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ABSTRACT

STRUCTURE STUDIES OF MLi AND '°Li

By

Brian Matthew Young

The nucleus 'Li, only recently available for extensive study with the advent of fa-
cilities that produce radioactive nuclear beams, has presented nuclear theorists and
experimentalists with an intriguing puzzle. Experimental evidence indicates that 1Li
consists of a °Li core and a “halo” of two loosely bound neutrons, the matter radius
of which extends well beyond that observed in most nuclei. Theoretical models have
been developed which utilize this picture and predict a very sensitive dependence of
the 1'Li two-neutron binding energy on the nature of the n-°Li interaction. The
mass of !'Li has been determined from a measurement of the Q-value of the reac-
tion “C(1'B,Li)*0 at E/A ~ 32 MeV. The results, which indicate a two-neutron
separation energy of S,,(''Li) = 295 & 35 keV, put this basic quantity on a firm
basis for use in these theoretical models. Experimental measurements and theoretical
- predictions of the low-lying structure of the unbound nucleus !°Li have presented
sometimes conflicting, but mounting evidence that °Li has a ground state consisting
of a low-lying 23% neutron resonance and at least one excited state consisting of a
lp% neutron resonance unbound by between 400 and 800 keV. Momentum spectra
have been measured for the reaction 'B("Li,®B)'°Li at E/A ~ 19 MeV and labora-
tory angles of 5° and 3.5°. The results indicate the existence of a broad state in '°Li,
corresponding to a single p-wave neutron resonance unbound to neutron decay by

538 + 62 keV with width Ty = 358 £ 23 keV. There is also evidence that the 1°Lj



ground state is either an s— or a p~wave resonance barely unbound to neutron decay

with S, > —100 keV and I'l,, < 230 keV.
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Chapter 1

Introduction—Motivation and
Overview

Recent advances in accelerator and spectrometer design have made possible the pro-
duction of intense radioactive nuclear beams. This has greatly expande(i the region
of experimentally obtainable nuclei to encompass nuclear species far from stability.
The availability of these unstable nuclei has resulted in a large amount of expioration
and mapping of the neutron and proton drip lines, the boundaries marking the upper
limits on neutron and proton numbers beyond which nuclei become particle unstable.
Experiments which involve nuclei near the drip lines have revealed structures and dy-
namic systems very different from those previously studied. These new systems have
presented a challenge to nuclear models which were developed to describe phenomena

exhibited by nuclei closer to the valley of stability.

One of the most interesting nuclei to challenge traditional models is *'Li. A large
body of experimental work has been carried out in an attempt to understand its
structure. These experiments have indicated that 'Li consists of a °Li core and a
“halo” of two loosely bound neutrons, the matter radius of which extends well beyond
that observed in most nuclei. With these ideas as a starting point, several calculations

have been made which treat 'Li as a three-body system comprising a °Li core and



2 neutrons. Hansen and Jonson have demonstrated in [Hans 87] that in the simplest
model of ' Li, a quasi-deuteron consisting of a °Li core coupled to a dineutron n,
the binding energy is the only variable needed to find the momentum and spatial
distributions of particles within the nucleus. More complex models have also shown
that the radius, and even the existence, of a neutron halo is intimately dependent on
the binding energy of the halo neutrons. For this reason, an accurate experimental

value for the 'Li binding energy is of vital importance to the understanding of the

halo phenomena.

There is however, some uncertainty in the value of the mass of 'Li. The three
measurements to date have yielded two-neutron separations energies ranging from
170 to 340 keV with uncertainties from 50 to 120 keV. The substantial disagreement
between these measurements as well as the magnitude of their uncertainties limits
their usefulness in theoretical calculations. In September of 1992, the *Li mass was
deduced from the Q-value of the *C(*'B,''Li)!*0 reaction measured with the A1200
fragment separator at the NSCL. In Chapter 2 of this work, a more detailed discussion
of previous experiments pertaining to ''Li is presented along with a discussion of
several two— and three-body models that have been developed to reproduce the results
of these experiments. Chapter 3 contains a detailed description of the NSCL 'Li mass
measurement. The computer code, RELMASS, used in the analysis of the data from

this experiment, is presented in Appendix A.

Central to the models described above is the interaction of a single neutron with
the °Li core. The fact that '!Li is loosely bound while °Li, with one less neutron,
is unbound implies that the interaction between the valence neutrons plays a vital
role in the stability and structure of 'Li. For this reason, there is considerable
interest in the unbound nucleus °Li. The low-lying structure of 1°Li is the subject

of much debate, however. There has been a great deal of effort, both experimental
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and theoretical, directed towards understanding the structure of this nucleus. These
efforts have resulted in claims that the 107 ground state, a resonance of a single
unbound neutron in a °Li well, is unbound by as little as 60 keV and as much as 800
keV. It is expected, in analogy with other N = 7 nuclei, that the °Li ground state
resonance should be either a 1p15 or a 23% neutron state. In addition to significant
uncertainty regarding the resonance energy, there is also a great deal of disagreement
on the spectroscopic nature of the 107 i ground state. In May of 1992, the low-lying
structure of °Li was determined from momentum spectra which were collected from
the reaction B("Li,®B)™Li at the NSCL. Chapter 4 of the present work contains a
review of the existing measurements of the low-lying structure of 107 as well as a
detailed description of our measurement. Computer codes for calculating the shapes
of the 19Li neutron resonances and for fitting the resonance shapes to the experimental

data are presented in Appendices B and C respectively.

The experimental results presented in this work will be summarized in Chapter 5.
The three-body models described above predict a sensitive dependence of several
observables on not only the resonance energies of the lowest 107 states, but also their
spectroscopic nature. Most calculations assume that the 101i ground state is a 1p%
neutron resonance. However, very recent calculations by Thompson and Zhukov have
included a 2s} states as well as a 1pl state in the n-2Li interaction. The results
of these calculations and their agreement with our experimental data will also be

discussed.



Chapter 2

History of l1Li

I Introduction

This chapter contains a description of the main trends of experimental and theoretical
research that have been directed towards !'Li. Experimental results are discussed in
section II. Measurements of parallel and transverse momentum distributions of °Li
fragments from the breakup of 'Li are described as are measurements of neutrons
observed in coincidence with the °Li fragments, and measurements of Coulomb dis-
sociation cross sections of 'Li. It is seen that the experimental evidence indicates
that 1'Li can be described as a three-body system consisting of a °Li core with a
spatially broad “halo” of two loosely bound neutrons. Based on the three-body pic-
ture described above, several theoretical models have been developed. A sketch of
these models and some of their results are presented in section III. In particular,
it is shown that these models predict that the radius, and even the existence, of a
neutron halo is intimately dependent on the binding energy of the halo néutrons.
A brief discussion is presented in section IV concerning the low-lying structure of
107,i and its effects on the results of these models. A more detailed discussion of this
topic is presented in Chapter 5. The sensitive dependence of halo phenomena on the

neutron binding energy emphasizes the necessity for an accurate measurement of the




11 binding energy. The three existing measurements of the 'Li mass are detailed

in section V.

II Structure of 'Li — Experimental Results

The existence of ''Li as a particle-stable drip line nucleus was known for quite some
time [Posk 66, Klap 69]. It was not until 1985, however, that evidence was found that
111 might have a structure radically different from that predicted by traditional nu-
clear models [Tani 85a]. Tanihata et al. report the results of interaction cross section
measurements for several lithium isotopes (®Li — 'Li) as well as "Be, °Be, and 1°Be.
These measurements were performed with a beam energy of E/A = 790 MeV and
targets of beryllium, carbon, and aluminum. The lithium and beryllium projectiles
were produced as secondary beams by fragmenting beams (E/A = 800 MeV) of 1'B
and 2°Ne on a beryllium production target. The isotopes in the secondary beam were
separated by magnetic rigidity and identified by velocity, from time-of-flight mea-
surements, and by charge, from pulse height measurements in scintillation counters,
before incidence on the reaction target. The interaction cross section, defined as the
total reaction cross section for changing the proton and/or neutron number in the
incident nucleus, was measured using the high-acceptance spectrometer described in
[Tani 85b]. It was found that the interaction cross section could be separated into

contributions from the projectile and target
o =m[Rr+ Rp|’ (2.1)

where Rt and Rp are the radii of the target and projectile, respectively. The measured
radii of most of the projectiles were between 2.09 and 2.46 fm, a result that is in good

agreement with the empirical relation derived from the liquid drop model of a nucleus

with mass number A, R = (1.2 fm) - AY/? [Blat 52]. The measured radius of ''Li,



however, was 3.14 fm, a value much larger than that of other nuclei in this mass region.
It is suggested in [Tani 85a] that this large radius indicates a large deformation or a

long tail in the matter distribution of !Li.

To further understand the structure of !'Li, and in particular the large mat-
ter radius, experiments have been performed to measure the momentum distribu-
tions of °Li from the fragmentation of 'Li projectiles. It has long been known that
the momentum distributions of fragmentation reaction products exhibit an isotropic
Gaussian distribution in the projectile rest frame [Grei 75]. The width of this distri-
bution can be interpreted in terms of Fermi motion and/or nuclear binding energy
[Gold 74], or in terms of the momentum distribution of the fragment inside the pro-
jectile [Hiifn 81, Shim 87]. Based on these ideas, it is hoped that information about
the momentum distributions from fragmentation of 'Li may shed some light on its

structure.

In the first measurement of the momentum distributions of products from !Li
fragmentation [Koba 88], Kobayashi et al. fragmented primary beams of **Ne and
2Ne at F/A = 800 MeV to produce secondary beams of 790 MeV/nucleon ''Li,
8He, and ®He. The secondary beams were then fragmented on carbon and lead tar-
gets. The reaction products were analyzed using the HISS magnetic spectrometer
at the Bevalac in the Lawrence Berkeley Laboratory. The transverse-momentum
(i.e. perpendicular to the beam axis) distributions of several projectile fragments are
presented and analyzed in [Koba 88]. The momentum distributions for most of the
fragments exhibited the expected Gaussian shape. An example of this is shown in
part a) of Figure 2.1, which depicts the transverse-momentum distribution of ®He
fragments from ®He projectiles on a carbon target. The width of the fitted Gaussian
is ¢ = 77 MeV/c. It has been shown by Goldhaber [Gold 74], that the width o of

fragmentation momentum distributions can be parametrized by a single parameter



Op as

Ar(Ap — Ar) ‘
0'2 = O'g—/'i—l;j—" (22)

where Ap and Ap are the mass numbers of the projectile and fragment, respectively,

and og is the reduced width. The reduced width for the ®He data is 59 MeV/c.

A decidedly different result was observed for the °Li momentum distribution,
shown in part b) of Figure 2.1. For the °Li data, there was a two-Gaussian peak
structure. The wide component corresponds to a reduced width of 53 MeV/c, in good
agreement with the values obtained from the ®He data as well as the data collected
from other fragmentation reactions. The narrow component corresponds to a reduced
width of 17 MeV/c. According to Goldhaber, the reduced width can be related to the
Fermi momentum Pr of the projectile by oo = v/5 Pr. In this picture, the existence

of two reduced widths implies two Fermi momenta, an unphysical conclusion.

To interpret their data, Kobayashi et al. relied on the models developed by Hifner
and Nemes [Hiifn 81] and Shimoura et al. [Shim 87]. In their models, which approxi-
mate the fragment momentum distribution by the Fourier transform of the asymptotic
wave function of the projectile, the reduced width can be related to the fragment sep-

aration energy () by

Ap —1

o = M, (¢) ym

(2.3)

Under this interpretation, the narrow momentum component in the °Li data corre-
sponds to {¢) = 0.34 MeV. When compared with the one- and two-neutron separation
energies of °Li and 'L, this result indicates that the °Li fragments in the narrow
peak come from reactions in which two weakly bound outer neutrons are removed
from !'Li. The broad momentum component comes from removal of two less weakly

bound neutrons, decay of excited °Li, and neutron decay of °Li. This observation
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Figure 2.1: [Koba 88] a) Transverse-momentum distribution of *He fragments from
the reaction of ®He at E/A = 790 MeV on a C target. The solid line is a fitted Gaus-
sian distribution with a width ¢ =~ 80 MeV/c. b) Transverse-momentum distribution
of °Li fragments from reactions of 'Li at £/A = 790 MeV on a C target. The dotted
line is a contribution from the wide component of the ®Li distribution. The solid line

is the sum of the narrow and wide components. The widths of these components are
o =23 MeV/c and ¢ = 95 MeV/c.



also provides an understanding of the large !'Li matter radius measured by Tanihata
et al.. By the Heisenberg Uncertainty Principle, a narrow momentum component cor-
responds to a broad spatial component, and vice versa. Thus, the narrow component
in the °Li comes from a broad spatial distribution attributable to a long tail in the
probability distribution for the two loosely bound neutrons in ' Li. It is this long tail

which dominated the matter radius measurements of Tanihata et al..

Of particular importance, given this measurement, is the question of whether the
momentum distributions of projectile fragmentation products reflect the structure of
the projectile only or also depend on the fragmentation reaction itself. A possible av-
enue of inquiry is to study fragmentation reactions from low-Z and high-Z targets, in
which the contributions to the total reaction from Coulomb interactions and nuclear
interactions differ strongly. However, for reactions on a high-Z target, narrow struc-
tures in the transverse-momentum distribution, of the type observed by Kobayashi
et al., would become washed out by Coulomb deflection and multiple scattering.
Parallel-momentum distributions, which, since the total momentum distribution is
isotropic, are known to have widths similar to those of transverse-momentum dis-
tributions for the same reaction, do not suffer from these drawbacks. In 1992, Orr
et al. measured the parallel-momentum distributions of °Li nuclei from projectile
fragmentation reactions of 1'Li on targets of °Be, *Nb, and '8'Ta at E/A = 66 MeV
[Orr 92]. Their results indicate that the momentum widths do not depend strongly
on the Z of the target. For all targets, parallel-momentum widths of o = 19 MeV/c
were observed. Assuming this momentum component comes from a two-neutron spa-
tial distribution having a Yukawa functional form ( exp(—r/p)/r ), this momentum

width yields an rms radius of 6.2 fm.

In addition to the effort described above, experiments have been performed by

Anne, Riisager and collaborators [Anne 90, Riis 92] in which the spatial extent of
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the outer two neutrons in 'Li has been deduced from the angular distributions of
neutrons from the fragmentation of 'Li. In these experiments, secondary beams of
HLi at E/A = 29 MeV were collided with targets of beryllium, nickel, and gold.
The angular distributions of single neutrons from the (1!Li,°Li) reactions, reported
in [Anne 90], are shown in Figure 2.2. By assuming that each of the outer two Li
neutrons is represented by a Yukawa wave function with a range parameter p and
transforming this spatial distribution to momentum space, it was found that the
angular distributions of the neutrons should have a Lorentzian shape. When this
functional form was fitted to the data (as depicted with the solid lines in Figure 2.2),
the range parameter p was found to be approximately 12 fm for all three targets, a
value which corresponds to an rms radius of 8.5 fm. Further analysis of this data,

reported in [Riis 92], support these conclusions.

Based on experiments such as these, the nucleus 'Li has come to be viewed as
a three-body system consisting of a °Li core and a “halo” of two loosely bound
neutrons as depicted in Figure 2.3. While the radius of °Li is approximately 2.5 fm,
the experimental evidence has indicated that the rms radius of the two halo neutrons is
between 6 and 10 fm. One of the more interesting phenomena predicted by theoretical
models which incorporate this picture, some of which will be discussed in the next
section, is the “soft” mode of the giant dipole resonance. In nuclei closer to the valley
of stability, the (isovector) giant dipole resonance is an excitation mode in which the
protons and neutrons in the nucleus oscillate collectively about the nuclear center—of—
mass but in opposite phase with each other [Gold 48, Wong 90]. In a nucleus of mass
A, the giant dipole resonance (GDR) energy is found to be roughly proportional to
A~Y3, For nuclei with mass near A = 10, the GDR energy is approximately 22 MeV.
However, for a halo nucleus, such as ''Li, it has been proposed [Hans 87] that two

GDR excitations exist. One, dubbed the “hard” or “normal” mode, involves the
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Figure 2.2: [Anne 90] Angular distributions of single neutrons from the (*!'Li,’Li)
reaction on Be, Ni, and Au targets at £/A = 29 MeV [Anne 90, Riis 92]. The solid
lines are Lorentzian functional forms, derived from the assumption that both of the
outer two 'Li neutrons have a Yukawa wave function.
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911 core

O neutron
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Figure 2.3: Schematic diagram of Li halo structure. Experimental evidence has
indicated that 11Li is a three-body system consisting of a ®Li core and a halo of two
loosely bound neutrons.
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traditional GDR of the core nucleus only, leaving the halo neutrons unaffected. The
energy of this resonance is expected to be very close to the GDR energy of the naked
core nucleus. The other mode is labelled the “soft” mode, and has the core nucleus
and the neutron halo oscillating against one another. The restoring force for such an

oscillation is very small, and consequently the energy of this resonance is expected to

be quite small (roughly 1.0 MeV for Li).

Experimental evidence for the existence of this soft GDR presents a tantalizing
problem. The first possible evidence for such an excitation was reported by Kobayashi
et al. in 1989 [Koba 89]. Secondary beams of !'Li were collided with targets of beryl-
lium, carbon, copper, aluminum, and lead at E/A = 800 MeV. From the dependence
of the interaction cross section, defined as the total cross section for changing the
proton and/or neutron number of the projectile, on the target proton number, the
electromagnetic dissociation (EMD) cross section was deduced. The measured EMD
cross section for !'Li on the heavier targets was much larger than that for the less

neutron-rich projectile, 12C.

