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ABSTRACT

A STUDY OF THE PION-NUCLEUS OPTICAL POTENTIAL
By

Karen Sue Stricker

The optical potential mode] is a convenient means of charac-

terizing the interaction of the pion with the nucleus. Its simplicity

makes it practical for the calculation of elastic scattering and
pion distorted waves for more complicated processes. Its success
in reproducing the early pion data and the existence of new, higher
quality data motivate the present investigation.

An optical potential for pion-nucleus interactions in the
énergy range 0-250 MeV pion kinetic energies is constructed with
the Watson multiple scattering series and the mN transition ampli-
tude as starting point. The pion-nucleon to pion-nucleus center
of mass transformation is calculated to first order in the ratio
of total pion energy to nucleon mass. Multiple scattering correc-
tions in Tow energy approximation are included to second order in
the s-wave and to all orders in the p-wave (the Lorentz-Lorenz or
Ericson-Ericson effect). True pion absorption terms, proportional
to the square of the nuclear-density, are included in both s and
p-wave parts of the potential. Pauli blocking is approximated,

and an energy shift due to the Coulomb interaction is incorporated.



Karen Sue Stricker

The potential parameters are taken from the experimental 7N phase
shifts and theoretical calculations. The potential, of Kisslinger
type, is incorporated in coordinate space computer codes which cal-
culate pionic atom level shifts and widths, elastic scattering dif-
ferential cross sections, and total and partial cross sections.
These calculations are compared to the current experimental data.
It is found that at Tow energies (0-50 MeV) the potential produces
elastic cross sections which fit the data provided the s-wave repul-
sion is increased. The pionic atom level data require more absorp-
tive strength than that given by current calculations, as well as
increased repulsion consistent with the scattering results. The
general features of the resonance region elastic scattering and

total cross sections are well reproduced.
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CHAPTER 1
INTRODUCTION

In the past few years the field of pion-nucleus interactions
has advanced rapidly. A large amount of exce11ent'quélity data has
come out of the intermediate energy laboratories; LAMPF at Los Alamos,
New Mexico, USA; TRIUMF in Vancouver, Canada; and SIN in Switzerland.
This data includes not only elastic and inelastic differential cross
sections, but also total and partial cross sections and single and
double charge exchange measurements as well as more complicated reac-
tions. Much progress has also been made in the theoretical descrip-
tion of the pion-nucleus interaction, with characterizations which
vary from the phenomenological to the fundamental and microscopic.

The present work will focus on the optical potential model, which
takes a middle ground between these two approaches and has had a
fair amount of success in the description of the early pion-nucleus
data.

The concept of an}optical potential, that is, a complex poten-
tial describing the interaction between the projectile and the nucleus
as a whole, and in which the imaginary part accounts for flux lost
to other channels from the elastic channel, is due to Bethe (1). An
optical model for scattering of high energy particles by nuclei was

first introduced by Fernbach, Serber, and Taylor (2) to describe



the scattering of 90 MeV neutrons. They proposed a constant complex
potential inside the nucleus, the imaginary part of which can be

related to the mean free path A of the nucleon in nuclear matter (3),

k

> | et

) (I'l)

B3

Im(uopt) =

where k0 is the particle momentum and M its mass. The mean free
path can, in turn, be expressed in terms of the total collision

cross section and the nuclear density,

%= oo - (1-2)

The optical model was first applied to low energy scattering by
Feshbach, Porter, and Weisskopf (4) in the analysis of resonances

in 0-3 MeV neutron total cross sections. A theoretical basis for
the optical model was provided by Watson (5), who derived the optical
potential from a multiple scattering theory. A simplification of
the theory, due to the antisymmetry of the target states, was given
by Kerman, McManus, and Thaler (6).

The study of the pion-nucleus interaction began with the dis-
covery of the pion in 1947, since early pion experiments usually
involved nuclear targets in cloud chambers and emulsions. An optical
model for pion-nucleus elastic-scattering which included both s- and
péwave terms was first given by Kisslinger (7), and used in the

analysis of differential cross section data (8) for 62 MeVTﬁ'and T



on 120.

The analysis of the measured energy shifts and widths of
pionic atoms made clear the necessity of including higher order
terms in the optical potential. The inclusion of true pion absorp-
tion terms, first suggested by Brueckner (9), and the calculation
of the Lorentz-Lorenz effect were made by Ericson and Ericson (10)
and greatly improved the agreement between calculated and measured
levels.

The emphasis shifted to the resonance region with the appear-
~ance of n'-lzc elastic scattering cross sections at 120, 200, and
280 MeV from CERN (11), followed by data on other nuclei. Although
the Kisslinger potential was originally derived for low energy scat-
tering, it was found to give reasonable results in the resonance
region also (12). A local optical potential form, the Laplacian
model, gave similar results for scattering near resonance (13).
Glauber theory (14) was also successfully applied to scattering
data in this region (15).

Very little was known of the lTow energy (0-50 MeV) pion scat-
tering cross sections, and few calculations beyond first order
existed for these energies (16) until about 1975, when more accurate
data of 50 MeV 7' elastic scattering from 12C appeared (17).

Thies (18) showed that the inclusion of kinematic effects, higher
order multiple scattering terms, and s-wave absorption greatly
improved the agreement between the calculated and measured cross

sections.



Since 1975 the theoretical activity in pion-nucleus interactions
has been intense. The most successful microscopic calculations have
been the isobar-hole calculations (19) which treat the dominant
channel, with Azq intermediate states, by means of a spreading
potential, the parameters of which are fitted to the data. The
phenomenological input is small, and the results are encouraging;
however, calculations for nuclei larger than 16O are impractical.

The phenomenological optical model has also received a great
deal of attention. It has been shown (20) that a first order
Kisslinger potential with four free parameteré can be fitted to
the elastic scattering data for pion kinetic energies around 50 MeV.
Four parameters are also sufficient to describe the pionic atom
data for a wide range of nuclei (21). The elastic scattering cross
sections in the resonance region can also be fit by optical model
calculations, requiring, however, a somewhat more sophisticated
potential with more than four parameters (22).

The phenomenological approach, although successful in describ-
ing various classes of data, has almost no predictive power and is
most unsatisfying to a theorist. The microscopic theories have a
strong theoretical base and a minimum of approximations-but are
extremely complicated, tedious calculations and have been made for
only a few light nuclei at a few energies. Thus the need at present
for a simpler approach based on theoretical considerations but with
a simple optical potential form. Such a model, if carefully con-

structed, should be valid over a fairly wide energy range, say



0-250 MeV, and for all nuclei large enough to justify the optical
model assumptions, certainly carbon and all heavier nuclei. The
theoretical basis gives the model predictive power; its simplicity
makes it a useful tool in calculations of more complicated proﬁesses.
The important physical content of the theory appears in the optical
potential in a straightforward way, not buried in vast computer
calculations, giving a feel for the important features of the prob-
lem. It is to be hoped that the microscopic calculations will even-
tually become sufficiently tractable and accurate to be applicable
to most nuclei and energies. However, én optical potential type
model, taking input from the more sophisticated theories with suita-
ble approximations, will almost certainly be the basis of most
practical calculations.

The early work on theoretically based optical potentials by
the Ericsons (10) and Thies (18) has already been mentioned. Pieces
of the problem have been much discussed by various authors. A review
of all such research will not be attempted in this brief introduc-
tion; the interested reader is referred to the proceedings of the
several recent pion conferences (23). The purpose of this disserta-
tion is to bring together all aspects of the problem in a coherent
framework, to construct an optical potential with a broad range of
validity. The form chosen for the potential is a coordinate space
form of Kisslinger type, local in the sense of depending on only
one pion coordinate. Previous investigations suggest that the

essential physics survives the approximations necessary to obtain



such a form, which is chosen for its simplicity. The more important
test of the validity of the theory is, of course, the accuracy with
which it predicts the éxperimenta1 results, hence the inclusion

in this work of calculations of'pionic atom leyel shifts and widths,
differential elastic scattering cross sections, and total and partial
cross sections for a variety of nuclei and energies.

The reason usually given for the study of the pion-nucleus
interaction is the hope that the pion can be used as a probe of
nuclear structure once the pion-nucleus dynamics are understood.

The nature of the pion, with three isospin states and no spin, and
the fact that pions can be absorbed on nucleons, make the pion a
unique tool in, for example, the determination of neutron and proton
distributions and perhaps the study of correlations between nucleons.
There is a growing interest, however, in the pion-nucleus problem
itself. The field of intermediate energy physics, of which pion
physics is an important part, has become a meeting ground for the
nonrelativistic many-body theories of low energy nuclear physics

and the relativistic field theories developed in elementary particle
physics. Although the present study does not delve deeply into
these questions, the development of the potential indicates where
these elements enter and provides a base for more detailed calcula-
tions. Any improvements to the optical potential model discussed
here will almost certainly involve a more careful synthesis of these

two aspects of the problem.



The dissertation is divided into six main parts. In the
first of these, Chapter II, the information is presented which forms
the basis of the optical potential theory: the pion-nucleon inter-
action, the form of the pion wave equation, and the multiple scat-
tering formalism. From these the first order Kisslinger optical
potential is constructed. In Chapter III, the optical potential
is refined with the addition of kinematic effects, multiple scat-
tering corrections, true absorption terms, and Pauli and Coulomb
effects. This completes the construction of the optical potential;
the comparisons to data are discussed in the following three chap-
ters. The first of these, Chapter IV, is a discussion of the optical
potential applied to the analysis of pionic atom shifts and widths.
Chapter V presents the calculations of elastic differential cross
sections, compared to a selection of the available data. In Chap-
ter VI a discussion is given of the calculation of total and partial
cross sections, with the results compared to the data. InChaptersV
and VI, two different approaches are taken to the choice of param-
eters for the optical potential. The first is to adopt the param-
eters as calculated theoretically in the earlier chapters. The
second is to extrapolate by simple means the information gained
from the pionic atom analysis discussed in Chapter IV to non-zero
energies, extending the work of reference 24. The major conclusions
of this work are discussed in the final chapter.

The symbols used for some common quantities are given in

Table 1. These will be used throughout, unless otherwise noted.



Table 1. Symbols used throughout this work and their interpretation.

Symbol Meaning
(E,m) Momentum and energy of incoming pion
(E',w') Momentum and energy of outgoing pion
(E’E) Momentum and energy of incoming nucleon
(ET,E') Momentum and energy of outgoing nucleon
(E,EA) Momentum and energy of incoming nucleus
m Mass of pion
M Mass of nucleon
MA Mass of nucleus
E Isospin operator for pion
T Isospin operator for nucleon
Spin operator for nucleon

tQ

cm subscript

2cm subscript

no subsckipt

Quantities in pion-nucleon center of mass

Quantities in pion-two nucleon center of
mass

Quantities in pion-nucleus center of mass
(Subscripts are often dropped when only one
frame is being considered.)




CHAPTER 11
THE FIRST ORDER OPTICAL POTENTIAL

The optical model provides a method by which the pion-nucleus
many body problem can be reduced to a one particle equation for
the pion, interacting with an optical potential which describes
the nucleus. The optical potential can be derived from knowledge
of the measured pion-nucleon scattering amplitude and a multiple
scattering formalism which relates the pion-nucleon amplitude to
the pion-nucleus interaction. In Section 1 of this chapter the
pion-nucleon interaction is described. The pion wave equation is
discussed in Section 2. The development of the multiple scattering
series for the optical potential is given in Section 3, and the

first order coordinate space optical potential is given inSection 4.

1. The Pion-Nucleon Interaction

The most prominent feature of pion-nucleon scattering in the
energy region 0-300 MeV pion lab kinetic energy is the effect of
the N resonance, denoted B3q, at 1236 MeV total center of mass
energy or about 180 MeV pion kinetic energy. The subscripts 33
refer to the isospin and total angular momentum of the resonance,
both of which have the value 372. The orbital angular momentum

of the state is L = 1. This channel dominates the 7N interaction
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at these energies, giving rise to a large p-wave term in the scat-
tering amplitude.

The most general scattering amplitude for this problem can
be expanded in orbital angular momentum, isospin, and total angular

momentum. The s- and p-wave terms of this expansion are

fon = (bg + byt-T) + (e + cpt-Tk ok’

) . (1I-1)

+ (SO + 513'3)9'(Ecm *K'om

The relationships between the coefficients bi’ Cis and S; and the
measured pion-nucleon phase shifts are derived in Appendix A, and

are given by

(2w3 + wl)

(=2
o
"
|
[y
W=

(W3 - Wl)

o
b
n
x-l
ok
W]

l._‘

(4wgg + 2wz + 2p5 + Wyy)

-~

o w

3
Wl

(11-2)

I.-J

w|—

(2033 + Wy - 2wy3 = W)

>
O w
3

F‘
W=

(2wg3 = 203y # Wy3 = W)

=
o w
3

L‘
W=

(wag = Wyp - Wy3 + W) .

nrw
3
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The W, and W;; are related to the %971,24 of Appendix A by

_ 0
Wi = kemig
(11-3)
_ 1
Wij = kcmaij
where v
exp(2iss, ) - 1
L ) 21,2J (11-4)
%21,2J 2 kg, .

Here I, L, and J are respectively the isospin, orbital angular
momehtum, and total angular momentum of the system.

The first two terms of equation II-1, referred to as the s-
and p-wave terms, are the most important terms for the calculation
of pion-nucleus scattering. The third term, also a p-wave term,
is usually negligible for pion-nucleus calculations since the nucleon
spin is summed over, and will not be discussed further. The d-wave
and higher partial waves do not contribute appreciably until ener-
gies well above resonance.

The w; and W,

i and the s- and p-wave parameters are shown

J
in Figures 1 and 2, as a function of pion lab kinetic energy Tﬂ.
They are computed from the parametrization of the m-nucleon phase

shifts given by Rowe, Salomon, and Landau (25), in which an analytic

L
21,2d°

over the energy range 0-400 MeV. The advantage of such a parametri-

function of energy is fitted to the quantity k;é2L+1)tan 8

zation is that the scaftering parameters derived from it vary
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smoothly with energy, even at low energies, whereas the scattering
parameters calculated directly from phase shifts, even those that
have been smoothed, such as the CERN Theoretical set (26), are quite
noisy below about 80 MeV.

Several things may be noted, Although the phase shifts SEI,ZJ
are purely real below the threshold for pion production, We + Ecm
= 2m + M, the scattering parameters are not; the imaginary parts
are zero only at zero pion kinetic energy. The real part of the
isoscalar s-wave parameter b0 is negative in this energy region,
corresponding to a repulsive s-wave interaction, and is nearly zero
at low energies due to a near cancellation of the two terms Wy and
2w3. The p-wave parameters <o and cy are dominated by the 6§3 phase
shift and display characteristic resonant behavior, the real part
crossing zero at the resonance energy and the imaginary part reach-
ing a maximum at this point. The parameter'Re(co) is positive below
resonance, hence an attractive p-wave interaction in this region.

The quantity required for the pion-nucleus calculations is

N

the pion-nucleon transition amplitude t™. This is related to the

pion-nucleon potential v by a Lippmann-Schwinger type equation,

N _ - — 0,7N -
t" =v 4+ v2wcmg t o, (11-5)
where gO is the propagator for a free pion; in momentum space
0 1
g = . (I11-6)
K2 + K2 + ie

0
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The factor chm’ where w

cm is the relativistic equivalent of the

reduced mass

WemFem

W, = e——— (11-7)
cm o wen + ECm

is a result of the use of the Klein-Gordon equation rather than the

Schrodinger equation for the pion. This point will be considered

in more detail in the discussion of the pion-nucleus scattering

equation. Matrix elements of tﬂN between momentum states of the

pion and nucleon can be written

<k'up' [t™[kop> = (2m)%6(k +p - k' - p )™ (kLK)

(11-8)

The transition amplitude and scattering amplitude can then be

shown (27) to be related in the wN center of mass by

N . . 1|
t (Ecm’Ecm) Zatm f

ﬂN(Ecm’Eém (11-9)

Thus, the required pion-nucleon T-matrix is related in a simple way

to the experimental phase shifts.

2. The Pion Wave Equation

Before discussing the multiple scattering series expansion
for the optical potential, it is necessary to consider what form

the wave equation for the pion will take. The nucleus is quite
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massive and can be treated nonrelativistically. However, the rest
mass of the pion is not large compared to its momentum at the ener-
gies considered here and must be treated relativistically. Thus,
the Hamiltonian for the system must include rest masses and can

be written

2
_ 2 . 2\k P )
H=(k+m")% + My + o, +V (11-10)

whére P and MA are the momentum and mass of the nucleus, and V
characterizes the interaction between the nucleons in the target
and the pion. The part of the Hamiltonian which describes the
internal dynamics of the nucleus has been neglected, assuming that
the excitation energies of the various nuclear states do not play

an important role. The Schrodinger equation for the system is then

2
2, 2y P - -
Goldberger and Watson (27) have shown that for |V|<<m and<%%%l << kg

= (wz - mz)%, this equation is equivalent to a Klein-Gordon-like

equation for V¥,

2
2 ., 2yye LY ,

In the pion-nucleus center of mass system

(11-13)
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and equation II-12 can be written

E- - M
[K2(1 + L) + wfly = (Ep - My - V)Y (11-14)
A
p 2
where the terms (2M V) and (2M >w—)" have been dropped. Replacing
A
k2 by -V2 and rearranging gives

M ' M M
2 21 A A2, _
{v +[(E -MA) -mJ_T‘Z(T-MA)-E-;V‘P—E—{V}‘Y—

(11-15)

The quantity (ET - MA) can be evaluated by considering the pion
far from the nucleus, in which case the total energy of the system
is

k2
0
ET =@ + MA + m . ] (11-16)

Thus, equation II-15 can be written

2—

2.yl v2yy = 0 (11-17)

(V2+k

where w is the reduced energy for the pion-nucleus system,

wEA

W= —e. (11-18)
wt EA

A similar equation can be written for the bound state case, but with

2

kg replaced by -k“. It is seen that equation II-17 is very similar
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to the usual Schrodinger equation but with (-2mV) replaced by
(-2 + 2 v2),

Because the potential V depends on the coordinates of the
nucleons as well as the pion, V = v(fl’EZ""fA;f)’ equation II-17
is still an A + 1 particle equation. The formalism and approxima-
tions required to reduce this to a one-body equation for the pion
are discussed in the next section. Some simplification can be made
at this point by dividing the pion-nucleus potential into two

components,
Vo= Vg + Vpy (11-19)

The potential VEM’ describing the electromagnetic interaction between
the pion and various nucleons, can be approximated by the Coulomb
potential V. due to a smooth charge distribution corresponding to

the measured proton distribution of a given nucleus. With this
approximation VEM = Vc(r) depends only on the pion coordinate mea-
sured relative to the nuclear center. The strong potential VS is

assumed to be of the form
v = ? vi(ri,r) (11-20)

with r; the coordinate of the-sith nucleon, r that of the pion. Note

that v; is just the strong part of the potential v of equation II-5.
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The strategy of the next section will be to ignore the Coulomb
potential and manipulate the wave equation with potential V = VS in
such a way that the nucleon coordinates can be integrated out. The
resulting potential, known as the optical potential, can then be
put in a wave equation for the pion that includes the Cou]omb poten-
tial. This procedure is an approximation, the effect of which is
discussed in a later section.

One more approximation is made at this point; the VSVC and
Vg parts of V2 are dropped as they are small compared to the ch
and wVS terms. Then equation II-17 becomes
2

+ K2 - 2y

(-k" + kg S

- ZaV, + g-vg)w =0 (11-21)

where, in preparation for the calculations of the next section,

the momentum space form has been given.

