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ABSTRACT

RELATIVISTIC VISCOUS HYDRODYNAMICS FOR HIGH ENERGY
HEAVY ION COLLISIONS

By

Joshua Vredevoogd

It has been over a decade since the first experimental data from gold nuclei collisions

at the Relativistic Heavy Ion Collider suggested hydrodynamic behavior. While early ideal

hydrodynamical models were surprisingly accurate in their predictions, they ignored that the

large longitudinal velocity gradient meant that even small shear viscosity would produce large

corrections to the transverse dynamics. In addition, much less was known about the equation

of state predicted by lattice calculations of quantum chromodynamics, which predicts a soft

region as the degrees of freedom change from quarks to hadrons but no first-order phase

transition. Furthermore, the effects of late, dilute stage rescattering were handled within

the hydrodynamic framework to temperatures where local kinetic equilibrium is difficult to

justify. This dissertation presents a three-dimensional viscous hydrodynamics code with a

realistic equation of state coupled consistently to a hadron resonance gas calculation. The

code presented here is capable of making significant comparisons to experimental data as

part of an effort to learn about the structure of experimental constraints on the microscopic

interactions of dense, hot quark matter.
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Chapter 1

Heavy Ion Collisions

It has been understood for over half a century that the protons and neutrons that make

up atomic nuclei have substructure. The symmetry structure of the many new particles

that were being discovered in the 1950’s and 1960’s led to an elegant explanation in terms

of constituent particles that Gell-Mann coined as quarks. The quark model successfully

predicted the Omega baryon, so named for being the only undiscovered combination of the

three quarks (up, down, and strange) that made up all known particles at the time. Since

that time, heavier quarks have been theorized and discovered. Notably, the top quark was

discovered by the Tevatron collider at Fermilab in collisions of protons with anti-protons at

extremely high relative momentum. Such high momentum collisions, of single hadrons or of

nuclei, form the experimental basis of our knowledge about the interactions of quarks and the

corresponding force carriers, gluons. The accepted theory for explaining these interactions

is called Quantum ChromoDynamics (QCD), which has been studied in great detail and

strenuously tested over the last half century.

Among the unique features of QCD is that each quark is confined by the strong force and
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can never be completely separated from at least one or two partner quarks. Confinement is

borne out experimentally: despite the extreme amount of energy available to separate quarks

in heavy ion collisions, collider experiments only observe mesons and baryons, made up of two

and three constituent quarks respectively, and never a bare quark. In QCD, this is explained

by the introduction of color charge. Isolating objects with non-zero color charge is forbidden,

and since quarks carry a single color charge, they can never be observed in isolation. In the

opposite regime, when quarks are extremely close, they interact only weakly, a result known

as asymptotic freedom. This is exactly the opposite of Quantum Electrodynamics where the

bare charge is infinite and renormalization is required to reproduce couplings observable at

large distances as terms are added to the perturbation series.

Since the strong force increases dramatically as quarks become separated, there is the

possibility of creating a new and interesting state of matter when the average distance

between quarks becomes small. Creating this new state of matter, often called the Quark-

Gluon Plasma (QGP), in which the quarks are freed from hadrons and form a plasma was

one of the goals of the heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC), and

the associated STAR (Solenoid Tracker At RHIC) and PHENIX (Pioneering High Energy

Nuclear Interaction eXperiment) experiments [10]. While such a phase transition had been

expected, clean experimental signatures that the transition has occurred have been somewhat

difficult to isolate and, for instance, there is at present no evidence for behavior associated

with a first-order phase transition. At this time, this is true even in the data from new RHIC

initiative searching for the critical point in the QCD phase diagram at larger baryon chemical

potential [11]. Still, significant experimental evidence suggests that the matter created at

RHIC interacts strongly and collectively, notably away-side jet quenching [1, 12–14] and flow
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FIG. 4: (a) Efficiency corrected two-particle azimuthal dis-
tributions for minimum bias and central d+Au collisions, and
for p+p collisions[6]. Curves are fits using Eq. 3, with pa-
rameters given in Table I. (b) Comparison of two-particle
azimuthal distributions for central d+Au collisions to those
seen in p+p and central Au+Au collisions [6]. The respective
pedestals have been subtracted.

TABLE I: Fit parameters from Eq. 3. Errors are statistical
only.

p+p min. bias d+Au min. bias d+Au central

AN 0.081±0.005 0.073±0.003 0.067±0.004

σN 0.18±0.01 0.20±0.01 0.22±0.02

AB 0.119±0.007 0.097±0.004 0.098±0.007

σB 0.45±0.03 0.48±0.02 0.51±0.03

P 0.008±0.001 0.039±0.001 0.052±0.002

trality dependence [14]. Figure 3 also shows RAB(pT ) for
central Au+Au collisions[5], exhibiting large suppression
in hadron production at high pT .

Figure 4(a) shows the two-particle azimuthal distribu-
tion D(∆φ), defined as

D(∆φ) ≡ 1

Ntrigger

1

ε

dN

d(∆φ)
, (2)

for minimum bias and central d+Au collisions, and for
p+p collisions[6]. Only particles within |η|<0.7 are in-
cluded in the analysis. Ntrigger is the number of particles
within 4<pT (trig)<6 GeV/c, referred to as trigger parti-
cles. The distribution results from the correlation of each
trigger particle with all associated particles in the same
event having 2 < pT < pT (trig), where ε is the tracking
efficiency of the associated particles. The normalization
uncertainties are less than 5%.

The azimuthal distributions in d+Au collisions include

a near-side (∆φ ∼ 0) peak similar to that seen in p+p and
Au+Au collisions [6] that is typical of jet production, and
a back-to-back (∆φ ∼ π) peak similar to that seen in p+p
and peripheral Au+Au collisions [6] that is typical of di-
jet events. The azimuthal distributions are characterized
by a fit to the sum of near-side (first term) and back-to-
back (second term) Gaussian peaks and a constant:

D(∆φ) = AN
e−(∆φ)2/2σ2

N

√
2πσN

+AB
e−(|∆φ|−π)2/2σ2

B

√
2πσB

+P. (3)

Fit parameters are given in Table I. Their systematic
uncertainties are highly correlated between the data sets,
and are less than 20% for σN and less than 10% for all
other parameters. The only large difference in the az-
imuthal distributions in p+p and d+Au collisions is the
growth of the pedestal P . It increases with increasing
〈Nbin〉, but is not proportional to 〈Nbin〉 as might be ex-
pected for incoherent production. Both σN and σB ex-
hibit at most a small increase from p+p to central d+Au
collisions. A small growth in σB is expected to result
from initial-state multiple scattering [24, 25]. The mod-
est reduction in the correlation strengths AN and AB

from p+p to central d+Au collisions is similar to that
seen previously for peripheral Au+Au collisions [6].

Figure 4(b) shows the pedestal-subtracted azimuthal
distributions for p+p and central d+Au collisions.
The azimuthal distributions are shown also for central
Au+Au collisions after subtraction of the elliptic flow
and pedestal contributions [6]. The near-side peak is sim-
ilar in all three systems, while the back-to-back peak in
central Au+Au shows a dramatic suppression relative to
p+p and d+Au.

The contrast between d+Au and central Au+Au col-
lisions in Figs. 3 and 4 indicates that the cause of the
strong high pT suppression observed previously is asso-
ciated with the medium produced in Au+Au but not in
d+Au collisions. The suppression of the inclusive hadron
yield at high pT in central Au+Au collisions has been
discussed theoretically in various approaches (see [5] for
references). Measurements of central Au+Au collisions
[5] are described both by pQCD calculations that incor-
porate shadowing, the Cronin effect, and partonic energy
loss in dense matter, and by a calculation extending the
saturation model to high momentum transfer. However,
predictions of these models differ significantly for d+Au
collisions. Due to the Cronin effect, pQCD models pre-
dict that RAB(pT )>1 within 2<pT <6 GeV/c for mini-
mum bias d+Au collisions, with a peak magnitude of 1.1-
1.5 in the range 2.5<pT <4 GeV/c [11]. The enhancement
is expected to be larger for central collisions [12]. The
saturation model calculation in [7] predicts RAB(pT )<1,
with larger suppression for more central events, achieving
RAB(pT )∼ 0.75 for the 20% most central collisions. In
contrast, another saturation model calculation [15] gener-
ates an enhancement in RAB(pT ), similar to the Cronin

Figure 1.1: Away side suppression of high transverse momentum hadrons in Au+Au collisions
as compared to the same data for d+Au and p+p at constant energy per nucleon,

√
sNN =

200 GeV, as measured by the STAR experiment [1]. For interpretation of the references
to color in this and all other figures, the reader is referred to the electronic version of this
dissertation.

observables [15–18].

Jets are formed in hadronic collisions at high relative momentum when there is a hard

scattering of a pair of quarks or gluons. If the pair scatter away from the hadronic matter,

the energy due to their separation grows rapidly. The separation energy becomes much

larger than the energy required to generate additional quarks and so each quark or gluon

begins to form quark-antiquark pairs until they are able to form a collection of colorless

combinations. This process results in a group of high momentum hadrons at small relative

momentum known as a jet. In proton collisions, jets are almost always found in back-to-

back pairs with similar total energy due to momentum conservation. This is not the case

3



in heavy ion collisions, as Figure 1.1 demonstrates for Au+Au collisions at a center of mass

energy per nucleon pair (
√
sNN) of 200 GeV. The figure shows the distribution of charged

particles whenever there is a very high transverse momentum particle present shown as a

function of the angular difference in the transverse plane compared to that particle. To

assist in interpreting this plot, we define the coordinate system of heavy ion physics. The

transverse direction is radially outward from the interaction point in the plane orthogonal to

the motion of the colliding nuclei, where the direction along the the motion of the colliding

nuclei is referred to as longitudinal. We will frequently refer to particles by their transverse

momentum, pT , and their longitudinal rapidity, y. The final coordinate is the azimuthal

angle in the transverse plane, φ, meaning that the coordinate system in particle momentum

space is cylindrical.

In Figure 1.1, the highest transverse momentum particle is defined to be at ∆φ = 0 and

only events with such a high transverse momentum particle are shown. Since events are

selected on high transverse momentum, this particle is called the trigger particle and the

associated jet is called the trigger jet. We expect a cluster of particles distributed around

∆φ = 0 associated with the near-side jet, and another peak around ∆φ = π corresponding

to the away-side jet. This is strictly due to momentum conservation in the transverse plane.

The particles in the trigger jet in the peak around zero are only slightly altered depending

on the system size, but the away-side jet that appears as a peak at ∆φ = π disappears for

central Au+Au collisions, those that produce the largest total number of low momentum

particles. This implies that the matter created in a heavy ion collisions is opaque to high

momentum particles, though the theory of momentum transfer from high momentum quarks

to a thermal QCD medium is not well understood [19].
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FIG. 36. (Color online) Chemical and kinetic freeze-out temper-
atures as a function of the charged-hadron multiplicity. Errors shown
are the total statistical and systematic uncertainties. The 200 GeV pp

and Au + Au data are from Ref. [17].

The success of the chemical equilibrium model in describ-
ing the data should not be readily taken as a proof of chemical
equilibrium of each individual collision [126]. In pp (and other
elementary) collisions, the compositions of most particles are
described well by the chemical equilibrium model but with
the ad hoc strangeness suppression factor significantly smaller
than unity. This has been argued as due, in part, to canonical
suppression from conservation of strangeness in small volumes
[114,115,126]. Canonical suppression appears to explain
elementary e+e− data, while additional suppression seems
needed to account for strangeness production in pp collisions.
The apparent success of the chemical equilibrium model
in describing elementary collisions, despite the strangeness
suppression factor, in all likelihood suggests that particle
production in these collisions is a statistical process, and the
chemical temperature is a parameter governing the statistical
production processes [126].

On the other hand, the stringent constrains of conservation
laws are largely lifted in heavy-ion collisions as they only need
to be satisfied globally over a large volume. As a result, particle
ensembles can be treated in a grand canonical framework. The
chemical equilibrium model can describe the abundances of
all stable hadrons. The ad hoc strangeness suppression factor
extracted from central heavy-ion collisions is close to unity,
implying that strangeness is as equally equilibrated as light
quarks. Moreover, many experimental results indicate that the
medium created at RHIC is strongly interacting [6], which
will naturally lead to thermalization. Thus the success of
the chemical equilibrium model may indeed suggest that the
individual Au + Au collisions are largely thermalized.

B. Kinetic freeze-out properties

The measured p⊥ spectral shape flattens significantly with
increasing particle mass in central Au + Au collisions. This
suggests the presence of a collective transverse radial flow
field, although other physics mechanisms such as (semi)hard

scatterings also contribute. As shown in Figs. 18 and 19, the
spectra are well described by the hydrodynamics-motivated
blast-wave model [127–133]. The blast-wave model makes the
simple assumption that particles are locally thermalized at a
kinetic freeze-out temperature and are moving with a common
collective transverse radial flow velocity field. The common
flow velocity field results in a larger transverse momentum of
heavier particles, leading to the change in the observed spectral
shape with increasing particle mass.

Assuming a hard-sphere uniform density particle source
with a kinetic freeze-out temperature Tkin and a transverse
radial flow velocity β, the particle transverse momentum
spectral shape is given by [127]

dN

p⊥dp⊥
∝

∫ R

0
r dr m⊥I0

(
p⊥ sinh ρ

Tkin

)
K1

(
m⊥ cosh ρ

Tkin

)
,

(16)

where ρ = tanh−1 β, and I0 and K1 are the modified Bessel
functions. We use a flow velocity profile of the form

β = βS(r/R)n, (17)

where βS is the surface velocity and r/R is the relative radial
position in the thermal source. The choice of the value of R
bears no effect in the model.

Six particle spectra (π±,K±, p, and p) of a given centrality
bin are fit simultaneously with the blast-wave model. The
free parameters are the kinetic freeze-out temperature Tkin,
the average transverse flow velocity 〈β〉 = 2

2+n
βS , and the

exponent of the assumed flow velocity profile n. The low
momentum parts of the pion spectra (p⊥ < 0.5 GeV/c) are
excluded from the fit because of significant contributions from
resonance decays.

The blast-wave fit results for Au + Au collisions are listed
in Table X. The χ2/ndf is smaller than unity because the
point-to-point systematic errors, which are included in the
fit and dominate over statistical ones, are estimated
on the conservative side and might not be completely random.
If the χ2/ndf is scaled such that the minimum is unity, then
somewhat smaller statistical errors on the fit parameters are
obtained.

Figure 36 shows the extracted kinetic freeze-out temper-
ature as a function of the event multiplicity for pp and
d + Au collisions at 200 GeV and for Au + Au collisions
at 62.4, 130, and 200 GeV, together with the chemical
freeze-out temperature. As opposed to Tchem, the kinetic
freeze-out temperature Tkin shows a notable decreasing trend
with centrality in Au + Au collisions. The Tkin values
from pp and d + Au collisions are similar to those in
peripheral Au + Au, although the systematic uncertainties are
large.

Figure 37 shows the extracted average transverse radial
flow velocity 〈β〉 as a function of the event multiplicity.
The 〈β〉 increases dramatically with increasing centrality in
Au + Au collisions. The effect of the 〈β〉 increase on the
transverse spectra is significantly stronger than the counter
effect of the Tkin drop. The combination of the π,K, p, and p
spectra favors an increase of 〈β〉 with centrality rather than a
similar increase in Tkin.

034909-33

Figure 1.2: The temperature extracted from blast wave fits to low mass particle spectra from
the STAR experiment for various systems at various beam energies per nucleon pair [2].

The matter created in high energy heavy ion collisions also appears to interact long

enough to cool. Figure 1.2 shows the chemical and kinetic temperatures indicated by blast

wave fits to the transverse momentum dependence of the particle spectra as a function of

the charged particle multiplicity. In its simplest form, the blast wave model assumes that

all particles were emitted from a sphere of uniform density characterized by five parameters:

• A single kinetic temperature (Tkin),

• a single chemical temperature (Tch),

• a linear velocity profile with unknown average velocity (〈β〉),

• a spherical radius (R), and

• a baryon chemical potential (µB).
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These five parameters are sufficient to predict the probability of observing a particular par-

ticle at a particular momentum, and therefore, they can all be determined by a fit to the

spectrum low mass particles (pion, kaon, and proton). While this model is overly simplistic

and does not include important physics, the parameters are a useful way of discussing trends

in heavy ion collisions.

The chemical temperature extracted via the blast wave fit does not change as the number

of charged particles or the beam energy increases and is consistent with the ratios observed

in high energy proton-proton collisions. This trend does not carry over to the kinetic tem-

perature indicated by the momentum distribution, which decreases as particle production

increases. This softening of the spectra should not be associated with resonance production,

since pions below 500 MeV/c were excluded, but instead should be related to the increasing

importance of rescattering at increasingly temperatures. In peripheral collisions, which are

shown in the figure as those with smaller multiplicities for the same beam energy, the spectra

show no characteristic difference from proton-proton collisions in either the chemistry or the

kinetics. This suggests that multiple scattering plays essentially the same role in these col-

lisions. However, the effective kinetic temperature decreases smoothly for all beam energies

as the hot region grows and the number of soft collisions, and therefore the system size,

increase. This suggests that rescattering remains important for a considerable period after

hadrons are created. A hydrodynamic model of heavy ion collisions must address the tem-

perature range between kinetic and chemical freezeout. Modelers have taken two strategies

– one can continue using a hydrodynamic model that takes into account the motion of the

different particle species relative to one another; or one can couple the calculation to a gas

model. In this work, we chose the latter.
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FIG. 40. Average transverse radial flow velocity extracted from
the blast-wave model for central heavy-ion collisions as a function of
the collision energy. The STAR 62.4 and 130 GeV data are from this
work, and the STAR 200 GeV pp and Au + Au data from Ref. [17].
The other data are from FOPI [145], EOS [146], E866 [147], and
NA49 [148] experiments. Errors shown are the total statistical and
systematic errors.

measured radial flow. The radial flow at chemical freeze-out
may be assessed by analyzing p⊥ spectra of particles with
small hadronic interaction cross sections; some rare particles
such as φ,", and # must develop most of their flow early
(perhaps prehadronization), because their interaction cross
sections are much lower than for the common π,K, p, and p.
It is found that the extracted radial flow for these rare particles
is substantial in central heavy-ion collisions at RHIC, perhaps
suggesting strong partonic flow in these collisions [50,149].

Figure 41 shows the chemical freeze-out temperature vs
baryon chemical potential extracted from chemical equi-
librium model fits to central Au + Au data. Low energy
data points (SIS, AGS, SPS) are from the chemical equi-
librium model fits [122,139–141,143,144] and references
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FIG. 41. (Color online) Phase diagram plot of chemical freeze-
out temperature vs baryon chemical potential extracted from chemical
equilibrium models. Low energy data are from Refs. [120–122,126,
139–142] and compilations in Refs. [143,144]. Errors shown are the
total statistical and systematic errors.

therein. At RHIC energies, the chemical freeze-out points
appear to be in the vicinity of the hadron-QGP phase
transition (hadronization) predicted by lattice gauge theory
[150,151].

VIII. SUMMARY

Charged particles of π±,K±, p, and p are identified by
the specific ionization energy loss (dE/dx) method in STAR
at low transverse momenta and midrapidity (|y| < 0.1) in pp
and d + Au collisions at

√
sNN = 200 GeV and in Au + Au

collisions at 62.4, 130, and 200 GeV. Transverse momentum
spectra of the identified particles are reported. Spectra of heavy
particles are flatter than those of light particles in all collision
systems. This effect becomes more prominent in more central
Au + Au collisions. In pp and d + Au collisions, processes
such as semihard scattering and k⊥ broadening should play an
important role. In central Au + Au collisions, the flattening of
the spectra is likely dominated by collective transverse radial
flow, developed because of the large pressure buildup in the
early stage of heavy-ion collisions.

The transverse momentum spectra are extrapolated to
the unmeasured regions by the hydrodynamics-motivated
blast-wave model parametrization for kaons, protons, and
antiprotons and by the Bose-Einstein function for pions. The
total integrated particle yields are reported. The Bjorken
energy density estimated from the total transverse energy is
at least several GeV/fm3 at a formation time of less than
1 fm/c. The extrapolated 〈p⊥〉 increases with particle mass
in each collision system and increases with centrality for
each particle species. The 〈p⊥〉 systematics are similar for
the three measured energies at RHIC and appear to be strongly
correlated with the total particle multiplicity density or the
ratio of the multiplicity density over the transverse overlap
area of the colliding nuclei.

Ratios of the integrated particle yields are presented and
discussed. While rather independent of centrality for 130 and
200 GeV, the p/p ratio drops significantly with centrality in
62.4 GeV Au + Au collisions. This indicates a more significant
net-baryon content at midrapidity in Au + Au collisions at
62.4 GeV. On the other hand, antibaryon production relative to
the total particle multiplicity, while lower at the lower energy,
is independent of centrality for all three collision energies at
RHIC, despite the increasing net-baryon density at the low
62.4 GeV energy.

Strangeness production relative to the total particle multi-
plicity is similar at the different RHIC energies. The effect of
collision energy on the production rate is significantly smaller
on strangeness production than on antibaryon production. Rel-
ative strangeness production increases quickly with centrality
in peripheral Au + Au collisions and remains the same above
medium-central collisions at RHIC. The increase in relative
strangeness production in central Au + Au collisions from pp
is approximately 50%.

The particle yield ratios are fit in the framework of the
thermal equilibrium model. The extracted chemical freeze-
out temperature is the same in pp, d + Au, and Au + Au
collisions at all measured energies at RHIC and shows little

034909-36

Figure 1.3: Average particle velocity extracted from the particle spectra of heavy ion col-
lisions of various nuclei via a blast wave fit as a function of the beam energy per nucleon
pair [2]. Low momentum pions (pT < 0.5 GeV/c) are removed from the fit due to resonance
background. Strong collective velocity is a strong indicator of the onset of collective behavior
for collisions at center of mass energy per nucleon pair greater than a few GeV.
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The transverse velocity indicated by the blast-wave fit is further evidence of collective

behavior in heavy ion collisions. Figure 1.3 shows the average velocity indicated by the

blast-wave fit as a function of beam energy per nucleon pair for heavy ion collisions. A

rapid increase in the average collective velocity is observed in the region around
√
sNN = 2

GeV and a continued steady increase toward the RHIC experiments. As a baseline, the

STAR experiment finds that for proton collisions at
√
sNN = 200 GeV, the apparent average

collective velocity is < β >pp= 0.24±0.08. The collective velocity in proton-proton collisions

is not zero, as one might anticipate from a system expected to be too small to develop

collective flow, but it is considerably smaller than < β >AA= 0.59 ± 0.05 as observed in

heavy ion collisions [2]. This suggests that around a few GeV in beam energy the nature of

heavy collisions changes, and collective response becomes critical to explaining the matter’s

behavior.

In addition to the onset of significant outward flow, the data taken at RHIC show az-

imuthal anisotropy of flow as shown in Figure 1.4, which shows agreement between ideal

hydrodynamic models and experimental data up to pT = 2 GeV. This anisotropic (or ellip-

tic) flow is generated by the anisotropy in the initial state from the finite impact parameter.

The elliptical interaction region means larger pressure gradients along the minor axis leading

to more rapid hydrodynamic expansion. This additional flow produces additional particles

at moderate momenta aligned with the minor axis across a large range of rapidities and

therefore the second Fourier coefficient,

v2 =< cos 2φRP >, (1.1)

increases where φRP is the azimuthal angle relative to the impact parameter. The agreement
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Two RHIC puzzles 5

shape [ 26], and at fixed m⊥ "m0 their relative normalization is given by (giλi)/(g jλ j)
(where gi, j is the spin-isospin degeneracy factor and λi, j = eµi, j/T is the fugacity of hadron
species i, j). At RHIC the baryon chemical potential at chemical freeze-out is small,
µB/Tchem ≈0.26 [ 27], and µπ=0; the  p/π− ratio at fixed and sufficiently large m⊥ is thus
predicted to be larger than 1: (  p/π−)m⊥ =2exp[−(µB+µπ)/Tchem]≈1.5 (where the factor
2 arises from the spin degeneracy of the  p).
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Fig. 2. The elliptic flow coefficient v2(p⊥) for all charged particles (left) and for identified pions
and protons (right) from 130AGeV minimum bias Au+Au collisions [ 8, 9, 28, 29]. The curves
are hydrodynamic calculations corresponding to equations of state with (Q) and without (H) a phase
transition and (in the right panel) three different freeze-out temperatures (Tf =128 MeV (dash-dotted),
130 MeV (solid) and 134 MeV (dashed)).

Figure 2 compares the differential elliptic flow v2(p⊥) from minimum bias Au+Au
collisions at RHIC [ 8, 28, 29] with hydrodynamic calculations. For transverse momenta
p⊥ <2 GeV/c the data are seen to exhaust the upper limit for v2 obtained from the hydro-
dynamic calculations. Only for hadrons with p⊥ > 2 GeV/c (i.e. fewer than 1% of all) v2
stays below the hydrodynamic upper limit, indicating incomplete thermalization of high-
p⊥ particles. The data also show the hydrodynamically predicted mass-dependence of v2 [
14] (right panel). Similar conclusions can be drawn from a plot of the p⊥-integrated elliptic
flow vs. centrality [ 13, 21]: only for large impact parameters b>7 fm the measured v2
remains significantly below the hydrodynamic prediction, presumably indicating a lack of
early thermalization when the initial overlap region becomes too small.

The excellent agreement with hydrodynamics becomes even more impressive after you
begin to realize how easily it is destroyed: As stressed in Sec. 1, it requires the build-up of
momentum anisotropies during the very early collision stages when the spatial anisotropy
of the reaction zone is still appreciable, causing significant anisotropies of the pressure
gradients. A delay in thermalization by more than about 1 fm/c (2 fm/c) dilutes the spatial
anisotropy and the hydrodynamically predicted elliptic flow coefficient by 10% (25%) [ 5]
which is more than is allowed by the data. Parton cascade simulations with standard HI-
JING input generate almost no elliptic flow and require an artificial increase of the opacity
of the partonic matter by a factor 80 to reproduce the RHIC data [ 4]. Hadronic cascades
of the RQMD and URQMD type (in which the high-density initial state is parametrized

Figure 1.4: Momentum dependence of the anisotropic flow observed for all charged particles
by the STAR and PHENIX experiments as compared to the output of early ideal hydrody-
namic simulations [3] for mid-central collisions at

√
sNN = 200 GeV. The simulations show

excellent agreement with the experimental data up to pT = 2 GeV, where hard processes
are increasingly important.
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FIG. 2: (a) v2 vs pT and (b) v2 vs KET for identified particle
species obtained in minimum bias Au+Au collisions. The
STAR data are from Refs. [22, 37].

dependent of colliding system because ε is proportional
to the pT -integrated v2 values (i.e. ε = k × v2). The
latter proportionality has been observed for Au+Au col-
lisions [34, 35]. A Glauber model estimate of ε [35] gives
k = 3.1± 0.2 for the cuts employed in this analysis. This
method of scaling leads to a scale invariant variable and
cancels the systematic errors associated with estimates
of the reaction plane resolution and the eccentricity.

The resulting scaled v2 values for Cu+Cu and Au+Au
collisions, are shown in Fig. 1(c). To facilitate later com-
parisons with the model calculations of Ref. [23], they
are divided by k = 3.1. These scaled values are clearly
independent of the colliding system size and show es-
sentially perfect scaling for the full range of centralities
(or ε) presented. The v2 are also in accord with the
scale invariance of perfect fluid hydrodynamics [23, 27],
which suggests that rapid local thermalization [9, 10] is
achieved.

The magnitude of v2/ε depends on the sound speed cs

[23]. As a reasonable first approximation we compare our
measured v2/ε at an integrated 〈pT 〉 0.45 GeV/c and the
results of Fig. 2 of [23]. This results in a speed of sound
cs ∼ 0.35 ± 0.05. Note that the calculations are done
at fixed b=8 fm and a constant speed of sound. Thus,
since we expect the speed of sound to vary as a function
of time, one might view this cs value as the approximate
average value over the time period 2 R̄/cs, the time over
which the flow develops. This value suggests an effective
EOS, which is softer than that for the high temperature
QGP [36] but does not reflect a strong first order phase
transition in which cs = 0 during an extended hadroniza-
tion period.

