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ABSTRACT

Low-Lying Dipole Strength in 20O

By

Erik J. Tryggestad

Theoretical calculations suggest that a significant fraction of dipole (E1) strength is

shifted towards lower excitation energies in neutron-rich nuclei. The availability of fast

radioactive beams allows the possibility for probing the E1 strength function in un-

stable nuclei via Coulomb excitation. Therefore, we have performed two experiments

at the NSCL at Michigan State University to investigate low-lying E1 strength in

both 18O and 20O via virtual photon scattering. 100 MeV/u beams of 18,20O impinged

on a 30 mg/cm2 enriched 208Pb target. De-excitation γ-rays were detected with the

large ORNL-TAMU-MSU BaF2 array placed at forward angles. The γ-ray energies

were Doppler-corrected and a nearest neighbor add-back was performed, improving

the response of the array. The γ-ray energy was correlated with projectile energy-

loss measured with the S800 spectrograph. γ-rays having (projectile-frame) energies

between 1 and 8 MeV were collected for both 18O and 20O.

Monte Carlo simulations which have utilized the radiation detection code Geant

while incorporating known information for 18O and theoretical predictions for 20O

were used to make direct comparisons with the experimental results. The analysis

reveals that the observed excitation function for 20O is dominated by transitions re-

sulting from E1 excitations, while that for 18O is dominated by decays following E2

excitations. We have established the existence of two previously unmeasured 20O 1−

levels at 5.35 and 6.85 MeV. The γ-decay branching from these states has been approx-

imately determined, while B(E1) information has also been extracted. Specifically,

B(E1; 0.00 → 5.35) ↑≥ 0.062 e2 fm2, while B(E1; 0.00 → 6.85) ↑≥ 0.035 e2 fm2.



To Grandpa
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Chapter 1

Introduction

The structure of the atomic nucleus, which is made up of N neutrons and Z protons

(N + Z = A total nucleons) bound together by an attractive force known as the

nuclear strong force, is, in general, extremely complex. Stable nuclear species, or

those which are more readily found in nature, have been studied exhaustively. Over

the last fifty years, useful theoretical tools have been developed which have described

various observable aspects of these nuclear systems with a varying degree of success.

The so-called nuclear shell model, which has stood out as the most successful of

these tools, emerged out of an attempt to describe the observed “magic” numbers of

nucleons Z, N = 2, 8, 28, 50, 82, 126 (as in 4He, 16O, etc.), which are linked to strong

nuclear binding. Formally speaking, the shell model is a microscopic theory, in that it

deals with the individual nucleons; a simplified description of the problem which the

shell model attempts to solve is that of independent protons and neutrons moving

within an average nuclear potential, or mean field, while simultaneously interacting

with one another. Indeed, within this context, the mean field itself is a manifestation

of the collection of nuclei, and is therefore a macroscopic feature.

As alluded to, the shell model, when applied to stable nuclear systems, is impres-

sive in its ability to explain nuclear magicity and, for example, predict observable
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features such as nuclear mass (nuclear binding) or energies and quantum numbers

for excited levels. The natural progression of scientific technology in the realm of nu-

clear research facilities and their instrumentation has allowed for new experimental

techniques, thereby opening the door for exciting studies of β and nucleon-unstable

nuclei. In an effort to better understand the structure of these radioactive nuclei, e.g.,

to further challenge and extend the shell model and other working models of nuclear

structure, modern nuclear science has undertaken the difficult task of the systematic

investigation of short-lived species. One intriguing feature that has come to light in

this new environment, for example, is new proton and neutron magicity, i.e., remark-

able stability has appeared on the nuclear (Z,N) landscape in places where it was

not predicted to exist from studies of the stable nuclei. (In this sense, modern nuclear

science has witnessed the break-down of the traditional nuclear shell model.) Neutron

or proton halos and skins, which are further examples of interesting features observed

in unstable nuclei, are directly attributed to more extreme asymmetry in the neutron-

to-proton ratio of the nucleus. Halos (typically 1 neutron or proton loosely bound to a

stable core) result in large RMS nuclear radii and small binding energies, while skins

(a small number of neutrons or protons bound to a stable core) are responsible for

interesting collective effects such as the “Pigmy” resonance (e.g., Refs. 15 and 27).

These and other phenomena have provided the impetus for ground-breaking exper-

imental work which complements an increasingly complex nuclear theory, and vice

versa.

1.1 Experimental motivation

Collective modes, which, in general, are excitations or resonances which can be de-

scribed within the context of cooperative motion of the individual nucleons comprising

the nucleus, are important probes of nuclear structure. The Isovector Giant Dipole
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Resonance (IVGDR) is one such collective excitation which can be thought of as the

motion of a neutron sphere or fluid against that of the protons. In heavy, spherical

nuclei, the average excitation energy of this single-peaked resonance, EGDR, varies

rather smoothly with the number of nucleons, A. Specifically, EGDR ∝ A−1/3, the

constant of proportionality being approximately 79 MeV from a fit to experimental

results. It should be mentioned that this A−1/3 dependence is not an analytic result,

but rather, can be derived from simple assumptions (see, e.g., Ref. 15). In lighter

nuclei, A ≤ 50, the GDR resonance energies are seen to deviate from this simple re-

lation, favoring lower values. Additionally, the GDR excitation (or strength) function

for lighter systems tends to display multiple peaks, which is a feature resulting from

the growing importance of the individual nucleon (or single particle) sub-structure.

While the GDR has been studied extensively for stable nuclei, very little exper-

imental information exists for unstable nuclear configurations. Recently there has

been a great deal of theoretical speculation surrounding the question of how collec-

tive strength evolves as one progresses towards greater neutron excess. For example,

the excitation function for the GDR mode is expected to fragment substantially, fa-

voring, in particular, the onset of increasing strength at lower excitation energies

(see Refs. 12, 14, 27 and references therein). The low-energy, or soft, portion of the

strength distribution in neutron-rich nuclei is often ascribed to a so-called Pigmy

resonance. Mentioned above, this excitation can be thought of as oscillation of the

neutrons which comprise the neutron skin against the residual nuclear core.

Indeed, the evolution of the GDR in the stable oxygen isotopes sheds favorable

light on the theoretical predictions. Shown in Fig. 1.1 is experimental (total) pho-

toneutron cross section data which has been collected (for example) by way of quasi-

monochromatic annihilation photon scattering [17]. The experimental motivation for

the current studies which will be described within this thesis came from the neces-

sity to extend this picture further to 20O. Photon-induced reactions using short-lived
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nuclei (such as 20O), however, require more sophisticated experimental strategies, as

the system under study is not a target but instead is a relativistic projectile.

Two complementary methods for these types of experiments exist. Both methods

rely on the virtual excitation of the projectile, i.e., Coulomb excitation, whereby the

projectile is excited as it passes through the Coulomb field of a high-Z target. The so-

called “virtual photon absorption” method takes advantage of particle decay modes

following excitations to the projectile continuum, specifically, the (γ,xn) channels.

This method has been proven viable, having been employed with a great deal of

success, for example, by the LAND (Large Area Neutron Detector) collaboration at

GSI. In fact, an experiment to measure the dipole strength function in the oxygen

isotopes, specifically 18,20,22O, has been performed at GSI and the results have recently
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Figure 1.1: Comparison of the total photoneutron (GDR) excitation function for the
stable oxygen isotopes, 16,17,18O, taken from Ref. 17. Low-lying strength emerges with
the addition of neutrons to the doubly-magic core.
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been published [5, 21]. The second method, known as “virtual photon scattering”,

relies on real projectile γ-ray decay following virtual excitation [6, 24]. As compared

with the absorption technique, this method suffers from a large suppression factor

(between roughly 10−2 and 10−3) related to the relatively low probability of the

(γ,γ′) decay channel. However, the scattering method is advantageous with regard to

its dipole (E1) selectivity, since the absorption method is inclusive of contamination

from other virtual photon multipolarities. Additionally, the scattering method has

the ability to probe the strength function below the neutron separation energy (Sn),

which is ideal.

Out of a need to establish the viability of this alternate method for GDR stud-

ies of radioactive systems, we chose to perform successive virtual photon scattering

experiments with beams of 18O and 20O. The projectiles collided with a lead target,

providing the virtual photon field. Given the fact that 18O is stable and its strength

function established (e.g., Fig 1.1c), this experiment was carried out first to serve as

the control for the more difficult radioactive beam experiment which followed. Un-

fortunately, due to the small cross section for GDR virtual photon scattering events,

essentially no γ-ray statistics were collected above Sn for either experiment. The ex-

perimental analysis, which will be the subject of all discussion to follow, was therefore

dedicated to the discrete region of these nuclei. Specifically, the analysis sought to

further establish the level structure of 20O, as its discrete, 1−, states had not been

previously explored. Possessing this information, conclusions could then be drawn

regarding discrete E1 strength in 20O as compared with 18O.

1.2 Coulomb excitation

Coulomb excitation, mentioned above, is a well-understood process which occurs dur-

ing interactions of a projectile (ZA) with a target (ZB) whereby one of the participat-
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ing nuclei is excited as is passes through the electromagnetic field of the other. The

process can therefore be thought of as the absorption of a virtual photon by either

the target or the projectile. Because, in pure Coulomb excitation, the participating

nuclei stay outside the range of the nuclear strong force, the excitation cross section

can be expressed in terms of the same multipole matrix elements that characterize

excited-state γ-ray decay. Hence, Coulomb excitation amplitudes are strongly cou-

pled with valuable nuclear structure information. This fact is illuminated when one

examines an expression for the differential Coulomb cross section for the projectile

which has been taken from state |i〉 to state |f〉 [1]:

dσEλ

dΩ
=

(

ZBe

~v

)2

a−2λ+2B(Eλ, Ii → If)
dfEλ(ϑ, ξ)

dΩ
, (1.1)

where, as given in Appendix B, a is half the distance of closest approach, ξ is the

adiabaticity parameter, v is the incoming velocity of the projectile, and ϑ is the

scattering angle of the projectile in the center-of-mass.

The important B(Eλ, Ii → If ) factor appearing in Eq. 1.1 is the reduced (electric)

transition probability, which is proportional to the electric multipole matrix element.

Specifically,

B(Eλ, Ii → If) =
1

2Ii + 1
|〈If‖M(Eλ) ‖Ii〉|2 . (1.2)

This matrix element, which depends directly on the wave functions of the involved

states, |Ii〉 and |If〉, is a measure of collectivity in the nuclear transition and is

therefore linked to structural features such as nuclear rotation or vibration. Indeed,

transitions which couple states |Ii〉 and |If〉 that are comprised mostly of single

particle motion (which cannot give rise to collective phenomenon) will be marked

by small matrix elements, 〈If‖M(πλ) ‖Ii〉. Therefore, Coulomb excitation tends to

probe collective configurations in nuclei.
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The derivation of Eq. 1.1 involves a semi-classical approach. The trajectory of the

projectile is treated classically, assuming a Rutherford scattering distribution, while

the interaction which causes the nuclear transition in the projectile or target is found

using first-order perturbation theory, i.e.,

dσ

dΩ
=

(

dσ

dΩ

)

Ruth.

Pi→f , (1.3)

where the probability, Pi→f , is given by the square of amplitude of the nuclear exci-

tation process:

Pi→f = |ai→f |2 ; ai→f =
1

i~

∫

∞

−∞

〈f |V (r(t)) |i〉 ei(Ef−Ei)/
�

dt . (1.4)

Since a more-detailed description of the cross section derivation can be found in

Appendix B, it is sufficient for the current discussion to present the final expressions.

For the experimental analysis it was necessary to include only electric contributions

to the virtual excitation spectrum, namely from E1, E2, and E3 (justification is

provided below in Sec. 1.3.) Substitution of the differential cross section functions,

dfEλ/dΩ, for these specific cases (given by Eq. B.20) into Eq. 1.1 allows the following:

dσE1(ϑ, ξ)

dΩ
=
( π

18

)

(

ZBα

β

)2
B(E1, Ii → If)

sin4(ϑ
2
)

[

I2
1−1(ϑ, ξ) + I2

11(ϑ, ξ)
]

dσE2(ϑ, ξ)

dΩ
=
( π

25

)

(

ZBα

β

)2
B(E2, Ii → If)

a2 sin4(ϑ
2
)

×
[(

3

8

)

{I2
2−2(ϑ, ξ) + I2

22(ϑ, ξ)} +

(

1

4

)

I2
20(ϑ, ξ)

]

dσE3(ϑ, ξ)

dΩ
=
( π

49

)

(

ZBα

β

)2
B(E3, Ii → If)

a4 sin4(ϑ
2
)

×
[(

5

16

)

{I2
3−3(ϑ, ξ) + I2

33(ϑ, ξ)} +

(

3

16

)

{I2
3−1(ϑ, ξ) + I2

31(ϑ, ξ)}
]

,

(1.5)
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where β is the incoming velocity of the projectile and the substitution e2/~c → α

has been utilized. It is assumed that the reduced transition probability is expressed

in units of e2 · fm2λ.

The Iλµ(ϑ, ξ) functions in Eq. 1.5 are defined in Ref. 1 as the Coulomb excitation

functions and are given by Eq. B.11 in complicated integral form. However, the fact

that the projectiles detected in this study were limited to small forward angles ensures

that the approximate expression for the Iλµ(ϑ, ξ) functions, Eq. B.13, is valid (see

Fig. B.2). It should be mentioned that Eq. 1.5 has been derived assuming projectile

excitation. To convert these expressions to relations which are valid for excitation of

the target, one need only exchange ZB for ZA.

1.3 Accessible states in 18O

Given the relatively small probability for M1 virtual photons, and the fact that no

(unnatural parity) 1+ states exist in the region below the neutron binding energy

[35], it was sufficient to restrict the analysis to electric excitations. The existence of

states with spin and parity of 1−, 2+ and 3−, in principle, allows for excitations with

λ = 1 → 3. Shown in Fig. 1.2 is the low-lying level structure of 18O which is relevant

to the current study. The B(Eλ) strengths given in Fig. 1.2a are known experimental

values [31, 35]. (The upper limit for the 1−

1 state comes from an electron scattering

study [22].) The complicated radiative decay scheme for these excited configurations,

included as Fig. 1.2b, demonstrates that excitations to only a few levels will, in

general, produce rather convoluted results.

To gain some perspective regarding the relative importance of these excitation

channels for the 18O study, note the total cross section values in Table 1.1 that have

been calculated (using the formalism introduced in Sec. 1.2) assuming an overall pro-

jectile angular acceptance of 20 mrad in the center-of-mass. Based on these B(Eλ)
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Figure 1.2: Summary of states in 18O which were accessible. a) Experimentally deter-
mined B(Eλ) information for excitations from the ground state [22,31,35]. b) Possible
radiative decays resulting from the excitations in (a). Images in this dissertation are

presented in color.

Table 1.1: The result of total Coulomb excitation cross section calculations for exci-
tations to discrete 1−, 2+ and 3− states in 18O assuming an angular acceptance of 20
mrad.

Coulomb excitation predictions for 18O
Jπ

n Energy (MeV) B(Eλ) (e2 fm2λ) σ (µb)
1−1 4.456 <4E-06 <3E-01
1−2 6.198 1.9E-03 4.1E+01
1−3 7.619 6.1E-04 5.2E+00
2+

1 1.982 4.65E+01 2.35E+03
2+

2 3.920 2.0E+01 6.9E+02
2+

3 5.255 2.98E+01 6.76E+02
3−1 5.098 1.120E+03 9.860E+00
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Figure 1.3: Summary of states in 208Pb which could contribute as background. Known
B(Eλ) values are given for excitations from the ground state [23,26]. Both states decay
directly back to the ground state configuration.

values, the calculations predict that quadrupole (E2) excitations will completely dom-

inate over dipole (E1) and octupole (E3) excitations. The largest, non-E2, contribu-

tion comes from the second-excited 1− state.

1.4 208Pb contributions

Background resulting from excitations in the target was a significant experimental

obstacle. Fig. 1.3 shows the pertinent 208Pb level scheme, which includes 2 states,

namely the first-excited 3− and 2+ configurations. Included in this figure are known

values for the reduced transition probability for excitations of these states [23,26]. A

prediction for the relative importance of target contributions follows from comparisons

of Coulomb cross section calculations for 208Pb, shown in Table 1.2, with the results

obtained for the projectile, 18O (Table 1.1). For example, from these calculations, one

would expect that the target should account for ∼20% of the total E2 cross section
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Table 1.2: The result of total Coulomb excitation cross section calculations for exci-
tations to discrete 2+ and 3− states in 208Pb assuming an angular acceptance of 20
mrad.

Coulomb excitation predictions for 208Pb
Jπ

n Energy (MeV) B(Eλ) (e2 fm2λ) σ (µb)
2+

1 4.085 2.9E+03 9.1E+02
3−1 2.615 6.11E+05 5.30E+01

in the 18O experiment.

1.5 Status of 20O spectroscopy and shell model

predictions

From the Coulomb excitation cross section calculations for 18O presented above in

Sec. 1.3, along with 18,20O systematics, it is reasonable to assume that an analysis

which includes E1, E2, and E3 virtual excitations is also required for the 20O study.

The fact that limited 20O experimental spectroscopic information exists, however, de-

mands that we look to theoretical predictions for guidance. The left panel of Fig. 1.4

summarizes the pertinent status of 20O spectroscopy [26, 34]. Aside from our knowl-

edge of the B(E2) for the 2+
1 and the branching from the 2+

2 , only the energies and

spin-parity of observed 20O levels have been established. Notice, especially, that apart

from the tentative 3− assignment of the 5.614 MeV state, no experimental information

regarding the 20O negative-parity, discrete structure exists. Meanwhile, the theoreti-

cal picture for 20O, illustrated by the right panel of Fig. 1.4, is interesting. Comparing

the B(E2) ↑ predictions from B.A. Brown [9] with measured B(E2) ↑ values for the

analogous excited 2+ configurations in 18O (see Fig. 1.2a) we see a marked suppres-

sion of E2 strength. Contrasting this is the trend which unfolds from a comparison

of the 20O B(E1) ↑ predictions with the measured 18O values for the first three 1−

states. As mentioned in Sec. 1.1, a relative increase in low-lying dipole strength in
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Figure 1.4: Known 20O spectroscopic information [26, 34](left) along with sd shell
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below the neutron separation energy which have determined spin and parity (with
the exception of a 5− state at 7.252 MeV). Only the B(E2) ↑ value for the 2+

1 has
been measured, and decay-branching is known only for the 2+

2 . The predicted 1−

states have not yet been observed experimentally.

neutron-heavier 20O is expected. While the cross section calculations in Sec. 1.3 show

that 1− states are not expected to be strongly-excited in the 18O experiment, theory

clearly predicts that this will not be the case with 20O.
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Chapter 2

Experimental details

In October of 1998, two successive experiments with the goal of investigating virtual

photon scattering in 18O and 20O were performed at the National Superconducting

Cyclotron Laboratory (NSCL). For the first experiment, 18O, having been accelerated

in the K1200 superconducting cyclotron to an energy of 100 MeV/u, was delivered

directly to our experimental hall. The second study required a radioactive beam. 22Ne

primary was accelerated in the K1200 to an energy of 120 MeV/u. This beam impinged

on a thick 9Be production target. Fragments produced via projectile fragmentation

were then analyzed with the A1200 Fragment Separator [29]. Using a combination of

two magnetic bends along with a wedge degrader and momentum slits, this device

selected 20O at 100 MeV/u with a momentum spread (∆p/p) of 0.5%.

After being produced and transported to the S800 experimental hall, the 18,20O

beams were guided through the S800 analysis line (described in Sec. 2.1) to a target

pot, where they impinged on a 30 mg/cm2 208Pb (99.09% enrichment) reaction target.

Reaction products were then analyzed using the S800 spectrograph. Being primary

beam, the intensity of the 18O beam was constrained by the capabilities of the S800

focal plane detectors, which can count up to ∼104 frag./second. The 20O intensity,

limited by production, was ∼5×105 particles/second. Table 2.1 summarizes some
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Table 2.1: Relevant experimental quantities

Beam Energy (MeV/u) Intensity (part./sec.) Impurity Run Time (hrs.)
18O 100 limited by S800 – 13
20O 100 ∼5×105 <20% 17N 117

relevant experimental quantities.

The set-up specific to the 20O experiment is represented in Fig. 2.1. Two BaF2

arrays were used to measure γ-ray decays which came in coincidence with the detected

reaction fragments. It was anticipated that projectile-correlated BaF2 timing would

be critical for γ-ray selection in the BaF2 arrays. Because an inherent momentum

spread in the secondary beam necessarily results in the spreading of the prompt-γ-

ray BaF2 time peak, two Multi-Channel Plate (MCP) detectors, designed and built

at ORNL, were included into the 20O set-up to improve BaF2 timing. For the primary

beam study with 18O, timing was not of concern. Therefore, the MCP detectors were

employed only for the 20O experiment. (Incidently, The MCP detectors additionally

allowed for a determination of the 20O beam intensity.)

