȧ2

a2

)
=

3

8πG
H2, (32)

p = − 1

8πG

(
2ä

a
+
ȧ2

a2

)
. (33)

D Energy density for fermions and bosons in the early

Universe

We start form the number density n(p) for fermions, n+f (p, T ), and bosons, n−b(p, T ), with

the rest mass m, momentum p, with number of spin states, or the number of independent

polarization states g,

n±(p, T ) = g
4πp2

(2πh̄)3

1

exp

[√
p2+m2

kT

]
± 1

. (34)
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The energy, pressure and entropy density are given in terms of the number density n(p) by

ρ(T ) =

∫ ∞
0

dp n(p, T )

√
p2 +m2, (35)

p(T ) =

∫ ∞
0

dp n(p, T )
p2

3
√
p2 +m2

, (36)

s(T ) =
1

T

∫ ∞
0

dp n(p, T )

(√
p2 +m2 +

p2

3
√
p2 +m2

)
. (37)

For massless particles we obtain

ρ±(T ) =

∫ ∞
0

dp g
4πp3

(2πh̄)3

1

exp
[ p
kT

]
± 1

. (38)

In order to perform the momentum integration in eq. (38) we employ the standard integrals,

∫ ∞
0

z2n−1

ez + 1
=

22n−1 − 1

2n
π2nBn, (39)∫ ∞

0

z2n−1

ez − 1
=

(2π)2n

4n
π2nBn, (40)

given in terms of the Bernoulli numbers Bn. Thus we obtain the massless fermion and boson

contribution to the energy density,

ρ−(T ) =
g

2
aBT

4, (41)

ρ+(T ) =
7g

16
aBT

4 =
7

8
ρ−(T ) (42)

where we used the earlier introduced notation,

aB =
4σ

c
=

8π5k4

15(2πh̄c)3
. (43)
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For the entropy density of photons, electrons and positrons,

s(T ) =
4

3
aBT

3 (44)

+
2× 2

T

∫ ∞
0

dp
4πp2

(2πh̄)3

1

exp

[√
p2+m2

e
kT

]
+ 1

(√
p2 +m2

e +
p2

3
√
p2 +m2

e

)
.

In terms of the dimensionless parameter,

x =
me

kT
, (45)

the entropy density (44) is given in terms of the function F (x).

F (x) = (46)

= 1 +
45

2π4

∫ ∞
0

dy y2 1

exp
[√

y2 + x2
]

+ 1

(√
y2 + x2 +

y2

3
√
y2 + x2

)
,

with its asymptotic behavior,

F (0) =
11

4
, (47)

lim
x→∞F (x) = 1. (48)

As the result, the contribution of photons, electrons and positrons to the entropy density is,

s(T ) =
4

3
aBT

3F
(me

kT

)
(49)
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The condition of thermal equilibrium can be expressed in term of entropy as,

s(T )a3 = const. (50)

Applying the thermal equilibrium condition in the limit that corresponds to the neutrino

temperature, kTν � me, and to the photon temperature, kT � me, we get,

Tν = T

(
F (me/kT )

F (me/kTν)

)1/3

= T

(
11

4

)−1/3

. (51)

Finally the photon, neutrino, and antineutrino contribution to the energy density is,

ρ(T ) = aBT
4 +

(
3× 2× 7

16

)
aBT

4
ν = aBT

4 + aBT
4
(

3× 2× 7

16

)(
4

11

)4/3

. (52)

As the result, we obtain the ratio of neutrino energy density to the total neutrino and photon

energy density,

fν(0) =
ρν

ργ + ρν
=

3
(

7
8

)(
4
11

)4/3

1 + 3
(

7
8

)(
4
11

)4/3
' 0.40523. (53)

E Convolution integral of spherical Bessel functions

Here we derive the convolution integral (5.140) of spherical Bessel functions for integer orders

n,m. Theoretical efforts for such a convolution integral were put forward in [92] but here

we report a new compact formula that has a clear exchange symmetry (n←→m) and can be

readily applied for practical calculations.
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Starting with the integral

Jn,m(u) ≡
∫ u

0
dUjm(u− U)jn(U), (54)

we prove eq. (5.140). First, we represent a spherical Bessel function as a Fourier

transformation of the Legendre polynomial Pn(z),

jn(u) =
(−i)n

2

∫ 1

−1
ds exp(ius)Pn(s). (55)

Substitution of (55) into (54) leads to

Jn,m(u) =
(−i)n+m

4

∫ 1

−1
ds

∫ 1

−1
dt exp(iut)Pm(s)Pn(t)

∫ u

0
dU exp(iUs− iUt)

=
(−i)n+m

4i

∫ 1

−1
ds

∫ 1

−1
dtPm(s)Pn(t)

exp(ius)− exp(iut)

(s− t) . (56)

Now we employ the Legendre function of the second kind Qn(z) defined as

Qn(z) =
1

2

∫ 1

−1
dz′

Pn(z′)
z − z′ . (57)

Performing the integrations over t and s we obtain

(−i)n+m

4i

∫ 1

−1
ds

∫ 1

−1
dtPm(s)Pn(t)

exp(ius)− exp(iut)

(s− t) (58)

=
(−i)n+m

2i

∫ 1

−1
dt exp(iut) [Pn(t)Qm(t) + Pm(t)Qn(t)] .