Figures 2 and 3 show that the distinctive features of
the v2 for identified particles provide another detailed set
of scaling tests. Fig. 2(a) shows a comparison of the mea-
sured differential anisotropy v2(pT ), for several particle
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FIG. 3: (a) v2/nq vs pT /nq and (b) v2/nq vs KET /nq for
identified particle species obtained in minimum bias Au+Au
collisions. The STAR data are from Refs. [22, 37].

species obtained in minimum bias Au+Au collisions at√
sNN = 200 GeV. The results are in good agreement

(better than 3%) with those of our previous measure-
ments [21]. The values for neutral kaons (K0

s ), lambdas
(Λ) and the cascades (Ξ) show results from the STAR
collaboration [22, 37]. The STAR v2 values were multi-
plied by the factor 1.1 to account for a small difference
between the average centralities for minimum bias events
from the two experiments. PHENIX and STAR v2(pT )
results (for π±, p(p̄) and K) for 10% centrality bins are
essentially identical.

The comparison in Fig. 2(a) shows the well known par-
ticle identification (PID) ordering of v2(pT ) at both low
and high pT values. At low pT (pT

<∼ 2 GeV/c), one can
see rather clear evidence for mass ordering. If this aspect
of v2 is driven by a hydrodynamic pressure gradient, the
prediction is that the differential v2 values observed for
each particle species should scale with KET . The pres-
sure gradient that drives elliptic flow is directly linked
to the collective kinetic energy of the emitted particles.
For higher values of pT (pT ∼ 2 − 4 GeV/c), Fig. 2(a)
indicates that mass ordering is broken and v2 is more
strongly dependent on the quark composition of the par-
ticles than on their mass, which has been attributed to
the dominance of the quark coalescence mechanism for
pT ∼ 2 − 4 GeV/c [20, 21, 22].

Figure 2(b) shows the same v2 data presented in
Fig. 2(a) plotted as a function of KET . Note that KET

is a robust scaling variable because it takes into account
relativistic effects, which are especially important for the
lightest particles. In contrast to the PID ordering ob-
served in Fig. 2(a), all particle species scale to a common
set of elliptic flow values for KET

<∼ 1 GeV, confirming
the strong influence of hydrodynamic pressure gradients.
For KET

>∼ 1 GeV, this particle mass scaling (observed
for all particle species) gives way to a clear splitting into

Figure 1.5: The anisotropic flow as a function scaled by the number of quarks as a function of
the kinetic energy scaled by the number of quarks [4]. This result suggests that elliptic flow is
generated in the deconfined phase and is transferred to hadrons through quark recombination.

between ideal hydrodynamic models was considered strong evidence for the formation of

the Quark-Gluon Plasma [20, 21]. At the time, there were some caveats required. Ideal

hydrodynamics overestimated the duration of the collisions as seen in the longitudinal source

size [22], but systematic improvements to hydrodynamic calculations have resolved these

discrepancies [23]. Elliptic flow is a very important observable in heavy ion collisions and

will be a focus of Chapters Five and Six.

The truly novel feature of the Quark-Gluon Plasma is that quarks and gluons move

freely and not in the bound particle states of a hadronic gas. While Figure 1.4 demonstrates

that the matter created in a heavy ion collision exhibits hydrodynamic behavior, Figure 1.5

further shows that the anisotropic flow scales with the number of constituent quarks in the

baryons and mesons observed in the final state. Scaling is not evident as a function of the
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ranges of our measurements. In addition, our study including
short-lived resonances lends support to the picture of
regeneration of short-lived resonances [48,51,137,138] during
a relatively long time span from chemical to kinetic freeze-out.

C. Excitation functions

The thermal model has been very successful in describing
heavy-ion collisions and elementary particle collisions over a
wide range of collision energies. Heavy-ion data from many
energies have also been successfully fit by the blast-wave
model. We compile results from some of these previous
investigations [120–123,126,139–143], together with RHIC
data, to study the excitation functions of the extracted chemical
and kinetic freeze-out parameters. We note that the thermal
model studies in Refs. [120–122] do not include γS as a free
parameter; strangeness is treated as equilibrated with light
flavors, i.e., γS = 1.

Figure 38 shows the baryon chemical potential extracted
from chemical equilibrium model fits to central heavy-ion
(Au + Au/Pb + Pb) data at various energies. The extracted
µB falls monotonically from low to high energies. There are
fewer net-baryons at midrapidity at higher energy, because
fewer baryons can transport over the larger rapidity gap.

Figure 39 shows the evolution of the extracted chemi-
cal (open symbols) and kinetic (filled symbols) freeze-out
temperature as a function of the collision energy in central
heavy-ion collisions. The extracted Tchem rapidly rises at the
GSI heavy-ion synchrotron (SIS) and AGS energy range and
saturates at SPS and RHIC energies. In other words, central
heavy-ion collisions at high energies can be characterized by a
unique, energy-independent chemical freeze-out temperature.
The value of Tchem is close to the phase-transition temper-
ature predicted by lattice QCD. This suggests the collision
system at high energies decouples chemically at the phase
boundary.
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FIG. 38. Baryon chemical potential extracted for central heavy-
ion collisions as a function of the collision energy. STAR 62.4 and
130 GeV data are from this work; the 200 GeV data are from Ref. [17].
Other data are from SIS [140,141], AGS [120,122,126,142], SPS
[121,122,126,139,142], and compilation by Refs. [143,144]. Errors
shown are the total statistical and systematic errors.
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FIG. 39. (Color online) Extracted chemical (open symbols) and
kinetic (filled symbols) freeze-out temperatures for central heavy-ion
collisions as a function of the collision energy. The STAR 62.4 and
130 GeV data are from this work; the STAR 200 GeV data are
from Ref. [17]. The other kinetic freeze-out results are from FOPI
[145], EOS [146], E866 [147], and NA49 [148] experiments. The
other chemical freeze-out data are from SIS [140,141], AGS [120,
122,126,142], and SPS [121,122,126,139,142] and compilation by
Refs. [143,144]. Errors shown are the total statistical and systematic
errors.

On the other hand, the extracted kinetic freeze-out temper-
ature rises at SIS and AGS energies and decreases at higher
energies, especially at RHIC energies. At low energies, the
extracted Tkin is similar to Tchem. This suggests that kinetic
freeze-out happens relatively quickly after or concurrently
with chemical freeze-out. The two measured temperatures
begin to separate at a collision energy around

√
sNN = 10 GeV,

above which Tkin decreases with increasing energy, while Tchem
remains relatively constant. This suggests a prolonging of
the period between chemical and kinetic freeze-outs, during
which the particles scatter elastically, building up additional
collective motion in the system while it undergoes further
expansion and cooling.

Figure 40 shows the evolution of the extracted average flow
velocity as a function of the collision energy. The extracted 〈β〉
steeply increases from SIS to AGS energies, and continues to
increase at a lower rate at higher energies. Collective flow is
an integral of all collective flow contributions over the entire
evolution of the collision system. Part of it comes from the
early stage of the collisions before chemical freeze-out, built
up by the high pressure in the core of the collision zone. After
chemical freeze-out, particles continue to interact elastically
in central collisions, building up further transverse radial
flow. This late-stage transverse expansion cools down the
system and results in a lower kinetic freeze-out temperature in
central collisions as discussed above. One should note that the
extracted average flow velocity can be generated by different
underlying physics at very low (SIS, AGS) and high (SPS,
RHIC) incident energies.

It is valuable to study collective radial flow at chemical
freeze-out, as it comes from the early stage of the collision and
hence is more sensitive to the initial condition than the final

034909-35

Figure 1.6: Baryon chemical potential indicated by particle ratios at midrapidity as measured
by the STAR experiment at higher energies and other experiments at lower beam energies
[2]. At beam energy of a few GeV, even the matter at midrapidity maintains the same
chemical nature as the original nucleus. This is in contrast to the situation at

√
sNN = 200

GeV where the apparent chemical potential is reduced by almost two order of magnitude
from that of stable nuclear matter.

transverse momentum but instead the transverse kinetic energy, KET =
√
m2 + p2

T − m,

which corresponds to the kinetic energy available after creating the particle itself. If the

anisotropic flow were generated in the liquid phase, translated to the hadronic matter by

recombination, and subsequent rescatterings in the gas phase did not spoil the symmetry,

the quantity would be expected to be the same for all particle species. The observation that

this occurs in heavy ion collisions suggests that flow is developed prior to recombination.

Experimental data, shown in Figure 1.6, demonstrate that the observed chemical poten-

tial in midrapidity particles is very small compared to the temperature at the highest RHIC

energies. This means that there is essentially no preference in the particle ratios between

baryons and mesons other than that attributable to their differing masses. Therefore, we
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chose a hydrodynamic description of the evolution of the quark matter that ignores the ef-

fects of non-zero baryon number. In addition to reducing computational costs slightly, there

is the theoretical issue that lattice calculations are not yet able to make reliable predictions

for the equation of state of quark matter at finite chemical potential. Theoretical progress on

this matter is ongoing [24, 25], but in light of the significant uncertainty we choose instead

to limit our experimental observables to those at midrapidity to avoid these issues.

At the onset of this project, the state of the art in hydrodynamical modeling were viscous

codes with trivial longitudinal expansion based on boost invariance [26–28]. Boost invariance

is based on the observation that, in the center of momentum frame, small boosts should not

influence observables since the original nucleons are at much larger rapidity than the created

particles [29]. If this symmetry is observed exactly, then the system will have no variation

in the coordinate

η =
1

2
log

(
t+ z

t− z

)
, (1.2)

where t is time and z is longitudinal distance relative to the symmetry axis, which we refer

to as spatial rapidity. This is due to the correspondence of spatial rapidity to momentum

rapidity,

y =
1

2
log

(
E + pz
E − pz

)
, (1.3)

where pz is the longitudinal momentum. This correspondence is clearest when considering

the product of a particle’s momentum with the collective velocity, as will arise in the phase

space density,

pµuµ =
√
m2 + p⊥ cosh (y − η), (1.4)

meaning that there will be a penalty for emission at a different rapidity that scales as

12



well as a set of detectors for global event characterization
[7]. Collision centrality is determined from charged parti-
cle multiplicities, measured by scintillator tile and silicon
multiplicity arrays located around the nominal interaction
point. The interaction vertex is measured with a resolution
of 0.6 cm by arrays of Čerenkov counters positioned on
either side of the nominal vertex. Particle identification for
momenta below 2 GeV=c is performed via time of flight
(TOF) in the MRS. In the FS, TOF capabilities allow !-K
separation up to p ! 4:5 GeV=c, and it is further extended
up to 20 GeV=c using a ring imaging Čerenkov detector.
Further details can be found in [7,8].

Figure 1 shows transverse mass mT "m0 spectra (mT !
!!!!!!!!!!!!!!!!!!!

p2
T #m2

0

q

) for !" and K". Particle spectra were obtained
by combining data from several spectrometer settings
(magnetic field and angle), each of which cover a small
region of the phase space $y; pT%. The data have been
corrected for the limited acceptance of the spectrometers
using a Monte Carlo calculation simulating the geometry
and tracking of the BRAHMS detector system. Detector
efficiency, multiple scattering, and in-flight decay correc-
tions have been estimated using the same technique.
Hyperon (!) and neutral kaon K0s decays may have con-
taminated the pion sample. For K0s, it is assumed that its
yield amount to the average between K# and K" at each
rapidity interval. For ! yields, since only midrapidity data
are available, we used the same assumptions as in [3],
namely, !=p ! "!= "p ! 0:9 in the phase space covered
in this analysis. The fraction of pions originating from !

and K0s decays was estimated with a GEANT simulation
where realistic particle distributions (following an expo-
nential in mT) were generated for several spectrometer
settings. Particles were tracked through the spectrometers
and produced pions were accepted according to the same
data cuts applied to the experimental data. There is a K0s
(!) contamination of 4%$& 1%% in the MRS and 6%
$& 1%% in the forward spectrometer. In the following, the
pion yields are corrected unless stated otherwise.

The pion spectra are well described at all rapidities by a
power law in pT , A$1# pT=p0%"n. For kaons, an expo-
nential in mT "m0, A exp$mT"m0

T %, has been used. The
invariant yields dN=dy were calculated by integrating the
fit functions over the full pT or mT range. The two main
sources of systematic error on dN=dy and hpTi are the
extrapolation in the low pT range outside the acceptance,
and the normalization of the spectra. Other fit functions
were used in order to estimate the error on the extrapola-
tion. In the FS, due to a smaller acceptance coverage at low
pT , the error is systematically larger than in the MRS. In
total, the systematic error amounts to &10% in the range
"0:1< y< 1:4 (MRS) and &15% for y > 2 (FS).
Midrapidity yields recently reported by the STAR [9] and
PHENIX experiments [10] are within 1"syst of these
results.

Rapidity densities and mean transverse momenta hpTi
extracted from the fits are shown in Fig. 2. Panel (a) shows
the pion and kaon yields. !# and !" are found in nearly
equal amounts within the rapidity range covered, while an
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FIG. 1 (color online). Invariant transverse mass mT "m0

spectra of !" (a) and K" (b) from y& 0 (top) to y& 3:5
(bottom). Dashed lines are fits to the data, namely, a power
law in pT for pions and an exponential in mT "m0 for kaons.
Errors are statistical. Spectra have been rescaled by powers of 10
for clarity.
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FIG. 2 (color online). Pion and kaon rapidity densities (a) and
their mean transverse momentum hpTi (b) as a function of
rapidity. Errors are statistical. The kaon yields were multiplied
by 4 for clarity. The dashed lines in (a) are Gaussian fits to the
dN=dy distributions (see text).
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Figure 1.7: Pion (circles) and kaon (triangles) spectrum observed by the BRAHMS exper-
iment [5] as a function of their longitudinal rapidity including Gaussian fits (dotted lines).
Shows that pion source is does not have an especially large width and boost invariance is a
questionable assumption even for describing behavior at midrapidity.

exp− cosh (y−η). If one defines the proper time in a frame with constant η as a replacement

for the usual lab frame time coordinate, which is defined τ2 = t2 − z2, one maintains an

orthogonal set of coordinates with metric gµν = diag{1,−1,−1,−τ2}. Furthermore, the

hydrodynamic equations of motion respect boost invariance, meaning that a system born

into boost invariance maintains this symmetry at all times even in the presence of shear or

bulk viscosity. In the limit of infinite beam energy, the symmetry is exact.

As noted earlier, for collisions at RHIC, boost invariance has proved a useful approx-

imation for calculating midrapidity observables such as elliptic flow and particle spectra

[26–28]. That said, the distribution of pions is still well described by a Gaussian in lon-
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gitudinal rapidity. This was also the case at lower beam energies, though width increases

to about 2.3 units of rapidity by
√
sNN = 200 GeV, as shown in Figure 1.7. While this

means that boost invariance is increasingly valid, the range of validity was unknown as no

three-dimensional simulation that included viscosity had been completed. In light of this,

one goal of this project was to explore the validity of the boost invariant assumption in

viscous hydrodynamic models regarding the prediction of midrapidity observables.

Taken in aggregate, the experimental evidence from relativistic heavy ion collisions points

to the formation of a new liquid phase. This liquid remains in thermal contact long enough

to develop significant radial and elliptic flow. However, the rapid longitudinal expansion

means that even if the shear viscosity in the liquid phase is small, the viscous corrections to

the transverse expansion will be important. For these reasons, we choose to model the high

temperature regions with relativistic viscous hydrodynamics. Since larger systems cool fur-

ther following the formation of hadrons, the lower temperature regions will be modeled as a

hadronic gas. With this two-component model, we will investigate the sensitivity of our pre-

dictions at midrapidity to the addition of non-trivial longitudinal dynamics and uncertainties

in the initial condition to hydrodynamics.
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Chapter 2

Theory of Fluid Dynamics

The experimental results discussed in Chapter 1 suggest that the matter created in heavy

ion collisions can be described by hydrodynamics. However, thermal contact is maintained

to lower temperatures than could be described by hydrodynamics. Because of this, our

model will couple an hadronic gas at low temperatures to viscous hydrodynamics at higher

temperatures. The focus of this chapter will be on hydrodynamic theory underlying the

higher temperature model.

In this chapter, we pursue one of the possible methods of developing fluid dynamics. We

consider the macroscopic, collective behavior of systems of free moving particles interacting

with one another – a highly interactive limit of a gas. This will be of particular use when cou-

pling the hydrodynamic phase to the gaseous phase where several results from this derivation

will be of direct use. While this is a useful way of deriving the equations of motion of hy-

drodynamics, the resulting equations are more general than a derivation from kinetic theory

might imply. Most notably, the quark-gluon plasma is expected to be strongly-interacting,

while kinetic theory is weakly-interacting. The equations of motion apply to systems where
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entropy is conserved locally, collective motion is sufficient to describe the dynamics of inter-

est, and the acceleration of that collective velocity comes from the absence or presence of

material nearby. The equations are useful only when one can express an equation of state

to close the set of equations. For the case of ideal hydrodynamics with no charges, this is to

provide the pressure as a function of energy density.

2.1 Kinetic Theory and Fluids

In the case of relativistic heavy ion collisions, the underlying microscopic theory at high

temperature should be Quantum ChromoDynamics for a bulk system. The present state of

the theory has not produced a dynamical theory evolving microscopic degrees of freedom that

would be needed to describe the observations from heavy ion collisions, but it has produced

an equation of state for hot quark matter from lattice models (see Chapter 3) [6, 30].

The general structure of hydrodynamic theory can be derived from breaking the system

into a system of fluid elements, each of which contains many colliding particles [31–34]. If

the particles collide relatively infrequently, the system is dominated by particle diffusion;

whereas fluid dynamics considers a system for which particles collide on a shorter time scale

than the system’s shape changes. The frequent collisions will tend to move the distribution of

particle momenta toward the equilibrium distribution as collisions randomize each particles’

momentum. In the case that quantum corrections to this distribution are not important,

this momentum distribution is the Maxwell-Boltzmann distribution, given by

f(pµu
µ) ∝ d6N

d3rd3p
∝ exp(−pµuµ/T ), (2.1)
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where f is the phase space distribution, p is the particle momentum, u is the fluid velocity,

and T is the temperature.

The phase space distribution leads to the number density current and to the stress energy

tensor. For the number density, one integrates over all momentum modes, which we will

denote by
∫
dω =

∫
d3p

(2π)3p0
, (2.2)

where p0 is the relativistic energy. Using this notation, one can then define the number

density current to be

nµ =

∫
dω pµf(p · u), (2.3)

and the stress energy tensor to be

Tµν =

∫
dω pµpνf(p · u). (2.4)

For a collisionless system, the phase space density is conserved in the frame that moves

with the particle’s momentum, pµ. If the particles are allowed to collide, these can be

included as a source term to the equation called the collision integral. This is summarized

by

pµ∂µf(uµpµ) = C , (2.5)

where C describes the effects of collisions. This equation is often referred to as the Boltz-

mann equation, though it has many names depending upon the addition of other effects.

It is generally considered the starting point for kinetic theory and is fundamental to the

description of gases.
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As described above, hydrodynamics can be seen as a limit of kinetic theory where colli-

sions do not allow the system to significantly deviate from the equilibrium distribution. If

one then integrates the Boltzmann equation over momentum, one obtains

∫
dω pµ∂µf = ∂µn

µ = 0 =

∫
dω C , (2.6)

where the expression is zero assuming that collisions are local and locally conserve particle

number in the aggregate. If one takes the first moment of Boltzmann equation with respect

to momentum, one obtains

∫
dω pνpµ∂µf = ∂µT

µν = 0 =

∫
dω pνC , (2.7)

which is zero if the collisions also conserve momentum and energy. Higher moments of the

Boltzmann equation also vanish exactly if the system never deviates from local equilibrium.

This defines the stress energy tensor (Tµν) from the perspective of kinetic theory which will

serve as our connection to hydrodynamic theory, most notably when coupling the hydrody-

namic module to the gaseous module.

In order to calculate the connection with hydrodynamics, we consider a small volume of

particles distributed according to the equilibrium distribution with no collective motion. If

we calculate T tt from kinetic theory as in Eq. 2.4, we obtain

T tt(~r) =

∫
d3p

p0
p2

0f(~p, ~r) = ε, (2.8)

where ε is the energy density. Since this frame is defined by having zero net momentum, all
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off-diagonal elements of the tensor are zero at equilibrium in this frame due to symmetry.

Spatial elements along the diagonal, however, are proportional to the average of a momentum

squared, which is non-zero and given by

Txx(~r) =

∫
d3p

p0
p2
xf(~p, ~r) = P, (2.9)

where P is the pressure. The identification of this quantity as the pressure can be understood

by noting that the linear momentum transferred to the boundary of the fluid element and

the frequency of collisions with the boundary are both proportional to the momentum [31].

This will be confirmed later when we investigate the conservation of stress-energy in the

following section.

One can also note directly from Eq. 2.8 and Eq. 2.9 that the equation of state for a

massless gas is entirely determined. From relativistic kinematics one knows that

p2
0 − ~p · ~p = m2, (2.10)

where m is the mass of the particle. But then if one examines the trace of Tµν ,

T
µ
µ = T tt − Txx − T yy − T zz =

∫
d3p

p0
(p2

0 − p2
x − p2

y − p2
z)f(~p, ~r) = 0, (2.11)

where the final step uses the fact that the particles are massless. Changing from the kinetic

theory description to the language of hydrodynamics, Equation 2.11

ε = 3P, (2.12)
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which suffices to provide an equation of state for ideal hydrodynamics. Note also that if the

mass is non-zero, then the trace of the stress-energy tensor is positive and the pressure at

constant energy density is reduced. This is relevant for temperatures larger than the pion

mass where more mesonic and baryonic states become relevant and the equation of state

begins to soften (Chapter 3).

2.2 Ideal Hydrodynamics

The equations of relativistic hydrodynamics can be determined by adding the requisite rel-

ativistic structure to the stress-energy tensor. The only available non-scalar quantities are

the velocity of the frame in which the fluid element has no collective velocity and the metric

tensor. No derivatives are permitted in the stress energy tensor since their inclusion would

require the introduction an additional microscopic length scale over which we assume that the

stress energy tensor will not vary. Easing of this assumption will come in the form of viscous

corrections to be discussed in later sections. From our earlier symmetry consideration, the

stress energy tensor has no off-diagonal structure and trace reads Tµν = diag{ε, P, P, P} in

the frame with no collective velocity. This is sufficient to determine the relativistic structure

[32], which for ideal hydrodynamics is given by

Tµν = uµuν(ε+ P )− gµνP, (2.13)

where uµ is the collective velocity and gµν is the metric tensor. We take the metric to

be Tµν = diag{1,−1,−1,−1} in Minkowski space, and uµ transforms as a vector and has

unit measure, uµu
µ = 1. Implicitly, we have chosen the Landau frame where the collective
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velocity moves with the energy density, and not the Eckhart frame where the collective

velocity moves with particle number. This is due in part to interest in systems with zero net

charge where particle number, and therefore the Eckhart frame, would not be well defined.

The equations of motion of ideal hydrodynamics are then just the conservation of the

stress energy tensor as from Eq. 2.7. The portion of temporal component along the collective

velocity is given by:

0 = uν∂µT
µν = uν∂µ [uµuν(ε+ P )− gµνP ] ,

0 = Dε+ (ε+ P ) ∂µu
µ, (2.14)

where D = uµ∂µ is the comoving time derivative. To obtain the familiar non-relativistic

limit, assume that v2 is small and that γ ≈ 1. This yields the familiar expression:

∂tε+ ~v · ~∇ε = −(ε+ P )~∇ · ~v. (2.15)

The divergence of the collective velocity is often called the expansion rate and can be related

to the change in volume of the fluid element by dV/dt = V ~∇ · ~v. Equation 2.15 can then

recast as dE = −PdV which is the fundamental thermodynamic relation for a system with

constant entropy. For this reason, the first equation of ideal hydrodynamics is often framed

in terms of the local conservation of entropy. Furthermore, it underscores the more general

applicability of hydrodynamics to statistical systems at or near the maximal entropy state.

The Euler equation is related to the conservation of the spatial elements of the stress-

energy tensor. To extract this independently of the first equation we use the projector

∆µν = gµν−uµuν which selects out the spatial indices in the frame of the matter. Applying
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this to the equation of stress-energy conservation yields

0 = ∆α
ν ∂µT

µν = ∂µT
µα − uα

(
Dε+ (ε+ P )∂µu

µ) ,

0 = (ε+ P )Duα + uαDP − gαµ∂µP. (2.16)

When taking the same limit as before, one obtains

(ε+ P )∂t~v + (ε+ P )
[
~v · ~∇

]
~v = −~∇P − ~v∂tP, (2.17)

which reduces to (ε+P )∂t~v = −~∇P in the frame of the matter. This should be interpreted to

mean that acceleration of the frame of the collective velocity is due to the pressure gradient

observed in that frame.

2.3 Viscous Hydrodynamics

2.3.1 Navier-Stokes Hydrodynamics

The equations of ideal hydrodynamics are derived from the assumption that local equilibrium

is exact, or equivalently, assuming that the mean free path of the microscopic particles is

identically zero. If this is the case, a uniform density fluid with a plane of static fluid

adjacent to a plane of fluid in motion would be a stable condition; the two planes would

never affect one another because only the divergence of the collective velocity, rather than a

mixed partial derivative like ∂yv
x, enters into the equations of motion. That is, pressure is a

force orthogonal to the surface of the fluid element in the rest frame; shear viscosity allows

force along the surface.
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Experience with liquids indicates that this is not a physical conclusion; if one pulls a

sheet of material through a fluid, nearby fluid begins to move with the sheet. Friction in

the fluid allows linear momentum to be transferred between adjacent fluid elements and

their collective velocities would tend to equalize. Navier-Stokes hydrodynamics introduces a

viscous correction to the spatial elements of the stress-energy tensor from such a frictional

force [31]. Physically, this should be separated into a traceless contribution and an effect

on the trace, which correspond to shear (η) and bulk (ζ) viscosity respectively. The viscous

components are proportional to the velocity gradient with a corresponding transport coef-

ficient that characterizes the amount of internal friction in the fluid. In the traceless case,

this the shear viscosity. These results can be summarized as

δT ij ∝ η
∂vi

∂xj
, δT ij ∝ ζδij ~∇ · ~v. (2.18)

These terms are collected into a correction to the stress energy tensor – πµν – and referred

to as the shear tensor. The shear tensor is mostly clear written in the fluid frame where it

takes the form

πij = −η
(
∂iv

j + ∂jv
i − 2

3
δij ~∇ · ~v

)
, (2.19)

where δij = 1 if i = j and is otherwise zero, and the latin indices are meant to indicate that

this applies only to spatial coordinates. In the frame of the matter, the ideal part of the

stress energy tensor is only the outward pressure, δijP , and Eq. 2.19 is added as a correction

to the equations of motion (Eqs. 2.15 and 2.17). These additions result in the Navier-Stokes

equations of viscous hydrodynamics. Note that adding these corrections relativistically is

non-trivial as one needs to correct for both the frame motion in both the derivatives and
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the velocities. This will be addressed fully when discussing the Israel-Stewart equations of

motion.

2.3.2 The Maxwell-Cattaneo Equation

Solving the Navier-Stokes equations is notoriously difficult as the differential equations are

parabolic, for which solutions tend to be unstable, and famously unsolved in the general

case. In addition to being difficult to solve, the relativistic Navier-Stokes equations are

not necessarily causal as the system responds instantaneously to changes in the velocity

gradients.

While it is not clear that either of these difficulties are important for heavy ion physics,

both can be addressed within the Maxwell-Cattaneo framework [32]. Essentially this frame-

work assumes that instead of defining the change to the effective pressure to be exactly

proportional to the velocity gradients, it instead relaxes toward the Navier-Stokes value.

This means that the shear tensor can no longer be computed directly from the other dy-

namical variables or their derivatives. Therefore, the shear tensor itself is promoted to a

dynamical variable and must be tabulated separately. In addition, the shear tensor now

must have its own equations of motion. The form of these equations of motion in the frame

of the matter are taken to be of the form

∂t

(
πij

ση

)
=
−
(
πij − πij

(NS)

)

σητπ
, (2.20)

where π
ij
(NS)

is the Navier-Stokes shear tensor given by Eq. 2.19, τπ is a new transport

coefficient that characterizes the time scale on which the system approaches Navier-Stokes

viscosity, and ση is a scaling factor required to guarantee the Second Law of Thermodynamics
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[35] (see the following subsection).

Historically, this equation informed the search for an extension of hydrodynamic theory

that would would be hyperbolic and causal in the general case. The equations of motion for

the shear tensor can be derived in this form from a gradient expansion in kinetic theory or

from general entropy production considerations as will be shown in the next two subsections.