A1200

MCP1 MCP2

208
Pb

30 mg/cm
2

9
Be

Production Target

g

g

S800

BaF Arrays2

Timing Detectors

O
20

100 MeV/u

Ne
22

120 MeV/u

43.4 m

12.3 m

45.1 cm
K1200

Figure 2.1: A schematic (not to scale) of the 20O experimental setup. The Multichan-
nel Plate (MCP) timing detectors, developed by ORNL, were used to improve BaF2

timing.
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2.1 The S800 spectrometer

As has been mentioned, projectiles and reaction fragments were analyzed using the

S800 spectrometer, operated at 0◦. As shown in Fig. 2.2, the S800 spectrometer [10]

consists of a fragment analysis line and a large magnetic spectrograph. The analysis

line itself is comprised of four bending dipoles, one quadrupole doublet, five quadru-

pole triplets and four sextupoles. The standard S800 target chamber is located at

the dispersive image of the analysis line. For the present study it was necessary to

remove the target chamber in order that there be sufficient space for the large BaF2

array. Thus, the 208Pb target was repositioned 85 cm upstream from the usual target

position.

The magnetic spectrograph bends nuclear species of appropriate rigidity to its

focal plane (enlarged in Fig. 2.3). Two dipole magnets, D1 and D2, each with a

bending radius of 2.8 m and maximum central field of 1.6 T, provide an overall

bending power of 4 Tm. Quadrupoles Q1 and Q2, located immediately downstream

from the target chamber, focus fragments in the dispersive (x) and non-dispersive (y)

Figure 2.2: Schematic of the S800 Spectrometer. It consists of an analysis line and a
large, 4 Tm magnetic spectrograph.
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Ion Chamber

E1,E2,E3 Scintillators
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Figure 2.3: Schematic of the S800 focal plane. Fragments are focused onto CRDC1,
the first of two position-sensitive detectors. The CRDC detectors, together, provide
fragment trajectory information, while the IC, E1, E2 and E3 provide ∆E, E and
timing.

directions thereby optimizing the angular acceptance of the device.

Operated with the target at its designed location, the S800 has an angular accep-

tance of 7◦ and 10◦ in the dispersive and non-dispersive directions, respectively [37].

With the target repositioned, from simple geometric arguments, approximately half of

this acceptance is lost. The design of the position-sensitive elements of the focal plane

detector (to be discussed in Sec. 2.1.1) allows for an angular resolution of 2 mrad.

The energy resolution of the device is improved by operating in dispersion-matched,

energy-loss mode. Running in this mode, the device compensates for intrinsic beam

momentum spreading in the dispersive direction, which ideally results in a zero-width

image at the focal plane. For every ∼10 cm at the dispersive image (reaction target),

the S800 is capable of correcting for 1% in ∆p/p.

16



2.1.1 Position-sensitive CRDC detectors

Two cathode readout drift chamber detectors (CRDC1 and CRDC2) are the position

sensitive elements of the S800 focal plane. Each CRDC detector has an active area

of 30 cm × 59 cm and is filled with a mixture of 80% CF4 and 20% C4H10 gases to a

pressure of 140 Torr.

Charged particles traveling through the detector ionize molecules in the gas. Elec-

trons produced during this process then drift through a region of constant electric

field until they reach a grounded Frisch grid. Passing through this grid, the electrons

are accelerated towards an anode wire. The radial geometry of the electric field in

this region is such that charge amplification, which results from an electron avalanche,

takes place near the anode. 224 cathode pads, staggered on either side of the anode

wire with a spacing of 2.54 mm (over the 59 cm dispersive dimension of the detector)

measure induced charges from electron showers collected at the anode. Because no

avalanching occurs in the region of constant electric field, the Frisch grid insures that

the integration over all pad signals will be independent of the charged fragment’s

interaction distance from the anode.

A Gaussian fit over non-zero pad signals determines the incident fragment’s dis-

persive (x) position within the detector. The incident fragment’s non-dispersive (y)

position within the detector is found by measuring the drift time of the electrons from

the point of interaction to the anode. Typical drift times of electrons in the CRDC

detectors are ≤20 µs, which directly limits the counting rate to ∼104 frag./second.

Achievable position resolution in these detectors is designed to be better than 0.48 mm

in either direction.

Information collected from the CRDC detectors completely determines the trajec-

tory of fragments reaching the focal plane, parameterized as (xf , θf , yf , φf). θf and

φf are angles of the trajectory taken in the x–z and y–z planes, respectively, while

the subscripts, f , denote that these quantities are measured at the focus. Because
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the magnetic fields present within the spectrograph have been mapped (this process

is described in detail in Ref. 10), it is possible to reconstruct, analytically, the tra-

jectory of fragments of known magnetic rigidity through the S800. In practice, from

knowledge of (xf , θf , yf , φf) one is able to calculate (approximately) quantities which

describe the motion of the fragments as they left the target (θt, yt, φt, δt), where δt is

related to the fragment’s kinetic energy. Specifically, δt = (E − Ec)/Ec, where Ec is

the kinetic energy of projectiles traveling along the central axis of the spectrometer,

determined by

BρS800 =
pc

q
=

√
2mEc

q
. (2.1)

Here BρS800 is the magnetic rigidity setting of the device and m and q are the mass

and charge, respectively, of the fragment.

The matrix equation which relates the target quantities to those at the focus is



















θt

yt

φt

δt



















= R


















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θf

yf

φf



















, (2.2)

where R, known as the inverse matrix, is calculated by the code Cosy Infinity [7],

which analytically inverts the direct expression, given by
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For Eqs. 2.2 and 2.3 the dispersive object beam spot-size at the target (which is not
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the same as the beam spot-size due to intrinsic momentum dispersion) is assumed

negligible.

2.1.2 Ionization chamber and scintillation detectors

After passing through the CRDC detectors, fragments enter the S800 Ionization

Chamber (IC). The IC is filled with P10 gas (90% argon and 10% methane) to a

pressure of 300 Torr. As with the CRDC detectors, molecules of the gas are ion-

ized by the charged fragments. Segmented into 16 individual chambers, each with a

1 in. anode oriented perpendicular to the fragment’s path, the IC chamber samples a

fragment’s energy-loss multiple times, thus reducing noise and providing an accurate

energy-loss (∆E) signal.

Fragments are then stopped in a series of three large plastic scintillator detectors,

E1, E2, and E3, which, in the standard arrangement, are 5, 10 and 20 cm thick, respec-

tively. (The charged particles of interest for this study did not penetrate beyond E2.)

Photons produced by charged-particle interactions within these scintillators travel to

either end of the detector where they are collected and converted into an electronic

signal by photomultiplier (PMT) tubes (2 per detector). The signals produced in these

detectors provide timing as well as ∆E and total energy information. Thus E1, E2,

and E3 information, combined with the signal from the IC, allow standard ∆E vs. E

and time-of-flight (T.O.F.) vs. E fragment identification techniques to be employed.

2.1.3 S800 electronics

Diagrammed in Fig. 2.4 are the S800 electronics which were used for the present

study. Data readout in the S800 was triggered by a simultaneous signal in both the

PMTs which sense light output from the E1 scintillator. Specifically, the S800 master

gate was created by the logical AND of constant fraction discriminator (CFD) signals

from both E1 scintillator PMTs. This master gate was then directed to the trigger

19



E1 Up

E1 Down

CRDC Anode

X 2

CRDC Cathode Pad

X 2    X 224

ADC

CFD

AND

AND

TAC

Start

Stop

FERA

Gate

In Out

CFD

E1_UP

CFD

E1_DO S800 Master

S800_TAC

S800 Pad

TB8000

BaF Trigger Box2

Figure 2.4: Diagram of the S800 electronics. For simplification, only one anode channel
and one CRDC pad channel is shown. The triangular symbols represent shaping
and/or amplification of the signal. (Adapted from Ref. 10.)

box of the BaF2 array, which controlled the computer acquisition for this experiment.

(BaF2 electronics will be discussed in detail in Sec. 2.2.3.) The S800 master gate

was also piped as the START input to each CRDC time-to-analog converter (TAC),

the stop coming from the individual CRDC anodes. Additionally, the S800 master

gate was the start for a TAC which measured time relative to the cyclotron RF.

The analog signal coming from these TACs was then integrated and digitized by a

12-bit analog-to-digital converter (ADC), thus creating the electron drift-time and

S800 T.O.F. parameters. Finally, the master gate, AND-ed with the CRDC anode,

became the start for the fast encoding and readout ADCs (FERAs), which integrated

the charge collected from the individual, amplified CRDC pad channels.
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87 cm

85 cm

Figure 2.5: The front face of the forward array which consisted of 144 individual
hexagonal crystals. The center of the array was placed directly on the beam axis.

2.2 The ORNL-TAMU-MSU BaF2 Array

γ-rays coming from both projectile and target de-excitations were captured and ana-

lyzed using two arrays of BaF2 detectors. The larger, forward array was placed 45 cm

downstream from the target, covering angles between 11◦ and 48◦ in the laboratory

frame. The forward array consisted of 144 individual hexagonal detectors, packed

tightly in hexagonal geometry around the beam pipe, as shown in Fig. 2.5. From

the center of the array moving outward, the detectors were positioned systematically

closer to the target (in steps of 1 cm). This packing design allowed for an improvement

in total solid angle coverage. Those detectors owned by Oak Ridge National Labora-

tory (ORNL) and Texas A&M University (TAMU), which together represent a large

fraction of the forward array’s detectors, are essentially identical, having crystals with

inscribed diameters of 6.5 cm and lengths of 19.5 cm. The Michigan State Univer-

sity (MSU) crystals, however, have inscribed diameters of only 6 cm and lengths of

24.5 cm. Thus, the placement of the MSU detectors within the array was strategic so
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Figure 2.6: Perspective drawing of one BaF2 detector. The crystal is coupled to the
PMT using an optical grease. A tension strap adds stability to the detector.

as not to destroy the tight symmetry (e.g. they were placed mostly at the top of the

array).

A smaller, 7-element (backward) BaF2 array was placed behind the target, ∼28◦

off the beam axis, to monitor target contributions within the forward array. The

hexagonal crystals which comprised this array were larger – 8.7 cm inscribed diameter

and 20 cm in length.

2.2.1 Detector construction

Fig. 2.6 is a representation of an individual BaF2 detector. The crystal is coupled

to the quartz window of the PMT with VISC-600M (General Electric Corp.) optical

grease. This grease is chosen because it is transparent to the deep UV (fast) component

of light produced by interactions within the crystal lattice [18,28]. (Properties of BaF2

crystals will be discussed in Sec. 2.2.2.) In order to insure maximum light collection,

the crystals are wrapped in Teflon tape, which has good reflective properties, and

aluminum foil. The coupled crystal and base are then tightly wrapped in electrical

tape to mask all ambient light. A magnetic shielding is placed over the PMT and its

base. Stability is added to the coupling joint by tightening a tension strap which is

22



anchored at the end of the shielding. The hexagonal aluminum rings of the tension

assembly, machined to the same dimensions as the crystal, support the weight of the

PMT and shield when the detector is lying on its side as in a typical experiment.

2.2.2 BaF2 properties

Inorganic scintillators emit UV light when fast electrons, resulting from interactions

with γ-rays, neutrons, α particles, or other heavy species, displace electrons from the

crystal lattice. BaF2 is one type of inorganic scintillator which has relatively good ef-

ficiency and excellent timing properties. Its timing capabilities are directly attributed

to the emission of a fast UV (210 nm) burst of light which has a characteristic de-

cay time of 0.6 ns [20]. This fast light is emitted when electrons are displaced from

the outer core band of the ionic crystal and a valence electron drops to fill the va-

cancy [19]. A slow component of light with a longer, 620 ns characteristic decay time

is also emitted at slightly longer wavelengths (320 nm). This is the component of the

emission which is a result of de-excitations in excited activator atoms. (Free electrons

are captured to excited activator orbitals.)

Because of its light emission properties, BaF2 is also capable of pulse-shape dis-

crimination (PSD). PSD is based on the principle that different particles interact dif-

ferently within the crystal. PSD between γ-rays, and neutrons (or charged-particles)

is achieved with BaF2 by comparing the amount of fast to slow light emitted by the

detector during an event. (Examples of PSD will follow in Sec. 3.2.2.)

2.2.3 BaF2 electronics

The BaF2 array used for this study is a relatively mobile device, and as such, its

basic operational principle from experiment to experiment changes very little. As

depicted in Fig. 2.7, the array’s trigger box, TB8000, controlled the type of events

which were recorded at run time. Two standard BaF2 trigger levels exist, hi-γ and
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Figure 2.7: Diagram of the ORNL trigger box, TB8000, which controlled the computer
acquisition for these experiments. The trigger box accepts multiple trigger inputs,
provides down-scaling, and also checks for a system inhibit. (Adapted from Ref. 28)

lo-γ. Hi-γ is true when one element of the array records a signal above Th, the high

threshold setting (between approximately 2 and 4 MeV). It follows that lo-γ is true if

one detector fires above Tl, the low threshold setting (below 1 MeV). In either case,

only the signals from those detectors which fire above Tl are charge-integrated.

The hi-γ and lo-γ logic signals are fed to TB8000, as well as any logic signals

which are specific to the experimenter’s setup – in this case the S800 master gate. For

the present study, two other trigger levels were important, namely S800 singles and

S800+hi-γ coincidences. In general the lo-γ trigger was used for taking calibration

data, while S800 singles and S800+hi-γ coincidences were used to investigate the

physics of interest. A trigger is accepted into the data stream with the flip of a toggle

switch on the trigger box, which makes for smooth transitions between different types

of runs. TB8000 has the capability to reject any input triggers due to a system inhibit

(acquisition busy). Optionally, the inputs to TB8000 can be down-scaled. Comparison

of the scaler output to the reduced scaler output allowed for a determination of system

dead-time.

Because of the type of electronics which were used to readout BaF2 events, the

array was logically subdivided into 16-channel banks. One channel in each bank was
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Figure 2.8: Simplified diagram of the electronics for the BaF2 arrays. The detectors
were subdivided into “banks” of 16 for a total of 10 banks. (Adapted from Ref. 28)

reserved as a spare. In all, 10 banks of electronics were therefore required. Fig. 2.8 is

a simplified schematic of the electronics set-up for the array.

The signals coming from each detector followed two paths. Tracing the logic path,

the individual signals were first attenuated to insure that the Tl and Th thresholds

applied using the leading-edge discriminators (LEDs) were consistent in energy. This

was necessary because the LEDs are sensitive to the fast light, while, in general,

the ratio of fast to slow light emitted for a given detector is highly dependent on

the quality of its crystal-to-PMT coupling. Following attenuation, the NIM signals

for each bank were split and converted to 16-channel ribbon cable with a NIM-ECL

converter. The ribbon cables carrying the attenuated signals for each bank became

inputs for the LEDs. The OR output of the Th LED from each bank, OR-ed, provided

the hi-γ trigger. In addition to providing the lo-γ trigger, the OR output of the

Tl LED from each bank, OR-ed, was used to generate the fast (∼50 ns) and slow
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(∼1500 ns) FERA gates. The individual Tl LED signals, meanwhile, provided the

individual FASTBUS TDC stops.

The linear path was less complicated. The NIM signals for each bank were sent to

a splitter/attenuator/delay box which was designed at built at ORNL. This module

splits the signals, the outputs being 16-channel ribbon cable format. One ribbon cable

provided the input for the fast FERA, while the other was sent to the slow FERA.
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Chapter 3

Experimental data analysis

The experimental data analysis for both experiments was performed in a consistent

fashion. Fragments produced via interactions of the beam projectiles with the 208Pb

target were swept to the focal plane of the S800 Spectrometer, where identification

could take place. Except when used to monitor the S800 set-up, elastically scattered

beam fragments were not of interest to this study. To eliminate these background

events from the data stream, a beam blocker was strategically placed in front of

CRDC1. After selecting only those S800+γ coincident events where a beam projectile

was detected at the focus, the projectile’s measured energy loss was compared with

the total decay γ-ray energy captured in the BaF2 array.

3.1 Projectile analysis with the S800

3.1.1 18O and 20O identification

As mentioned, being able to select those events where a beam projectile scattered

inelastically from the target was the first step in the analysis of these experiments.

In order to achieve this, the ∆E, E and T.O.F. information gathered at the focal

plane was utilized. Specifically, particle identification (PID) for the 18O experiment
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Figure 3.1: The first step in the 18O identification process. A gate is placed on a 2-D
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Figure 3.2: 2-D histogram of RF E1 TAC vs. E1 GEO MEAN before (a) and after
(b) the application of PID gate 1. On b) the next PID gate is defined.

involved a three-step gating process. First, a gate was placed on a 2-dimensional (2-D)

histogram of the fragment’s energy loss in the Ionization Chamber (IC SUM) vs. its

total energy as measured in scintillators E1 and E2 (E TOT). An example is given

in Fig. 3.1.

For an ideal S800 experiment, this gate would be very effective in suppressing con-

taminants. Unfortunately, one of scintillator E2’s photo-multiplier tubes was sponta-

neously jumping between two gain settings, the higher of which resulted in signals

from beam projectiles being off-scale. Therefore, only one PMT from E2 was utilized

for PID. An attempt was made to correct this lone E2 signal for position sensitivity.

E TOT is a parameter which includes these corrections.

The next step in the 18O identification process involved applying a condition
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Figure 3.3: A 2-D histogram of E1 DOWN vs. E1 UP before (a) and after (b) the
application of PID gates 1 and 2. Note the appearance of lighter-mass bands below
the 18O band in a). The final PID constraint is shown in b).

on T.O.F. and ∆E parameters. As discussed in Sec. 2.1.3, the T.O.F. parameter,

RF E1 TAC, is measured between the S800 master (the E1 signals) and the cyclotron

RF. The ∆E parameter used in this step is the geometric mean of the signals from

scintillator E1, defined as,

E1 GEO MEAN =
√

E1 UP × E1 DOWN .

The advantage of defining E1’s ∆E parameter in this way is that the detector’s

position sensitivity has been effectively removed. Fig. 3.2b shows an example of this

PID gate.

The final, arguably redundent, step in 18O identification is shown in Fig. 3.3b. A

constraint was placed on the individual PMT signals E1 UP and E1 DOWN. Fig. 3.3a

is an example of a 2-D histogram of these parameters before any gating has been

applied. Note the appearance of lower-mass contours below the uppermost band, 18O.

Application of the gates 1 and 2 has removed all contaminants from this upper-band.

Particle identification for 20O followed in a similar fashion. As was the case for 18O,

the first condition was applied to the ∆E and E parameters IC SUM and E TOT. (For

20O scintillator E1’s contribution to E TOT was ignored.) Scintillator E1 was then

constrained with the application of a gate similar to step three in the 18O PID. These
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Figure 3.4: a) A 2-D histogram of RF E1 TAC vs. S801 CEN FIT which illustrates
the final step in the 20O identification process. The contaminant appears as the upper
band. b) A projection of the dot-dashed cut in a) onto the T.O.F. axis along with
the projection of the final 20O gate. The contaminant is removed.

two conditions, applied together, were successful in the suppression of all reaction

fragments. However, the beam contaminant which was mentioned in Chapter 2, 17N,

was not fully removed by the application of the first two gates. Therefore, a final

constraint was applied to the parameters representing T.O.F. and raw dispersive

position at the focus, S801 CEN FIT (see Fig. 3.4).

3.1.2 CRDC mask calibration

Trajectory reconstruction for the 18,20O beam particles depends on their positions

and angles at the focus. Deducing this trajectory information required a calibration

of each CRDC detector. To accomplish this, a de-focused beam was sent through the

S800 which then illuminated a “mask” positioned in front of each CRDC. A pattern

emerged in the resulting x and y data from each detector which mirrored that of

the strategically-spaced holes in the mask. The known spacing between the holes

of the mask was then used to calibrate each detector. It should be mentioned that

because the spacing between cathode pads in the CRDCs is known, and their positions

fixed, these detectors are, in a sense, self-calibrated in the dispersive direction. The

dispersive mask calibration is therefore redundant, but a nice verification nonetheless.
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Figure 3.5: Calibrated mask spectra from CRDC1 along with a template of the mask.