3. The Multiple Scattering Series

The multiple scattering formalism (5) has as its starting

point the Lippmann-Schwinger equation (28),
T=v+vlT, (11-22)

which is equivalent to the Schrodinger equation for a scattering

problem. Here the Hamiltonian is given by

H = H0 +V, (11-23)
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GO is the propagator for the noninteracting pion-nucleus system,
0 _ 1
CETH T (11-24)
and T, the transition matrix, is defined by

Vo =T¢ , (11-25)

where ¢ is the wavefunction which is the solution to the full

Schrodinger equation,

Hy = Ey , (11-26)
and ¢ is the solution to the equation without interaction,

Hot = E¢ . (11-27)

An equation similar to the Lippmann-Schwinger equation can be

derived from equation II-17 by defining

V= 2
T = 2uT (11-28)
~0 1
G =
K2+ K2+ e
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Then equation II-17 can be written
T (I11-29)

and manipulated in the same way as the conventional Lippmann-
Schwinger equation. Note that f, G, and é are (A + 1) particle
operators. In this section equation II-29 will be rearranged in
order to make use of the knowledge of the pion-nucleon T-matrix
and in order to group all the largest terms together in such a way
that the nucleon coordinates can be integrated over, reducing the
problem to a one particle equation. By defining an optical poten-
tial which includes these largest terms and solving the corresponding
wave equation, they can be treated exactly.

To derive the optical potential the infinite series implicit
in the Lippmann-Schwinger equation,

AANN AN A/\OA

T =v+veov + velvely + ... (11-30)

is rearranged in two ways. The derivation given here roughly follows
‘that of Eisenberg (29).

The first rearrangement groups together a11.interactions which
do not have the nuclear ground state as an intermediate state into

the subseries

U=V +Vel(1 - PO)G + ve%(1 - PO)GE 1 - PO)V .

i}
= >
o+

vel(1 - PO)G (11-31)
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where P0 is the ground state projection operator ]O><O|; (1 - PO)
Projects onto all other states. It is to be hoped that the ground
state expectation value of this series converges rapidly, since

the matrix elements of v between the ground state and an excited
state are assumed to be much smaller than the ground state to ground

state matrix elements. Using the first result of Appendix B, equa-

tion II-29 can be written
T=0+ Us%,T . (11-32)

This series contains all the large terms, i.e. those with ground
state intermediate states, and therefore is not expected to converge
rapidly. The ground state expectation value of equation I1I-32 gives

U. 69 T 11-333
00 * Yoo%00T00 (

>

00 ~

=-i>

where

1\ 0 11-34
Ugg = <0JUJO> , ( )

A A - AO . .
with similar definitions for T00 and GOO' Note that G~ is diagonal

in the nuclear states,

al@|m =ads . (11-35)
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Equation 1I-33 is now a one particle equation for the pion and can
be written as a Schrodinger-like equation with U00 as potential.
Thus the problem can be solved "exactly" (by computer), if U00 is
known.

The second rearrangement is motivated by the fact that the
7N T-matrix, not the potential, is the quantity closely related
to the experimental data. The terms in the expansion for G which
involve only the potential of the ith nucleon can be grouped together
to define a quantity similar to the free th of equation II-5.

Writing

u=2 0 (11-36)
i
and noting that
V=3, (11-37)
i

equation II-31 can be rewritten using the second result of

Appendix B,

2

J¥i

G=E;i+2
i i

(I11-38)

+ 2 2 Y 1.6°(1 - Po)Ti6 (1 - Pty + ...
T §F k#§ | J
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where 5 is defined by

~ _ A A AO ~
Ts = V- + V_iG (1 - Po)T.i . (II‘39)

In order to relate T to the free pion-nucleon T-matrix t"N, define

Lo L
Then
= 0 .

The first result of Appendix B applied to equations II-41 and II-5

gives the relationship of T and the free 7N T-matrix for the ith

7N

nucleon ti .

ry o= ]+ T 1601 - pp)as - "2 ] s (11-42)

As was pointed out by Kerman, McManus, and Thaler (6), the
antisymmetrization of the intermediate states can be exploited in
order to simplify equation II-38 for G. Let A be a projection
operator projecting onto completely antisymmetrized target states.
Note that A commutes with V, Po> andG0 since these are totally
symmetric in the nucleon coordinates. Thus, assuming T and U will

always be taken between properly antisymmetrized states, equa-

tions II-29 and II-31 can be written
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N AI\O A

V + VGAT (11-43)

."?

>
'

=V + VG (1 - PO)AG . ‘ (11-44)

Equations I1I-38, II-39, II-41, and II-42 can be rederived with the
operator Aincluded, yielding equations of the same form but with
80(1 - PO) replaced by 60(1 - PO)A. Note that the ;i thus defined
are somewhat different than those defined in equation II-39. With
this change the matrix elements of the ;i in the equivalent of

equation II-38 are the same for all i, since with the antisymmetriza-

tion all nucleons are equivalent. Equation II-38 becomes

A _ A ~ AO ~
(11-45)

+ AR - 1)%1,60(1 - P aT,a0(1 - PoaTy + ..

where i # j, j # k, and so on. The equation giving t, in terms of

i
N .
tg is now

N N a0 — 0,— _

N

The difference between T. and 1:_i

3 will be neglected; this is known

as the impulse approximation (30). |
The final result, equatién 11-45, is the multiple scattering
series for ﬁ.' The first term describes the scattering to all orders

from one nucleon, summed over all nucleons. The second term
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describes scattering to all orders by one nucleon, propagation,

and then scattering to all orders by a second nucleon. The third
term describes three such scatterings, and so on. The optical poten-
tial is given by

2wUopt = Ugg = <0|ujo> . (11-47)
Writing equation II-33 in the form of a Schrodinger equation and
including the Coulomb potential gives a wave equation much 1like
equation II-17 but involving pion coordinates only,

2+ k2 +Vg) +2vE) ¢(r) = 0 (11-48)

(72 +

- 2w (Uopt
where ¢ is the pion wavefunction.

It is, of course, impossible to calculate all terms of the
series for G, equation II-45. However, the first two terms and
a partial summation of the rest can be calculated if some approxi-

mations are made. This is the subject of the next chapter.

4. The Optical Potential--Simplest Assumptions

To see the general features of the pion-nucleus optical poten-
tial, it is useful to construct the first order potential, arising
from the first term in equation 1I-45. The impulse approximation
is made, and kinematic correcti;ns'due to the transformation of
t“N to the pion-nucleus center of mass, and to the difference between

w and w, are ignored. Then
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1) _ N
2muép£ = A<0|2ut" |0> (11-49)

which, by equations II-8 and II-9, is

1 ] L 1 [}
20053 (k.Kk) = A<o] (2m)3s(k + py - K - p) (-4m)F_(k.k')[05
(11-50)

*
Here [0> represents wO(Bl’BZ"'pA) and <0| representswo(pi,pz...pA).
The scattering amplitude an is given in equation II-1. Since
an(E’E') is independent of the nucleon momenta in this approxima-

tion, equationC-10 of Appendix C can be used to write

1 )
200810 (kK" = - amAf_y (koK' Do(q) (11-51)
where p(q) is the Fourier transform of the nuclear density o(r),
normalized to 1, and q is the momentum transfer, q = k' - k.

Assuming a nucleus with N = Z and zero spin, isovector and spin

dependent terms can be ignored, and the optical potential becomes

2w“§§l<5,5'> = - 4nAlbgyo(q) + cgo(q)k-k'} (11-52)

in momentum space or

200310 (r) = - amAtbgo(r) - 9-Tego(r)IT) (11-53)
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in coordinate space. The gradient operators act on all functions
of r to their right (see Appendix C). Equation II-53 is known as
the Kisslinger potential (7). This is not the only choice for the
form of Uéé%, as will be discussed in the first sectionof Chapter1II,
but it is the form adopted in this work.

As might be expected, the Kisslinger potential has s-wave
and p-wave parts which are respectively repulsive and attractive
for energies below resonance. The imaginary parts of the potential
reflect the flux lost from the elastic channel, whfch process is
sometimes called absorption. However, it is important to make a
distinction between this process, in which the pion is present in
the final state with the nucleus in an excited state, and the pro-
cess not included in the simple optical potential above, in which
the pion is absorbed by the nucleus and does not reappear. The
former process will be referred to as quasielastic, and the latter
as true absorption. At zero pion kinetic energy there is no energy
available for quasielastic processes, and the first order optical
potential is purely real.

Due to the p-wave interaction the Kisslinger potential is
“non-Tocal" (more accurately, velocity dependent). The p-wave term

acting on the pion wavefunction can be written

¢o?-[p(r)T0(r)] = c[Vp(r)1-TT8(r)] + coo(r)¥2e(r) . (I1-54)

The first term contributes a surface peaked interaction. The second

term is somewhat troublesome, as it has the same form as the kinetic
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energy term but appears with opposite sign below resonance. The
difficulty can be seen more clearly when the optical potential,

equation II-53, is put in the wave equation II-48,

{1 - 4wc0p(r)]V2 + kg + 4ﬂb0p(r)- 4ﬁC0[Yp(P)]‘Y
- 2wV + Vale(r) = 0 (11-55)

When Re(4ncop) becomes greater than one, the V2¢ term changes sign,
‘giving rise to an attractive "potential" in which an infinite number
of bound states can exist, with the peculiar property that pion
wavefunctions with more nodes correspond to more deeply bound pion
states (31). The pion wavefunction can be shown to have a logarith-
mic singularity at the point where the V2¢ term changes sign. With

o(r) = .17 ™3

in the nuclear interior the requirementRe(4nc0p(r))>1
leads to Re(c0)> .47 fm3, a condition satisfied by Co computed from
phase shifts in the entire low energy region. Higher order correc-
tions to be discussed in the next chapter, in particular the
Ericson-Ericson effect, reduce the strength of the p-wave term.

It is not clear, however, whether this reduction is sufficient to
avoid difficulties. It is to be noted that although the pion wave-
function is singular in the interior, its exterior behavior is not
anomalous, and the calculated scattering cross sections are perfectly
reasonable. .

The anomalous behavior of the Kisslinger potential is due,

of course, to the approximations made, and in particular to the
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off-shell extrapolation chosen. The introduction of form factors,

which eliminate the high momentum components, is one possible remedy.



CHAPTER II1I
THE FULL OPTICAL POTENTIAL

As noted in the introduction, the first order treatment of
the optical potential described in the previous chapter was found
to be inadequate for the description of pion-nucleus processes,
in particular the pionic atom level shifts and widths. This led
to studies of kinematic and second order effects in the optical
potential. In this chapter the various corrections to the first
order optical potential which are incorporated into the calculations
are derived.

The first section of this chapter deals with the kinematic
transformation which was ignored in the simple optical potential
of the last chapter, that is, the transformation of the pion-nucleon
T-matrix from the pion-nucleon to the pion-nucleus center of mass.
In the second section, the higher order multiple scattering terms
are considered, in particular the second order s-wave term and a
partial summation of the p-wave terms known as the Ericson-Ericson
effect. Termé which arise from true absorption are discussed in
Section 3. Other corrections, due'to the Pauli exclusion principle
and Coulomb distortion, are described in Section 4. Finally, the -

full optical potential is stated in Section 5.

31
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In order to give some indication of the effect of the various
kinematic and higher order corrections in pion-nucleus calculations,
a representative set of differential elastic scattering calculations
is shown where appropriate. Calculations for the nuclei 160 and
208Pb at 50 and 162 MeV are given to illustrate the nucleon number
and energy dependence of the effects. Only at scattering is shown
in most cases, since the n~ scattering shows similar changes. The
Tow energy data shown is that of Ref. 32 (diamonds), and Refs. 33
~and 34 (triangles). The data at 162 MeV is from Ref. 35 (160) and

Ref. 36 (298pp).

1. Kinematics

The pion-nucleon transition matrix T t?N which is required

mn

for the optical potential is simply related to the experimentally
measured scattering amplitude an, defined in the nN center of mass,
where |k| = |k'[. However, T; must be known for k+p#0 as well.
If one ignores the Fermi motion of the nucleons within the nucleus

T; must be calculated in the pion-nucleus center of mass. This

is sometimes referred to as the angle transformation, since it
involves the transformation of the angle between k and k' in the
p-wave term, among other things. When Fermi motion is included

the transformation depends on p as well as k. It is a straight-

7N

forward matter to relate t"" for 5 + p = Q to the N center of mass

~ ~

amplitude for which k + p = d; If, however, [k| # [K'| in the frame

in which 5 +p =0, some assumption must be made about the off energy

shell behavior of tﬂN. An infinite number of such assumptions exist.
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A complete theory of the pion-nucleon system would provide a unique
off-shell extrapolation; however, such a theory does not yet exist.

The Kisslinger potential assumes that t“N

is proportional
to b0 + COE'E' for all k and 5‘. A different off shell amplitude

can be obtained if the scattering amplitude
an = po + cok'k' (I11-1)

is rewritten using

kk' =508 - d%) (111-2)
which gives
- t ] 2 -
an = by +cyq (I11-3)

Vo 1,2 N § - LYo .
where b0 = b0 + §-k Co» €0 = = 7 o> and q 5 E. This leads

to an optical potential, with the simplifying assumptions of the

previous chapter,

200 () = -anibgo(r) + clvop(r)1} (111-4)

which is generally called the Laplacian model. Note that the Vz

acts only on p(r), making this a local potential. The Equation III-2
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is only true on she]l, therefore the off shell behavior of these
two potentials is somewhat different.

Figure 3 shows a comparison of differential cross sections
calculated with these two potentials. The differences are pronounced,
especially at 50 MeV, where the two curves are of quite different
character. At 162 MeV the curves have different magnitude but more
or less the same shape. The partial cross sections also show large
~differences at 50 MeV. For 160 the reaction cross section calculated
with the Kisslinger potentia] is three times that for the Laplacian
potential, with a corresponding inequality in the total cross sections;
the elastic cross sections are about equal. For 208Pb the Kisslinger
reaction cross section is also greater than the Laplacian; however,
the total elastic scattering cross section for the Kisslinger poten-
tial is only about half that of the Laplacian, leading to a smaller
total cross section. At 162 MeV the cross sections are much more
similar; those of the Laplacian potential are slightly larger.

The Kisslinger and Laplacian potentials have been the most
popular models for pion-nucleus scattering and are easily transformed
to coordinate space. Another type of potential is known as the
separable potential because the 5 and E' dependence of the pion-
nucleon potential v is assumed to be of the form ig(E)g(E') in each

channel, leading to a t“N

of the form tg(E)g(E')D(E) in each channel.
The g's, known as form factors;-reflect the finite range of the 7N
interaction. This assumed form is quite useful in that the form

factors and D can be related to the wN phase shifts (37) and give
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a more realistic off shell behavior for t"N; however, the coordinate

space potential derived from such a theory is of an awkward non-
local form.

The Kisslinger form will be adopted for the optical potential
in this work. Because it is explicitly separated into s- and p-wave
parts it is best for pionic atom analysis and low energy scattering.
The form is convenient, also, for the calculation of higher order
terms. In the low energy region the Kisslinger potential parameters
vary slowly with energy. This is not true in the resonance region,
however. It has been shown that when higher order multiple scatter-
ing terms are included, taking account of the correlations between
nucleons, Kisslinger and Laplacian potentials give similarresults (30).
This is true since the interaction is of short range and the cor-
relations insure that nucleons are not close together, so that the
potentia]é due to different nucleons are almost non-overlapping.
Thus Beg's theorem (38) is applicable, which states that for non-
overlapping potentials the scattering depends only on the on-shell
part of the potential.

Once the off-shell behavior of the pion-nucleon_T—matrix is
chosen, all necessary T-matrix elements can be calculated. One
~ method of doing this relatiyistical]y is given by relativistic poten-
tial theory (39). The process is more complicated than a Lorentz
transformation, since the T-matrix does not have well-defined trans-
formation properties (see Appendix D). The relativistic potential

theory provides a prescription (40) for relating <E"B'|t(ET)IE’B>’
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where E; is the total energy of the pion-nucleon system, to t(w,g',g),
where w is an energy parameter related to ET. The momentum q is
related to 5 and P, and g' is related to 5' and E', by equation D-2
of Appendix D, which is equivalent to a Lorentz transformation to
the two-particle center of mass frame. Thus q = Ecm and g' = Eém'
It is to be noted that the g for the transformation (E’B) + (g,-g)
is not in general the same as the g for (E"E') + (g',-g'). The
quantity t(w,q,q') with lq] = [g'] is just the on-shell T-matrix
and with |q| # [g'| is its off-shell extrapolation.

The exact expression for <5',E'|t(ET)|E,E> in terms of
t(w,g,g') is given by equations D-5, D-6, and D-10, along with an
expansion of the result in powers of Q2, where Q = 5 + p = E' + B',

given by equation D-11. Keeping only the first term in the

expansion,

k'p'IHED [kop> = (2m76(K' + p* - Kk - PINE(WK' ok
(I11-5)
where
N = [ Ewt'y'  (Ecp + ugn) (B + “‘)'cm)]'if (111-6)
Eenembemeom (B + w)(ET + )
and.

=
"

2 _ 02y o
(2 - ¢?) (111-7)
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Note that
E= (p? + )} Eep = (kgm + M)t
(I11-8)
= (1,2 2% _ (1.2 2 %
w = (k® + m) W = (kcm + m°)

are not the same as the on-shell values usually represented by these

symbols.
The off-shell forms discussed previously were given for f N
Since t"N is related to wa by
N . - 4m
(w, kem*Kem) T 2w, Wern Fon(ws Kem cm) (I11-9)
where
= WemEem
m Wy ¥ Ecm

an off-shell form is needed for the reduced energy Bém' This is

chosen to be symmetric in incoming and outgoing particle energies,

E w' E!

= [ Yem-cm cm cm ]<§ (111-10)
w. +E
em * Eem Yem *

Taking the impulse approximation

-

. = t™ (111-11)
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and recalling

T = 20Ty (I11-12)

it is seen that off-shell matrix elements of ;i also require an off-

shell form for w, taken as

. [ wEp w'E'p ]% (111-13)

I T Ep w' + Ep
with EA and EA the initial and final energies of the nucleus.