That said, the new transport coefficients, τπ and ση will not be independent of one another

complicating the correspondence of the Israel-Stewart theory to the Maxwell-Cattaneo equa-

tion and its interpretation as a relaxation equation.

2.3.3 Israel-Stewart Hydrodynamics and Entropy

Since the system is away from equilibrium, the entropy should be reduced from its equilibrium

value. One expects the entropy should increase quadratically as the shear tensor increases

simply from symmetry at equilibrium so the lowest order correction to the entropy current

would be

sα = uα
(
seq − βπµνπµν

)
, (2.21)

where β is a thermodynamic quantity to be determined [35]. The second term acts as an

entropy source and so it must have positive four-divergence relative to the dynamical entropy

from the Navier-Stokes continuity equation [32, 36]:

0 ≤ 1

T
πµν∇<µuν> − ∂α

[
uαβπµνπ

µν] ,

0 ≤ πµν

[
1

T
∇<µuν> − 2βDπµν − πµνDβ − πµνβ∂αuα

]
, (2.22)
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where ∇<µuν> is the traceless part on the velocity gradient and is defined as

∇<µuν> = ∇µuν +∇νuµ −
2

3
∆µν∂αu

α, (2.23)

with

∆µν = gµν − uµuν , ∇µ = ∆µν∂ν . (2.24)

This traceless part of the velocity gradient is just the Navier-Stokes modification to the

pressure except the factor of the shear viscosity: πµν = η∇<µuν>. The constraint in Eq.

2.22 must be guaranteed for any expansion with any physical transport coefficients, which

can be achieved if one requires that

πµν = ηT

[
1

T
∇<µuν> − 2βDπµν − πµνDβ − πµνβ∂αuα

]
. (2.25)

This is an equation of motion for the shear tensor, where one should recall that D is the

time derivative in the frame of the matter. If β is taken to be zero, the Navier-Stokes form

for the shear tensor is recovered exactly. In addition, it can be transformed into a relaxation

equation with the same structure as Eq. 2.20 via the appropriate choice for the new transport

coefficient β. To show this, one can rewrite Eq. 2.25 as follows

Dπµν + πµν
Dβ

2β
+
πµν

2
∂αu

α =
−
(
πµν − πµν

(NS)

)

2ηTβ
, (2.26)

which leads to two equations for the two unknowns:

β =
2ηT

τπ
, σηD

(
πµν

ση

)
= Dπµν + πµν

Dβ

2β
+
πµν

2
∂αu

α. (2.27)
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Since the relaxation time is a transport coefficient to be calculated from the underlying

microscopic theory, the left part of Equation 2.27 gives a value for β. The right part of

Equation 2.27 can be recast as a single, local conservation equation

D(ση
√
sβ)

ση
√
sβ

= 0, (2.28)

which is guaranteed if σ−2
η = sβ. Returning to Equation 2.21 for the viscous entropy current

and noting that the probability for a given fluctuation of stress-energy is proportional to eS ,

then the variance of πxy in a given volume V is

V < π2
xy >=

1

2β
=
sσ2
η

2
, (2.29)

meaning that ση behaves like the variance of πxy.

2.3.4 Israel-Stewart Hydrodynamics and Kinetic Theory

The derivation connecting Israel-Stewart hydrodynamics with kinetic theory is rather in-

volved and the details are beyond the scope of this document, but a quick sketch is helpful

for conceptual reasons. In addition, the form of the phase space distortion shown in this

section will be useful later when connecting the hydrodynamic fireball to the surrounding

hadronic gas.

In establishing the connection between kinetic theory and ideal hydrodynamics, we dis-

cussed the equilibrium phase space density and the Boltzmann equation. In doing so, we

discussed the effect of collisions, which are a source (or sink) to the conservation of phase

space density. We argued that if the collisions happened often enough, then the system
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would remain in equilibrium. This assumption along with energy-momentum conservation

was enough to produce ideal hydrodynamics.

Further, when discussing the Navier-Stokes viscous corrections hydrodynamics, we men-

tioned that this can be thought of either as friction in the fluid from a macroscopic per-

spective, or as the effects of expansion between collisions. In particular, if one imagined a

box of particles with an arbitrary distribution of initial momenta but zero total momentum,

and then investigated the system at later times, the collisions would tend to relax toward

the momentum distribution and the system would exponentially approach the equilibrium

distribution [33, 34, 37–39]. This can be summarized as

C = −pµuµ
f − f0
τπ

, (2.30)

where τπ is the relaxation time scale.

Now, hydrodynamics will not generally apply to situations where the system is far from

thermal equilibrium so we concern ourselves only to the case of small deviations of the phase

space density. Using the fact that this deviation should disappear in equilibrium and should

only be a function of the available degrees of freedom, the simplest ansatz was proposed by

Grad [40] who found that the distortion to the phase space density should be

f = f0

[
1 +

παβp
αpβ

2(ε+ P )T 2

]
. (2.31)

This form of the deviation and the equation of motion for the shear tensor come from a

detailed analysis of higher moments of the Boltzmann equation [33, 38, 41].

The important revelation from this approach is the possibility of additional terms that do
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not produce any entropy [32]. Such terms would not appear in a derivation based solely on

the form of the entropy current. These additional terms tend to require even more transport

coefficients many of which do not have obvious physical descriptions. The exception is the

coupling of the shear tensor to the vorticity tensor, which in the frame of the matter is

Ωij = ∂iv
j − ∂jvi, (2.32)

would arise naturally from hydrodynamic considerations and does not require additional

transport coefficients. This term has been included in our calculations but our studies

confirm others’ results that it is not an important driver of dynamics for smooth initial

condition investigations of hydrodynamical flow.

At this point, we have discussed all the important physics related to viscous hydrody-

namics for the purposes of producing a simulation of zero charge heavy ion collisions. The

details of the equations of motion to be integrated have been reserved for Chapter 4.
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Chapter 3

Equation of State and Transport

Coefficients

While hydrodynamics is a theory that applies to a wide variety of systems, both strongly and

weakly coupled, the microscopic details of a fluid need to be included through the equation

of state and the transport coefficients. For heavy ion collisions, two physical regimes are

relevant as discussed at length in Chapter 1. At low temperature, the equation of state should

be calculated as a non-interacting gas of mesons and baryons; while at high temperature,

lattice QCD should be used. These predictions may not be compatible in the region near the

transition between hydrodynamics and the hadron resonance gas, and care must be taken

to ensure that the model is self-consistent at the boundary. This is especially important

for the equation of state where, for instance, discontinuity in the pressure as a function of

energy density would lead to hydrodynamic instability. While this temperature region is

still under active investigation, recent lattice results suggest that the discrepancy between

the two theories is not large and a composite description is possible. This is discussed in the
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first section of this chapter.

In the second section, we discuss the determination of transport coefficients in linear

response theory. At this time, lattice calculations are not developed to the point where they

can make predictions about transport coefficients using classic results like the Kubo relations.

Because of this, our results will be from the weakly coupled theory at low temperature, the

general expectation that shear viscosity should be small near the phase transition, and scaling

arguments from scalar field theories of the high temperature phase.

3.1 Equation of State

3.1.1 Hadron Resonance Gas

The equation of state of the hadron resonance gas model is developed as a gas. If one assumes

that the gas is non-interacting, one can simply generate a partition function using all the

available particle states, which are measured experimentally. This ignores the finite volume

or mean field effects that are well known to be important for lower energy heavy ion physics

but are expected to be less important corrections at energies where zero baryon number

hydrodynamics apply. Data on particle states up to several GeV/c2 in mass are available

from the Particle Data Group. We use resonances up to masses of m = 2.5 GeV/c2 as the

addition of higher mass resonances no longer affects the equation of state up to temperatures

of T = 175 MeV. This choice leads to a nice agreement with lattice results in the transition

region [42].

The partition function is calculated from the usual product of available mass states

weighted by a common temperature. The contribution to the log of the partition function
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for a mass state mi is given by

1

V
lnZi =

∓di
2π2

∫ ∞

0
dkk2 ln (1∓ zie

−
√
k2+m2

i /T ) (3.1)

where di is the spin degeneracy of the state and zi are the fugacities summed over all charges

[6]. One can then use standard thermodynamic relations to obtain the equation of state.

For instance the pressure and energy density are

P =
T

V

∑

i

lnZi, ε =
T 2

V

∂

∂T

∑

i

lnZi. (3.2)

From these, the entropy density can be calculated using the thermodynamic identity, sT =

ε+ P .

To briefly summarize the results of this procedure, the hadron resonance gas acts like a

pion gas for temperatures less than 100 MeV. However, the increasing number of baryon and

meson states play an increasingly important role as the temperature increases. This produces

an order of magnitude increase in the trace anomaly (or interaction, I(T ) = ε− 3P ) by 150

MeV. In fact, inclusion of the resonances in the mass range 1.0 GeV < mi < 2.5 GeV

provides a factor of 3 in the trace anamoly by T = 200 MeV [6, 30]. From a hydrodynamic

perspective, this yields a soft region – with lower speed of sound – as a heating system

would expend part of its energy in changing the degrees of freedom instead of increasing the

pressure. This behavior is a milder version of a latent heat which would be associated with

a first order phase transition, where there would be no increase in pressure over a region of

increasing energy density.
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3.1.2 Lattice QCD

In Lattice QCD, one also sets out to calculate a partition function as a function of tem-

perature but within a field theory rather than a non-interacting gas. The details of this

procedure are complex and involve computing path integrals over the gauge field on a dis-

cretized hypercube and extrapolating to the physical pion mass. The computational effort

required for each time step is immense and computations are performed on large clusters

designed specifically for the task. Developments in this area now allow for the computation

of twelve time steps for 643 spatial grid points [6, 30]. Different temperatures are investi-

gated by altering the lattice spacing, and several spacings must be investigated to quantify

convergence and protect against discretization effects.

While the lattice has produced some incredibly useful results for finite temperature QCD

matter, it has important limitations. The “sign problem” complicates direct investigation

of the equation of state away from zero chemical potential where there is the possibility of a

critical point. There the phase transition might shift from a smooth cross-over seen at zero

chemical potential to a first-order phase transition. Extrapolation toward this critical point

from lattice data has been attempted via Taylor expansion [24, 25]. While one does not

expect this expansion to be valid far from zero chemical potential, especially when approach

a critical point, recent results suggest tentative agreement with other theories.

Furthermore, it is not possible to use a physical quark mass for the up and down (the

lightest) quarks. The up and down quarks have physical masses of around 3-4 MeV and

the strange quark around 200 MeV, but the typical lattice calculation take the mass of

the up and down quarks to be a tenth that of the strange quark. This leads to a pion

mass that is significantly too large. This significantly alters conclusions about the pressure
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Figure 15: Continuum estimate for the trace anomaly normalized by T 4 together with the
parametrization of Equation (3.1) using the nf = 2 + 1 parameters from Table 2.

Figure 16: The normalized trace anomaly for two different values of the light quark masses on
Nt = 8 lattices: the physical mud = mphys

ud and the three degenerate flavor mud = mphys
s case.

– 20 –

Figure 3.1: Trace anomaly from the lattice and from the hadron resonance gas model [6]
showing the location of the critical region and agreement with the Hadron-Resonance gas
equation of state at temperatures well below the critical region.

in this region and generally makes interpretation of the lattice results significantly more

difficult as one must extrapolate to the physical meson and baryon masses in order to extract

corrected thermodynamic quantities. Despite of all this, as one finds in Fig. 3.1, there is

good agreement with the Hadron Resonance Gas model for the temperature region in which

one hopes both might be valid.

Also included in Fig. 3.1 is a parameterized fit to the unit-less interaction over the full

temperature space. In this case [6], the fit function reproduces the HRG interaction within

7% at temperatures below 100 MeV, and calculation of the pressure via the integral method

P (T )

T 4
=

∫ T

0

dT ′

T ′
I(T ′)
T ′4

(3.3)

finds deviations of only 2% and other collaborations find comparable results [30].
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3.1.3 Cross-over Region

The general structure of our model is a hydrodynamic region defined by temperatures above

some threshold surround by a gas of interacting hadrons. Practically, dynamic coupling

of these two calculations is difficult as pressure fluctuations in the gas might easily result

in extreme hydrodynamic instability. Instead, one runs the hydrodynamic simulation for

a larger region of configuration space under the assumption that regions at much lower

temperatures do not have undue influence on the hydrodynamical portion and that near the

switching temperature the models are equivalent.

As a direct consequence, modelers should be fastidious in ensuring that the equation of

state for the gas is used as precisely as possible for those regions. While lattice calculations

provide a fit that includes data points from the HRG equation of state and the lattice,

this may not be sufficient to ensure self-consistency. In fact, one finds that for T = 165

MeV, lattice fits can produce energy densities that differ from the gas’ energy density by

10-20% without fundamentally different behavior in the interaction measure, I(T ). If left

uncorrected, the hydrodynamic code would improperly emulate the gas at the boundary,

and the model of particle production would fail to be self-consistent.

Since one might want to use an arbitrary lattice equation of state that might not re-

produce the gas well enough, we perform a continuous merge between the two equations of

state over a temperature range starting at the hadronization temperature (TH) up to the

temperature where only lattice results are used (TL). In particular, we wish to maintain a

continuous speed of sound for hydrodynamic stability, which can be written in terms of the
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Figure 3.2: Unit-less entropy density in merging region. The entropy production follows
that of the hadron resonance gas up to the hadronization temperature (TH = 155 MeV)
and smoothly produces additional entropy to agree with the lattice entropy [6] at TL = 185
MeV.

unit-less entropy density (σ = s/T 3) as

c2s =
dP

dε
=

1

3 + T
σ
dσ
dT

(3.4)

which can be derived using standard Maxwell relations. This is a clarifying expression as it

points out that entropy increasing faster than T 3 is associated with softness in the equation of

state, but also means that σ is a useful variable for merging equations of state, as continuity

and smoothness ensure the continuity of the speed of sound.

We perform the merge in the unit-less entropy density using a linear weight function that

goes smoothly and continuously between the hadron resonance gas entropy (σH) and the
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Figure 3.3: Speed of sound in merging region that results from merging in the unit-less
entropy density via the produce described in the text. Note that the Lattice data [6] does
not exactly follow the HRG data below the freezeout temperature due to inexact fitting.
Forcing the equation of state to be exactly the HRG below the freezeout temperature lowers
the entropy density at constant temperature and causes a somewhat more abrupt soft region
in the transition region.

lattice entropy (σL):

σ(T ) = [1− w(T )]σH(T ) + w(T )σL(T ) (3.5)

w(T ) =
1

2

[
tanh

(
tan

[
π

2

(
2
TL − T
TL − TH

− 1

)])
+ 1

]
, TH < T < TL (3.6)

and w(T ) is zero for T < TH and unity for TL < T and importantly also has zero slope at

both TH and TL to maintain continuous speed of sound. Figure 3.2 shows the result of the

procedure compared to the original equations of state and demonstrates that the procedure

is continuous and smooth.

Like the hadronization temperature, the lattice-only temperature is a parameter of the

model and should not be so large that gas data is being used at temperatures well above

37



its applicability or so small that the entropy increase becomes too rapid. Figure 3.3 shows

the speed of sound squared in the region of the merging procedure. Since the entropy of

the hadron gas lags behind the lattice, the merging procedure gives a steeper increase for

temperatures just greater than the hadronization temperature. This manifests as an even

smaller speed of sound in this region. Lowering the lattice temperature while leaving the

hadronization temperature the same would results in a more extreme dip in the speed of

sound squared. Choosing a lattice temperature too close to the hadronization temperature

could lead to an extremely soft region in the equation of state and cause hydrodynamic

instabilities.

For completeness, we note that the entropy density is the temperature derivative of the

pressure, s = dP
dT , so knowing the pressure of the hadron gas at TH and the entropy density

at all temperatures allows one to get the pressure at all temperatures. Then the energy

density is found from ε = sT − P . We calculate each quantity at an interval of 1 MeV in

temperature and a bookmarked search is performed each time a thermodynamic quantity

is needed. Since our model does not solve the Riemann fan and cannot handle shocks, we

take great care to avoid interpolation errors in the equation of state. A cubic spline [43] is

performed on each of the thermodynamic variables and the interpolated values from this are

used including the speed of sound squared which must be calculated as part of the splining

procedure. This procedure involves a minor amount of preprocessing but the bookmarked

search algorithm is unchanged and a minor part of computational time.
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3.2 Transport Coefficients

As discussed in the previous chapter, viscous hydrodynamics introduces the effects of non-

equilibrium to the collective response of material. In the case of shear viscosity, this can be

thought of as friction within the fluid or a finite mean free path, if the underlying theory

is a classical gas. The form of the correction is a small change to spatial elements of the

stress-energy tensor due to velocity gradients, for example,

δTxy = η
(
∂xv

y + ∂yv
x) . (3.7)

This can be viewed in terms of Linear Response Theory where Txy is the operator being

varied, η is the coefficient of response, and the velocity gradients are the small field.

For the variation of some operator A, the variation of its expectation value due to the

field can be expressed in terms of the variation of the wavefunction as

δ 〈A〉 = 〈δψ|A(0)|ψ〉+ 〈ψ|A(0)|δψ〉 = χF (3.8)

where χ is a susceptibility and F a small external field. The change the wave function can

be viewed as the result of some potential, which we assume to be related to the field by

V (t) = B(t)F , leading to

|δψ >=
−i
~

0∫

−∞
dtV (t)|ψ0 >=

−i
~

0∫

−∞
dtB(t)F |ψ0 > (3.9)
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so that the variation of the original operator can be written

δ 〈A〉 =
−i
~

0∫

−∞
dt 〈[A(0), B(t)]〉F = χF, (3.10)

χ =
−i
~

0∫

−∞
dt 〈[A(0), B(t)]〉 . (3.11)

In the case of shear viscosity, we are interested in the response of stress-energy to the

velocity gradient. The potential associated with this is

V =

∫
d3rT 0jri

∂vj

∂ri
, (3.12)

where latin indices indicate spatial coordinates. This form for the potential can be viewed

as the change to the energy due to boosting to the frame of the velocity gradient [44]. This

means that Equation 3.11 gives the shear viscosity to be

η =
−i
~

0∫

−∞
dt

∫
d3r

〈[
Txy(0), T 0j(r, t)

]〉
ri. (3.13)

Inserting unity in the form ∂tt and the integrating by parts with the correlation at minus

infinity assumed to be zero,

η =
−i
~

0∫

−∞
tdt

∫
d3r

〈[
Txy(0), ∂tT

0j(r, t)
]〉
ri, (3.14)

η =
i

~

0∫

−∞
tdt

∫
d3r 〈[Txy(0), Txy(r, t)]〉 , (3.15)

where we have used the conservation of stress-energy, integrated by parts in the spatial
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coordinate disregarding the correlation at infinite range, and then noted that symmetry

requires that some of the stress-energy tensor elements be the same. The commutator in

Equation 3.15 can be eliminated:

0∫

−∞
t dt 〈[Txy(0), Txy(t)]〉 =

0∫

−∞
t dt (〈Txy(0)Txy(t)〉 − 〈Txy(0)Txy(−t)〉) ,

=

∞∫

−∞
t dt 〈Txy(0)Txy(t)〉 , (3.16)

where we’ve ignored the spatial integration for clarity.

Producing the classical Kubo relation from this expression requires evaluating the thermal

average, which is

G(t) = 〈Txy(0)Txy(t)〉 = Tr
[
e−βHTxy(0)Txy(t)

]
,

= Tr
[
e−βH Txy(0) eiHt/~ Txy(0) e−iHt/~

]
. (3.17)

After analytically continuation, G(z) for complex z is symmetric about z = iβ~/2:

G(z + iβ~/2) = Tr
[
e−βH Txy(0) eiHz/~−βH/2 Txy(0) e−iHz/~+βH/2

]
, (3.18)

= Tr
[
e−βH Txy(0) e−iHz/~−βH/2 Txy(0) eiHz/~+βH/2

]
= G(−z + iβ~/2),

where the cyclic symmetry of the trace is used to rotate around exp (−βH/2) in Equation

3.18. Note that this result also means that G(t+ iβ~) = G(−t). Together these results mean

that integration along the positive real axis can be performed by a complex contour integral.

The integration region is taken to be rectangular with corners at z = {0, iβ~} and extending
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to infinity in the positive real direction. The region is closed by a curve at infinity which

disappears as long as correlations decay faster than t−2 for large t. The contour integral in

full is zero since the contour contains no poles, so

0 =

∮
dz (z − iβ~/2)G(z), (3.19)

where the integrand is chosen to be odd about z = iβ~/2. This leaves only the integral along

the positive real axis and the return integral along z = iβ~:

0 =

∞∫

0

dt (t− iβ~/2)G(t) +

0∫

∞
dt (t+ iβ~/2)G(t+ iβ~),

0 =

∞∫

0

dt (t− iβ~/2)G(t)−
∞∫

0

dt (t+ iβ~/2)G(−t),

0 =

∞∫

0

dt t[G(t)−G(−t)]− iβ~
2

∞∫

0

dt [G(t) +G(−t)]. (3.20)

This means that the shear viscosity can be written in terms of an anticommutator instead

of a commutator,

η =
β

2

∞∫

0

d4r 〈{Txy(0), Txy(r)}〉 . (3.21)

In the classical limit, the stress-energy operators commute and Equation 3.21 becomes

η = β

∞∫

0

d4r 〈Txy(0)Txy(r)〉 , (3.22)

which is the familiar Kubo relation. Larger values of η are then due to the persistence

of correlations due to fluctuations and vice versa. This is especially clear in the case of a
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massless gas that loses correlation exponentially due to a finite time between collisions. Using

Equation 2.9 for the stress-energy tensor of a massless gas, the correlation of stress-energy

is
∫
d3x 〈Txy(0)Txy(x)〉 =

∫
d3p

(2π)3

(
pxpy

p0

)2

e−t/tc−βp0 , (3.23)

where tc is the average time between collisions. This integral and the time integral in the

Kubo relation can be performed analytically and the result is a relationship between the

collision time and the shear viscosity for a massless gas given by η = (4/5)Ptc where P is

the pressure [45]. The direct relationship between shear viscosity and relaxation time con-

fuses the interpretation of the Israel-Stewart equation for viscous corrections as a relaxation

equation. Regions where the shear viscosity is large are also regions where stress-energy is

slow to respond to changes in velocity gradients. Other theories predict different relation-

ships between the shear viscosity and the relaxation time, for instance in strongly coupled

symmetric Yang-Mills theory the relaxation time is a factor of two smaller with the same

temperature dependence.

In principle, Equation 3.22 could be evaluated on the lattice to give the shear viscosity of

the quark matter for all relevant temperatures in the hydrodynamic calculation. Currently,

this is impossible due to numerical noise though such a calculation remains an possibility

given even more computational resources. For lower temperatures, it is possible to use

kinetic theory to estimate the shear viscosity. Viewed in terms of the unitless ratio to the

entropy density, σ = s/T 3, this tends to rise very quickly with decreasing temperatures as

is typical for gases below their critical temperature – for instance, jumping from unity at

around T = 100 MeV to five by T = 60 MeV for a massless pion gas [46]. Such temperatures

are by design outside of the hot region and tend to have a small effect on the output from
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the hydrodynamic module. We investigated the effect of changing the behavior of shear

viscosity at temperatures below the freezeout temperature combined with a constant shear

viscosity to entropy density ratio at high temperature, η/s = 0.2. We considered three low

temperature scenarios: constant η/s, constant η/ε below T=130 MeV, and η/s increasing

as a Fermi function up to 0.6 at low temperature. This is still less than the value predicted

by the hadron resonance gas model but still runs stably for reasonable parameter sets. None

of these runs showed significant differences in the produced elliptic flow which justifies the

choice to exclude this correction from the set of first parameters to investigate. Other studies

in this area have found that low temperature shear viscosity can have an effect if it is allowed

to rise for temperatures slightly above the freezeout temperature [47] most likely due to phase

space effects during particle generation as others have found that high temperature shear

viscosity scaling matters much more [48].

In the high temperature region, we also expect the shear viscosity to entropy density

ratio to rise. A scaling argument for this temperature dependence in perturbative QCD has

been calculated to full leading-order for three flavors of massless quarks

η

s
=

5.12

g4 ln(2.42/g)
(3.24)

which can be combined with a two-loop renormalization group expression for the running

coupling

1

g2(T )
=

9

8π2
ln

(
T

ΛT

)
+

4

9π2
ln

(
2 ln

(
T

ΛT

))
(3.25)

with ΛT = 30 MeV [49, 50]. From this we take only the most basic result: the shear

viscosity to entropy density ratio should increase like the square of the logarithm of the
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temperature. Assuming that this combines continuously with the shear viscosity at the

critical temperature, which we also take as a parameter, we add one more parameter for the

slope of increase in shear viscosity to entropy density in the liquid phase

η/s = η/s|Tc + α ln(T ). (3.26)

Large values of α have a significant effect on observables and will be discussed in a later

chapter.

A reasonable estimate for the bulk viscosity is more difficult to generate. The methods

used to estimate the shear viscosity or its scaling properties rely on calculations from models

either of massless gases or a collection of mass states where the bulk viscosity is nearly zero.

However, near the critical region, bulk viscosity can be finite due to the changing of the

sigma mass or effectively be non-zero due to loss of chemical equilibrium [44]. The structure

and size of such a peak in the bulk viscosity are not well constrained theoretically and the

width, height, and location of this peak are introduced as parameters to the model. These

parameters are not explored within this work but are good candidates for future exploration.
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Chapter 4

TRISH – A Three-Dimensional

Israel-Stewart Hydrodynamics

Algorithm

In the first two chapters, we developed hydrodynamic equations of motion and justified their

use in the description of the quark matter created in heavy ion collisions. Since hydrodynam-

ics requires an equation of state and transport coefficients from the underlying microscopic

theory, these were calculated in the immediately previous chapter. With these results in

hand, we can now discuss the algorithm to evaluate viscous hydrodynamics for heavy ion

collisions can be discussed. This chapter concerns the algorithm itself including the coor-

dinate system and integration scheme. We then discuss the verification of the algorithm

by checking conserved quantities and comparing to known results. Finally, we discuss the

process by which the calculation is coupled to the gas calculation that will be used at lower

temperatures. This section focuses on the key issues of finding the emission surface and
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populating particle states once the surface is known.

4.1 Description of Hydrodynamic Algorithm

4.1.1 Coordinates, Variables, and Integration Scheme

As discussed in Chapter 1, the Bjorken ansatz that the initial longitudinal distribution does

not depend on rapidity for small rapidity produces a Hubble-like expansion that hydrody-

namics maintains. Even for a finite system where longitudinal density gradients spoil the

symmetry, this expansion dominates. For this reason, the algorithm is written in the coor-

dinate system of this expansion. To refresh the memory, lab time and longitudinal position

are replaced by proper time and spatial rapidity,

τ2 = t2 − z2, tanh η = z/t. (4.1)

The integration of the partial differential equations of Israel-Stewart hydrodynamics will

take place on an Eulerian grid, meaning that the grid points are at fixed locations in the η-τ

coordinate system.

Since the shear tensor is an independent variable in the Israel-Stewart framework, the

ten components of the stress energy tensor not given by symmetry are all independent. In

principle, the equations of motion could be written in terms of these. Instead, we choose a

set of variables more closely related to the original formulation. For instance, ideal hydro-

dynamics is naturally interpreted in terms of the energy density and three components of
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collective velocity. From these, the stress energy tensor can then be computed via

Tµν = (ε+ P )uµuν − gµνP + Πµν , (4.2)

where Πµν encapsulates both shear and bulk viscous corrections, which would be zero for

ideal hydrodynamics. A common alternative in ideal hydrodynamics is to integrate for the

temporal part of the stress energy tensor (Tµt), which has the benefit of simple equations

of motion and a long history of numerical methods to solve conservation equations stably

and accurately. [51, 52] However, Equation 4.2 for Tµν is not invertible for uµ, so recovering

the collective velocity requires a root find. This is an acceptable cost if it can be done once

and stored but doubles the memory cost. This makes it attractive for ideal hydrodynamic

codes even with large grids but the larger set of variables make the memory footprint a more

important consideration.

Furthermore, while more complex integration methods for conservation equations are an

integral part of computational fluid dynamics, it is not clear that they are necessary for a

strategy with physical viscosity. Instead we choose a simple and quick integration scheme

that is easily multithreaded under the assumption that physical viscosity and smooth initial

conditions render such complications unnecessary. Even for these conditions, shear viscosity

of around half the entropy density often leads to instability as the correction terms get large.