3.1.3 Corrections to S800 parameters

TAC corrections

The raw S800 timing parameters displayed shifts, or drifts, over the course of the

experiments. To quantitatively monitor these problems, data was grouped in blocks

according to run number; in general, one inelastic scattering run encompassed about

an hour of uninterrupted acquisition. The mean parameter value over each run was

recorded and, in general, treated as an offset for subsequent analysis.

For example, RF E1 TAC, the raw S800 T.O.F. parameter, deviated by ∼200

channels or ∼2.4 ns over the 18O runs and by ∼250 channels or ∼3.0 ns over the

20O runs (See Fig. 3.6). A slow drift in the RF signal from the K1200 was suspected

as the cause for this problem, as evidenced by a similar problem with MCP timing

which is also measured against the cyclotron’s RF. As will be explained in Sec. 3.2.2,
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Figure 3.6: The mean value of the S800 raw parameter RF E1 TAC for 18O (a) and
20O (b) plotted as a function of the run number. The scale on the y-axis is 12.15 ps/ch.
The fits are included merely to accentuate the trend.

S800 T.O.F. was subtracted from the raw BaF2 times to arrive at a parameter which

represented γ-ray T.O.F.. Because the flight path for γ-rays from the target to the

array was only ∼0.5 m, a 2–3 ns drift in S800 T.O.F. was significant, and therefore

required a correction.

Also significant was a systematic shift in the raw electron drift-time parameter

from CRDC2, S802 TAC, shown as the open squares in Fig. 3.7. This problem, which

has been observed in previous studies using the S800 (e.g., Ref. 10), can be attributed

to a slow improvement of the CRDC fill-gas. Over the course of the experiment, im-

purities in the CF4–C4H10 mix are removed, resulting in a shorter electron drift-time.

Run-to-run fluctuations were also observed in both CRDCs, especially between in-

terruptions in inelastic data-taking (the observable gaps in Fig. 3.7), which typically

arose from technical problems with beam-delivery or the S800. These fluctuations

likely resulted from the magnetic optics of the beam-line or S800 being slightly per-

turbed after each technical failure, causing the beam’s average position and trajectory

to deviate.

As explained earlier, these raw TAC values directly determine the fragment tra-

jectory parameters yf and φf . With a gain on the raw CRDC TAC parameters of

∼1 mm/20 channels, the systematic drift of CRDC2 was a significant, >1 cm effect,
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Figure 3.7: The mean value of the raw CRDC drift time parameters plotted as a
function of the 20O run number. A systematic shift is observed in CRDC2. Also
observed are small fluctuations from run-to-run in both detectors.

while the run-to-run fluctuations in both detectors were on the order of 1 mm. There-

fore, the raw TAC parameters from both CRDCs were modified. The mean value over

the run was subtracted, so that each CRDC TAC distribution was centered around

y=0.

Angular corrections

After removing effects related to fluctuations or drifts in raw time parameters, the

S800 reconstruction, as explained in Sec. 2.1.1, produced reliable results. Parameters

θt and φt, which represented the angular trajectory of the inelastically-scattered pro-

jectile as it left the target, were calculated from parameters measured at the focus. Of

importance, however, was the fact that the beam, in general, impinged on the target

at an angle which slightly deviated from the z-axis (against which the angles θt and

φt were measured). Therefore, a calculation of the polar scattering angle, Θs, from

the dispersive and non-dispersive angles θt and φt, introduced undesirable systematic

error. Because knowledge of Θs was important for comparisons with the simulation
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Table 3.1: The beam’s dispersive and non-dispersive angular offsets.

18O 20O
Runs θt (mrad.) φt (mrad.) Runs θt (mrad.) φt (mrad.)
33–38 -3.8 – 91–95 5.5 -5.6
43–54 -13.6 – 100–112 5.3 -5.7
61–65 -15.1 – 119–125 5.3 -5.8

127–136 5.3 -5.8
138–154 5.3 -5.5
156–160 5.1 -5.7
175–181 5.1 -5.7
191–195 4.9 -5.5

Figure 3.8: Uncorrected 20O θt (a) and φt (b) distributions for runs 91–95, shown with
elastic distributions which were recorded immediately before. Notice that the S800
singles events can also be used to monitor the beam. (Normalization is arbitrary.)

(to be described in detail in Chapter 4), a correction was implemented which related

θt and φt to the true beam axis.

Table 3.1 lists the dispersive and non-dispersive beam offsets over all inelastic

scattering runs for both experiments. For the 18O study, the position of the beam

in θt and φt for the elastic scattering runs, recorded before each subset of inelastic

scattering runs, was used to determine the offsets. For the case of 20O, however, elastic

scattering was monitored less frequently. Thus, the beam offsets for 20O inelastic runs

were monitored using S800 singles events, which had distributions that were quite

similar to those for elastic scattering. This fact is evidenced by Fig. 3.8, which shows

uncorrected dispersive and non-dispersive angular distributions for the subset of 20O
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runs recorded closest to an elastic scattering run.

3.1.4 Effects of the beam blocker on θf,t

Though vital for the success of the experiment, the presence of the beam blocker in

the focal plane nonetheless complicated the resulting angular information obtained.

While, in principle, the presence of the blocker should not introduce asymmetry to

the non-dispersive angular distributions, φf,t, the same cannot be said for dispersive

angular distributions, θf,t (e.g., see Fig. 3.8a). Fig. 3.9 naively illustrates the effect

of the blocker. From this representation it follows that for the envelope of projectile

trajectories which have the same energy-loss, E1, at which the blocker is positioned,

half of the dispersive angular distribution, or all θ < θ1, will be blocked from reaching

the focus. Additionally, for trajectories of less-energetic projectiles, represented by

the E2 envelope, the blocker removes less of the distribution.

To minimize non-dispersive asymmetry attributed to use of the blocker, the mag-

netic field of the S800 was slightly perturbed in an effort to move its focus slightly
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Figure 3.10: 18O dispersive angular distributions, binned by projectile energy-loss. In
general, the blocker removes roughly half of the distributions. However, notice the
slight increase in counts below 0 mrad. for increasing energy-loss.

upstream so that it coincided with the plane containing the blocker. As can be ver-

ified by redrawing Fig. 3.9 with a shifted focus, assuming a blocker of infinitesimal

thickness, this process, ideally, would have the effect of completely eliminating the

θf,t asymmetry. Likely due to a combination of finite blocker thickness and imperfect

refocusing, however, asymmetry in the non-dispersive angular distributions persisted.

In fact, Fig. 3.10, which shows 18O dispersive angular distributions binned by pro-

jectile energy-loss and normalized to the region of positive θt, would tend to indicate

that the effect demonstrated in Fig. 3.9 is experimentally observed – notice that there

are relatively more counts below 0 mrad. for increasing energy-loss.

3.2 γ-ray analysis with the ORNL-TAMU-MSU

BaF2 Array

3.2.1 Energy calibration

For the experiments, the detectors had been approximately gain-matched by their

applied voltages so that they would be capable of digitizing signals from γ-rays up

to an energy of ∼40 MeV. To make reasonable conclusions from the data, the arrays
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Figure 3.11: Examples of raw 88Y (a) and PuBe (b) calibration data for the same
detector. After fitting the spectra in the regions shown, assuming Gaussian-like photo-
peaks on top of linear backgrounds, the photo-peak positions are recorded. Note the
appearance of the single and double-escape peaks in (b).

had to be more-precisely calibrated in energy. For reasons that will become evident in

Sec.3.4.3, it was sufficient to rely on source calibrations using 88Y, which provided two

γ-rays with energies of 0.898 and 1.836 MeV, and PuBe, which emits a 4.438 MeV

γ-ray.

Examples of raw calibration spectra for a detector which displays particularly good

resolution are shown in Fig. 3.11, along with Gaussian photo-peak fits that have been

generated assuming linear backgrounds in the regions shown. Two “escape peaks” are

visible in Fig. 3.11b because the process of pair-production, (to be discussed in more

detail in Sec. 3.2.3), competes with the photo-electric effect in the BaF2 crystal.

While only one PuBe calibration was performed at the end of the experiments,

many 88Y calibrations were performed at regular intervals to monitor time-dependent

gain fluctuations in the individual detectors. With the assumption that the relation-

ship between the 4.438 MeV signal-height and that for both 88Y γ-rays be preserved,

it was possible to simply extrapolate the 4.438 MeV photo-peak position from the

associated 88Y calibration data. A linear regression fit using the two 88Y calibration

points and the extrapolated PuBe value then established the precise gain and offset

for each detector, as in Fig. 3.12. The general rule for analyzing the S800+γ-ray co-

incidence data, then, was to calibrate the arrays with 88Y data gathered nearest in
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Figure 3.12: Sample calibration fits for detectors 135 and 202. Notice the linear re-
sponse of the detectors in this energy region.

Figure 3.13: 88Y (a) and PuBe (b) calibration data taken simultaneously for detec-
tors 135 and 202, which shows the difference between a detector with good energy
resolution and one with poorer resolution.

time to the current inelastic run.

The energy resolution of the detectors in the arrays varied substantially detector-

to-detector, as depicted in Fig. 3.13. Detector 135, which has particularly good res-

olution of ∼7.3% FWHM at 4.44 MeV, is shown with data taken simultaneously for

detector 202, which displays much poorer resolution. Notice that the escape peaks

visible for detector 135 in Fig. 3.13b are not resolved for detector 202.
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Cyclotron

RF

Figure 3.14: 18O BaF2 time spectra for selected detectors. The peak at 100 ns results
from the projectile-correlated events of interest. Overlay-ed on top of this time corre-
lated time peak is a background which displays the periodicity of the cyclotron RF.
The detector in the backward (BWD) array sees very little background as compared
with the inner detector in the forward (FWD) array.

3.2.2 Background suppression

The individual BaF2 TDC coincidence gates were such that, on average, peaks from

four consecutive beam bursts were visible in the S800+γ-ray time data. One of these

peaks, the most intense, contained the events of interest, namely the projectile-

correlated γ-ray events, while the others were the result of neutrons or low-energy

γ-rays detected in the array in coincidence with uncorrelated, or random, projectiles

arriving at the S800 focus. Because these random projectiles could come from the

same or other beam bursts with equal probability, the random feature of the indi-

vidual time spectra was of periodic structure, mirroring that of the cyclotron’s RF.

Some sample time spectra are shown in Fig. 3.14 from strategically selected detec-

tors. Notice the inner detector (closer to the beam pipe) of the forward (FWD) array

has counted many more background events than either the outer FWD detector or

the detector from the backward (BWD) array. Moreover, the periodic structure of

the background for the BWD detector has almost disappeared. This is evidence that

neutrons were the dominant background contribution, since they would tend to be

emitted at forward angles.
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T.O.F. analysis

Flight-time constraints could be used to minimize contributions from these random

events in the array. A calibration of the individual BaF2 spectra which made use of

the periodic feature of the random background was first performed. The calibration

offsets were adjusted to line up the individual projectile-correlated time peaks. As

was explained in Sec. 2.2.3, BaF2 times were measured between S800 master gate,

which served as a common start for all detectors, and the individual detector’s thresh-

old trigger. Therefore, the raw BaF2 times were dependent on the projectile’s flight

time through the S800. Higher-resolution T.O.F. parameters could be constructed

by subtracting this S800 flight time from the individual BaF2 calibrated time pa-

rameters. Specifically, an event’s RF-to-array flight time, T.O.F.(RF–Array), could be

reconstructed using the following:

T.O.F.(RF–Array) = CBAFT − a × RF E1 TAC + b .

Here CBAFT is the calibrated BaF2 time parameter, a is a gain-matching constant,

and b is some arbitrary offset.

Since the momentum spread of the beam in the case of the 18O study was nar-

row, the beam’s flight from the K1200 to the target introduced very little additional

spreading. Therefore, for the 18O experiment, the calculated T.O.F.(RF–Array) essen-

tially differed from the T.O.F.(Targ.–Array) by only a constant, i.e.,

T.O.F.
18O
(RF–Array) ' T.O.F.

18O
(Targ.–Array) + Const.

A comparison of the resulting T.O.F.(RF–Array) data for 18O and 20O, as in Fig. 3.15,

verifies the expected result that the prompt, projectile-correlated γ-ray peak is better-

resolved in the primary beam experiment with 18O. Recall, however, that the multi-
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Figure 3.15: A comparison of the calculated T.O.F.(RF–Array) parameter for 18O with
that for 20O, summed over contributions from all detectors. The 20O data has been
normalized to the 18O such that the area under the prompt-γ peaks is roughly equiv-
alent. A γ-ray energy constraint was implemented to minimize the spreading due to
LED walk. Notice that the projectile-correlated γ-rays are better resolved in the 18O
data.

channel plate timing detectors were introduced into the 20O set-up for precisely this

reason.

Better resolved flight-time parameters, T.O.F.(MCP1,2–Array) are, in principle, at-

tained by using the relation,

T.O.F.(MCP1,2–Array) = CBAFT − T MCP1,2 + b ,

since T MCP1,2, the individual multi-channel plate timing signal, is measured in ref-

erence to the S800 master gate. These parameters measure flight-time that is directly

tagged with the beam projectile at the position of the MCP detector. The approxi-

mate relation,

T.O.F.(MCP1,2–Array) ' T.O.F.(Targ.–Array) + Const. ,

is therefore restored. The closer the individual multi-channel plate detector is located

to the target, the better this approximation, since, in reality, the constant which
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equates the two T.O.F. parameters is dependent on the individual beam-particle’s

velocity.

In practice, however, it was difficult improve, resolution-wise, on the T.O.F.(RF–Array)

results obtained for the 20O study. Efficiency losses of ∼52% and ∼88% in MCP1 and

MCP2, respectively, resulted in much poorer statistics for the individual MCP T.O.F.

measurements, introducing more inherent error in the prompt-γ alignment process.

For reasons that will become clear in Sec. 3.4.3, constraints placed on T.O.F.(RF–Array)

were found to be sufficient. Being no longer dependent on the multi-channel plate de-

tectors, a ∼100% increase in overall 20O counts was regained, which was beneficial.

Fast vs. slow gating

Use of “Fast vs. slow gating,” which takes advantage of Barium Flouride’s PSD ca-

pabilities (described in Sec. 2.2.2), was also useful for background suppression. γ-rays

were separated from neutrons (charged-particles) when detector’s fast QDC signal was

plotted against the calibrated slow QDC signal, as shown in Fig. 3.16. The γ-rays ap-

pear as the streak found just above that of the neutrons which becomes visible near

10 MeV. It is worthwhile to mention that the neutrons which are discernible have ac-

tually undergone collisions with protons in the BaF2 crystal; it is the moving protons
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Figure 3.16: A comparison of a fast vs. slow 2-D histograms generated for a particular
BaF2 forward detector using data from the 18O (a) and 20O (b) study. Neutrons appear
below the γ-rays on these plots. A relative increase in neutrons is observed for the
case of 20O.
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Figure 3.17: A gate placed a 2-D plot of calibrated BaF2 energy vs.T.O.F.(RF–Array)

(a) is used to constrain the 18O fast vs. slow histogram from Fig. 3.16, which appears
as (b) here. It’s apparent that the random background is made of mostly neutrons
and lower-energy γ-rays.

which interact, creating light pulses. A comparison of a fast vs. slow 2-D histogram

generated with 18O data against that generated with 20O demonstrates, as expected,

that more neutrons were present for the secondary beam experiment.

The claim that neutrons and low-energy γ-rays dominated the random background

is verified by a comparison of Fig. 3.16a with Fig. 3.17b. The T.O.F.(RF–Array) gate

shown in Fig. 3.17a, placed just to the right of the prompt γ-ray peak, has been used

as a constraint in generating the fast vs. slow plot in Fig. 3.17b. The streak resulting

from neutrons has been enhanced relative to the γ-ray band by application of this

gate, while, on average, the γ-rays are of lower energies.

3.2.3 Shower reconstruction

γ-ray events, having been selected by use of T.O.F.-gating in tandem with the ap-

plication of fast vs. slow gating, were analyzed using shower reconstruction, which

is the summing of energy that is simultaneously deposited in neighboring BaF2 de-

tectors. In general, the process of converting photons to fast electrons, which are

ultimately responsible for light production in the BaF2 crystals, is complex. Essen-

tially three types of interactions compete to produce these fast electrons, namely the
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photo-electric effect, Compton scattering, and electron-positron pair production [19].

The photo-electric effect, which typically dominates for photon energies under ∼1

MeV, is the process by which the photon is absorbed in an atom of the crystal and then

replaced by an energetic electron which has been displaced from the atom’s K shell.

The electron, therefore, carries away the photon’s energy minus the K shell binding

energy (∼10 keV) in the form of kinetic energy. Compton scattering dominates in

the region of ∼1–10 MeV. This process can be thought of as the scattering of the

incident photon from an atomic (essentially free) electron, which then recoils, carrying

away a portion of the original photon’s energy. The Compton scattering process is

represented by

E ′

γ =
Eγ

1 + Eγ

m0c2
(1 − cos θ)

, (3.1)

where Eγ and E ′

γ are the energies of the incident and outgoing photon, respectively,

m0 is the electron rest energy (0.511 MeV), and θ is the angle of the outgoing photon

with respect to the incident photon’s direction. Notice that at maximum electron

recoil, which occurs at θ=π, the photon retains a portion of it’s initial energy.

The last of the competing processes, pair-production, dominates for higher-energy

γ-rays. The incident photon is replaced by an electron-positron pair such that total

momentum and energy is conserved. For this to be energetically possible, the incident

photon must have an energy of at least 1.02 MeV, or twice the electron rest mass.

The positron eventually slows in the crystal and then annihilates with an electron,

causing the emission of back-to-back 0.511 MeV photons. Pair production is therefore

responsible for “escaped” 0.511 MeV photons, when one or both of these annihilation

photons leaves the boundary of the absorbing crystal and is lost. This was the cause

of the escape peaks which were visible in Fig. 3.13.

For a given photon which was incident on the array, then, the competition from
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Figure 3.18: The number of detectors participating, or the cluster multiplicity, binned
by incident γ-ray energy in steps of 2 MeV for photons provided by the 20O experi-
ment. The data from energy bins above 2 MeV has been normalized to the 0–2 MeV
bin for multiplicity=1 events. Average cluster multiplicity increases with incident
photon energy.

these photon-to-electron conversion processes caused energy to be deposited in more

than one detector simultaneously. A single incident photon, therefore, could result

in a cluster, or shower, of neighboring “hits” over which the photon’s energy was

distributed. On average, as expected, the number of participating detectors increased

with photon energy. This trend is evident in Fig. 3.18, which shows detector multi-

plicity binned as a function of incident photon energy for sample 20O data.

Photo-Peak

Single-Escape

Double-Escape

Figure 3.19: Sample PuBe calibration data showing the improvement of the array
response when shower reconstruction is employed. Notice that counts have been ef-
fectively “put back” into the photo-peak.
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Shower reconstruction, on an event-by-event basis, therefore vastly improved the

response of the BaF2 arrays. Its importance is visually demonstrated by Fig. 3.19

which shows sample PuBe energy calibration data that has been expanded in the

region near the 4.438 MeV photo-peak and the neighboring escape peaks for data

taken with and without multiple-hit energy reconstruction.

3.2.4 Doppler correction

Also important to γ-ray energy reconstruction for these experiments was Doppler

correction. Photons which originated from 18O and 20O nuclear de-excitations were

emitted in reference frames which were moving at relativistic velocities (β ' 0.4) with

respect to the laboratory coordinate system. The well known Doppler shift equation

(e.g., Ref. 16) describes the relationship between the γ-ray energy in the rest (E ′

γ)

and laboratory (Eγ) frames:

E ′

γ = γEγ(1 − β cos θ) . (3.2)

Above, θ is the angle of the emitted photon with respect the rest-frame’s direction in

the laboratory frame, and

γ =
1

√

1 − β2
. (3.3)

The inherent segmentation of the array allowed for a determination of the angle

θ. For example, the detector within an event cluster recording the largest energy

signal, labeled as the “primary” detector, could be taken as the detector in which

the incident photon interaction occurred. To a first approximation, the position of

the center of the face of the primary detector then gives the interaction point of the

incident photon. An assumption is then made that all projectiles initially travel along

the beam axis. In principle, improvement on the angle determination is achieved by
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Figure 3.20: A representation which describes how the γ-ray emission angle, θ, was
determined event-by-event.

considering the energy distribution for participating detectors within a cluster. As

depicted in Fig. 3.20, for the experiments, the interaction position of the incident

γ-ray in the plane transverse to the beam-line was actually determined by energy-

weighting over participating detectors. As a further improvement, the interaction

position along the beam-line was found using the statistical average for the primary

detector which had been determined with help from simulation. (The simulation,

which was performed using a Geant [3] environment, will be described in detail in

Chapter 4.) Likely due to the low average cluster multiplicity which was observed in

these studies (as given in Fig. 3.18), these θ-determination improvements had barely-

measurable effects on the resulting Doppler-corrected data.
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3.3 Beam rate monitoring with the MCP detec-

tors

Aside from aspects related to projectile-correlated γ-ray timing, an additional impetus

for the inclusion of the multi-channel plate (MCP) timing detectors into the 20O

experimental set-up was the desire to count the incoming beam projectiles. This

information is especially useful for converting experimental γ-ray yields into units of

photon scattering cross section, which are more informative in the sense that they

are universal. The extraction of a true 20O counting rate from either MCP detector,

NMCP, in principle, involves the determination of its counting efficiency, ε, since

NMCP =
P · D · nMCP

ε
, (3.4)

where nMCP is the raw MCP counting rate, P is the purity of the secondary beam and

D is the inverse of any down-scaling factor that applies. For this experiment, ε could

be determined by comparing the S800 (CRDC) counting rate with that of the MCP

for target-in, blocker-out sets of data. Unfortunately, only one such target-out (elastic

scattering) run was recorded on tape at the beginning of the 20O experiment, thereby

allowing for only one determination of the MCP efficiencies. After calculating the

run-by-run integrated number of beam particles for each detector, using the method

prescribed above, it became immediately obvious that the MCP detectors displayed

some unpredictable behavior. Specifically, a comparison of the run totals from each

detector, run-by-run, revealed inconsistencies that could only have been caused by

large counting efficiency fluctuations in both detectors, unfortunately deeming any

counting information from these detectors unreliable.
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Figure 3.21: T.O.F. vs. energy for 18O data showing the prompt γ-ray gate along with
the shifted gate which samples the background.