Further we reincarnate spherical Bessel functions by decomposing plane waves in terms of
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Legendre polynomials

exp(iut) =
∞∑
l=0

(2l + 1)iljl(u)Pl(t), (59)

which leads to

(−i)n+m

2i

∫ 1

−1
dt exp(iut) [Pn(t)Qm(t) + Pm(t)Qn(t)] (60)

=
(−i)n+m

2i

∞∑
l=0

(2l + 1)iljl(u)

∫ 1

−1
dtPl(t) [Pn(t)Qm(t) + Pm(t)Qn(t)] .

The angular momentum coupling simplifies the product of Legendre polynomials,

Pl(x)Pm(x) =
L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2PL(x), (61)

in terms of the Clebsch - Gordan coefficients 〈l, 0,m, 0|L, 0〉. Introducing

Wm−1(z) = 2

[m−1
2 ]∑

k=0

(m− 2k − 1)

(2k + 1)(m− k)
Pm−2k−1(z), (62)

and using the analog of eq. (61),

Pl(z)Qm(z) =
L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2 (QL(z) +WL−1(z))− Pl(z)Wm−1(z), (63)
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we come to

∫ 1

−1
dtPl(t) [Pn(t)Qm(t) + Pm(t)Qn(t)] (64)

=

∫ 1

−1
dt

Pn(t)Pl(t)Qm(t)︸ ︷︷ ︸
I

+Pl(t)Pm(t)︸ ︷︷ ︸
II

Qn(t)


=

∫ 1

−1
dt

Pn(t)

 L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2 (QL(t) +WL−1(t))− Pl(t)Wm−1(t)


+

L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2PL(t)Qn(t)

 ,
where in the first term we have decomposed the product Pl(t)Qm(t), whereas in the second

term we decomposed the product Pl(t)Pm(t). Using the parity identity,

∫ 1

−1
dtPn(t)QL(t) = −

∫ 1

−1
dtPL(t)Qn(t), (65)

we obtain

∫ 1

−1
dtPl(t) [Pn(t)Qm(t) + Pm(t)Qn(t)] (66)

=

∫ 1

−1
dt

Pn(t)

 L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2WL−1(t)− Pl(t)Wm−1(t)

 .
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Therefore

∫ 1

−1
dt

L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2Pn(t)WL−1(t) (67)

=

∫ 1

−1
dt

L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2
[(L−1)/2]∑
k=0

2L− 4k − 1

(2k + 1)(L− k)
PL−2k−1(t)Pn(t)

= 4
L=l+m∑
L=|l−m|
L−n−1≥0

〈l, 0,m, 0|L, 0〉2
L+ L2 − n(1 + n)

.

On the other hand,

∫ 1

−1
dtPl(t)Wm−1(t)Pn(t) (68)

=

∫ 1

−1
dt

[(m−1)/2]∑
k=0

2m− 4k − 1

(2k + 1)(m− k)
Pm−2k−1(t)Pl(t)Pn(t)

=

∫ 1

−1
dt

[(m−1)/2]∑
k=0

2m− 4k − 1

(2k + 1)(m− k)
Pm−2k−1(t)

L=l+n∑
L=|l−n|

〈l, 0, n, 0|L, 0〉2PL(t)

= −4
L=l+n∑
L=|l−n|
m−L−1≥0

〈l, 0, n, 0|L, 0〉2
L+ L2 −m(1 +m)

.

Thus, the identity (5.140) is demonstrated,

∫ 1

−1
dt

L=l+m∑
L=|l−m|

〈l, 0,m, 0|L, 0〉2Pn(t)WL−1(t)−
∫ 1

−1
dtPn(t)Pl(t)Wm−1(t)

= 4
L=l+m∑
L=|l−m|
L−n−1≥0

〈l, 0,m, 0|L, 0〉2
L+ L2 − n(1 + n)

+ 4
L=l+n∑
L=|l−n|
m−L−1≥0

〈l, 0, n, 0|L, 0〉2
L+ L2 −m(1 +m)

. (69)
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5

10

Figure 1: Graphical representation for the upper but one triangular structure of the matrix
B2k,2l. The matrix indices l and k define a position of the matrix element in the xy-plane,
while along z-axe we plot its value.

F Convolution matrices in the late-time limit

B2k,2l ≡ (70)

0 1
15

1
10

13
350

17
4900 − 1

3780
1

19404 − 29
1981980

1
193050

0 −1
3 −1

2 −13
70 − 17

980
1

756 − 5
19404

29
396396 − 1

38610

0 4
15

7
55 − 5671

17325 −10523
44100 − 733

13860 − 1453
640332 − 29

77297220
173

5855850

0 0 18
55

793
3465 −3013

8820 −13507
41580 − 2077

23716 − 1247
220220

353
1351350

0 0 0 88
225

68323
209475 − 6611

17955 −1343
3234 − 3652637

30060030 − 4375681
491891400

0 0 0 0 26
57

1661
3933 − 81703

204930 −4520839
8918910 − 39881

257400

0 0 0 0 0 12
23

74315
143451 −244553

567567 −302161
504504

0 0 0 0 0 0 238
405

701017
1142505 −2355893

5077800

0 0 0 0 0 0 0 304
465

11539
16275


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5 10

5

10

Figure 2: Graphical representation for the upper but one triangular structure of the matrix
B2k+1,2l+1. The matrix indices l and k define a position of the matrix element in the
xy-plane, while along z-axe we plot its value.