Also, the peak in bulk viscosity near the phase transition can produce shock waves which

are not treated by our integration method though for small bulk viscosity the integration is

stable.

For the viscous part of the evolution, we choose to track a projected version of the shear

tensor in the frame of the matter. This complicates the derivation of the equations of motion
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as the evaluation of derivatives in this frame requires Lorentz transformations. In addition,

the usual geometrical methods of computing corrections for the motion of the coordinate

system must be made using small boosts, the details of which are presented in the next

subsection. The choice of the local tensor is motivated by the more natural comparison with

ideal hydrodynamics – shear corrections can be compared to the pressure without kinematic

corrections. This is especially important if one seeks to damp large corrections to the shear

tensor in the presence of large velocity gradients where corrections should be restricted to

remain smaller than the pressure [35].

The shear tensor has only five independent components due to symmetry, tracelessness,

and orthogonality to the collective velocity. Therefore, we take a projection that is inspired

by spherical harmonics,

a1 =
1

2
(π̃xx − π̃yy) ; a2 =

1

2
√

3
(π̃xx + π̃yy − 2π̃zz) ; (4.3)

a3 = π̃xy; a4 = π̃xz; a5 = π̃yz;

b = (1/3) [π̃xx + π̃yy + π̃zz] .

In this space, a1 is the difference in effective pressure between the x- and y-directions, and

a2 is the difference between the longitudinal direction and the average of the transverse

directions. Therefore, an infinite transverse system undergoing a Bjorken expansion, only a2

is non-zero, and even when including non-trivial transverse expansion, a2 will be the strongest

shear term since it quantifies the extent to which the longitudinal expansion proceeds more

rapidly than the transverse expansion. The remaining three still correspond to the shear

along the surfaces of the fluid element. Since time derivatives in the Israel-Stewart equations

49



always appear as scaled versions of a fluctuation, we use this scaled anisotropy:

αi = ai/ση; β = b/σζ . (4.4)

The fluctuations are functions only of the energy density, as discussed in Equation 2.29, and

can therefore easily be calculated for each fluid cell at the same time as the other transport

coefficients. Since the stress-energy tensor has ten independent elements after symmetry

constraints in the viscous case, these six elements combined with the energy density and

the collective velocity vector are sufficient to describe the stress-energy tensor completely.

The equations of motion are then written in terms of time derivatives of these ten variables

exclusively, the derivation of which is the thrust of Section 4.1.4.

It is then convenient to rewrite the velocity gradients to which the shear tensor relaxes

in terms of the these projections. Simply applying evaluating these linear combinations of

velocity gradients yields

ω1 = ∂̃xn
x − ∂̃yny, ω2 =

1√
3

[
∂̃xn

x + ∂̃yn
x − 2∂̃zn

z
]
, (4.5)

ω3 = ∂̃xn
y + ∂̃yn

x, ω4 = ∂̃xn
z + ∂̃zn

x, ω5 = ∂̃yn
z + ∂̃zn

y (4.6)

so that Equation 2.20 can be rewritten as

τπ∂̃tαi = −αi −
η

ση
ωi. (4.7)
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4.1.2 Evaluation of Local Derivatives

The design of our program calls for evaluation of local derivatives of the velocity relative to

the expansion of the mesh, ∂̃iu
j , and of the local shear tensor – ∂̃iπ̃

jk – where tildes indicate

quantities in the local frame. We leave discussion of the expansion corrections to the next

subsection and focus on corrections for the motion of the fluid frame. Our goal is to begin

with the equations of motion in the fluid frame, and boost such that we have equations of

motion for our chosen set of variables in terms of derivatives available in the mesh frame.

We will make frequent use of a general form for the boost from a frame that observes a

velocity uµ to one that observes velocity nµ:

Λµν(u→ n) = gµν + 2nµuν − (uµ + nµ)(uν + nν)

1 + u · n . (4.8)

which fulfills the requirement that Λµνuν = nµ.

We begin by evaluating the local derivative of the mesh frame velocity. This requires

boosting both quantities, ∂̃αn
β = Λ

µ
α Λβν∂µu

ν , where nµ = {1,0,0,0} is the local frame

velocity and uµ is the mesh velocity. Considering first the boost to the derivatives

∂̃µ = Λ ν
µ ∂ν ,

∂̃µ =

[
g νµ + 2nµu

ν − (uµ + nµ)(uν + nν)

1 + u · n

]
∂ν ,

∂̃µ = ∂µ + 2nµu
ν∂ν −

uµ + nµ
1 + γ

(uν∂ν + nν∂ν) , (4.9)

where γ = u0 is the Lorentz factor. Equation 4.9 is neatly divided into local time derivatives
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and local spatial derivatives

∂̃t = γ∂t + ui∂i, ∂̃i = ∂i −
ui

1 + γ
(uν∂ν + ∂t) , (4.10)

where the latin index is used to indicate a spatial index. If uiuj is small ∀i, j, this yields the

usual comoving derivative expressions

∂̃t = ∂t + ui∂i, ∂̃i = ∂i − ui∂t. (4.11)

Likewise, obtaining derivatives of the local velocities just requires a boost

∂̃αn
β = Λ

β
ν ∂̃αu

ν ,

=

[
g
β
ν + 2nβuν −

(uβ + nβ)(uν + nν)

1 + γ

]
∂̃αu

ν , (4.12)

= ∂̃αu
β − uβ + nβ

1 + γ
∂̃αγ, (4.13)

where we have made use of the fact that

2uµ∂νu
µ = ∂ν

(
uµu

µ) = ∂ν(1) = 0 (4.14)

assuming that the derivative is a total derivative and coordinate system effects (affine connec-

tions) are included. A useful conclusion of Equation 4.14 is that one can convert derivatives

of the Lorentz factor into derivatives of the velocities via

γ∂µγ = −ui∂µui (4.15)
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for any complete derivative ∂µ. We will tend to leave derivatives of the Lorentz factor in

equations and it is understood that they will be converted into derivatives of the velocities

using this relation.

Combining Equations 4.9 and 4.13, we obtain an expression for local spatial derivatives

of local velocities

∂̃in
j = ∂iu

j + uiu̇j +
uiuk

1 + γ
∂ku

j

−
(

ujuk

γ(1 + γ)

)[
∂iu

k + uiu̇k +
uium

1 + γ
∂mu

k

]
, (4.16)

where summations over the latin indices are implied and over-dots indicate time derivatives

in the mesh frame.

The expansion rate, ∂µu
µ, is a Lorentz scalar and should be conserved under Lorentz

transformations. We calculate the local time derivative of the Lorentz factor, ∂̃0n
0, to confirm

this. Using 4.13,

∂̃0n
0 = ∂̃0γ −

[
1 + γ

1 + γ

]
∂̃0γ = 0, (4.17)

which is expected since, to lowest order in velocity, the Lorentz factor is proportional to

velocity squared for small velocities. In fact, nothing about Equation 4.17 changes for spatial

derivatives, which are also zero. If one then sums over spatial indices in Equation 4.16,

∂̃in
i = ∂iu

i +

[
γ − uiui

1 + γ

]
∂0γ +

[
−1− uiui

1 + γ
+ γ

]
1

1 + γ
uj∂jγ

∂̃in
i = ∂0γ + ∂iu

i (4.18)

where the last step makes use of the identity uiui = γ2 − 1 = (γ + 1)(γ − 1). Combining
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Equations 4.16 and 4.18 confirms that the expansion rate is invariant.

The only remaining velocity derivative to compute is the time derivative of the spatial

components, which are

∂̃0n
i = u̇i − ui

1 + γ
γ̇ + uj∂ju

i − uiuj

1 + γ
∂jγ. (4.19)

For convenience in writing the equations of motion in a subsequent subsection, we will

condense the spatial derivatives

∂̃0n
i = u̇i − ui

1 + γ
γ̇ +

(
∂̃0n

i
)′
,

∂̃in
j = uiu̇j −

(
ujuk

γ(1 + γ)

)
uiu̇k +

(
∂̃in

j
)′
. (4.20)

Calculating derivatives of the local shear tensor differs somewhat from the previous as

the frame of the shear tensor is different for each fluid element. Therefore, we introduce a

boost from a frame that observes a slightly different collective velocity to the fluid frame,

which we denote δΛµν(u− δu, n). Keeping terms only linear in the difference, we obtain

δΛµν(u− δu, n) = gµν + 2nµ(uν − δuν)

−(uµ − δuµ + nµ)(uν − δuν + nµ)

1 + γ − δγ − Λ(u, n),

δΛµν(u− δu, n) = −2nµδuν +
(uµ + nµ)δuν

1 + γ

+
δuµ(uν + nν)

1 + γ
− δγ

(1 + γ)2
(uµ + nµ)(uν + nν). (4.21)

This method should be able to reproduce Equation 4.13 when contracting with the collective
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velocity

δΛ
µ
αu

α = δuµ − uµ + nµ

1 + γ
δγ, (4.22)

where we have made frequent use of orthogonality relation uµδuµ = 0.

We wish to obtain derivatives calculated in the frame of the matter, so this small boost

should be boosted back to the frame of the matter, which gives

δΛµα(u− δu, n)Λνα(n, u) = 2(nµδuν − δuµuν) +
2δγ

1 + γ
[uµnν − nµuν ]

+
1

1 + γ
[δuµ(uν + nν)− (uµ + nµ)δuν ] . (4.23)

To boost a tensor, this must be applied symmetrically to each index. Again keeping on linear

terms, we apply this to the local shear tensor (for which we will neglect the tildes) yielding

δπµν = δΛµαΛαβπ
βν + δΛανΛαβπ

µβ

δΛµαΛαβπ
βν = 2nµδuαπ

αν − 2δγ

1 + γ
nµuαπ

αν

+
1

1 + γ
[δuµuαπ

αν − (uµ + nµ)δuαπ
αν ] (4.24)

where we have used the fact that the local shear tensor has no temporal components and so

nµπ
µν = 0.

While the local shear tensor has no temporal components, those components have non-

zero derivatives. We find that while δπ00 = 0 as one might expect, the momentum-like term
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is not:

δπ0i = δΛ0αΛαβπ
βi + δΛiαΛαβπ

β0,

= δuαπ
αi − δγ

1 + γ
uαπ

αi = −πiαδnα. (4.25)

The final step is not useful for the calculation but is a self-consistency check which can be

seen by differentiating the orthogonality of the shear tensor and the local velocity

0 = ∂µ (πανnα) = πνα∂µn
α + nα∂µπ

αν , (4.26)

which is equivalent to Equation 4.25.

The same calculation for two spatial indices yields

δπij =
1

1 + γ

[
δuiuαπ

αj + δujuαπ
αi − uiδuαπαj − ujδuαπαi

]
. (4.27)

As a simple sample computation, the Israel-Stewart equation of motion contains time deriva-

tives of the spatial part of the local shear tensor - ∂̃0π
ij . Even excluding the part of this

proportional to spatial derivatives, Equation 4.27 means that the motion of the reference

frame gives corrections for time derivatives. Therefore, one finds the adjustment

∂0π
ij → π̇ij +

1

1 + γ

[
uiu̇kπkj + πiku̇kuj − u̇iukπkj − πikuku̇j

]
. (4.28)

Corrections of this type are needed for all derivatives of the local shear tensor.
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4.1.3 Expansion Corrections

The small boost notation developed at the end of the previous section also proves useful

for describing the effects of the mesh expansion. Recall that our calculation takes places

on a fixed grid in the coordinates {τ, x, y, η}, which expand relative to the lab coordinates

{t, x, y, z}. One writes equations of motion for the variables as they are observed in a frame

moving with the expanding coordinate system. The relationship between velocities observed

in the laboratory frame (vµ) and the mesh frame (uµ) is

vµ = {γ cosh η + uz sinh η, ux, uy, uz cosh η + γ sinh η}, (4.29)

where γ = u0 is the Lorentz factor in the mesh frame Then for a cell at η = η + δη,

γ = γ + uzδη and uz = uz + γδη. This means that longitudinal derivatives of velocities

require correction, for instance ∂ηu
z → ∂ηu

z + γ.

Using the small boosts, we can write these corrections to mesh frame quantities in a

simple form

δΛµν = nµην − ηµnν , nµ = {1, 0, 0, 0}, ηµ = {0, 0, 0,−δη}. (4.30)

This form reproduces the above result for the mesh frame velocity

δΛ
µ
αu

α = (nµηα − ηµnα)uα = nµ(u · η)− γηµ = δµ0uzδη + δµzγδη. (4.31)

Näıvely, one might expect that this correction could be applied directly to quantities mea-

sured in the matter frame to correct for the motion of the mesh. This turns out not to be
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the case since the small boost to a nearby mesh frame does not commute with the boost

between the matter frame.

Matter Frame  

𝑛 

Mesh Frame 

𝑢 

Nearby Mesh 
Frame 

𝑢 + 𝛿𝜂 

Nearby Matter 
Frame 

𝑛 + 𝛿𝜂 

Λ 
Λ−1 

ℒ 

Figure 4.1: Schematic outline of the procedure for correcting matter frame quantities for the
motion of the mesh frame. The matter frame velocity is first boosted to the mesh frame, then
a small correction for the longitudinal expansion is added, and then the result is boosted
back to the matter frame. Since L does not commute with Λ all three must be evaluated to
calculate n+ δη.

This non-commutation of the frame boosts complicates matters somewhat and one needs

to apply all three boosts sequentially, keeping corrections to first order in δη. This procedure

is described in Figure 4.1 for mesh expansion corrections to the fluid velocity. If L commuted

with Λ to first order in δη, one could apply L directly to n to obtain the expansion corrections.

For derivatives of quantities in the fluid frame, we need to boost the correction, L = δΛ,

58



into the fluid frame. Using again Equation 4.8,

Λµα(u, n)Λνβ(u, n)δΛαβ = ΛµαΛνβ(nαηβ − ηαnβ),

(ΛΛδΛ)µν = (2γnµ − uµ)(ην + 2(u · η)nν − u · η
1 + γ

[uν + nν ])

−(ηµ + 2(u · η)nµ − u · η
1 + γ

[uµ + nµ])(2γnν − uν).(4.32)

Note that Λνβ(u, n) boosts from the mesh frame to the matter frame and that the boosts

are not written in the order of application.

Applying this to the matter frame velocity, we obtain several results

(ΛΛδΛ)0
αn

α = γ(u · η)− γ(u · η) = 0, (4.33)

(ΛΛδΛ)xαn
α = −ux(u · η) +

γ

1 + γ
ux(u · η) =

−ux
1 + γ

uzδη, (4.34)

(ΛΛδΛ)zαn
α = −uz(u · η)− γ

[
ηz − uz

1 + γ
(u · η)

]
=

[
γ − (uz)2

1 + γ

]
δη, (4.35)

and a few results for the shear tensor

(ΛΛδΛ)xαπ̃
αν = −uxδηπ̃zν , (4.36)

(ΛΛδΛ)zαπ̃
αν = −(uzπ̃zν − uαπ̃αν)δη = (uxπ̃xν + uyπ̃yν)δη. (4.37)

Applying the small boost to each index is not necessary as this would produce a second-

order correction. As was the case for the collective velocity, these correction factors alter

the longitudinal derivatives of the local shear tensor. For example, Equation 4.34 means the

longitudinal derivative of the matter frame transverse velocity, ∂ηn
x, should be calculated by

the finite difference in the longitudinal direction in addition to the mesh factor: −uxuz/(1 +
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γ).

4.1.4 Equations of Motion

Since we wish to use the local shear tensor, our derivation of the equations of motion begin

in the fluid frame. In this frame, the conservation equations take the form

∂̃tε+ (ε+ P ) ∂̃in
i + π̃ij ∂̃in

j = 0, (4.38)

(ε+ P ) ∂̃tn
i + π̃ij ∂̃tn

j + ∂̃iP + ∂̃j π̃
ij = 0, (4.39)

where we have excluded terms that are explicitly zero in this frame. For reasons explained in

the following subsection, we expand all time derivatives but leave some spatial derivatives in

the form of Equation 4.20. We exclude corrections for bulk viscosity from the conservation

equations for simplicity as the corrections alter the pressure but do not add any interesting

structure.

Expanding energy conservation in this way produces

γε̇+
(ε+ P )ui

γ
u̇i + (uiπ̃ij)u̇j − (uiuj π̃ij)uk

γ(1 + γ)
u̇k (4.40)

+ui∂iε+ (ε+ P )∂iu
i + π̃ij(∂̃in

j)′ = 0

where the second term of the first line comes from γ̇ and final two terms of the first line

come from ∂̃in
j .
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The same procedure for momentum conservation gives

uic2s ε̇+ (ε+ P )γu̇i − (ε+ P )uiuj

1 + γ
u̇j + γπ̃ij u̇j (4.41)

+
uk

1 + γ

[
uiπ̃kj − 2π̃ikuj

]
u̇j + (γ − 1)π̃ij u̇j + uj ˙̃πij

+(ε+ P )(∂̃tn
i)′ + π̃ij(∂̃tn

j)′ + ∂iP +
uiuk

1 + γ
∂kP + (∂̃j π̃

ij)′ = 0.

where (∂̃j π̃
ij)′ includes the effects of boosting the derivative and the effects of the collective

velocity on the shear tensor in nearby fluid cells. This form of the momentum conservation

equations include time derivatives of the local shear tensor, which are not among the in-

tegrated variables. Conversion of these to time derivatives of αi makes the equations even

more difficult to parse, and the conversion takes the simple form

π̇ij = ∂τ
[
σηPijkαk

]
= Pijkαk

∂ση
∂ε

ε̇+ σηPijkα̇k (4.42)

where Pijk projects out the correct αk’s according to the inverse mapping corresponding to

Equation 4.3.

The remaining equations of motion are the relaxation equations for the shear tensor. We

rewrite Equation 2.20 in terms of the scaled, projected moments of the shear tensor,

τπ∂̃tαi = −αi −
η

ση
ωi (4.43)

where ωi is the projection of the Navier-Stokes velocity gradients described in Equation 4.5.
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As an example, for the first projected shear stress element this is

γα̇1 + ui∂iα1 +
α1

τπ
=
−η
σητπ

(∂̃xn
x − ∂̃yny). (4.44)

Expanding this to the form of Eq. 4.51 yields

γα̇1 −
2

(1 + γ)ση

[(
uxπ̃xj − uyπ̃yj

)
u̇j − uj π̃jxu̇x + uj π̃jyu̇y

]
(4.45)

+
η

σητπ

(
(uxu̇x − uyu̇y)− (u2

x − u2
y)

uku̇k

γ(1 + γ)

)
,

= −ui∂iα1 −
η

σητπ
[(∂̃xn

x)′ − (∂̃yn
y)′],

where ∂iα1 still contains corrections due to velocity gradients.

4.1.5 Time Integration

As stated before, the algorithm is written on a fixed grid in the expanding coordinate system.

The integration variables, denoted Vi are the natural logarithm of the energy density –

ε = ln ε, the collective velocity relative to the expansion – ~u, and the scaled, projected local

shear tensor – αi as given by Equation 4.4.

The choice of the logarithm of the energy density is motivated by the shape of the fireball.

Models that we consider for the initial energy density tend to have tails that are either

Gaussian or exponential. Taking the logarithm means that second-order finite difference

derivatives will be exact for such profiles.

Furthermore, the structure of the source term from the Bjorken expansion suggests that

one should not use linear proper time at early times. Consider a (0+1)-dimensional system
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under going a Bjorken expansion. For such a system, the evolution of the energy density is

given by

dε

dτ
=
−(ε+ P )

τ
. (4.46)

If one used a first order upwind solver (often called Euler integration) for this application,

the source term would always be too large since the proper time would be smaller when the

term was evaluated. This error goes like e−τ and was found to produce integrated errors on

the order of 1% in simple situations whereas the final code produces total integrated errors

on the order of 0.1% for more complex situations.

These simple integration errors suggest that one should integrate in the logarithm of

proper time, x = ln τ . This changes the energy density evolution to

dε = −(ε+ P )
dτ

τ
= −(ε+ P )dx. (4.47)

While this reduces integration errors at small times, for a fixed ∆x the size of the proper time

steps grows without bound. This introduces numerical instability by violation of the Courant

condition. A pleasant compromise defines x = ln sinh τ , which causes the time integration

to proceed slowly at first getting the Bjorken corrections right but limits the steps to a fixed

maximum size. Results for the equations of motion will ignore this distinction.

Spatial derivatives are evaluated using centered second-order finite differences of the

integration variables

∂jVi(x
µ) =

Vi(x
µ +4xj)− Vi(xµ −4xj)

2|4xj | , (4.48)

which assumes that the Vi is locally parabolic. The hot region in a heavy ion collision
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obviously has no hard boundary to couple to, instead we must deal with coupling to the

vacuum at the edges of the computational region. There, we use an asymmetric second-

order finite difference

∂jVi(x
µ) =

3Vi(x
µ)− 4Vi(x

µ −4xj) + Vi(x
µ − 24xj)

2|4xj | , (4.49)

for the positive xj boundary and the equivalent for the negative xj boundary. Equations

4.48 and 4.49 produce the same result if the function is exactly parabolic in the region

xµ − 24xj < xµ < xµ + 24xj . Using the same order derivatives at the boundary proved

important for modeling systems whose tails were not purely exponential.

Time integration is done simultaneously for all integration variables using the second-

order Runge-Kutta method, sometimes called the predictor-corrector method. This method

uses spatial derivatives at a fixed proper time to compute proper time derivatives at that time.

These are used to move the system forward by a half-step in time by finite difference and the

results are stored in a separate mesh. Spatial derivatives computed are then computed on

the advanced mesh, from which time derivatives are computed. These time derivatives are

used to advance the original mesh a full step. For a one-variable integration, this amounts

to

Vi(t+4t/2) = Vi(t) +
4t
2

∂Vi
∂t

∣∣∣∣
t
,

Vi(t+4t) = Vi(t) +4t ∂Vi
∂t

∣∣∣∣
t+4t/2

. (4.50)

This procedure is repeated until all of the fluid cells are below the freezeout temperature.

The equations of motion are coupled in the sense that the continuity equation contains
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time derivatives of the energy density and the velocities though not the shear tensor. Decou-

pling the equations is tedious algebraically and it is not clear that such a procedure would be

computationally beneficial. Instead, we find the time derivatives on a mesh by considering

the coefficients to all the time derivatives as a matrix equation

Cij(Vm)V̇i = bj(∂mVn, Vi) (4.51)

where Cij is the coefficient matrix that depends on the coordinates and integration variables

but bj also depends on their derivatives. Cij can be inverted for each fluid cell to find the time

derivatives. In this form, the coefficient matrix is invertible unless the viscous corrections are

larger than the energy density where Israel-Stewart theory would not be valid in any event.

Such situations do not seem to arise unless the system begins in such a condition, though

this happens frequently if the system begins with viscous corrections from the Navier-Stokes

theory which will be discussed later.

The code is also designed to run in modes that reduce the integration region using system

symmetries that are frequently present for smooth initial conditions. In many cases the

gradients of the energy density can be aligned with the coordinate axes and have reflective

symmetry with respect to the coordinate planes. This allows one to integrate a single octant

of configuration space. Since the velocity vector arises from the gradient of the energy density,

it is anti-symmetric in the sense that ux(δx) = −ux(−δx) but ux(δy) = ux(−δy). The shear

tensor gets it symmetry structure from the velocity gradients that produce it. This means

that on-diagonal components are even in all coordinates, and off-diagonal components are
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odd in their coordinates and even otherwise, which we summarize as

πxx(δ~r) = πxx(−δ~r); πxy(δx) = −πxy(−δx); πxy(δz) = πxy(−δz). (4.52)

This could be violated if the initial conditions for the shear tensor are not proportional to

velocity or density gradients, though the source of such conditions is not immediately clear.

4.2 Verification of Hydrodynamic Algorithm

This section focuses on efforts to verify that the code solves the correct set of equations

and solves them to sufficient accuracy for application to heavy ion collisions. The general

approach is to confirm that the ideal hydrodynamics algorithm conserves entropy, that the

viscous hydrodynamics algorithm conserves T 00, that results from lower dimensional codes

are qualitatively reproduced.

4.2.1 Conserved Quantities

As discussed in Chapter 2, ideal hydrodynamics locally conserves entropy. For an infinite

system, the volume integral of the entropy density over the whole space would be a constant.

Since most hydrodynamic algorithms are unstable in regions where the velocity gradients

are large and the energy density is small, the integration region is cutoff at temperatures

around 50 MeV. Over the length of the calculation, the entropy flux from the integration

region is not negligible at the level of conservation that we hope to achieve. As such, it must

be calculated in order to ensure proper conservation.

In the η-τ coordinate system, there is an additional term due to the work done by the
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expanding fluid cell:

0 =

∫
d4xτdµs

µ =

∫
d4xτ∂µs

µ +

∫
d4xsγ =

∫
dτdxdydη

[
∂τ (τγs) + τ ~∇ · (~us)

]
,

C =

∫
dxdydη(τγs) +

∫
τdτ

∫
s~u · d ~A, (4.53)

where C is a constant, d ~A is a surface element, and the velocity is relative to the expanding

mesh. Note that the expansion of the fluid cell has been incorporated into the first integral

which is over the volume at fixed proper time. At each time step, the integral over all cells

and the flux integral over the surface are calculated. Time integrals are evaluated via second

order Runge-Kutta, using the surface integrals evaluated on the intermediate grid. The result

is compared to the same integral done in the first step. For typical ideal calculations, the

entropy conservation integral was found to be conserved at the level of 0.1%. The importance

of changes to the integration scheme as described above improved this conservation by an

order of magnitude for calculations beginning at proper times of τ = 0.1 fm/c, though this

is earlier than typical calculations.

Furthermore, viscous hydrodynamic calculations were checked to ensure that entropy

increases monotonically throughout. More satisfying would be to check a conserved quantity

and a useful choice for the viscous case is T 00, since T 0i conservation can be verified by

symmetry. We provide the same calculation as for entropy conservation

0 =

∫
d4xdµT

µ0 =

∫
dτdηdxdy

[
∂τT

00 + ∂iT
0i +

T 00 + T zz

τ

]
,

C =

∫
T 00τdηdxdy +

∫
dτ

[∮
T 0idsi +

∫
T zzdηdxdy

]
, (4.54)

where T 0idsi is the outgoing momentum flux. Here the extra terms due to the expansion
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cannot be completely avoided and an integral over all time and space must be tracked. This

integral tends to be about 25% of the total by the end of calculation. Still we find that this

integral is conserved at the 0.1% level for typical initial conditions and cell densities.

4.2.2 Comparison to Known Results

The equations of motion for second-order viscous hydrodynamics are quite complex and

verifying that the code solves the correct set of equations is not trivial. Since the conservation

equations involve first-order time derivatives and first-order spatial derivatives, one natural

approach to find an analytic solution for verification is to consider an exponential dependence

of the density for a static system

ε = ε0 · e−x/R, ~u = 0, (4.55)

where ε0 and R are constants. For verification purposes we arbitrarily take R = 3 fm; and

the initial energy density, ε0, was taken at many values to ensure numerical accuracy for a

practical range of values, but presented results will be normalized by this factor. We will

investigate Such a system has infinite energy and is therefore not physical except locally,

but we emphasize that this is a test case. The collective velocity begins at the same value

everywhere and the absence of velocity gradients proves a stable point, which will be clear

when we arrive at the equations of motion for the velocity and energy density. A constant

speed of sound is a necessary condition for this behavior.

For an ideal system, there are only two equations to be found - for the velocity and energy

density - which come from the continuity equations and one Euler equation. We begin by

investigating the case without a longitudinal expansion and return to that such conditions
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later. From energy conservation, we obtain

∂µT
µ0 = 0,

(1 + c2s)γu
ε

R
= 2ε(1 + c2s)uu̇+ [γ2 + c2s(γ

2 − 1)]ε̇, (4.56)

and from momentum conservation,

∂µT
µx = 0,

[
u2(1 + c2s)− c2s

] ε
R

=
(1 + c2s)ε

γ
[u2 + γ2]u̇+ (1 + c2s)γuε̇. (4.57)

The system of Equations 4.56 and 4.57 can be solved for ε̇/ε and u̇, where the former is

only possible due to the choice of the density gradient as proportional to the density. This

separability proves that the absence of velocity gradients is a stable condition for this initial

condition. The equation for the velocity is

u̇ =
γ

γ2 − c2su2
· c2s
R(1 + c2s)

, (4.58)

where we have used the constant speed of sound. For early times when the collective velocity

is small, the solution to Eq. 4.58 is linear,

u(t) ∝ c2s
R(1 + c2s)

t. (4.59)
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While Eq. 4.58 is exactly integrable, the solution is not invertible

c2s
R(1 + c2s)

∫
dt =

∫
du

1 + u2(1− c2s)√
1 + u2

, (4.60)

c2s
R(1 + c2s)

t =
1

2

[
(1 + c2s) sinh−1(u) + (1− c2s)u

√
u2 + 1

]
(4.61)

which limits its utility. Figure 4.2 shows that the agreement of the code with this solution.