3.4 Experimental results

3.4.1 Random background removal

As was explained in Sec. 3.2.2, high-resolution T.O.F. parameters were constructed

for prompt γ-ray selection, therefore minimizing the random contribution to sub-

sequent BaF2 analysis. However, by virtue of the BaF2 coincidence window-length

which included several beam bursts, resulting in the periodic structure for the ran-

dom events, it was possible to sample the random contribution within the prompt-γ

gate by simply shifting the T.O.F. gate by one RF period. As an example, Fig. 3.21

shows the placement of the prompt and shifted gates on 18O T.O.F. vs. energy data.

3.4.2 S800–BaF2 energy correlation

Appropriately, final event selection involved placing simultaneous energy constraints

on the S800 and BaF2 results. It was required that projectile energy-loss, as measured

with the S800, be correlated with reconstructed, lab-frame, γ-ray energy. Examples of

this selection process are given in Fig. 3.22, which shows data from both the 18O and

20O study (plots (a) and (c), respectively). Projectile energy loss is on the vertical

axis while γ-ray energy captured in the forward array is plotted on the horizon-
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Figure 3.22: Shows the final event selection for the 18O (a) and 20O (b) studies. A
gate is drawn on a projectile energy-loss vs. reconstructed, forward, laboratory-frame,
γ-ray energy histogram. The same gate is placed on equivalent histograms generated
with the shifted time gates, (c) and (d).

tal. Note the enhancement of events appearing along the diagonal, which represents

cases where projectile energy-loss is fully-recovered in the array. This final energy

constraint was inclusive of events falling left of the diagonal, which resulted specif-

ically from cascade decays whereby the projectile’s de-excitation process proceeded

through an intermediate state; one (or more) of the resulting γ-rays was not detected.

Also included in Fig. 3.22 (plots (c) and (d)) are equivalent spectra which have been

generated with shifted T.O.F. gates. These histograms therefore represent the back-

ground which has been unavoidably included in (a) and (b). All data included within

these energy gates was then projected onto the Doppler-corrected BaF2 energy axis.

Examples are given in Fig. 3.23, plotted on a logarithmic scale. A subtraction of the

random-gated spectrum from the prompt-γ-gated spectrum produced the final results

for these experiments.
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Figure 3.23: Projection of events included within energy gates shown in Fig. 3.22 onto
the Doppler-corrected axis for the 18O (a) and 20O (b) experiments.

3.4.3 18O and 20O strength distributions

The effectiveness of this background removal technique is demonstrated by comparing

the final background-subtracted strength distributions with equivalent data generated

using less constraining background suppression. Fig. 3.24 shows the final, Doppler-

corrected, experimental results for both studies (black) along with data generated

entirely without the use of fast vs. slow gating (red) and also with data generated

using widened T.O.F. gates (blue). More specifically, the T.O.F. gates used for these

blue curves were expanded to encompass the width of the an entire beam burst.

Impressive is the fact that no difference in the final result is observed when the

background suppression techniques are relaxed. This allowed, for example, greater

timing flexibility with the 20O experiment, which justified the decision not to rely on

the multi-channel plate detectors for higher-resolution timing.

Note the appearance of the pronounced peaks at ∼2 and ∼1.7 MeV in the 18O and

20O strength functions, respectively. These peaks resulted from de-excitations from

the first-excited 2+ states, which produce γ-rays of 1.98 MeV for 18O and 1.67 MeV

for 20O [34, 35]. Observation of these peaks at the proper location in energy is ex-

perimental verification of the Doppler-correction process and of proper identification

of the projectiles. Broader structures were observed at energies above the sharp 2+
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Figure 3.24: Shown in black are the final, Doppler-corrected, experimental strength
distributions for 18O (a) and 20O (b), respectively. For comparison, the same results
are obtained with no fast vs. slow gating (red) and with widened T.O.F. gates (blue).

states but below the neutron separation energies, Sn (8.044 and 7.608 MeV for 18O

and 20O, respectively). These wider peaks were the result of contributions from sev-

eral, higher-lying, discrete projectile levels in addition to a background contribution

from excitations of the first-excited 2+ in the 208Pb target (4.085 MeV) [23]. The tar-

get contribution becomes more evident when looking at the green curves of Fig. 3.24,

which are the non-Doppler-corrected distributions, since the target can be considered

at rest in the laboratory.

As alluded to in Sec. 1.1, evident in Fig. 3.24 is the fact that essentially no appre-

ciable statistics were gathered for γ-rays of energy greater than Sn for either study.

This was the direct result of the cross-section for GDR Virtual Photon Scattering

being too low given the available beam currents and energies. In addition, at the time

the experiment was proposed, the acceptance of the S800 had been overestimated.

(An analysis pertaining to this topic will be the subject of Sec. 5.2). To interpret the

experimental results, draw conclusions, and ultimately make comparisons regarding

dipole strength in these two nuclei, it was necessary to focus on the region in en-

ergy of the discrete transitions, where other virtual excitation-photon multipolarities

were contributing. To this end, a Monte Carlo simulation was utilized which included
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Figure 3.25: Final 18O (a) and 20O (b) angular distributions. The φt distributions,
as expected, are relatively symmetric, while the blocker distorts the θt distributions.
Approximate acceptance cuts are visible in the θt distributions.

Coulomb excitation formalism into the useful environment provided by Geant [3],

which could simulate BaF2 detector response.

Important information stood to be gained from a more detailed analysis, as the

the level structure of 20O has not been well explored. As was mentioned in Chap-

ter 1, with the exception of that for transitions from the first-excited state in 20O, no

reduced transition probability (B(Eλ)) values, which are critical for Coulomb excita-

tion calculations, have been measured previously [26]. Additionally, knowledge of the

level scheme for negative-parity states in 20O is incomplete. Results from the analysis,

therefore, emerged after making appropriate adjustments to theoretical predictions

for specific states in 20O. Important B(Eλ) information was obtained for 20O, along

with the observation of previously unmeasured 1− states. All important details of the

analysis involving the Monte Carlo simulation of these experiments will be explained

in Chapter 4.

3.4.4 18O and 20O angular distributions

The final experimental angular distributions are shown in Fig. 3.25. The θt data

shows S800 acceptance cuts at approximately 20 mrad which is ∼2/3 of the expected
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Figure 3.26: Comparison of Doppler-corrected strength distributions obtained after
gating on the specified regions in φt for 18O (a) and 20O (b). The constraint, θt > 0.0,
was used in generating these histograms. The curves shown in red and green have
been normalized to the data represented in blue.

value. The more-limited acceptance observed in the φt distributions, meanwhile, is a

result of the angular constraint from the momentum slits. It should be noted that the

non-dispersive distributions, as anticipated, are reasonably symmetric. Unexpected,

however, are the differences between these φt distributions for the two experiments.

Specifically, the 18O φt distribution is single-peaked, while that for 20O exhibits the

expected double-peak. (Double-peaking is expected because the differential Coulomb

excitation cross sections for all projectile and target states are zero at ϑ = 0.) As

will become evident in Chapter 4, the difference can be explained when the overall

shape of the S800+blocker acceptance as observed in (θt, φt) space is considered. This

2-dimensional acceptance contour for the case of 20O is more symmetric about φt = 0

than it is for the 18O study.

Fig 3.26 shows final strength distributions generated after gating on different

regions of the non-dispersive angular distribution for both 18O and 20O. The slight

differences which are noticeable (especially for 20O) are due to the differing shapes

of the angular distributions for the discrete excitations which are contributing. For

example, excitations occurring via absorption of E1, E2 and E3 photons are each

described by characteristic angular distributions.
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Chapter 4

Interpretation of experimental

results

To gain a better understanding of the experimental results for this study, and ulti-

mately extract information regarding dipole strength in the discrete region of 20O,

a Monte Carlo simulation was developed and employed. The simulation made use

of the intermediate-energy Coulomb excitation formalism discussed in Chapter 1 to

incorporate the inelastic excitation processes which occurred in both the projectile

and the target. This treatment was adequate since inelastic nuclear processes are neg-

ligible given the small acceptance for these experiments (∼1◦ in the lab-frame). γ-ray

analysis was performed by the realistic radiation detection code Geant [3], which

was developed at CERN (Geneva, Switzerland). Geant’s capabilities are such that

the γ-ray detection materials and geometries which were specific to the current study

could be defined rather conveniently. S800 resolution constraints were applied to out-

going projectile angles and energies so that appropriate energy gates and angular

acceptance cuts could be placed on the simulated events.

Because all quantities which are relevant to Coulomb excitation and subsequent

γ-ray decay (such as spin and energy of states, B(Eλ) information, and γ ray de-
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cay branching) are known for 18O, appropriate adjustments could be made to the

simulation upon comparison with the actual 18O experimental results. A confident

extension of the simulation to the 20O case, with help from theoretical predictions,

could then follow. Using a comparative analysis of simulated against experimental

data, quantitative interpretations of the 20O results were possible.

4.1 The simulation

4.1.1 Selection of the excitation channel

As was made evident by the comparison of total excitation cross section information

in Sections 1.3 and 1.4, it was essential that target excitations be included into the

analysis. The process of assigning an excitation channel in either the projectile (A)

or the target (B), event by event, was consistent with the relative probabilities, P A
n

and PB
n′ calculated from total cross section information.

PA
n =

σA
n

∑

n σA
n +

∑

n′ σB
n′

; PB
n′ =

σB
n′

∑

n σA
n +

∑

n′ σB
n′

. (4.1)

Defined in such a way, the probabilities given above have the convenient property,

∑

n

PA
n +

∑

n′

PB
n′ = 1 . (4.2)

In Eq. 4.1 σA
n (σB

n′) represents the total Coulomb excitation cross section for the nth

(n′ th) excited state in the projectile (target) obtained by an integration over ϑ of

the corresponding differential cross section expression, dσA
n /dϑ (dσB

n′/dϑ), to some

(C.M.-frame) maximum angle, ϑA
n,max (ϑB

n′,max). This maximum center-of-mass angle

was calculated from a corresponding laboratory-frame angle, which was chosen to be

well-beyond the experimental acceptance. In general, the relationship between the
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scattering angle in the two frames contains a dependency on the excitation energy

(see Appendix A) so that, for example,

ϑA
i,max = ϑA

i,max(E
∗

i , θ
lab
max) 6= ϑA

j,max = ϑA
j,max(E

∗

j , θ
lab
max) .

However, the fact that the excitation energies for the states in this study were small

in comparison with the kinetic energy of the projectile allows

ϑA
i,max ' ϑA

j,max .

Therefore, in practice, the integration limits which went into the determination of the

total cross section were the same for all states in the projectile and the target.

The differential cross section expressions, dσA
n /dϑ and dσB

n′/dϑ, themselves were

calculated from the expressions provided by Eq. 1.5 since

dσ

dϑ
= 2π sin ϑ

dσ

dΩ
. (4.3)

Computational efficiency was improved by simplifying these calculations so that they

were evaluated only for discrete values of ϑ, in steps of 0.1 mrad. Specifically, using

the example of projectile excitations, for any given stepwise value of ϑ, the differential

Coulomb cross section was calculated by

dσA
n,λ

dϑ
= C(λ, n) B(Eλ, 0 → n) F (ϑ, ξ(n), λ) , (4.4)

where the quantity, F , defined through

F (ϑ, ξ(n), λ) = sin ϑ
dfEλ(ϑ, ξ(n))

dΩ
, (4.5)

had been tabulated beforehand using Mathematica [36]. Explicit forms for the dif-
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Figure 4.1: Schematic representation of the selection of a particular step in the decay
sequence. A random number has been used to select the transition whereby the pro-
jectile goes from the 6th to the 2nd excited configurations. This process is repeated
until the nucleus reaches the ground state.

ferential cross section functions, dfEλ(ϑ, ξ(n))/dΩ, appearing in Eq. 4.5 can be found

in Appendix B. Meanwhile, direct comparison with, for example, Eq. 1.1 provides the

definition for the multiplying factors:

C(λ, n) = 2π

(

ZBα

β

)2

a(n)−2λ+2 . (4.6)

For target excitation, one need only replace ZB with ZA in the above expression.

4.1.2 Selection of the de-excitation path

The simulation included known or estimated γ-decay branching information for the

contributing states in the projectile and the target. Specifically, for the selection of

the decay from state n to a particular, less-energetic state m (m < n), a random

number was first selected on the limit 0 to 1. This random number was compared

against the branching probabilities from this excited configuration, denoted here for

the projectile as P A
n→m, in a way that is schematically represented by Fig. 4.1. Of

course, the branching probabilities themselves are defined such that

n−1
∑

m=0

PA
n→m = 1 ;

n′
−1
∑

m′=0

PB
n′→m′ = 1 .

This process was repeated at each intermediate decay step until the excited-nuclei’s

specific path back to its ground state was determined.
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DO NOT MODIFY THE FORMAT OF THIS FILE!
__________________________________________  *************************************************

***EXCITATION***                          * O18_GSTATES.DATA       E.J.T.    1.12.01      *
S#  E_ex  L  dfEl dist. file      B(EL)     * This file contains the information that GEANT *

(MeV)      (18 chars)      e^2*fm^(2L)  * will need to determine prob.'s and branching  *
__ ______ _ __________________ ___________  *************************************************
1  1.98  2 o18_dfE2_1.98.data 4.65000E+01
2  3.92  2 o18_dfE2_3.92.data 2.00000E+01
3  4.46  1 o18_dfE1_4.46.data 4.00000E-06
4  5.10  3 o18_dfE3_5.10.data 1.12000E+03
5  5.25  2 o18_dfE2_5.25.data 2.98000E+01
6  6.20  1 o18_dfE1_6.20.data 1.90000E-03

__________________________________________________________________________________________
***DECAY/BRANCHING***     ORIGINAL ESTIMATES FROM REF: D.R. Tilley (NPA 1995)

C# S#  E_ex  to# Br. Prob.to# Br. Prob.to# Br. Prob.to# Br. Prob.to# Br. Prob.to# Br. Prob.
(MeV)     (1=100%)     (1=100%)     (1=100%)     (1=100%)     (1=100%)     (1=100%)

__ __ ______ __ _________ __ _________ __ _________ __ _________ __ _________ __ _________
1  0  0.00   0   0.000    0   0.000    0   0.000    0   0.000    0   0.000    0   0.000
2  1  1.98   1   1.000    0   0.000    0   0.000    0   0.000    0   0.000    0   0.000
3  0  3.55   2   1.000    0   0.000    0   0.000    0   0.000    0   0.000    0   0.000
4  0  3.63   2   0.997    1   0.003    0   0.000    0   0.000    0   0.000    0   0.000
5  2  3.92   2   0.876    1   0.124    0   0.000    0   0.000    0   0.000    0   0.000
6  3  4.46   4   0.704    2   0.271    5   0.025    0   0.000    0   0.000    0   0.000
7  4  5.10   2   0.761    5   0.176    3   0.063    0   0.000    0   0.000    0   0.000
8  5  5.25   2   0.559    1   0.303    5   0.087    6   0.030    3   0.011    4   0.010
9  0  5.34   2   0.580    6   0.420    0   0.000    0   0.000    0   0.000    0   0.000

10  6  6.20   1   0.887    6   0.041    8   0.036    4   0.025    9   0.011    0   0.000
__________________________________________________________________________________________

*ADDITIONAL COMMENTS MAY BE ADDED HERE*

Figure 4.2: Sample input file for the 18O simulation which gives all relevant excitation
and decay information for the projectile. A similar file serves as input to the code for
target excitations.

The information which the simulation code used to select both the excitation

channel and de-excitation path was incorporated into two input files, one containing

information for the projectile, and the other giving target information. A sample input

file is included in Fig. 4.2 which shows the ease with which necessary changes could

be made to any excitation or de-excitation input field.

4.1.3 Projectile scattering

On an event-by-event basis, after selecting the excitation channel based on total exci-

tation cross section information and the de-excitation cascade using γ-decay branch-

ing information, it was necessary to assign the projectile center-of-mass scattering an-

gles, ϑ = θA′,cm and φA′,cm. Since the differential cross section expressions are indepen-

dent of the azimuth, φA′,cm, this angle was chosen randomly over the range (0 → 2 π).

For the selection of ϑ, the so-called Monte Carlo rejection method was utilized, which
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Figure 4.3: Comparison of normalized Monte Carlo-generated 18O angular distribu-
tion with the corresponding differential cross section function, dσEλ(ϑ, ξ)/dϑ, as gen-
erated using Mathematica for the: a) 1−

2 state b) 2+
2 state c) 3−1 state.

involved a simple prescription. Two random numbers were chosen: The first repre-

sented the abscissa, xran, which falls somewhere in the domain, xmin ≤ xran ≤ xmax,

over which the probability function being generated, P (x) (in this case the differential

cross section), was defined. The second random number yran took on values between 0

and ymax, where ymax is the maximum value of the probability function over its limits.

A simple comparison of yran against P (xran) followed. The event, characterized by

the physical observable xran, was generated if and only if yran ≤ P (xran).

Possessing limited knowledge of the differential cross section for a given excitation

channel, as it was tabulated only at discrete values of ϑ, it was necessary to use a

cubic spline interpolation to evaluate, approximately, the cross section distributions

for any random value of ϑ from 0 to ϑA
n,max ' ϑB

n′,max = ϑmax. This interpolation

method, by design, created approximate differential cross section functions within

the intervals which were smooth in the first derivative and continuous in the second

derivative. Details on the subject of spline interpolation formalism can be found in

Ref. 25. Particular examples of generated angular distributions are shown in Fig. 4.3
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for three particular states in 18O. For comparison, the actual differential cross section

functions generated with Mathematica also appear in this figure.

Having determined the spherical scattering angles for the projectile in the center-

of-mass, a straightforward application of equation Eq. A.15 allowed for a calculation

of θA′,lab. Meanwhile, φA′,lab was found with greater ease – because the azimuthal angle

is determined by projectile motion which is transverse to the direction of the C.M.

motion, it follows that

φA′,cm = φA′,lab .

4.1.4 γ-ray decay

Finding the lab-frame momenta for emitted γ-rays

For simplification, the assumption that the process of γ-ray decay was isotropic in the

spherical emission angles θγ and φγ was adopted for both projectile and target de-

excitations. (In reality, each γ-ray decay is associated with its own multipole-specific

angular distribution – see, e.g., Ref. 1.) For each decay, this was facilitated using a

set of random numbers, 0 ≤ RAN 1,2
γ ≤ 1, such that

φγ = 2 π RAN1
γ ; θγ = arccos (2 RAN 2

γ − 1) . (4.7)

For the specific case of projectile γ-ray decay, an isotropic treatment demanded that

these angles be chosen in the frame where the projectile was at rest. Justified by

the assumption that the target was stationary, the emission angles for target decay,

meanwhile, were measured directly in the laboratory coordinate system.

Because Geant event-generation required knowledge of the momenta of the emit-

ted γ-rays in the laboratory frame, target decay events needed no further analysis.