Putting all these factors together gives

031y (Ep) kopy> = m(2m)’
(I11-14)

. ' _w '
X 6(5 tp; - k - Ei) Z%m N fﬂN(w’Ecm’Ecm)

In order to simplify this result, the nucleons and nucleus

are assumed nonrelativistic, so that

E=E'= ECm = Eém =M and EA = EA =My = AM . (I11-15)

This is not sufficient to make equation III-14 usable in a coordi-
nate space calculation, as w and w' still depend on k and k'. There-

fore, w and w' are set equal td/fheir on-shell values

w=w' =u = (kg + mo) (111-16)
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With these approximations equation III-14 becomes

<" spj 73 (Ep) [kopy> = ~dn(2n)’

(111-17)
x §(k' +p! - k - ps) C F (wk' k)
~ i ~ i1+ ¢/A "7N'Y"Zem’Zem
where
)
€= 5 (I11-18)
W, W,
and the difference between T%-and —%%93 of order ez, has been

neglected. At 50 MeV ¢ = .20; at 200 MeV ¢ = .36.
The arguments of an’ Ecm and&ém,nmst be expressed in terms
of E, Ps E', and E‘. For this equation D-2 or equivalently the

Lorentz transformation can be used. The latter gives

kem = K + BY(GT Bk - w)

~cm vy +1
(I11-19)
Eém - El + §LY'(?%-—_1-§ .!S - wl)
where
k+p k' +p'
g s and § il sy (IT11-20)

To make these expressions tractable, only terms of first order in
B will be kept. (This is nearly equivalent to expanding to first

order in £.) At T, = 200 MeV <g> = .25 and the error due to the
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dropped terms is about 6%. With the additional approximations given

inIII-15and I11-16, equation III-19 becomes

Mk -wg _k-ep

Ecm TTM+ Wy T 1+ ¢
(I11-21)
Mk' - wop' k' - ep'
kl - ~ ~ - ~ ~
and the p-wave term in an is
k okl = . 1_____. [k.k'-e(k- '+k" )+ 82 . l] (III'ZZ)
~Cm =cm 2 "2 2 K*p vK"P PP
(1+¢€)
2

The last term is of order ¢ and should be dropped. However, it is
an induced s-wave term and, as noted by Brown, Jennings, and Ros-
tokin (41), is important since the first order s-wave term is
unusually small. A more careful calculation, too tedious to be
giVen here, indicates that this is the only important €2 term.
Because the nucleon is part of a moving nucleus, the nucleon
momentum should be separated into a part due to the momentum of

the nucleus as a whole and a part due to the momentum of the nucleon

relative to the nucleus,

p=- 71\. k +pg (111-23)

.-

However, this separation complicates greatly the process of trans-

forming from momentum space to coordinate space and only contributes
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terms of order /A which are negligibly small for all but the lightest

nuclei. Therefore p and Po will be considered equivalent.

~

Let
p+p k + k'
P=" K==
(I11-24)
P=p'-p q=k' -k
Then equation III-22 can be written
1 2
k., k' = —-"—2>k-k'- P-K
~Cm~Cm (1+€)2~~ 1+€~~
(I11-25)

1 1 2,, e y2 .,
"1+ e 9 ) e
The T-matrix is now expressed in terms of pion-nucleus center

of mass quantities, and the first order term of the optical

potential,

—(1) _ -
2wuOpt = A<OIT1|0> (111-26)

can be calculated. Omitting the spin term this is

ZGUé;% = -4ﬂA<0|(2n)36(Ei+-5- P} - 5'){(14-€)(b01-b13'3i)

: 2
1 ' 1 2 '
g ot y)ipg k' - K -0+ e’ IO

~ o~ ~ o~

(I111-27)
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where it is assumed that p3 =Py for j # i. The integrations over
ground state nucleon momenta of the various terms are given in

Appendix C. (This process is called Fermi averaging.) The result

is
2] (k') = -anip [boo(a) + e.by (p(a) - py())]

+ Pil Legela) + encq(pp(a) - oy (a))Ik-k!

-3 (1 - phegota) + ee(ay(a) - pyla)) el
(py - 1)?
+ ——11;;———-C0K(Q)} (111-28)

where € is the pion charge, %1, Py = 1+ ¢, and «(q) is the Fourier
transform of 2M times the kinetic energy density of the nucleus,

given 1in equation C-13. The transformation to coordinate space gives
Z0{1) (1) = ~amip;bgo(r) + €0 (p,(r) = oy (r))]
- P} T Lega(r) + eqci(op(r) = o, (k)17
+ 3 (1 - p7H)PPLego(r) + e cilo (r) - o (r))]
2 P1 0 7°1'Pp n

2
(pl - 1) _
+ — co<(r)} . (111-29)
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The nucleon, neutron, and proton densities p, P> and Pp are nor-

malized to A, N, and Z, respectively.

This method of treating kcm-kc'm is, of course, not unique.
2

One could, for example, replace q2 by 2k0 - 2k-k', leading to the

optical potential

ZBUéé% (r) = -4ﬂ{p1b0p(r) - CoY'p(r)Y

(III-30)
(p, - 1) |

P1

- kg(l - pil)coo(r) +

co(r)}

where isovector terms have been suppressed for simplicity. It should
be noted that any choice of kinematics must treat E and 5' sym-
metrically; otherwise the potential is not Hermitian and the results
may violate unitarity.

The energy parameter w, given by equation III-7, is the energy
at which the scattering parameters should be evaluated and shoﬁld
also be expressed in terms of P; and B% before the integrals over
nucleon momenta are performed. This is not practicable, however,

2

and w- is evaluated with ET and Q the total energy and momentum of

the nucleon and pion before collision,

. (I11-31)

This is just the total energy in the pion-nucleon center of mass.
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It should be noted that the same results can be obtained from
much simpler assumptions (see for example Ref. 24). It is instruc-
tive, however, to begin with a theory which claims to be relativis-
tically correct and consistent. The approximations made are all
explicit and the calculations required to improve the model are
obvious, if not simple.

Figure 4 illustrates the effect on elastic scattering calcula-
tions of several choices for the kinematic transformation. The
calculation with a first order optical potential with no kinematic
terms, equation II-53 (dashed 1ine), is compared to that with kine-
matics as in equation II1I-29 (solid line), equation III-30 (dash-
dotted Tine), and equation III-29 but without the x(r) term (dotted
Tine). It is clear that the choice of kinematics has a non-negligible
effect on the scattering from both 1ight and heavy nuclei, not only

at low energies, but in the resonance region as well.

2. Multiple Scattering Corrections

Thus far only the first term of the multiple scattering series
has been used in the construction of the optical potential. In this
section the second and higher order terms of the series are con-
sidered. These modify both the s- and p-wave parts of the optical
potential. As the s-wave parameter bO is nearly zero, the second
order s-wave correction, first derived by Ericson and Er1cson(10),
is quite important. The p-wave parts of the multiple scattering
series can be summed to all orders in the low energy limit, giving

rfse to what is termed the Ericson-Ericson or LLEE effect (10) first



46

3

10:'|]Il|l1|l||II|l! 105T|'ll|ll|ll|llltl
o 50 MeV ] 162 MeV
I ot i 1wt ot

100 103

T Illulf‘

—
[2]
o
1

{
oL 1, 4 10
3 i 3
- $ 3
[ LEF T
- T M\
@ 1= 0.1
> %
£ -
- [ \ 1072
G - v
o \
N\ 1oop v 4 10t
b : BN
© C 3
s 208py, 1 108
L -
ol TR ' ] 100
d 3 10
1 ' - IteirTismo
: 3 0.1
B |' . 10’2
B Al 4
o-lllllllll'll 1 2 10'3||l|llnlln|!||l|l
0 30 60 S0 120 150 0 30 60 0 120 150

9¢.m. (deg)

Figure 4. Comparison of calculations with no kinematic corrections
(dashed curve), full kinematics (solid curve), and alterna-
tive choices for the kinematic corrections (dotted and
dot-dashed curves).



46

103 YT YT T T T T 7 - 105
F S0 MeV 3
[ ot 1 104
1001 ~ 103
I 1 1too
R 180 E
10 H - 10
E E 23 3
[ 3
L 3 .
07‘5\ ™ d
1L < 0.
N = =
}k \E 3
E - \\ : _2
= i \ N 10
G - v
o \
. 1oof v d o1t
b 3 N
© C ]
- 208Pb E 103
i . -
10L U o 100
F 3 10
K K 1
1. ‘ - Iteirtizms
s 3 0.1
L " J 10-2
! | .
0.1 lllﬂln;lllnlnl.lnl 10'3 S T TN T NN YO S Y SO T N W T N E
0 30 60 80 120 150 0 30 60 980 120 150
8¢.m. (deg)
Figure 4. Comparison of calculations with no kinematic corrections

(dashed curve), full kinematics (solid curve), and alterna-
tive choices for the kinematic corrections (dotted and
dot-dashed curves).



47

discussed by M. Ericson (43), analogous to the Lorentz-Lorenz effect
in electromagnetism (44).
The second term in the multiple scattering series for U, equa-

tion II-45, is
A(A-l)riG (1- PO)ATj . (111-32)

Making the impulse approximation as before, the second order optical

potential can be written

ZwU(g%(k k) = <0[0@ o> = ‘/'<0|A(A - 1)1+ - py - )

1
N2 2 -

x (-4m)F(k' k") [1 - ]0><0[]

3kll

)3

x (2m) 6(p2 + k" - - k)(- 4w)f(k" k)|0>
2m

(I11-33)

where p% = p; is assumed for i # 1, 2, and f is the pion nucleon

~ ~

scattering amplitude with the kinematics derived in the previous

section included,

F ] - . _1 . .
Flkok') = pylbg + byte1) + Py (g + cqt-T)k-k’
i (I111-34)

- ' 2 -
- %‘(1 - pll)(co + CIE'I)q + P1(1 - P11)2 CO k(q) .
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Here Py = 1+ ¢withe-= ;%. As the last two terms are already
small, their contribution to the second ahd higher order optical
potential is neglected.

The second order s-wave term is generated from the s-wave
parts of ?(E‘,E") and ?(5",5). The two terms of equation I1I-33,

from the 1 and |0><0| in brackets, can be evaluated using equa-

tions C-27 and C-9 of Appendix C, respectively. The result is

2wU(2)(k k') = (-4m)? & “7?“ ; .l.(b + 2b )C(r rt)

-i(El-k")'r -i(E"-k)'r'

x p(r)p(r')e ~ e o (111-35)

3 u
< &3 43t 1 d°k

-k"2 + kg + ie (27r)3

where

2
3j,(kelr = r'])
S B B A 1
“or) = -g [ kelr - '] ]

Note that the first term on the right-hand side of equation C-27
exactly cancels the |0><0| term. The integration over terms in k"

gives

1k0l§|

ik"'(r-rl) K
~ ‘i a 1 d k l e
e = - o s (III-36)
f _k||2 + kg + ie (21T)3 4w IXl

~

where x = r - r'. Equation III-35 becomes
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—(2) (10 2A-1 2, 52
2u g’ (k,k') = 4mpy =g— (bg + 2b7) .l.o(r)

~i(k*=k) v -ikex eiko|§| 3.3
x e ~ (=) C(x)p(r’ )e ~ X[ d°x]d"r
-i(k'-k)-r
= 4mp? AL (b2 + 2%) .l.p(r)e =~ ~1d%
(111-37)
The integral I, sometimes denoted <$>corr’ can be performed assuming:

(1) an on-shell approximation, k = kg3 (2) a specific form for the
correlation function; and (3) p(r') approximately constant over
the region in which C(x) is large. With the Fermi gas model value
for C(x), equation C-28, and p(r') = EE%; , the integral I can be

3w
done analytically for k0 = 0 or numerically for any given kO' For

kO = 0 the result is

3kge
IO =-71—T_ . (111-38)

With I approximated by a constant for a given kO’ equation III-37

is a function of g only and can be Fourier transformed, giving
zaugg)(g) = 4mp? A2 AL b2+ 2b%)Ip(r) (111-39)

Ericson and Ericson (10) made somewhat different assumptions in

their derivation of the s-wave effect, leading to a term in pz(r).
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The form given here is taken from Krell and Ericson (45), and requires
slightly less radical assumptions.

The value of I, obtained by numerical integration, is shown
in Figure 5 as a function of pion lab kinetic energy (solid line).

In order to obtain a value of I for low energy scattering Thies (18)

ikox iko‘r
expanded e and e 7 7 to first order in ko, resulting in
ke
IT =5+ 1k0 (111-40)

As can be seen in the figure, this is not a good approximation above
about 10 MeV, as the real part of I falls quickly from its zero
energy value %;F , and the imaginary part does not follow k0 (dashed
line). Both real and imaginary parts of I go to zero at high ener-
gies, the imaginary part falling off more slowly than the real part.

Because the second order s-wave term is proportional to p(r),

it can be combined with the first order s-wave term, giving

ZEN(r) = -ampi[Bo(r) + &by (pp(r) = py(r)] (111-41)
where

= _ A-1 .2, 52 )

b0 =by - Py 7R (b0 + 2b1)I . (111-42)

Figure 6 shows b0 and Bb as a function of pion kinetic energy. As
expected, the difference is greatest at low energies and also of

greatest importance, as bO is small there.
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Figure 5. The integral I as a function of pion lab kinetic energy,
and the approximation Im(I) = kO'
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In Figure 7 differential cross sections calculated with the
optical potential including the second order s-wave term (solid
curve) are compared with those calculated with the first order
optical potential equation III-29 (dashed curve). Also shown at
50 MeV is the effect of treating I in equation III-42 in the zero

3k
energy approximation, I = 375 (dotted curve). At 50 MeV the second

T
order s-wave term makes an appreciable difference, especially at
backward angles. It has no effect at all, however, in the resonance
region.

The second term of equation III-33 to be considered is the

s-p interference term. This arises from
Pl KT oK) = (b + bytedleg + et (KK + koK)

(111-43)

and is zero by symmetry.

The second order term due to the p-wave parts of T(k',k")
and'?(&",&) in equation III-33 is
(2) 6 ()

2l (k') = (-amZaea - 107% [<of(2m® ==
PP ~"~ k" + kg + ie

X 5(Ei + E' - Bl - E")[l - 'O><0|]6(Eé + E“ - EZ - E)

a3

(2m)®

x (eg + eqto1y)leqg * ¢yt-1,) (0>
(111-44)
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The operator (k'-k")(k"-k) can be written as the sum of a second

rank tensor and a scalar in k",

A ", - ! wpHo _1_ nl l_ ul et -
(k*+k") (k"-k) 123 kik;DkikS - 3 655k"°] + 3 k"%kek'  (111-45)

~ o~

The tensor part is negligible at low energies and will be ignored
at all energies considered here. As in the s-wave term, the inte-
grals over nucleon momenta give the Fourier transforms of functions

of r and r'. The remaining terms in k" can be integrated over as

before,
. iknX
u2 1 K (r-r') g3 o 1 e 0
k 72 e 37 g% ]
-k"c + k0 + ie (2m)
(I111-46)
where x =r - r' and x = |x]. This gives two terms,
;L_VZ e1k0x - ES_eIkOX (11147
4 "X X 4v X

In the zero energy limit only the first term contributes, giving
r= r'. As was noted in Appendix C, the first term in brackets
in equation II1I-44 gives zero contribution for r= r','assuming
hard core repulsion between nucleons. Equation C-9 gives for the

second term .



ZEUég)(5,5') = (4m)? A—ﬁ—l piz-% ./h[cop(r)

(111-48)
2 j(k'-k)-r 3
*tacilop(r) - pp(r)))7 e ™~ " kek'd'r

in momentum space or

A-1

22 (r) = -(am? 3 A5 veLegolr) + tyey (o () - ()15

wh—

(I11-49)
in coordinate space.
The p-wave terms can be calculated to all orders in the
zero energy limit, assuming tensor terms in the intermediate momenta
do not contribute. The delta functions which appear,é(f-r')a(r'- f")
and so on, insure that only the Py pieces of the (1 - PO) operators
are nonzero. Thus the Nth order p-wave term is proportional to

pN(r). To all orders the p-wave terms are

2y (r) = V° 4ﬂp1 cge(r) 2% (- ﬂﬂ-A —K L CoP1 Lo(r) 1My
m=
1 (111-50)
4mp; cgo(r) o
1- -4 N L

=Yo

where the isovector terms have been suppressed for simplicity. This
is the Ericson-Eriscon or LLEE effect, with A = 1.
The Ericson-Ericson effect can be calculated more carefully,

giving a term of the same form but with A different from one. The
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best value for ) has been a matter of dispute. Recent calculations
by Brown, Jennings, and Rostokin (41), including =, p, and w meson
intermediate states and taking into account the finite range of
the pion-nucleon interaction, yield a value for A greater than one.
They note that although the finite range of the interaction causes
a reduction in the Ericson-Ericson effect, as noted by Eisenberg,
Hufner, and Moniz (46), other terms strengthen it, the net effect
being a value of A which is about 1.6 or higher (47). As their
calculations were done in the low energy limit, their conclusions
abp]y to the low energy region only. Oset and Weise (48) have aliso
made an estimate of A for low energies, based on calculations in
the jsobar-hole model. They give a value for A in the range

A =1.2 -1.6. For this work the value A = 1.6 is adopted as
reasonable.

In the case of nonzero pion kinetic energy each term in the
sum, equation II1I-50, should be modified by the effect of the second
term in equation II1I-47. However, the second term is much more
difficult to manage than the first, therefore its effect is calcu-
lated here to second order only, giving a rough idea of its impor-
tance. The second order term is quite similar to the s-wave term,

and can be evaluated in a similar manner, giving

igqer
A-1 -21,2 V(2 2 2L .3
- 4 =5 pg §-k05-5 (c0 + 2c1)I ./~p(r)e d’r ,

(I11-51)
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where I is defined in equation III-37. The p-wave optical potential

in coordinate space is, with the inclusion of this term,

Py Lego(r) + tye (p(r) = o (r)]

U (r) = 4nv-
PP " { 1+ %T[ A—Ai A pil [cgo(r) + t3c1(pp(r‘) - p,(r))]

+A;1pfﬂdﬂ}y
(111-52)

where

C_o-11,2,2, ,2 _

Note that the isovector part of the c' term has been neglected.

Figure 8 gives the energy dependence of c', as compared with
that of Co- As c' goes as kg it is small at low energies, and dies
away at high energies due to the falling off of both I and the
p—wavehscattering parameters. It is, however, a large effect in
the resonance region.

In Figure 9 the effect of the Ericson-Ericson correction is
illustrated. The differential cross sections calculated with only
the first order p-wave term (dashed curve) are compared with those
calculated with the full Ericson-Ericson effect with A = 1.6 (solid
curve), with A = 1.0 (dotted curve), and with the Ericson-Ericson
effect to second order only, A = 1.0 (dash-dotted curve). At 50MeV the
differences are quite large; at 162 MeV there is a difference at

backward angles between calculations with and without the
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Ericson-Ericson effect, but almost none between the full effect
and the second order approximation to it.

Figure 10 shows calculations with (solid curve) and without
(dashed curve) the c' term. Because of the crudeness of the calcula-
tion it is 1ikely that the effect is greatly overestimated, espe-
cially at higher energies. Other terms such as the tensor terms
may also begin to contribute in the resonance region. Therefore
this term is dropped in future calculations.

One other comment should be made about the Ericson-Ericson
effect. The pion-nucleus T-matrix given in equation II-30 can be
expressed in ferms of ;i’ using the same reasoning that leads to

I1-38. The result is (29)

STh AT T R T DT RE%RE% 4
i i j#i I 5 54 k#i

(111-54)

This series, the Watson multiple scattering series for T, is just
the Born series with an effective potential ;i' Using the same
arguments which lead to the Ericson-Ericson effect, it is seen that
the second term of equation III-54 is zero. Thus the first Born
approximation should be a reasonable approximation to the full cal-

culation. This argument breaks down, of course, for A # 1.0.

3. True Pion Absorption Terms

The conventional multiple scattering series includes only

intermediate states consisting of one pion plus the nucleus, since
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the T in the multiple scattering series correspond to pion nucleon
scattering. Because the pion is a meson, however, it can be absorbed
on one or more nucleons, resulting in intermediate states with no
pion. This process gives a non-negligible contribution to both the
real and imaginary parts of the optical potential, and is especially
important at low energies. The parametrization of this process as
terms in the optical potential is discussed in this section.