The addition of the Bjorken expansion does not lead to an analytic solution, but the

computation provides a stricter test on the code and can be done with a much less complex

numerical routine. The conservation equations are modified as follows: for energy conserva-

tion

∂µT
µ0 + (T 00 + T zz)/τ = 0,

(1 + c2s)γu
ε

R
+ γ2(ε+ P )/τ = 2ε(1 + c2s)uu̇+ [γ2 + c2s(γ

2 − 1)]ε̇, (4.62)

and for momentum conservation

∂µT
µx + T 0x/τ = 0,

[
u2(1 + c2s)− c2s

] ε
R

+
uγ(1 + c2s)ε

τ
=

(1 + c2s)ε

γ
[u2 + γ2]u̇+ (1 + c2s)γuε̇. (4.63)

Solving these equations for u̇ yields

u̇ =
γc2s

γ2 − c2su2

[
γu

τ
+

1

R(1 + c2s)

]
, (4.64)

where the first term in the brackets comes from the Bjorken expansion and differentiates
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it from Eq. 4.58. The inseparability of the equation makes the prospects of an analytic

solution unlikely, but the expression can be used for comparison with a simple and easily

verified numerical code. Comparison to the larger code again validates the larger (3+1)-

dimensional code which is again shown in Figure 4.2. Note that the presence of the Bjorken

expansion actually significantly increases the transverse expansion rate. Shear viscosity will

further increase the transverse expansion rate as viscosity tends to resist the asymmetric

expansion inherent to the Bjorken initial condition.

Also shown in Figure 4.2 is the same result if the exponential distribution is in the

longitudinal direction where ε ∝ eη/σ, which is also reproduced. While in the transverse case

the expansion due to the infinite exponential profile continues forever, in the longitudinal

case, the expansion of the mesh means that the effective gradients get weaker over time. The

inclusion of the mesh expansion can be accounted for by making the substitution R→ τσ in

the final results of Eq. 4.64, which comes from correcting the spatial derivative ∂z → τ−1∂η.

The equations for the collective velocity are easy to work with as they involve only the

velocity itself. For the energy density, the logarithmic time derivative can be written as a

function of the collective velocity. For the case without the Bjorken expansion, one simply

uses the result in Eq. 4.58 along with Eq. 4.56 or 4.57. This results in

ε̇

ε
=

γu(1− c2s)
R(u2(1− c2s) + 1)

. (4.65)

While this expression is not so pleasing, it can be integrated to obtain ε(u) using a change
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Figure 4.2: (color online) The collective velocity at all points for a exponential energy density
profile with no Bjorken expansion (blue squares), a transverse profile with Bjorken expansion
(red stars), and a longitudinal profile with Bjorken expansion (green triangles). In each case
the velocity calculated by the full code agrees with the correct value.
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Figure 4.3: (color online) The ratio of the energy density to its initial value for a exponential
energy density profile with a Bjorken expansion in the ideal case (red squares) and with shear
viscosity equal to one quarter of the energy density. In either case the calculation produces
the correct energy density.
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of variables:

∫
dε

ε
=

∫
du
dt

du

dε

dt
,

ln

[
ε

ε0

]
=

∫ u

0
du

R(1 + c2s)(u
2(1− c2s) + 1)

γc2s
· uγ(1− c2s)
R(u2(1− c2s) + 1)

,

=
1− c4s
c2s

∫ u

0
u du,

ln

[
ε

ε0

]
=

1− c4s
2c2s

· u2,

ε = ε0 · exp

[
1− c4s

2c2s
u2
]
. (4.66)

To the extent that u is linear for small t, ε grows like et
2
. Again we emphasize that this is

not intended to be a physical solution and mainly the super-exponential growth is due to the

original exponential density distribution everywhere. Also note that while this expression

appears not to depend on the length scale from the density distribution, but this information

enters through the velocity. Eq. 4.66 was also used to verify the full code.

The Bjorken expansion can be added again. The result can be arrived at by using the

result for the time derivative of the velocity with either conservation equation, or by returning

to the conservation equations and resolving. The result of either is

ε̇

ε
=

γ

u2(1− c2s) + 1
·
[

(1− c2s)u
R

− (1 + c2s)γ

τ

]
. (4.67)

An analytic solution to this equation was not attempted, but the equation was numerically

integrated using a small code and again confirmed the full code shown in Figure 4.3 Note

that at large times the expansion due to the infinite exponential initial condition eventually

overcomes the Bjorken expansion. However, the lifetime of the matter created in
√
s = 200
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GeV Au+Au collisions tends to be less than 10 fm/c and up until around this time the

evolution of the energy density is dominated by the Bjorken expansion even where the

density gradients are significant. Therefore, we expect the lifetime of the system to be

roughly independent of the transverse details.

The above scenarios demonstrate that the conservation equations are being correctly

solved in the absence of shear viscosity. Adding shear viscosity would tend to spoil the con-

stancy of the collective velocity simply by introducing a new scale to the problem. However if

the shear viscosity also scaled with the energy density and the relaxation time was a constant

the scaling solution would not be broken. This violates the Second Law of Thermodynamics

and is unphysical based solely on units, but it is useful for testing purposes.

Deriving the equations of motion for the shear tensor in addition to the conservation

equations is a bit tedious and not particularly enlightening. For completeness, the equations

of motion to be integrated are

γε̇+
u

γ

(
ε+ P +

πxx

γ2

)
u̇ =

uε

R
− γ

τ
(ε+ P + πzz) , (4.68)

γuc2s ε̇+ γ

(
ε+ P +

1− u2

γ4
πxx

)
u̇+

u

γ
π̇xx =

c2sγ
2ε+ πxx

R
+

u

γτ

(
γ2πzz − πxx

)
,

2u

3

(
2γη

τπ
− πxx

γ

)
u̇+ γπ̇xx =

−πxx
τπ

+
uπxx

R
+

2γ

3τ

(
γ2η

τπ
− 2πxx

)
,

2u

3γ

(
2πzz − η

τπ

)
u̇+ γπ̇zz =

−πzz
τπ

+
uπzz

R
− 4γ

3τ

(
η

τπ
+ πzz

)
.

This system of equations has the structure of the full set of equations in that it contains

the dependence of time derivatives of the shear components on the conservation equations

and vice versa. This means that this test case would identify errors in the matrix inversion

procedure. In addition, frequently terms are not expressed in this set of equations in the
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same way that they are expressed in the full code and a large fraction of terms are represented

and checked.

The results of the full code and a small test program are shown in Figure 4.2 for collective

velocity, in Figure 4.3 for the energy density, and in Figure 4.4 for components of the shear

tensor, each in the viscous case. Only two components of the shear tensor need to be calcu-

lated due to orthogonality with the collective velocity and tracelessness of the shear tensor.

The test code is written to integrate only πxx and πzz, whereas the full code integrates αi

meaning that some numerical effects are different between the two codes. These normalized

deviations were found to be on the order of 10−4 or less.

Comparisons for more realistic conditions were made in the interest of validation. Partic-

ularly of interest were calculations of the motion of a constant temperature surface, as these

are the principle output of the hydrodynamic calculations. The chosen initial conditions

were energy density scaled to the number of wounded nucleons (see Chapter 5), zero initial

collective flow, and shear corrections as given by Navier-Stokes for viscous simulations. The

equation of state is from a massless gas, and the shear viscosity was scaled to the entropy

density.

Numerical results for the initial conditions were provided by the TECHQM collaboration

for code verification. These codes are restricted to boost invariant problems and so the

following comparisons will be done for boost invariant initial conditions. For the ideal case,

the initial conditions were matched exactly. In the viscous case, the choice of Navier-Stokes

shear corrections has the problem that the corrections become much larger than the pressure

at low temperature, because the shear viscosity is proportional to T 3 and the pressure is

proportional to T 4, so the ratio η/P ∝ T−1 diverges at low temperature. While physically
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this is not concerning as the simulation is only valid if the motion of the surface is not

strongly influenced by the details of the evolution at temperatures much lower than the

freezeout temperature, large viscous corrections make hydrodynamic calculations unstable.

The TECHQM collaboration chose to unphysically compensate by making the shear

viscosity decrease at large distances from the center of the hot region. TRISH was instead

run with the initial shear corrections proportional to the pressure at all temperatures with

the corrections in the center of the calculation roughly the same as the Navier-Stokes value.

It has been found that this does not significantly affect observables in general, and in this

case we find that it has little effect on the hydrodynamics.

The motion of the point of constant temperature (T = 130 MeV) along the line η = y = 0

as a function of the proper time is shown in Figure 4.5. The differences in integration

strategy mean that the calculations make predictions at different times, making a differential

comparison reliant on interpolation strategy. Still, we found qualitative agreement between

the codes in both the ideal and viscous cases. This includes the general feature that viscosity

increases the transverse pressure at early times, which causes the temperature isosurface to

remain at larger distances from the center at moderate times, before collapsing more suddenly

at roughly the same final time.

In addition to the evolution of the freezeout surface, the shear correction to the phase

space density has a significant effect on emitted particle momentum distributions. This is

most notable in elliptic flow which is reduced by the correction to the phase space density

as described in Equation 2.31. To confirm that our predictions for the shear correction at

the freezeout surface Figure 4.6 shows its evolution as a function of proper time along the

line y = η = 0. The initial value of the correction is smaller for our calculation due to the
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choice of initial state but the two solutions converge rapidly to the same behavior. While

deviations at larger times are on the order to 10%, it is not clear if this is due to differences

in the initial state or differences in integration scheme.

4.3 Liquid-Gas Coupling

4.3.1 Particle Creation

The low temperature regions of the calculation cannot be calculated as a liquid even within

the Israel-Stewart framework. In these regions, the mean free paths of the particles become

larger than the size of the system and local kinetic equilibrium can no longer be maintained.

Furthermore, differences between particle species become important as the pions begin to flow

faster and cool slower than heavier particles such as protons. Other groups have attempted

to address this by tracking fluctuations of baryon number and other conserved charges and

their associated fugacities below some chemical freezeout temperature, while assuming that

ideal hydrodynamics still governs the kinetic behavior until some lower temperature. This

approach is motivated by the data which display softer spectra than the particle ratios would

suggest, but strain credibility by assuming local equilibration with long mean free paths and

low Reynolds numbers.

A more satisfactory approach is to couple the hydrodynamic calculation to a gas calcu-

lation that treats particles as the important degrees of freedom. In principle, a simulation

of both the fluid and the gas phases could proceed simultaneously with the fluid receiving

information about the pressure in the gas and the gas receiving information about the emis-

sion of particles from the fluid. In practice, this is a very demanding calculation and the
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fluid likely does a good job of approximating the motion of the gas for temperatures near

to the phase transition assuming the equation of state is consistent. The reverse is also

of concern; if this temperature is chosen to be too high, the hadrons cannot be treated as

independent, incoherent objects and corrections akin to the classical finite volume correc-

tion become important. Fortunately for temperatures around 140 ≤ T ≤ 165MeV the two

descriptions mesh nicely. [53]

In general, the goal is to generate a distribution of particles such that the stress-energy

tensor is the same in the freezing fluid cell as it is for the particles that are now in that same

volume. In the gas phase, the stress-energy tensor is given by

T ij =
∑

s

∫
d3p

(2π)3

pipj

E(~p)
fs(~p), (4.69)

where s indexes the particle species. While this is at least a well-defined task if the phase

space density is given, in viscous hydrodynamics the phase space density is altered by the

presence of shear viscosity. As discussed in Chapter 2, viscous corrections are related to the

distortion of the phase space density. In Equation 2.31, we took the relationship of the shear

tensor to the phase space distortion as the Grad ansatz, which has the general form

f(pµ, rν) = feq(pµ, rν)
[
1 + C(p)pαpβπ

αβ
(s)

]
, (4.70)

where the momentum dependence of the correction coefficient, C(p), may be different for

different species. This form has the difficulty that the correction term can become arbitrarily

large and certainly will do so at large momentum leading to negative phase space density

[7, 54, 55].
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An alternative approach [53] would be to evaluate the equilibrium phase space density

at an altered momentum by shifting linearly in the form

pi = p′i + Aπ̃ijp′j , (4.71)

where A is a coefficient to be determined, π̃ij is the shear correction in the fluid frame. This

allows one to generate particles according to a static thermal distribution and then adjust

the momentum to reproduce the local shear tensor before applying the boost from the fluid

frame to the lab frame.

This linear form for the correction can be understood in terms of the Navier-Stokes theory

where π̃ij is the velocity gradient. Given that viscous hydrodynamics allows for a non-zero

mean free path (∆r) and collision time (∆t), particles observed locally have originated

nearby. Then the momentum observed locally is given by

pi = p′i − E∆vi = p′i − E∂jvi
pj∆t

E
= p′i −∆t∂jvip

′
j , (4.72)

where the velocity gradients are to be evaluated in the fluid frame. More general considera-

tions based on requiring fixed energy and particle densities show that this rough argument

holds well and the general form should be

pi = p′i + λijp
′
j = p′i +

∆t

2η
π̃ijp

′
j . (4.73)

In principle, this procedure can be done separately for each particle species, the result of

which would be that the pions receive larger phase space corrections than the protons though
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this is not done at present. Furthermore, ∆t in Equation 4.73 could be different for each

particle species or could depend on momentum.

These results allow one to calculate the phase space density. Combining this with infor-

mation about the volume elements comprising the freezeout hypersurface, dΣµ, one generates

particles according to the Cooper-Frye prescription [56]

dN =
f(p · u)d3p

(2π)3E(p)
(pνdΣν)Θ(pνdΣν). (4.74)

The direction of dΣµ is orthogonal to the breakup surface. It points in the time direction

for sudden breakup and in the spatial direction for emission from a static shock front. Dis-

cussion of calculating the hypersurface elements follows in Section 5.2, but it suffices to

understand that the vector points outward, from higher energy density to lower, and has

length proportional to the volume of the fluid element undergoing the transition to gas. The

step function, Θ(p · dΣ), ensures that we generate only particles that are emitted from the

surface rather than particles that are moving further into the fluid. The corollary to this

point is that particles within the cascade that move inside of the freezeout surface should be

removed from that calculation. For 4d calculations determining surface collisions becomes

rather expensive, and for 2d calculations it was found that roughly 1% of the particles ac-

tually re-enter the surface due to a combination of significant radial and the rapid shrinking

of the hot region. Absorbed particles could be a significantly large effect with fluctuating

initial conditions and a more thoughtful consideration in the gas phase would be needed.

To conclude, we summarize the methodology. One first calculates the total number

of particles to be emitted by the surface using only the surface volume, temperature and

chemical potentials. For each particle, one randomly selects a momentum from a static
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thermal distribution, which is then scaled to reproduce the stress-energy tensor via 4.73.

The momentum is then boosted from the fluid frame to the lab frame. In this frame, one

can determine whether the momentum is into or out of the surface by keep or reject Monte

Carlo with keep probability pµdΣµ/(E|dΣ|). This set of particles are then treated with the

gas model.

4.3.2 Surface Finding

While the hydrodynamic calculation extends to rather low temperatures, the model uses the

low temperature evolution only as a proxy for the evolution of the gas phase. The output of

the hydrodynamic module is in fact the evolution of the boundary between the liquid and

gas phases, which is taken to be a temperature isosurface, in terms of the hypersurface vector

dΣµ which characterizes the location and orientation. Generally the strategy [7] is to break

the surface into tetrahedra embedded in the four-dimensional space. For each tetrahedron,

the surface vector is proportional to the generalized cross-product of the three four-vectors

from one vertex to the other three:

dΣµ = (1/6)gµνεναβγx
α
1x

β
2x

γ
3 (4.75)

where εναβγ is the totally anti-symmetric tensor. This only defines dΣµ up to a sign and one

must ensure that the vector points outward. The simplest cases of Equation 4.75 are when

the tetrahedron’s vectors are along the coordinate axes. For instance, if the tetrahedron lies

along the spatial axes, then the surface vector points in the temporal direction. This means

that the surface is collapsing rapidly in time as would happen near the end of the collision

when many fluid elements freezeout simultaneously. In contrast, if one of the elements is
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exactly along the time axis and the other two along spatial axes, the surface is static in time

and emission happens outward along the final spatial direction.

The hydrodynamic equations of motion are evaluated on a fixed grid in configuration

space in the moving coordinate system described in previous chapters. This means that the

mesh is made up of hypercubes that intersect the temperature isosurface. Determining that

the isosurface passes through a given hypercube is not difficult – if there is at least one corner

above and at least one below the freezeout temperature, then the surface passes through this

cube. Rather all of the subtlety is in determining the orientation and volume of surface

within the hypercube. This problem has been studied in great detail in three dimensions

for the purpose of surface finding for graphical applications [57]. On of the most famous

and successful algorithms is called Marching Cubes, which uses the cubic symmetry of the

mesh and breaks down all possible combinations of vertices inside and outside the surface

exhaustively.

In three-dimensions, Marching Cubes produces a triangulation of the surface within each

cube. One of the key difficulties of resolving each cube individually is the relationship

between surfaces in adjacent cubes. For instance, in the two-dimensional case (a square)

when opposite corners are on one-side of the surface, there are two configurations of the

lines that would make up the surface – one with the center above the surface and one

below. A self-consistent approach to determining which of these configurations is to be used

is required. In this case, whether the center of the face is inside or outside the surface is

determined by the average of all four values, though more complicated approaches exist [7]

. Failure to account for this possibility leads to significant overlaps or holes in the surface

even for relatively simple configurations, for instance Figure 4.7 shows possible errors and
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a self-consistent solution for adjacent cubes. The difficulty here is that the surface should

have two pieces in the right cube and one piece in the left cube. Use of the average along

that cube face allows the algorithm to determine that the center is on the white side of the

surface, and make the correct choice of tilings in each cube.

Such problems arise any time there is more than one piece to the surface in any particular

hypercube. In three dimensions the general approach has been to exhaustively determine

by hand all possible cases, up to available symmetries, and then use a lookup table to

calculate surface elements in that configuration. Since this relies on human calculation and

has factorial scaling with dimension, this is not done in four dimensions. Instead, one can

algorithmically determine how to combine elements of the surface in lower dimensions to

form surface elements in higher dimensions. One begins by interpolating points on the

surface on every grid edge between grid points inside and outside the surface. Edges are

constructed by connecting surface points on each face. This is done independently for each

of the eight cubes comprising the hypercube, six of which can be constructed by connecting

each cube face in space with its corresponding face at the other time. If the cube contains

less than six edges, there can be only one surface element within that cube and the surface

with triangles can proceed. The easiest way to do this is to calculate the centroid of the

surface element and generate triangles using the centroid and each edge. This is especially

useful since the location of the centroid can be used as the point at which to interpolate

hydrodynamic quantities for the Cooper-Frye procedure defined in the previous section.

If the surface in each cube consists of six or more edges, there might or might not be

two distinct faces in this cube. The edges must be then be sorted in sequence to determine

whether surface element are distinct and if so which edges belong to which surface element.
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If there are distinct elements, each element is tiled individually, the centroids are calculated

separately, and particles would be generated from each. Once this two dimensional sur-

face has been calculated, the construction of the three-dimensional surface can begin. This

proceeds analogously. If there are few enough faces within each cube, the polyhedron can

immediately calculated from the centroid of all of the surfaces and the sum of all the tetra-

hedra between the centroid and the triangular faces. If there is a possibility that there might

be distinct surface elements, the lower dimensional surface elements need to be ordered and

separated into distinct polyhedra.

Surface finding algorithms of this complexity were designed and developed for hydro-

dynamic codes that include fluctuations, and as such are likely much more robust than is

strictly necessary. In fact, earlier versions of the boost-invariant model used a surface find-

ing algorithm that assumed the surface was a well-defined function of the azimuthal angle

and radius at each time step. If this is the case, one can interpolate the surface radius at

evenly spaced samplings in azimuthal angle at each time step. These emission elements are

easy to work with as there are no tiling issues or ambiguities related to surface divisions

between cells. However, certain initial conditions can cause the hot region to divide into two

symmetric pieces in the transverse plane even for smooth initial conditions and the surface

would violate our assumptions.

This necessitated the integration of these more robust surface finding algorithms. Particle

spectra calculated from surface elements output from both algorithms were compared and

agreed to within a few percent in the average transverse momentum, though some of this

could be attributed to rather large time-like elements from the final, rapid collapse of the

surface and associated interpolation schemes. The four-dimensional version of that algorithm
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was used for the full hydrodynamics code. For test cases that we examined, there were

actually no grid cells that contained more than one surface element. This is partly due to

our choice to generate the surface on the same density grid as the hydrodynamic evolution

and partly to the smoothness of our initial conditions. In a sense this means that our results

are not dependent on the finest details of surface generation and these methods are more

than sufficient for our purposes.
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Figure 4.4: (color online) Viscous corrections to the pressure along each axis for the trans-
verse exponential test of the hydrodynamics code for a viscous system undergoing a Bjorken
expansion. This demonstrates that TRISH reproduces analytic results for viscous hydrody-
namics as well as ideal hydrodynamics
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Figure 4.5: (color online) The location of the T = 130 MeV isotherm along the line y = 0 for
comparison with another numerical code, where the ideal results have been reflected τ → −τ
for the case, η/s = 0. Comparison shows that the hydrodynamic codes produce the same
freezeout surface for the case of zero or small shear viscosity.
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4 Pasi Huovinen, Hannah Petersen: Particlization in hybrid models

double counting

hole

consistent

Fig. 4. An example of a configuration where badly resolved
ambiguity may lead to double counting or a hole on the sur-
face. The cubes left and right represent neighbouring cubes
separated for the sake of clarity.

cover the entire polygon. As depicted in Fig. 5, the polygon
is not necessarily planar. A sum of the areas and normal
vectors of the triangles approximates the area and normal
of the polygon as

∆σ =
∑

i

1

2
fiai × bi, (3)

where ai and bi are vectors from the centroid to the ends
of the ith edge of the polygon, and fi = ±1 is chosen
so that each of the normal vectors 1

2fiai × bi is directed
towards lower values, i.e. outside.

To make the illustrations of the hypersurfaces in a hy-
percube more understandable, we first show a simple 2D
projection of a 4D hypercube in Fig. 6, and how an evolv-
ing 2D surface in 3D space spans a 3D hypersurface in
4D spacetime in Fig. 7. This hypersurface element forms
a polyhedron within a hypercube (Fig. 8), and like a poly-

Fig. 5. Examples of triangularisation of the polygon in a sim-
ple and a complicated case.

t=0

t=1

Fig. 6. A 2D projection of a 4D hypercube. In the figure,
the cube in the middle is the hyperface of the hypercube at
coordinate t = 1, the large cube around it is the hyperface
at t = 0, and the grey lines connecting them are edges with
constant values of coordinates x, y, z.

gon can be divided into a group of triangles, a polyhedron
can be divided into tetrahedra.

We proceed analogously to the 3D case. We first divide
the problem into eight three dimensional problems: As a
cube consists of six squares, a hypercube consists of eight
cubes, see Fig 9. The surface in each of these is found in
the same way than described above. The centroid of these
2D surfaces, which form the faces of the tetrahedra, is
calculated, and the corners of the triangles forming these
faces are recorded. This is illustrated in Fig. 8, where the
triangularisation of the face within the t = 0 hyperface is
shown.

As in 3D the ordering of the edges is not important
unless the surface consists of several disconnected parts. If
the number of edges and the number of hypercube corners
above and below isovalue indicate that this is possible, we
order the edges to group them according to the polyhedron
they belong to, and treat the groups as separate surfaces.

We evaluate an approximative centroid for the polyhe-
dron. Analogously to the 2D surface in a 3D space, con-
necting the centroid to the corners of the triangles form-
ing the faces of the polyhedron, creates a set of tetrahedra
which fills the volume of the polyhedron, see Fig. 10. The

Figure 4.7: Shows the freezeout surface passing through two adjacent cubes in a three
dimensional space. The top figure demonstrates double counting resulting from assuming
that the surface is a single sheet in each cube. The middle panel demonstrates the possibility
that the surface could develop a hole, while the bottom panel shows a consistent solution as
determined by the Marching Cubes algorithm.[7]
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Chapter 5

Initial Conditions

At this point, we have developed an algorithm for viscous hydrodynamics for making pre-

dictions in heavy ion collisions. We have discussed the equation of state and transport

coefficients for the quark matter created and the hadron gas that surrounds it, and we have

shown how this can be coupled to a gas calculation. Hydrodynamics predicts the evolution

of the density and collective velocity deterministically for a given system, but it requires

an initial condition, which is the final ingredient in creating our model. The most common

method of initializing a hydrodynamics code is to provide the state of a system at a given

time, though the equations do not demand that particular hypersurface.

In the case of relativistic heavy ion collisions, the procedure for producing these initial

conditions is highly uncertain and a principle source of uncertainty in interpreting observ-

ables. For the initial energy density, there is ambiguity in the contribution of each nucleon-

nucleon collision to the hot phase of the collision. Several models and the variation in their

predictions is discussed in the first section of this chapter. In addition, it is likely that

some time elapses between the crossing of the original nuclei and the onset of hydrodynamic
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behavior which should be accounted for. Regardless of the microscopic description of the

matter during this pre-equilibrium phase, we find that flow should be present at the onset of

hydrodynamics. This result is explained in the second section. Finally, there is significant

uncertainty in the initialization of the shear stress tensor (πµν). While many groups have

chosen to use the Navier-Stokes values, it is not at all clear that this is well motivated and

can lead to aberrant behavior. The issue of initializing the shear tensor is discussed in the

final section of this chapter.

5.1 Independent Nucleon Models

We begin by assuming that the initial stage of a heavy ion collision behaves like a collection

of nucleon-nucleon collisions [58]. Therefore, we begin considering the density distribution

of nucleons within each nucleus, which is generally taken to be a Woods-Saxon

ρ(r) = ρ0

[
1 + exp(r−R)/ξ

]−1
, (5.1)

where the nuclei are assumed to be spherically symmetric and described by a radius (R),

diffusiveness (ξ), and normalization (ρ0). The energy density generated in the transverse

plane of the hot region should be proportional in some way to the areal density of nucleons

which is often called the thickness function and is given by

TA(x, y) =

∫ +∞

−∞
dzρA(x, y, z) (5.2)

where the subscript A indicates that this is the thickness of nucleus A. If one thought that

each pair of colliding nucleons contributed equally to the energy density, then the energy
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density would be proportional locally to the product of the two thickness functions. Another

possibility is that each nucleon that participates in any collision contributes the same energy

density to the hot region.

To underline the difference between the participant and collisional scaling, consider a

region much smaller than the cross-section for interaction in the transverse plane where

there are four nucleons present in one nucleus and three nucleons in the other nucleus. If one

counts by collisions there are twelve binary collisions that would take place in this region,

since each nucleon will collide with all possible counterparts in the other nucleus. In the

alternate method of counting, there are only seven participants in the collision. For this

reason, participant scaling produces smaller energy densities at small impact parameters

where there are regions where many nucleons are present in each nucleus.

Locally, one can then calculate the energy density in both the collisional and participant

scaling models. For collisional scaling, the energy density should be proportional to the

cross-section and the product of the two thickness function: ε(x, y) = KσinelTATB , where

σinel is the free nucleon-nucleon inelastic cross-section and K ∝ (dE/dy)pp is proportional

to the energy contribution of each collision. On the other hand, while participant scaling

is easy to understand in a picture where there are a finite number of nucleons distributed

throughout a nucleus, it can also be used for smooth density distributions. To reproduce

participant scaling, the density should be scaled to

ε(x, y) ∝ TA

[
1−

(
1− σTB

B

)B]
+ TB

[
1−

(
1− σTA

A

)A]
, (5.3)

ε(x, y) ≈ K

2

[
TA

(
1− e−σTB

)
+ TB

(
1− e−σTA

)]
(5.4)
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Figure 5.1: Comparison of the normalized energy density along the short axis between
wounded nucleon (black solid), KLN [8] (blue dot-dash), and screening (red dotted) mod-
els. The wounded nucleon predicts the largest extent corresponding to the smallest source
eccentricity, while the screening model produces roughly the same prediction as KLN.

where A and B are the number of nucleons in each nucleus and are assumed to be large. The

factor of two emphasizes that if both TA and TB are small, the normalization should be the

same as for binary collision scaling.