However, the case of projectile decay was more complex since the emission occurred
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from a moving frame. It was necessary to first relate the chosen emission angles in

the projectile rest frame, θγ,proj. and φγ,proj., to the corresponding angles in the non-

moving frame, θ′γ,lab and φ′

γ,lab. For θ this was accomplished using Eq. A.15 with the

subscript substitutions, A′ → γ and cm → proj., and using the fact, βγ,proj. = 1,

which allows

tan(θ′γ,lab) =
sin(θγ,proj.)

γ (cos(θγ,proj.) + β)
. (4.8)

Meanwhile, the azimuthal relation is simply

φ′

γ,lab = φγ,proj. . (4.9)

The remaining factor β (and γ) in Eq. 4.8 refers to the velocity of the outgoing

projectile in the lab, βA′,lab, which can, for example, be calculated using an adapted

form of the last expression given in Eq. A.14,

γA′,lab = γcm

[

βcm cos(θA′,cm)
√

γ2
A′,cm − 1 + γA′,cm

]

, (4.10)

along with

βA′,lab =
√

1 − γ−2
A′,lab .

In Eq. 4.10, βcm refers to the velocity of the target+projectile C.M. frame in the

laboratory, which is given by Eq. A.10. The relativistic factor appearing in Eq. 4.10,

γA′,cm, is calculated from knowledge of the excitation energy in both the projectile

and target (See Eq. A.17).

The fact that the projectile itself moves in the laboratory with a momentum that is

not oriented purely along the the beam (z) axis means that the γ-ray emission angles
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given by Eqs. 4.8 and 4.9, θ′γ,lab and φ′

γ,lab, are not the same as the emission angles with

respect to the lab axes, defined here as θγ,lab and φγ,lab. A rotation, R, which utilized

knowledge of θA′,lab and φA′,lab was required to find the direction, (θγ,lab, φγ,lab).

R = Λz′(κ)Λy(α) ; α = 2 π − θA′,lab ; κ = 2 π − φA′,lab . (4.11)

Specifically, we have (e.g., Ref. 4)

Λy(α) =













cos α 0 − sin α

0 1 0

sin α 0 cos α













, (4.12)

and

Λz′(κ) =













cos κ sin κ 0

− sin κ cos κ 0

0 0 1













. (4.13)

Hence,













x′′

y′′

z′′













= R













x

y

z













=













cos κ(x cos α − z sin α) + y sin κ

− sin κ(x cos α − z sin α) + y cos κ

(x sin α + z cos α)













. (4.14)

Above, the unprimed (Cartesian) unit vector refers to the (spherical) direction, (θ ′

γ,lab,

φ′

γ,lab), while the double-primed unit vector points in the desired direction, (θγ,lab,
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φγ,lab). i.e.,













x

y

z













→ (θ′γ,lab, φ
′

γ,lab) ;













x′′

y′′

z′′













→ (θγ,lab, φγ,lab) .

Projectile recoil

As will be verified in a later discussion involving the simulation of S800 response

(Sec. 4.2.1), the inclusion of projectile recoil was critical for the reproduction of certain

aspects of the experimental results. For each decay, the projectile’s laboratory-frame

momentum was adjusted by the laboratory-frame momentum of the emitted γ-ray,

~pγ,lab, (found using the previously-described analysis) such that total momentum and

energy was conserved during the process, e.g.,

~p ′

A′,lab = ~pA′,lab − ~pγ,lab ; m′

A′ = mA′ − E∗

γ . (4.15)

Above, E∗

γ is the excitation energy lost due to emission of the γ-ray. Neglecting a very

small difference due to 4-momentum conservation, this excitation energy is equivalent

to the energy of the γ-ray in the projectile rest frame, i.e.,

Eγ,proj. ' E∗

γ .

4.1.5 Simulating BaF2 detector response

Geant uses well-known information about γ-ray interactions in matter to determine

energy deposition in active volumes, which, for this simulation, were hexagonal BaF2

crystals. Using a hierarchal structure of volumes, both active and inactive (detector

supports, beam-pipe structures, etc.), the pertinent geometrical setup was defined

with Geant’s convenient initialization routines. For simplification, the center of the
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Array

Backward
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Figure 4.4: The geometrical setup of this experiment drawn using Geant. It was
sufficient to define only a portion of the existing support structures.

mother (laboratory) volume, in which all subordinate volumes were positioned, coin-

cided exactly with the target position. Fig. 4.4 shows the geometrical setup for the

simulation as drawn by Geant. As can be seen in this figure, only a portion of the

beam-pipe structures were actually included, as it was discovered that their presence

had negligible effects on the simulated results. As an illustration of Geant capabili-

ties, simulated particle tracks are shown in Fig. 4.5 which have resulted from twenty

18O nuclear excitations as seen upstream from the target (the backward array has

been hidden).

Creating realistic energy signals

In order to emulate realistic BaF2 detector response, it was necessary to fold the total

energy deposition information which Geant provided for each simulated detector,

event by event, with the experimental BaF2 resolution, characterized by (FWHM)

width, ∆FWHM, which has the approximate functional dependence:

∆FWHM(Edep.) ' Edep.

(

A +
B

√

Edep.

)

. (4.16)
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g Tracks
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Compton
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Figure 4.5: Sample events generated from twenty 18O excitations as shown by the
resulting particle trajectories. γ-ray tracks, for example, appear as dotted blue lines.
Secondary processes have occurred.

Above, A and B are constants which were determined from a fit to experimental

data. Fig. 4.6 shows such a fit for data points provided by sample 88Y and the PuBe

calibration sets. The ∆FWHM information was obtained by fitting the photo-peaks

from the calibration spectra which were generated by summing contributions from all

detectors.
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Figure 4.6: BaF2 resolution fit for a determination of the constants in Eq. 4.16.
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Application of energy thresholds

Another consideration for the simulation was the application of energy threshold

constraints to simulated BaF2 signals. As discussed in Sec. 2.2.3, only those events

where at least one detector recorded a signal larger than Th (the high threshold)

were accepted by the acquisition. Additionally, for a given detector within an event,

charge integration only occurred for signals larger than Tl, the low threshold. Including

threshold effects into the simulation involved “setting” a unique set of threshold

values for each detector, such that the average of these threshold values over all

detectors were free parameters, T Ave.
l and TAve.

h , which were adjusted upon comparison

with experimental data. The width of the distribution of low threshold values was

also an adjustable parameter. The width of the Th distribution, however, was scaled

proportionately with the low threshold distribution, as the choice of the low threshold

for a given detector, T n
l , automatically determined its T n

h setting. Specifically, it was

assumed that for a given detector the two threshold cuts should be related by,

T n
h =

(

TAve.
h

TAve.
l

)

T n
l .

This relationship is justified by the fact that the fast-light response (or gain) is lin-

ear with incident γ-ray energy. Recall, it was the detector’s fast component which

triggered the discriminators.

A comparison of simulated versus actual calibration data is presented in Fig 4.7

for 88Y (a) and PuBe (b), which includes the summed contributions from individual

detectors of the forward array. For both plots, the simulated data has been normalized

to the area under the most energetic photo-peak of the actual data. The background

included in the simulated data in all cases is linear. As was standard for recording all

calibration data, the high threshold was set to the same value as the low threshold.

Notice the discrepancy of the simulated data at low energies if threshold settings of
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Figure 4.7: A comparison of simulated against actual calibration data for 88Y (a)
and PuBe (b). The background included with the simulated results is linear. a) The
simulation using 100 keV threshold values is not consistent with experimental results
at low energies. Better overall agreement is achieved using threshold settings of 650
keV.

100 keV are used. Much better agreement was achieved with average threshold values

of 650 keV.

Preliminary comparisons of simulated results with experimental 18,20O data re-

vealed that the inclusion of an additional energy-smearing effect was necessary for

reproduction of the BaF2 response. This was especially true for the 18O comparison.

As was explained in Sec. 3.2.1, the analysis of the experimental BaF2 data involved a

dynamic energy calibration whereby the set of calibration coefficients used for a given

detector depended on the run number for the data set being analyzed. The fact that

photo-multiplier tube gains were drifting continuously throughout the experiment

(due to temperature fluctuations, for example) rather than “jumping” abruptly from

one calibration to the next effectively resulted in degradation of the experimental

BaF2 energy resolution when making comparisons of simulated against experimental

data.

The importance of this effect could be established quantitatively for a subset of

the detectors (which had sufficiently low Th settings) by observing the position of

the peak resulting from de-excitations from the first-excited 2+ state. For 18O data,

this investigation showed that the energy calibration for the (subset of the) detectors
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2 @1.98 MeV
+

1

Figure 4.8: Doppler-corrected, 18O BaF2 energy spectra for two extreme examples
of calibration drifting. The 2+

1 peak is off by over 9% in both cases. A calibration
correction was performed to remove this drifting in detectors which displayed this
2+

1 peak. To account for the remaining detectors which could not be corrected, an
additional energy-smearing factor was folded into the simulated BaF2 response.

displayed an overall spread (σ) of ∼4.5%, while the same investigation for 20O revealed

a less dramatic drift of ∼1.5%. This difference is explained when one considers that

only one BaF2 energy calibration was performed at the end of the 18O experiment

while five subsequent energy calibrations were taken throughout the course of the 20O

experiment. It is not surprising that significant gain-drifting occurred during those

first ∼13 hours of the 18O study.

Fig. 4.8 illustrates this calibration drifting for two particularly extreme 18O cases.

The proper position of the 2+
1 peak is marked by the dotted black line. The calibration

in both cases is off by over 9%. It was possible to improve the experimental BaF2

response by adjusting the calibration coefficients for detectors which displayed this

problem. However, given the fact that most detectors had high threshold settings

which suppressed detection of γ-rays of this energy, these calibration corrections were

performed for only ∼35% and ∼44% of the detectors for the 18O and 20O experiment,

respectively. Hence, for the simulation it was assumed that the remaining detectors

of the array behaved in a similar fashion as the subset which had been sampled and

corrected.
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4.1.6 Simulating S800 response

A simplified approach was taken to account for the S800 response within the sim-

ulation. Possessing experimental knowledge of relevant projectile observables at the

target position, it was not necessary to propagate the simulated projectiles through

the S800 using the direct map (as in the reconstruction formalism mentioned in

Sec. 2.1.1). Working within a dispersive and non-dispersive fragment trajectory de-

scription, measured S800 resolution and acceptance limitations were therefore applied

directly to the corresponding simulated projectile parameters.

S800+blocker acceptance

Inclusion of the blocker was essential for later comparisons with simulated results.

Its introduction was facilitated by first applying an energy cut to simulated events.

Specifically, only those projectiles which recorded an energy-loss, ∆EA, which was

greater than some cutoff, EBlckr., were accepted as events for further analysis, i.e.,

∆EA = EA,lab − EA′,lab ≥ EBlckr. . (4.17)

Because the blocker also affected the angular distributions (see Sec. 3.1.4), includ-
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Figure 4.9: The observed acceptance “window” for 18O, as shown in (θt, φt) space.
The gate shown here was used to constrain simulated 18O events, assuming 100%
transmission for events falling inside.
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Figure 4.10: A simplified illustration which defines the parameters relevant to
Eq. 4.18. For a projectile with a given interaction position, x, from the central axis of
the S800, the angular acceptance is effectively changed from θo to θx. The difference
between these two angles scales as x/leff., where leff. is the effective distance from the
target to the aperture.

ing only this energy constraint on the simulated data was inadequate. Reproduction

of the observed angular distributions required that the acceptance of the entire appa-

ratus (S800+blocker) be somehow included. Rather than attempt to understand and

then incorporate each complicated facet of the acceptance (e.g., projectile scattering

from the entrance slits and/or within the S800, blocker effects), the overall experi-

mental acceptance for each study was, instead, mapped by drawing a free-form gate

on a 2-D histogram of θt vs. φt data, as shown in Fig. 4.9. For the simulation, the as-

sumption was made that projectile transmission for events meeting this simultaneous

θt and φt criterion was 100%.

Assuming that the gate shown in Fig 4.9 defines a pseudo S800 entrance window

or aperture, the experimental beam spot size was incorporated into the simulation by

slightly perturbing the position of this acceptance window in θt and φt, event-by-event

(while keeping its area constant). Fig. 4.10 shows (naively) the effect that finite spot

size has on the S800 acceptance. The parameter which scales the importance of this

perturbation is the effective distance from the target to the entrance aperture, leff.,

since

θx ' θo +
x

leff.

. (4.18)

71



Eq. 4.18 is derived directly from the relation,

tan θx =
x + d

leff.

' θx ,

along with,

tan θo =
d

leff.

' θo ,

where the small angle approximation has been utilized. The beam spot size, ∼5 mm

FWHM, was estimated by observing 18O and 20O yt distributions for elastic scatter-

ing runs. Assuming an effective target to aperture length of approximately 300 cm,

the acceptance perturbation is on the order of 2 mrad. In reality the geometry of

the so-called acceptance window was also dependent on projectile kinetic energy, as

the refocusing of the projectiles onto the blocker was not completely successful (see

Sec.3.1.4). However, given the small energy-loss for projectiles in this study, it was

sufficient to assume that only the projectile’s position at the target modified the S800

acceptance event-by-event.

Energy resolution

The energy spreading for experimentally observed projectiles was the result of three

contributing factors, namely, intrinsic dispersion in the beam, energy straggling in

the 208Pb target, and finite resolving power of the focal plane detectors. For the sim-

ulation, it was adequate to assume that the incoming projectiles were mono-energetic

and then account for these energy-smearing effects by modifying the outgoing pro-

jectile energies accordingly. To quantify the spreading experimentally, the elastically

scattered (beam) energy distribution was analyzed, as shown in Fig 4.11. As expected,

due to a greater intrinsic energy spread of incoming beam particles, the distribution

for 20O had a larger width (σ) than that for 18O.
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Figure 4.11: Elastically scattered beam (blocker out) energy distribution for 18O (a)
and 20O (b) projectiles as measured by the S800. Intrinsic energy dispersion, target
straggling, and finite detector resolution all contribute to the spreading which is
observed. 20O, as expected, has a wider intrinsic energy spread than primary beam,
18O.

Angular resolution

The final angular distributions for projectiles were similarly affected by intrinsic mo-

mentum dispersion, angular straggling in the target, and CRDC resolution. To real-

istically incorporate these factors into the simulation, an angular spread (σθ,in, σφ,in)

which was consistent experimentally with combined contributions from the intrinsic

beam spread and angular straggling in the target was included for incoming pro-

jectiles. Spreading due to finite detector resolution, labeled σθ,res and σφ,res for the

dispersive and non-dispersive angles, was used to modify outgoing projectile distri-

butions.

The determination of the spreading widths σθ,in and σφ,in, like the determination

of the energy spreading width (Fig 4.11) involved observing the elastic dispersive and

non-dispersive, target-position angular distributions. Unfortunately, folded into these

elastic distributions was the spreading width due to CRDC detectors themselves:

σθ,el =
√

σ2
θ,in + σ2

θ,res ; σφ,el =
√

σ2
φ,in + σ2

φ,res . (4.19)
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Fortunately, the two contributions to elastic spreading could be separately determined

by making use of target-out mask calibrations.

For the dispersive direction, we have

σθ,res '

√

(

dθ

dx1
σx1

)2

+

(

dθ

dx2
σx2

)2

, (4.20)

where x1 and x2 are the dispersive coordinates as measured in CRDC1 and CRDC2.

The scaling factors in Eq. 4.20, dθ/dx1 and dθ/dx2, are found directly from the

expression which determines the scattering angle:

θ = arctan

(

x2 − x1

l

)

, (4.21)

where l is the distance between the CRDC detectors, or 1073 mm. Therefore,

dθ

dx2

= − dθ

dx1

= [l (1 + tan2 θ)]−1 ' [l (1 + θ2)]−1 , (4.22)

where the small angle approximation has been used in the last step. The analysis was

simplified by assuming that CRDC1 and CRDC2 have similar resolving power, i.e.,

σx1
' σx2

Hence,

σθ,res(θ = 0) '
√

2σx1

l
(4.23)

The uncertainty in the dispersive position, σx1
, was itself determined from the

experimental mask calibration. Specifically, a gate was placed on the central portion

of CRDC2 to select straight-line fragment trajectories through CRDC1, over which

the mask had been placed. The observed spot size (of width σmask,x1
) in the resulting
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CRDC1 position spectrum was the result of intrinsic detector resolution folded with

the size of the aperture (σhole). Hence,

σmask,x1
=
√

σ2
x1

+ σ2
hole , (4.24)

which, rewritten, becomes

σ2
x1

= σ2
mask,x1

− σ2
hole . (4.25)

Realistically, the contribution from the hole is that of a step function which spans

the hole-diameter, ∆x (∆x = 1.57 mm). Comparing a Gaussian to a step function of

the same area, it can be found that the width, σhole, is related to the hole diameter

by

σhole ' 0.39∆x .

Mask Calib. Data
Fit ( =0.861 mm)s

Figure 4.12: Sample data from the CRDC1 mask calibration which has been gated
on the central region of CRDC2 to select straight-line trajectories. The fit for this
particular mask hole gives σmask,x1

= 0.861 mm.
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Thus, Eq. 4.25 simplifies to

σ2
x1

' σ2
mask,x1

− (0.39∆x)2 . (4.26)

Fig. 4.12 shows an example of the fitting process using data from the CRDC1 mask

calibration. The plot shown has been expanded about a peak which results from one

of the 1.57 mm holes in the mask. Several of these peak widths were averaged to find

that σmask,x1
= 0.83 mm. Inserting this result into Eq. 4.26 gives the experimental

dispersive position resolution, σx1
' σx2

= 0.56 mm, which is consistent with the

designed value for these detectors. The corresponding dispersive angular resolution

of the S800, σθ,res (given by Eq. 4.23), was therefore ' 0.74 mrad.

Exactly the same formalism can be applied for finding the non-dispersive width,

σφ,res. A more simplified approach, however, which was sufficient for the simulation,

came from comparing the average width from the dispersive mask calibration (e.g.,

Fig. 4.12) with that from the non-dispersive mask calibration; the resolution of the

S800 in the non-dispersive direction was found directly from a simple scaling argu-

ment:

σy1
'
(

σmask,y1

σmask,x1

)

σx1
.

From the non-dispersive CRDC1 calibration, it was determined that σmask,y1 = 0.47 mm.

From the expression above, again assuming that the resolving power of the CRDCs

was roughly equivalent, we have σy1
' σy2

' 0.32 mm. Hence, the experimental

uncertainty in the non-dispersive angular determination, σφ,res, was ' 0.42 mrad.

Fig 4.13 shows dispersive and non-dispersive scattering angle distributions from

elastically scattered beam projectiles for both studies. A Gaussian fit to these distri-

butions gave the widths, σθ,el and σφ,el. Use of Eq. 4.19, possessing knowledge of σθ,res

and σφ,res, allowed for the determination of the incoming beam angular spreads, σθ,in
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Figure 4.13: Angular distributions for elastically scattered (blocker out) 18O (a) and
20O (b) projectiles as measured by the S800. The fits give the widths, σθ,el and σφ,el,
which can be used in Eq. 4.19 to determine σθ,in and σφ,in.

Table 4.1: Angular widths used to modify the incoming and outgoing projectile dis-
tributions in the simulation. All values are in mrad.

Beam σθ,in σφ,in σθ,res σφ,res
18O 1.43 2.03 0.74 0.42
20O 3.27 3.19 0.74 0.42

and σφ,in, which were used to modify the incoming projectile angles in the simulation.

Table 4.1 summarizes the pertinent angular information which was utilized for the

simulation.

4.1.7 Limitations of the simulation and related comments

The limitations of the simulation come not from its inherent design, but are instead

attributed to an experimental limitation. It was not possible to incorporate raw ex-

perimental cross section (and therefore B(Eλ)) information for discrete transitions

into the simulation. Obviously critical for these cross section determinations is a quan-

titative comparison of the appropriate experimental γ-ray yield to the total number

of incoming projectiles. Unfortunately, for these studies, no incoming beam monitor

existed. A beam rate estimate based on the S800 singles rate, for example, was not

possible due to the presence of the beam blocker. For the 20O study, the capability for
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beam rate monitoring would have existed had it not been for the efficiency instability

of the multi-channel plate timing detectors (recall the discussion in Sec. 3.3).

As the reader can verify from a review of, for example, Eq. 4.4, it is the B(Eλ)

value for a particular discrete excitation which ultimately determines the excitation

probability for this state within the simulation. For the case of 18O, the simulation was

constrained in the sense that all pertinent B(Eλ) information has been previously

measured. Therefore, essentially two free parameters were left for 18O simulations,

namely the average high-threshold (Th) setting and the blocker positioning. (The

average low-threshold setting, Tl, had been approximately established from the simu-

lations of γ-ray source data presented earlier.) The best achievable strength function

agreement was found by first adjusting only these two simulation fields. Because the

overall normalization of the simulated 18O strength curve was fairly well established

by the collection of known B(Eλ) information, it was expected that slightly adjusted

B(Eλ) and branching information could be extracted from subsequent simulations

which had attempted to improve the overall strength function agreement.