Anaiogous to the scattering T-matrix T, define an absorption
operator 1 and emission operator r+ for the pion, describing respec-
tively the processes Nm + N and N - Nw. Although there is some
contribution from pion absorption on one nucleon at very 1ow.energies,
the dominant absorptioh mechanism is two nucleon absorption, in
which the pion scatters from one nucleon and is absorbed by the
second, with the two nucleons sharing the kinetic energy due to
the disappearance of the pion mass. The lowest order optical poten-

tjal term due to such a process can be written
<0|A(A - 1)TG7(1 - Pylat Gy(1 - PylaTa (1 - Po)n|0>,

(111-55)

where GN is the propagator for the nucleus. Although this is, in
a sense, a fourth order term, it has a large imaginary part,
describing flux lost from the elastic channel due to true absorption

of the pion. At low energies the other imaginary terms in the



64

optical potential, due to quasielastic processes, are nearly zero,
and the absorption terms make the dominant contribution.

In their discussion of pionic atoms Ericson and Ericson (10)
introduce absorption by defining a pion-two nucleon amplitude

describing pion absorption and reemission,

f(z) B BO + c052cm.~écm (I11-56)

where the subscript 2cm refers to the pion-two nucleon center of
mass frame in which f(z) is defined. The Bg and'C0 can be deter-
mined in principle from the various amplitudes of the angular momen-
tum and isospin states of the pion-two nucleon system. A fair
amount of data does exist for the reaction m + d + N + N, but it

is difficult to eliminate effects of deuteron structure from the
amplitudes.

The amplitude f(z) can be related to expression III-55 by

defining
(2 2 7601 - P )ar'Gy(1 - P)ATEO(1 - P,)aT (111-57)
/AT ®N 0 0
and
(2) . 2_1 2(2) (111-58)
“(2)

where E{Z) is the reduced energylsf the pion-two nucleon system in

that system's center of mass. Then the impulse approximation gives
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22) . -4t ) (111-59)

Equation III-57 may include more than s- and p-wave terms; however,
the first two partial waves are assumed to dominate.

 As the amplitude f(z) is defined in the pion-two nucleon center
of mass, a kinematic transformation to the pion-nucleus center of
2)

mass is required for T( The results derived in Section 1 for <t

can be immediately applied to 1(2) with the substitution M » 2M
in the kinematic factors. Thus the lowest order absorption terms

in the optical potential are

zaugggs) (k.k') = <0[A(A - 1)(?)|0>

= <0[(2m)%s(k" + pj + pj - k - py - py)(-4n) (111-60)
x A(A - 1)[p,By + Py Cok k' = 3(1-;1)Cqa"1(0>

where the term analogous to k(r) has been neglected. Note that the
details of the two nucleon absorption process are buried in the
parameters B0 and CO. By expressioh C-31 of Appendix C the Fourier
transform of equation III-60 is
Z—L‘B—Ugg:s)(r) = -4Tf[p23002(r‘»,¥) - pEICOY‘QZ(P,Y‘)Y
(I11-61)
+ %—(1 - pél)Covzpz(r,r)



66

The two-body density pz(r,r) is replaced with pz(r), assuming all
correlation effects are included in B0 and CO. This rather awkward
situation'is due to the simplified form of equation III-60. A more
careful derivation is given by Rockmore, Kanter, and Goode (49).

They write the absorption term of the optical potential schematically

as

_ (abs) . 9 e b
2ullgpy  (x'>x) - A f"’ (rs7gsrge-rA)U (rforss x')

(111-62)
X Gy(rs,rd,ra r )U(ry,ro; x)P(ry,r,,r r )d3r'd3r'ﬂﬂ3r
NYL1°22°21°.277 010022 S/F 1202223 A 17 "2 i

where U and U+ are the two nucleon absorption and emission operators
and x and x' are the pion coordinates. The two nucleon propagator

GN is diagonal in momentum space,

On(p1s3oR1sRp) = 8(py - p1)8(R, - p)) Y

(I11-63)
neglecting interactions between the two nucleons. Let
ritr ri + r;
_ ~1 = 2 v ~1 2
P=p1 %P R=—"7 R ==
Po - P
p = 2yt £ty - r=ry -

(I11-64)
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Then the Fourier transform of equation III-63 is

-i(3P - p)-(r] - rp)
Gy(rysrpsryar,) = f e

(I11-65)

Lo, e
v o TGRHR)(r - ry) 1 & %
o - E; i} Pﬁi - e (2m)3 (2m)®

-3

The dinucleon momentum P is, by momentum conservation, roughly the
same size as k, the incoming pion momentum. The relative momentum

of the two nucleons, p, is large, however, because of the kinetic

2

energy gained when the pion is absorbed. Therefore the %ﬁ-term

in GN is dropped. This gives

1 d3p
2 3
w - ‘% - 'iE (21T)

~ ~

ip-(r-r')
GN(B"EI’B’E) = G(R = R') fe T ~

=8(R-R")G. (r-r')
~ T~ pgte T

(111-66)
where p, = YuM and
ipx
e
Gp(x) ~ (111-67)

Putting this in equation III-62 and making the coordinate trans-

formations II1-64 gives
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4 (abS) ! 2 t' E'
2 (40) ~ B[R -5 R4 ry )

x UT(Rr',x")8(R - R')G, (r - r')U(R,r,x)
SLXTIOR - RUG, (r - R, rx

r
sE"l'?sr

-~

N

x Y(R - coo r)dRaR ¢PraPet T a3

(I11-68)

The wavefunction product is expanded about B, giving

r' r' r r
SR R S vy R - F R By )
- g it - 122

x igé d3ri = p(R)p(R)e f(r)f(r')

(I11-69)

where the functions f insure the proper correlations between the
two nucleons, f(0) = 0 and f(r) -~ 1 for r large. With zero range
interactions equation III-68 becomes a local potential and the UJr
and U depend only on r' and r. Thus the absorption term of the

optical potential goes as p2

with the effect of correlations included
in the integrals over r and r' which give rise to the absorption
parameters. The lowest order absorptive terms in the optical poten-
tial are then

—(abs) _ 200y _ oo=la o 2

2ulng” " (r) = -4nlp,Byo®(r) - p,"CoV-p°(r)V

(111-70)
+5(1 - pyh)cgv2e?(r)]
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The only higher order multiple scattering terms due to absorp-
tion to be calculated here are those which contribute to the Ericson-
Ericson effect. The other terms involve long range correlation
functions of three or more particles, which are not well known.

It is to be hoped that they make only small contributions to the
optical potential and can be ignored. The absorptive terms can
be included in a simple way in the Ericson-Ericson effect by replacing

2), with T(z) given by equation III-59,

T in the derivation by t + r(
As T(z) is a two nucleon operator, the delta functions of position,
5(r - f'), 6(f' - r"), and so on, become delta functions of the
coordinates of one particle and the center of mass of a pair of
particles, or of the centers of mass of two pairs. The two body
density pz(r,r') is replaced by three and four particle densities.

It must then be argued that the nucleons in the pair are close enough
so that the three particle density is zero when the coordinate of

one particle corresponds to the center of mass of a pair, and simi-
larly with the four particle density and two pairs. With these
assumptions the Ericson-Ericson term is

-1 -1. 2,
_ Py cap(r) +p, Chp (1)
2wU(()EE)(r) = -4ny- 1.0 20

v
A A1 -1 1. 2, 1~
1+ 5 A= [pyege(r) +p, Coot(r)]

(111-71)
for an N = Z nucleus.

With the form of the absorption terms determined, it is neces-
sary to choose the parameters B0 and CO' Rather than attempt to

construct these directly from m + d + N + N amplitudes, the results



70

of calculations of B0 and Cy for nuclear matter by Riska, Bertsch,
Chai, and Ko (50) will be adopted. Only a brief summary of their
calculations will be given, as they are fully described in the ref-
erences cited, and are fairly long. Riska and collaborators write

the lowest order two particlie absorptive term of the optical

potential
(abs) _ 1 P .
Uopt " T @ fzi TitlE wu—E, - 1M +u - BTy

(111-72)

where p stands for prinéip]e value. The Tfi are the two nucleon
absorption and emission operators, with i and f labelling the nuclear
states. Note that this expression is simplyrelated toequation I1I-57
for 1(2), with the expression in brackets above equal to GN.

The Tfi are obtained from the evaluation of the diagrams shown
in Figure 11. For the s-wave, the rescattering vertex is described

by a phenomenological Hamiltonian (51),

x

1}
S

=

|
<
©
=

Yoo+
¢y +4-"_§¢ T (I11-73)
m

where w+ and ¢ are nucleon field operators and ¢ and 7w are the pion
field operator and the momentum operator conjugate to it. The coup-
ling constants Al and Az are determined by the w-N phase shifts.

The pion absorption vertex is described by

Ve | (111-74)
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Figure 11. Diagrams of the s and p-wave processes included in the
calculation (50) of .the absorption parameters.
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f2
where T i 0.081.

The p-wave rescattering is assumed to be dominated by the 33
resonance, as shown in the p-wave diagrams of Figure 11. Both w
and p intermediate states are included. The Lagrangians for the

various vertices are

g
Lo = 2 (1+ KW@ < D

] (I11-75)
>4 >

Soa % 7 o 2
Lona = om0 ¥ - (V x o)y + h.c.

where ¢ is the nucleon operator, @ the delta operator, which is a
vector-spinor in spin and isospin spaces, ¢ the pion operator, and
§ the rho operator, which is a vector in spin and isospin spaces.
The symbols "+" and "." to denote vectors are both used in order
to distinguish vectors in differ%nt spaces.2 The values of the

g
L =-0.55, K =6.6, and

coupling constants adopted are A 0.32, o

4n
9on = Q%Z g,(1 + K).

The vertex factors are combined with the propagator for the
intermediate particle to give the two nucleon absorption operator
T. The initial and final nuclear states for which T is evaluated

are two nucleon states in nuclear matter, i.e. plane wave states,
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which are symmetric or antisymmetric in the two nucleon coordinates,
chosen so that the total wavefunction including space, spin, and
isospin parts is antisymmetric. The isospin and spin sums over

the two particle initial and final states are performed first, assum-
ing equal numbers of protons and neutrons. Multipole expansions

are made of the initial and final wavefunctions and T, and the
nucleon coordinates are expressed in terms of the center of mass B
and relative coordinate r with the integral over 5 giving conserva-
tion of momentum. The sums over initial and final spatial states
are converted to integrals over momenta, and the final integrals

are performed numerica]]y.

The s- and p-wave optical potential parameters thus obtained
are shown as a function of energy in Figure 12. The imaginary part
of B0 increases with energy; the real part is approximately zero
at zero energy and becomes more negative with increasing energy.

The imaginary p-wave parameter shows a peak near resonance, as does
the real part.

It should be noted that the real parts of the absorptive terms
of the optical potential are, unlike the imaginary parts, quite
sensitive to Pauli blocking effects, and somewhat sensitive to the
radius assumed for the hard core repulsion, and the form factors
assumed for the pion and rho meson. The inclusion of Pauli blocking
increases the values of the real.parts; thus the values given here

can be considered lower bounds on these numbers.
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Figure 12. The absorptive parameters By and Cg as a function of
pion lab kinetic energy.
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There are several problems with calculations of this type.
Because it is a nuclear matter calculation, the form of the absorp-
tion terms for a finite nucleus must be derived separately; hence
the inclusion of the argument of Rockmore et al. A more serious
problem is the possibility of double counting in the p-wave, as
part of the amplitude equation III-57 looks 1ike a third order mul-
tiple scattering term with far off shell components, and is there-
fore already included in the Ericson-Ericson effect derived in the
previous section. This problem is perhaps best resolved by a dif-
ferent approach, in which absorption and scattering terms are con-
sidered together at the outset.

Other calculations of these parameters have been performed.
The s-wave absorption parameters have been calculated at threshold
by Hachenberg and Pirner (52), who obtain the value B0 = (0.375
+ i 0.144)fm4. This has a somewhat larger imaginary part and much
larger real part than the Riska value BO = (0.0067 + i 0.080)fm4.
G.A. Miller (53) has calculated the p-wave parameter; his values are
Co = (-0.05 + i 0.57)fm6 at 50 MeV and C, = (-0.03 + i 0.72)fm6 at
150 MeV. Oset, Weise, andBrockmann (54) have also calculated CO’
obtaining (0.96 + i 0.64)fm® at threshold, (1.20 + i 0.88)fm° at
50 MeV. These numbers can be compared with those calculated by
Riska et al., Co = (0.287 + i 0.343)fm6 at threshold, (0.373 +
i 0.622)fm° at 50 MeV, and (1.20 + i 2.55)fm® at 150 MeV.

Figure 13 shows the effect of the absorptive terms on the

elastic scattering cross sections. Shown are calculations without
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Figure 13. The effect of the absorption terms (solid curve) compared

to calculations without these terms (dashed curve) and
with the absorption terms included to first order only
(dotted curve).
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absorption (dashed curve), with absorption as discussed (solid curve),
and with absorption included to first order only, i.e. with the C0
term not included in the Ericson-Ericson effect but added separately
(dotted curve). Clearly absorptive terms of the size calculated
by Riska and collaborators are not negligible even in the resonance
region. Although the absorption terms have both real and imaginary
parts, most of the effect on the scattering cross sections is due
to the imaginary parts both at low energies and in the resonance
region. Near resonance the effect of the real parts is not seen
at all except at very backward angles.

The reaction and total cross sections are not greatly changed
by the inclusion of absorptive terms. The reaction cross section

for 160 at 50 MeV increases by 30%; the total by 14%. For 208

Pb
at 50 MeV the increase in the reaction cross section is only 7%;
the total cross sections are nearly equal. The differences are

much less pronounced at 162 MeV, with almost no difference at all

208

for Pb.

4. Pauli and Coulomb Corrections

Two corrections to the optical potential remain to be made.
The first is due to the Pauli exclusion principle, limiting the
intermediate states accessible to the struck nucleon. This correc-
tion has already been made for the jsoscalar s-wave part by explicitly
calculating the second order té;ﬁ which includes the Pauli correla-

tions. The calculation of the corresponding p-wave term could only

be made in second order, but the Ericson-Ericson effect includes
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terms of all orders. Therefore this method is abandoned and the
effect of the Pauli principle is approximated by reducing the
imaginary parts of the parameters o and 1 by a factor Q which
corresponds to the fraction of phase space avai]ab]e to the nucleon.
This is also done for bl’ as the second order isovector term was
not calculated.

The Pauli factor Q is taken from the Goldberger (55) classical
calculation as given for pions by Landau and McMillan (56). The
particles in the nucleus can be thought of as occupying a sphere

in momentum space of radius kF =1.36 fm'l.

When a pion of given
momentum strikes a nucleon the nucleon may or may not gain enough
momentum to displace it into the allowed momentum region outside

the Fermi sphere. Q is the probability that for a given pion momen-
tum the nucleon will scatter into the allowed region, averaged over
nucleon initial momentum and scattering angle. Figure 14 shows Q

as a function of pion kinetic energy. As expected, Q goes to zero
at zero energy, as no states are accessible, and approaches one

at high energies.

The absorption parameters also have imaginary parts; however,
as the nucleons gain a large amount of momentum when the pion is
absorbed, they are likely to be in unoccupied states. Therefore,
no correction is made.

Figure 15 shows the effect of the Pauli corrections just dis-
cussed (solid curve) compared to calculations with no Pauli factor,

j.e. Q = 1 (dashed curve). At 50 MeV Q =0.31; at 162 MeV Q = 0.75.
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Figure 14. The Pauli factor Q as a function of pion lab kinetic
energy.
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Figure 15. Comparison of calculations with (solid curve) and without
(dashed curve) Pauli corrections.
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Although the Pauli effect is larger at 50 MeV, the changes resulting
from its inclusion are more pronounced at higher energies, where
the scattering is more sensitive to the magnitude of the imaginary
p-wave terms. As is evident in both Figures 13 and 15, the effect
of increasing the imaginary part of the optical potential in the
resonance region is to raise the differential cross section curve
and make the minima shallower.

The second correction to be discussed is due to the Coulomb
interaction. This correction is necessary because the electromag-
netic part of the interaction was not treated consistently in the
derivation of the optical potential; the Coulomb potential was
ignored until the end of the calculation and then put back in. The
needed correction can be considered in the following way: When a
negative pion approaches the nucleus it is accelerated by the Coulomb
field; a positive pion is decelerated. Thus positive and negative
pions strike the nucleus with different effective energies. To
account for this the scattering parameters are calculated at an
energy different from the incoming pion energy by EC’ the magnitude
of the Coulomb field at the nuclear surface, assuming the inter-
action is surface peaked. This Coulomb shift is an important effect
for large nuclei in the resonance region. It is not so important
for 1ight nuclei and at low energies, where the parameters vary
only slowly with energy. Values of EC for various nuclei are given

in Table 2.
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Table 2. The Coulomb energy shift Ec, evaluated at the nuclear
surface, for various nuclej

Nucleus Ec (Mev)

4He

fod
(o)}

7
9%
12,

e

16,

24Mg
27A1
28

NP, N Ao

Si

40Ca

56Fe

W ©® N o R W NN

58y ;

golr

IZOSn

—
H .
w N v oy O

[y
w

208Pb

[y
oo
[ary
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To illustrate the effect of the Coulomb shift, the elastic
scattering of " and m from 160 and 208Pb at 162 MeV is shown in
Figure 16 with (solid curve) and without (dashed curve) the Coulomb
shift in the energy of the parameters. The main effect of this is
to deepen the minima for 7~ and make them more shallow for . This
is important, as the data for ' and m in the resonance region
are quite similar, but the calculations give pronounced differences

when the Coulomb shift is not included.

5. The Optical Potential

The various pieces can now be put together to give the full

optical potential,

2o (r) = 4m py[Boolr) + €6, (o (r) - 0, (r))] + pyByo2(r)

{ p1 Tegolr) + e cilay(F) = p,(r))] + p3lco02(r) }
- V-
L1 7 ege(r) + ey (o (r) - 0 () 1+ py oo 1 ) -

1+—3— A {‘pl
+ 3(1 - pT1)VLego(r) + € cq (o (r) - p (r))] (111-76)
AR 0° m°1'Pp n
+ (1 - p7H%eo(r) + 301 - py1)vPc,02(r)]
where all %-terms have been dropped. The parameters bo, Cpo bl’

and ¢y will be denoted single nucleon parameters, to distinguish

them from the absorption parameters B0 and CO' The parameters are
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Figure 16. Cgmparisgn of calculations of =" and scattering on
160 and 208pp at 162 MeV with (solid curve) and without
(dashed curve) the Coulomb shift. The references for
the m~ data are the same as for the corresponding =

‘data.
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to be calculated at the energy w - e"EC. The imaginary parts of
bl’ Co> and C, are multiplied by the Pauli factor Q.

For all calculations the difference in radii between the proton
‘and neutron distributions is ignored; thus pp(r) - pn(r) can be
replaced by Z%H-p(r). The parameters of the charge distribution
are taken from the available tables (57,58). For the light nuclei
the matter distributions are obtained from the charge distributions
by adjusting the size parameter such that

2 _ .2 2
Rm = Rc - 0.64 fm~ , : (111-77)

where R is the radius of the equivalent uniform distribution,
R2 = g-<r2>.‘ The density forms and parameters for various nucleij
are given in Table 3.

This completes the construction of the optical potential.
The next three chapters will deal with the calculation of various

experimental quantities using the potential equation III-76.
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Table 3. The forms and parameters of the matter and charge density
distributions for various nuclei.