The second part of Equation 5.3 suggests that the function behaves like symmetric pen-

etration of the thickness functions – that is, TA is attenuated as it interacts passing through

nucleus B and vice versa. This is not exactly the case. The addition of these two terms

means that if TA >> TB , one of these terms still behaves like σinelTATB while the other

is suppressed. This means that doubling the larger thickness roughly doubles the output

density. While this is what one expects from the wounded nucleon picture, it seems likely

that doubling the larger thickness would have a reduced effect.

Therefore, in order to more naturally take into account the expected screening, we propose
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the following form for the energy density:

ε(x, y) = K
σinel

σ

2TATB
TA + TB

[
1− e−σ(TA+TB)/2

]
(5.5)

where σ is the cross-section associated with screening and should not be larger than the full

inelastic cross-section. This form no longer has the property that it behaves like collisional

scaling when one density is much larger than the other but instead reduces the energy

density based on whichever nucleon density is smaller. This model achieves the same scaling

in the limit that both nucleon densities are diffuse. In the higher density region the scaling

described in Equation 5.5 behaves like participant scaling instead of collisional scaling and,

in fact, in regions where the thicknesses are similar the model is the same as the wounded

nucleon model. In regions where the thicknesses are very different, such as where the tails of

one nucleus overlap with the center of the other nucleus in the transverse plane, the scaling

described in Equation 5.5 falls off much faster than wounded nucleon scaling (Equation 5.3)

as seen in Figure 5.1. This increases the eccentricity of the initial source which one näıvely

expects should increase the produces elliptic flow with other parameters constant.

Up to this point, we have assumed that the nuclear thickness functions are smooth and

interact probabilistically. One might also force the nucleons to interact locally and with

precise locations through Monte Carlo methods. This is done by distributing nucleons in

each nucleus by drawing from the distribution 4πr2ρ(r) for radial positions of the nucleons

and flat distributions for the azimuthal angle and the cosine of the polar angle. Draws are

performed once for each nucleon in each nucleus involved in the collision. The nucleons are

then assumed to be black discs in the transverse plane of radius given by the total proton-

proton inelastic cross-section for the collision energy of interest. Collisions occur any time
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black discs overlap in the transverse plane with the longitudinal distribution ignored. One

generally counts both the total number of pairwise collisions, the number of binary collisions

(NBC), and the number of nucleons participating in any collision, the number of wounded

nucleons (NWN ). To generate an energy density profile, one can place Gaussians at the

location of the participants or collisions with arbitrary normalization and width, though the

width should certainly be no larger than the radius of the proton. This procedure produces

lumpy and fluctuating profiles, but profiles without significantly different trends from the

smooth variety of the wounded nucleon described in Equation 5.3 [58]. Furthermore, the

design of the hydrodynamic model makes the study of fluctuations impossible.

Other improvements to the Glauber model have been considered at impressive length by

the PHOBOS collaboration including variation of nuclear density profile parameters, the in-

elastic nucleon-nucleon cross-section, hardcore nucleon repulsion within the original nucleus,

and several experimental considerations that would affect interpretation of the multiplicity

results [58]. For reasonable variations of the parameters, they find only ±5% influence on

results for collisions mid-central and central collisions for Au+Au collisions at
√
s = 200

GeV where the largest deviations are for the experimental considerations. Also of note is

that corrections for very peripheral collisions can be considerably larger, up to ∼ 20%. Fur-

thermore, they investigate differences between using smooth density profiles and using the

average of many Monte-Carlo events to determine multiplicity scaling. They find that for

mid-central collisions, smooth profiles predict ∼ 10% fewer particles produced by the 30-40%

centrality bin for Au+Au collisions at
√
s = 130 GeV.

One difficulty in comparing theoretical predictions to experimental data is that the im-

pact parameter is not known for any particular event, though the smallest impact param-
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eters should correspond to the highest multiplicity events. Geometrically it is clear that

the change in probability of a particular impact parameter scales with the impact param-

eter, dσ = 2πb db, like circular shells for integration in polar coordinates. Integrating this

equation and assuming that no collisions take place beyond a maximum impact parameter,

the total cross-section is related to the maximum impact parameter by bmax =
√
σT /π.

Experimentally events are separated into centrality classes which are the percentile of the

total number of particles produced in a particular collision but reversed such that the 0-5%

centrality class corresponds to the 5% of all events containing the most particles. As long

as particle production falls monotonically with impact parameter, the relationship between

the centrality class and the impact parameter should be

%cent

100
=
πb2

σT
=

(
b

bmax

)2

. (5.6)

This allows one to calculate the average number of participant nucleon pairs for each cen-

trality class, which one can compare to the total number of charged particles produced.

Experimentally, the number of charged particles observed at midrapidity scales with the

number of participants up to center of mass collision energies around
√
s = 100 GeV [2]. At

√
s = 200 GeV the deviation from this scaling is ∼ 5% faster than linear, there are more

observed charged particles than predicted by the number of wounded nucleons, from 0-40%

centrality. Some groups have suggested that this implies an increasing importance of hard

processes that might scale with the number of binary collisions and find that a mixture of

75% participant and 25% collisional scaling reproduces data at this energy [59].

A related theory that has had success predicting longitudinal rapidity distributions in

d+Au systems is often called the Color-Glass-Condensate (CGC) [8, 60–62]. The assumption
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is that the gluon density distribution falls like the transverse momentum squared above a

saturation scale (Q2
s) but remain constant below it, an ansatz which proved very useful in

describing the data collected in the HERA experiment [63]. The saturation scale depends on

the density of partons in the original nuclei, generally taken to be the density of participants

as defined in the Glauber model. There are many versions of CGC [8, 62, 64] that contain

these features but there are not so many direct constraints on such inputs as the apparent

gluon density distribution at some momentum scale. This leads to quite some number

of unique models. We present the equations for generating CGC initial conditions in one

particular model [8]. The scattered gluon density is given in terms of the original gluon

distributions (φA1
for nucleus 1) as

d3N

d2pT dy
∝ 1

p2
T

∫ p

T
dk2
Tαs(kT )φA2

(x1, k
2
T )φA2

(x2, (~kT − ~pT )2), (5.7)

where x1,2 = (pT /
√
s)e∓y and y in the longitudinal rapidity. The unintegrated gluon distri-

butions and saturation scale are given by

φA(x, k2
T ) =

1

αs(Q2
s)

Q2
s

max (Q2
s, k

2
T )

(
nApart

TA

)
(1− x)4, (5.8)

Q2
s(x) =

2T 2
AGeV2

nApart

(
fm2

1.53

)(
0.01

x

)0.288

, (5.9)

where each is implicitly a function of the transverse position, rapidity, and nucleus. Also,

nApart is the participant density for nucleus A as given by the appropriate term of Equation

5.3. In this sense, the CGC is a reweighting of Glauber densities based on classical chro-

modynamics arguments about the saturation of gluon momentum distributions. Finally,

we note that CGC models include rapidity dependence, which is one of its great successes
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Figure 5.2: Comparison of the normalized transverse energy in initial conditions from KLN
(green dashed), wounded nucleon (red dotted), binary collision (black solid), screening (blue
dot-dash), and a mixture wounded nucleon and binary collision (gray double dot-dashed)
chosen to reproduce experimental multiplicity scaling. Since the total overlap area scales
with total particle production and normalization is set by the most central bin, all curves
are defined to be unity at b=2.23 fm before dividing by the binary collision result at each
impact parameter. The wounded nucleon model therefore predicts the slowest scaling of
multiplicity with impact parameter while binary collision scaling would produce the most
rapid scaling. The screening model and KLN predict similar scaling with impact parameter
as the best fit mixture of wounded nucleon and binary collision scaling, therefore we expect
these models to follow experimental data in this respect.

notably for d+Au collisions [60] that is not predicted by Glauber models where that would

be added ad hoc.

As stated before, there are many varieties of CGC and few of the parameters are well

known so we consider only the energy density profile predictions. These profiles tend to

predict higher initial source eccentricities and somewhat faster total density scaling with

impact parameter than participant scaling in the Glauber model. To compare the scaling

across models we compare the integrated energy density at midrapidity as a function of

impact parameter. Each is normalized to give the same total number for the average central
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FIG. 6: Schematic view of a heavy-ion collision at impact parameter b in the transverse plane

(Figure from [66]).

scattering probability becomes of order unity,

1 ∼ A

πR2
0

σ = αs(Q
2)

A

R2
0Q

2
. (124)

Therefore, one finds that there is a typical momentum scale Q2
s = αs

A
R2

0
which separates

perturbative phenomena (Q2 " Q2
s) from non-perturbative physics at Q2 # Q2

s (some-
times referred to as “saturation”). The Color-Glass-Condensate was invented [69, 70] to
include the saturation physics at low momenta Q2 in high energy nuclear collisions. Due
to the high occupation number at low momenta, this physics turns out to be well approx-
imated by classical chromodynamics. Despite encouraging progress [71], the problem of
calculating the energy density distribution in the transverse plane at τ = τ0 using the Color-
Glass-Condensate has not been solved, the main obstacle being the presence of non-abelian
plasma instabilities [72, 73]. As a consequence, there only exist phenomenological models
for the transverse energy distribution in the CGC (which are quite successful in describing
experimental data, cf. [74]), in particular the model by Ref. [75], which will be referred to
as CGC model in the following.

In the CGC model, the transverse energy profile at τ = τ0 is given by

ε(x⊥, b) = const ×
[

dNg

d2xT dY
(xT , b)

]4/3

(125)

where Ng is the number of gluons produced in the collision,

dNg

d2xT dY
∼

∫
d2pT

p2
T

∫ pT

d2kT αs(kT ) φ+

(
(pT + kT )2

4
;xT

)
φ−

(
(pT − kT )2

4
;xT

)

φ±(k2
T ;xT ) =

1

αs(Q2
s)

Q2
s

max(Q2
s, k

2
T )

(
nA

part(x⊥, ±b)

TA(x ± b/2, y)

)
(1 − x)4

Q2
s(x,x⊥) =

2 T 2
A(x ± b/2, y) GeV2

nA
part(x⊥, ±b)

(
fm2

1.53

) (
0.01

x

)0.288

, x =
pT√

s
. (126)

Figure 5.3: Schematic of source of initial eccentricity as it originates directly from the finite
impact parameter [3]

collision impact parameter with b=2.21 fm since this normalization is a free parameter in

all of the models. For ease of interpretation, in Figure 5.2, we divide by the binary collision

result. All the curves lie above one, meaning that collisional scaling predicts the most

rapid scaling with impact parameter, while participant scaling varies the most slowly. The

double-dot dashed (green) line shows the linear combination of collisional and participant

scaling found to reproduce the data. Note that both the CGC variety and the simple

saturation model given in Equation 5.5 predict similar scaling to this linear combination,

and we therefore expect that these models will all predict similar multiplicity scaling with

impact parameter.

Another important experimental observable affected by the initial condition is the elliptic

flow. In the hydrodynamic picture, elliptic flow is the result of initial source eccentricity.
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Figure 5.4: Comparison of initial source eccentricity between KLN (green dashed), wounded
nucleon (red dotted), binary collision (black solid), screening (blue dot-dash), and a mixture
wounded nucleon and binary collision (gray double dot-dashed) chosen to reproduce exper-
imental multiplicity scaling. Wounded nucleon scaling predicts the smallest initial source
eccentricity and is not greatly increased by the inclusion of some binary collision scaling to
reproduce multiplicity scaling. The screening model predicts the largest eccentricity of the
models considered here, including KLN, though other CGC calculations of initial conditions
predict eccentricities this large. This suggests theoretical uncertainty of roughly 50% in the
source eccentricity that will propagate to uncertainty in the shear viscosity.
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Hydrodynamics generates flow in proportion to pressure gradients leading to faster collective

expansion in the short direction of the source. Viewed in the transverse plane, the initial

eccentricity comes from the overlap geometry of the overlapping nuclei. As shown in Figure

5.3, for impact parameters of roughly the nuclear radius, the overlap region is shorter along

the impact parameter than in the orthogonal direction.

In addition to predicting different multiplicity scaling, models of initial conditions predict

different initial eccentricities. Figure 5.4 shows the comparison of the eccentricity predicted

by the various models for initial densities, as defined by

εx =
< y2 > − < x2 >

< y2 > + < x2 >
(5.10)

where the averages are over the transverse plane weighted by the energy density. Partici-

pant scaling turns out to produce the least source eccentricity for this set of models with

the mixture of collisional and participant scaling that reproduces multiplicity scaling being

almost as small. The screening model produces the most eccentricity of these models, but

this is more a function of the choice of CGC model; others predict eccentricities as large or

larger compared to the saturation model [8].

5.2 Initial Flow

5.2.1 Early Flow Model

The energy density alone is not enough to initialize even ideal hydrodynamics as the collec-

tive velocity is not determined. The early assumption of modelers was that the system should

exhibit no collective behavior prior to thermalization and that the fluid should begin at rest
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Model Txx = T yy τ2T ηη T ττ

Longitudinal electric field T ττ −T ττ ∼constant
Free streaming massless particles,
two-dimensional relativistic gas
or fields from incoherent longitudinal currents

T ττ/2 0 ∼ 1/t

Ideal hydrodynamics of massless gas T ττ/3 T ττ/3 ∼ 1/t4/3

Table 5.1: Elements of the stress energy tensor for simple models at early times [68]. A
wide variety of reasonable values for the stiffness of the transverse equation of state are
represented by the models.

in the transverse direction [26, 65–67] . This is in direct contrast to the longitudinal initial-

ization, where boost invariance means that the system is borne with strong velocity gradients

despite the lack of acceleration in any comoving frame. If the longitudinal treatment were

translated to the transverse case, that would assume that particles free-streamed prior to

thermalization, though this is not strictly a requirement for the longitudinal assumptions to

hold.

Unfortunately, we find that the conclusions one would draw about the structure of the

matter are sensitive to the assumptions one makes about the dynamics of the system prior

to equilibration [68]. In fact, early hydrodynamic models using a very stiff equation of state

predicted that the system would have to thermalize after only 0.1 fm/c to achieve the correct

amount of flow in the total collision time suggested by the longitudinal extent of the system

[22]. This result is not difficult to understand: the development of elliptic flow is initially

parabolic for a system starting from rest so, as in a sprint, a difference in starting time is

often more critical than top speed.

This puts a premium on understanding the model dependence of the initial conditions

to the hydrodynamic phase. We consider models in which the stress-energy is conserved,

∂µT
µν = 0, and T 0i(τ = 0) = 0 for spatial indices due to symmetry. The models differ in

terms of the their assumption about the relationship between T 00 and Txx and T yy. As
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described in Table 5.1, this framework can describe a model based around longitudinal fields

like the CGC, which would predict very strong transverse pressure and negative longitudinal

pressure to ideal hydrodynamics, with complete transverse-longitudinal symmetry in terms

of a single parameter κ given by

κ =
Txx + T yy

2T ττ
=
T rr + r2Tφφ

2T ττ
, (5.11)

where we include the equivalent polar form for use later. The value of κ depends on the

microscopic description of the matter, for instance κ = 1/3 in ideal hydrodynamics while

κ = 1 for longitudinal classical fields. We assume that the stress-energy tensor is traceless

which allows us to determine all of the elements of the shear tensor. We further assume that

κ varies with proper time but not with spatial coordinates, which implies that the important

degrees of freedom do not depend on location though they may depend on time.

The evolution of the system is given by the conservation of the stress-energy tensor and

the system of equations are closed by the value of κ. Since we are primarily interested in

physics at midrapidity and in the early generation of flow, we will consider a one-dimensional

system that varies only in the transverse direction undergoing a boost invariant expansion.

For such a system, only the elements of the stress-energy tensor and T τx will be non-zero

where x is the direction of the density gradient.

For small velocities and neglecting the longitudinal expansion, the Euler equation is exact

and

∂vx

∂t
=
−∂xTxx
T tt + Txx

=
−κ

1 + κ

∂xT
tt

T tt
. (5.12)

Usually this implies that Txx behaves as the effective transverse pressure, and larger values
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of the effective pressure lead to more rapid expansion. The natural conclusion would be that

models with larger values of κ would lead to larger acceleration. The longitudinal expansion

turns out to include a very important correction to this conclusion.

To see this, consider the equation of momentum conservation in polar-Bjorken coordinates

∂τT
τr = −∂rT rr − ∂φTφr − ∂ηT rη −

T τr

τ
− 1

r

(
T rr − r2Tφφ

)
. (5.13)

The final three terms are derived from affine connections but have simple explanations in

Cartesian coordinates. The longitudinal expansion means that vz = z/t and therefore T zx ≈

(z/t)T tx for small z. Furthermore, if the system has rotational invariance, then

Txy(y = 0) ≈ (y/x)(Txx − Tyy) = (y/x)(T rr − r2Tφφ). (5.14)

Initially and to first order in ur for the hydrodynamic case, T rr = r2Tφφ. For the hydrody-

namic case, both are roughly the pressure though there is a second order correction. More

generally, the term is explicitly zero initially and we will assume that this term remains

small.

Similar considerations for energy conservation yield the equations of motion

∂τT
ττ =

−1

τ
(T ττ + τ2T ηη)−

(
∂r +

1

r

)
T rτ , (5.15)

∂τT
τr ≈ −∂rT rr −

T rτ

τ
. (5.16)

where the approximation in Equation 5.16 is ignoring the term from rotational symmetry.

The quantity that is of interest is the ratio T τr/T ττ . In the hydrodynamic picture, this
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quantity scales linearly with collective velocity for small velocities and generally should be

thought of like a normalized momentum density. We can easily calculate the proper time

derivative to be

∂τ

(
T τr

T ττ

)
=

∂τT
τr

T ττ
− T τr∂τT

ττ

(T ττ )2
, (5.17)

∂τ

(
T τr

T ττ

)
≈ −∂rT rr

T ττ
+
τ2T ηηT τr

τ(T ττ )2
, (5.18)

where we ignore second order terms, (T τr/T ττ )2, including the term proportional to ∂rT
rτ .

For small times the change in this ratio is linear, so we can solve for the acceleration

α(r),

T τr

T ττ
= α(r)τ, (5.19)

α(r) =
−∂rT rr

T ττ − τ2T ηη
, (5.20)

where τ2T ηη = T zz is not small even for small proper times. We now employ all of our

assumptions which are that

• the radial and azimuthal pressure remain the same – T rr = r2Tφφ = κ(τ)T ττ ,

• the anisotropy of the stress-energy tensor is the same everywhere – κ(r, τ) = κ(r), and

• a traceless stress-energy tensor – gµνT
µν = 0.

This leads to

α(r) =
−κ∂rT ττ

2(T rr + r2Tφφ)
, (5.21)

α(r) =
−∂rT ττ

2T ττ
. (5.22)
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This means that the development of momentum density at small times,

T τr

T ττ
=
−∂rT ττ

2T ττ
τ, (5.23)

does not depend on κ. Therefore classical, longitudinal fields produce the same amount of

flow as free streaming particles by this measure. This is exactly the opposite conclusion

suggested by the Euler equation, Eq. 5.12, where we anticipated that the development of

flow would be directly proportional to κ. Note that the boost invariant expansion is critical

to this result. Furthermore, the result to first order is exactly twice the acceleration that

one would predict from Eq. 5.12 which one might have anticipated from the tests performed

in Chapter 4.

The choice to measure the pre-equilibrium flow as ratios of the temporal components of

the stress-energy tensor was made with an eye toward thermalization. When the system

undergoes a change in the underlying degrees of freedom, for example in the sudden decay of

the longitudinal fields, conservation of the stress-energy tensor, ∂µT
µν = 0, should remain

valid. As before, we assume that this transition is sudden in proper time, meaning that the

transition hypersurface can be defined by a normal vector, nµ = (1, 0, 0, 0). Integrating the

conservation equation across this hypersurface gives

0 =

∫ τ+δτ

τ−δτ

(
∂τT

τα + ∂iT
iα
)
, (5.24)

0 = Tατ (~r, τ + δτ)− Tατ (~r, τ − δτ),

where the term proportional to a spatial derivative is zero because δτ is small and that term is

not divergent. This result means that, as long as the transition between descriptions is time-
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like, the temporal components of the stress-energy tensor cannot change suddenly. In the

case that the system is suddenly thermalizing into an ideal hydrodynamic or Navier-Stokes

viscous hydrodynamic system, these four components are sufficient to determine all the

remaining components of the stress-energy tensor. The resulting flow profile could be rather

different if one assumed thermalization to Navier-Stokes viscous pressures instead of the ideal

pressures, though all of the early models would still produce similar flow profiles. Also, Israel-

Stewart hydrodynamics does not prescribe the value of the six independent components of

the shear tensor, πµν , and therefore one would need a prescription to determine these values

with possibilities including maintaining all the components of the stress-energy tensor.

If the transition is not time-like in the laboratory frame but is time-like in the comoving

frame or even space-like, different elements of the stress-energy tensor might be conserved

instead. This more general case can be summarized in terms of nµ, the surface normal

fourvector, by

δ(nµT
µν) = 0, (5.25)

and is often called the Rankine-Hugoniot relation when discussed in the context of hydrody-

namic shock fronts. In the case of static surface facing the x-direction, the components Txµ

are conserved from which ideal hydrodynamics can be initiated as in the time-like case.

We are particularly interested in the influence of this flow precursor on the anisotropic

momentum distribution observed in the final state, which is the second-Fourier component

of the azimuthal momentum distribution

v2 ≡ 〈cos 2(φ− φRP)〉 , (5.26)
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where φRP is the azimuthal angle of the reaction plane, which should roughly lie along the

impact parameter though fluctuations may mean that it deviates from this. This requires

running a full hydrodynamic calculation to generate an emission isosurface, generating mil-

lions of particles as emitted from the surface, and following those particles through their

many interactions before one can calculate the final effect. It is much more convenient is to

use a hydrodynamic substitute that can be calculated directly from the stress-energy tensor.

This measure has been proven useful as a proxy for the final observable [65, 69] and is often

called the momentum-space anisotropy or eccentricity by analogy to Eq. 5.10. It is defined

as

εp ≡
∫
dxT (Txx − T yy)∫
dxT (Txx + T yy)

(5.27)

which for free particles would be the same as v2 up to a factor of roughly two [27]. Note

that since the discontinuity to our system is time-like, Txx and T yy are not continuous and

this measure of the expected v2 can change dramatically during thermalization.

5.2.2 Three Scenarios

The previous subsection points out that one should expect the same development of flow

from models with rather different underlying physics. We now consider those models in

more detail to confirm that our findings hold for the range of hydrodynamic starting times

considered possible. To do this, we calculate the predictions of each model and monitor the

development of our flow measure and our anisotropic flow measure.

The models we consider are from the range 1/3 ≤ κ ≤ 1. The smallest value of κ is for

ideal hydrodynamics of a conformal fluid. Since the energy density is singular at τ = 0, it is
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convenient to transform to equations of motion for flow and scaled energy density,

w ≡ T τr

T ττ
, (5.28)

U ≡ T ττ τ4/3,

where the choice of τ4/3 motivated by the expected rate of energy density decay for longitu-

dinal ideal hydrodynamics. The equations of motion for w and U are derived from Equations

5.15 and 5.16 and are solved numerically for a fixed radial mesh.

The largest value of κ is meant to mimic the effects of the CGC by considering a classical,

coherent longitudinal electric field. This is not exactly what one expects from CGC models,

as the fields should be coherent only on length scales corresponding to the saturation scale.

On the other hand, this model provides an extreme example of how strong the effective

transverse pressure could be with T ττ ≈ T rr and the maximum value of κ = 1. For a single

pair of oppositely charged particles created at x = y = 0, the Lienart-Wiechart form for the

vector potential can be used to generate the electric and magnetic fields,

Az(r, τ) = 2q

∫ ∞

0
dτ ′δ(x2 + y2 − (τ − τ ′)2), (5.29)

Ez(r, τ) = 4qδ(r2 − τ2),

Bφ(r, τ) = −Ez(r, τ).
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Then for the charge density ρ(x, y), one can integrate over the charge density

Ez(x, y, τ) = 2

∫
dφ ρ(x− τ cosφ, y − τ sinφ), (5.30)

Bx(x, y, τ) = 2

∫
dφ ρ(x− τ cosφ, y − τ sinφ) sinφ,

By(x, y, τ) = −2

∫
dφ ρ(x− τ cosφ, y − τ sinφ) cosφ.

One can then calculate elements of the electromagnetic stress-energy tensor from

T ττ =
1

8π

[
E2 +B2

]
, (5.31)

T τi =
1

4π

(
~E × ~B

)i
, (5.32)

T ij =
1

4π

(
EiEj +BiBj − δij

2

[
E2 +B2

])
. (5.33)

Since the region between the nuclei is charge-free, the evolution of the fields can be

calculated by the conservation of the stress-energy tensor. The initial state of the charge

density was chosen such that the resulting energy density profile would be the same as for

other models. For the Gaussian profiles that we will consider in the next section, this means

increasing the charge density radius by a factor of
√

2.

If instead the fields are generated by incoherent sources, that is arbitrarily oriented

charged pairs receding from one another at the speed of light, Equation 5.29 still describes

the fields due to each source. The arbitrary orientation means that the fields from each

source will be arbitrarily oriented as well, but the elements of the stress-energy tensor are

all the same because the energy density always moves outward from each pair. In this case

the longitudinal electric field and the azimuthal magnetic field have the same strength which

gives T zz = 0 and κ = 1/2. This model thus behaves exactly the same as massless particles
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free-streaming in the transverse plane. This is not surprising as both models are of point

sources emitting outgoing transverse waves, and the distinction between an electromagnetic

pulse and partons is unimportant in the limit that the partons are massless.

These two electromagnetic models are meant in some sense as thought experiments but

should bound a more realistic theory. The limit that the sources are point particles will

break down at these length scales, which are roughly the length and time scales where the

uncertainty principle is relevant. In low momentum QCD this coherence length is generally

called the saturation scale and is approximated by λ ∼ 1/E where E is the typical energy of

a parton. For time and length scales that are smaller than λ, the stress-energy tensor should

be like the coherent limit of longitudinal classical fields, while at longer scales the incoherent

limit should apply. This does not affect the result in Equation 5.23 as κ is allowed to vary

with time as long as it does not depend on location which is just what one would expect

from these considerations.

5.2.3 Model Results

We initialize all three models – ideal hydrodynamics, incoherent field, and coherent fields –

with Guassian profiles for the effective energy density

T ττ (x, y) ∝ exp

{
− x2

2R2
x
− y2

2R2
y

}
. (5.34)

Our focus will be the effect on the radial flow that would be present upon initializing an

ideal hydrodynamics model with the equation of state of a massless gas – P = ε/3. Recall

that the time-like transition means that time-like elements of the stress-energy tensor are

conserved – T τµ. This means that one can calculate the collective flow observed after the
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transition, denoted u′r, just from the ratio T τr/T ττ :

T ττ =
ε

3

(
4γ′2 − 1

)
, T τr =

4ε

3
γ′u′r. (5.35)

For the model that assumes ideal hydrodynamic evolution for the whole time, there is no

change in the velocity and ur = u′r. In other models this will not be the case. We in-

vestigate transitions at a few times that encompass the assumed range of starting times,

τ = {0.3, 0.6, 1.0} fm/c, and we take the radii to be equal Rx = Ry = 3.0 fm.

For Gaussian profiles and to first order in time, Equation 5.23 gives the evolution of the

flow

T τr

T ττ
≈ rτ

2R2
, (5.36)

which using Equation 5.35 can be used to calculate the velocity before and after transition

u′r ≈
3rτ

8R2
, (5.37)

which are accurate to first order in time only but are useful to benchmark our expectations.

Figure 5.5 shows the results of all three models in terms of the velocity observed with

the model itself (bottom panel), the conserved flow conserved by the transition to hydro-

dynamics (middle panel), and the flow observed within the hydrodynamic model following

the transition (top panel). The results for the velocity observed within each model show

considerably different results depending on the effective transverse pressure of that model.