To explain this result, the EMD cross section was calculated as a product of the
known photo-nuclear cross section o,n(E,) and the theoretically calculated virtual-

photon spectrum Ny, (E,)
™M = [ Nuy(B,)on(Ey)dE, (2.4)
Ew

where Ej is the threshold energy for particle emission [Heck 76]. When the photo—
nuclear cross section was assumed to have a simple Lorentzian form, the data were
best reproduced by a 'Li GDR energy of 4.6 MeV. Additional calculations were
performed by assuming that the photo-nuclear cross section consisted of two GDR
peaks. One was located at 22 MeV, as expected for °Li. The other peak was taken as

a free parameter and was assumed to correspond to the soft dipole mode. When the
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contributions from both GDR peaks were weighted by the virtual-photon spectrum,
which fell off very rapidly with photon energy, and by the Thomas-Reche-Kuhn sum
rule [Wong 90], it was found that the EMD cross section was dominated by the soft
dipole peak. This is illustrated in Figure 2.4. Under this assumption, the data were

best reproduced by a '!Li soft GDR energy of 0.9 MeV.

Further measurements by Blank et al. [Blan 91], utilizing the same systems as
above, but at a beam energy of E/A = 80 MeV, corroborate the large EMD cross
section for 'Li on heavy targets, as well as the GDR energy of 4.6 MeV as found
in the model described above. It was found, however, that the soft GDR model
predicted a much larger dependence of the EMD cross section on energy than that
which was measured. Very recent measurements by Ieki and collaborators [Ieki 93] of
11 on a lead target at E/A = 28 MeV also corroborate the large EMD cross section
and the GDR energy of approximately 4.6 MeV. Application of the soft GDR model
yields a soft GDR energy of 0.7 MeV. It is noted in their report that such a GDR
energy corresponds to a classical oscillation period of 1240 fm/c. The measurements
of Ieki et al. are kinematically complete, and it is observed that the °Li fragments
from the 1Li breakup suffer a significant Coulomb acceleration in the electric field
of the lead target nucleus. Such a large acceleration implies that the 'Li projectiles
break up very near to the target and consequently that the soft GDR, if it exists,
lives for an extremely short time. A quantitative treatment of the data places the
upper limit on the soft GDR lifetime at 85 fm/c, a value significantly less than the
classical oscillation period. This raises the question of whether the soft GDR exists.
It is possible that the breakup a,cvtua,lly took place, not via excitation of a soft GDR,
but through a more direct channel. If not, the question still remains as to whether
it make sense to speak of the existence of a resonance that decays well before one

oscillation period.
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Figure 2.4: [Koba 89] Schematic representation and intensities of soft and normal
giant dipole resonances in !Li. The solid line in the graph is the virtual-photon
spectrum for ''Li on lead at E/A = 800 MeV. The energies and intensities, as cal-
culated from the TRK sum rule, of the two dipole resonance modes is shown by the
black bars. Even though the normal GDR has a greater intensity as predicted by
TKR, when weighted by the virtual-photon spectrum, the soft GDR dominates.
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Clearly, }'Li presents entirely new nuclear behavior and exhibits phenomena which
challenge traditional nuclear models. It has been shown [Hans 87] that, qualitatively,
the existence of a neutron halo has a very sensitive dependence on the binding en-
ergy of the halo neutrons. For this reason, it is expected that halo behavior should
be exhibited by a large number of drip-line nuclei. Indeed, experimental evidence
[Fuku 91, Tani 92, Riis 92] has indicated halo phenomena in the nuclei *Be, !'Be,
8He, and ®He. It is apparent that neutron halos are by no means isolated phenomena,
and that as further experiments are performed, more nuclei will be found to posses
halos. It is becoming increasingly important that the structures of these nuclei be

understood.

IITI Structure of !'!Li — Theory

Experimental evidence, some of which waé presented in the previous section, has led
to the theoretical treatment of 'Li as a three-body system comprising a ?Li core
and a diffuse halo of two loosely bound neutrons. The first, and qualitatively the
simplest, such treatment was presented by Hansen and Jonsen in [Hans 87]. In their
model, !'Li is assumed to be a quasi-deuteron consisting of a structureless °Li core
nucleus coupled to a dineutron ?n. The nuclear potential for this system is idealized
as a radial square well. Under these assumptions, it was found that, outside the well,

the radial wave function is

W) = (2rp) 1 [exp(:r//’)] [(fipz([z%;)l)ﬂ} (2.5)

where r denotes the distance between °Li and the dineutron, and R the radius of the

square well. The decay parameter p is given by

p = h/(2pEp)"? (2.6)
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where ¢ and Ep are the reduced mass and binding energy of the system. The matter
distribution, given by |¥(r)|?, then decays outside the well as exp(—2r/p)/r?. This
simple model indicates that the existence of the neutron halo, that is, the large
radius of the neutron distribution, arises from the very small binding energy of the
two halo neutrons. The Fourier transform of the wave function given above yields the

momentum probability distribution f(p) [Boyd 93]

1
* o+ (8/p)T

By inserting the appropriate values for Li (¢ = 13(931.5 MeV/c?) and Ep ~ 0.3

f(p) (2.7)

MeV) into these expressions, it is found that p = 6.5 fm and I, ~ 30 MeV/c. Both

results are in reasonably good agreement with experimental data.

Hansen and Jonsen proceed further with their model and postulate the existence
of a low—-energy soft dipole excitation, discussed in the previous section, in analogy
with the deuteron. It was found that the Coulomb dissociation cross section for

collisions with a target Ziag and relative velocity v is proportional to

ZLiag
Foo? (2.8)

and, for low beam energies and heavy targets, should therefore be quite large (e.g.
on the order of 5 barns for E/A = 100 MeV incident on uranium). Such a large
cross section has been confirmed experimentally; however, there is still some question
concerning experimental measurements of the lifetime of, and hence the existence of,

the soft dipole excitation as a means of Coulomb dissociation.

Johannsen, Jensen, and Hansen [Joha 90] extended this model by introducing
structure to the dineutron system. In their model, 'Li is treated as a system of
three interacting particles. More specifically, the dineutron is assumed to be in an

S = 0 state, and any spin—dependent interactions between the halo neutrons and




18

the °Li core, which is assumed to be structureless, are ignored. Both the neutron-
neutron and neutron-°Li interactions are taken as simple Gaussian radial wells. The
depths and widths of the wells are chosen to reproduce the low—energy n—n scattering
data and the approximate size of the °Li nucleus. The ground state wave function
is then determined variationally for different n-°Li well depths. These calculations
reproduce the sensitive dependence of the matter and momentum distributions on
the neutron binding energy, but disagree somewhat with experiment. Calculations of
the Coulomb dissociation cross section also reproduce the observed trend but again
disagree somewhat with the data. Perhaps the most interesting result of their calcu-
lations, however, is the prediction of strong correlations between the two neutrons in
Ui, This raises the possibility that, although the isolated dineutron system has no

bound state, such a state may indeed exist in the nuclear medium.

Bertsch, Esbensen and Ieki [Bert 91, Esbe 93] approach the dineutron problem in
a different manner. Their model is conceptually similar to that described in [Joha 90],
but more realistic potentials are used for the n—n and n-°Li interactions. The n-°Li
interaction was taken to be a sum of Coulomb and centrifugal terms along with a
Woods-Saxon nuclear well and a Thomas-type spin—orbit term. The parameters of
this potential were adjusted to reproduce the binding energies of other nuclei with
neutron and proton numbers similar to those of 1!Li. The single—particle states of this
well were used as the space of basis states for the calculation. The n—n interaction

was taken to be a density—-dependent contact interaction

Van = 8(r1,12) (vo + v,(p(r1,12))) (2.9)

where r; and r; are the positions of the two neutrons. The parameters of this reaction
were also adjusted in a manner similar to that described above. The ground state wave

function and binding energy were found by using the two-particle Green’s function,
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which was expressed as an expansion in the single particle states of the n—°Li well.
Their model also exhibits a sensitive relation between the 'Li binding energy and
matter radius, as well as a large Coulomb dissociation cross section. The results of
these calculations are also compared with the kinematically complete measurements of
Ieki and collaborators [Ieki 93]. It was found that the calculations were in agreement
with the measured single-neutron and two-neutron momentum distributions, but
that the predicted °Li momentum distributions were narrower than those observed

by Ieki and collaborators.

Many other calculations have been performed with other three-body models sim-
ilar to the ones described above [Tosa 90, Zhuk 91, Bang 92, Thom 93a]. A detailed
review of these models is given in [Zhuk 93]. All of these models have succeeded in
reproducing experimental observables such as the 'Li binding energy, halo radius,
and momentum distribution widths to within a factor of two, but they also show
substantial disagreement with one another. One of the most striking points of dis-
agreement is on the degree to which the halo neutrons are correlated within Li.
The discrepancies between these models points up the need for more accurate and
complete experimental data for use as input parameters in the calculations as well as

for comparison with model predictions.

IV Predicted 'Li mass and °Li

All of the three-body models that have been used to describe !'Li assume some form
for the n-°Li interaction. Only until very recently, it was believed that this system
only has one low-lying resonance state, a 1p%' neutron state unbound by 800 keV
[Wilc 75, Bark 77]. However, as will be discussed in Chapter 4, there is newer evidence

which calls into question the energy of this state as well as the possible existence of
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Reference San(Li1) (keV)
Thibaalt ef al, 1975 [Thib 75] 170 % 80
Wouters et al., 1988 [Wout 88] 320 + 120
Kobayashi et al., 1992 [Koba 92] 340 + 50

Table 2.1: Summary of existing measurements of the two-neutron separation energy
of NLi.

a lower-lying 2s3 state. The calculations of Bertsch and Esbensen have indicated
that the predicted 'Li binding energy is quite sensitive to the energy of the °Li 1p;
state, as illustrated in Figure 2.5. Very recent calculations performed by Thompson
and Zhukov [Thom 93a, Thom 93b, Zhuk 93] have included a 257 state as well as a
1p% state in the n—°Li interaction. Their results indicate that the inclusion of both
states, as well as the energies of these states, has profound effects on the predicted
1Li binding energy, as shown in Figure 2.6, as well as other observables. These issues

will be discussed in more detail in Chapter 5.

V Previous 'Li mass measurements

As discussed earlier in this chapter, the existing models of halo nuclei, and in partic-
ular 'Li, all predict a very sensitive dependence of the signature halo phenomena,
such as the halo radius and momentum distributions, on the binding energy of the
halo neutrons. For this reason, it is essential to the understanding of the structure
of M'Li and halo nuclei in general that the mass of 'Li be known as accurately as
possible. There is some uncertainty on the value of the 'Li mass, as can be seen in

Table 2.1, which lists all of the existing measurements.

In 1975, Thibault et al. [Thib 75] reported the first measurement of the mass of

1173, In their measurement, lithium ions were produced by 24 GeV protons incident
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Figure 2.5: [Bert 91] Sensitive dependence of ''Li binding energy on '°Li 1p} state
energy as predicted by Bertsch and Esbensen. The solid and dashed lines indicate
calculations assuming correlated and uncorrelated neutrons respectively. Both calcu-
lations assume the n-°Li system has only a single lp% state, the energy of which was

treated as a variable parameter.
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Figure 2.6: [Thom 93b] Dependence of 'Li binding energy on °Li 1p and 2s1 state
energies as predicted by Thompson and Zhukov. The ordinate is the predicted two-
neutron binding energy of !'Li. The input parameters of these models are the lp%
neutron resonance energy of the '°Li first excited state (the abscissa) and the 2s
resonance energy of the 1°Li ground state (shown with various plotting symbols). In
these calculations, two potentials were assumed for the n-°Li system, one for lp%
the interaction, and one for the 2s} interaction. Also shown in this figure are the
predicted results assuming the same potential for both interactions (ie. V; = V;).
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on iridium foils in a target—ion source. The ions were then accelerated by a DC voltage
through a series of slits and magnetic elements into a shielded counter. The *Li mass
was deduced by comparing the voltages necessary to transport °Li, the mass of which
is well known, and 'Li through identical trajectories of the optical system. In 1988,
Wouters et al. [Wout 88] measured the mass of ''Li nuclei produced from fragmen-
tation reactions of 800 MeV protons on a thorium target. The mass of the fragments
was determined using the TOFI spectrometer at LAMPF. The value frequently used
in theoretical calculations is the more recent result of Kobayashi et al. [Koba 92].
In their measurement, the 'Li mass was determined from the measured Q-value of
the pion double charge—exchange reaction 'B(x~,7+)!1Li. This work, however, has
never been accepted for publication, and the details of the measurement and partic-
ularly the sources of the uncertainty are not known. The substantial disagreement
between these measurements as well as the magnitude of their uncertainties limits
their usefulness in theoretical calculations. Chapter 3 contains a description of a
measurement of the 'Li mass that was performed at the National Superconducting

Cyclotron Laboratory in late 1992.




Chapter 3

The Mass of 11Li from the
14c(11B,11Li)140 Reaction

I Introduction

As indicated in the previous chapter, a central quantity to the understanding of the
structure of 'L is its binding energy. From the theoretical point of view, the current
state of knowledge of this quantity is unsatisfactory and presents a hindrance to devel-
opment of more accurate models. In September of 1992, the 1Li mass was measured
via the Q-value of the *C(11B,!Li)!*O reaction analyzed in the A1200 fragment sep-
arator at the NSCL. The details of this measurement are presented in this chapter.
A brief description of the A1200 and its operation as a spectrometer is presented in
section II. Section III contains details of the experimental procedures, including the
calibration of the spectrometer and collection of the production data. The analysis
of the experimental data is discussed in section IV. The analysis relied heavily on the
computer code RELMASS, a description of which is given in Appendix A. Particular
attention will also be paid to calibration of the A1200 dipole magnets. Finally, the

results of the measurement will be presented in section V.

24
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ITI Description of A1200

Brought online in 1991, the A1200 is a series of magnets and a standardized array
of detectors integrated into a device used primarily for the separation of radioactive
beams at the NSCL [Sher 91]. The device consists of four superconducting 22.5°
dipole bending magnets and several superconducting quadrupole focusing magnets
grouped into sets of two and three. Four room-temperature sextupole magnets are
also used to correct for optical aberrations. The layout of the magnets in the A1200,
which is located in the K1200 beamline immediately downstream of the K1200 cy-
clotron, is shown in Figure 3.1. The magnets are controlled, singly or in gangs, with
a computer program communicating with the magnet power supplies via ARCNET.
Accurate calibration of the magnetic fields versus the power supply current allows
easy manipulation of the magnetic fields, and hence the magnetic rigidity, of the
device. The dipole fields, the most critical values in determining the rigidity of the
device, are continuously monitored by eight NMR probes located in the four dipole

magnets — two probes per magnet, one for high fields and the other for weak fields.

In addition to the magnets, the A1200 also includes a standardized array of de-
tectors for use in analyzing filtered reaction products. This setup consists of a thin
plastic scintillator detector located at Image 1, four parallel-plate-avalanche-counters
(PPACs), with cathodes segmented to achieve position resolution in z and in y, lo-
cated in pairs at Image 2 and the Focal Plane, and a 10 cm plastic scintillator detector
located at the Focal Plane. Time-of-flight information is obtained, on a particle-by-
particle basis, from the fast signals of the plastic scintillator detectors located at
Image 1 and the Focal Plané. Tﬁe signal from the thick plastic scintillator at the Fo-
cal Plane is also used to obtain the total energy of the reaction products. The PPACs

provide position information for each fragment particle, and, when used in pairs, can
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Figure 3.1: [Sher 91] Schematic layout of the A1200. The device consists of four su-
perconducting 22.5° dipole bending magnets and several superconducting quadrupole
focusing magnets grouped into sets of two and three. Also used in experiments are
a standardized array of detectors (located at Image 1, Image 2 and the Final Image)
and several retractable platforms, located at several places throughout the device, for
holding other hardware such as targets, degrader wedges, and scintillator screens.
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provide information about the angle of a particle’s path off the central axis. This
standard setup is very frequently augmented by one or more energy loss detectors,
usually located at the Focal Plane. Examples of such detectors are 5x5 cm silicon
PIN diodes, silicon surface-barrier transmission detectors, and ion chambers. The
energy loss information from these detectors can be combined with the total energy
information or with the time-of-flight information from the plastic scintillator(s) to

obtain particle identification.

Typically, the A1200 is run in an achromatic optical mode. There are two such
modes, distinguished by the momentum resolving power of the mode and the angu-
lar acceptance of the device. The most commonly used optical mode is medium-
acceptance mode, in which the device subtends a solid angle of 0.8 mSr as seen from
the target. High-acceptance mode is functionally equivalent to medium-acceptance
mode except that the device subtends a solid angle of 4.3 mSr and the momentum
resolving power is only % that of medium-acceptance mode. This means that, while
high-acceptance mode can provide higher overall beam intensities than medium-
acceptance mode, due to its larger angular acceptance, its lower resolving power will
not provide fragment separation as fine as the medium-acceptance mode. Both of
these modes are achromatic, which means that all momentum components (i.e. frag-
ment species) are focused to the same point at the Focal Plane. In both of these
modes, Image 1 and Image 2 are dispersive, meaning that momentum components
are separated at those points. The dispersion is inverted in the bend—plane (i.e. the
high-rigidity and low-rigidity sides are flipped) at the midpoint of the device. This
inversion, located between the dipole pairs, which bend in opposite directions, al-
lows the dispersions of the dipole pairs to cancel each other out, and produces the
achromaticity of these modes. It is at these locations, particularly Image 2, that

detectors and aperture plates are placed to distinguish and filter reaction products.
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For the experiment described in this chapter, a new optical mode was developed by
B. M. Sherrill and J. Stetson at the NSCL. The chief requirements for this mode, la-
belled the “high-acceptance chromatic” mode or “spectrometer” mode, were twofold.
To overcome the low cross—section for ' Li production, as high an angular acceptance
as possible was needed; and, in order to use the device as a momentum spectrometer,
a dispersive (i.e. chromatic) image was needed at the Focal Plane. In this mode,
there are no images other than the dispersive one at the focal plane. The dispersion
is inverted inside the second dipole pair. The location of this single inversion allows
the dispersions of the dipole pairs to reinforce each other, thereby producing a disper-
sive image at the Focal Plane. Development of this mode involved extensive optical
calculations, performed by Stetson and Sherrill, as well as several experimental tests

of these calculations.