7,2
2 2 2 -r%/a
o°°(1+ar—2)er/a p“(1+ar—2)e ¢
a ¢ a
C
a(fm) ac(fm) a
L4 1.67 1.77 .327
12, 1.57 1.66 1.33
16 1.75 1.83 1.54
pxp.<[1 + e(r-R)/zy-1
R(fm) z(fm)
271 3.07 .519
40c, 3.51 .563
56¢, 3.97 .594
63¢y 4.21 .586
907, 4.83 .496
1205, 5.32 .576
208p), 6.46 .549




CHAPTER IV
PIONIC ATOM LEVELS

Measured pionic atom level shifts and widths provide an impor-
tant test 6f the optical potential at essentially zero pion kinetic
energy, as the data furnish information about the overall strengths
of the s and p-wave parts of the real and imaginary potential. As
several approximations were made in the low energy limit, the poten-
tial form should be most reliable at zero energy. The parameters
derived from "N phase shifts are not well known at low energies,
however; the values used in this analysis are taken from the Rowe,
Salamon, and Landau (RSL) fit (25), extrapolated to zero energy,
and are known only within rather large error bars.

Pionic atom calculations are not new; however, a new analysis
is worthwhile and necessary because the data has improved greatly
in quality in the last few years, because the form of the optical
potential used in the present analysis is slightly different from
that used in earlier analyses, and because detailed calculations
of A and the absorption parameters are available for the first time.
It will be found that the optical potential derived in the previous
chapter, with parameters taken from the sources indicated there,
does not reproduce the pionic atom data. However, the form can be
used with fitted parameters to give an excellent description of

the data.
87
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The first section of this chapter describes the general features
of pionic atom levels. The details of the calculations of level
shifts and widths are discussed briefly in Section 2. The results
of calculations with the optical potential as derived, and the same
optical potential but with fitted paraheters, are discussed in

Section 3.

1. General Features

A pionic atom is an atom in which a negative pion is bound
in the Coulomb potential of the nucleus in the place of an electron.
Because of its large mass, the pion orbitals are much closer to
the nucleus; the pion Bohr radius is Ei 2 ?%g-times the electron
Bohr radius. Thus, in the lower orbitals the pion is close enough
to interact strongly as well as electromagnetically with the nucleus.
This causes a shift in and broadening of the energy levels relative
to the positions and widths to be expected from the electromagnetic
interaction alone.

The energy shifts and widths are obtained from measurements
of the pion transition x-rays. As the strong interaction effects
are largest for the lowest £ states, in which the pion is closest
to the nucleus, most of the difference between measured and electro-
magnetic transitidn energies and widths is due to the lower state.
The general features of the data are evident in Table 4, which gives
the calculated e]ectromagnetic éﬁergy of the transition, experimental

s-wave shifts and widths from Ref. 59, and experimental p-wave shifts

and widths from Ref. 60. Some d and f wave levels have been measured
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Table 4. Experimental pionic atom energy level shifts and widths in
keV from Refs. 59 and 60. _
S~-wave

Nucleus (Ep - Es)EM AES(EXP) I'S(exp)
10, 68.714 - 2.977 + 0.085 1.59 + 0.11
12 99.066 - 5.874 + 0.092 3.14 * 0.12
14y 134.740 - 9.915 + 0.144 4.34 + 0.24
16, 175.413 -15.03 * 0.24 7.64 + 0.49
19¢ 220.952  _24.46 -+ 0.35 9.4 + 1.5
205e 270.952 -33.34 + 0.50 14.5 * 3.0
23Na 327.131 -49.93 + 0.71 10.3 # 4.0

Q"Wave

Nucleus (E4 - Ep)EM AEp(EXP) Pp(exp)
27p3 87.270 0.201 + 0.009 0.120 * 0.007
284 101.283 0.308 + 0.010 0.192 + 0.009
32 132.510 0.635 + 0.016 0.422 + 0.018
40¢, 207.674 1.929 + 0.014 1.590 *+ 0.023
56, 352.356 4.368 + 0.088 6.87 + 0.21
63¢y 439.016 6.67 + 0.24 11.4 0.8
6471 469.995 6.44 + 0.33 12.4 + 1.4
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also (61), but will not be discussed here. As might be expected,
the level shifts and widths increase with increasing Z. The s-wave
shifts are negative, indicating a repulsive s-wave interaction;

the p-wave shifts are positive, indicating an attractive p-wave
potential.

In the calculation of pionic atom shifts and widths the various
parts of the optical potential are correlated with the measured
quantities: the values of the real s- and p-wave optical potential
parameters determine the s- and p-wave level shifts, and the imaginary
parameters determine the corresponding widths, to a good approxima-
tion. As there are only four independent quantities to be measured,
only four optical potential parameters can be determined correspond-
ing to the overall real and imaginary s- and p-wave strengths. Thus-
Re(bo) and Re(BO) cannot both be determined, nor can Re(co) and
Re(CO) from data on one nucleus. Although it is possible in prin-
ciple that certain combinations of these related parameters reproduce
the A dependence of the data better than others, in practice all
reasonable combinations give similar results. That is, the combina-
tion Re(by)o(r) + Re(By)o®(r) acts Tike [Re(by) + Re(By)o,,Jo(r)

With Pav independent of A. The same is true for the p-wave param-
eters. Although there are correlations between particular parameters
or combinations of parameters and particular measured quantities,
there is a fair amount of mixing. Some of this is due to the kine-
matics, which introduce s-wave terms with p-wave coefficients, some

to the Ericson-Ericson effect which mixes real and imaginary terms
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in the p-wave. Even without these, however, the s-wave optical poten-
tial strength affects the p-wave quantities, and to a lesser extent,
vice versa.

‘It was evident from early measurements of pionic atoms that
the first order optical potential with parameters determined from
phase sﬁifts could not describe the data. The calculated s-wave
strength was too small, the P-wave strength was too large, and the
widths could not be explained at -all, as the imaginary parts of
the single nucleon parameters are zero. This was the original moti-
vation for the calculation of the second order s-wave term, the
Ericson-Ericson effect, and the s- and p-wave true pion absorption

terms.

2. Details of the Calculations

The pibnic atom level shifts and widths were calculated using
the program MATOM writtenby R. Seki (62). This is a position space
code which sets up and solves the eigenvalue equation for the pion
wavefunction, obtaining the complex eigenvalue corresponding to
the energy and width of a given state. The wave equation is first
reduced to an equation in r only, noting that the optical potential

is independent of angle for a spherical nucleus,

ug + f(r)uy + [g(r) - L’“Z—ll]uk =0 (1v-1)

| o

where
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f(r) = fyds | (1v-2)

and

g(r) = (1-c(r)HELL 4 2on? _ oGy + vE - b(r)}  (1v-3)

with b(r) and c(r) the s- and p-wave terms of the optical potential,
2654 (r) = b(r) + V-c(r)V . (1v-4)

The first derivative term in equation IV-1 is eliminated by a change

of variables,
y(r) = (1 - c(r))¥u(r) (IV-5)

and the equation becomes

" 1 2 1]
v st S Ry =0 (1V-6)
where
f=w?-f - 20V, + v% - b(r) - ﬁ’%ll (IV-7)
r

Equation IV-6 is set up in the nuclear interior and exterior, with
a matching radius chosen to be well outside the range of the strong
interaction. A guess is made of the eigenenergy w and the equation
is integrated in from infinity and out from'zero using Milne's

predictor-corrector method (63), with the two wavefunctions compared
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at the match point. A new energy guess is made from the size of

the mismatch and the process repeated until convergence is reached.

The number of nodes is checked against the number proper to the

state being calculated at the end of each iteration and a correction

to the energy guess is made accordingly. The program includes electro-
magnetic effects due to the finite charge distribution of the nucleus,
vacuum polarization, and electron screening.

The program has been modified to include the full optical
potential, equation III-76. One defect has not yet been remedied,
however; only one form for the nuclear density is available, the
Woods-Saxon form. It was therefore necessary for small nuclei to
derive the size parameters from the experimental rms radius and

skin thickness.

3. Calculated Shifts and Widths

Calculations of shifts and widths for the nuclei listed in
Table 4 have been performed using the optical potentialequation I1I-76
with single nucleon parameters derived from the RSL phase shifts
and the absorptive parameters of Riska and collaborators. Two dif-
ferent values of the parameter )\ were used, the Ericson-Ericson
value (10), A=1,anda value in the range suggested by Weise (48)
and Brown (47), A = 1.6. The results are shown in Figure 17, where
the 1ines are simply drawn from one calculated point to the next.
The dashed Tine corresponds to X = 1, the dotted to X = 1.6. It
is not possible to say with certainty what parameter changes are

necessary to bring the curves to the data, but it appears that the
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Figure 17a.

Calculations of the s-wave shift as a function of Z
compared to the experimental data, with the parameters
of set 1 of Table 5 with A = 1 (dashed line), A = 1.6
(dotted line), and with the parameters of set 2 (solid
line). Data are from Ref. 59,
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Figure 17c. Calculations of the p-wave shift. Data are from
Ref. 60.
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s-wave is not repulsive enough, while the p-wave is too attractive,
especially for the value X = 1. The s- and p-wave absorption strengths
appear to be too weak.

A fit was tﬁen made to the data, varying the parameters Re(bo),
Re(co), Im(BO), and Im(CO). No attempt was made to minimize the XZ;
the fit was done only in order to give some idea what parameter
changes were necessary to give reasonable results. The parameters
thus obtained are given as set 2 in Table 5 along with the parameters
of the first calculation, set 1. The results with the fitted param-
eters are shown as the solid curve in Figure 17. The calculated
quantities follow quite well the A dependence of the data, except
for the p-wave shift for the larger nuclei. This deviation is not
surprising, as the isovector parameters were not fitted. Comparison
of the numbers in Table 5 indicates that the parameters Re(bo),
Im(BO), and Im(Co) must be increased greatly in magnitude in order
to reproduce the data. The parameter Re(co) must be increased
slightly, although the required value is well within the error bars
of the value given by RSL for o at zero energy. Alternatively
the RSL value for Cy can be used if A is reduced to A = 1.5, with
a corresponding small decrease in Im(CO). Although the discrepancies
between the required single nucleon parameters and their phase shift
values can be resolved by assuming different values for Re(BO) and
Re(CO), no such remedy exists for the imaginary parameters, except
to the extent that Im(CO) is sensitive to the value of A. The one

nucleon absorption mechanism, not included in the optical potential,
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Table 5. Parameters used in the pionic atom calculations.

Real 4 Imaginary

Set 1 by fm) -0.029 0.
b, (fm) -0.13 0.
By(Fmn’) 0.007 0.08
co(fn’) 0.65 0.
¢, (f) 0.43 0.
() 0.29 0.34
A 1.0 or 1.6

Set 2 bo(fm) -0.050 0.
b, (fm) -0.13 0.
By(fm') 0.007 0.19
co(fm) 0.66 0.
¢, () 0.43 0.
Co(fn°) 0.29 0.90

A 1.6
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is not large enough to make up the difference; it is estimated at
not more than 30 percent of the two nucleon stfength (64)." Thus
there is a real discrepancy at zero energy of about a factor of

two between the absorption parameters calculated by Riska and col-
laborators and those required to fit the pionic atom widths. Other
calculations of these quantities are somewhat nearer the fitted

values: Hachenberg and Pirner (52) obtain Im(BO) = 0.144 fm4; Oset,

Weise, and Brockmann (54) calculate Im(CO) = 0.64 fm°. This is clearly
a subject which requires further investigation.

The fitting procedure was also carried out for A = 1 so that
comparisons could be made with previous work. Comparison is still
difficult because of the V2p, Vzpz, and k(r) terms ih the optical
potential used here, which have not been included in other analyses.
The effect of these terms is to decrease the s-wave repulsion, thus
requiring a more negative Re(bo) to compensate. It is clear that
the value of the p-wave absorption parameter thus obtained,

Im(CO) = 0.77 fm6, is smaller than that obtained by, for instance,
Krell and Ericson (45) in their fits, In(Cy) = 1.12 fn°, and used

in the calculations of Ref. 24. Krell and Ericson give an alternate
value, which gives better results for certain nuclei in their sample,
Im(CO) = 0.56 fm6. Fortunately the recent p-wave data is much better
than that available to Krell and Ericson, making a more definitive
result possible. -

From the calculations it can be seen that the objective has

not yet been reached; the optical potential with parameters from
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theoretical predictions does not reproduce the data. The deficiency
in the s-wave repulsion is an unsolved problem, and will appear
alsoin the Tow energy elastic scattering calculations. The inadequacy
of the absorption parameters is a less serious matter, requiring
further refinements in the calculations and a more careful treatment
of the LLEE effect including absorption and multiple scattering

on an equal footing. It is encouraging that the A dependence of

the data is reproduced by the optical potential with fitted param-
eters. Because the theoretical parameters vary slowly with energy

in the range zero to 50 MeV, the information gained from the pionic
atom analysis is also relevant for the lTow energy scattering calcula-

tions to be discussed in the next chapter.



CHAPTER V
ELASTIC SCATTERING CROSS SECTIONS

In this chapter the pion-nucleus elastic differential cross
sections calculated using the optical potential equation III-76
are discussed and comparisons are made to the existing data. The
energy region considered in this study, 0-250 MeV, will be divided
into two regions: the low energy region, defined roughly as 0-50 MeV,
and the resonance region, around 180 MeV. The elastic scattering
cross sections from these two energy ranges have quite different
characteristics. The low energy scattering shows evidence of inter-
ference between the s-wave, p-wave, and Coulomb amplitudes; the
real parts of the optical potential are most important. In the
resonance region the scattering has a diffractive character, due
to the large imaginary part of the p-wave optical potential. The
scattering cross sections for energies between these two regions
have some characteristics of both.

The data in the low energy region at present consists of cross
sections for 7 on various targets at 30, 40, and 50 MeV. Unfor-

120 and 208py

tunately there is as yet very little w data, only on
at 30 MeV. There is no data for pion energies below 30 MeV. Between
50 and 100 MeV there are measurements of m' on 190 and 208Pb at

80 MeV. Above 100 MeV there is an abundance of n° and T scattering

data from various nuclei, clustered about the energies 115, 162,

102
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180, and 240 MeV. A characteristic sample of these data will be
compared with the theoretical calculations.

The first section of this chapter describes in a simple model
the general features of the low energy elastic scattering cross
sections. Section 2 includes a model for diffraction scattering,
relevant to scattering in the resonance region. In Section 3 the
computer program used for the calculations is briefly described.
Finally, the theoretical and experimental differential cross sections

are compared in Sections 4 and 5.

1. General Features--Low Energy Scattering

The low energy elastic scattering cross sections are charac-
terized chiefly by the interference between the s- and p-wave ampli-
tudes, the strengths of which are determined by the real parts of
the optical potential parameters, and the Coulomb amplitude. This
can be seen most easily in Born approximation. As was noted in
Section 2 of Chapter III, the second order p-wave term in the Born
series is suppressed due to short range correlations. Therefore
the Born approximation with a potential which includes only the
first order p-wave terms should give a good approximation to the
scattering from the full p-wave part of the optical potential includ-
ing the Ericson-Ericson effect. For an N = Z nucleus the amplitude
in Born approximation for scattering from the simple first order

optical potential equation 11-53 is

f, = [by + cok? cos 0lo(q) ¥ 22 o (q) (V-1)

q
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where the + or - refers to the pion charge and o is the fine struc-

ture constant. This can be rewritten

£, o= [t —— + ay? sin? & - 2y2(1 - x)] (V-2)
* .28 2
sin® >
2
b ekt
with C = - 299, X = - —~9-3 and y2 =0 . Thus, y measures the
2 2 wo, v
4k k o

relative strength of the p-wave and Coulomb potentials and x measures
the strength of the s-wave repulsion relative to the p-wave attrac-
tion. The nuclear and charge form factors p(q) and pc(q) have been
ignored in equation V-2, as they decrease only slowly over the range

of q2

relevant for a light nucleus and low pion energy. For 50 MeV
pions, the RSL phase shift values for the real parameters are Re(Bb)=
-0.042 fm and Re(c,) = 0.75 fm°, giving C = -0.0083 fm, x = 0.13,

and y = 4.4. The parameters derived from the fit to pionic atoms
give the values x = 0.18, y = 4.1 at 50 MeV, assuming the energy
dependence of the parameters can be ignored. The behavior of f

is considered separately for ™ and 7.

2

For positive pions f has a minimum at sin g—=-%;; thus the

position of the minimum is determined only by the p-wave strength.

114

For the RSL value of <o this gives © = 39°., The zeros of f are

given by

wn
—
=3
[V Fe)
1]
S

{1 -x) « [(1-x°-41% (V-3)
Ty

For y < 2 there are no zeros. For y > 2 two zeros exist for

Xx<1- 53 none for x > 1 - %u This behavior is illustrated in
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Figure 18 which shows f, (upper left) as a function of x. Here
the parameters were arbitrarily chosen to be y = 5 and x = 0.4,
0.6, and 0.8. The square of this amplitude (bottom left) indicates
how changes in the s-p interference parameter x produce one minimum,
which, with decreasing x, broadens, then becomes two minima separated
by a hump.

For negative pions f is monotonically increasing with o and
has a zero at

. 28
sin 5

1
£

(1 -x) + [ - 02+ 434 (V-4)
y

For the RSL values of the parameters this gives 6 = 86°. The ampli-

tude f_ is also shown as a function of x in Figure 18 (upper right)

along with If_|2 (Tower right). Note that the position of the zero

of f_ becomes the position of the minimum in the differential cross

section, and thus depends on both the s- and p-wave strengths.

The full Born amplitude, neglecting the (r) term, is given by

pl -1
2p1

1

— - . 2
FB = [plbo + pl CoE'E = Coq Jo(q)

-1
: . PO 24.2¢,
+ [pyBy + py Cokek' - 2, a1 (a) (V-5)

-1 2w€wa e (q) .
“Pp T ¢
q

The Ericson-Ericson effect is not included, as noted above. Fig-

12

ures 19 and 20 show calculations for = and m scattering from ““C.
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Figure 18. Amplitudes and corresponding cross sections for the
first order real optical potential in Born approxima-
tion. The vertical scales are arbitrary.
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The curves labeled (a) are Born approximation calculations with
reasonable values of the optical potential parameters and Re(Bb) =
0., -0.04 fm, -0.08 fm, and -0.12 fm. The curves labeled (b) are the
full calculations, with the optical potential equation III-76 minus
the k(r) term, and the same parameters as were used in calculations
(a). It can be seen that the characteristic interference effects
persist when the kinematic and absorption terms are added to the
Born amplitude, and in the full calculation. Although the imaginary
part of the optical potential has some effect, the differential
cross sections are most sensitive to the overall real s-wave and

p-wave strengths.

2. General Features--Resonance Region Scattering

Because the imaginary part of the p-wave optical potential
is large in the resonance region, the nucleus appears nearly "black"
to the pion. This gives rise to differential cross sections with
a distinctive shape, known as diffractive or shadow scattering.