Somewhat counterintuitively, the ideal hydrodynamic model predicts the largest amount of

apparent pre-equilibrium collective velocity despite having the smallest pressure, κ = 1/3,

while the coherent field model, κ = 1, predicts the largest value. However, even for times
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FIG. 1: (color online) Lower Panel: The collective velocity profile is displayed for three models at three different times,
0.3, 0.6 and 1.0 fm/c. Ideal hydrodynamics (green triangles) has the greatest transverse radial collective flow even though
it had the smallest transverse pressure, Txx, of all three models. The evolution of a non-interacting coherent electric field
(blue squares) had the highest pressure, but the smallest flow. Calculations based on electromagnetic fields arising from
incoherent currents (red circles) would be the same as for non-interacting partons.
Middle Panel: The flow ratio T0x/T00 is nearly universal for all three models. The symbols are the same as in the lower
panel. The solid lines represent the linear approximation, ≈ τ , given in Eq. (28).
Upper Panel: The collective velocity assuming that the matter suddenly behaves as if it were ideal hydrodynamics at
the prescribed time. Since this ratio depends on T0x/T00, it is also nearly universal.

surprising is that the models with higher values of κ lead to lower velocities. This is opposite to the trend one
would obtain if there were no longitudinal flow and Eq. (4) would be have been applicable.

Elliptic flow was evaluated by considering emission from an initial energy profile characterized by Rx = 2,
and Ry = 3. As a measure of elliptic flow, εp, defined in Eq. (15), is calculated for the two models based
on coherent and incoherent fields. Results for the hydrodynamic model are skipped because that model was
predicated on radial symmetry, although calculations have been done previously for ideal hydrodynamics with
and without transverse thermalization [19]. Assuming a sudden transformation to ideal hydrodynamics at τ , ε′

p

was also calculated using the same method to calculate u′
x used for the radial case above. Figure 2 shows both

εp and ε′
p as a function of τ for both models and compares them to the small-τ expansion, εp ∼ τ2. The small-τ

limit is found by calculating ux and uy for small times from Eq. (28) for the hydrodynamic model, κ = 1/3.
The collective velocities are then

u(hydro)
x ≈ 3

4

x

τ
R2

x, u(hydro)
y ≈ 3

4

y

τ
R2

y. (29)

Using Eq. (20) for the stress-energy tensor, one can then calculate the elliptic anisotropy with some straight-
forward integrals of Gaussians,

ε(hydro)
p ≈ 9τ2

32

(
1

R2
x

− 1

R2
y

)
. (30)

Figure 5.5: Bottom panel: The velocity of the frame in which T 0x = 0 for coherent elec-
tromagnetic fields (blue squares), for incoherent fields or a non-interacting gas (red circles),
and for an ideal liquid (green triangles) shown at three time steps, τ = {0.3, 0.6, 1.0} fm/c.
The models predict significantly different amounts of radial flow, though in the opposite
hierarchy suggested by the transverse pressure due to the effects of the Bjorken expansion.
This quantity may change during thermalization.
Middle Panel: The ratio of T τr/T ττ at the same times as the bottom panel, a measure
of the flow developed in the early stage that will be maintained upon transition to ideal
hydrodynamics. All the models predict the same evolution of this quantity up to 1 fm/c,
which is roughly the domain of the model, and all are fairly well described by the linear
approximation.
Top Panel: The collective velocity that would be apparent following transition to ideal hy-
drodynamics at the same three times as a function of radial position. Confirms that all of
the models make the same prediction for the initialization of hydrodynamics.
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FIG. 2: (color online) Lower Panel: The elliptic anisotropy εp as defined by Eq. (15) for the case of coherent non-
interacting initially-longitudinal electric fields (blue squares) and for fields driven by incoherent currents (red circles).
The incoherent case yields εp is zero, exactly as one would obtain with non-interacting particles. The solid line shows
the lowest-order (in τ ) quadratic contribution for ideal hydrodynamics.
Upper Panel: Assuming that the matter suddenly behaves as if it were ideal hydrodynamics at time τ , ε′

p represents the
anisotropy of the altered stress-energy tensor. The result is close to the quadratic form approximating the behavior of
ideal hydrodynamics.

As expected, the two models agree with this simple quadratic form for ε′
p, but differ very substantially for εp.

In fact, for the model with incoherent fields, εp remains zero for all times. This follows from the fact that
each point source contributes incoherently to the stress-energy tensor, and each point source has zero elliptic
anisotropy.

Once a system has decoupled, the anisotropy εp can be equated with the angular anisotropy v2,

〈v2〉 ∼ 1

2
εp, (31)

where the average 〈· · · 〉 refer to an average over particles in a central rapidity bin weighted by p2
t /mt. Even

though the values of εp are <∼ 10% of the v2 observed experimentally, the contribution from the first fm/c
is substantial. Since εp grows quadratically in time, it is important to generate a rate of change, dεp/dτ , as
quickly as possible. The first fm/c is especially important in elliptic flow analyses for two reasons. First, one is
considering non-central collisions which are smaller in overall volume and thus of shorter duration, and second,
elliptic flow saturates earlier than radial flow [19].

IV. SUMMARY

The existence of universal flow patterns for the first <∼ 1.0 fm/c of a relativistic heavy ion collision has a pro-
found impact on the modeling and interpretation of heavy ion collisions. It eliminates many of the uncertainties
plaguing the pre-thermalized stage. For example, if one were to use viscous hydrodynamics beginning at τ = 1
fm/c, the initial profile for T0i/T00 would be determined by the universal conditions shown here. Given that
the contribution to the final-state flow from the first fm/c could be of the order of 10-20%, it makes detailed
modeling of the pre-thermalized stage unnecessary if one is only interested in the development of the evolution
of the stress-energy tensor at later times.

This does not, by any means, make theoretical investigations of the pre-thermalized stage irrelevant. Uncer-
tainties in the shape of the initial profile would remain, including questions about the magnitude of the initial
energy density and the microscopic structure. Even though two pictures result in the same flow fields, they
might have very different microscopic structure. Differing densities of quarks, gluons and kinetic temperatures

Figure 5.6: (Color in electronic version) Bottom Panel shows the momentum space anisotropy
apparent within each model. Free-streaming particles (red circles) produce no apparent
anisotropic flow while coherent fields (blue squares) produce much less than the analytic
result of Eq. 5.39 which is accurate to first order in time for ideal hydrodynamics (black
line).
Top Panel shows the momentum space anisotropy observed in an ideal hydrodynamic model
if the early flow model thermalized suddenly at that time. All of the models produce the same
elliptic flow in the hydrodynamic source at very early times though they differ slightly by
τ = 1.0 fm/c. This helps to explain why the matter created at RHIC appears to thermalize
instantly.

up to τ ≈ 1.0 fm/c, the ratio T τr/T ττ is quite well approximated by the linear estimate in

Equation 5.37, shown as a solid line, and all the models track with one another even more

closely. Finally, we include a demonstration that this produces the same flow within the hy-

drodynamic model though this is guaranteed by the temporal elements of the stress-energy

tensor being the same.

While the development of radial flow is somewhat important in determining the average

transverse momentum and can have some effect on the collision time, the elliptic flow is of
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greater concern. This is for two reasons, early times affect elliptic flow more dramatically and

the discriminating power of elliptic flow is expected to be larger for interesting theoretical

parameters like the shear viscosity. Since anisotropic flow is the result of eccentricity of

the initial density, we alter the initial profile by change the radius in the y-direction to be

Ry = 2 fm instead of 3 fm. We then run the same calculation as above for the coherent

and incoherent fields in the transverse plane. Development of anisotropic flow is calculated

in terms of the difference of stress-energy tensor elements as defined by εp in Equation 5.27.

Figure 5.6 shows the apparent anisotropic flow within the model itself (bottom panel) and

contrasts that with the anisotropic flow that would be apparent in the hydrodynamic model

if it were initialized at that time. Models based on free-streaming particles or incoherent

fields (red circles) do not generate any anisotropic flow at all, while coherent fields generate

considerably less than an estimate of the flow generated by ideal hydrodynamics. And yet,

whenever the system undergoes thermalization, the conservation of the time-like components

of the stress-energy tensor mean that flow immediately appears regardless of the previous

description.

For short times, the flow generated in either direction was given by Equation 5.37 to be

ux ≈
3

8

xτ

R2
x
, uy ≈

3

8

yτ

R2
y
. (5.38)

One can then calculate the momentum anisotropy directly using a few Gaussian integrals to

be

εp ≈
9τ2

32

(
1

R2
x
− 1

R2
y

)
(5.39)

which is plotted as a solid line in Figure 5.6. For short times, this approximation describes
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all of the models well, though it begins to overestimate the effect by 1.0 fm/c due to the

asymmetric expansion of the source reducing the eccentricity of the transverse energy density.

The effects of this on final elliptic flow will be discussed at greater length below, but

we emphasize that the argument’s main thrust is that a reasonably large class of models

all produce the same predicted input for ideal hydrodynamics in terms of collective flow.

Non-zero flow at the onset of hydrodynamics explains why early hydrodynamics models

overestimated the longitudinal size of the source, when they used a reasonable time, ∼ 1.0

fm/c, for the onset of hydrodynamic behavior. Including this pre-equilibrium flow causes the

system to dissipate more quickly and decreases the longitudinal size. Also of note is that our

conclusion is independent of whether or not the model for early times appears to contribute to

anisotropic flow, instead it only depends on the transition to ideal hydrodynamics. We expect

that this conclusion would remain true for a transition to Navier-Stokes hydrodynamics since

the same ratio, T 0x/T 00 is sufficient to determine the collective velocity in that case as well.

5.3 Initial Shear Corrections

The remaining six variables to be determined for initializing a viscous hydrodynamics code

are components of the shear tensor. In Israel-Stewart hydrodynamics, each of these moments

is an independent variable that cannot be determined from other hydrodynamic information

such as the energy density and velocity gradients. If there were an underlying gas descrip-

tion prior to the time of thermalization, one could calculate the full stress-energy tensor from

moments of the momentum distribution. Lacking that, if the system were very near to equi-

librium, one might assume that the Navier-Stokes equation would give a good approximation

to the shear elements. This turns out to be difficult for reasons discussed above – namely, the
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corrections do not get small as rapidly as the pressure. The shear viscosity is proportional

to the entropy density and thus diverge slowly, like ε−1/4. This means that for any initial

condition with a longitudinal velocity gradient there will be some small temperature below

which corrections to the pressure are larger than the pressure.

This can happen even for moderately small viscosities (η/s ≈ 0.16) at relevant temper-

atures (T ≈ 100 MeV), where the value of |πzz| approaches not just the pressure but the

energy density. If ε + P + πzz = 0, the conservation of longitudinal momentum equation is

singular and the resulting correction to the longitudinal velocity diverges. For Navier-Stokes

conditions this is true when

0 = (ε+ P )

[
1− 4η

3Tbsτ

]
, Tb =

4η

3τs
, (5.40)

where Tb is the temperature at which the hydrodynamic equations of motion can no longer

be solved. Since η/s is often taken to be a constant, any choice of T and τ will eventually

have this divergence issue. The problem is even worse if the shear viscosity to entropy density

ratio rises rapidly in the gas phase as one would expect when moving away from a phase

transition.

Extreme viscous corrections are not always a dynamic problem in the Israel-Stewart

framework: if the system does not begin with excessively large corrections they will not

develop. The relaxation time is proportional to shear viscosity, meaning that in regions

where large corrections would be expected in the Navier-Stokes theory, the Israel-Stewart

theory allows the system to approach such large corrections only slowly. Of course, this also

means that if large corrections exist in the system at the onset of hydrodynamics they will

remain large and if the density falls faster in the tails due to the longitudinal expansion
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than it rises due to transverse flow the problem will worsen. Regardless of these details,

while the picture that Israel-Stewart theory is a relaxation toward the Navier-Stokes theory

is somewhat näıve, it does tend to prevent aberrant behavior outside of the freezeout surface

for not unphysical initial conditions.

Previous studies considering the potentially large corrections in the tails have taken a

variety of tacks. A popular choice is to initialize the shear tensor to zero. This reduces the

overall effect of shear viscosity on the fluid and thus in comparing produced anisotropic flow

to data one finds an upper bound on the shear viscosity at the expense of the attempting to

determine the actual value. Another choice is to treat the problem as one of regularization

and therefore treat the region outside of the freezeout surface differently, for instance the

comparison code used in Chapter 4 applies a position dependent suppression of the shear

viscosity. Such an approach defies the natural structure of the code and might need to be

adjusted for each parameter set which would become especially problematic when exploring

systems at different impact parameters.

Another approach that would give proper reduction of the corrections in the tails would

be to allow the shear viscosity to scale with the energy density below some temperature.

This choice reduces corrections in the tails and prevents dynamical issues that occasionally

arise for cases with large shear viscosity. For the boost invariant case, allowing the shear

viscosity to scale with the energy density instead of the entropy density did not affect model

predictions as long as this rescaling temperature was more than 20 MeV less than the freeze-

out temperature. This was expected since the output from the hydrodynamic module is the

freezeout surface itself and not the entire evolution, and one expects the motion of matter

from inside to outside to be more important than the reverse.
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In addition to allowing the shear viscosity to decrease at low temperatures, we also scale

the initial shear tensor to the pressure everywhere. This measure helps to keep corrections

sane everywhere but also allows for the possibility that the system is too far from equilibrium

at the beginning of the calculation for Navier-Stokes to be a good description. For instance,

if the system were described by the coherent fields described above and the longitudinal

direction were roughly pressure-free at the beginning of the evolution, this could be mod-

eled. The coefficient scaling the initial corrections to the pressure is introduced as an input

parameter to the model and its influence will be investigated in the next chapter.
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Chapter 6

Results and Conclusions

6.1 Longitudinal Flow Results

The unique feature of the code discussed here is the inclusion of both viscosity and non-trivial

longitudinal expansion. Generally, viscous hydrodynamic codes were written assuming a

boost invariant expansion making the non-trivial evolution take place in only two dimensions

though the system does expand longitudinally. We begin by investigating the approximation

that the features of the expansion away from mid-rapidity are not important. To do this

we choose a typical set of initial conditions and compare the evolution of hydrodynamic

quantities at midrapidity with the full expansion to the same conditions under the assumption

of boost invariance.

We begin the hydrodynamic evolution at τ0 = 0.8 fm/c. The initial transverse energy

density distribution is taken from the Glauber model with a mixture of 85% wounded nu-

cleon scaling and 15% binary collision scaling as described in Chapter 5 with the initial

energy density for the central collision, b = 2.21 fm, as ε(0) ≈ 19.5 GeV/fm3, to reproduce

119



pion multiplicities and scaling respectively for
√
sNN = 200 GeV Au+Au collisions. In the

longitudinal dimension, we choose a Gaussian with scale ση = 1.4 units in spatial rapidity;

that is, ε(~r) = ε(x, y) ·exp(−η2
s/2ση). While this is in contrast to other models that choose a

long flat region of several units of rapidity with steep half-Gaussian tails [66, 67], a Gaussian

profile is motivated by the experimental data which shows little deviation from this profile

over a wide range of beam energies [5]. An improvement to the model would account for the

angular momentum of the hot region momentum due to the non-zero impact parameter and

for the breaking of longitudinal symmetry away from the symmetry axis between the nuclei.

These improvements would be required to model directed flow away from midrapidity for

any finite impact parameter, but for simplicity both were ignored in these tests. The initial

flow was taken from the universal flow model discussed in the previous chapter, but only as

half of the result predicted by Equation 5.23. In the longitudinal direciton, we assume that

the matter is not moving collectively relative to the boost invariant expansion. And finally,

we take the initial longitudinal pressure correction to be half the pressure, π̃zz = P/2, and

the transverse components to be equal to each other and to half the longitudinal value so

that the shear tensor remains traceless. All off-diagonal elements are taken to be zero in the

frame of the matter. The shear viscosity is taken to be η/s = 0.16 for the hydrodynamic

portion and to scale with the energy density below temperatures of 100 MeV. Finally, a

recent lattice equation of state [6] was used for the hot region and the equation of state was

forced to match an equilibrated hadron resonance gas below T=150 MeV via the procedure

discussed in Chapter 3.

The integration region was made up of fixed cells in configuration space with grid densities

of dx = dy = dηs = 0.15[fm], and a maximum proper time step of dτ = 0.05 fm/c using
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Figure 6.1: Comparison of the energy density along the x- and y-axes at midrapidity at
τ = 5.52 fm/c from a boost invariant and full 3d hydrodynamic treatment. While the
central energy density falls more rapidly when the longitudinal expansion is included due to
the increase in the longitudinal velocity gradient, which can be seen by observing that both
3d lines (red full and black dotted) are systematically lower than their 2d counterparts (blue
dot-dashed and green dashed). The difference diminishes in the tails of the distribution but
is roughly 5-10% at the center of the fireball.

the methods described in Section 4.1.5. Since the system is reflection symmetric in every

spatial dimension, only one octant was integrated with boundary conditions that enforce

symmetries across the boundaries. Cells with temperatures below 30 MeV were culled and

the hydrodynamic module was run until all cells in the integration region passed below T=150

MeV. For comparison, the same conditions were also run with boost invariant conditions.

The simplest way to look for changes due to the nontrivial longitudinal expansion is to

look at the values of the hydrodynamic fields along the symmetry axes of the system. Figure

6.1 shows the energy density along the transverse axes at midrapidity at a time after the

system has gone through a bit over half of its evolution. We find that the energy density

falls more rapidly in the center of the system in the 3d case, while the tails in the transverse

direction are relatively unaffected. At the center of the fireball where the effect is the largest,
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Figure 6.2: The longitudinal velocity gradient multiplied by the proper time with the trivial
boost invariant portion (1/τ) removed so that boost invariant solutions would be exactly zero.
The increase in the expansion rate is taken at the center of the fireball for impact parameters
corresponding to centralities 0-5%, 10-20%, and 20-30% respectively. The behavior of the
increase gradient in the velocity gradient appears to be independent of impact parameter at
early times and follows a fairly characteristic behavior as the system matures. This explains
the faster decrease in the energy density observed in Figure 6.1.
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the difference is less than 10%. We expect the difference to continue to grow as the expansion

progresses, and therefore the source lifetime might be decreased by up to 20% which we will

investigate below.

This more rapid decrease of energy density comes from a more rapid expansion in the

longitudinal direction when the non-trivial expansion is included due to the density gradient

in spatial rapidity. The increased expansion is demonstrated well by Figure 6.2 which shows

the longitudinal velocity gradient at the center of the fireball with the effects of the boost

invariant expansion removed. For a boost invariant expansion, this would be ∂zu
z = 1/τ .

Therefore, in the boost invariant scenario, this measure would be exactly zero. For the

scenario with non-trivial longitudinal expansion, this measure is positive because the expan-

sion accelerates due to the presence of longitudinal density gradients. The Gaussian shape

produces linearly increasing longitudinal velocity as a function of proper time for small

proper times near midrapidity that depends only on the longitudinal Gaussian radius. This

is demonstrated by the centrality independence of the longitudinal expansion rate at early

times. The longitudinal expansion is then slowed by viscosity, which tries to equalize the

much more rapid longitudinal expansion with the burgeoning transverse expansion, and by

the flattening of the density distribution due to the non-trivial longitudinal expansion itself.

The increasing of the expansion rate lasts longer for central collisions but saturates in the

same manner around a 5% increase in the expansion rate compared to the boost invariant

case for the latter half of the evolution. Since the longitudinal expansion rate is increased

by about the same amount as the energy density at the center of the fireball is decreased

compared to the boost invariant result, it would seem that the more rapid decrease in en-

ergy density can be attributed entirely to the non-trivial expansion and a more complicated
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Figure 6.3: The transverse velocity along the x- and y-axes at midrapidity for hydrodynamic
simulations with and without boost invariance at τ = 5.52 fm/c. The transverse collective
velocity is altered by less than 1% at midrapidity by the presence of a non-trivial boost
invariant expansion. This suggests that elliptic flow observables at midrapidity do not re-
quire a full treatment of the longitudinal direction unless other factors on the basis of the
hydrodynamic evolution itself.

explanation need not be sought.

If the energy density is affected in the center of the fireball at the 10% level, one might

be concerned that the transverse collective velocity might be affected in the same way. Such

a result would be important for flow observables and might propagate to the parameter ex-

traction based on these results. Figure 6.3 shows that this is not the case as the transverse

collective velocity at the same time is affected by less than 1%. Apparently the transverse

collective velocity is unaffected by the flatter distribution in the core, and any other effects

from the longitudinal expansion are unimportant to the description of the system at midra-

pidity. This suggests that (2+1)d hydrodynamic results are trustworthy for midrapidity

flow results, unless secondary influences like source lifetime or twisting provide unexpected

corrections.
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Figure 6.4: The position of the freezeout surface along the x-axis as a function of the proper
time for collisions at three centralities. In each case the full integration shows the surface
falling apart sooner but with very similar structure to the boost invariant case. This indicates
that boost invariant treatments might overestimate longitudinal source lengths by 5% but
dramatic change to the results is unlikely.

Finally, we investigate the motion of the freezeout surface at midrapidity. In the hybrid

model that we will investigate later in this chapter, the location of the freezeout surface and

the values of hydrodynamical fields there are the output of the hydrodynamical module to the

hadronic cascade. Figure 6.4 shows exactly what one would have anticipated from Figure 6.1

– the general structure of the freezeout surface is not drastically altered. Rather the system

dissipates sooner but without significantly altering the character of the motion. Given that

the collective velocity and the motion of the surface are not significantly altered, it is difficult

to imagine that theoretical conclusions regarding observables like the the anisotropic flow

of the system will be significantly affected at midrapidity by including the longitudinal

dynamics more completely.

However, we do expect the longitudinal source sizes to decrease if the system cools more
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rapidly at the 5-10% level. This is due to the relationship of the longitudinal source size to

the duration of the collision and the Bjorken expansion. The Bjorken expansion means that

in the center of momentum frame, the longitudinal collective velocity grows proportional to

time. Since HBT is sensitive to the ratio of the collective velocity to the thermal velocity,

there is a direct relationship between the duration of the collision and the longitudinal source

size measured by HBT. Therefore more rapid decay of the thermal source will result in a

smaller longitudinal radius. The overestimation of the longitudinal source size was a major

issue in early hydrodynamic modeling [70], though pre-equilibrium flow also plays a role in

the resolution of the so-called HBT puzzle [23].

There remains the possibility of more complicated model response to parameter changes

but there is no evidence of this in these hydrodynamic results. One possible avenue for

investigation would be to use midrapidity freezeout surfaces even from the full calculation

and compare to boost invariant hydrodynamic calculations. Since there is little evidence that

there would be any effect from this, we instead abstain from drawing further conclusions until

we have a more complete treatment of the dynamics away from midrapidity including the

non-zero chemical potential and angular momentum of the hot region. Both of these effects

are good candidates for future work with this code.

6.2 Boost Invariant Results

We turn our attention to the boost invariant case and investigate the predictions of the

whole model where we can make direct comparisons to the experimental data. This entails

producing many particles and looking at quantities averaged over a large number of collisions.

While experiment observes particles at a very wide range of momenta, our goal is only to
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study the behavior of the many lower mass particles produced at low momentum that come

from the thermal source and to ignore the effects of hard processes that produce the remaining

high momentum and large mass particles. Our interest is in determining constraints on the

structure of the quark matter described by the hydrodynamic phase. For instance, it would

be of great interest to determine the shear viscosity of the quark matter and whether the

equation of state calculated by the lattice is supported or constrained by the experimental

data. In addition, improvements to the hydrodynamics module that would allow the inclusion

of known effects, such as the twisting of the source, have the potential to spoil the agreement

with experimental data.

The experimental data that we will consider here are the distribution of low momentum,

low mass particles produced in central and mid-central collisions of gold nuclei at center

of mass energy
√
sNN = 200 GeV. We consider data only at midrapidity where effects of

non-zero baryon number are expected to be small and the boost invariant code can make pre-

dictions. Specifically, we look at the spectrum of charged pions, kaons, and protons produced

in the 0-5%, 10-20%, and 20-30% most central collisions which correspond to average impact

parameters of 2.21, 5.70 and 7.37 fm respectively [9]. Looking at multiple centralities allows

one to test the scaling of total particle multiplicity predicted by the various initial condition

models. Anisotropic flow in the most central collisions is dominated by fluctuations that are

not present in the initial conditions that we produce. Therefore, only multiplicity data is

used the most central bin: the pion multiplicity sets the energy scale, while kaon and proton

might be useful for constraining other parameters. Incorrect eccentricity in the most central

bin might be overcome by reorienting the reaction plane in a Monte Carlo simulation to pro-

duce a realistic estimate of the initial eccentricity for a central event. This results in more
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turbulent initial conditions with steeper tails that can cause instability in the simulation.

6.2.1 Initial State Uncertainty

As mentioned in the previous chapter, there is significant uncertainty in the structure of

the initial state of the hydrodynamic phase. This uncertainty is not limited to the shape

of the hot region but also the collective velocity and the six independent elements of the

shear tensor. While other groups have investigated effects of varying the shape of the source

and the shear tensor within reasonable theoretical bounds, we further include the effect of

including initial flow on spectrum and flow observables.

We first consider a set of model runs that were run at some interesting corners of the

theoretically allowed parameter space. For this, the full model was run with 27 different

parameter settings coming from all possible combinations of three settings for the three

initial energy density models, three settings for the initial flow, and three settings for the

initial longitudinal pressure. The models for the energy density are a Glauber mixture with

85% participant scaling which we will refer to as the default Glauber model, the saturation

model described in Equation 5.5, and a smooth CGC model provided by Drescher et al.

[8] referred to in Chapter 6 as KLN which predicts the entropy density instead of energy

density and must be converted through the equation of state. The initial flow settings were

the traditional setting of zero initial flow, half of the initial flow predicted by Equation 5.23,

and the full prediction of the same. The initial value of the shear tensor is taken to be the

set π̃zz = −π̃xx/2 = −π̃yy/2 = {0, P/2, P} respectively.

The normalization for the total size and energy of the hot region is a free parameter in all

of the initial condition models that we consider. For this study we wished to separate effects
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Figure 6.5: Pion spectra at midrapidity for the most central (0-5%) bin of Au+Au collisions
at
√
s = 200 GeV as a function of transverse momentum. The (black) line with squares is

minimum bias data from the PHENIX experiment [9] corrected for experimental acceptances
and efficiencies. The colored symbols are for three model runs with different initial condi-
tions for the energy density where all three models have been tuned to reproduce the total
number of pions between pT = 200 MeV and 1 GeV. All of the models are easily capable of
reproducing the total multiplicity and there is not much variation in the slope meaning that
this observable is not likely to have significant resolving power.
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due to the normalization from those due to the varied parameters. This requires running

the hydrodynamic evolution with a guess for the normalization, running the cascade module

from particle generation until collisions cease, and then tallying particles within the various

transverse momentum bins in consideration. This process was automated by a short Python

script that was used to determine the normalization for each set of initial conditions by

comparing the number of low momentum pions produced to that measured by the PHENIX

experiment between pT = 200 MeV and 1 GeV [9]. Figure 6.5 shows the low momentum pion

spectrum compared to model runs with each flavor of initial energy shape. There is almost no

variation between the model runs once they have been tuned to reproduce the normalization,

and all of the parameter settings produce spectra that are too flat or overestimate the average

transverse momentum. Some of this discrepancy can be attributed to the choice of maximum

initial flow, but generally we have found that models that reproduce the normalization

somewhat overestimate the average transverse momentum. This appearance of the effect is

exaggerated in the figure by the inclusion of higher momentum particles. Bose corrections

in the cascade or increasing the freezeout temperature may help soften the spectra, but the

overestimation of the transverse momentum is 5-10% in these runs. This is roughly the same

as the level of variation between the experiments [2].

If we investigate the same quantity for larger impact parameters, we unfortunately find

that none scale correctly. Figure 6.6 shows the pion multiplicity divided by the experimental

pion multiplicity as a function of impact parameter. The default Glauber model most closely

tracks with the data, though it is worth noting that the fraction of participant and collisional

scaling is tuned to reproduce this data. However, the other two models under-predict the

experimental scaling by 10-15% in both the 10-20% and the 20-30% centrality bins which is
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Figure 6.6: Number of pions as a fraction of the number measured in the PHENIX experiment
in the low momentum window pT = 200 MeV and 1 GeV displayed as a function of the
impact parameters corresponding to the 0-5%, 10-20%, and 20-30% centrality bins. The
Glauber model with 85% participant scaling most accurately describes the experimental
scaling with all runs within 6% of the correct multiplicity though a clear trend to under
predict the multiplicity at larger impact parameters. Both the Glauber saturation and the
fKLN models under-predict the number of pions by roughly 10% in both of the mid-central
bins. Allowing the scattered gluon density to be proportional to the entropy density instead
of the energy density would help to counteract this issue.
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concerning. This is an unexpected result based on a naive interpretation of Figure 5.2, which

showed that the integrated density of the Glauber mixture and the saturating Glauber have

roughly the same scaling with impact parameter. In principle, the deviation of the screening

model and the KLN model might be addressed by allowing the scattering densities to scale

with the entropy density but it is our opinion that energy scaling is more justified. Notice

also that the initial condition model has by far the largest effect on the multiplicity scaling

as one would expect, although for the default Glauber model the variation within model runs

due to initial flow and anisotropy can be as large as 5%. We note that it is possible that

the multiplicity scaling errors observed in Figure 6.6 may affect the flow results, for instance

by reducing the lifetime of the hot region, but our assumption is that it will not affect the

model response to other parameter changes. Furthermore, later explorations of the larger

parameter space will help illuminate this possibility.