The situation was rather different for the case of 20O. As has been mentioned,

only the B(E2) strength for its first excited state has been measured. Because this

state is found at 1.67 MeV (∼2.5 MeV in the lab), contributions from this state

were dramatically affected by both blocker positioning and the average Th setting.

In this sense, the overall simulated strength function normalization was inherently

more ambiguous. However, as will become more evident in Sec. 4.3.3, it was the

target background which facilitated the extraction of B(Eλ) information from the

20O experimental results. Specifically, contributions from the target 2+
1 level, being

unaffected by blocker positioning, and much less affected by the high-threshold setting

than the 2+
1 state in 20O, provided the overall normalization, effectively constraining

the B(Eλ) strengths for higher-lying projectile levels.
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Figure 4.14: A plot of projectile energy-loss vs. total, forward, reconstructed, Doppler-
corrected γ-ray energy for 18O. Notice the pronounced off-diagonal enhancement
which appears at a γ-ray energy of ∼3.2 MeV.

4.2 18O results

4.2.1 Projectile energy-loss vs. total γ-ray energy

The simulation proved to be an invaluable asset with regard to understanding the

more elusive aspects of the experimental results. Especially complicated, for exam-

ple, were the 2-D histograms generated by plotting a projectile’s energy loss against

the total reconstructed, Doppler-corrected (or lab-frame) γ-ray energy captured si-

multaneously in the forward BaF2 array. Such a plot with 18O experimental results

is shown in Fig. 4.14. As explained earlier in Sec. 3.4.2 the pronounced diagonal

enhancement appearing in this figure results from events whereby the projectile’s ex-

citation energy has been recovered as γ-ray radiation in the forward array. (For this

particular example, the diagonal enhancement has a slope which is greater than one

since Doppler-corrected energy, not lab-frame energy, is plotted on the x-axis.) Any-

thing falling below and to the right of this diagonal is energetically forbidden, while

events above and to the left result from multi-step γ-decays in which one (or more)

of the γ-rays was not detected. This correct interpretation opened more challenging

questions, though; the physics which is manifested in the sub-structure observed in

Fig. 4.14 is less trivial.
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For example, notice the pronounced off-diagonal enhancement which is highlighted

in Fig. 4.14. Projected onto the Doppler-corrected, γ-ray energy axis, these events

are found near 3.2 MeV. One could deduce from the large relative cross section for

transitions to the 5.255 MeV (see Sec. 1.3) along with the strong decay branch from

this state through the first-excited state at 1.98 MeV (∼56%) that one should see

an abundance of γ-rays at ∼3.2 MeV. What was not expected a priori, however, was

the fact that this enhancement was not characterized by the same projectile energy-

loss as those events which recorded a total γ-ray energy of ∼5.2 MeV. Resolution to

this apparent contradiction, which was first revealed by the simulation, comes after

considering the systematic bias introduced by the γ-ray detection setup. Because of its

solid angle coverage, the forward BaF2 array was relatively less efficient in its ability to

detect γ-rays which had been emitted at backward angles in the projectile rest-frame;

for these events, the projectile receives an energetic “kick” from its recoil against

the γ-ray. Specifically, the (off-diagonal) enhancement found at a γ-ray energy of

∼3.2 MeV was correlated with a smaller projectile-energy loss than the (on-diagonal)

structure at ∼5.2 MeV because it resulted from a missing 1.98 MeV γ-ray – all else

being equal, the array had a detection deficiency for projectiles receiving an energetic

(positive-z) boost from that missing γ-ray.

Fig. 4.15, which plots the same quantities shown in Fig. 4.14, strategically illus-

trates an evolution in the simulation’s level of sophistication. For simplification, the

blocker has not been incorporated. Fig. 4.15a has been generated without including

projectile-γ-ray recoil. Furthermore, perfect detector resolving power has been as-

sumed. Notice the horizontal lines which result from excitations to each particular

level in 18O that have been highlighted by orange dotted lines. Sub-structures ob-

served within these horizontal enhancements result from multi-step decay events for

which at least one γ-ray has eluded detection. Enhancements resulting from the two

contributing target states are also shown – an indication that the physics is simply
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Figure 4.15: An evolution plot of projectile energy-loss vs. total reconstructed,
Doppler-corrected γ-ray energy for simulated 18O data, generated with an increas-
ing level of sophistication. a) The recoil of the projectile from the emitted γ-rays has
been neglected. Ideal detector resolution has also been assumed for both the S800
and the BaF2 arrays. b) Projectile recoil has been included. c) Projectile recoil and
experimental detector resolution have been included. The blocker has been placed at
0.0 MeV projectile energy-loss in all cases.
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wrong for this case is that the target states do not fall on the energy correlation

diagonal, shown as the dotted blue line. Fig. 4.15b shows the equivalent histogram

generated after the inclusion of projectile recoil from emitted γ-rays into the simu-

lation. A diagonalization of the multi-step decay lines is observed when comparing

Fig. 4.15b with Fig. 4.15a. Additionally, the slope of the energy correlation diagonal

is seen to increase, and it now properly encompasses the target states. Fig. 4.15c

incorporates the experimental detector resolution for both the S800 and the BaF2

detectors.

Direct comparison of Fig. 4.15c with the experimental equivalent (Fig. 4.14) pro-

vides confidence, though an S800 energy resolution discrepancy remains. Specifically,

the experimental S800 projectile energy-loss measurement is plagued with signifi-

cantly poorer resolution than that of the simulation. It is assumed that this observed

difference is a manifestation of the S800 reconstruction process. This is logically jus-

tified by the fact that the simulation, by construction, has included no additional

smearing due to trajectory reconstruction; any discrepancy observed must therefore

For Events Having

Deposited Between

4.48 and 5.52

MeV in the

Forward Array
10x10 Simulated

Excitations

6

Figure 4.16: Projectile energy-loss for 18O events in which the forward array has
recorded between 4.48 and 5.52 MeV, which selects essentially only excitations of the
2+

3 . The experimental data has been subdivided with a constraint on the projectile’s
spherical scattering angle, Θs. Note that the experimental S800 energy resolution
is worse for larger scattering angles. The simulation, shown in black, includes no
smearing effects due to the reconstruction process, causing the resolution discrepancy
observed here.
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be attributed to this process.

For the present discussion it is constructive to examine Fig. 4.16, which shows

experimentally-measured projectile energy-loss distributions gated on (spherical) scat-

tering angle, Θs, for events having deposited between 4.48 and 5.52 MeV (Doppler-

corrected) in the forward array. This energy constraint essentially selects only those

events whereby the 5.25 MeV projectile state has been excited. Also included in

this figure is the simulated result, which, by comparison, reveals that the projectile

energy resolution discrepancy is more dramatic for larger projectile scattering an-

gles. Due to imperfections in the magnetic field mapping, the S800 reconstruction

precision is known to suffer for more-extreme projectile trajectories [7]. In principle

the experimental energy resolution could be modestly improved by performing the

S800 reconstruction calculations to higher order (>2). Still, with the current study,

obtaining higher-precision S800 energy measurements would in no way improve the

experimental results, as they are derived from complimentary BaF2 information.

4.2.2 18O strength distributions

Shown in Fig. 4.17a is the final experimental 18O strength distribution (red data

points) along with simulated data (black solid line) which was generated using known

B(Eλ) and branching information as input [22,31,35]. The experimental results have

been normalized to the simulated data in the region where the target 4.085 MeV state

is the dominant contribution (between 2.5 and 2.9 MeV). The simulation reproduces

the experimental data reasonably well, though there exist discrepancies which seem to

be tied to excitations to the third-excited 2+ state at 5.255 MeV. For example, a small

decrease in the B(E2) ↑ value for the 5.255 MeV combined with an increase in the

branching ratio from this state to the first-excited 2+ configuration at 1.982 MeV will

improve the comparison. For additional improvement, the B(E2) ↑ to the second-

excited 2+ at 3.920 MeV might also be increased. Fig. 4.17b shows the individual
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Figure 4.17: a) Final experimental 18O strength distribution (data points) shown with
simulated data (solid line) generated using known B(Eλ) and branching information
as input [22,31,35]. The experimental data has been normalized to the simulated re-
sults in the region where target contributions dominate (between 2.5 and 2.9 MeV). b)
The individual components which contribute to the total simulated strength distribu-
tion. Notice that E2 excitations completely dominate over the other multipolarities.
The target background is significant.

components which contribute to the total simulated strength distribution. This his-

togram demonstrates the fact that E2 excitations completely dominate the excitation

function for 18O in this energy region. The target background is clearly not a negligi-

ble component. As an illustration of the capabilities of the simulation, in light of the

above discussion regarding better agreement with experimental data, Fig. 4.18a shows

a simulated 18O strength distribution generated using slightly adjusted B(Eλ) and

branching information as input. Fig. 4.19 outlines the specific changes that were made

to previously established quantities. While better agreement in the targeted regions

has been established, a discrepancy at γ-ray energies of ∼4.3 MeV lingers. An adjust-

ment which would fill-in the simulated spectrum in this energy region involves, for

example, increasing the B(E1) ↑ value for the first-excited 1− state at 4.456 MeV by

approximately three orders of magnitude above the upper limit established in Ref. 22

(see Fig. 1.2). Alternatively, one could introduce a previously unobserved [35] decay

branch from the second-excited 1− state at 6.198 MeV to the first-excited 2+ state at

1.982 MeV. Unfortunately, due to the ambiguities that are associated with the simu-
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Figure 4.18: a) Final experimental 18O strength distribution (data points) shown with
simulated data (solid line) generated using slightly adjusted B(Eλ) and branching
information as input (see Fig. 4.19). As with the previous comparison, the experi-
mental data has been normalized to the simulated results in the region where target
contributions dominate. An improvement in overall agreement between simulated and
experimental data is obtained. b) The individual components which contribute to the
total simulated strength distribution.
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while changed values appear in red.

85



lated blocker position and high-threshold setting, no recommendations regarding the

accuracy or status of 18O information can be confidently offered. What is important

to take from these comparisons is the fact that every feature of the experimental 18O

strength distributions has been reproduced, i.e., all the individual components have

been accounted for.

4.2.3 Angular distributions

The 18O dispersive (θt) and non-dispersive (φt) angular distributions obtained from

the “improved” version of the simulation (Fig. 4.18) are displayed as the solid lines

in Fig. 4.20 along with the final experimental distributions which appear as the data

points. While the agreement observed in this comparison is less than ideal due to

the complex nature of the S800 acceptance, further inspection reveals that exact

acceptance reproduction is unimportant insofar as the results of this comparative

analysis are concerned. Indeed, Fig. 4.21 shows a simulated 18O strength distribution

which was obtained after increasing the area of the acceptance “window” in (θt, φt)

(see Sec. 4.1.6) by a factor of 2. Also included in this figure, for comparison, are the

simulated results from Fig. 4.18. The data, as before, has been normalized to the

1.5x10 Simulated

Excitations

8

1.5x10 Simulated

Excitations

8

Figure 4.20: The final 18O θt (a) and φt (b) experimental angular distributions (data
points) shown against the results obtained from the “improved” simulation (solid
lines). The experimental data has been normalized to the simulated results. Due to
the complexity of the S800 acceptance, the agreement observed is less than ideal.
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Figure 4.21: A comparison of the simulated 18O strength function from Fig. 4.18 with
that obtained after increasing the area of the acceptance “window” by a factor of
two. The former data set has been normalized to the newer in the region between 2.5
and 2.9 MeV. Notice that only slight differences can be seen.

region between 2.5 and 2.9 MeV. Notice that only a small change is perceivable in

the overall strength distribution.

4.3 Extension to 20O

4.3.1 Initial interpretations

Recall the 20O experimental strength distribution presented in Chapter 3, which dis-

played two broad peaks between 5 and 7 MeV. The enhancements which are respon-

sible for these peaks are highlighted in Fig. 4.22, which is a familiar plot of projectile

energy-loss against total γ-ray energy. We interpret these structures as resulting from

E1 projectile excitations. Specifically, two 20O 1− states are observed at ∼ 5.2 and

∼ 6.7 MeV. The fact that these structures fall directly on the energy correlation di-

agonal is irrefutable evidence that these configurations were excited directly. Indeed,

the interpretation that these excitations are 1− states is the only conclusion which is

consistent with the theoretical shell model predictions. For instance, virtual excitation

of the known 2+ state at 5.234 MeV (see Fig. 1.4) with a strength that is consistent
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Figure 4.22: Projectile energy-loss vs. total, forward, reconstructed, Doppler-corrected
γ-ray energy for 20O. Two projectile states at 5.2 and 6.7 MeV are observed. Gates
which have been drawn along the multi-step decay paths are highlighted.

with the results of this study would require that the predicted B(E2) be over four

orders of magnitude too low. The same logic applies to excitations of the (tentatively

assigned) 3− state at 5.614 MeV; in this case the theoretical B(E3) would have to be

increased by roughly two orders of magnitude.

4.3.2 γ-decay branching estimates

As discussed in Chapter 1, with the exception of decays from the second-excited

2+ state, no γ-decay branching has previously been established. It was entirely use-

ful, therefore, to extract any of this information which was warranted by the cur-

rent results. This goal established, first approximations for γ-decay branchings were

taken from complementary information in 18O and/or from mean lifetime (τ) esti-

mates based on theoretical B(Eλ) information. This information was then scrutinized

against any experimental evidence which was available.

The current discussion will, of course, benefit from particular examples. In light

of the interpretations in the previous section, of particular interest for the analysis

was decay information for these new 1− states. An investigation of analogous levels in

18O reveals that the 1−

1 state decays via two significant channels, namely the 2+
1 state

(∼30%) and the 0+
1 state (∼70%), while the 1−

2 state decays with high probability
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(∼90%) directly to the ground state [35] – i.e., decays which proceed via the emission

of E1 photons dominate, as expected. For the extension to the unknown case 20O,

mean lifetime calculations, assuming pure E1 decay for these 1− states, performed

using theoretical predictions for the B(E1) ↓ values, are undoubtedly useful.

Before proceeding, a short digression for a review of nuclear decay formalism as

it applies to this particular case is beneficial. The decay probability per unit time for

a particular nuclear configuration through decay channel n, denoted γn, is inversely

related to the mean lifetime, τn [15]. i.e.,

γn =
1

τn

. (4.27)

Assuming the decay probabilities for every possible channel are determined, the ab-

solute branching ratios, Br.n, likewise are known, since

Br.n =
γn

γtot.
, with, γtot. =

# chnls
∑

n=1

γn . (4.28)

For the case of E1 γ-ray decay, the mean lifetimes are determined from the energy of

the emitted photon, Eγ,n, and the reduced transition probability, B(E1; n) ↓, which

contains the nuclear information for the involved states. Specifically,

τn [fsec.] ' 0.629

E3
γ,n B(E1; n) ↓ , (4.29)

where, above, the reduced transition probability has been expressed in units of e2 · fm2

and Eγ,n in MeV.

Table 4.2 summarizes E1 decay branching for the first two excited 1− states calcu-

lated with the formalism described above from the theoretical level scheme presented

in Fig. 1.4. For each decay path, the energy and spin-parity of the final state along

with the B(E1) ↓ value for the transition are specified, along with the resulting mean
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Table 4.2: E1 branching from the first two excited 1− states calculated from the
predicted level scheme presented in Fig. 1.4.

Ei Jπ
n,i Ef Jπ

n,f Eγ B(E1) ↓ τ Br.
(MeV) (MeV) (MeV) (e2 fm2) (fsec.) (%)

5.1 1−1 0.0 0+
0 5.1 1.4E-03 3.3E+00 77

5.1 1−1 5.0 0+
1 0.1 2.1E-03 2.9E+05 ∼0

5.1 1−1 2.0 2+
1 3.1 2.0E-03 1.1E+01 23

5.1 1−1 4.2 2+
2 0.9 1.2E-03 7.2E+02 ∼0

6.2 1−2 0.0 0+
0 6.2 1.0E-03 2.6E+00 66

6.2 1−2 5.0 0+
1 1.2 2.5E-03 1.5E+02 1

6.2 1−2 2.0 2+
1 4.2 1.3E-03 6.5E+00 26

6.2 1−2 4.2 2+
2 2.0 3.2E-04 2.5E+01 7

lifetime. This calculated branching information can serve as a guide when interpreting

the experimental evidence obtained after application of the free-form gates (“decay

gates” 1 and 2) which are defined on Fig. 4.22. The projections of these gates onto the

γ-ray energy axis are shown in Fig. 4.23. Unfortunately, with the experimental S800

resolution obtained, these cuts not mutually exclusive, e.g., some strength resulting

from excitations to the 1−

1 state is inadvertently included in the decay cut for 1−

2

excitations.

An examination of Fig. 4.23a arguably reveals the signature of each of the expected

1 Decay Cut1

-

1 01 0

- +
g

1 21 1

- +
g

1 01 1

- +
g

1 21 2

- +
g

1 Decay Cut2

-

1 02 0

- +
g

1 22 1

- +
g

1 22 2

- +
g

Figure 4.23: a) Projection of “decay gate 1” from Fig. 4.22 onto the γ-ray energy axis.
Included mostly within this cut is strength which results from excitation of the 1−

1

state. b) The same for “decay gate 2,” therefore selecting excitation of the 1−

2 state.
Evidence for various decay modes is highlighted for both excitation channels.
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decay branches for the first-excited 1− state. For instance, the peak at ∼ 3.7 MeV

likely contains components from both the 2+
2 (4.072 MeV) and decays through the 2+

1

(∼ 3.6 MeV). Evidence also exists for decays via the first-excited 0+ at 4.456 MeV.

Decays which proceed through this state generally involve the emission of three simul-

taneous γ-rays, as, in most cases, the 0+
1 state itself will decay sequentially through

the first-excited 2+ configuration. Assuming the 1−

1 state exists at 5.2 MeV we have

the following for the energies of these three photons: 0.74, 2.79, and 1.67 MeV –

the energy of the first photon in this set is adjustable in the sense that it depends

on the actual energy of the 1−

1 state. Including the small but observable peaks at

roughly 900 keV and 2.8 MeV, evidence exists for all three of the γ-rays for decays

through the 0+
1 . Additionally, the appearance of a 900 keV low-energy photon (rather

than 740 keV) is a first indication that the 1−

1 state might actually be located above

5.3 MeV.

Moving on to a similar investigation of Fig. 4.23b, again, strong evidence of decays

proceeding through both of the first two excited 2+ states is visible. The fact that the

peak near 2.4 MeV (2+
2 → 2+

1 remnant) is sharper in this case suggests that decays

through the 2+
2 might be more important for this excitation channel. Assuming the

1−2 state is found at roughly 6.7 MeV, decays through the 0+
1 state would necessarily

emit a ∼ 2.24 MeV photon, which, in this case, is at an energy above the average

Th setting. Given the absence of an intense peak in this energy region, no decisive

evidence exists for decays through the 0+
1 . This conclusion is consistent with the

evidence provided by analogous 18O states, as only its 1−

1 state decays through the

0+
1 state with significant probability.

What has not been mentioned in the analysis of either spectrum in Fig. 4.23 is the

unmistakable structure at ∼ 1.35 MeV. The analysis has revealed that this bump is

actually an escape peak for 1.674 MeV transitions. It appears at about 320 keV below

the 1.674 MeV peak, rather than 511 keV below, because this is a Doppler-corrected
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spectrum. The fact that an escape peak is visible in this case and not for 2+
1 decays in

18O is a manifestation of the Th settings, which, on average, were significantly higher

for the 18O experiment.