A semiclassical description can be given for this type of
elastic scattering (65). Assume that the nucleus is completely
absorbing, so that all pions with impact parameters smaller than
R, the radius of the nucleus, are absorbed; those with impact param-
eter greater than R are transmitted. The scattering amplitude can

be written

-1
f(e) = % (20 + 1) P—’%k— Py(cos ©) (V-6)
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where complete absorption is characterized by n = 0, complete trans-
mission by n = 1. The impact parameter b can be expressed in terms
of the angular momentum of the incoming pion, so that ng = 0 for

% < kR, n, =1 for g > kR. The differential cross section is just

the square of f,

kR

do.1 1% (a+Dpylcos 0)]°. (v-7)
k= =0

Assuming kR large and the angular range small, the discrete variable

% becomes continuous, % + %-+ kb, and Pz(cos 8) is approximated

by Jo(kb sin 6), where JO js the zeroth order Bessel function. With

these replacements equation V-7 becomes

J. (kR sin 6)

sin 8

R
do _ 1 2 . 2 _p2
@ | fo k°bJg(kb sin 8)db| = R L

1 2

(v-8)

which corresponds to the classical formula for the diffraction scat-
tering from a black sphere.
In Figure 21 this approximate form is compared to optical

model calculations for 169 and 208Pb at 163 MeV. The radius used

is the effective nuclear radius, R = Ru + A, where Ru is the radius
of the equivalent uniform distribution and A = %n The momentum k

is calculated for the incoming pion energy minus the Coulomb poten-
tial at the surface, k = [(w - e,"EC)2 - mz]%, where EC is discussed

in Section 4 of Chapter III. The simple model does reasonably well
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in describing the magnitude of the curves and the position of the

minima, especially for 208Pb.

As it is derived in small angle
approximation, the model is not expected to do well near 90°. The
inclusion of the Coulomb shift in k reproduces fairly accurately
the differences in the position of the minima for n and 7. It
is evident from these calculations that the imaginary part of the

optical potential is of principle importance in the resonance region.

3. Details of the Calculations

The differential cross sections were calculated using a modi-
fied version of the program PIRK, written by R.A. Eisenstein and
G.A. Miller (66). PIRK is a position space code which solves the
wave equation II-17 and determines the phase shift between that
wavefunction and the exterior Coulomb wavefunction. The wave equa-
tion is reduced to a set of equations in r only, noting that the

optical potential is independent of angles,

o + F()uy + [g(r) - HEZ Ly, -0 (v-9)
where

f(r) = <fqdg (V-10)
and |

g(r) = (1 - c(r))-l{g—'—é‘ﬁ + k5 - ZaVg - b(r)} (v-11)
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with b(r) and c(r) the s- and p-wave parts of the optical potential.
This is, of course, the same equation as was discussed in Chapter IV,
except that the Vg term has been dropped, for reasons to be explained
below. Two complex coupled first order equations are formed from

the second order equation V-9, by defining v(r) = u'(r). These

are solved numerically by a fourth order Runge-Kutta method (63).

The differential cross section is obtained from

%% = [fc(e) + 1’N(€>)I2 (v-12)

where the Coulomb amplitude is

c

fe(®) = - =778 exp {2iloy - ngin(sin D} (v-13)
2

2 sin
with

ne = Ze a‘-lf- (V-14)

and the nuclear amplitude is

2162

2
1%[ _e____é__—__l] Pl(cos 8) (V-15)

fy(6) = %k" % (22 + 1)e

where 9, is the Coulomb phase shift and Sy is the phase shift between

the Coulomb wavefunction and the solution to equation V-9.

The Coulomb wavefunctions and Coulomb phase shifts are deter-

mined for a nonrelativistic particle, i.e. they are solutions to
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the Schrodinger equation with a Coulomb potential; no VE term is

included. Because the exterior wavefunction is calculated in this
way, it is deemed necéssary to drop the Vg term from the calculation
of the interior wavefunction as well. It is found that the inclusion
of the Vg term in the equation for the interior causes a small amount
of instability of the results with matching radius. In any case,
thé inclusion or exclusion of the Vg term in equation V-9 makes
only a small change in the differential cross sections for 208Pb
at Tow energies, where it is expected to be important, and none at
all for the light nuclei. Cooper, Jeppeson, and Johnson (67) look
at the effect of the Vg term not only in the interior equation but
in the Coulomb wavefunctions and phase shifts as well. For 208Pb
at 100 MeV they find discrepancies larger than the experimental
errors. It is not clear that the discrepancies are larger than
the uncertainties in the theoretical calculations, however. There
is a need for further investigation on this point.

The program PIRK has been modified to include all the terms
of the optical potential, equation III-76. A routine to calculate
total and partial cross sections has also been added, as discussed

in Chapter VI.

4. Calculations--Low Energy Region

Several elastic scattering calculations using different param-
eter sets are discussed in this section. The first of these calcula-
tions is that with the theoretical potential derived in Chapter III

and used in the pionic atom calculations of Chapter IV. The
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theoretical optical potential parameters at 30, 40, and 50 MeV are

given as set 1 in Table 6. As before, the single nucleon parameters

are taken from the RSL phase shift fit (25), the absorption param-

eters from the calculation of Riska and collaborators (50), and

A =1.6. Note thét the imaginary parts of bl’ Coe and Cq Tisted

in the table are the RSL values multiplied by the Pauli factor Q.
The elastic scattering cross sections calculated with set 1

are shown as the dashed curves in Figures22. Clearly, the curves

do not bear much resemblance to the data. The simple analysis of

Section 2 can be used to give an indication of what is amiss in

the optical potential. Comparison of the shapes of the 12C and

160 curves with those shown in Figure 19 suggests that the s-wave

repulsion in the optical potential is too weak. The same conclusion

can be drawn by comparison of the ﬂ-_12

C calculation in Figure 22f
and the curves of Figure 20.

The solid curves in Figures 22 are the result of calculations
with more negative values of Re(Bb), listed as set 2 in Table 6.
These were chosen to give reasonable eyeball fits to the 12C and
160 data, and to have the same slope as a function of energy as
the original values. The other parameters of the optical potential
were left unchanged. Although the fits are not perfect, the energy
and A dependence is well reproduced and, on the basis of the two
cases available, the m data is also well described, including the

208

diffractive appearance of the w data for Pb at 30 MeV.
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Table 6. Parameters used in the low energy elastic scattering
calculations.
30 MeV 40 MeV 50 MeV

Set 1 Bb(fm) -0.035 + i0.003 -0.038 + i0.004 -0.042 + i0.006
bl(fm) -0.132 - i0.001 -0.131 - i0.001 -0.131 - i0.002
Bo(fm4) -0.005 + i0.115 -0.010 + i0.130 -0.020 + i0.140
co(fm®)  0.70 +10.007  0.72 + 0.015  0.75 + 10.029
cl(fm3) 0.44 + i0.004 0.45 + i0.007 0.45 + i0.014
Co(fm6) 0.32 + i0.46 0.34 + i0.52 0.37 + 1i0.62
A 1.6 1.6 1.6

Set 2 Eb(fm) -0.070 + i0.003 -0.073 + i0.004 -0.077 + i0.006
Other parameters as in Set 1.

Set 3 Bb(fm) -0.057 + i10.003 -0.060 + i0.004 -0.064 + i0.006
bl(fm) -0.132 - i0.001  -0.131 - i0.001 -0.131 - §0.002
Bo(fm')  -0.005 + 10.22  -0.010 + i0.24  -0.020 + 10.25
co(fm3) 0.70 + i0.007 0.72 + 1i0.015 0.75 + 10.029
cl(fm3) 0.44 + i0.004 0.45 + i0.007 0.45 + i0.014
Co(fms) 0.32 + i1.02 0.34 + i1.08 0.37 + il1.18
A 1.6 1.6 1.6
Q 0.19 0.24 0.31
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A X2 fit to some of the 50 MeV data using the same optical
potential as used here but without the k(r) term gives a minimum
2

in x® for A = 1.6 and Re(c,) = 0.75 fm’, with Re(By) = -0.06 fm (73).

The value for Re(co) is almost the phase shift value at 50 MeV,

3

Re(co) = 0.74 fm”. The value for Re(Eb) is not as negative as that

required in the analysis presented here, due to the absence of the
k(r) term. Note that all the induced s-wave terms, the Vzp, Vzpz,
and k(r) terms, are attractive, requiring more repulsion in the
Bbp term.

Another approach can be made to the question of choosing opti-
cal parameters for the low energy region. The analysis of pionic
atom shifts and widths gives the overall strength of the s- and
p-wave parts of the optical potential. This information can be
extrapolated from zero energy to the required energies assuming
some reasonable prescription.

As a first approximation, the optical potential parameters
are assumed approximately energy independent in the energy range
zero to 50 MeV. This is the approach taken in Ref. 24. The param-
eters for the calculations are taken from the fits to the pionic
data, set 2 of Table 5, with the exception of the imaginary parts
of the single nucleon parameters which are taken from set 1 of
Table 6. The results of these calculations are shown as the solid
curves of Figures 23. These are in fact rather close to the data
for the light nuclei and nearly reproduce the s-p interference.

They become steadily worse, however, with increasing A.
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The optical parameters are not in fact energy independent,
even in this energy range. One should, therefore, make some estimate
of the energy dependence of these parameters. For the p-wave param-
eter o this is a straightforward task; as the pionic atom value
of Re(co) is close to the zero energy RSL phase shift value, these
values ofvc0 are adopted at all energies. The pionic atom value
for Bb is not near the value calculated from the RSL phase shifts;
therefore, it is extrapolated assuming the same slope as a function
of energy as the calculated value, i.e. the difference between the
fitted value of Eb and the RSL value at zero energy is added to
the RSL value at all energies. The real parts of the absorption
parameters were fixed in the pionic atom analysis at the values
calculated by Riska et al., therefore the calculated values are
used at all energies. In the first set of calculations, the imagi-
nary parts of the absorption parameters were kept at their zero
energy fitted values. These are the dashed curves of Figures 23.
In the second set of calculations, the dotted curves of Figures 23,
the absorption parameters Im(BO) and Im(CO) were extrapolated also.
This can be done in two ways. The first is simply to assume the
slope as a function of energy of Im(BO) and Im(CO) is that of the
Riska calculations. A more general method is discussed in the next
section. The two give nearly identical results for 30-50 MeV. The
complete set of extrapolated parameters is given in Table 6 under
the heading set 3. A comparison of the dashed and dotted curves

indicates that the smaller absorption strength gives quitereasonable
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results, especially for the light nuclei, while the calculations

with the larger absorption strength are somewhat worse. The cal-

| culations are rather insensitive to the imaginary absorptive param-

eters, and small adjustments of the real s and p-wave strengths

can at least partially compensate for differences due to the absorp-

tive strength. Note that both calculations with extrapolated param-

eters do better than those with the zero energy values. From these

calculations one can conclude that although the smaller imaginary

absorption parameters calculated by Riska and collaborators seem

to give somewhat better fits to the data, the absorption parameters

deduced from pionic atom analysis are not inconsistent with the

data. In fact, the set of optical potential parameters deduced

from pionic atom shifts and widths fits the scattering data rather

well, considering the approximate treatment of the energy dependence.
~ As yet nothing has been said about the relative strengths of

the single nucleon and absorption pieces of the real part of the

potential. In fact, the scattering is quite insensitive to this;

the overall real s and p-wave strengths are the important quantities,

Jjust as was the case for the pionic atom shifts. This is illustrated

for the s-wave in Figure 24, where the elastic scattering cross

120 at 50 MeV are calculated for two different

sections for n* from
values of Re(BO) (solid and dashed curves) and several values of
Re(Eb), with the highest curves corresponding to the most negative
values of Re(Eb). The curves are equally spaced except at the most

backward angles, indicating the insensitivity of the calculation
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to the origin of the s-wave strength. A similar situation exists
for the p-wave. Thus, the low energy elastic scattering data yield
only a lTimited amount of information about the parameters of the
optical potential, and even less about the form of the potential.
The overall real s and p-wave strengths are roughly indicated, and
some wide 1imits are placed on the imaginary strength of the optical

potential.

5. Calculations--Resonance Region

~In this section several sets of calculations of elastic scat-
tering for energies above 50 MeV are compared with a sample of the
data in this energy region. The first set is again that with the
theoretical optical potential. It is not clear what value of the
LLEE parameter A should be used at these energies as both the simple
model (10), giving X = 1, and the calculations of Weise (48) and
Brown, Jennings, and Rostoken (41), giving A = 1.6, are made in
the low energy limit. There is as yet no theoretical value for A
above about 50 MeV. It is convenient to choose the value A = 1.6,
as this was used in the low energy calculations. Calculations using
both values, A = 1.6 (solidcurve),and A = 1 (dashed curve), are
shown in Figures 25. The differences between these two curves are
in each case not large, so that the choice is not a crucial one.
Both curves reproduce well the general features of the data, but
not the details. The best fits occur when the nucleus is blackest,
around 163 MeV, and for the larger nuclei. It is difficult to

analyze the optical potential in the intermediate energy range
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80-150 MeV, as the dependence of the scattering on the parameters

is not given by a simple model. It is not clear, therefore, what
changes in parameters would be required in order to fit the data.
Detailed fitting of this data, with a first order optical potential
which includes form factors, has been done by Stephenson et al. (76),
who vary the radius and skin thickness of p and the overall normali-
- zation as well as the optical potential and form factor parameters.
Thus, it is difficult to correlate their information with the poten-
tial used in this investigation.

As the early calculations of resonance region scattering were
made with the Kisslinger potential with no modifications, it is
interesting to see whether the addition of the higher order correc-
tions, which are extremely important at low energies, improves the
fits at these energies. The results of Kisslinger potential calcula-
tions, with parameters from 7-N phase shifts, are shown as the dotted
curves in Figures 25. Although these curves are closer to the data
in places, the inclusion of higher order corrections causes an over-
all improvement in fit for all nuclei at all energies shown here.

The second method discussed in the previous section for‘choosing
the potential parameters, using the zero energy parameters derived
from pionic atom analysis, can be applied at these energies also.
However, a more sophisticated method of extrapolation is required.

As noted before, the real p-wave parameter obtained from pionic
atom fits is quite close to the RSL phase shift value, when the

value 1.6 is adopted for A. Although the real s-wave parameter is
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not near the phase shift value, the resonance region scattering

is not very sensitive to the s-wave strength, and the RSL value

for Eb will be adopted. As the real parts of the absorption param-
eters were fixed at the values given by Riska and collaborators,

the only parameters for which an extrapolation procedure is required
are Im(Bo) and Im(CO). In order to derive a simple procedure, the
assumption is made that in the matrix element of 1(2),equation I11-57,
the dominant contribution to the energy dependence is from the scat-
tering operators t. Thus, the absorption parameters are assumed
proportional to the square of the single nucleon parameters. For
the s-wave it is necessary to include the isovector contribution,

as the isoscalar term b0 is small. The imaginary parts of the
s-wave parameters can be neglected, however, in this simple estimate.

The s-wave absorption parameter is therefore taken as (52)
Im(By) = K, {[Re(by)1? + [Re(by) + 2Re(b;)]%} (V-16)

where K1 is a constant of proportionality. For the p-wave, the
isovector terms are proportional to the isoscalar terms, due to
the dominance of the B34 channel, and need not be considered. The
imaginary part of the p-wave single nucleon parameter must be
included, however, as it dominates in the resonance region. The

p-wave absorption parameter is taken to be

In(Cy) = Kylcgl? - (V-17)
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The constants K1 and K2 can be determined by evaluating equations V-16
and V-17 at zero energy. With Im(BO) = 0.19 fn? and Im(C0)= 0.90f'm6
from Table 5, and the zero energy RSL values for bO’ bl’ and Co»

'the constants K1 and K2 are determined to be K1 = 2.6 fm2

and K, =2.1.
The absorption parameters obtained in this way are shown as a func-
tion of pion energy in Figure 26 (dashed curves), compared to the
Riska values (solid cufves). Both absorption parameters derived
from pionic atom fits are higher than the calculated values at low
energies, but the simple extrapolation gives a flatter energy depen-
dence so that the calculated values overtake the extrapolated ones
in the resonance region. The peak in the extrapolated value of
Im(CO) is also shifted in energy compared to the calculated values.
Although the imaginary parts of the absorption parameters can be
estimated in this simple way, the real parts cannot, due to the
more complicated form of the real part of the nuclear propagator
GN in equation III-57. (The imaginary part of GN is just a delta
function giving energy conservation.) The calculations of Riska
and collaborators must be used to give the energy dependence of
the real absorptive terms.

Calculations using this second set of parameters are shown
as the dashed curves in Figures 27, and are compared to the previous
calculations with A = 1.6, shown as the solid curves. Again, there
are not large differences between the two sets of calculations,
although the extrapolated parameters give slightly better fits on
the whole.
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It is not clear whether the parameters or the optical potential
itself should be blamed for the lack of detailed agreement between
theory and data. The form of the optical potential is open to ques-
tion, as several terms were calculated in the low energy limit.

The concept of an optical potential in the resonance region has

been questioned by Weise (77), who deduces from isobar-hole calcula-
tions that the potential is too nonlocal td be treated in this simple
way at these energies. Unfortunately, detailed calculations, such

as the isobar-hole calculations, are quite complex and must be done
on a case by case basis. The optical model is the best simple
approach, allowing calculations over a wide range of energies and

nuclei.



CHAPTER VI
TOTAL AND PARTIAL CROSS SECTIONS

Before discussing the importance of total and partial cross
section calculations as a test of the optical potential it is useful
to define these quantities. The total cross section o7 the cross
section for any kind of interaction to occur, can be divided into

two pieces due to elastic scattering and to all other processes,
Op = Ogy + op > (VI-1)

where 91 is the differential cross section integrated over angles.
The reaction cross section op can again be divided into two parts,
due to true pion absorption, Ops in which there is no pion in the
final state, and to quasielastic scattering, GQE’ which includes
all processes with a pion in the final state. Note that in this
discussion the charge exchange cross section, Oy is included in

OQE' Thus
Op = Opy + 0y + QE (vi-2)

gives the various partial cross sections to be discussed in this

chapter.

147
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The total cross section and the partial cross sections op
and %QE are important because they are sensitive to parts of the
optical potential that the differential elastic cross section may
not be. In particular, Op and OQE are sensitive to the imaginary
parts of the absorption and single nucleon parameters respectively
and can provide information about the relative strength of these
two parts of the potential which cannot be obtained from elastic
scattering. Unfortunately the total and partial cross sections
are difficult to measure, and the data are sparse. It is also not
clear how to divide the calculated reaction cross section into its
absorptive and quasielastic pieces in the model considered here.
Thus the analysis can yield only tentative conclusions at present.

The first section of this chapter gives a discussion of the
methods used in extracting total cross sections and forward nuclear
amplitudes from the data and of the theoretical quantities to which
these numbers correspond. In Section 2 the calculations of the
total cross sections and nuclear amplitudes are compared to the
data. The third section includes possible techniques for calculating
the partial cross sections. Calculations of Op and Oq are compared
to the experimental data in Section 4.