We now turn to our main focus which is on the influence of modeling choices in the initial

state on the measured anisotropic flow (v2), specifically whether the initial velocity or the

initial shear pressure in the system strongly affect conclusions about the value of the shear

viscosity near the critical temperature. As noted above, flow anisotropy in central collisions

is expected to be dominated by fluctuations not present in our initial conditions and therefore

we expect to under-predict the data in central collisions. Figure 6.7 shows the anisotropic flow

as a function of transverse momentum for the same set of model runs shown in Figure 6.5 with

a shear viscosity near to what other groups have found, η/s = 0.16. Statistical fluctuations

are still present in the model output but the integrated v2 was found to fluctuate by less

than one percent of the signal for a set of test runs in which the statistics were doubled.

The default Glauber comes the closest to describing the data, again a conclusion that we
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Figure 6.7: Anisotropic flow for pions as measured by the PHENIX collaboration (black
squares and line) for events in the 20-30% centrality bin as compared to model calculations
with differing models for the initial energy eccentricity. For this choice of the shear viscos-
ity, both of the saturation models significantly overpredict the experimental data while the
default Glauber model describes the data.
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have in common with some studies [71] though not all [27], but our model does show a

different scaling with transverse momentum than the data. This has been observed in other

simulations with significant shear viscosity and seems to come from the viscous corrections to

the phase space density at freezeout [72, 73]. There is some ambiguity in this area, discussed

in the previous chapter, and one would generally expect the phase space distortion due to

the viscous corrections to the stress-energy tensor to be smaller for pions than for protons

since the relaxation time for pions should be shorter once the species move independent of

one another. This is not included in the freezeout algorithm presently but may explain this

deviation. Also, the saturation models that predict larger source eccentricities also produce

much larger elliptic flow, and in this case they over-predict the data by a factor of two.

The same calculations were run with the shear viscosity doubled and the analogous plot

is Figure 6.8. The default Glauber model now significantly under-predicts the experimental

data especially at lower momentum, while the saturation models are in much closer agreement

with the data. Also note that the range in which the elliptic flow is consistent with zero

now extends up to 300 MeV for the default Glauber initial conditions, and also that the

saturation models appear to develop this same feature at low momentum. Together with

Figure 6.7, we find that uncertainty in the initial energy density profile contributes at least

a factor of two in the uncertainty of the shear viscosity based solely on pion elliptic flow

observables. This means that shear viscosity of at least 4-5 times the proposed conformal

limit [74] may be consistent with this data.

As noted above, the energy density is only one of the ten hydrodynamic variables that

need to be set in the initial condition. Six of the other variables are the viscous corrections

to the stress energy tensor. Boost invariance and the absence of bulk viscosity constrain four
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Figure 6.8: Anisotropic flow for pions as measured by the PHENIX collaboration (black
squares and line) for events in the 20-30% centrality bin as compared to model calculations
with differing models for the initial energy eccentricity. Compared to Figure 6.7 the shear
viscosity assumed in the fluid stage of the model is doubled. This leads to the saturation
models giving a more accurate prediction while the default Glauber model now significantly
under predicts the data. This suggests that the shear viscosity will be difficult to determine
independently from the initial energy eccentricity without additional experimental data.
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Figure 6.9: The transverse momentum weighted, integrated anisotropic flow for the 20-30%
centrality bin from the set of model runs described in the text. The runs are separated
first by the source eccentricity due to the model choice for the initial state along the x-axis,
where the default Glauber model predicts the smallest initial eccentricity followed by the
KLN model and the screened Glauber model. The model runs are then colored by the initial
anisotropy of the shear tensor with the largest initial anisotropy as downward-pointing (red)
triangles, no initial anisotropy as upward-pointing (black) trianges, and halfway in between
as (blue) circles. If initial anisotropy were an important factor in determining the elliptic
flow, the symbols of one color would be systematically above or below the others. However,
ordering appears random and not at all systematic and therefore the initial value of the
shear tensor appears to have no effect on the final anisotropic flow. Also of interest is that
the initial eccentricity and elliptic flow do not scale with each other when moving between
initial energy density models: the CGC model and Glauber screening model have initial
eccentricities that differ by 20% but predict the same elliptic flow to within a few percent.
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of these variables, and the further assumption that in the frame of the matter the transverse

coordinates should be equivalent means that there is only one shear correction to be set. It

is convenient to set the longitudinal pressure correction. This is allowed to vary from zero to

the pressure, 0 < πzz < P , where zero would coincide with complete local equilibration and

P would coincide with a description in terms of free streaming particles. This should cover

the majority of the parameter space for this initialization for a fixed thermalization time, as

corrections larger than the pressure are unlikely to be well modeled by even the second-order

viscous equations of motion used. Figure 6.9 shows all of the model runs performed with

the smaller viscosity value colored in the figure according to the initial longitudinal pressure

correction. The variance within the model output appears to have no connection to the

initial anisotropy, for instance, the output for runs with no initial longitudinal pressure are

not systematically above or below the other runs. The symbols are frequently found in sets

of three and in random order even within those sets, meaning that the initial shear tensor

has no systematic influence on model output.

That the initial value of the anisotropy is not an important parameter for elliptic flow is

not unexpected. Regardless of the initial condition, the shear tensor will relax toward the

Navier-Stokes values on a time scale set by the relaxation time. This means that the initial

value no longer plays a role for time scales longer than the relaxation time. For temperatures

relevant to the hydrodynamic phase, the relaxation time is less than 1.0 fm/c, for the shear

viscosity to entropy density ratio used in these simulations, meaning that the initial value

only influences a small fraction of the evolution.

In contrast to the initial anisotropy of the shear tensor, the initial flow plays an important

role in developing elliptic flow, parameterized here in terms of χf , which is the fraction of
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Figure 6.10: The transverse momentum weighted integrated anisotropic flow for the 10-20%
centrality bin from the set of model runs described in the text displayed in the same manner
as Figure 6.9. The model results are colored by the initial velocity as a fraction of the results
from Equation 5.23 (χf ) where the (red) downward triangles are the full result, the (blue)
circles half, and the (black) upward facing triangles with no initial velocity. The variation
of results within each initial density model is shown to be explained by the changing of the
initial flow as all of the runs are well-ordered by the strength of the initial flow. The initial
anisotropy, which are not differentiated from one another, produce small, random changes
in the observed elliptic flow.
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the result in Equation 5.23 used in the initial state. This is evident in Figure 6.10 which

shows the elliptic flow produced in all model runs for the 10-20% centrality bin, where the

key difference from Figure 6.9 is that the symbols now indicate runs with the same initial

flow. The model runs are well-ordered by the initial flow in every case with none of the zero

initial flow output even within 10% of the full initial flow output. Even more tellingly, this

persists over all types of initial conditions. This results in a combined uncertainty between

the initial profile and the initial flow of almost 100% in the model prediction of the elliptic

flow in this variable.

To see the effect of this uncertainty on the extraction of the shear viscosity near the

phase transition, Figure 6.11 again shows all model runs distinguished by their initial flow.

We’ve returned to the 20-30% centrality data in part to demonstrate that the effect is not

unique to mid-central collisions which is very clear from the lower viscosity data presented.

Furthermore, we now include additional runs with twice the original viscosity to confirm the

findings from Figure 6.8 which showed that initial shape contributed a factor of roughly two

to shear viscosity determination. Figure 6.11 confirms that the uncertainty in shear viscosity

extraction due to the initial shape of the energy density is more than 100%. Runs with double

the viscosity produce more elliptic for the screening and saturation initial conditions that

remain larger than that seen with the default Glauber output, meaning that even more shear

viscosity would have to be added to compensate for changing the initial conditions from a

default Glauber model to a screening model. This uncertainty appears to be additive with

the uncertainty contributed by uncertainty in the initial velocity profile as the spread in

the results is not decreased as the viscosity is increased. Therefore even within a model

that fixes the thermalization time, equation of state, temperature dependence of the shear
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Figure 6.11: The transverse momentum weighted integrated anisotropic flow for the 20-
30% centrality bin from the set of model runs described in the text. The solid marks are
identical to those in Figure 6.9 now colored by initial flow (χf ) as described in Figure 6.10
and arbitrarily offset for clarity. Furthermore, open symbols are now included for model
runs with double the viscosity (η/s = 0.32) for the saturation models for initial conditions.
The models runs with double the viscosity and the full amount of initial flow show the same
amount of anisotropic flow as runs with the previous shear viscosity and no initial flow. This
indicates that uncertainty in the initial flow results in 100% uncertainty in the value of the
shear viscosity.
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viscosity, bulk viscosity, etc. one should expect a factor of three uncertainty in the extraction

of the shear viscosity. This conclusion is based only on integrated elliptic flow data and it is

possible that, for instance, the transverse momentum dependence of the elliptic flow could

provide some additional resolving power though, as mentioned before, such a conclusion may

depend more delicately upon details of the model.

6.2.2 Multiple Parameter Extraction

Efforts to understand the hydrodynamic parameter space is limited by the complexity of

the hydrodynamic model itself and the uncertainties that are inherent to the choices in

constructing one. This is underscored by the divisions between the several components of

the model which are the initial condition to hydrodynamics, the hydrodynamic evolution,

the hadronic cascade, and finally the analysis that calculates observables to be compared to

experiment. Each of these contain many decisions that likely affect theoretical conclusions

about the matter created in heavy ion collisions. For example, the initial condition to

the hydrodynamic phase is not well understood and should be constrained experimentally.

Therefore, one must investigate the sensitivity of any conclusion about the character of

the matter to assumptions about the pre-equilibrium phase, that is, uncertainty about pre-

equilibrium dynamics must be fully propagated to any extraction of properties of the the

matter, like the shear viscosity or the equation of state. So while there is a great deal

of experimental data to be analyzed, there are also a large number of parameters to be

considered. Furthermore, the parameters do not necessarily have simple relationships to

observables and many parameters may be important to the calculation of a single observable.

The opposite is also true as a single parameter may affect many observables, and these effects
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may not be linear.

Model response throughout the parameter space was studied using the Markov Chain

Monte Carlo (MCMC) method which takes random small steps through the parameter space,

where the model emulator was used instead of evaluating the model at each point. The

Metropolis-Hastings method of performing MCMC proceeds by always accepting steps to

parameter settings that better describe the data and accepting worse settings with proba-

bility proportional to the ratio of the likelihoods, where the log-likelihood is proportional to

the sum of the squares of the deviation from the experimental data. This means that after

excluding a random walk near the first point chosen the set of parameter space points visited

in the MCMC trace is proportional to the posterior likelihood – that is, the likelihood that a

parameter setting is the true setting based on the model runs. This is not the only method

of exploring model response to parameter variations, and other methods like gradient or

Langevin search could be used to provide an estimate of the most likely point in parameter

space; but they do not provide a direct estimate of the posterior distribution.

One difficulty of MCMC is that the model output must be known at every point in the

parameter space. Unless the model is extremely fast to evaluate, it is necessary to be able to

predict the output of the full model without evaluating it. In the simplest case, this could

be done by interpolating linearly in each dimension between the model runs nearest to the

point of interest. This has the benefit of simplicity but may miss important features of the

space. Instead, we chose to emulate the aggregated observables of our hybrid hydrodynamic-

cascade model using a Gaussian process [75]. This method assumes that the local correlation

structure in parameter space is a multi-variate normal distribution and produces predictions

of the mean and variance, essentially a prediction and the uncertainty in that prediction,
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Parameter Description Range

(dE/dy)pp
The initial energy per rapidity in the diffuse limit compared

to measured value in pp collision
0.85–1.2

σsat

This controls how saturation sets in as function of areal
density of the target or projectile. In the wounded nucleon

model it is assumed to be the free nucleon-nucleon cross
section of 42 mb

30 mb–50 mb

fwn

Determines the relative weight of the wounded-nucleon and
saturation formulas for the initial energy density described

in (6.1, 6.2)
0–1

Fflow
Describes the strength of the initial flow as a fraction of the

amount described in (5.23)
0.25–1.25

η/s|Tc Viscosity to entropy ratio for T = 170 MeV 0 – 0.5

α
Temperature dependence of η/s for temperatures above

freezeout, described in Equation 6.4
0 - 5

Table 6.1: Summary of model parameters. Six model parameters were varied. The first four
describe the initial state being fed into the hydrodynamic module, and the last two describe
the viscosity and its energy dependence.

at any point in the parameter space. To verify that the Gaussian process accurately infers

model outputs, the predictions of the Gaussian process were tested against a withheld set

of model runs which were all predicted to within an aggregate of three standard deviations

over all model outputs. A more complete discussion of the Gaussian process model and its

testing for this application are available as a pre-print at the time of writing [76].

The Gaussian process requires model output from the region of parameter space to be

explored by the MCMC. Since we are interested in applications with a significant number

of dimensions and the expected increase in required samplings scales exponentially with the

number of dimensions, it is important that the sampling be done efficiently. The method

used in this work which is Latin Hypercube sampling. which divides each dimension of the

space into n bins and then requires that exactly one sampling point to appear in each bin.

The result is that there is no redundancy if a dimension turns out to be irrelevant and that

many values of each parameter are present in the sampling.
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In our first effort, we explore six parameters simultaneously. We chose four related to

the initial condition and two related to the shear viscosity. The normalization of the energy

density is essentially a required parameter to study plausible regions of parameter space and

we chose to couch this in terms of the relationship to the total transverse energy produced

in a minimum bias proton-proton collision at the same center of mass energy per nucleon.

To test the importance of details of screening in the initial condition, we chose two related

parameters that set the extent to which a screening model was used and the associated cross-

section. The energy density within the model was therefore given by the set of equations

given in terms of the Glauber thickness functions (TA,B) by

εwn(x, y) = (dE/dy)pp
σnn

2σsat
TA(x, y) (1− exp(−TB(x, y)σsat)) (6.1)

+(dE/dy)pp
σnn

2σsat
TB(x, y) (1− exp(−TA(x, y)σsat)) ,

εsat(x, y) = (dE/dy)pp
σnn

σsat.
Tmin(x, y) (1− exp(−Tmax(x, y)σsat)) , (6.2)

Tmin =
2TATB
TA + TB

, Tmax = (TA + TB)/2.

The parameter to be varied within the model is σsat as σnn = 42 mb is the inelastic nucleon-

nucleon cross-section and (dE/dy)pp = 2.613 GeV is the transverse energy per unit rapidity

and is calculated directly from experimental data. The other two parameters are involved

in the final calculation of the energy density from

ε(x, y) = (κ/τ) [fwnεwn(x, y) + (1− fwn)εsat(x, y)] (6.3)

where κ is unity if the total transverse energy is the sum over the proton-proton collisions

and increases in the total energy is larger, and fwn determines the fraction of the energy

144



distribution determined from the wounded nucleon scaling as opposed to screening scaling.

The fourth parameter is the last related to the initial state and it sets the initial flow in the

same way described in the previous subsection. The final two parameters related to the shear

viscosity ratio and were the shear viscosity to entropy density ratio at the phase transition,

η
s

∣∣
Tc

, with Tc = 170 MeV being the same as the hydrodynamic freeze-out temperature,

and the increase in the shear viscosity at higher temperatures that one expects from QCD

arguments [49, 50, 77] moving away from the critical region,

η

s
=
η

s

∣∣∣
Tc

+ α ln

(
T

Tc

)
, (6.4)

where α is this final parameter to be varied.

Our statistical method samples this parameter space somewhat minimally – 36 = 729

points in the six dimensional space – at points chosen by Latin hypercube sampling. The

produced particles were aggregated in the same way as the experimental data, for which we

considered

• Low momentum pion yield at 0-5% and 20-30% centrality [9].

• Average transverse momentum for low momentum pions, kaons, and protons at each

centrality [9].

• Three pion source radii from HBT at each centrality [78].

• Pion elliptic flow reduced by 10% to account for non-flow and with additional uncer-

tainty to account for the lack of fluctuations in the initial conditions [79].

A Gaussian process was trained to emulate the aggregated model predictions and the space

was sampling by MCMC as described above.
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Among these, only HBT radii have not been discussed to this point. HBT radii measure

the extent of the outgoing phase space cloud through two-particle momentum correlations.

Experiments can measure the probability of detecting two particles at momenta pa and pb

divided by the probability of finding particles of each momentum independently:

Cab(~P , ~q) =
dNab/d3pad

3pb
dNa/d3pa · dNb/d3pb

, (6.5)

where ~P is the summed pair momentum and ~q is their relative momentum. In the limit

that the observation of particle a is independent of the observation of particle b, Cab = 1.

Instead, what is observed from heavy ion collisions is a rich correlation structure at moderate

momentum. These correlations can be explained by a thermal source of finite size, Sab, and

a knowledge of the two-particle wave-function, φ, by the Koonin-Pratt equation,

Cab(~P , ~q) =

∫
d3r Sab(~P ,~r)|φ(~q, ~r)|2. (6.6)

Typically, the source function is taken to be a Gaussian and is parameterized in terms of

the radius in the outward, sideward, and longitudinal directions (Ro, Rs, Rl). The separation

of the longitudinal radius is due to the expectation of differing dynamics in the direction.

The outward radius is measured along the direction of the transverse momentum, and the

sideward radius is orthogonal to the others. The difference between the outward radius and

the sideward radius is then related to the explosiveness of the collision environment. Both the

longitudinal radius and the explosiveness of the collision environment were poorly described

by early, ideal hydrodynamic simulations of heavy ion collisions [22], which overestimated

the longitudinal radius and explosiveness.
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Figure 6.12: Pion, kaon, and proton transverse momentum spectra for the 5% most central
collisions (above) and the 20-30% centrality bin (below). The red symbols are the experi-
mental data as published and the green symbols are enhanced due to the absence of some
chemical reactions in the gas calculation. The (blue) lines in the left panels show predic-
tions from random model sampled uniformly from the entire model space, whereas the right
side shows model runs selected weighted by the posterior likelihood distributions from the
MCMC trace. This demonstrates that all model runs favored in the posterior distribution
well describe the particle spectrum data.
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We compare twenty runs chosen randomly from the parameter space to twenty runs

chosen from the MCMC trace. This corresponds to a weighted draw from the prior and

posterior distributions respectively. The produced particle spectrum for each species and

centrality is shown in Figure 6.12. The randomly chosen settings include many settings that

can easily be excluded by the experimental data. Comparing this to those selected from

the trace, we find all of the runs are in reasonable agreement with the data and none could

easily be excluded on these merits given experimental uncertainties. We expect that many

parameter settings will fit spectrum data but it is reassuring to find a region of parameter

space that fits this data at a high level.

For the pion elliptic flow output and data, Figure 6.13 shows the same model runs selected

from the prior and posterior distributions. Again the prior distribution contains many runs

that deviate significantly from the experimental data, whereas the posterior distribution is

clustered around the data. Here the deviation is larger than in the case of the spectrum which

is at least in part due to the increased uncertainty from the experiment which was 12% [17, 18]

as opposed to the multiplicities which had uncertainties of 6% and the average transverse

momentum which had uncertainties of only 3% [2, 9]. This is larger than the experimental

uncertainties since we do not include initial condition fluctuations. Also note that there are

some systematic differences in shape between the model runs and the experimental data,

with the model runs over-predicting v2 at lower momentum and under-predicting it at high

momentum. This is in contrast to Figures 6.7 and 6.8 which showed the opposite issue,

though there are parameter differences between those from the posterior distribution here

and those taken in that study including the freeze-out temperature which is higher in this

case by 5 MeV.
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Figure 6.13: The anisotropic flow as a function of transverse momentum for pions. The
(red) squares are experimental data from the STAR collaboration. The twenty (blue) lines
are model runs in each panel; in the top panel they are chosen via uniform sampling of
the parameter space while in the bottom panel they are taken randomly from the MCMC
trace which samples more likely regions more heavily. The runs from the MCMC trace are
considerably closer to the experimental data but note that the posterior distribution contains
many settings that do not describe the anisotropic data with high precision.
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Figure 6.14: Pion HBT radii as a function of transverse momentum for central (red circles)
and mid-central (blue squares). In the left panel, the lines are from model runs with pa-
rameters drawn from the flat prior distribution, whereas in the right panel, the parameter
settings are weighted by the posterior distribution. The parameter settings from the poste-
rior distribution exhibit more explosiveness as evidenced by the increased Ro/RS ratio and
more precise predictions in general that describe the experimental data except for in the
lowest momentum bin.
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The HBT radii were also reproduced well by the runs pulled from the posterior distri-

bution as evidenced in Figure 6.14. The model runs drawn from the prior distribution show

more spread and tend to overestimate the sideward radius and underestimate the outward

radius. For runs from the posterior distribution, the outward radius is described well at all

momenta, while the other radii are overestimated in the lowest momentum bin. It is con-

cerning that the momentum dependence of the sideward radius appears to be too dramatic,

but the source of this discrepancy is not understood.

Displaying the posterior distribution itself is a difficult task as the posterior distribution

is a six-dimensional density distribution. Our method is to take all possible projections of the

distribution in one- and two-dimensions and this is shown for our space in Figure 6.15. If one

begins by looking at the one-dimensional projections, it appears that both parameters related

to the shear viscosity (η/s and T DEP OF η) are reduced to a fraction of their tested range,

while the normalization (I.C. PP NORM) and the saturation cross-section (I.C. SAT. σ

(mb)) are barely constrained at all. However, if one moves to the two-dimensional plots

we see that this is only because of our choice of variables and that a linear combination of

the normalization and the saturation cross-section (roughly their difference) is constrained

– presumably by the multiplicities – whereas the orthogonal combination (their sum) is only

somewhat constrained. The physical explanation of this is not so clear but perhaps a slow

change in the centrality scaling of the multiplicity or the initial eccentricity due to changing

the saturation cross-section.

We find other expected parameter behaviors in the correlation plots of Figure 6.15. For

instance, the model better describes the data when shear viscosity at the critical tempera-

ture is larger for models containing saturation than for the wounded nucleon picture due to
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Figure 6.15: Parameter space density plots for the Markov Chain Monte Carlo trace run
over the Gaussian process emulation of the hybrid model. On-diagonal plots show the
density projecting out all five remaining variables while the off-diagonal plots show the
two-dimensional density distribution projecting out the four remaining variables. The one-
dimensional plots show that the most likely parameter sets feature a small but non-zero
value of the shear viscosity, almost no increase to the shear viscosity at high temperatures,
small pre-equilibrium flow, and a density distribution more like wounded nucleon than the
screening model. The two-dimensional plots show how these conclusions depend on one
another. As expected, more eccentric initial conditions from the screening model lead runs
with a higher value of the shear viscosity to better agree with the data. The sum of the shear
viscosity in the critical region and the slope of the shear viscosity above the critical region
appears well constrained; and likewise, the difference between the saturation cross-section
and the energy density normalization appears well-constrained.
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larger eccentricities. Also the optimal shear viscosity at the critical temperature is inversely

related with the slope of the shear viscosity at higher temperatures. This suggests that

the model output is sensitive to the average shear viscosity in the region near or above the

critical temperature. It is surprising then that initial conditions involving more saturation,

or more initial eccentricity, do not support a larger high temperature slope but rather a

lower one. This implies a tension in the model output that is not immediately clear but

warrants future investigation. The conclusion that quark matter has small shear viscosity

seems to be robust. Just how small the shear viscosity is appears to be correlated with other

parameters including the temperature dependence of the shear viscosity but also the details

of the nucleon screening model. The lack of dependence on the initial flow is in contrast to

our results from the previous subsection. Given that elliptic flow increases with increasing

pre-equilibrium flow and decreases with increasing shear viscosity, one would expect that

elliptic flow would only be sensitive to the difference between these parameters. This sug-

gests that other experimental data is breaking this expected relationship but the source of

this is not well understood. Another important future investigation might determine which

experimental data underpin this conclusion and attempt to identify other model parameters

that could compromise it.

Also of interest is that the posterior distribution dependence on normalization is weak

except when varying the saturation cross-section. This suggests that future studies could

avoid sampling in that parameter by locating the normalization that reproduces experimental

multiplicities as done in the previous subsection. This is attractive because multiplicities

require less than one hundred cascade events to calculate accurately at the one percent level

in contrast to the four thousand events used to generate each point in parameter space
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sampled, in addition to reducing the dimensionality of the parameter space.

6.3 Concluding Remarks

The broad conclusion of this work is that adding the non-trivial aspects of the longitudinal

expansions to viscous hydrodynamic modeling does not dramatically affect conclusions about

the matter formed in heavy ion collisions. We arrived at this conclusion by investigating the

matter in the hydrodynamic phase and noting that the flow velocity shows no change when

fully including the longitudinal expansion, as seen in Figure 6.3. As the flow profile is

the driver of elliptic flow, conclusions about the dynamics of the hot matter drawn from

two dimensional simulations are trustworthy. While Figure 6.4 shows a decrease in the

predicted source lifetime, the most dramatic effect of this is to decrease the longitudinal

source size. This proves a nice solution to an existing tension between theoretical models

and the experimental data. These conclusions are based on simulations done for collisions

with beam energy of
√
sNN = 200 GeV and are expected to hold for larger beam energies,

though they would need to be revisited for smaller beam energies.

This does not imply that there is no reason to pursue further three dimensional viscous

models. Instead it means that it is not necessary to model midrapidity data at the highest

RHIC energy, unless one pursues accuracy at better than the 5% level. Even at small lon-

gitudinal rapidity, more experimental data become accessible to an extended version of our

model, including directed flow due to non-zero impact parameter and the associated angular

momentum of the source. Attempts to include the effects of non-zero angular momentum in

the initial condition [80] within the current version of the model have demonstrated persis-

tent instability that have frustrated attempts to study its possible influence at midrapidity.
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Schematic changes to the integration of the basic hydrodynamic equations may be necessary

to undertake such a study.

These upgrades would make other effects available for study as well, for instance, a

method that is stable against shocks would allow one to study the role of fluctuations. In

the model described here, hydrodynamic modeling is a small fraction of the computational

time compared to the generation, manipulation and analysis of the particles within the

resonance gas model. Assuming that the described changes do not significantly alter this

balance, one can imagine running around fifty hydrodynamic events per centrality bin at a

cost of less than a factor of two in the run time. This would allow investigation of fluctuation

data including average transverse momentum fluctuations and elliptic flow fluctuations both

with and without boost invariance.

Other features of particle production away from midrapidity include the effects of finite

baryon number and the development of elliptic flow away from midrapidity. In this model,

the finite baryon number from the protons and neutrons in the original nuclei is carried away.

While the nuclei recede rapidly, baryon current diffuses toward midrapidity and manifests

itself as an imbalance between the number of protons and anti-protons at midrapidity. This

baryon current would be a necessary feature of any model attempting to investigate effects

away from midrapidity as it seems likely to affect other important observables like elliptic

flow. For instance, if the matter has more heavy baryons, then at the same energy density

the pressure is reduced, due to a decrease in the mean velocity, and flow should develop more

slowly. Since elliptic flow falls more rapidly than multiplicity as a function of pseudorapidity,

this may be an interesting phenomenon and could provide consistency checks on the initial

conditions that underpin hydrodynamic models.
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While there is much to be gained from continued study of three-dimensional viscous hy-

drodynamic models, there is still quite a lot to be learned about two-dimensional models as

well. While the six-dimensional parameter study shown in Figure 6.15 demonstrates that

we understand some of the experimental constraints on model parameters, the full set of

parameters is very large and many important parameters have yet to be explored. The

equation of state calculated by lattice QCD seems to be a theoretical triumph especially

given its agreement with the expectations of the hadron resonance gas near the phase tran-

sition. However, it remains unknown whether or not experimental data gathered from heavy

ion collisions support the conclusion that equilibrium dynamics of the quark-gluon plasma

are well described by the equation of state predicted by lattice QCD. Direct experimental

evidence for lattice QCD would be a massive triumph and remains an important goal of the

field of relativistic heavy ion collisions.
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