B2k+1,2l+1 ≡ (71)

6
25 −17

75 −11
70 − 23

1470
95

15876 − 5543
4365900

10463
23123100 − 713

3567564
28343

281582730

6
25

47
675 − 91

270 −127
630 − 19

540 − 161
326700 − 439

3303300
589

11042460 − 2039
93860910

0 8
27

440
2457 − 9509

28665 − 7429
26460 − 102373

1455300 − 9913
2484300

589
4471740

5
1085994

0 0 14
39

1289
4641 −13655

38556 − 507449
1372140 − 898553

8588580 − 2368307
324648324

152875
394215822

0 0 0 36
85

4009
10710 − 6638

17325 −126901
275275 − 4156573

30060030 − 611515
58402344

0 0 0 0 22
45

529
1125 − 9433

22750 −116219
210210 − 4553149

26546520

0 0 0 0 0 208
375

14358
25375 −1907

4263 − 9211
14280

0 0 0 0 0 0 18
29

93031
140679 −226529

471240

0 0 0 0 0 0 0 68
99

11087
14652
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5

10

Figure 3: Graphical representation for the upper triangular structure of the matrix F2k,2l, eq.
(72). The matrix indices l and k define the position of the matrix element in the xy-plane,
while along z-axe we plot its value.

G Convolution matrix in the early-time limit

F2k,2l ≡ (72)

0 −1
6 − 1

10 − 13
900

17
11025 − 1

2520
25

174636 − 29
463320

1
32175

0 1
15 − 1

20 − 13
315 − 17

2520
1

1260 − 1
4536

29
343035 − 1

25740

0 0 1
15 − 143

3150 − 221
6300 − 41

7560
85

137214 − 551
3243240

163
2509650

0 0 0 1
15 − 17

392 − 17
525 − 18715

3841992
8207

15057900 − 23
156156

0 0 0 0 1
15 − 19

450 − 5
162 − 2850091

624323700
59

117117

0 0 0 0 0 1
15 − 115

2772 − 145
4851 − 12247

2802800

0 0 0 0 0 0 1
15 − 261

6370 − 319
10920

0 0 0 0 0 0 0 1
15 − 341

8400

0 0 0 0 0 0 0 0 1
15
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10

Figure 4: Graphical representation for the upper triangular structure of the matrix A2k+1,2l.
The matrix indices l and k define the position of the matrix element in the xy-plane, while
along z-axe we plot its value.

H Convolution matrices in the early-time limit

A2k+1,2l ≡ (73)

0 −4
5 − 3

10
13
525

289
14700 − 1

315
59

58212 − 1247
2972970

1
4950

0 6
5 −19

30 −208
225 −1649

6300 − 1
135 − 409

274428
1073

1274130 − 1103
2509650

0 0 8
3 −194

315 −19261
8820 −3779

4725 − 10985
174636

158891
52702650 − 17

319410

0 0 0 14
3 −31

84 −178
45 −144125

91476 − 39079907
270540270

2305
234234

0 0 0 0 36
5

8
75 −1235

198 −44836523
17342325 −130891

520520

0 0 0 0 0 154
15

73
90 −258796

28665 −5359
1400

0 0 0 0 0 0 208
15

1282
735 −17259

1400

0 0 0 0 0 0 0 18 2441
840

0 0 0 0 0 0 0 0 68
3


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Figure 5: Graphical representation for the upper triangular structure of the matrix A2k,2l+1.
The matrix indices l and k define the position of the matrix element in the xy-plane, while
along z-axe we plot its value.

A2k,2l+1 ≡ (74)

− 2
15

1
9

22
225

5
294 − 19

9450
23

41580 − 2
9555

31
326700 − 35

722007

2
3 −5

9 −22
45 − 25

294
19

1890 − 23
8316

2
1911 − 31

65340
175

722007

0 28
15 −49

75 −73
49 −1577

3150 − 4853
152460

177
385385

8587
18404100 − 1069

3128697

0 0 18
5 −383

735 −5681
1890 −882947

762300 − 580796
5780775

4061
660660 − 509

722007

0 0 0 88
15 −151

945 −87193
17325 −154003

75075 − 5855497
30060030

217787
15459444

0 0 0 0 26
3

71
165 −492

65 −134571
42350 − 33633

106964

0 0 0 0 0 12 341
273 −4681

441 −252625
55692

0 0 0 0 0 0 238
15

3617
1575 −8671

612

0 0 0 0 0 0 0 304
15

911
255
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