ITIT Description of experiment

The experiment was performed with an E/A = 32.137 £ 0.024 MeV, ''B%* beam from
the K1200 cyclotron, focused onto a self-supporting *C foil target, 0.450 mg/cm?
thick. The reaction products were analyzed with the A1200 fragment separator set
to a high-angular-acceptance chromatic mode as described in the previous section.
For this experiment, the A1200 detectors were, with the exception of those in the
Focal Plane, identical to those of the standard setup described earlier. The A1200
Focal Plane detectors consisted of one PPAC, a 0.5mm thick silicon position-sensitive
detector, which was located at the focal point of the device, and a 10 cm scintillating
plastic stopping detector. Redundant and unambiguous particle identification was
obtained by combining the energy loss signal from the silicon detector with the to-
tal energy signal from the plastic and with the time-of-flight information obtained

from the scintillator signal relative to the cyclotron rf. Position information at the
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dispersive focus was obtained from the silicon detector and was combined with posi-
tion information from the PPAC, located 50 cm upstream, to find the angle of each

particle’s trajectory.

I1i production reaction

The M Li nuclei were produced from the *C(!!B,!'Li)4O reaction. The experiment
consisted of, in addition to the calibration runs described below, two production runs
of approximately 50 hours each, separated by a period during which the beam was
refocused onto the target and the A1200 magnetic field settings were changed slightly
in order to observe the O excited state simultaneously with the ground state. The
cross section for this reaction was determined from the 149 'Li nuclei obtained in

both runs to be 24 + 2 nb/Sr at 0° in the laboratory frame.

The particle-identification (PID) spectrum from the first run, obtained by his-
togramming the energy loss (AE) signal from the silicon detector versus the time-
of-flight (TOF) information obtained from the 10 cm scintillator detector and the
cyclotron accelerating rf, is shown in Figure 3.2. The PID spectrum from the second
run has identical features. In addition to 'Li particles, 1°Be®* particles were seen in
the Focal Plane. In the notation used here, the 3+ indicates that the °Be nucleus
had a charge of +3e, as opposed to a 1°Be fully stripped of its electrons, which would
have a charge of +4e. These nuclei were produced in the *C(*!B,°Be)!®N reaction
and were used for calibration of the A1200, as described below. Several other nu-
clear species were also seen in the Focal Plane during these runs, and are labelled in
Figure 3.2. The extreme cleanliness of the PID spectrum is to a large part due to
the very high rigidity of the !!Li particles. Most species produced prolifically have a

much lower rigidity and are not transported to the Focal Plane.

The momentum spectra for the first and second production runs are shown in
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Figure 3.2: Particle-identification spectrum from 'Li production run. The spectrum
was obtained by histogramming AE and TOF information taken from the silicon
detector and the thick plastic scintillator detector respectively. In addition to !'Li
nuclei, 1°Be3+ particles, which were used for calibration of the A1200, and several
other nuclei were observed as well.
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the bottom part of Figure 3.3. For both runs, there is literally no background in the
spectra. In addition to the primary peaks, corresponding to the ground states of both
U1 and 0, another peak, corresponding to unresolved states in 1*O near 6.3 MeV
excitation energy, is seen in the data from the second run. While it is possible that
an excited state of 11Li could also be embedded in this peak, it is clear from the data

that there is no indication of such a state at higher excitation energies.

Calibration reactions

In addition to data from the !'Li production reaction, data were also collected from
the C(1'B,'°Be)'®N reaction simultaneous to the production data. This reaction,
which has a well-known Q-value, was used to calibrate the A1200. The calibration
momentum spectra from both runs are shown in the top part of Figure 3.3. The
ground state and unresolved 5.3 MeV doublet states of 1°>N were used as the primary
calibration points. Also seen in the calibration spectra are a cluster of N and
10Be excited states, corresponding to a total excitation energy between 8.0 and 10.0
MeV, and the 3.37 MeV first excited state of 1°Be, which shows marked kinematic
broadening due to the recoil from the isotropic in-flight gamma decay. Also studied
was the C(*B,°Li)!®0 reaction, the data from which was combined, as described in

the next section, with the calibration data to determine the beam energy.

IV  Analysis

Analysis of the experimental data consisted of a multi-step process that culminated
in two experimental measurements of the Q-value of the C(1B,!Li)0 reaction,
from which the mass, or equivalently, the two-neutron separation energy, of 'Li
was deduced. This process, described below, was greatly simplified by the computer

code RELMASS, written by Toshiyuki Kubo with suggestions from Ed Kashy. A
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Figure 3.3: Momentum spectra from 1!Li production and calibration runs. The data
from the first and second runs are shown in the left and right portions of the figure, re-
spectively. The momentum spectra from the reaction *C(1!B,!°Be3*)!*N* are shown
in the top part of the figure. The ground state and unresolved 5.3 MeV doublet states
of 13N were used as the primary calibration points. Other features in the calibration
spectra are a cluster of >N and °Be excited states, and the 3.37 MeV first excited
state of 1°Be. The momentum spectra collected from the reaction **C(!'B,!Li)!*O
are shown in the bottom part of the figure. It is important to note that both the
calibration and !'Li spectra were collected simultaneously.
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description of the code’s operation is given in Appendix A.

The first run was analyzed first. For a given beam energy, the kinetic energy of
the 1°Be ejectile from the *C(11B,!°Be)'®N calibration reaction can be found, after
including energy loss effects of the beam and ejectile in the target material, from the
well-known Q-value of the reaction. The magnetic rigidity, defined for a particle
with charge @ and momentum p moving in a uniform magnetic field as the product
of bend radius and field strength, can be found by balancing the Lorentz force with

the centrifugal force

Bp = (3.1)

Ol

From this definition, it is clear that the ejectile particle’s magnetic rigidity can also
be found from its kinetic energy. For a given A1200 magnetic field, particles with
different momenta have different bend radii and arrive at different positions in the
Focal Plane. The data from the C(!1B,°Be)'®N reaction were used to calibrate the
focal plane position as a linear function of bend radius, obtained from the known
rigidities and magnetic field. Since the radius—position (p vs ) line is a property of
the spectrometer, independent of the reactions studied, all reaction products must lie

on this line.

Since the MC(*B,°Li)'%0 reaction also has a well-known Q-value, the beam en-
ergy uniquely determines the rigidity of the °Li ejectile. Utilizing this fact, the beam
energy was obtained by requiring that the measured position and the calculated bend
radius of the °Li particles lie on the same calibration line as the two states from the
14C(11B,1%Be)!5N reaction, as shown in Figure 3.4. The beam energy determined in
this manner was E/A = 32.137 &+ 0.024 MeV. The uncertainty of the beam energy re-
flects the statistical uncertainty of the position measurement of the °Li ejectiles. From

the calibration curve, the ''Li rigidity can then be determined from its measured Fo-
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cal Plane position. The rigidity can then be combined with the beam energy to obtain
the measured Q-value for the production reaction, from which can be deduced the

U141 mass.

The second run was analyzed in a manner similar to that described above. Before
the second run, the beam was refocused onto the target, and the magnetic fields of the
A1200 were decreased slightly. Both of these actions affected the calibration curve.
As the magnetic field was decreased, the momentum spectra shifted to the right on
the Focal Plane, as seen in Figure 3.3, with the result that only one calibration peak,
corresponding to the 5.3 MeV doublet in N, remained on the Focal Plane. When
the beam was refocused onto the target, the position of the beam spot was changed.
This change would affect the offset of the calibration line, but not the slope, which
reflects a property of the A1200 magnets and optics, namely the degree to which a
change in a particle’s bend radius changes the particle’s Focal Plane position. Thus,
the calibration line for the second run was obtained by keeping the same slope as
before, and determining the new offset from the single calibration peak. This new
calibration curve was then used to determine the Q-value of the C(*!B,'Li)*O

reaction for the second run.

Central to all A1200 measurements is knowledge of the dipole magnetic fields,
for these determine the magnetic rigidity of the particles which arrive at the Focal
Plane. The dipole fields are measured by NMR probes in each of the magnets. These
probes, however, measure the field at only one point in each dipole magnet, whereas,
in actuality, the desired quantity is the average field over the trajectory of a given
particle. The difference between this effective field and the field measured by the
NMR probe is typically less than 0.1% and for most purposes, such as the production
of a radioactive beam or the measurement of a fragment momentum distribution, is

negligible. However, for the measurement reported here, this difference, which varies
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Figure 3.4: p vs z calibration of A1200 Focal Plane for first ! Li production run. A line
was fitted to the two points from the *C(1!B,°Be)!*N reaction, shown as diamonds
in the figure. The beam energy was determined by requiring that the 1*C(*!B,%Li)¢O
points, shown as squares, lie on the calibration line. The error bars for the points are
approximately one fourth the size of the symbols used for plotting.
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with the strength of the field and is attributable to fringe field effects and to the

magnetic properties of the iron from which the magnets are made, is quite important.

The dependence of the effective field Beg on the field as measured by the NMR
probes Bymr was measured using two techniques. The following discussion assumes
that the two quantities, Beg and Bymr, are related by a correction term n which is

dependent on Bnmr

Bes = Banmr [1 + U(BNMR)] . (3.2)

The first technique involved the calibration of the S320 magnetic spectrograph, de-
scribed in the next chapter, using the momentum-matching method detailed in
[Nole 74]. A molecular beam (H-He)** and its constituent nuclei, H'* and He?*,
obtained by fragmenting the molecular beam on a thin aluminum foil located at the
target position of the A1200, were then transported through the A1200 and into the
S$320. The A1200 magnets were then calibrated by comparing the rigidities of the par-
ticles, as measured with the $320, with the A1200 magnetic fields Bnmr, 2s measured
by the NMR probes in the A1200 dipoles. The three data points obtained in this way
are shown as diamonds in Figure 3.5. In the second technique, a beam of 23¥U3%* with
energy E/A = 20.08 & 0.02 MeV was focused onto a thin aluminum foil at the target
position of the A1200. By interacting with the target material, the uranium particles
lost electrons and emerged with a broad distribution of charge states which were then
transported through the A1200. The A1200 magnets were calibrated by comparing
the known rigidities of these charge states with the measured Bnmr values. The data
points thus obtained are shown as squares in Figure 3.5. A polynomial curve was
fitted to the data and is shown as the solid line in the figure. Also indicated, by
the vertical lines, is the range of fields over which the 'Li mass measurement was

performed. It is seen that the effective magnetic field has a weak dependence on the
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NMR value in this region.

V Results

The deduced values for the two-neutron separation energy of 'Li from the first
and second runs are Sy, (1'Li) = 301 &+ 24 keV and S;,(*'Li) = 288 £ 26 keV respec-
tively. The uncertainties in these values reflect statistical uncertainties in deter-
mination of the centroids of the 'Li peaks. The average of these two values is
Son(MLi) = 295 4 18 keV. The uncertainty here is also only statistical. To take into
account the uncertainty in the beam energy, the data were re-analyzed with the
incident energy increased by one sigma. It was found that this contributed an un-
certainty to the 'Li binding energy of 23 keV. Uncertainty in the calibration of the

A1200 dipole fields was also found to have an 11 keV contribution.

There is an additional contribution from the p vs z calibration due to uncertainty
about the relative strengths with which the states of the unresolved *N doublet were
populated. The two states have excitation energies of 5.270 and 5.299 MeV. In the
analysis, it was assumed that these states were populated equally, and that the peak
corresponded to the average excitation energy of 5.285 MeV. The contribution to
the final uncertainty from this assumption, obtained by re-analyzing the data twice
assuming 100% population of one or the other of the doublet states, was found to be
15 keV. The above analyses were performed assuming the ejectiles were detected at
0° in the laboratory frame. Although the A1200 subtends a finite solid angle in the
forward cone centered about 0° in the laboratory frame, and therefore the average
laboratory angle of the reaction products is not 0°, it was found that this made a

negligible difference in the final result.

The individual contributions to the overall uncertainty are listed in Table 3.1.
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Figure 3.5: Calibration of A1200 dipole magnets. The effective A1200 mag-
netic field B.g is related to the field Bymp as measured by the NMR probes by
Bes = (1 + 7)Bnmr- The diamonds are those data points obtained by comparing
Bnmr with rigidities as measured with the S320. The squares are those data points
obtained from rigidity measurements of uranium charge states. The solid curve is a
polynomial fit to the data. The range of fields over which the 'Li measurement was
performed is indicated by the vertical lines. The central radius of the A1200 is 3.104
meters. The error bars for the points are approximately one tenth the size of the
symbols used for plotting.
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Source of uncertainty o (keV)
statistics 18
beam energy 23
magnetic field correction 11
15N excited state population in calibration 15
total uncertainty 35

Table 3.1: Sources of experimental uncertainty in !'Li mass measurement. The four
uncertainties listed are added in quadrature to yield the total uncertainty.

When these values are added in quadrature to obtain the final uncertainty, the re-
sulting two-neutron separation energy for 'Li is So,(*!Li) = 295 + 35 keV. The cor-
responding Q-value for the *C(1*B,!'Li)*0 reaction is —37.120 + 0.035 MeV. As can
be seen in Table 3.2 this result is in good agreement with the previous measurements
while substantially lowering the uncertainty. Using the existing four measurements,
the weighted best values for the ! Li mass excess and two-neutron separation energy
are 40.802 + 0.026 MeV and 295 * 26 keV respectively. This places the accuracy of
these quantities, which are essential to the understanding of the structure of 'Li and
halo nuclei in general, on a level high enough to be used with confidence in nuclear

halo models.
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Reference San(1'L1) (keV)
Thibault et al., 1975 [Thib 75] 170 £ 80
Wouters et al., 1988 [Wout 88] 320 + 120
Kobayashi et al., 1992 [Koba 92] 340 + 50

Present work 295 + 35

Average value 295 + 26

Table 3.2: Summary of existing measurements of the two-neutron separation energy
of 1'Li, including the present work. Also listed is the weighted average of the four
existing measurements.




Chapter 4

Structure Studies of 10Li

I Introduction

All of the three-body models that have been used to describe '!'Li assume some
form for the n-°Li interaction. Until very recently, it was believed that this system
only has one low-lying resonance state, a lp% neutron state unbound by 800 keV.
However, new evidence calls into question the energy of this state and also raises the
possibility that a 23% state exists at a much lower energy. Calculations performed by
Bertsch and Esbensen[Bert 91] and Thompson and Zhukov [Thom 93a, Thom 93b,
Zhuk 93] have shown that the predicted ''Li binding energy is very sensitive to the
number of low-lying 1°Li states as well as their energies and spectroscopic structures.
Thus, a thorough understanding of the structure of !°Li will shed a great deal of
light on the structure of 'Li. A review of the existing measurements of the °Li
ground and/or first excited states is presented in section II. In May of 1992, the
low-lying structure of °Li was measured from the momentum spectra and Q-value
of the MB("Li,®B)!Li reaction analyzed with the S320 magnetic spectrometer at
the NSCL. Sections IIlI and IV 'éonta,in a description- of the S320 and the details
of the experimental procedures, respectively. The analysis of the experimental data

is discussed in section V. Part of the analysis consisted of determination of the
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shapes of the '°Li neutron resonances. The theoretical assumptions and computer
codes used in these calculations are presented in Appendix B. The "'B("Li,®B)'°Li
reaction, populating the low-lying states of 1°Li was found to have a cross section
of approximately 9.5 4+ 0.7 x¢b/Sr at 5° in the laboratory frame. Such a low cross
section resulted in very poor statistics (i.e. less than 15 events per channel) in.the
collected momentum spectrum. For this reason, the standard least-squares fitting
technique, the statistical assumptions for which rely on a large number of events per
channel, was inapplicable to the data. A more general maximum-likelihood fitting
technique was employed. This technique, and the computer cod¢ through which it
was implemented, is presented in Appendix C. The results of this analysis and the

conclusions that can be drawn from the data are discussed in section VI.

II History of °Li

If the neutron configuration of 1°Li is taken to be that of other N = 7 nuclei, such as
1Be and 2B, then the lowest states should have 6 neutrons in their lowest shell model
orbits and the seventh neutron in the 1p~§- or the 23% orbits as illustrated in Figure 4.1.
The combination of these two possible neutron orbits‘with the 1p% orbit occupied by
the third proton in 'Li yields four possible J™ values for the lowest states of 1°Li:
1*,17, 2%, and 2. In the first measurement of the °Li neutron separation energy,
Wilcox et al.[Wilc 75] determined the energy of 8B in coincidence with °Li (from the
breakup of '°Li) produced in the reaction *Be(*Be,®B)!°Li at 121 MeV. The ®B ejec-
tile and the °Li recoil daughter were observed in semiconductor detector telescopes
positioned respectively at 14° and approximately 10° in the laboratory and approxi-
mately 50 cm from the target. Their energy spectrum, shown in Figure 4.2, exhibits a
pronounced peak corresponding to a neutron-unbound state with separation energy

S, = —0.80 + 0.25 MeV and width I'.,, = 1.2 + 0.3 MeV. It was assumed that this
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Figure 4.1: Shell structure of the N = 7 nuclei 'Be and ?B. The 'Be ground state
has the seventh neutron in the 2s1 orbit. The '?B ground and first excited states (as
well as the 'Be first excited state) have the seventh neutron in the 1p; orbit.
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Figure 4.2: [Wilc 75| Energy spectra of ®B from the !'2C(°Be,®B)®B and
°Be(°Be,®B)'°Li reactions at E/A =13.4 MeV and 6,,, = 14°. a) Calibration spec-
trum of B from the 2C(°Be,®B)**B reaction. b) and c) Energy spectra of 3B from
the ?Be(°Be,®B)!°Li reaction, singly and in coincidence with °Li from the breakup
of the recoiling °Li. The coincidence spectrum shows a peak corresponding to a
neutron-unbound state with separation energy S, = —0.80 + 0.25 MeV and width
Tem = 1.2 £ 0.3 MeV.
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was the ground state of °Li. Soon thereafter, Barker and Hickey [Bark 77] argued,
from a systematic study of the energies and parities of excited states of known N =7
nuclei, that the °Li ground state should be a v2s] state which is narrow and much
less unbound to neutron decay. They further suggested that the state observed by

Wilcox et al. was an excited ulp% state.