1. Extraction of Total Cross Sections
and Scattering Amplitudes

Before calculations can be_ made the term total cross section
must be redefined for any problem which involves the Coulomb inter-

action, because the total Coulomb cross section is infinite. A
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quantity must be defined which has this Coulomb cross section sub-
tracted, and which can be extracted from some set of experimental
data. Two experimental groups have defined and measured such a
quantity, Carroll et al. (78) and Jeppesen et al. (79). Their choices
will be described in the discussion given below. Both begin with
data obtained in a transmission experiment, in which the beam flux
is measured before striking the target, and the flux of particles
within a solid angle Q centered on the beam axis is measured after
the target. The difference can be expressed in terms of a cross
section o(Q). Several cross sections can be defined relative to
this. (This discussion follows that of Cooper and Johnson (80).)
One cross section which can be extracted from transmission

data is the reaction cross section. Define

d
OR(Q) = g(Q) - f do! dc;":.] (VIi-3)

That is, the flux lost due to reactions other than elastic scattering
is the total flux lost minus the flux that went into elastic pro-
cesses with angle greater than Q. The reaction cross section is

the 1imit of oR(Q)'as Q2 goes to zero. The calculation of the reac-
tion cross section for o(Q) requires either a model for the elastic
scattering or measured differential elastic cross sections at all

angles. .
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The cross section usually referred to as the total cross sec-

tion, also called the removal cross section, is defined as the limit

of
2
= - do' |f.]° - 2R do' FAf VI-4
op(a) = o(0) j;ﬂ Q' |fe e[f>sz Q CN] (Vi-4)

as @ +~ 0. This is the quantity extracted by Carroll et al. (78).
Here the scattering amplitude has been separated into a Coulomb

and a nuclear part,

where

fC(e) = - E;——jég—g exp {2i[ o - ncln(sin %)]} (Vi-6)

sSin —2'

with

ne = Zewa-% (VI-7)
and

. 2i8
2io L
_ 1 2 fe - 1] )
WO = T (20 + 1)e [e—=L]r(cos &)  (vi-8)

Note that the nuclear amplitude cannot be completely separated from
the Coulomb; fN still contains the Coulomb phase shifts Og- The
removal cross section measurenglux Tost to reaction processes and
the Ile2 part of the elastic scattering. The extraction of Or

is difficult because one needs not only lfcl2 which is calculable,
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but also Re(f;fN), for which a model of fiy is required. It can
be shown (80) that the cross section o7 defined in equation VI-4

can be related to the scattering phase shifts by

op = 4T In[Fy(0)] (VI-9)

where
216
?N(e = Lk% (28 + 1)[ 1]P (cos 0) (VI-10)

Note that %N differs from fN in the absence of the Cou]omb phase
shift factor.

The quantity extracted by Jeppesen et al. (79) is oN(Q),
defined and discussed by Cooper and Johnson (80)

oy (2) = o(Q) - o' |f.]2 . (VI-11)
N C
>0
The advantage of this definition is that only the known function
fc is required; no model is necessary for the full pion nucleus
interaction. Cooper and Johnson show that the limit of oN(Q) as

2 -+ 0 is given by

oy = 2 In[fyy(0)] (VI-12)
The quantity oN has no direct physical significance, and in fact

is not always positive. If equation VI-11 is rearranged and a
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polynomial expansion in Q is made for the various terms, the follow-

ing form results,

oy(@) = (o + %j A ")cos W + [ 4T Rl (0)1+ § anz"]sin W

+ %ﬁcnsz" (VI-13)
where

W=1+vylog (Q/4n) - 200 : . (Vi-14)
with

Y = Z—,ﬁ;z— | | (VI-15)

for positive pions. Here v is the pion velocity. The quantity

fN is given in equation VI-8. Thus if sufficient data exists at
small enough @ so that the sums have only a few terms, the param-
eters oy, Re[fN(O)], A Bn’ and C,, can be determined. For large

Z the cos W and sin W terms can be distinguished and both Re[fN(O)]
and Im[fN(O)] (from cN) can be derived. For small nuclei only
Im[fN(O)] is determined. A model for elastic scattering can be
used as an aid to extracting fN(O); the number of fitted parameters
can thereby be reduced. The role of the model in this aha]ysis

is much less important than in the extraction of o;, however. The

chief difficulty in the approach of Cooper and Johnson is the problem
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of interprgting the results, as fN includes the Coulomb phase
factors e2102.

This completes the description of the two experimental quan-
tities related to the total cross section, o7 and fN(O), and their
relation to the calculated pion-nuclear phase shifts. Theoretical
calculations of these quantities are compared to these data in the
next section.

2. Total Cross Section and Scattering
Amplitude Calculations

In this section two sets of calculations are presented for
or and fN(O), corresponding to the two sets of parameters discussed
in Séction 5 of the previous chapter. These are the theoretical
set including the absorption parameters of Riska, shown in the figures
as solid curves, and the set in which Im(BO) and Im(CO) are extrap-
olated from pionic atom fits, shown as dashed curves.

The first set of data to be considered is that of Carroll
et al. (78); who have extracted Ops @S defined in the previous sec-
tion, from data on natural Li, C, Al, Fe, Sn, and Pb at energies
from about 65 to 250 MeV. For the quantity fN required in their
analysis they used an optical model calculation with a first order
Lap]acian potential and parameters from m-N phase shifts. They
adjusted the energy and width of the (3,3) resonance contribution,
however, to fit the position and width of the peak in the total

cross section as a function of energy.
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A comparison of the experimental and calculated total cross
sections is given in Figure 28. Although the calculations reproduce
the data for the Tight nuclei, there are significant discrepancies
for the larger nuclei, especially for n. The calculations show
a much greater difference between 7 and m total cross sections
at the lower energies than is seen in the data. It is to be noted
that the calculated cross sections are insensitive to differences
in the absorption parameters of the size to be found in the two
parameter sets.

It is difficult to draw conclusions from this data, as the
effect on the experimental cross sections of the model used in their
extraction is unknown. The dashed curves of Figure 3 give the result
of calculations with the first order Laplacian model with parameters
from m-N phase shifts. As can be seen, the fits are somewhat random,

208p,  The effect of the varia-

being reasonable for 160 but not for
tions made in the parameters in the fitting of the total cross sec-
tion peak is not clear. Thus no definite conclusions can be drawn
until the accuracy of the data has been assessed.

The second set of data to be discussed is that of Jeppesen
et al. (79). The data are from targets of Al, 40Ca, Cu, Sn, Ho,
and Pb and pion energies from 63 to 215 MeV. Although their analysis
is less model dependent, the interpretation of the trend in energy

or A of the quantity fN(O) that they extract is complicated by the

Coulomb phase, as noted in the previous section.
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The experimental and calculated values of fN(O),.defined in
equation VI-8, are compared in Figures 29-31. Figures 29 and 30
illustrate the energy dependence of fN(O) for 27A1 and 207Pb respec-
tively; Figures 31 show the A dependence at 165 MeV. In each case
the data for n are indicated by circles, for m by X's. Although
the general features of the data are well described, there are again

problems with details. The poor quality of the fits to the data

for 207Pb may be due in part to the neglect of the Vg term in the
potential, and its absence in the calculation of_oz and the Coulomb
wavefunctions. The A dependence of the data at 165 MeV is quite
well reproduced, suggesting that the large discrepancies between
theory and the Carroll data seen for m on the large nuclei may

be exaggerated. A more detailed comparison of the two data sets

is difficult, due to the fundamental differences between the quanti-
ties o and fN(O). As in the case of the resonance region elastic
scattering, the poor quality of the fits and the insensitivity to

moderate parameter changes demand a closer scrutiny of the optical

potential itself.

3. Theoretical Expressions for the Partial Cross Sections

Measurements have recently been made of the components of
the reaction cross sectibn: the quasielastic, charge exchange,
and absorption cross sections, both as a function of energy‘for
one nucleus and as a function of A—at a particular energy (81).
Although the reaction cross section can be calculated from the simple

expression (82)
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= -t [ miza (ler)d (v1-16)

where ¢(§) is the distorted pion wavefunction, there is no well
defined prescription for calculating the various components of 9
within the framework of the optical model. Thus some approximate
means of calculating QE and Ip must be devised.

As the optical potential can be divided into single nucleon
and absorption terms, a first guess at the form of the partial cross

sections is

o = - & [ o 0z (r)Je(r)ede (v1-17)

and

on= -t [oomamd mmde (v1-18)

This technique is perhaps reasonable in the low energy region, where
the absorption terms dominate. It is not a good prescription in

the resonance region, where the imaginary single nucleon and absorp-
tion parameters are both large. The reason is that the two processes
are not equivalent; a pion which scatters quasielastically can still
be absorbed, but an absorbed pion cannot later scatter. This prob-
lem was considered in Glauber theory (14), which is a good approxi-
mation in the limit of high energy, projectile wavelength short
compared to the nuclear size, and strong forward scattering. The

Glauber result can be recast in the form of equations VI-17 and
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VI-18. The result is that only the imaginary absorptive terms shoyld

be used in calculating the distorted wavefunctions in the expression

for GA’

=% f Wz (010100 | (VI-19)

That is, the ¢ satisfy a wave equation with an optical potential
in which the imaginary parts of the single nucleon parameters are
set equal to zero. The quasielastic cross section is then the dif-

ference between the reaction cross section from equation VI-16 and

O'A,
GQE = UR = GA - (VI-ZO)

The Glauber theory result can also be derived in a simple semi-
classical transport theory, as noted by Koltun and Schneider (83).
This theory is expected to be a good approximation in the same limit
as for Glauber theory provided phases are not important, i.e., the
real parts of the optical potential are small. These conditions

are all reasonably well satisfied near the resonance energy. They
consider a pion traveling through the nucleus with impact parameter
b. The chahge with x in the probability Ps(x) that the pion is

in a particular state S at a horizontal distance x can be related
to the probabilities for processes which feed or rob the state S.

The possible states of the pion are the elastic channel, with
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probability PO’ a quasielastic scattering state, with probability
PQE’ and nonexistence due to absorption, with probability PA’ The
quasielastic scattering and absorption processes are characterized
by mean free paths, AS and AA. The transport equations, which
describe the change in the probability of a given state with posi-

tion, can be written

Po_ P P
dx S AA
dpP P. P
_dQ§= 0 _ G (vi-21)
X A A
S A
dP P. P
T R
X A A

Positive terms on the right-hand side refer to processes which feed
into the channel being considered, negative terms to processes which
rob the channel. The small terms due to quasielastic processes
feeding back into the elastic channel have been neglected. The

boundary conditions for the probabilities are

PO(O) =1
PQE(O) =0 (Vi-22)
PA(O) =0,
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where x = 0 is the edge of the nucleus at which the pion enters,
with x increasing across the nucleus. The solutions to equa-

tions VI-21 with these boundary conditions are

_ =X/\
PO = e
Pe=e  Mi-e %) (v1-23)
QE
=X/A
_ A
PA - 1 - e
where A is defined by
1 1 1
==+ = (Vi-24)

The cross sections for these processes are obtained by integrating
the probabilities at the end of the pion path through the nucleus

over all impact parameters and angles,

C_L(b)/A -L(b)/A
Zﬂfbdbe ()/A(l-e (b) 3

-L(b)/x
2'rrfbdb(1-e () Ay

OQE
(vi-25)

A

where L(b) is the length of the path through the nucleus at impact
parameter b, L(b) = ZVR2 - bz,ﬂ Here R is the radius of the nucleus,
taken to have a uniform matter distribution. The reaction cross

section is just the sum of these two expressions,
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o = 2m f b db(1 - e H(PI/2) (V1-26)

with X given by equation VI-24. Comparison of the expressions for
op and R indicates the Glauber result, that the absorption cross
section is calculated in the same way as the reaction cross section,
but with only absorptive processes taken into account.

The transport calculation just described can itself be used
to give the quasielastic and absorption cross sections, with the
mean free paths estimated from the optical potential. The results,
however, give the wrong ratio of quasielastic and absorption cross
sections and the wrong A dependence of the quasielastic cross sec-
tions. Various improvements to the transport theory are possible
(83); however, these will not be discussed here. The transport
theory result is used only as an approximate justification for

equations VI-19 and VI-20.

Partial Cross Section Calculations

In this section the calculations of GQE and oy are compared
to the data of Navon et al. (81). The two approximations discussed
in the last section are adopted in their respective energy domains:
equations VI-17 and VI-18 are employed for energies through 50 MeV,
equations VI-19 and VI-20 in the resonance region, 160-220 MeV.

No reliable method is known for extracting QE and op between 50
and 160 MeV. The limitations of the model should be kept in mind

when comparisons of calculations and data are made.
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In Figure 32 calculations of partial cross sections, using
the two parameter sets described in Section 2, are compared with
the data for n+ on 12C as a function of pion energy. Note that
smooth curves have been drawn to connect the low energy and resonance
regions. The reaction cross sections are well described by the
calculations. The differences between the results of the two param-
eter sets for og at low energies are due almost entirely to dif-
ferences between o for the two sets; the quasielastic cross sections
are about the same. The calculated absorption cross sections mirror
to some extent the differences between the p-wave absorption param-
eters of the two sets, with the extrapolated pionic atom parameters
giving much higher absorption cross sections at low energies, peak-
ing earlier, and falling fastér than the calculations with the Riska
parameters. It is clear that both sets of calculations overestimate
the absorptive and underestimate the quasielastic pieces of the reac-
tion cross section. The absorption cross section has the correct
shape, peaking near the resonance and falling off at higher energies.
The data are not yet precise enough to determine the energy at which
op peaks, thus 1ittle can be said of the relative merits of the
two parameter sets. The calculated quasielastic cross section
appears to rise too slowly between 50 and 150 MeV; however, as the
curves are pure interpolation in this region no»conc]usions can
be drawn from this. Insufficient evidence exists at present to
determine whether the overestimated absorption cross sections are

due to the strength of the absorption parameters themselves or to
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the method of calculating the cross sections. It should be noted
that calculations of o using equation VI-17, that is, with the
fully distorted wavefunctions, produce much smaller absorption cross
sections. The true value may lie between these two calculations.
Figure 33 shows comparisons of calculated and experimental
partial cross sections as a function of A. The data were taken
at 165 MeV; however, the calculations are done at the resonance
energy, 180 MeV, where the conditions required for the transport
theory to be a good approximation are best met. The differences
.between cross sections at 165 and 180.MeV are presumed small. The
solid and dashed curves are the optical potential calculations with
the two parameter sets previously described. Note that the data
are preliminary and have not been assigned errors as yet. The reac-
tion and total cross sections are well reproduced by both sets of
calculations. Although the calculated absorption cross section
has about the right A dependence, it is too large in comparison
with the data. The calculated quasielastic cross section is much
too small and exhibits a flattening or saturation effect at large
A which is not seen in the data. Part of this effect may be due
to noise in the calculatijon, as 9QE is the difference of two large
terms. Aga%n, the uncertainties in the method of determining OQE
and op preclude any definite conclusions about the optical potential
at this stage. -
It is possible that the problem of separating the reaction

cross section into absorptive and quasielastic pieces could be solved
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by a different approach. The quasielastic cross section can perhaps
be calculated directly, as was done for nucleon scattéring by Bertsch
and Tsai (84). Studies of charge exchange reactions indicate that
the quasielastic scattering, of which charge exchange is assumed
representative, looks 1ike quasi-free scattering in energy and angle
dependence, but with an effective number of nucleons Neff which

is Tess than A (85). Thus the quasielastic scattering is a simple
process, and could be calculated by summing the distorted wave
impulse approximation results to all final states, using the full
optical potential to distort the incoming wave and the optical poten-
tial with only absorptive imaginary parts for the outgoing wave,

as suggested by Koltun (83). A great deal of work remains to be

done on this subject.



CHAPTER VII
CONCLUSIONS

The focus of this work has been the construction and testing
of a pion-nucleus optical potential which is simple in form but
which includes the important physics. In this chapter the main
features of the model are reviewed and its accuracy in reproducing
the relevant experimental data is summarized. Unsolved problems
and areas for further study are also discussed.

The optical potential was constructed from the experimentally
determined pion-nucleon transition amplitude using the Watson mul-
tiple scattering series. The off-shell form of the T matrix was
taken to be of Kisslinger type, without form factors. This form
is convenient because it leads to a coordinate space potential which
is local (although velocity dependent), making calculations much
simpler. The kinematic transformation of the T matrix was treated
inan approximate way, expanding in w/M and keeping only zero and
first order terms. The second order s-wave term of the multiple
scattering series as calculated in low energy approximation was
included, as was a sum of the p-wave series in the same approxima-
tion. True pion absorption was‘represented by terms quadratic in
the nuclear density, for which an approximate theoretical justifi-

cation exists. Pauli blocking was roughly included, and an energy
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shift due to the Coulomb potential was incorporated. The parameters
for the various terms in the optical potential were taken from the
experimental 7N phase shifts and from various theoretical calcula-
tions (47,48,50). An alternative set of parameters was derived

from fits to pionic atom level shifts and widths with suitable energy
extrapolation.

This method of constructing the optical potential has several
weaknesses. The first is that the starting point contains insuf-
ficient information; the nN data can only give the on-shell behavior
of the T matrix (unless a separable form is assumed (37)). A funda-
mental theory of the 7N interaction is necessary to give the correct
off-shell dependence. Such a theory, if fully relativistic, would
provide the proper kinematics for the problem as well as the neces-
sary framework for treating the higher order multiple scattering
and absorption terms consistently. No completely satisfactory mN
theory exists, although some form of Chew-Low description (86) is
probably adequate. To carry out this program of optical model con-
struction is an impossibly complicated task; a proper first order
calculation in a finite nucleus would be very difficult. The com-
plicated dependence of the full T matrix on the nucleon momenta
requires the use of realistic nucleon wavefunctions in the integral
over the ground state, limiting the resulting potential to one
nucleus as well as one energy. It must be hoped that such a complete
calculation can be used to justify approximations which lead back

to an optical potential of sufficient simplicity to be used in
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practical calculations. The success of the simple potential pre-
sented here suggests that this hope is not groundless.

The second weakness in the derivation of the potential given
here is the number and severity of approximations required. Some
of these are necessary to keep the potential form simple; others
are required to make calculation of a given term feasible. Most
of the approximations are easily justified for low pion energies
but are not obviously valid in the resonance region. Fortunately
they are also less important there, as the scattering calculations
are not as sensitive to the terms in question.

It should be noted that knowledge of the experfmenta] phase
shifts is vital for studies of pion-nucleus processes, whether incor-
porated directly, as in the present study, or used as a test of
the fundamental TN theory which generates the pion-nucleus inter-
action. The resonance region phase shifts are fairly well deter-
mined; however, the low energy phase shifts are difficult to measure
and not well known at present. This is a serious problem, as the
low energy scattering calculations are quite sensitive to these
numbers.

The validity of a model such as the one presented here rests
ultimately on its ability to reproduce the experimental results.

The initial comparisons at low energies were somewhat disappointing.
The pionic atom level shifts and widths indicated too 1ittle s and
p-wave absorptive strength in the potential at zero energy and too

1ittle s-wave repulsion. The problem of the absorption parameters
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is not serious, as the calculation of these parameters is still
subject to uncertainty. The missing real s-wave strength is more
disturbing, since it is not clear what mechanism could provide the
required repulsion. This problem appears also in the low energy
scattering, for which the potential gives a good description pro-
vided the s-wave repulsion is increased. A reasonable fit is also
given by the potential with parameters extrapolated from the pionic
atom fit. These two potentials have quite different absorptive
strengths; the elastic scattering data at Tow energies are not very
sensitive to the imaginary part of the optical potenti&]. Unfor-
tunately, there is as yet no low energy absorption cross section
data, which would provide more information about the absorption
parameters. Thus the form of the potential gives an excellent

_ framework for studying the systematics of the low energy data; how-
ever, the theoretically derived parameters do not satisfactorily
reproduce the experimental quantities.

The optical potential does reasonably well in the resonance
region. The general features of the elastic scattering and total
cross sections are reproduced over a wide range of energies and
nuclei. No attempt has been made to improve the fit by parameter
searches, as the Coulomb energy shifts incorporated in the poten-
tial would necessitate a separate search for each nucleus at each
energy. The results of such a/study would be very difficult to
correlate. The evidence from the absorption cross section measure-

ments cannot be interpreted unambiguously because of the uncertainties
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inherent in the calculation of the absorption cross sections within
the context of the present theory.