4.3.3 20O strength distribution and results

A comparison of the 20O experimental strength distribution with a simulated equiva-

lent is presented in Fig. 4.24a. With this comparison rather impressive agreement has

been established in the region above 3 MeV. To facilitate this, the first two excited 1−

states were positioned at 5.35 and 6.85 MeV, which places them slightly higher than

the initial prediction from Sec. 4.3.1. The positioning of the 1−

1 , indeed, is entirely con-

sistent with the interpretation based on the branching analysis in the previous section

which placed the state above 5.3 MeV from the observation of low-energy γ-rays at

∼900 keV. Shown in Fig. 4.24b, meanwhile, on a logarithmic scale, are the individual

components which contribute to the simulated strength distribution. Most significant

is the fact that E1 excitations, as expected, are dominating, which is especially true

1.5x10 Simulated

Excitations

8

Exp. Data Normalized

to Sim. Data Between

4.5 and 8.0 MeV

1.5x10 Simulated

Excitations

8

Figure 4.24: a) Final experimental 20O strength distribution (data points) shown with
simulated data (solid line) generated using estimated branching information along
with appropriately adjusted B(Eλ) values. The experimental data has been normal-
ized to the simulated results in the region between 4.5 and 8 MeV. b) The individual
components which contribute to the total simulated strength distribution. Notice that
E1 excitations are now the dominant contribution.
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Figure 4.25: Projectile energy-loss vs. forward, reconstructed, Doppler-corrected γ-
ray energy for simulated 20O events. Comparison with the experimental equivalent,
Fig. 4.22, provides confidence that the results of the 20O experiment have been prop-
erly interpreted.

above 4 MeV. A comparison of Fig. 4.22 with Fig 4.25, which is the simulated version

of projectile energy-loss vs. total, forward, Doppler-corrected γ-ray energy, further

emphasizes that the simulation has achieved remarkable agreement. Moreover, it is

apparent from this comparison that nothing significant has been overlooked in the

interpretation of the experimental results.

The production of this simulated result presented in Fig. 4.24 has utilized the

20O level scheme which is given in Table 4.3 along with the branching presented in

Table 4.4. The measured value of the B(E2) for the 2+
1 state has been used, while

the B(E2) for the 2+
2 is consistent with the theoretical prediction for this state of

7.8 e2 fm4. Notice that the simulation has incorporated a 3− level at 5.0 MeV. Re-

call, the experimental 20O level scheme includes two states with undetermined and

unconfirmed spin-parity at 5.002 and 5.614 MeV, respectively. For the simulation, it

was simply assumed that the 5.002 MeV is the 3− state which corresponds to the
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Table 4.3: The projectile and target level schemes utilized in the production of the
simulated results presented in Fig. 4.24. The known experimental value of the B(E2)
for the 2+

1 state in 20O has been used [26], along with that of the B(E3) for the 3−

1

state in 208Pb [31]. The B(E2) value for the 2+
1 state in 208Pb has been adjusted

within the reported experimental limit [26].

Projectile: 20O
Ex (MeV) Jπ

n B(Eλ) ↑ (e2 fm2λ)
1.67 2+

1 2.80E+01
4.07 2+

2 9.00E+00
5.00 3−1 1.60E+03
5.23 2+

3 7.00E-04
5.35 1−1 1.35E-02
6.85 1−2 1.10E-02

Target: 208Pb
Ex (MeV) Jπ

n B(Eλ) ↑ (e2 fm2λ)
2.61 3−1 6.11E+05
4.09 2+

1 2.60E+03

Table 4.4: All 20O branching used for the simulated results presented in Fig. 4.24.
Only the branching from the 2+

2 state has been previously established [34].

Ei (MeV) Jπ
n,i Ef (MeV) Jπ

n,f Eγ (MeV) Br. (%)

1.67 2+
1 0.00 0+

0 1.67 100
3.57 4+

1 1.67 2+
1 1.90 100

4.07 2+
2 1.67 2+

1 2.40 74
4.07 2+

2 0.00 0+
0 4.07 26

4.46 0+
1 1.67 2+

1 2.79 100
5.00 3−1 4.07 2+

2 0.93 18
5.00 3−1 3.57 4+

1 1.43 6
5.00 3−1 1.67 2+

1 3.33 76
5.23 2+

3 4.07 2+
2 1.16 10

5.23 2+
3 1.67 2+

1 3.56 60
5.23 2+

3 0.00 0+
0 5.23 30

5.35 1−1 4.46 0+
1 0.89 22

5.35 1−1 4.07 2+
2 1.28 10

5.35 1−1 1.67 2+
1 3.68 38

5.35 1−1 0.00 0+
0 5.35 30

6.85 1−2 4.07 2+
2 2.78 28

6.85 1−2 1.67 2+
1 5.18 40

6.85 1−2 0.00 0+
0 6.85 32
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predicted level at 5.0 MeV, though no experimental evidence exists for this assign-

ment. Given the expected insignificance of E3 excitations from the predicted B(E3)

value for the theoretical 3− state, the specific placement of this level essentially has

no effect on the results. Hence, this ambiguity is of no concern.

What has not yet been discussed concerning Fig. 4.24 is a significant discrepancy

between the simulation and the experimental results from roughly 2 to 3 MeV. For

the simulation (as can be seen in Fig. 4.24b), this is the region where γ-rays from the

first-excited 2+ state in the target and the 2+
2 level in the projectile are the dominant

contributions. Reproduction of the escape-peak at ∼1.35 MeV along with a 1.67 MeV

peak intensity which remains consistent with the measured B(E2) for 2+
1 requires

that the average Th setting used in the 20O simulation be lowered substantially from

3.8 MeV (the value used for 18O simulations) to roughly 1.5 MeV. It is precisely this

lowering of the average Th settings, however, which facilitates the emergence of the

observed discrepancy. Keeping the average Th threshold at a low setting, much better

agreement between 2 and 3 MeV can be established by simultaneously increasing the

B(E1) values for the 1− projectile levels while decreasing their 2+
2 decay branching,

effectively reducing the relative intensity of the discrepancy.

An illustration of this point is provided by Fig 4.26, which is a familiar plot of

simulated data which has been generated using precisely this strategy. The reader

can verify that much better agreement with the experimental result in the targeted

region has been established. Table 4.5 specifies the B(Eλ) information which has been

incorporated into the simulation to produce these results. Note, especially, that the

B(E1) strength for the 1− states has been increased substantially. For example, the

B(E1) for the 1−1 has been boosted by a factor of more than 14 over B. A. Brown’s

prediction. Two new discrepancies have emerged in this process, namely, the simula-

tion now under-produces γ-rays from de-excitations of the 2+
1 and 2+

2 levels. Out of an

attempt to resolve the latter issue, the B(E2) for the 2+
2 was increased by a factor of
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Figure 4.26: a) Final experimental 20O strength distribution (data points) shown
with simulated data (solid line) generated using, for example, substantially increased
B(E1) values for each of the 1− states. The experimental data has been normalized to
the simulated results in the region between 4.5 and 8 MeV. Much better agreement
has been established in the targeted region. b) The individual components which
contribute to the total simulated strength distribution.

nearly four, to 30 e2 fm4. Further improvement of the discrepancy at ∼4 MeV could

be gained by additional increases of the B(E2) for the 2+
2 state. However, this would

come at the expense of an increased overabundance of 2.4 MeV γ-rays – recall, the 2+
2

configuration decays with high probability through the 2+
1 state. The only strategy

for simultaneously improving both of these new discrepancies involves lowering the

B(E2) strength for the 2+
2 closer to its predicted value while further -increasing the

B(E1) values for the 1− states. A relative boost of 2+
1 and 2+

2 γ-decays could then

be provided by funneling more of the 1− decay probability through each of these 2+

levels, at the expense of the direct ground state decay channel.

Given this, the B(E1) strengths presented in Table 4.5 can be interpreted as

experimental lower limits. While these B(E1) strengths are, in general, higher than

the shell model predictions for levels below 6.9 MeV, they are not unreasonable.

For example, calculations performed by H. Sagawa and T. Suzuki (using the WB10

residual interaction) predict the existence of two 1− levels between 6.7 and 7.5 MeV

with B(E1) strengths of 0.014 and 0.024 e2 fm2 [32]; alternatively, an integration of

their calculated dipole strength curve (which is presented as Fig. 5.1 in Chapter 5)
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Table 4.5: The projectile and target level schemes utilized in the production of the
improved 20O simulated results presented in Fig. 4.26. The B(E2) strength for the
2+

1 state in 20O has been increased within the established limit [26], while that of the
2+

2 state is a factor of nearly four above the prediction. Note, the B(E1) strength has
been substantially increased.

Projectile: 20O
Ex (MeV) Jπ

n B(Eλ) ↑ (e2 fm2λ)
1.67 2+

1 3.00E+01
4.07 2+

2 3.00E+01
5.00 3−1 1.60E+03
5.23 2+

3 7.00E-04
5.35 1−1 6.20E-02
6.85 1−2 3.50E-02

Target: 208Pb
Ex (MeV) Jπ

n B(Eλ) ↑ (e2 fm2λ)
2.61 3−1 6.11E+05
4.09 2+

1 2.60E+03

Table 4.6: 20O 1− branching used for the improved simulated results presented in
Fig. 4.26. Branching for all other states is the same as presented in Table 4.4.

Ei (MeV) Jπ
n,i Ef (MeV) Jπ

n,f Eγ (MeV) Br. (%)

5.35 1−1 4.46 0+
1 0.89 19

5.35 1−1 4.07 2+
2 1.28 5

5.35 1−1 1.67 2+
1 3.68 46

5.35 1−1 0.00 0+
0 5.35 30

6.85 1−2 4.07 2+
2 2.78 10

6.85 1−2 1.67 2+
1 5.18 39

6.85 1−2 0.00 0+
0 6.85 51

from 4 to 8 MeV, the region that encompasses the two established 1− states, results

in ∼0.09 e2 fm2. Also, complementary WBP shell model calculations by B. A. Brown

(which have been the basis for previous comparisons within this thesis) predict the

existence of a ∼7.7 MeV state with a larger B(E1) strength of 0.075 e2 fm2 [9].

The specific 1− γ-decay branching which was incorporated into the simulation to

produce the results presented in Fig. 4.26 is given in Table 4.6. All other branching

used for this improved simulation is identical to that presented in Table 4.4. As has

been mentioned, the decay ratios for the 2+
2 state are the only ones which have been
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Figure 4.27: The simulated strength curves resulting from excitations to the 1−

1 (a)
and 1−2 (b) states. Peaks resulting from various decay paths are highlighted. Note the
similarities with Fig. 4.23.

previously established [34]. For both the improved 20O simulation, and the former

presented as Fig. 4.24, educated guesses have been made for the branching from 0+
1 ,

3−1 , and 2+
3 states based mostly on comparison with the known 18O level structure [35].

Again, given the fact that excitations to the 3−

1 and 2+
3 states are unimportant, how-

ever, the uncertainty associated with this guessing bears no weight on the results. As

has been demonstrated in previous discussion, the branching for the two 1− states was

established from theoretical predictions, 18O information, and from “trial and error”

comparison against experimental evidence, the latter method ultimately bearing the

most weight. Precisely because of this method by which the 1− branching has been

determined, it is extremely difficult to establish the associated uncertainty. A conser-

vative estimate, though, can come out of a comparison of the 1− branching presented

in Table 4.4 with that in Table 4.6, e.g., no individual decay branch differs by more

than 20 (in units of absolute percentage).

Confidence in the obtained 1− branching information is gained from a comparison

of Fig. 4.27, which shows the (improved) simulated strength curves resulting from

excitations to the 1−

1 (a) and 1−2 (b) states, against the experimental equivalent pre-

sented earlier (Fig. 4.23). Unlike the experimental 1− decay spectra (which contained

contamination due to inadequate S800 energy resolution) the simulated spectra are

98



1.5x10 Simulated

Excitations

8 1.5x10 Simulated

Excitations

8

Figure 4.28: The final 20O θt (a) and φt (b) experimental angular distributions (data
points) shown against the results obtained from the improved simulation (solid lines).
The experimental data has been normalized to the simulated results.

generated with a software cut which excludes contributions from all other excitations.

The differences observed between Fig. 4.27 and Fig. 4.23 can therefore be attributed

to a combination of γ-decay branching uncertainty and contamination in the experi-

mental curves. The important conclusion from this comparison is that no transitions

(peaks) in the experimental decay spectra are unaccounted for, i.e., all important 1−

decay branches have been incorporated into the simulation.

For completeness it is necessary to show the angular distributions obtained with

the simulation against those which were experimentally observed. As was the case with

the 18O comparison, Fig. 4.28 demonstrates that while the microscopic agreement is

not so impressive, the overall acceptance has been adequately reproduced. Moreover,

the simulation has reproduced the double-peak structure observed in the experimental

φt data. As was first explained in Chapter 3, the distribution is double-peaked for

the case of 20O, rather than single-peaked as in the 18O experiment, because of the

differences in the shape of the acceptance “window.”
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Chapter 5

Closing remarks

5.1 Experimental conclusions

Two successive Coulomb excitation experiments were performed at the NSCL in order

to investigate low-lying isovector GDR strength in 18O and 20O. While no conclusions

could be reached regarding E1 strength above the neutron separation energy for ei-

ther nucleus, it was possible to analyze the γ-ray transitions resulting from excitation

of the discrete states. Monte Carlo simulations written within a Geant environment,

used for direct comparisons with the experimental results, were invaluable with re-

gard to interpreting the experimental data. The analysis showed that E2 excitations

dominated the observed strength function for 18O while E1 excitations became more

important for the case of 20O, as predicted by theory.

Two previously unmeasured 20O 1− states were observed at 5.35 and 6.85 MeV.

These energies are in good agreement with, for example, B. A. Brown’s shell model

predictions that place excited 1− levels at 5.1, 6.2 and 7.2 MeV [9] (see Table 5.1). γ-

decay branching from these 1− states has been established to within ∼20%. Along with

direct ground state branches, both 1− states decay through the 2+
1 state. Evidence

also exists for 1− γ-decays through the 2+
2 configuration, this branch probably being
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Table 5.1: 20O shell model predictions for 1− levels from B. A. Brown [9] and also
from H. Sagawa and T. Suzuki [27, 32].

20O shell model predictions
B.A. Brown (WBP) H. Sagawa and T. Suzuki (WB10)

Jπ
n E (MeV) B(E1) ↑ (e2 fm2) Jπ

n E (MeV) B(E1) ↑ (e2 fm2)
1−1 5.1 4.3E-03 1−1 4.1 3.7E-04
1−2 6.2 3.1E-03 1−2 5.5 2.5E-03
1−3 7.2 2.6E-03 1−3 6.1 8.9E-03
1−4 7.7 7.6E-02 1−4 6.8 1.4E-02

1−5 7.5 2.4E-02

more important for the 6.85 MeV state. Specific to the 1− state at 6.85 MeV was the

observation of a decay branch through the 0+ level at 4.456 MeV. In addition to having

established the energies and approximate γ-decay branchings from these two excited

1− configurations, approximate B(E1) ↑ lower limits have been extracted from the

results. Specifically, B(E1; 0.00 → 5.35) ↑≥ 0.062 e2 fm2, while B(E1; 0.00 → 6.85) ↑

≥ 0.035 e2 fm2. As can be verified from a comparison with Table 5.1, these values are,

in general, somewhat higher than predictions for 1− levels.

To investigate the mechanism which results in larger B(E1) values for these 1−

levels in 20O it may be useful to compare 18O strengths and the current 20O results (in

Weisskopf units) with known B(E1) strengths for discrete levels in complementary 2

and 4-valence-neutron systems such as 42,44Ca and/or 58,60Ni. Unfortunately, due to

the experimental challenges associated with much higher level densities in this mass

region, not much experimental information is currently available for these nuclei. For

example, only one 1− level has been established in 42Ca (3.885 MeV) [30] while none

are established in 44Ca [11]. No B(E1) information is currently known for either

calcium isotope. 1− levels have been established in 58Ni (at 5.903 and 6.024 MeV,

having B(E1) strengths of 0.0070 and 0.0015 W.u.) from (e,e′) and (γ, γ′) studies [8].

Unfortunately, no such information currently exists for the more relevent 4-neutron

skin configuration, 60Ni [2].
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5.2 Future virtual photon scattering studies with

20O at the NSCL

Shown in Fig. 5.1 is an 20O dipole strength prediction which has been calculated as-

suming 1~ω excitations in the (0p-1s0d-1p0f) shell model space with a WB10 residual

interaction. While the current study has been unable to verify these predictions re-

garding strength above the neutron binding threshold, the results summarized in

Sec. 5.1 provide confidence that a follow-up study using a similar experimental set-up

will be successful. For example, the measured intensity of de-excitations from the

6.85 MeV level in the current study allows for a reliable estimation of counting rates

for higher-energy γ-rays. Fig. 5.2a) plots expected γ-ray intensities per 1 MeV bin,

normalized to the intensity of 6.85 MeV de-excitations. This figure has been generated

from Coulomb excitation calculations which have utilized the B(E1) information in

Fig. 5.1 along with the shell model prediction for the B(E1) ↑ value for the second-

excited 1− state (0.0031 e2 fm2) [9], assuming, conservatively, that neutron decays

are 1000 times more probable than γ-ray decays above Sn. Separate intensity curves

have been generated for total laboratory frame acceptances of 20, 40, and 60 mrad.

It should be mentioned that the incorporation of the current experimental findings,
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Figure 5.1: 20O E1 excitation function, dB(E1)/dω, calculated with 1~ω excitations
in the (0p-1s0d-1p0f) model space using a WB10 interaction (taken from Ref. 27).
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Figure 5.2: Predictions for intensities of γ-rays between 8 and 20 MeV based on
Coulomb excitation calculations which have used theoretical information presented
as Fig. 5.1 along with the B(E1) prediction for the 1−

2 state. Curves have been
generated for laboratory-frame acceptances of 20, 40, and 60 mrad. a) The y-axis has
been normalized to the intensity of γ-rays resulting from de-excitation of the 6.85 MeV
level. b) The experimental counting rate for 6.85 MeV excitations has been used to
re-express the intensity calculations in more informative units. – these intensities are
valid for a 20O beam intensity of ∼ 5 × 105.

namely that the B(E1) for this 1− level is likely a factor of ∼10 above the prediction

of 0.0031 e2 fm2, would shift the intensity predictions in Fig. 5.2a) a corresponding

factor of 10 downwards. This factor is regained, however, if we assume that neutron

decays are 100 (rather than 1000) times more likely.

Based on the experimental observation of approximately 7500 6.85 MeV decays

within a total run time of ∼120 hours, with the assumption that the counting efficiency

of the array is flat in the energy region shown, one can translate the y-axis of Fig. 5.2a)

to units of coincidences per hour per γ-ray MeV. (The energy of the emitted, rather

than detected, γ-ray is what is specified by this conversion). The result of this re-

scaling process is given in Fig. 5.2b). The total integrated count rates per hour are

∼1.4, 4.2, and 6.7 for the 20, 40 and 60 mrad acceptance curves, respectively. The

reader may recall from the 20O angular distributions (e.g., Fig. 4.28) that the achieved

S800 acceptance was ∼20 mrad. This acceptance value, however, does not incorporate

the fact that the blocker removed approximately half of the θt distribution which
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eliminated ∼25% of the projectile scattering cone, effectively reducing the count rate

by ∼25%. Hence, the integrated count rate for γ-rays between 8 and 20 MeV which

is predicted by Fig. 5.2b) for the current study becomes approximately 1 per hour,

which provides an explanation as to why the experiment was not successful at probing

the strength function in this energy region.

As one can see clearly from the relationship between the curves in Fig. 5.2, a

modest improvement in the experimental acceptance would markedly improve the

counting rates for γ-rays from the targeted energy region. This is a direct manifesta-

tion of the fact that the E1 Coulomb excitation probability distribution (as a function

of laboratory-frame scattering angle) peaks between roughly 20 and 60 mrad. For a

follow-up study using essentially the same set-up (with the re-positioned target) the

GDR-region coincidence counting rate would likely benefit from operating the S800

at, say, 1.7◦. In addition to reducing the counting/acceptance losses due to the blocker,

this spectrometer placement would strategically sample the peak (rather than the in-

cline) of E1 probability distribution function. These strides made in the counting rate

due to S800 positioning are meek, however, when compared with the improvement in

20O beam intensity which has been made available by the recent coupled cyclotron

upgrade at the NSCL. For example, according to the CCF/A1900 production rate

code LISE [33], the predicted beam intensity for 100 MeV/u 20O (assuming a 22Ne

primary beam on a 9Be production target) is ∼ 1× 107 which is an impressive factor

of 20 times that which was available for the current study. These combined improve-

ments boost the expected counting rate for γ-rays between 8 and 20 MeV to ∼100

per hour, which is indeed an exciting prospect.
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Appendix A

Reaction kinematics

This appendix will delve into the realm of relativistic two-body kinematics. Relations

which are pertinent to the current study will be derived from standard momentum and

energy conservation principles. For simplification of all expressions, the replacement

c → 1 will be made, or, equivalently, we will work in a scheme with implied units

for momentum and mass, [p] and [m], of [E]/c and [E]/c2, respectively. The physical

process we will examine involves a collision in the laboratory of particle A, with mass

mA and momentum pA, with particle B, of mass mB, which is initially at rest, as

represented in Fig. A.1. As is typically the case, symbols referring to quantities after

the collision will be denoted with a prime. The particles are scattered in the reaction

plane to laboratory angles θA′ and θB′ with respect to the direction of ~pA. Particles A′

and B′ carry away momenta ~pA′ and ~pB′ , respectively. The possibility for an inelastic

process occurring is introduced by the simple substitutions,

mA′ → mA + E∗

A′

mB′ → mB + E∗

B′ , (A.1)

where E∗

A′ and E∗

B′ are the excitation energies of the particles after the collision.
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Figure A.1: Scattering of particles A and B in the laboratory frame. Particle B is at
rest initially.