In 1990, Amelin et al. measured the inclusive spectrum of protons produced in
absorption of 7~ by !B nuclei, shown in Figure 4.3, and reported the observation of
a state in °Li unbound to neutron decay by approximately 150 keV [Amel 90]. In
late 1992, Kryger et al. analyzed the relative velocity spectrum of neutrons collected
in coincidence with °Li fragments from the decay of 1°Li [Kryg 93]. Their spectrum is
shown in Figure 4.4. The dotted curve in the figure is the expected spectrum from a
‘thermal neutron background. The solid curve represents the background added to the
expected line shape from a low-energy decay very similar to that reported by Amelin
et al.. It is important to note that while this curve fits the data quite well, such a
peak in the relative velocity spectrum only indicates the ‘presence of a very low—energy
neutron decay which could either be a low-lying 1°Li state decaying to the °Li ground
state, or a 1°Li excited state at S, ~ —2.5 MeV decaying to the first excited state of
9Li. The dashed curve is the expected spectrum from a broad state unbound by 800
keV, similar to that reported by Wilcox and collaborators. The two—peaked structure
in this calculated spectrum arises from the fact that, as the °Li decays in flight, the
acceptance defined by the experimental apparatus allows detection of only those n—
SLi eveI;ts where the decay is parallel or antiparallel to the beam axis. The absence
of such a two-peaked structure in the data fails to corroborate the observation of
Wilcox and collaborators of a broad '°Li state unbound by 800 keV. An observation
similar to that of Kryger et al. has also been reported by Kobayashi and collaborators

[Koba 93].
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Figure 4.3: [Amel 90] Energy spectrum of protons from the reaction ''B(x~,p)"Li.
The dashed curve is a theoretical calculation, a Breit-Wigner form folded with the
resolution of the spectrometer, of the shape of a low-lying neutron resonance. The
solid curve is a sum of the dotted curve and a three-body phase space background, also
folded with the spectrometer resolution. The peak corresponds to a neutron-unbound
state with separation energy S, = —0.15 £ 0.15 MeV and widthLcm < 0.4 MeV.
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Figure 4.4: [Kryg 93] Relative velocity spectrum of neutrons collected in coincidence
with °Li fragments from the decay of °Li. {The dotted curve in the figure is the
expected spectrum from a thermal neutron background. The solid curve represents
the background added to the expected line shape fr low-energy state unbound
by approximately 150 keV. The dashed curve is the expected spectrum from a broad
state unbound by 800 keV.
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Bohlen and collaborators have recently reported on Q-value measurements of the
9Be(13C,'2N)'°Li and BC(*C,"F)'°Li reactions at energies of E/A =25.8 MeV énd
E/A =24.1 MeV, respectively [Bohl 93]. The data from these reactions, collected
with the Q3D magnetic spectrograph at the Hahn-Meitner-Institut, are shown in
Figures 4.5 and 4.6. Both spectra contain broad peaks which Bohlen et al. claim
consist of two 1°Li states: one, the ground state, neutron—unbound by 0.420 £ 0.050
MeV, and the other, the first excited state, unbound by 0.800 £ 0.094 MeV. Arguing
from reaction systematics, the authors further assert that both states are lp% neutron
states with J™ values of 11 for the ground state and 2% for the excited state. Bohlen
et al. speculate that Wilcox and collaborators observed the first excited state and

not the ground state.

The experimental results published to date, summarized in Table 4.2, reflect a
substantial disagreement concerning the energy and spectroscopic nature of the 103
ground and first excited states. It seems fairly certain that the state observed by
Wilcox and collaborators is not the '°Li ground state. Several groups [Amel 90,
Kryg 93, Koba 93] have presented evidence for a weakly unbound '°Li ground state.
The existence of a weakly unbound 1/25% ground state would be in agreement with the
suggestions of Barker and Hickey, as well as the shell model predictions of Warburton
and Brown[Brow 92, Warb 92]; these shell model calculations, however, also predict
that the ulp% first excited state should have an excitation energy of only about 100
keV. Also supporting the existence of this state is the observation by Abramovich
et al.[Abra 73] of a T = 2 state in °Be which, with Coulomb energy systematics,
gives S, = —60 keV for 1°Li. Bohlen and collaborators, however, claim that the *°Li
ground state is neither weakly unbound nor a 1/23% state. In the work reported in the
following sections, the low-lying structure of '°Li was deduced from the momentum

spectra and Q-value of the 1'B("Li,®B)'°Li reaction measured with the S320 magnetic
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Figure 4.5: [Bohl 93] Energy spectrum of >N from the *Be(!3C,!?N)!°Li reaction at
E/A =25.8 MeV and 6, = 3.8°. The spectrum near low excitation energy contains,
in addition to a peak from a target contaminant, a broad peak which the authors
claim comprises two '°Li states. The peaks are fitted with symmetric line shapes, the
widths of which are determined from R-matrix calculations.
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Figure 4.6: [Bohl 93] Energy spectrum of !’F from the *C(**C,}"F)'°Li reaction at
E/A =24.1 MeV and 6y, = 5.4°. The spectrum contains a very broad peak which
the authors assert consists of the same two !°Li states as in the previous figure, and
an excited state (Eex = 0.5 MeV) of 1"F. The peaks are fitted with symmetric line
shapes, the widths of which are determined from R-matrix calculations.
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spectrometer at the NSCL.

ITIT Description of S320

The 5320 is a QQDMS (Quadrupole — Quadrupole - Dipole - Multipole - Sextupole;
where the Multipole is an octupole) spectrometer used for nuclear reaction analysis
and spectroscopy [Plic 92, Sher 83]. The separating element of the $320 is a 34.4°
bending dipole magnet. The field intensities of the magnets have been accurately
(‘;alibrated versus the power supply currents and are controlled via ARCNET in a
manner similar to that employed with the A1200. The dipole field is continuously
monitored by three probes located at one position in the dipole magnet, each probe
sensitive to a different range of field strengths. The spectrometer, depicted in Fig-
ure 4.7, is located in the N1 vault at the NSCL and is mounted on a carriage that
pivots about the target location to allow measurements at laboratory angles from
—4° to 55°. The spectrometer subtends a solid angle that is adjustable via aperture
plates to a maximum of 70 mSr. The detector box is removable, thereby allowing easy
reconfiguration of the detector setup. There is, however, a standard array of particle
detectors that is used for most experiments. These detectors can be configured to
study fast, light ions (“light-ion mode”) or slow, heavy ions (“heavy-ion mode”).
For the experiment described here, the detectors were run in light-ion mode. In this
mode, the standard configuration consists of a stack of five detectors: a position—
sensitive single wire proportional chamber (SWPC), located at the focal position of
the spectrometer, followed 'by two ionization chambers (IC), another SWPC, and a
large composite block of scintillating plastic. The SWPC’s are both 0.5 inches thick
and the IC’s are both 6 inches thick. All four detectors operate in the same gas
volume. The scintillator block consists of a thin (0.02 inches) sheet of fast scintillator

followed by a 10 cm block of slow scintillator. The light output from the scintillator
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Figure 4.7: [Plic 92] Schematic layout of S320 magnetic spectrometer. the device
consists of two quadrupole focusing magnets, a 34.4° bending dipole magnet, an
octupole magnet (not labelled in figure, but located just after the dipole), and a
sextupole magnet. While the detector box is removable to allow easy reconfiguration
of the detector setup, there is a standard detector assembly that is used for most
experiments. The entire spectrometer is mounted on a carriage that pivots about the
target location in the scattering chamber to allow measurements at laboratory angles

from —4° to 55°.



53

is collected by two phototubes. The SWPC’s provide position information and, when
used in pairs, can also provide information about a particle’s angle of entry into the
focal plane. Redundant energy loss information is obtained from the two IC’s and
total energy information is obtained from the light output of the scintillator block.
Time-of-flight information is obtained from the fast signal from the scintillator and
the cyclotron rf. Particle identification is found on a particle-by-particle basis by

combining energy loss and time-of-flight information.

7

IV Description of experiment

The experiment was performed with an E/A = 18.772 £ 0.054 MeV, "Li'* beam
from the K1200 cyclotron. For the production runs, the beam was transported from
the K1200, through the A1200, which acted as a passive beamline, and focused onto
a 0.125 mg/cm? thick self-supporting !B foil target, located at the target position
of the $320. A '2C (natural) target, 0.56 mg/cm? thick, was used for the calibration
runs. The reaction products were analyzed with the S320 magnetic spectrograph with
an overall resolution (FWHM) of 0.23 MeV. The focal plane detectors were config-
ured in the standard light-ion mode described above. The energy loss signal from
the ionization chambers and the time-of-flight, taken from the scintillator signal rela-
tive to the cyclotron rf, provided unambiguous particle identification (PID). Position
information was obtained from the front wire chamber, located at the focus of the

spectrometer.

01,i production reaction

The 1°Li nuclei were produced from the 'B("Li,®B)'°Li reaction. Data were collected
at laboratory angles of 5.23° and 3.73° for approximately eight and ten hours, respec-

tively. The PID spectrum from the 5.23° data, obtained from the energy loss in the




o4

first ion chamber and the time-of-flight information from the scintillator versus the
cyclotron rf, is shown in Figure 4.8. The PID spectrum from the 3.73° data has iden-
tical features. In addition to ®B particles, several other nuclei were observed and are
labelled in the figure. The momentum spectrum for the 5.23° measurement is shown
in the bottom portion of Figure 4.9. The most striking feature of this spectrum is a
broad peak centered near channel 260, corresponding to a neutron separation energy
of approximately —500 keV. Also notable is a weak narrow peak in the spectrum at
a neutron separation energy close to zero. While this is not as well pronounced as
the broad peak, it does not appear to correspond to any likely target contaminants.
As discussed earlier, it is expected that the 1°Li ground state might have the valence
neutron in the 23% orbit and the first excited state could have a lp% valence neutron.
Since an s-wave neutron resonance at S, < —500 keV is expected to be too broad to
observe, the broad peak in the data is believed to correspond to one or more p-wave
resonances, while the narrower, less unbound peak could be an s-wave resonance
belonging to the 1°Li ground state. The cross section for the reaction at 5.23° to
populate these peaks was measured to be 9.5 £ 0.7 ub/Sr. The momentum spectrum
for the 3.73° run is shown in Figure 4.10. During this portion of the experiment,
the beam current from the K1200 cyclotron had diminished considerably from ap-
proximately 110 nA, as was measured during the 5.23° run, to approximately 75 nA.
This, combined with a smaller solid angle, due to a smaller aperture placed on the
spectrometer entrance to reduce background at the more forward angle, resulted in
very poor statistics for this spectrum. For this reason, the 3.73° data are not included

in the subsequent analysis.
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Figure 4.8: Particle-identification spectrum from 101 production run at i, = 5.23°.
The spectrum was obtained by histogramming AE and TOF information taken from
the first ion chamber and the thick plastic scintillator respectively. Several nuclear
species other than 8B were also observed.
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Figure 4.8: Particle-identification spectrum from !°Li production run at i, = 5.23°.
The spectrum was obtained by histogramming AE and TOF information taken from
the first ion chamber and the thick plastic scintillator respectively. Several nuclear
species other than 8B were also observed.
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Figure 4.9: Momentum spectra from !°Li production and calibration runs. Only
the 5.23° data are shown here. The top part of the figure contains the momentum
spectrum from the 2C("Li,®B)"!Be reaction. The 1.8 MeV !'Be excited state was
used as a primary calibration point. The bottom part of the figure contains the
momentum spectrum from the 1'B(Li,®B)'°Li reaction. Both spectra were collected
at the same spectrometer field setting.
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Figure 4.10: Momentum spectrum from °Li production run at i, = 3.73°. Dimin-
ished beam current and spectrometer solid angle at this angle resulted in the very
poor statistics evident in this spectrum. The data shown here were not included in
the final analysis and mass determination of °Li.
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Calibration reactions

Momentum spectra were collected for the 2C("Li,®B)!!Be reaction, which has a well--

known Q-value, at the same angles and field settings as the production measurements.
The spectrum collected at a laboratory angle of 5.23° is shown in the top part of
Figure 4.9. The ground and first excited states of "'Be are not resolved; however,
the 1.778 MeV second excited state of 'Be is strongly populated. The last state
was used as a primary calibration point. Additional calibration points were also
obtained by setting the spectrometer magnetic elements to step elastically scattered

beam particles across the active area of the detector array.

V  Analysis

Analysis of the data was accomplished utilizing the same procedure as described in
Section IV of Chapter 4, but without the benefit of the computer code RELMASS.
The beam energy,'determined from the A1200 magnetic dipole fields necessary to
transport the beam through the center of the device, was E/A = 18.772 £ 0.054
MeV. The uncertainty of the beam energy reflects an uncertainty in the average of
the NMR readings from the A1200 dipoles. The S$320 spectrometer was calibrated
by studying two reactions. The first was the 2C("Li,”Li)!2C reaction populating
the 12C ground state (i.e. elastically scattered beam) and 4.44 MeV excited state.
Both states have well-known Q-values. Several runs were taken with this reaction
at different spectrometer field settings so as to step the peaks from these two states
across the focal plane. Thevrigidities of the "Li ejectile are easily calculated, and
were used in conjunction with the known spectrometer fields and measured focal
plane positions to amass a set of (p,z) points. The second calibration reaction was

12C("Li,®B)'!Be, the data for which are shown in the top part of Figure 4.9. Since
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the ground and 0.32 MeV first excited state of *'Be are not resolved, the 1.778 MeV
second excited state was used to provide an additional {p,z) point. A second order
polynomial was fitted to this dataset and served as the focal plane calibration. This
calibration curve was then used to deduce the Q-values of the states seen in the
UB(7Li,®B)'°Li production reaction. To a given channel in the momentum spectrum
from this reaction (bottom part of Figure 4.9) can be assigned a rigidity for the *B
ejectile particle. This rigidity is then used to find a Q-value and hence a mass for
1075, Thus, a one-to-one correspondence was determined between channel number
and S,('°Li), the neutron separation energy of °Li. It is known that the ground
and 0.32 MeV first excited states of 'Be are both negligibly narrow, while the 1.778
MeV second excited state has a width of 100 keV. This information, combined with
the measured width of the last state and the fact that the first two states were not

resolved, was used to estimate the (FWHM) resolution of the spectrometer to be 230

keV.

To ascertain the nature and location of the peaks in the °Li data, the spectrum
was fitted with a multiparameter function which consisted of several components,
the first of which was a constant background. Other components were one or more
p- or s—wave neutron resonances. For these, scattering calculations were performed
to estimate their widths and line shapes. Details of these calculation are given in
Appendix B. It was found that 23% and lp% states with resonance energies below
100 keV were significantly narrower than the 230 keV device resolution. For such
states, the functional form used in the fitting was taken to be a Lorentzian with I =
230 keV. At higher energies, s—wave resonance widths increased extremely rapidly
to approximately 2 MeV at a neutron energy of 500 keV. The widths of p-wave
resonances exhibited a more gradual increase with energy. Thus, s—waves above 100

keV resonance energy, calculated to be too broad to observe, were not considered in
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the fitting. For p-waves, the functional forms used in the fitting were parametrizations
of the calculated line shapes. Finally, a 3-body phase space background, attributable
to those reactions which directly produce the 8B-n-°Li final state, was included in the
fitting. The explicit form for this phase space contribution, as a function of the center—
of-mass momentum of one of the three final particles, is given in [Bloc 56]. To be
applicable to the fitting of the data, the functional form given had to be transformed
into the laboratory frame and the laboratory momentum of the ®B ejectile had to be
expressed in terms of position in the S320 focal plane (i.e. channel number). This
procedure was unfeasable analytically and was done numerically. However, it was
found that the resulting function could be parametrized to an accuracy of 0.03% with
the expression for the uppér—right quadrant of an ellipse

do3pody (SB) - { -Avl - (%)2 if 2 < Zena (4.1)

dz 0 otherwise.

In this expression, z is the position of the ®B, Zena is the position corresponding to
the kinematic endpoint, and z, is a parameter determined by fitting the expression
to the calculated functional form. The parameter A is an arbitrary scaling factor and

is treated as a free parameter in the fitting of the '°Li data.

Because the statistics in the 'B("Li,®B)!°Li production reaction are so low, the
standard least-squares fitting technique was unsuitable. A more general maximum-
likelihood fitting technique was used to treat the data. This technique, presented
in Appendix C, employs a figure of merit £ which is similar to x? in that it is a
measure of the goodness—of-fit, and that its minimization is the objective of the
fitting procedure. However, its analytical behavior is not as well known as that of the
x? statistic. More specifically, using L it is possible to compare fits with two different
functional models and to determine whether one fit is better than the other; but it

is not possible to assign to a given value of £ an exact probability analogous to the
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chi-square distribution as described in [Pres 92].