Thus much work needs to be done, both experimentally and
theoretically. Studies of more complicated pion-nucleus processes
offer new tests of the simple optical potential concept, while micro-
scopic calculations can give new insight into the appropriate form

and approximations for the problem.
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APPENDIX A
THE PION-NUCLEON SCATTERING AMPLITUDE

In this Appendix a review is given of the origin of the form
of the scattering amplitude used to describe pion-nucleon scattering.
The expansion of the scattering amplitude in terms of the phase
shifts is given, and the terms of this expansion which are important
for the pion-nucleon interaction are expressed in simple form with
the parameters related to the relevant phase shifts.

The scattering amplitude can be expanded (3) in terms of iso-

spin I, orbital angular momentum L, and total angular momentum J,

fk,k') = I%J Qp PLy (2L + 1) a3y 55 P (cos ) (A-1)
where
. .L
aL _ exp(21621’2J) -1 (A-2)
21,24 21 kCm

is the scattering amplitude for the (I,L,J) partial wave, and Q; and
PL g are projection operators projecting onto states of given I or

L and J,
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=1 )
Q=301 -t0)
Qajp = 2(2 + te1)
32 =32ttt
L - o2 (A-3)
—G'
P 1= 70+ 1
LJd=1L-41
: 3
L+1+ 02
PL,J=L+%= 2 +1

Here £ is the relative angular momentum operator, which acts on the

Legendre polynomials in equation A-1,

ng(cos 8) = rox (-iY)PQ(cos 8)

(A-4)

Note that the plane defined by ; and 5 is the same as that defined
by k__ and k!

~cm ~cm’
A A k. x k! ~
~Cm ~ cm  _ _
-r X 6 = T =n . (A-5)
l'Scm % IfcmI
Thus
2P, (cos 8) = inP)(cos 8) . (A-6)

The important terms in the pion-nucleon amplitude for the
energies considered here are the L = 0 and L = 1 terms of equa-

tion A-1. The L = 0 terms are
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0 0
Q1/2P0’1/2a11 Po(cos 6) + Q3/2P0’1/2a31 Po(cos )

(A-7)
= 3(1 - txdad) + 32 + toxdad) = by + bty
where
_ 1,0 0
by = 3loqg + 203;)
1,0 0
by = 3(-0q; * azy) - (A-8)
The p-wave terms are
3LP; 1 /5(Qy 00 + Qg p0ng) +
1,1/2Y71/2711 3/2731
+ P (Q ol + Q al )1P. (cos 6)
1,3/2*71/2713 3/2733/4' 1
= [(Qq poly + Qg pat ) + 2(Qy 0l, + Qq p0lz)cos 6
1/2711 3/2731 1/2713 3/2733
1 1 1 1 A
100y oy * Qgp0031) + Q5013 * Qg/p033)1i0en sin 6 .
(A-9)
Noting that.lgcml = IEém = kg for elastic scattering, the functions
of 6 can be written
k. k' -
cos 6 = :sm_%gm (A-10)
k

0
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nsino = 1
k

x k' .
Ecm Ecm

2
0

Therefore the p-wave terms are

where

(cg + cqt ke ken + (sg + spt-tlos(key < ki)

~ ~'~Clm ~Cm

11,1 1 1 1
"2 aLlagy + 203;) + 2(ay5 + 2034)]
0
11,1 1 1,1
‘172 3L(-0qq * a3q) + 2(-0q5 + a33)]
0
_ 11 1 1 1 1
Sg = k2'§[ (07 * 2a3;) + (ay5 + 2035)]
0
_1 1,1, 1,1 1
1702 3l-(-oqq + agy)* (-ag3 +a33)] .
0

(A-11)

(A-12)

(A-13)
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APPENDIX B

DETAILS OF THE DERIVATION OF THE
MULTIPLE SCATTERING SERIES

In this Appendix two results are derived which are required
in the development of the optical potential formalism given in Chap-

ter III. These are:

(1) Let A, B, C, D, and F be operators in an arbitrary space. If

A =B + BCA (B-1)
and

D=8 + BFD | (B-2)
then

D=A+A(F-C)D (B-3)

(2) Let A, B be many particle operators and A Bi one particle

operators. If

" A=Z o+ 2 obA (B-4)
1 1

and

A=2 A . (B-5)
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then
A=2 51+2 B;B ) A (B-6)
i i J#i
where
By =a; ¥+ aiBBi (B-7)
To prove the first result, rewrite equation B-1,
B =A(1+CA) L - (B-8)
and substitute for B in equation B-2
D = A(1 + CA)"X(1 + FD) . (B-9)
By writing 1 =1 + CA - CA this becomes
D = A(1 + CA)(1 + CA)"1(1 + FD) + ACA(1 + cA)"1(1 + FD)
= A(1 + FD) - ACB(1 + FD) (B-10)

where equation B-8 was used in the last step. The second term can

be simp]ified using equation B-2, giving

e}
n

A + AFD - ACD (B-11)

or

o
LI}

A+ A(F-C)D. (B-12)

This proves the first result.
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For the second result, equations B-4 and B-5 imply

A; = o + a;BA = a; + a;B JZ As - | | (B-13)

Grouping the Ai terms gives

J#

or

A; = (1-aB)la;(1+B 2 A . (B-15)

PR
, J#i

Equation B-7 can be written

B. = (1 - a.B) ta, (B-16)

i i i

and substituted in equation B-15, yielding

A; = B;(1+B 2 As) - ~ (B-17)

J#i

Summing both sides over i gives the second result,

A = 231 + zBiB Y As - (B-18)
i j jF
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APPENDIX C
INTEGRATION OVER NUCLEON MOMENTA

The derivation of the optical potential requires the integra-
tion of several one and two particle operators over the coordinates
(or momenta) of the nucleons in the ground state nucleus. In this’
Appendix the required integrals are performed. The Fourier trans-
forms of the two common momentum space forms for the optical poten-
tial are also given. As mentioned in the text, the momentum of the
nucleus as a whole is ignored in the evaluation of the ground state
terms.

The one particle operators to be evaluated are
1{) = acoj(em3sik’ + p} - k - p)(ag + agtoTy) 0>, (C-1)

and

103) = ncoj(am3stkt + py - k - py)lag + agterydpyepilo> -

(C-3)
Let

Alty)=ay +a tety

o ip,p) = 1
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p; + p!
02 (p;pt) = by = 2
oV (pipp) = p;p; (c-4)
Then expressions C-1, C-2, and C-3 can be written
1@ = A [ v, - 0 gy e pIAEO ™ (g, - aupy)
W(pyp )1 Ly (c-5)
X s . p -
P1°E2 XA’ 5 (2w)3

where q = k' - k.

~ ~

The i = 1 term has been chosen and the spin and
isospin variables suppressed to simplify notation. Transforming

to coordinate space gives

{00 = A [ vrtrpr, o mdbloyr o rgAGey)

3

i(py-q)ry -ipyery . d%p 3

T (2w)° (2w)
x d3¢! 1 d3r.
j J

(C-6)

The operator C%n)(gl - g,gl) can be replaced by O(n)(%yi, --%Yl)
acting on the exponentials, allowing the momentum integrals to be

performed .
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40 = A [y g )

(C-7)
<10V G v, - Fopatry - r)let 1}“3% :
For n = 1 this becomes
) =8 [ty o omlag + gtz uiery - )
n 43
5514
(C-8)

The ay term is just the nuclear density p(r). As there is no change
in the isospin projection for the nucleus, the only non-zero contri-
bution from t-rl is from t3r3, where T3 is +1 for protons, -1 for

neutrons. Expression C-8 is therefore
1{V(r) = ago(r) + a;t3le () - 0, (1)1 (c-9)

where p is normalized to A, p. to Z, and P to N. Expression C-1

p
is the Fourier transform of this,

1{1(g) = ago(a) + a;tsl0 () - o, (a)] | (c-10)

) oY .
For the second expression, O =TT, and integration

by parts gives
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I{z)([) =-§117A f Lo*(rsry ... L'A)le(z,gz cee L)

(C-11)
3

- Y¢*(E’Cz ees [A)W(stz o fA)]A(Tl) jgl d "

This is, aside from the factor A(t), the current density and is

zero for a spherically symmetric nucleus. Assuming the neutron

and proton distributions are spherically symmetric, expression C-2
is zero.

For n = 3, Cﬂ3) = Yl'Yi and integration by parts twice gives

1) = agp ,/.Yw(f’iz e ) Ty ) ey

(C-12)

where k(r) is 2M times the kinetic energy density of the nucleons,

and the isovector part of A(t) has been dropped. The quantity k(r)

is evaluated in the Thomas-Fermi approximation (41),

(r) = 3G D3N

(C-13)
This completes the evaluation of the one-body operators.
The first two-particle operator to be evaluated is
161 < AGA - 1)<0] (2m%5(p! + k' - py - K")6(pb + K" - P, - K)
2 Py X =Py - X0y K" =Py - X

* (ag *+agtoty)(ag + at-1,) 0>, (C-14)
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which can be written

1 (k' ke k) = A(A- l)f“’*(El' (k' - k")5pp = (K"~ k),p3...pp)

3

x A(Tl)A(TZ)w(El’pZ’p:” s EA) n 3
~C N J (z.n)
(c-15)

This is only a function of the variables (5' - k") and (k" - k)

~

and can be Fourier transformed resulting in a function of r and r',
Igl)(f,g') =A(A - 1) f P*(rortsrs oo vy (rarturs ool ry)

% A(TI)A(TZ) J>2 3

(C-16)

Without the isospin factors this is just the two particle density

pz(r,r'), which can be written in terms of the two body correlation

function C(f’f')’
o,(ror') = [1 + Clr,r')To(r)o(r') (c-17)

In order to simplify expréssion C-16, assume that ¢ can be expressed

&s an antisymmetrized product of single particle wavefunctions,

1 .
Yy = JAT det {¢i(rj)} (9-18)
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Then expression C-16 becomes

1§1)([,5') = 123 ¢’;(§)¢3(5')A(T)A(r')[cpi(g)%([')- ¢3(r')e;(r)]

(C-19)

The first term is just

[age(r) + tga;(p,(r) - o (r))1lage(r') + tya; (o, (r') - o (r*))]
(C-20)

The spin and isospin dependence of the second term can be made
explicit and factored out, replacing ¢k(r) by ¢k(f)xm(c)ns(T) where
x and n are Pauli spinors in spin and isospin space. For this term
the spin and isospin projection of the nucleus will be approximated
as zero. Then the sum over states can be separated into sums over
space, spin, and isospin states. The sum over spin dependent factors
gives

X () (0" x, () (0" = 2 . (c-21)

m,n=1,2

The sum over isospin factors gives

z, ni(oni(t' ) (ag + at-1)(ag + ayt-t' In (' Ing ()
s,t=1,

(C-22)
2) .

= 2(al
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The spatial sum can be evaluated in the Fermi gas model, in which

'iki'Y‘.
¢;(ry) =e” ~J (-23)
Then
d3ki 1k “(r'-r) -ik'-(r'-r)
] -[ @3 ° [ ze YT 7 (C-24)
(ZTT) (2“,)
I | sin(kg|r' - fl) ] kpcos(ke|r' - v )72
21’]‘2 IE' - r|3 IC' _ EIZ
where k. is the Fermi momentum, kz = 1.36 fm '. The density is a

constant in the Fermi gas model,

2k

p(r) = o(r') =
N ¥ 3

and can be factored out,

~ 3, (kelr' - r})7]2
-z ¢;r(g)¢g(g')¢,-<g-)¢j<g)=-p(g)p(gw%g[ T ]

(C-26)

Combining equations C-19, C-20; C-21, C-22, and C-26 gives for

expression C-14
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I(l)(r r') = [anp(r) + f a,(p.(r) - p.(r))]
2 st oM. 371V pre n's

x [age(r') + tza;(py(r') - oy (r'))] (c-27)

. 2
3i(kglr' - r])
- (ag + 2a§) %-[ iFIE'~' T ]‘p([)o(f')

Note that the right hand side can‘be identified with equation C-17
for 3y = 1, a; = 0, and

1y =1 [351(kFlf' - E|)]2

C(Y‘,Y‘ A 1
=0 4L kelrt -

~

(C-28)

As it is derived in the Fermi gas model, equation C-27 provides
a reasonable description of the long range correlations due to the
Pauli principle. It does not, however, properly describe the short
range correlations. One would expect Iél)([,r) =0 for N = Z, since
the short range repulsion keepé the nucleons apart. It is not zero
here because the Fermi gas model does not, of course, include inter-
actions between nucleons. For the second order s-wave term the
long range Pauli correlations are most important, and the result
given in equation C-27 will be used. In the derivation of the
Ericson-Ericson effect for the p-wave only the r= r' part of the
right hand side of equation C-27 survives, and will be taken to
be zero.

The second two particle operator to be evaluated is much

simpler. It is
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152 (kok') = <0l(2ms(p; + b, + k - pj - g - K1) [0>

T ,/.w*(fi’fé’f3 ros TRV araary ven 1)

ilpj-ry + Pty - P17y - PpYy] (C-29)

* (2m)%0(p) + gy + k - pf - pp - KOy &y T a¥,
1

18>

3., 3., 3 3
d“p; d'p, d7p; d7p,

(2m)® (2m)3 (2m)3 (2n)°

X

The integration over Eé gives

132(q) - Jf VHrpsrpers «oo ta)¥(rpsrperg --e 1p)

ipy-(ry - rl) -ip;-(r, - r))
X e ~1 ~1 ~2 e ~1 ~]. ~2
( ) (C-30)
=ip,e(r, = r})) =-ig-r,
X @ ~2 2 2 e ~ 7 d3r' d3r' Il d3r.
1 2 j i
d3pi d3p1 d3p2

(zm?3 (2m)3 (2m)3

X

and the remaining momentum integrals lead to delta functions. The

result is the Fourier transform of the two particle density pz(r,f),
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-ig-r
Iéz)(q) = f w*(r,r,r3 rA)w(r,r,r3 rA)e ~ ~d?’r I'Id3r.
R - T - i>2
(C-31)

This completes the discussion of two-body operators.
The simple Kisslinger and Laplacian models for the optical

potential include the momentum space terms

k-k'o(q) (c-32)

and

aZo(q) | (c-33)

respectively. The Fourier transform of C-32 is

fk’klp(k' - k)e15.r e_1.'5 .r. d3k3 d3kl3 (C'34)
T (2m)~ (2m)

which can be written

iK-x iq*R 3 3
j&wmmn~~e~~ ax da, (C-35)
T (2m)” (2m)
where
k + k' r+r'
K==>—,9qg=k' -k, R=>—F—, x=r-r'

The integrals over 5 and q give



r+r!

vyLsle - r)elt=

Note that this is an operator of the form <r'|O|r >.
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)] (C-36)

The gradients

which act on the delta and density functions can be turned around

to act on whatever functions of r and r' are to the right and left

of 0. This gives

- r+r!
es(r - r')p(—=

)1V

(C-37)

which can be written as a function of r only, due to the delta func-

tion.

- V-[p(r)v]

where the gradients now act on everything to their right.

Fourier transform of C-33 is

2, fker -ikter
_/~q p(q)e e

. 2 1505 -
= -V fp(q)e e

The first gradient can now be reversed again, giving

The integrations over 5 and q give

- Tao(R)8(x)

(C-38)
The
"ok e
(2m)3 (2m)3
(C-39)
iR 43 4%
(2m)3 (2m)3
(C-40)
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which can be written as a function of r only,
2
- Voo(r) . (C-41)

Note that in this case the V2 acts only on p(r).
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APPENDIX D
RELATIVISTIC POTENTIAL THEORY

Relativistic potential theory (39) is one of the methods that
have been proposed (42) to deal with the problem of relativistic
kinematics in a potential based theory. Unlike theories that are
manifestly Lorentz covariant, this theory includes quantities which
do not have definite transformation properties; among them is the
transition matrix T. In this‘appendix only a few of the details
and results of the theory will be given, taken from Heller,
Bohannon, and Tabakin (40).

Define the canonical transformation from the momenta of two

particles Py and p, to the center of mass and relative momenta P

and 5:
P=p +p (D-1)
_ 1 2 2 2
k = Zhg(Hy + fig) [(hg + 2Exhg + m5 - m7)py
(D-2)
- (hg + 2E1hg + m% - mg)gzl
where

H,=E

= (ml 2,3
0 +E,, E; = (m§ + pi)

1 2° -i i
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and

hg = (H5 - Pt = w (k) + wy(K) = w(k)
with

wi(k) = (nf + k9)E

(The notation of reference 40 will be used throughout this appendix
and the conventions given in Chapter I will be ignored.) Equa-

tion D-2 can be shown to be identical to the Lorentz transformation
from an arbitrary frame with particle momenta Py and Py to the center
of mass frame with momenta k and -5. Interaction can be introduced
by defining

h=h, +v(k) and H = (h% + p2)? (D-3)

0
where the potential is given by V = H - HO. Although H transforms
as the fourth component of a four-vector, neither H0 nor V separately
have well defined transformation properties. Since the transition

matrix is given by

= 1
T 70
T must have the same transformation properties as V.
Let 9::9, be the initial particle momenta, gi,gé the final

particle momenta. Then matrix elements of T may be written
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<a}a3[T(ED 91580 = (21)°8(Q" - QT (Eps 0]585-9;58,)
(p-5)

where Q =q tq, and 9' = Si + Sé' Changing variables,

T(Ers 91595-91592) = NT(Egs 05 9'»9) (0-6)

where q = 5(31,32) and q' = 5'(gi,gb)\~1th k(E1’Ez) given by equa-
tion D-2. The factor N which appears is due to the coordinate trans-

formation (9;,9,) ~ (Q.9) and (q3.95) + (Q.q'),

N = [#91.9,)401-95)17 (b-7)

where ¢ is the Jacobian,

o, 2Mapa90) | E(9))Ep(gp) wy(a) + wy(a)
A%:%) = | 50,0 | = 55 7 E,(g,) “wp{@uy(a)

(D-8)

The quantity T(ET; Q; q',q) must now be expressed in terms of
t(w; 9‘,3) where

t(ws 9',9) = T(Ey = w5 05 g',q) , (D-9)
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i.e., t is the transition amplitude in the two particle center of
mass. This relation is derived in reference 40, where the result

is given as

T(E;»Q5 9'.q) = F(Q; q',q)t(w(q); q'.q)

./~——*E§ F(Qs a',p)F(Q; 4,p)t(w(p); q'.p) (D-10)
(27) LRI AR v
. F Qs k.p) F1(0; q.p)
* t*(ulp)s 9P) | TRy —w(p) * 7e " w(a) - w(p) + ic
where
' _w(q') + w(q)
F(Q: 9'+9) = grggy  E(G)

E(Q,q) = (w¥(q) + Q%) = Ej(a;) + E,(ay)
and k is defined by
w(k) = (E2 - g9} .

Also given are the first terms in an expansion of equation D-10

in factors of Qz. The first two terms are
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T(E7,Q5 9'59) = t(w(k); g',q)

+

2[ tl(@)s asa) . .
28 R G I ) B (3 B R BT VK (b-11)

xgw;g4)+;éqgm;gu@]+omﬂ

where

a3p 1 tle).al.p)t*(w(p).q,p)
(2m)3 w(p) w(k) - wlp) + ic

g(k; g',q) =

It is to be hoped that the terms in Q2 and above are small, giving

a manageable result for T. For the pion-nucleon system Heller states
that the most important kinematic corrections arise from the appear-
ance of the relativistic rather than the nonrelativistic relative

momentum q, and the appearance of the factor N in equation D-6.
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