A.1 Review of Lorentz transformations

Before proceeding further into the dynamics of the collision using a relativistic treat-

ment, it will be useful to review the basics of Lorentz transformations. Formally, we

will work in Minkowski space, in which a particle’s 4-momentum is represented as

p =



















p1

p2

p3

p4



















=







~p

iE






. (A.2)

This discussion will benefit from a particular example, where we relate a particle’s

4-momentum in a moving frame, denoted p′, to that in a frame which is at rest, p.

For simplicity we will assume that the motion of the primed frame is along the z-axis

of the stationary frame. The relationship is:

p′ = Λp , (A.3)
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where Λ, the Lorentz transformation matrix, has the form [13]

Λ =



















1 0 0 0

0 1 0 0

0 0 γ iγβ

0 0 −iγβ γ



















. (A.4)

To apply this for a simple case, assume the particle is at rest in the moving frame,

i.e.,

p′ =



















0

0

0

im



















.

The 4-momentum of this particle in the stationary frame can be calculated using the

inverse relationship

p = Λ−1p′ , (A.5)

where the inverse transformation, Λ−1, is related to the direct transformation by

Λ−1 = Λβ→−β .
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Therefore,

Λ−1 =



















1 0 0 0

0 1 0 0

0 0 γ −iγβ

0 0 iγβ γ



















. (A.6)

Hence,

p =



















0

0

γβm

iγm



















.

But, on the other hand, since the particle is at rest in the boosted frame, this implies

p =



















0

0

p

iE



















since the motion of the boosted frame is entirely along the z-axis.

Equating the two 4-vector expressions for p we find

p = γβm

E = γm , (A.7)

which are the well known relations for a particle of mass m which moves with velocity

β. Lorentz invariance demands that the contraction of the 4-momentum in any frame
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be equivalent, so that

p · p = p2 − E2 = p′ · p′ = −m2 .

Which gives us the famous relation,

E2 = p2 + m2 . (A.8)

A.2 Two-body collision dynamics

Of specific interest to this study is the derivation of an expression which will relate

the center-of-mass scattering angle, θA′,cm, to that in the laboratory frame θA′,lab.

This is necessary since one of the tasks which the simulation needed to perform was

a calculation of θA′,lab given θA′,cm, EA,lab, and the excitation energy (energies) of

particle(s) A′ (and B′). A derivation of a useful expression for the total energy in the

center-of-mass is first required. Taking advantage of Lorentz invariance of the inner

product of the total 4-momentum before the collision in each frame we have

pcm · pcm = plab · plab .

Since the total momentum in the C.M. system is by definition zero, the above relation

becomes

E2
cm = E2

lab − p2
lab .

But,

Elab = EA,lab + EB,lab ; EB,lab = mB .
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Hence,

E2
cm = E2

A,lab + 2EA,lab mB + m2
B − p2

lab .

Substituting

p2
lab = p2

A,lab = E2
A,lab − m2

A ,

we come to the useful result,

E2
cm = 2EA,lab mB + m2

A + m2
B . (A.9)

Equation A.9 will be utilized at a later stage in the derivations. Of immediate

importance is knowledge of the velocity of the center-of-mass frame in the laboratory,

βcm → β. The Lorentz transformation gives it directly, since

p3,cm = 0 = Λ33 p3,lab + Λ34 p4,lab = γ(pA,lab − βElab) .

Rearranging, with Elab = EA,lab + mB, we find

β = βcm =
pA,lab

EA,lab + mB
. (A.10)

We will now work with quantities after the collision to derive the useful relationship

between the scattering angles of particle A′ in the laboratory and center-of-mass

frames. The 4-momentum of particle A′ can be expressed as
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Figure A.2: Scattering of particles A and B as viewed in the center-of-mass frame.

pA′,lab =



















pA′,lab sin(θA′,lab)

0

pA′,lab cos(θA′,lab)

iEA′,lab



















(A.11)

in the laboratory frame, and as

pA′,cm =



















pA′,cm sin(θA′,cm)

0

pA′,cm cos(θA′,cm)

iEA′,cm



















(A.12)

in the center-of-mass frame. The two are related by a Lorentz transformation, e.g.,

pA′,lab = Λ−1pA′,cm .
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Thus,

pA′,lab =



















pA′,cm sin(θA′,cm)

0

γ{pA′,cm cos(θA′,cm) + βEA′,cm}

iγ{β pA′,cm cos(θA′,cm) + EA′,cm}



















. (A.13)

Comparison of Eq. A.11 and Eq. A.13 provides three useful relations, namely,

pA′,lab sin(θA′,lab) = pA′,cm sin(θA′,cm)

pA′,lab cos(θA′,lab) = γ{pA′,cm cos(θA′,cm) + βEA′,cm}

EA′,lab = γ{β pA′,cm cos(θA′,cm) + EA′,cm} . (A.14)

Division of the first two yields

tan(θA′,lab) =
sin(θA′,cm)

γ
(

cos(θA′,cm) +
βE

A′,cm

p
A′,cm

) ,

or,

tan(θA′,lab) =
sin(θA′,cm)

γ
(

cos(θA′,cm) + β
β
A′,cm

) . (A.15)

This nice result is dependent on βA′,cm, the velocity of particle A′ in the C.M.

frame, which is a quantity that we would like to express in terms of those we already

know. We expect a priori that βA′,cm has no angular dependence since total momentum

in this frame is always zero. We will begin by writing down an expression for the total

momentum in the center-of-mass after the collision:

Ecm = EA′,cm + EB′,cm = γA′,cm mA′ +
√

p2
B′,cm + m2

B′ .

112



But since p2
B′,cm = p2

A′,cm, this becomes,

Ecm = γA′,cm mA′ +
√

p2
A′,cm + m2

B′

= γA′,cm mA′ +
√

γ2
A′,cm m2

A′ − m2
A′ + m2

B′

= γA′,cm mA′ +
√

m2
A′(γ2

A′,cm − 1) + m2
B′ . (A.16)

This result, which is quadratic in γA′,cm, can be easily solved for γA′,cm. The solution

is

γA′,cm =
m2

A′ − m2
B′ + E2

cm

2mA′Ecm

, (A.17)

which directly gives βA′,cm since,

βA′,cm =
√

1 − γ−2
A′,cm . (A.18)

From Eq. A.17 it becomes clear why Eq. A.9, which was derived from quanti-

ties before the collision, is particularly useful. Substitution of the solution for βA′,cm

into the expression for θA′,lab, Eq. A.15, provides us with the desired relationship

which depends only on θA′,cm, EA,lab, and the excitation energies of the participating

particles.

113



Appendix B

Intermediate-energy Coulomb

excitation

This appendix will provide some useful mathematical formalism which is applicable

to the process of intermediate energy Coulomb excitation. “Intermediate” refers to

projectile kinetic energies of tens to a few hundred MeV/u. The approach which will

be outlined here is semi-classical since a classical Rutherford trajectory is assumed

for the projectile, while the interaction between the projectile and target is treated

quantum-mechanically using first-order perturbation theory.

B.1 The excitation cross section

The differential cross section for Coulomb excitation can be expressed as [1]

dσ

dΩ
=

(

dσ

dΩ

)

Ruth.

Pi→f , (B.1)

where the classical Rutherford cross section relation is given by

(

dσ

dΩ

)

Ruth.

=
a2

4 sin4
(

ϑ
2

) . (B.2)
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Figure B.1: Coulomb excitation of the projectile (A) as it scatters from the Coulomb
field of the target (B), depicted in the center-of-mass frame. A virtual photon has
been absorbed in the process.

In Eq. B.2 the angle ϑ is the projectile scattering angle in the center-of-mass, ϑ =

θA′,cm, while a is defined as half the distance of closest approach:

a =
b

2
=

ZAZBe2

µv2
. (B.3)

Above, ZA and ZB are the atomic numbers for the projectile and target, respectively,

while v is the relative velocity of the projectile and target. (Since the target is at

rest initially, v = vA.) The parameter µ represents the reduced mass of the projec-

tile + target system, µ ≡ mAmB/(mA + mB). It should be mentioned that excitation

of the projectile or the target is dealt with in an equivalent manner. For the remain-

der of this discussion, however, we will assume projectile excitation; all expressions

to follow are valid for target excitation with a simple exchange, ZA ↔ ZB.

The excitation process is understood as resulting from interactions of the pro-

jectile with the time-dependent electromagetic field, V (r(t)), which sweeps over the

projectile as it passes the target. From first-order perturbation theory we have

Pi→f = |ai→f |2 , where ai→f =
1

i~

∫

∞

−∞

〈f |V (r(t)) |i〉 ei(Ef−Ei)/
�

dt (B.4)
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is the amplitude of the process which takes the projectile from state i into state f .

The electromagnetic interaction, V (r(t)), includes contributions from both electric

and magnetic multipoles. For this study it was sufficient to consider only electric

contributions (λ = 1−3). As outlined in Ref. 1, the electric amplitude can be written

as

ai→f =
4πZBe

i~

∑

λ,µ

1

2λ + 1
〈IiMi|M(Eλ, µ) |IfMf 〉∗ SEλµ . (B.5)

Defined in such a way, the nuclear properties enter the amplitude only through the

electric multipole matrix elements, 〈IiMi|M(Eλ, µ) |IfMf 〉∗, while the kinematics of

the collision are contained solely in the orbital integrals, SEλµ, which are given by

SEλµ =

∫

∞

−∞

Yλµ[θ(t), φ(t)]

r(t)λ+1
ei(Ef−Ei)t/

�

dt . (B.6)

To further isolate the nuclear properties, the multiple matrix elements themselves

are expressed as a product of a Wigner 3–j symbol, which is the contribution from

angular momentum geometry, and a reduced matrix element, e.g.,

〈IiMi|M(Eλ, µ) |IfMf 〉 = (−1)Ii−Mi







Ii λ If

−Mi µ Mf






〈Ii‖M(Eλ) ‖If〉 . (B.7)

The complex orbital integrals, SEλµ, can be re-expressed as

SEλµ =
1

aλv

(λ − 1)!

(2λ − 1)!!

√

2λ + 1

π
Rλµ(ϑ, ξ) (B.8)

where ξ is defined as the adiabaticity parameter:

ξ =
a

v

Ef − Ei

~
. (B.9)
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Qualitatively speaking, the adiabaticity parameter can be thought of as the ratio of

the collision time (or amount of time the projectile spends within the target field)

and the characteristic nuclear period associated with the small change in energy,

Ei → Ef . This quantity must be comparable or less than unity for the transition

|i〉 → |f〉 to occur – for larger values of ξ the nucleus will follow the perturbation due

to the potential adiabatically [1]. Given an incident beam energy, ξ therefore provides

an upper limit on the energy which the participating nuclei can absorb during any

virtual excitation process.

The form of the new orbital integrals, Rλµ(ϑ, ξ), which appear in Eq. B.8 is intro-

duced through the relation:

R2
λ(ϑ, ξ) =

∑

µ

|Rλµ(ϑ, ξ)|2

=

∣

∣

∣

∣

(2λ − 1)!!

(λ − 1)!

∣

∣

∣

∣

2
π

2λ + 1

∑

µ

|Yλµ(π/2, 0) Iλµ(ϑ, ξ)|2 . (B.10)

The Iλµ(ϑ, ξ) functions appearing in Eq. B.10 are defined in Ref. 1 as the Coulomb

excitation functions, which have the form

Iλµ(ϑ, ξ) =

∫

∞

−∞

(ε + cosh w + i
√

ε2 − 1 sinh w)µ

(1 + ε cosh w)λ+µ
eiξ(ε sinh w+w) dw , (B.11)

where λ and µ are integer values, with λ ≥ 0. The variable ε used above represents

the eccentricity of the hyperbolic orbit, which is purely a function of the scattering

angle ϑ.

ε =
1

sin
(

ϑ
2

) . (B.12)

It is worthy to note that, defined as such, the Iλµ(ϑ, ξ) functions are real, i.e.,

Iλµ(ϑ, ξ) = I∗

λµ(ϑ, ξ) .
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As will be discussed in Section B.3, the Iλµ(ϑ, ξ) functions can be calculated nu-

merically using Mathematica [36] for all values of ϑ and ξ. Such numerical solutions

are rather computationally intensive. The approximation

Iλµ(ϑ, ξ) ' (−1)(λ−µ)/2

ε

(

ξ

2ε

)(λ−1)/2

Γ

(−λ + µ + 1

2

)

e−πξ/2 W
−

µ
2
−

λ
2

(2ξε) , (B.13)

which holds for small scattering angles, ϑ, was especially useful for the current

study since the scattering angles of 18,20O were limited to a small forward cone.

The W
−

µ
2
−

λ
2

(2ξε) quantities in Eq. B.13 are Whittaker functions, which are related

to confluent hypergeometric functions, U(a, c; z) [4]. Specifically,

Wlm(x) = e−x/2xm+1/2 U(m − l + 1/2, 2m + 1; x) . (B.14)

Rewriting the expression for the differential Coulomb excitation cross section

(Eq. B.1) while making use of the definitions in Equations B.8, B.10, and B.11, along

with the expression for the contribution from nuclear properties, Eq. B.7, we have

dσEλ

dΩ
=

(

ZBe

~v

)2

a−2λ+2B(Eλ, Ii → If)
dfEλ(ϑ, ξ)

dΩ
. (B.15)

Above, we have used the definition for the so-called differential cross section functions,

dfEλ(ϑ, ξ)

dΩ
= 4π

∣

∣

∣

∣

(λ − 1)!

(2λ + 1)!!

∣

∣

∣

∣

2

R2
λ(ϑ, ξ) sin−4(

ϑ

2
) , (B.16)

along with the expression for the reduced transition probability:

B(Eλ, Ii → If) =
1

2If + 1
|〈Ii‖M(Eλ) ‖If〉|2

=
1

2Ii + 1
|〈If‖M(Eλ) ‖Ii〉|2 . (B.17)
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B.2 Quantum mechanical corrections

Up to this point the classical portion of this Coulomb excitation treatment has ne-

glected projectile energy-loss due to inelastic processes. One might expect that better

solutions for the Coulomb cross section might be found by replacing v with some

average velocity of the projectile over its trajectory. In fact, following the logic intro-

duced in Ref. 1, which makes use of quantum mechanical symmetry arguments, it is

realized that an improvement to this semi-classical approach is achieved if one uses

“symmetrized” expressions for a and ξ. By these arguments, the (relative) velocity,

v, in the expressions for a and ξ (Equations B.3 and B.9, respectively) should be

replaced by the average velocity of the projectile before and after the collision, i.e.,

v → vsym = (vA + vA′)/2, so that

a → asym =
ZAZB e2

µ v2
sym

=
ZAZB e2

µ vAvA′

ξ → ξsym =

(

asym

vsym

)

Ef − Ei

~

=
ZAZB e2

~

(

1

vA′

− 1

vA

)

. (B.18)

Hence, we arrive at the corrected version of the Coulomb excitation cross section,

dσEλ

dΩ
→
(

dσEλ

dΩ

)

sym

=

(

ZBe

~v

)2

a−2λ+2
sym B(Eλ, Ii → If)

dfEλ(ϑ, ξsym)

dΩ
. (B.19)

B.3 Differential cross section functions

As mentioned in Sec. B.1, of specific importance to this study were contributions to the

virtual photon flux from three electric multipoles, namely E1, E2, and E3. Therefore,

discussion for the remainder of this appendix will focus on a more detailed derivation
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of the differential cross section functions, dfEλ(ϑ, ξ)/dΩ, for the three pertinent values

of λ. Notice that the arguments of the spherical harmonics (Yλµ(θ, φ)) appearing in

Eq. B.10 are constants. Specifically, θ = π/2 and φ = 0. Given the property of

these functions that the product of µ and the argument φ determines the complex

contribution, with all φ = 0, we have the special situation where

Yλµ = Y ∗

λµ ,

i.e., all Yλµ coefficients in Eq. B.10 are real. Therefore, given the reflection properties

of the spherical harmonics, this implies

Yλ−µ = (−1)µ Y ∗

λµ = (−1)µ Yλµ .

Hence,

Y 2
λ−µ = Y 2

λµ .

Meanwhile, the fact that the argument θ takes on the value π/2 for all (λ, µ) gives us

Y10 = Y2±1 = Y30 = Y3±2 = 0 .

Using the specific values for the remaining Yλµ coefficients, along with the fact

that all Iλµ(ϑ, ξ) are real, we arrive at the following expressions for the differential

cross section functions:
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dfE1(ϑ, ξ)

dΩ
=

(

1

27

)

4 π2

sin4(ϑ
2
)

(

3

8π

)

{I2
1−1(ϑ, ξ) + I2

11(ϑ, ξ)}

dfE2(ϑ, ξ)

dΩ
=

(

1

125

)

4 π2

sin4(ϑ
2
)

[(

15

32π

)

{I2
2−2(ϑ, ξ) + I2

22(ϑ, ξ)} +

(

5

16π

)

I2
20(ϑ, ξ)

]

dfE3(ϑ, ξ)

dΩ
=

(

1

343

)

4 π2

sin4(ϑ
2
)
×

[(

35

64π

)

{I2
3−3(ϑ, ξ) + I2

33(ϑ, ξ)} +

(

21

64π

)

{I2
3−1(ϑ, ξ) + I2

31(ϑ, ξ)}
]

.

(B.20)

Mathematica [36] was used to generate both the exact versions of Eq. B.20 (solid

curves), which were calculated using numerical solutions for the Iλµ(ϑ, ξ) functions

(given by Eq. B.11), and the (small-angle) approximate curves (dashed), which used

d
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/
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Figure B.2: Differential cross section functions, dfEλ(ϑ, ξ)/dΩ for E1 (a), E2 (b),
and E3 (c) excitations, shown for different values of the adiabaticity parameter, ξ.
The solid curves were generated using numerical solutions for the exact expressions,
Iλµ(ϑ, ξ) (Eq. B.11), while the dashed curves were generated using the small-angle
approximate solutions for Iλµ(ϑ, ξ) (Eq. B.13). The functions dfEλ(ϑ, ξ)/dΩ have been
normalized such that the exact curves are unity at θA′,cm=π. Table B.1 gives the
appropriate multiplication factors.
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Table B.1: The factors by which the curves in Fig. B.2 should be multiplied

ξ=0.1 ξ=0.2 ξ=0.5
dfE1(ϑ, ξ)/dΩ 9.19 E -1 5.62 E -1 1.12 E -1
dfE2(ϑ, ξ)/dΩ 4.97 E -2 3.89 E -2 1.32 E -2
dfE3(ϑ, ξ)/dΩ 4.32 E -3 3.76 E -3 1.76 E -3

Eq. B.13 to generate the Iλµ(ϑ, ξ)’s. Some examples are given in Fig. B.2 for different

values of adiabaticity (ξ=0.1,0.2,0.5) and virtual photon multipolarity. For reference,

the adiabaticity parameter for the 20O study was ∼0.018. The curves in Fig. B.2 have

been normalized such that the exact solutions, shown as the solid lines, are unity at

θA′,cm=π. The factors by which the curves in Fig. B.2 should be multiplied are given

in Table. B.1.

As evidenced by Fig. B.2, the approximate solutions for the differential cross sec-

tion functions are accurate up to ϑ ' 0.5 radians, which is a region which extends

well beyond the angular acceptance for these experiments. Moreover, the approximate

solution is better for lower multipolarity. Indeed, for the specific case of E1 excita-

tions, the approximate solution for small adiabaticity is seemingly valid for all ϑ.

The approximate solutions, which were much less computationally demanding, were

therefore used for all Coulomb cross section calculations that went into the Monte

Carlo simulation, the details of which are included in Chapter 4.
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[18] W. Klamra, T. Lindblad, M. Moszyński, and L. O. Norlin. Properties of optical
greases for BaF2 scintillators. Nucl. Instr. and Meth. A, 254:85–87, 1987.

[19] G. F. Knoll. Radiation detection and measurement. John Wiley & Sons, Inc.,
3rd edition, 2000.
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R. Kulessa, Y. Leifels, E. Lubkiewicz, G. Münzenberg, P. Reiter, M. Rejmund,
C. Scheidenberger, C. Schlegel, H. Simon, J. Stroth, K. Sümmerer, E. Wajda,
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