VI Results

The best fit to the data was obtained with, in addition to a constant background and
a three-body phase space component, a single 1p1 neutron resonance at S,('°Li) =
—538 £ 32 keV and a narrow neutron resonance at S,(°Li) > —100 keV. This
fit, shown with a solid line in Figure 4.11, yielded a figure of merit £ = 106. It
was found that £ was insensitive to the location of the narrow resonance between
0 and approximately 70 keV neutron energy. Thus, it is only possible to state with
confidence that the lower state corresponds to a neutron separation energy greater
than —100 keV. A fit was also performed in which the only neutron state was a single
p-wave. The resulting state had a neutron separation energy of S,(*°Li) = —505
+ 33 keV. The figure of merit £ for this fit, which is shown as the dashed line in
Figure 4.11, was 123. A probability cannot be assigned to a given value of £ for a
fit with a certain number of degrees of freedom, and therefore an exact quantitative
comparison between these two models cannot be made. However, further tests with
the fitting procedure have shown that, while the model with the narrow resonance
has one more fit parameter and hence one less statistical degree of freedom than
the model without the narrow resonance, this difference in the number of degrees of
freedom of the two models is not sufficient to account for the difference in the values
of L. This effect was explored by holding fixed the fit parameters for the two-peak
model and increasing the number of channels over which the figure of merit £ was
calculated. It was found that in order to increase £ from 106 to 123, ten additional
channels (i.e. statistical degrees of freedom) were necessary. This indicates that the
best fit was obtained with one p-wave resonance and one low-lying narrow resonance.

Because the widths of low—energy s- and p—waves are much narrower than the device
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Figure 4.11: Theoretical models fitted to the collected spectrum from the reaction
UB("Li,®B)'°Li at 6. = 5.23°. The line shape for the broad peak is obtained from
resonance calculations of a p-wave neutron. The narrow state is taken to be an s-wave
neutron state, the line shape of which is assumed to be a Lorentzian with width 230
keV. The details of the resonance calculations and the maximum-likelihood fitting
procedure are given in Appendices B and C, respectively. The best fit, shown with the
solid line, was obtained with one p-wave resonance, one s-wave resonance, a 3-body
background, and a constant background. The dashed line is the fit obtained with
one p-wave, a 3-body background, and a constant background. The two background
terms had similar magnitudes in both models, and their sum is shown with the dotted
line.
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Source of uncertainty o (keV)
beam energy 45
spectrometer angle 27
target thicknesses 6
total nonstatistical uncertainty 53

Table 4.1: Sources of nonstatistical experimental uncertainty in '°Li mass measure-
ment. The three uncertainties listed are added in quadrature to yield the total non-
statistical uncertainty, which is further added in quadrature with the statistical un-
certainties from the fitting procedure.

resolution, it is not possible to determine the spectroscopic nature of this lower state.

The uncertainties specified above reflect only statistical uncertainties from the
fitting procedure. Other sources of uncertainty were experimental in nature. The
data were re-analyzed with the beam energy increased by one sigma; thus determined,
the contribution to the overall uncertainty from the beam energy was 45 keV. The
spectrometer angle was known to within 0.05°, contributing an additional 27 keV
to the final uncertainty. Finally, the thicknesses of the production and calibration
targets were determined from beam energy-loss to within 1%, yielding an additional
6 keV in the final uncertainty. These contributions, which are listed in Table 4.1,
are added in quadrature to yield the total nonstatistical uncertainty, which is further
added in quadrature with the statistical uncertainties from the fitting procedure. The
best interpretation of the data, therefore, indicates that °Li has a lp% neutron state
unbound to neutron decay by 538 + 62 keV and a ground state, either a lp% ora 23%
neutron state, unbound by less than 100 keV. The 1°Li mass excesses for these states
are 33.563 + 0.062 MeV and less than 33.125 MeV, respectively. The Q-values for
the 1'B("Li,®B)!°Li reaction to populate these states are —32.908 + 0.062 MeV and

greater than —32.471 MeV, respectively. The width of the ground state is known to
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S, (MeV) T (MeV) Identification

Wilcox et al. [Wilc 75] —0.80 £0.25 1.2 + 0.3 g.s.

Amelin et al. [Amel 90] —0.15 £ 0.15 <04 s, gs.

Kryger et al. [Kryg 93] > —0.150r g.s.

~ —2.5

Bohlen et al. [Bohl 93] —0.42 +0.05 0.15 & 0.07 P, &.s.
—0.80 £+ 0.06 0.30 £ 0.10 p%

Present work > —0.10 < 0.23 g.s.
—0.54 £ 0.06 0.36 £ 0.02 p-;—

Table 4.2: Summary of experimental data on low-lying structure of °Li published to
date, including the present work. The neutron separation energy and width are given
for each state. Also given for each state is the identification (if any) claimed by the
experimenters.

be much smaller than the resolution of the spectrometer, 230 keV. The width of the
1 p% excited state, determined from the measured excitation energy and the calculated
width at that energy, is I'j1, = 358 + 23 keV. These values are summarized, together

with the existing measurements, in Table 4.2.

An attempt was also made to fit the broad structure near —500 keV with two
p-wave resonances, as was done by Bohlen et al.. With this model, the best fit
corresponded to a minimum £ value of 124 and put both of the resonances at the
same energy as the single p—wave fit described above. Further investigations found
that it was possible to keep £ within unity of its minimum value only by placing thé
resonances less than 170 keV apart and centered near —520 keV separation energy. It
is important to note that under no circumstances could a reasonable fit be made with a
resonance unbound by more than 650 keV. Both of these results, the possible existence
of a low-lying neutron state, and the fact that the broad peak in the data can only
be fit by a single lp% neutron resonance or by two such resonances separated by less -

than 170 keV, do not corroborate the results of Bohlen et al.. A possible explanation
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for this is the fact that, although the spectra collected by Bohlen et al. are very
similar to that in the present work, particularly the data from the *Be(*3C,2N)1°Li
reaction shown if Figure 4.5, the theoretical p-wave line shapes .used in their paper
are symmetric and relatively narrow (T)a, 2200 keV) whereas the line shapes used
here are asymmetric and fairly broad (T, ~400 keV). It seems plausible that a peak
at S, = —800 keV is artificially necessitated in order to fit the high—energy tail of
the data with narrow, symmetric p-waves. Although the existence of a low-lying
19Li ground state has been observed here as well as by Amelin et al. [Amel 90] and
possibly by Kryger et al. [Kryg 93], it is still unclear whether this state is an s-wave
or a p—wave neutron resonance. However, mounting expectations from systematic
and theoretical considerations indicate that an s—wave contribution dominates the

n-?Li interaction.




Chapter 5

Conclusions—The Present and
Future of 11Li and 10Li

One of the most intéresting nuclei that have been made available for study by the
production of intense radioactive nuclear beams is 'Li. This nucleus has exhibited
many remarkable properties which can be explained, both qualitatively and quanti-
tatively, by viewing the nucleus as a three-body system, which comprises a °Li core
and a halo of two loosely bound neutrons. Measurements of the rms radius of the
halo neutrons have yielded values of between 6 and 10 fm. One of the most basic
quantities used by theoretical models based on this three-body picture is the mass
of 1'Li. The measurement of the 1'Li mass presented in this dissertation is the most
accurate value to date. The current best estimate of the !Li mass excess, obtained
by averaging the value reported here with the three previous measurements, is 40.802
+ 0.026 MeV. This corresponds to a two—neutron separation energy of 295 + 26 keV.
This quantity, which is basic to the understanding of .the structure of Li is now

known to sufficient accuracy for precise comparison with theoretical models.

Another important. factor in the three-body models of ''Li is the nature of the
n-2Li interaction. Recent attention has focused on the low-lying structure of the

neutron-unstable nucleus °Li. The experimental evidence pertaining to this nucleus

66
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does not present a clear picture. Various mass measurements have determined the
10Li ground state to be unbound by as little as 150 keV and as much as 800 keV.
In addition to uncertainty regarding the energy of the ground state resonance, there
is also considerable disagreement over the spectroscopic nature of the ground state,
which is expected to be either a lp% or a 25% neutron state. The existence of a broad
(T > 300 keV) 1°Li state unbound to neutron decay by greater than 400 keV has been
well established. But there is mounting ‘evidence that there is a much lower-lying,
barely unbound state. This evidence includes the observation by Amelin et al. of
a state unbound by 150 + 150 keV, independent observations by Kryger et al. and
Kobayashi et al. of a peak corresponding to close to zero relative n-?Li velocity from
the decay of 1°Li, and the observation of a narrow state in 1°Be by Abramovich et al.
believed to be the isobaric analog of a 1°Li state unbound by 60 keV. The experimental
evidence presented in this work is the first simultaneous observation of both a broad,
relatively high-lying !°Li state and a second barely unbound state. Although the
statistics in the present spectrum are rather poor, extensive resonance calculations
and the employment of a statistically accurate maximum-likelihood fitting technique
have allowed quantitative estimates of the low-lying structure of °Li. The best
interpretation of the data indicates that '°Li has a le,:-, excited state unbound to
neutron decay by 538 + 62 keV (corresponding to a '°Li mass excess of 33.563 =+
0.062 MeV ) with a width of 358 £ 23 and a ground state unbound by less than 100
keV (1°Li mass excess less than 33.125 MeV). The spectroscopic nature of the low-
lying state could not be determined from the data. However, theoretical evidence, by
Barker and Hickey as well as Warburton and Brown, indicate that this low-lying state
could be a 23% neutron state. This would not be too surprizing since the neighboring

nucleus "' Be has a 2s! neutron state for its ground state.

The three-body models that have been used to describe ''Li rely on assumed
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forms for the particle-particle interactions between the three constituent bodies. In
the initial calculations, the n-°Li interaction was chosen to recreate a lp,i—, neutron
resonance at an energy of 800 keV, in accordance with the measurements in [Wilc 75].
Recent Fadeev calculations performed by Bang and Thompson [Bang 92}, under these
assumptions, failed to reproduce simultaneously the experimentally observed neutron
binding energy, the widths of the °Li momentum distributions from !'Li breakup, and
the energy of the 3-body breakup peak. It was found [Thom 93b] that the binding
energy and rms matter radius could be reproduced only if the single n-°Li p-wave
state was at approximately 200 keV. The °Li momentum widths predicted from those
p-wave—dominated Fadeev wavefunctions that reproduced the rms 'Li radius were
approximately three times larger than the experimental values. This suggests that
the rms radius measured from the total interaction cross section is smaller than that

deduced from the fragment momentum widths from the breakup of *!Li.

Very recent calculations by Thompson and Zhukov [Thom 93b, Thom 93a] have
included a 2s} state as well as a 1p] state in the n-°Li interaction. The three-body
Fadeev wavefunctions thus contain admixtures of these two neutron configurations.
The predicted ''Li binding energy is shown as a function of 25} and 1pl resonance
energies in Figure 5.1. The current *'Li mass is indicated in the figure by horizontal
lines, and, although the 1°Li p-wave resonance reported here is off the scale in the
figure, the vertical line indicates the lower limit in the uncertainty in this value. To
meet these limits, Thompson and Zhukov’s calculations would require that the s—wave
101;i ground state be unbound by less than 10 keV, a result that is also in agreement
with the data presented here. Their results further indicate that at lower s-wave
energies, the n-°Li and n-n admixtures become increasingly dominated by ’ghe 25%
and 15, state, respectively. For a 10 keV s-wave, the lowest reported in [Thom 93b)],

these admixtures are 64% and 67%. This has several profound effects. Because s-
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Figure 5.1: [Thom 93b] Comparison of present data with calculations by Thomp-
son and Zhukov. This figure is identical to Figure 2.6 with the experimental results
reported in this work indicated for comparison. The current !!Li two-neutron sepa-
ration energy (295 + 26 keV) is indicated in the figure by horizontal lines. The value
for the '°Li p-wave resonance reported here (538 % 62 keV) is off the scale in the
figure, however, the vertical line indicates the lower limit in the uncertainty in this
value. To meet these limits, Thompson and Zhukov’s calculations would require that
the s-wave 1°Li ground state be unbound by less than 10 keV, a result that is also in
agreement with the data presented here.




70

wave neutron states have no centrifugal barrier, the large 23% admixture in the n-°Li
motion leads to a !'Li wavefunction with a very large rms radius (3.73 fm for the
10 keV s-wave). However, such a large matter radius corresponds to a narrow SLi
fragment momentum distribution with a width o of approximately 24 MeV /c, in good

agreement with the data.

Although the 'Li mass is now well known, and it seems likely that the °Li ground
state is only barely unbound, the exact nature of the °Li ground state, and hence
the structure of 'L, is still unknown. Theoretical models, too, have yet to reach a
consensus on the details of 'Li structure and are still struggling to reproduce all of
the mounting experimental data regarding this puzzling nucleus. However, two main
courses of action seem clear. It appears that the possibility of an s~wave '°Li ground
state is not a remote one, and that more realistic calculations that take this possibility
into account are needed. Also, the experimental data on the low-lying structure of
107i are plagued by poor statistics and poor resolution. This situation can only be
remedied by more experimental effort. By repeating experiments such as the ones
presented here on other spectrometers with high resolution and large acceptance such
as the S800 being constructed at the NSCL, the existence of a low-lying '°Li state
could be confirmed with high statistical accuracy and its spectroscopic nature could be
determined from its measured width. Nevertheless, the picture of *'Li which is based
on the data presented in this dissertation is a considerable improvement over previous
interpretations, and therefore continued progress is being made on the understanding

of the new phenomenon of halo nuclei.



Appendix A

RELMASS

Analysis of mass-measurement data from a magnetic spectrometer can be divided
into two major steps: calibration of the spectrometer, and measurement of the Q-
value of the production reaction. For each calibration reaction, the beam energy,
reaction Q-value, and ejectile angle, all of which are known, determine the kinetic
energy of the ejectile. This information, when combined with the magnetic field of
the spectrometer and the charge state of the ejectile, will determine the bend radius
p of the particle through the spectrometer. This process, illustrated in the flowchart
in Figure A.1, yields a series of (p,z) values to which a functional form, typically a
first or second order polynomial, is fit. The Q-value of the production reaction is
then found by reversing the process, as illustrated in Figure A.2. Whereas in the
calibration process, the known Q-value of the calibration reaction is used to relate
the measured ejectile position to the bend radius, the Q-value is here determined

from the ejectile position.

The above processes, while relatively simple conceptually, involve a great deal of
numerical calculation and are prone to error if done by hand. To facilitate analysis
of experiments of this type, Toshiyuki Kubo, with suggestions from Ed Kashy, has
written a computer code, RELMASS, which automates both of the above steps. When

executed, the program searches the current directory for the input file RELMASS. INP.
71
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Input Parameters

Beam Energy

Reaction Energy Loss
Q-value —— and
Angle Kinematics

Target Thickness

Ejectile
Kinetic
Energy

Magnetic Field (B)

Ejectile Charge (@)~ ] 2P=P/Q

Ejectile Position (z) p

Figure A.1: Flowchart of magnetic spectrometer calibration procedures. The input
parameters are all experimentally measured or calculated quantities. Each calibration
reaction yields one or more sets of (p,r) values.
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Input Parameters

Ejectile Position (z) ——— Calibration
p
Magnetic Field (B) 3
Ejectile Charge (Q) Bp=p/Q
Ejectile
Kinetic
Energy

Beam Energy
Reaction Energy Loss
Angle and

Target Thickness Kinematics

Reaction Q-value

Figure A.2: Flowchart of Q-value measurement procedures with a calibrated magnetic
spectrometer. As in the previous figure, the input parameters are all experimentally
measured or calculated quantities. The reaction Q-value is determined from the
measured ejectile position z.
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Both the code and a sample input file are located in the directory
NSCL_LIBRARY : [RELMASS)]

on the NSCL VAX cluster. Upon completion, the program creates two files, the
names of which are requested from the user. The first file, given the extension .0UT,
contains numerical details of each step of the calibration and measurement processes.
The second file is a TOPDRAWER file which depicts the p vs z calibration curve
with the calibration and measurement points. The most straightforward discussion
of the operation of the program is provided by examining the input and output files,

examples of which are included in Table A.1 at the end of this appendix.

Input file: RELMASS.INP

The input file provides the program with the parameters necessary to calibrate the
spectrometer and then to measure the Q-value of a series of production reactions.
The first four lines allow the user to title and comment the input file. The information
in these lines has no bearing on the program operation; they are merely repeated in
the output file. Following the comment lines are groups of calibration data, one group
for each peak in the calibration momentum spectra. Each group of calibration data
begins with the tag-string CALIB_REACTION followed by a label number. The label
numbers are arbitrary and facilitate bookkeeping for the user. The lines following
the tag-string allow the user to add a comment for that particular set of data and
to specify kinematic and exp;erimental parameters such as the reaction, beam energy,
spectrometer field, target thickness, and excitation energies for the calibration peak.
In addition to the target, it is possible to specify. two absorber materials, one before

the target and one after, through which the beam and ejectile, respectively, lose

" energy. Finally, for each group of calibration data, the user may define a weighting
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factor for use in external mode of the least-squares fitting of the calibration curve to
the data, as described below. The user may also instruct the program to ignore any
set of calibration data by placing the characters // before the tag-string, as is done

for Calibration Reaction 2 in the example file given.

Following the calibration data are sets of data for Q-value measurements. Each
dataset is preceded by the tag-string MASS_MEASUREMENT followed by an arbitrary la-
bel number. The first sixteen lines of each measurement dataset are identical to those
of a calibration dataset. The next three lines pertain to the searching technique used
by the program to find the measured Q-value. When RELMASS processes a dataset
from a production reaction, it consults the MASSPACK table of atomic masses to
obtain an initial estimate of the Q-value. This estimated Q-value, combined with
the rest of the information in the dataset, specifies a point on the (p—z) plane, which
may or may not lie on the calibration curve. The program then iteratively varies
the mass of either the ejectile or residue particle, the choice specified by the user,
to place the point on the calibration curve. These three lines specify the maximum
number of iterations, the variational step size, and the desired absolute accuracy of
the mass search. The next line allows the user to specify which mass, ejectile or resid-
ual, should be varied. The next six lines pertain to various routines in the program
that estimate uncerfainties. As of this writing (November 1993), these routines are
not implemented and the parameters in these lines are ignored. As with calibration
datasets, the user may instruct the program to ignore any measurement dataset by

pla,cing the characters // before its tag—string.

The last set of data is preceded by the tag—string LEAST_SQUARE and determines

various aspects of the least-squares fitting of the calibration curve. There are three

possible modes for weighting the calibration data in the fit. The first, equal mode,

gives each data point an equal weight. Internal mode weights each data point by
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the uncertainties in its peak position. External mode weights each data point by the

factor specified with its dataset.

Output file

The output file is named by the user and contains numerical details of each step
of the calibration and measurement processes. The first and second pages list the
input data for the calibration reactions and the control parameters for the least-
squares fitting of the calibration points. The third page lists the input data for the
measurement reactions and the control parameters for the mass search. The fourth
page specifies the atomic and nuclear (i.e. sans electrons) masses of each participant
in the calibration reactions as well as the ground-state Q-values. The kinetic energy
of the calibration reaction ejectiles is given on the fifth page. The program includes
energy-loss effects in the target and calculates the ejectile energy as the average
of the values obtained by assuming the reaction takes place at the front and back
surfaces of the target. The sixth page presents all of the calibration points (p,z)
and lists the polynomidl coefficients that provided the best fit to these points. The
polynomial listed here is then used in subsequent steps to measure reaction Q-values.
The seventh page presents the first guesses, based on the MASSPACK table, of the
kinematic parameters for the measurement reaction. Also listed on this page is the
(p,z) point that is taken as the initial guess in the iterative mass search, the steps of
which are detailed on the eighth page. Finally, the ninth page lists the ejectile mass
and reaction Q-value as obtained from the MASSPACK table and as obtained from
the measurement. Also given on the ninth page is a table of uncertainty estimates.
However, since the relevant subroutines are not fully implemented, these values should

not be used.
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Table A.1: An example of the RELMASS input file, RELMASS. INP, is listed on the
two following pages. An example RELMASS output file is listed on the nine pages
following the listing of RELMASS. INP. The contents of both files are discussed in the
text.
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filename: RELMASS_THESIS.INP
Input data for an analysis of mass measurement
COMMENT DATA (A80)
Example file : Two calibration points and one mass measurement.

CALIB_REACTION 1.1 Read format (T46,A40/T46,A26,15(/T46,F15.0))

Comment : 10Be3+ (5.3)

Reaction, a + A -> b + B, A(a,b)B ¢ 14C(118B,10Be) 15N

Projectile energy, pos{MeV],neg{MeV/A] : =32.1365

Scattering angle of ejectile[degrees] : 0.0

Excitation energy of ejectile[MeV] 0.0

Excitation energy of residual (MeV] 5.2845

Charge of ejectile 3.0

Magnetic fields of spectrograph(Tesla) 0.921608

Thickness[mg/cm2] of absorber-l 0.0

Atomic number (2) of absorber-1 0.0

Thickness([mg/cm2] of target 0.450

Atomic number (Z) of target 6.0

Thickness[mg/cm2] of absorber-2 0.0

Atomic number (2) of absorber-2 0.0

Focal plane position of ejectile{channel] 60.136

Error(one-sigma) of position(channel] 0.020

Weight factor(0 to 1, .if zero, ignored) 1.0
CALIB_REACTION 1.2

Comment : 10Be3+ (g.s.)

Reaction, a + A -> b + B, A(a,b)B ¢ 14C(11B,10Be) 1SN

Projectile energy, pos(MeV],neg([MeV/A} : =32.1365

Scattering angle of ejectile{degrees) : 0.0

Excitation energy of ejectile(MeV] 0.0

Excitation energy of residual [MeV] 0.0

Charge of ejectile 3.0

Magnetic fields of spectrograph(Tesla] 0.921608

Thickness{mg/cm2] of absorber-l 0.0

Atomic number (Z) of absorber-1l 0.0

Thickness(mg/cm2] of target 0.450

Atomic number (Z) of target 6.0

Thickness[mg/cm2] of absorber-2 0.0

Atomic number (2) of absorber-2 : 0.0

Focal plane position of ejectile{channel] : 140.345

Error(one-sigma) of position{channel} : 0.069

Weight factor(0 to 1, if zero, ignored) : 1.0
//CALIB_REACTION 2

Comment : This reaction is commented out

Reaction, a + A -> b + B, A(a,b)B ¢ 14C(11B,9Li) 160

Projectile energy, pos(MeV],neg[MeV/A) : =32.1365

Scattering angle of ejectile[degrees] : 0.0

Excitation energy of ejectile[MeV] : 0.0

Excitation enerqgy of residual {MeV] : 0.0

Charge of ejectile 3.0

Magnetic fields of spectrograph{Tesla] 0.866737

Thickness(mg/cm2] of absorber-1 0.0

Atomic number (2) of absorber-l 0.0

Thickness[mg/cm2] of target 0.450

Atomic number (2) of target 6.0

Thickness([mg/cm2] of absorber-2 0.0

Atomic number (Z) of absorber-2 0.0

Focal plane position of ejectile{channel] 101.806

Error (one-sigma) of position[channel} 0.074

Weight factor(0 to 1, if zero, ignored) 0.0
MASS_MEASUREMENT 1

Comment : 9Li mass meas

Reaction, a + A -> b + B, A(a,b)B ¢ 14C(11B, 9Li)160

Projectile energy, pos(MeV],neg[MeV/A) : =32.1365




Scattering angle of ejectile[degrees]
Excitation energy of ejectile[MeV]
Excitation energy of residual(MeV]

Charge of ejectile

Magnetic fields of spectrograph(Tesla}

Thickness {mg/cm2]
Atomic number (2)
Thickness{mg/cm2]
Atomic number (2)
Thickness{mg/cm2]
Atomic number (2)
Focal plane positi

of
of
of
of
of
of
on

absorber-l
absorber-1
target
target
absorber-2
absorber-2

of ejectile[channel]

Error (one-sigma) of position{channel] :
Maximum number of iteration in mass search:

Energy step in the iteration(MeV]

Goal of position difference in search[ch]bg
Ejectile mass(0.) or residue mass(l.) ?
dQ/d (Eproj), d{Eproj) = X*Eproj, X(%] =

dQ/d (Theta), d(Theta)
dQ/d(position), d(position)

[deg.] =

[channel] =

dQ/d (Thick, absl),d(Thick) =X*Thick, X([%] = ;
X(%] = :
X(%] = :

dQ/d(Thick, tarqg),
dQ/d (Thick, abs2),

LEAST_SQUARE

Do you make fitting ?

Yes (0.0),

No(1.0)

Order of fitting function(up to 3rd-order):
Weight mode(1;equal,2:internal,3;external):

END_OF_DATA
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Appendix B

Calculations of Neutron
Resonance Line Shapes

To analyze the data from the 'B(”Li,®B)!°Li reaction, resonance scattering calcula-
tions were performed to estimate the widths and line shapes of the n-°Li resonances.
The Schrodinger equation was solved numerically for a single neutron moving in the
potential created by a °Li nucleus. The potential consisted of, in addition to Coulomb

and centrifugal terms, a Woods—Saxon term

-V
VWS(T) - 1 + emp(r . TQAI/S)/(Z - —%f(r) (B'l)
and a Thomas spin—orbit term
Vso(r) = Woo - iy | (B.2)
rdr

The parameters 7o, a, and W, were taken to be 1.25 fm, 0.65 fm and 15.64 MeV fm?
respectively [Brow 92]. The results of the line shape calculations were insensitive to
small variations of these parametefs. Holding V; constant, the wavefunction Wg(r)
was found for the neutron at a given kinetic energy E. To estimate the line shapes
for the neutron decay of 1°Li, the wavefunction was normalized inside the nucleus
[Sher 85]

dViws ridr. (B.3)
dr

s(E) = [~ wi(r)
89




90

The behavior of S as a function of the neutron kinetic energy E provided the single-
particle resonance line shape. The energy at which S reached a maximum, that is,
the resonance energy, varied with the value chosen for V,. By mapping S(F) for
different values of V; it was possible to explore the behavior of the line shapes, and

in particular the widths, as a function of resonance energy for 23% and 1p% neutrons.
1 .
255 line shapes

The function S(E) for several 2s1 neutron states is shown in the top part of Fig-
ure B.1. Depicted are states with peak energies at 0, 30, 150, and 300 keV. The
widths of these states increases rapidly with peak energy. For states with energy
above 100 keV, the width is so large that the state could not be detected above
background. For states below 100 keV, the line shapes are narrow enough to be dom-
inated by the resolution of the spectrometer, and were approximated in the fitting

procedures by a Lorentzian with I' = 230 keV.
lp% line shapes

The line shapes for several lp% neutron states are shown in the bottom part of Flg-
ure B.1. Shown here are states with peak energies at 100, 200, 500, and 700 keV.
Although the widths of these states also increases with peak energy, the effect is much
less dramatic than that described above. For p-waves below 100 keV peak energy,
the line shape was also approximated by a Lorentzian in the fitting procedures. For
p-waves with peak energy above 100 keV, the line shapes were parametrized for in-
clusion in the fitting procedures. The pararﬁetrization was found by trial-and-error

by examining the shape of the function S(E). On the low—energy side of the peak,

S(E) exhibits the rapid decay of a Gaussian curve. On the high-energy side of the -

peak, the function appears to have two decay components: a Lorentzian-like decay
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(a) 2s(1/2)

llLIllIlllllIllIi]ll

|

S(E) (arb. units)

(b) 1p(1/2)

IllllllllllllIllllllllllllll_llIIl

llllIlllllllll||Illll]lllllll

|||||

0.0 0.2 0.4 0.6 0.8 1.0

Neutron energy (MeV)

Figure B.1: Calculated line shapes for 251 and 1p} n-°Li states at several energies.
The top part of the figure contains line shapes for 2s1 states with peak energies of
0, 30, 150, and 300 keV. The bottom part of the figure contains line shapes for lp% _
states with peak energies of 100, 200, 500, and 700 keV. In both frames, the line
shape for the lowest energy state was reduced by approximately 75% to fit on the
same scale as the other states.




92

and a very long, almost constant, tail. With these considerations in mind, the final

parametrization used for 1p-1§ states above 100 keV peak energy was

Nexp ['— M] if £ < Eres

T,
re, .
N [R +(1-R) A_—J—‘Q_(E—E,:);wm] it B> Eee.

S(E) = (B.4)
This model was fitted to the calculated line shapes at several resonance energies and
in this way, the four parameters Iow, Ihigh, R, and A were determined as functions
of the resonance energy Ers. An example of this model fitted to a 500 keV resonance
is shown in Figure B.2. The resolution of the $320, a Lorentzian with a full-width of
230 keV, was incorporated in the model by adding the S320 half-width in quadrature .
with the model widths, Iy and Thigh. The final parametrization that was used in the

fitting procedure had two free parameters, the resonance energy FEres and the total -

amplitude N.

The computer code RESCALC

The resonance calculations described above involved the numeriéal solution to the
Schrodinger equation for a particle in a potential well. The computer code RESCALC,
the C source code for which is listed in Table B.1 at the end of this appendix, was
written, with helpful suggestions from Alex Brown and George Bertsch, to aécomplish
this. Instructions for compiling and linking the code at the NSCL are given in the

program comments at the beginning of the listing.

The user is ﬁrst asked to choose between a Woods—Saxon or a Gaussian form
for the nuclear potential, and to specify the appropriate parameters (e.g. depth and
width/diffuseness) for the chosen well. The user is then prompted for the depth of a
Thomas spin-orbit term, the form for which is given above. Next, the user is asked |

for the spin, orbital, and total angular momenta for the system and the masses and
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S(E) (arb. units)

i /l/l l 1 i 1 1 l 1 1 1 i I ] [ 1 1 I 1 L L 1 I 1 | 1 [l
0.00 0.25 0.50 0.75 1.00 1.25 1.50
Neutron energy (MeV) :

Figure B.2: Six-parameter model fitted to calculated line shape for a 1p% neutron
state at 500 keV resonance energy. Similar fits were made to line shapes at other
energies; four of the six parameters were thus determined as functions of the resonance

energy.:




94

Table B.1: The listing of the RESCALC C source code is given on the nine pages at
the end of this appendix. The operation of the program is discussed in the text as
well as in the program comments.

charges of the target and projectile. The program then calculates several observables
over a range of projectile energies, specified by the user, and writes the calculated

data to the file RESONANC.OUT.

At each projectile energy, the Schrodinger equation is solved, using the Numerov
algorithm [Koon 86], to yield the wavefunction Wg(r), from which the function S(F)
is calculated. The scattering phase shift é is found by solving for the wavefunction
without the nuclear and spin—orbit terms in the potential and comparing the phases
of the wavefunctions at large radii. The values then written to the output file are
the scattering energy FE, the cross-section-related quantities sin?(é) and Sil;@, and
the function S(E). The code is very thoroughly commented and is easily modified to

calculate other observables from the wavefunction, potentials, and local wave number,

all of which-are stored in global arrays in the program.
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TO COMPILE/LINK THIS PROGRAM ON A VAX AT NSCL:

cc rescalc.c
link rescalc,sys$library:crtlib/opt

This program solves the radial Schrodinger equation:

d2u ( V(r) - E)
e W em—meemm———— * u(r) = k2(r) * u(r)
dx2 hbar2/2M -

where

|- ~1
V(r) = C * | Vws(r) + Vso(r) | + Vceantrif + Vcoul
1= -1

The main engine of the program consists of the functions arranged in
the hierarchy diagrammed below:

Calc_Observbls Make_Well
[__ Solve_Schrodinger Diff eq

Calc_Observbls calls Make_Well which packs an array with V(r) using several
global parameters for the either the Woods-Saxon form or a Gaussian form
for the nuclear potential. It then Calls Solve_Schrodinger

which uses V(r) to find the radial wavefunction u(r). Solve_Schrodinger
uses the function Diff eq to do the mathematical nitty-gritty of solving
the differential equatIon. Once u(r) is found, Solve_Schrodinger performs
the appropriate normalization, and looks for bound states if applicable.
Calc_Observbls, if necessary, calls Make Well with free space parameters
and calls Solve_Schrodinger with the new well. This is so Calc_Observbls
can find the scattering phase shift.

'ﬁﬁ*ﬁ'ﬁ"ﬁ"ﬁﬁ'ﬂﬁ.*'*ﬁﬁ"..ﬁﬂ.‘.‘ﬂ'ﬁ"ﬂﬁ'ﬁi".ﬁi‘ﬁ."ﬁtt".t""*ﬁitiﬁ'iiit*'
***'*tﬂ.ﬁ'ﬂtttiﬁi'ﬂﬁi...ii..tl'.ﬁt".'!'i'"ﬁﬁ't...lttﬁi'ﬁ..'it*ttﬁ*tﬁi'ﬁit
"ﬁtﬁt'ﬁﬂﬂt'lﬂiﬂﬁﬂ*tiﬂ.ﬁ"'ﬂﬁi.'ﬂ'..’tt'."‘.'kﬂ"ﬁitt'ﬂtﬂl!.tﬁ*.Q'i.ttttﬂﬂ

INCLUDE FUNCTIONS BELOW

ﬁttﬁ'ﬂ'ﬁ'ﬁtﬁ'ﬁtt.ﬁt’it!ﬁt"'..ﬁ.ﬁ.iﬁﬁ.t.ﬁ'iifﬁﬁﬁﬂﬂﬁ'.tﬁ"'t*t.*ﬁ.’t'ﬁ**ti't
t*i..iiﬁ."'ﬂ....ﬁt'.'."ﬁﬂﬂﬁ.iﬁﬁtt.'.'tt'ﬁ.ﬁﬁii‘.ﬁ'ﬁtﬁttit’ii!ﬁtttﬁ.t'ﬁt'*
'ﬂiﬁ.ﬁﬁ'ﬂﬂﬁt'i'*ii'ﬂﬂt"'.ﬁ'ﬂ.'.tt"'f.i...Q.tﬁ'.."*ittﬁtiﬁﬁﬁtt't*ﬁiﬁkﬁﬁ'/

#include <math.h>
#include "sys$admin: (young.cstuff.my_std]bmymath.h"”

/ﬁ'ﬁ'ﬁ'iiﬂ't.ﬂ...tf.'ﬁhQ'ﬁﬁ'iﬁ.ﬁ'ﬁlﬁ.."i.’.t'ﬁﬂﬁ'.iit"t.'ﬂ*ﬁﬁtt*ﬁQ"*t"ﬁ
A RARARA RN R R AR AR AR RN RN I AR R AR R RN AR N AR AR RN AN AR RN AN TR AR RARAAR IR AR AN RARK
AR AR RN AR AR AR AR R A AN AR AN R IR AR AR RARAR TN RN A AN AR AR ENRRRRARRANRRANARARR AR A RAARAN AR

GLOBAL VARIABLES AND PERTINENT DEFINES BELOW

itiﬁﬁi.ﬂtﬁ"‘i...ﬁﬁ..'**ﬁ't'iﬂlt***t.it*'ﬁt'i.ﬁ..tit.t'ﬁi.ﬁﬁ'.*ﬁiti.tiiﬁ*li*
ﬂ.tﬂ'tﬁ*t'.t.."ﬁ"*ﬁ*ﬁﬁﬁ..i"ﬁﬁ'ﬁt*.ﬁ..ﬁtﬁ*ﬁ.'.ﬂ.t.ﬁﬂﬁ't‘tti..t*ﬁ'tlt.t..tﬁ

ﬁ*"ﬁﬁﬁ*.ﬁ."l'.ﬁ"'.ﬁ"'i'.'..‘ﬁﬁﬂt"'ﬁi'ﬂﬁﬁﬁ*tﬁ.iﬁ**..-*tﬁt"t*it'ittﬁ*ﬁ/

$define MAX_ARRAY_SIZE 2010

RealType s_proj2,1,3j2; /* 2%s,1, 2*j for incoming particle */
RealType at, zt,ap,zp:; /* mass and charge of targ and projectile */
RealType Vnorm, adiff, RO; /* Nuclear potential parameters */

RealType Vspino; /* Spin orbit parameter */
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1

int potential_type: /* nuke potential selector */

RealType *u; /* radial wavefunction */

RealType *V; /* Total radial potential */

RealType *dVws; /* Radial derivative of nulear potential */
RealType *K2: /* Local wave number squared */

RealType *EB: /* Array of bound state energies */

int NMax; /* Number of radial steps in mesh and */
RealType delr; /* the size of each step. */
RealType hbsd2m; /* h-bar squared divided by 2 * reduced mass */

/*ﬁtﬂﬂi'**itttt*ﬂk*ﬁﬁ**ﬁit'ﬂiittit**'*ii*iiﬁﬁ'*f**"itﬂﬁttﬁtt*.t.tﬁ**ﬁ'tﬂ**
AR AR R AR AR RN R AR A AN RARA A AT RAREAARARA AR RARAARAAAARNRATRRRRRAXARRAARANRARARN R AR RN
IZEEZEEEZESTEZTESIZESER 22282 2222 R RERSERRSRRRERERERRstRRERRRRRRSRRRRERERERES

FUNCTION DECLARATIONS BELOW

X2 222 22 RSS2 222 R 222222222 2222222222t X i 2 s a2 222222 2 2 2222
'EEEZEEEZZESZ SRR 22 2222222 222222222t el Ratsasstz s it it st o b R st 2
**ﬁ'i"I'ﬁf"""*ﬁﬁ*"i*.ﬁtﬂl’ﬁ.ﬁi*ﬂf**"ﬁ'i“ﬁﬁ"tl.'t"ﬁti*ﬁttﬂ!ﬁtﬂiﬁtﬁ*ﬁ/

void Initialize_Global_ Variables( void ):

void Calc_Observbls( RealType E, RealType *dphi,
int *nodes, RealType *SurfParam };

void Make_Well( RealType nuclear_pot_const ):
void Solve_Schrodinger( RealType E, int nsep, RealType *phi );

void Diff_eq( int nfrom, int nto, int nstep,
RealType *uu, RealType *duu, RealType *intu2 );

void Kill_Global Variables( void ):

/*tiﬁ'Iﬁﬁﬂ.ﬁﬁ'ﬁ"fﬁﬂﬁ'**.'.'.Q"Q*'...i"ﬁ.ﬁiﬁ.iiﬁi'.ﬁﬁ't'ttﬁ.'iﬁttitﬁﬁﬂﬁt*
X 222222222 X2 2222 XXt R 22 222222222 22 222222822 2 X222 2 Rl SRR
22 P R R R R R EX RSS2 22222 2R 2222222222222 2222222 RSX22tRat 2o 2 s s 2 2 2R

FUNCTION DEFINITIONS BELOW

L EE2Z2 222222222222 222 2 s2 22022 222222 R Rilt i i it 2 st st sl ]
L2 22222222222 22222 222t 222 22 202X 822222222 s XaXass]
tﬁttﬁﬁtttttit.tﬂtlitt'tattQﬁtiitﬁtt*ttittﬁtltt'!.Qitttﬁtﬁtﬁitttttt'tt*ittt/

#include "sys$admin: {young.cstuff.my std]bmymath.i"

int main( void )

{
RealType E,dphi,surf;
int nodes;
RealType Estart,Estop,delE;
FILE *outfile;
Initialize_Global_Variables():
/*

The lines contained in this comment are for the original version of the
program, which asks for a single energy and writes the observables to
the screen.

Start:
EB[0] = 0.0000;
puts("\nEnter E (E < 0 quits program).");
scanf ("%1£",&E);
if (E < 0.0000) goto End;
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Calc Observbls (E, &dphi, &nodes, asurf);
printf("sin~2(d) = %1f\n",sin(dphi) *sin(dphi));:
printf("sin~2(d)/E = %1f\n",sin(dphi) *sin(dphi)/E):
printf("s = $1f\n",surf);

goto Start;

End:

The lines below are for the "eloop" version of the program, which
asks for a max,min,delta values for E and then loops over the
energy values, writing the ovservables out to a file.

*/
if((outfile=fopen ("resonanc.out”,"w"))==NULL)

fprintf (stderr, "Cannot open output file.\n"):
exit(l);
}
puts ("Enter Estart, Estop, delE -- (MeV) separated by commas please.");
scanf( "%1f, %1f, %1f", g&Estart, &Estop, &delE);
for ( E = Estart; E <= Estop; E += delE )
{
Calc_Observbls (E, &dphi, énodes, &surf) ;
fprintf( outfile, "%1f %1f %1f %1f\a", E,
sin(dphi) *sin(dphi),
sin(dphi) *sin(dphi) /E,
surf );
}
fclose( outfile ):

Kill Global_Variables();
return 0;

}
/SRR RIRIIHUIIRLNY/
/BB RAATALARAIIUNRRL/
void Initialize_Global_Variables( void )
{
RealType red mass;

u = vector(0,MAX_ARRAY SIZE);
V = vector(0,MAX ARRAY SIZE);
dVws = vector(0,MAX ARRAY SIZE):
K2 = vector (0,MAX_ARRAY_ STzE):
EB = vector(O,MAx ARRAY SIZE),

puts (n\nlv) ;
puts("\n");
puts("\n");
puts("\n");
puts("\n");

NFG_Pot_Type: ’
putsT"\nSelect nuclear potential type:"):;
puts ("Enter 1 for Gaussian well, 2 for Woods-Saxon well.");
scanf( "%d", &potential type ):
if( potential_type == 1)

{

puts("\nGaussxan nuclear potential.” );
puts("\n Vaouke = -V0 * exp{ -(r/a)"2 }" 1):
puts("\n R = RO * atarg~0.33" );

}

else if ( potential type == 2 )

{
puts ("\nWoods-Saxon nuclear potential.");
puts(”"\n Vnuke = -VO * exp{ (r - R)/a }" ),
puts("\n R = RO * atarg~0.33" );

else
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goto NFG_Pot_Type:’

}

puts ("\nNuclear potential parameters:"):;

puts ("Enter V0, a, RO -- (MeV, fm, fm) separated by commas please.");
scanf( "$1f, %1f, %1f", &Vnorm, &adiff, &RO);

puts ("\nSpin-orbit potential parameter:"};

puts("\n Vnuke = -V0 * £(r)" );

puts("\n Vso = WO * (df/dr)*{1/r)*(L.S) " );

puts ("\nEnter W0 (MeV)."):

scanf( "%1£f", &Vspino ).

puts("\nv0, a, RO, WO = ");

printf( "%1f $1f %1f %1f\n", Vnorm, adiff, RO, Vspino ):

puts ("\n");

puts ("Angular momentum parameters:");

puts ("NOTE: I dont check for legal combinations of s,1,3."):

puts (" Thats up to you."}:

puts ("Enter 2s_projectile, 1, 2j -- separated by commas please.”);
scanf( "slf, slf, %lf", &szprojz, &l, &j2 );

puts("\nZstrojectile, 1, 2 = ");

f

printf( "% $1f %1f\n", s_proj2, 1, j2):
puts("\n");
puts("Enter at, zt, ap, zp -- separated by commas please.");

scanf( "%1f, %1f, %$1f, %1f", &at, &zt, &ap, &zp )
puts("\nat, zt, ap, zp = ");

printf( "s1f %1f %1f %1f\n", at, 2t, ap, zp );
puts ("\nvv) :

puts ("\n");

delr = 0.1;

red mass = 931.49432 * at * ap / {( at + ap );
hbsd2m = (197.33) * (197.33) / ( 2.000 * red_mass );

return;

}

/*HBHREBLHLLLRLLEGRRY/

/EEEBREABRBABTRIRINRE/

void Kill_Global Variables( void ) -

{
free_vector(u,0,MAX ARRAY SIZE);
free_vector (V,0,MAX ARRAY SIZE);
free_vector (dVws, 0,MAX ARRAY SIZE);
free vector (K2, 0,MAX_ARRAY SIZE):

free_vector (EB, 0, MAX_ARRAY SIZE);
return;

}
/*EERRELBTEREBTNRITIN/
/*AEEEELLRUBERENBBINE/
void Calc_Observbls{ RealType E, RealType *dphi,
int *nodes, RealType *SurfParam )

/*
Input parameters: E --- Kinetic energy of projectile
Output parameters: dphi --- Phase shift of wavefunction at max r

with nuclear potential with respect to

wavefunction without nuclear potential.
nodes - Number of nodes in wavefunction.
SurfParam - Surface parameter defined as

{ =00 12
1/ dv |

S=1{ | wu(r) =--dr |
1/ dr |
| |

r=0
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see R.Sherr and G.Bertsch
Phys Rev C 32 1809 (1985)
equation 2.
Notes:

This function accepts the incident energy E, sets up (with Make_Well) and
solves (with Solve Schrodinger) the Schrodinger equation and then calcul-
ates some observables with the results of this solution.
*/
{

RealType phi_with_pot, phi_without_pot:

int nsep,i;

FILE *outfile;

NMax = 2000; /* Default: resonance, need lotta */
nsep = NMax:; /* mesh points */
Make_Well( 1.000 ); /* Set up well with nuke potential */
if( E < V[NMax]) /* If bound state, we dont need many */
{ " /* mesh points. See notes on Solve_ */

NMax = 200; /* Schrodinger for info on nsep */

nsep = ( RO/delr ) * pow(at,0.33333333);

Solve_Schrodinger( E, nsep, &phi_with pot );

*nodes = 0; /* Calculate nodes and surface param */
*SurfParam = 0.0:
for( i=1; i<=100; i++ )

if( ulil*u(i+l] < 0.000 ) (*nodes)++;
*SurfParam += ulij*u{i]*dVws(i]:

}

/* BMYoung 11/24/92 Write potential and wavefunc to file
if (! (outfile=fopen ("resout.dat"”,"w")))

printf ("cannot open output file.\n");
exit(1);

for (i=0; i<=NMax;i++)
fprintf(outfile,“$1f S$1f $1f\n", (i*delr),V[il,u(i]);

}
fclose(outfile);
BMYoung 11/24/92 */

*dphi = 0.000;
if( E >= V{NMax] ) /* If resonance, we need wavefunc */
{ /* with no nuke potential. */
Make_Well( 0.000 );
Solve_Schrodinger( E, nsep, &phi_without pot );
*dphi = phi_with_pot - phi_without pot;
}

/* PUT IN SOME KIND OF WARNING ABOUT IF E>0 AND E<V[NMAX] INCREASE NMAX */
return;

}

ALTEIA SRR 33 A it iy

/*AEERREAFHEBRRRAIINY/

void Make Well( RealType nuclear pot_const )

/* -

Packs the array V(] with the total radial potential.

Packs the array dVws([] with the derivative of the nuclear potential.



*/
/%
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RealType 22, Rws, VOws, r, Vcentrif, Vcoul, y, ey,
RealType 1_factor,Vso;
int 1i;

22 = 2t*zp;

Rws = RO * pow(at,0.33333333);
for( i=1; i<=NMax; i++ )

{

r = delr * i;

Vcentrif = 1* (1+1.0)*hbsd2m/ (r*r);

if( r < Rws )
Veoul = 22%1.44*(1.5-0.5*r*r/ (RWS*Rws)) /Rws;
}

else

Vecoul = ZZ*1.44/r:

if( 32 > (2.0*1) )
1_factor = 1;
ee if (32 = (2.0%1) )
1_factor = 0.000:
else

1_factor = -(1+1.000);
} :

L.S = 0.5 * { j(j+1) - 1(1+1) - s(s+l) } */
1_factor = 0.5 * { j2*(j2+2.0)/4.0
- 1*(1+1)
- 8 proj2+*(s_proj2+2.0)/4.0
if ( potential_type == 1 )
{
y = r/adiff;

ey = exp(-y*y):
Vws = -Vnorm*ey;

fws,

):

Vso = -(Vspino*2.0/(adiff*adiff))*1l_factor*ey:

dVws{i] = 2.0*Vnorm*r*ey/(adiff*adiff);

}
else if ( potential_type == 2 ) ) /* WS well

{
y = (r-Rws)/adiff;
if(y < 13.82) /* ie if exp(y) < leé */
{
ey = exp(y):
fws = 1.0 / (1.0 + ey ):
}
else

{
ey = 999999.;

vVws;

/* Gaussian well

*/

*/
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fws = 0.000000;
}

Vws = -Vnorm*fws;
Vso = -Vspino*fws*fws*ey*l factor/(r*adiff);

dVws [i] = Vnorm*fws*fws*ey/adiff:
}

V{i] = nuclear_pot_const*(Vws + Vso) + Vcentrif + Vcoul;
}

return;

}
/rEETERRTERERIRBITRIEN/
/*EEEERBTEILRTREITEEEN/
void Solve Schrodinger( RealType E, int nsep, RealType *phi )
/* -
Input parameters: E =~~~ Kinetic energy of projectile
nsep - see explanation below in Notes

Output parameters: phi --- Phase of wavefunction at max r
Notes:

Solves the Schrodinger equation using two different methods.
If the energy E is greater than the potential (global array V(]) at
NMax, then Solve_Schrodinger calls Diff_eq to find the wavefunction from
r=delr to r=delr*NMax. The phase of the wavefunction is determined and
the wavefunction is normalized.
If the energy E is less than the potential at NMax, Solve_Schrodinger looks
for a bound state near the given energy. First of all, we cant start at
r~0 and work our way out. The wave function must go to 0 at r=0 AND at
r=infinity. So, the routine defines the wavefunction at both extremes
and works its way out from r~0 and in from r~infinity towards nsep which
is arbitrarily defined outside the routine. Once this is done, the
wavefunctions are compared at nsep and a better guess is made on a bound state.
This calculation is repeated until

1) the energy goes above 0, 2) the matchup of the wavefunctions agrees to
within a specified tolerance, 3) more than 20 tries are made.

*

/

{
RealType ul,dul, inul,u2,du2, inu2;
RealType k,t,Xx,sum;
int i,num_bound_guesses, searched_for_resonance;

num_bound_guesses = 0; /* Initialize a few things */
x =0.000000;
searched_for_resonance = 0;

do
{
for({ i=l; i<=NMax; i++ ) /* Pack K2[] for the current E */
K2{i] = (-E + V{i] )*delr*delr/hbsd2m;
}
u{l] = 0.00001; /* Define u[] near the origin */
u2] = uf{l) * pow( 2.0, (1+1.0}) ).
if( E > V[ NMax | ) /* If resonance... */
{
Diff_eq( 1, NMax, 1, &ul, &dul, &inul ); /* Get u(] */
k = sqrt( -K2[ NMax ] ); /* Get wavenumber, phi, */
*phi = atan( ul * k / dul ); /* and normalization */

t = sqrt( ul*ul + (dul*dul)/(k*k) ) * sqrt( k/delr ):
searched_for_resonance = 1:
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else /* If bound state... */
{
Diff eq( 1, nsep, 1, &ul, &dul, &inul ); /* Get u[] -- 0 to nsep */
u[ NMax ] = 0.000000; /* Get u{] -- 00 to nsgp */

u[ NMax - 1 ] = 0.00001;
Diff_eq( NMax, nsep, -1, &u2, &du2, &inu2 );
/t
Match up the two wavefunctions u[], as per G. Bertsch’s suggestion, and
guess the bound state energy.
*/
x = ul*u2*(dul*u2-du2*ul)/(delr*delr*(inul*u2*u2+inu2*ul*ul));
E += x*hbsd2m; .
EB[0] = E; /* The latest b.s. energy guess */
/* is stored in EB(0] */
for( i=l; i<=(nsep-1l); i++ )

ufi] = u{i] * u2;
for( i=nsep; i<=NMax; i++ )
ufi] = ufi] * ul;

-sum = 0.000000;
for( i=1l; i<=NMax; i++ )

sum += ufi] * u(i];
}
t = sqrt( sum * delr ); /* Find the normalization */
num_bound guesses++;

}
}while( ( (fabs(x) > 0.00001) || (num_bound_guesses <= 20) )
&& (!searched_for_resonance) )i

for( i=l; i<=NMax; i++ ) /* Normalize the wavefunciton */
uf{i} = ufi] / t;

return;
}
J*HABABLHLVARERENRRRE/
/*EABREELEBLLLTIRBR99%/
void Diff _eq( int nfrom, int nto, int nstep,

RealType *uu, RealType *duu, RealType *intu2 )

/t

Input parameters: nfrom,nto,nstep --- array index limits and step size
over which to solve the differential

equation.
Output parameters: uu - value of wavefunction u at array
index ato
duu -——- value of du/dr at array index nto

intu2 - integral of u*u from nfrom to nto

Notes: ‘

Uses the global arrays u{] and K2{] and solves the differential equation
d2u/dr2 = u * k2

from array elements nfrom to nto stepwise in steps nstep. This function

also calculates the integral of u*u over the requested interval and returns

it as *intu2. Also, the values of u and du/dr at location nto are returned

as *uu and *duu respectively. A brief mathematical note is in order here.

The algorithm used to solve the differential equation is the Numerov algorithm.
A full-blown description is given in S. E. Koonin, Computational Physics,
Addison-Wesley 1986, pSOff. The formula used is presented below.
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NUMEROV ALGORITHM

d2u/dr2 = u * k2 --- let h be the width of one mesh point. The formula

used is
u(r+2h) = 2u(r+h) + u(r) S
------------------------ = -- * u(r+2h) * K2(r+2h) +
h*h 60
S

: * u(r+h) * K2(r+h) +

S
-=- * u(r) * K2(r)
60

This is solved for u(r+2h), and since we know K2 () everywhere, we can use
u(r) and u(r+h) to step our way over r.

ALSO USED
du | 4 * ( u(r+h) - u(r) ) - ( u{(r+h) = u(r-h) )
- | - -
dr |r+h 2h
*/
{
RealType ul,u2,k2_1,k2_2,k2_3;
int n;
*intu2 = 0.0; /* Zero the integral */
ul = u[nfrom]; /* Get u(r) and K2(r) */

k2_1 = K2{nfrom};
n = nfrom + nstep: /* Get u(r+h) and K2(r+h) */
u2 = u{n];
k2_2 = K2(n];
n += nstep;
while( n <= nto )
{

k2 _3 = K2([nj;

u{n} = ( 2.0%*u2 - ul + 0.83333333*u2*k2_2 + 0.083333333*ul*k2_1) /
(1. 0 - 0.083333333*k2_3 ):

/* Get K2(r+2h) and find u(r+2h) */

ul = u2; /* Get ready to increment u and k2 by h */
k2_1 = k2_2; /* and update the integral sum.
u2 = u(n};
k2_2 = k2_3;
*intu2 += u2*u2;
n += nstep;
}
/* We are at the end of the interval, find *;
*

n -= (3.0 * nstep):; /* du/dr and return it and u.
*duu = ( 4.0*(u2-ul) - (u2-u{n}) ) / ( 2.0*nstep );
fyu = u2;

return;

}
AR ER AL AL R LR LA L LY



Appendix C

Maximum Likelihood Fitting
Procedure

To determine quantitative details of the low-lying structure of 1°Li from the data col-
lected from the *B(”Li,®B)'°Li reaction, a parametrized theoretical model, described
in Chapter 4 and Appendix B, was fitted to the data. However, since the statistics
in the collected spectrum are low, the standard least-squares fitting technique was
inapplicable. This is due to the fact that the least-squares technique relies on the
assumption that the measured number of events in a given channel has a Gaussian
distribution about some “true” value (hopefully the value of the parametrized model)
determined by nature. In actuality, the measured number of counting events in a
given channel has a Poisson distribution about the “true” value. Only for a large
number of events per channel (i.e. imore than 20), where the Poisson distribution

approaches the Gaussian distribution, is the least-squares technique valid.

A general maximum-likelihood fitting technique, a familiar example of which is
the least-squares method, seeks to fit a model function f(z,a) to the data z by
adjusfing the model pa.raméters a to maximize the probability of obtaining the given
data set. Typically, a figure of merit is defined as the negative natural logarithm of

this probability. More convenient than (but equivalent to) maximizing the probability

104
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is minimizing the figure of merit. In the example of the least-squares method, the
figure of merit is the x? statistic [Pres 92]. With this prescription, if the data in
a given channel, (z;,y;), have a Poisson distribution about a model f(z;,a) with
parameters a, then the total probability of obtaining the measured data set is

P = H {f(m:;z'a)}y‘ e—f(ac.',a)'J | (Cl)

and figure of merit is

L=—InP= Z{f(xi,a) +Iny! — y;In f(zi,a)}. (C.2)

The L statistic is similar to x? in that it is a measure of the goodness—of-fit, and
that its minimization over the space of model parameters is the objective of the
fitting procedure. However, its analytical behavior is not as well known as that of
the chi-squared statistic. More spéciﬁcally, using L it is possible to compare fits
with two different models énd to determine whether one fit is better than the other;
but it is not possible to assign to a given value of £ a probability analogous to the
chi-square distribution as described in [Pres 92]. The statistical uncertainties on the
model parameters can be determined, as described in Bevington [Bevi 69], from

2
o2

“ = BL/oat (C.3)

The computer code FIT_SPEC

The above maximum likelihood technique is carried out with the program FIT_SPEC,
the FORTRAN source code for which is listed in Table C.1 at the end of this appendix.
The program will fit an arbitrary function, specified in the user-modifiable function
FITFUNC, to a set of data points read in from a file, either in (z,y) or (z,y,0,) format.

The program will perform a maximum-likelihood fit assuming one of four statistical
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distributions of the data about the functional form: a Poisson distribution, or a
Gaussian distribution with the uncertainty o, in each data point assumed to be unity,
/¥, or the value of o, read in from the file. In each case, the fitting is performed by
numerically minimizing a figure of merit over the space of model parameters utilizing
the subroutine AMOEBA from [Pres 86]. AMOEBA iteratively searches over the space
of model parameters until either a maximum number (500) of iterations is reached
or until successive changes in the figure of merit become smaller than a specified

tolerance.

The program is designed to be user-modifiable; detailed instructions for such
modification are given in the program comments at the beginning of the code listing.
The chief modifications involve changing the function which is fitted to the data. This
function FITFUNC can be easily located in the code by searching for the character
string BMYFITFUNC. The function accepts as input the value at which the function
is to be evaluated, and a one-dimensional array containing the values of the model
parameters. It is important that the user remember the order in which the parameters
are stored in the array, as the user is prompted, during operation, for initial guesses
at their values. In addition to changing the function, the user must also specify the
number of model parameters in the function. This is accomplished by changing the
value of the parameter NPARAMS. The declarations for this parameter can be located in
the code by searching for the character string BUYNPARAMS. Other parameters which
the user might wish to modify are MAXDATCHAN, which specifies the maximum number
of data points allowable, and TOL, which specifies the relative tolerance on successive

evaluations of the figure of merit necessary for AMOEBA to terminate.

Upon running the program, the user is first prompted for format ((z,y) or (z,y,04))
and name of the data file. If the file is successfully read, the program displays the

filename, number of data points (channels), and the sum of y values in the file.
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The user is prompted for the minimum and maximum z values over which the fit
should be made, and the assumed statistical distribution (Poisson distribution or
one of three Gaussian forms) of the data points about the model. The minimization
routine requires a set of initial guesses at the model parameters. More specifically,
if the model has n parameters, a given set of parameter values represents a vector
in the n—dimensional space of model pérameters; initially, the routine requires n + 1
such vectors. The program allows for two ways for the total n(n + 1) initial values
to be supplied. They can all be explicitly specified, or the user can specify one
initial guess and a percent range over which the program will randomly pick other
guesses. The latter option, in addition to being less time consuming, allows the user
to hold any parameter constant for the fitting by specifying a 0% range. Once the
initial guesses are supplied, the program displays a list of values of the figure of merit
corresponding to each of the n+1 initial vectors, and enters the minimization routine.
Depending on such factors as the number of parameters, complexity of the model, and
required convergence tolerance for AMOEBA, minimization typically requires less than
30 seconds. Once convergence is reached, the program has in memory a group of n+1
parameter sets, the figures of merit for which all lie within the specified tolerance of
each other. The user is asked for the name of an output file and a comment string
to go in the output file. This file contains the results of the fitting procedure: the
number of iterations AMOEBA required for convergence, the n + 1 final values of each
parameter as well as their averages and uncertainties, and the value of the figure
of merit evaluated at the average parameter values. Finally, the user can ihstruct
the program to write a file containing, in (z,y) format, the optimized model over a

specified range of = values.
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Table C.1: The listing of the FIT SPEC FORTRAN source code is given on the
fifteen pages at the end of this appendix. The operation of the program is discussed
in the text as well as in the program comments.
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PROGRAM FIT_SPEC

This program reads a SARA file and fits an arbitrary function to the

data over a specified region of channels. The fit uses a maximum likelihood
technique that assumes the data have a Poisson distribution about the

"true" functional form.

CCCCCCC -- Subroutines:

READ_SPECTRUM -- Reads in a file of two types: (X,Y) or (X,Y,DY)
The data are stuffed into the arrays DATA and DDATA.
GET_PARAMETERS - Allows the user to specify initial guesses for the para-
meters of the fit. There are two options:
1) Specify one initial guess and a percent range over
which the computer will generate random points to jump
start the fit,
2) Specify all initial guesses to jump start the fit.
The initial guesses are packed into the 2d array P and the
1d array Y contains the values of the probability funcition
for each set of initial guesses.
AMOEBA -~-==----- Perfoms a simplex minimization. This is a Numerical
Recipes function. It takes P and Y and, by calling
the probability function returns the 2d array P with
values of the function parameters that are within a
specified tolerance of each other.
ZLNPROB -------~ Probability function. Actually this is the negative
natural log of the true probability function assuming
the data have one of several distributions about the
functional form (see below for more on this). This
function accepts
a 1ld array X, which contains the parameters to be used
in evaluating the fit function. The fit function is
evaluated many times in a sum over the specified data
points.
The possible distributions of the data about the
functional form are (as specified by STATMODE):

1) Poisson distribution

2) Gaussian distribution with sigma = 1

3) Gaussian distribution with sigma = (data)=*1/2
4) Gaussian distribution with sigma = dy from file

FITFUNC ===--==- The actual function to be fit to the data. This function
accepts the ld array X, which contains the parameters of
the fit, and the data ordinate datax at which the function
is to be evaluated.

WRITE_IT_OUT --- Writes the parameters and their averages to the screen.
Will also, if specified, write a file containing the fit
function in (x,y) format.

GET_ERRORS ----- Finds errors on each parameter in the following manner.
For each parameter we have found, using AMOEBA, several
values all within a specified tolerance of each other.

We take an average of the values AVG and define
DEL = 0.01*AVG. Bevington defines

sigma**2 = 2/(d**2(lnprob) /d**2x)
CCCCCC -- A mathematical description:
If we have data points, labelled by i, called (xi, yi), and
we assume the data to have a Poisson distribution about some

functional form f(xi). The probability of obtaining the
data set (xi,yi) is:
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1~ yi i
I {€(xi)] ]
Prob Func = L = Product over | ---======-- exp{ -f(xi) } |
i | (yi)! !
I_ |
1~ 1

-1n(L) = Sum over | f(xi) + ln[ (yi)! ] - yi*ln( £(xi) ] |
i I

i 1_ _

For more info see

~-Leo, Techniques for Nuclear and Particle Physics Experi-
ments. Chapter 4.

--P. R. Bevington, Data Reduction and Error Analysis for
the Physical Sciences. Section 3-2.

--W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T.
Vetterling, Numerical Recipes (FORTRAN edition).
Section 10.4 ‘and Chapter 14

CCCCCCC -- A note about changing the fitting function and other important

parameters:

First of all, the function FITFUNC must be changed to accomodate the
necessary model. This function can be quickly found by searching for
the character string BMYFITFUNC.

Also there are two PARAMETERS that may be changed.

1) MAXDATCHAN This gives the largest size allowable for the data array.

2) NPARAMS

This PARAMETER appears at the beginning of the main function,
in the subroutine READ _SPECTRUM, and in the function ZLNPROH.
These declarations can be quickly found by searching for

the character string BMYMAXDATCHAN.

This gives the number of parameters in the fit. This
PARAMETER appears at the beginning of the main function,

in the subroutines WRITE_IT_OUT, GET_ERRORS and
GET_PARAMETERS. These declarations can quickly be found

by Searching for the character string BMYNPARAMS.

Also, there is a parameter TOL which specifies the tolerance necessary for
the simplex routine AMOEBA to boot out. The declaration for TOL appears
in the main fuanction just below the NPARAMS declaration.

((((l(ll(((ll(([llllllll(l[(ll([ll(ll((K(l(l(ll(((((((((l((l(l(((lll((‘

CCCCCCCCCCCCceoclorcreeeeecceecccececcccceccecceccccccccecceccccCcecClCCcCCLlll

CCCCCCCC -- Main program begins here!!! CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C

CBMYMAXDATCHAN

c
c

INTEGER MAXDATCHAN, NCHAN, MINCHAN, MAXCHAN, STATMODE, FILEMODE

PARAMETER ( MAXDATCHAN = 4096 ) :

COMMON /DATA_STUFF/ XDATA,DATA, DDATA, NCHAN, MINCHAN, MAXCHAN
COMMON /STAT MODE/ STATMODE

COMMON /FILE MODE/ FILEMODE

REAL*8 XDATA{ 0 : MAXDATCHAN-1 )

REAL*8 DATA( 0 : MAXDATCHAN-1 )

REAL*8 DDATA( 0

MAXDATCHAN-1 )

INTEGER NPARAMS, ITER
CBMYNPARAMS )
PARAMETER( NPARAMS = 7 ) )
REAL P( (NPARAMS+1), NPARAMS ), Y( NPARAMS+l ), TOL
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REAL ERR( NPARAMS )
PARAMETER( TOL = 0.000001 )

EXTERNAL ZLNPROB

PRINT *,’ '
PRINT *,‘03/19/93 == fit_spec version. NOW READS ONLY X, Y FILES'

PRINT *,’ '
S PRINT *,’ ’
PRINT *,’Whats the format of the input file?’
PRINT *,’ '
PRINT *,’ 1) (X,¥)’
PRINT *,’ 2) (X,Y,DY)’

READ *, FILEMODE
PRINT *,’ '
IF ((FILEMODE.LT.1) .OR. (FILEMODE.GT.2)) GOTO §

CALL READ_ SPECTRUM
IF ( NCHAN .LT. 0) GOTO 9999

IF (FILEMODE.EQ.1) THEN

10 PRINT =,’ '
PRINT *,’Do you want 1) Poisson distribution’
PRINT *,’ 2) Gaussian distribution: sigma=1’
PRINT *,°’ 3) Gaussian distribution: sigma=sqrt(y)’

PRINT *,’of data about model?’

READ *, STATMODE

PRINT *,’ '

IF ((STATMODE.LT.1) .OR. (STATMODE.GT.3)) GOTO 10

ENDIF
IF (FILEMODE.EQ.2) THEN
18 PRINT *,’ '

PRINT *,’Do you want 1) Poisson distribution’
PRINT *,’ 2) Gaussian distribution: sigma=l1’
PRINT *,° 3) Gaussian distribution: sigma=sqrt(y)’
PRINT *,

+ ! 4) Gaussian distribution: sigma=dy from file’

PRINT *,’of data about model?’

READ *, STATMODE

PRINT *,’ '

IF ( (STATMODE.LT.1) .OR. (STATMODE.GT.4)) GOTO 15
ENDIF

CALL GET_PARAMETERS( P, Y )

CALL AMOEBA (P,Y, (NPARAMS+1) , NPARAMS, NPARAMS, TOL, ZLNPROB, ITER)
CALL GET_ERRORS( P, ERR )

CALL WRITE_IT OUT( P, NCHAN, ITER, ERR )

9999 END

(o} .
CCCCCCCC -- Main program ends here!!! CCCCCCCCCCCCCCeeeeeeeeeeeceeccee
CCCCCCCCCCCCCCCCCECCCCCCECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCl
COCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCCCCCecceececceceee

SUBROUTINE READ_SPECTRUM

Cc
((((((x(((((l(((((((l(((((((((l(l(FFPPPPPPCCFFFPPPCCPFFPFPFFPPPCPFFPPP

[o]

cceeece ~- Input:

Cc

[o] None

c .
CCCCCCC -- Output: Both output arguments are contained in the common
o block DATA_STUFF.
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DATA -- 1d array of size MAXDATCHAN into which the SARA fil is to be

read.

NCHAN - Number of data channels actually stuffed, if read is successfull.

If there is an error reading the file, NCHAN is assigned a value
of -1 and is trapped in the main program.

INTEGER MAXDATCHAN, NCHAN, MINCHAN, MAXCHAN, FILEMODE

CBMYMAXDATCHAN

17

20

25

27

30

3s

40

PARAMETER( MAXDATCHAN = 4096 )

COMMON /DATA_STUFF/ XDATA,DATA, DDATA, NCHAN, MINCHAN, MAXCHAN
COMMON /FILE_MODE/ FILEMODE

REAL*8 DATA( 0 : MAXDATCHAN-1 ),DDATA( 0 : MAXDATCHAN-1 )
REAL*8 XDATA( O : MAXDATCHAN-1 )

INTEGER*2 DUMMY, READ OK_FLAG
REAL*8 TOTAL_COUNTS
REAL*8 XMIN, RMAX
CHARACTER * 80 FILENAME

PRINT *, ' '/

PRINT *, ' '

PRINT *, ’‘Enter the name of the input data file. '
PRINT *, ' '

READ (*,’ (A80)’) FILENAME

PRINT *, ’ '/

PRINT *, ’' '

OPEN (UNIT=l, FILE=FILENAME, STATUS="OLD’)

IF (FILEMODE.EQ.1) THEN
TOTAL_COUNTS=0.0
NCHAN=0
READ (UNIT=1, FMT=*, END=25, ERR=20) XDATA (NCHAN) , DATA (NCHAN)
TOTAL_COUNTS = TOTAL_COUNTS + DATA (NCHAN)
NCHAN = NCHAN + 1
GOTO 17
PRINT *,’ERROR READING SPECTRUM FILE!!’
PRINT *, ' ’
PRINT *, * '
NCHAN = -1
GOTO 40
ENDIF

IF (FILEMODE.EQ.2) THEN
TOTAL_COUNTS=0.0
NCHAN=0
READ (UNIT=1, FMT=*, END=35, ERR=30)

XDATA (NCHAN) , DATA (NCHAN), DDATA (NCHAN)
TOTAL_COUNTS = TOTAL_COUNTS + DATA (NCHAN)
NCHAN = NCHAN + 1

GOTO 27
PRINT *,‘ERROR READING SPECTRUM FILE!!’
PRINT *, * /
PRINT *, ‘' '
NCHAN = -1
GOTO 40
ENDIF

PRINT *,’Successfully read file’
PRINT *, FILENAME

PRINT *,’ /

PRINT *,’Number of channels read: '
PRINT *,NCHAN

PRINT *,’ '
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PRINT *,’Total number of counts: '

PRINT *,TOTAL_COUNTS

PRINT *,’ '

PRINT *,’Enter the min and max X-values for the fit.’
READ *, XMIN, XMAX

PRINT *,’ '/
PRINT *,’ '
MINCHAN = 0

DO WHILE ( XMIN.GT.XDATA(MINCHAN) )
MINCHAN = MINCHAN + 1
ENDDO

MAXCHAN = NCHAN-1

DO WHILE ( XMAX.LT.XDATA (MAXCHAN) )
MAXCHAN = MAXCHAN - 1

ENDDO

RETURN

END
[of
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCceeeeee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececeecccececccececcceccececceccececec
C

SUBROUTINE GET_PARAMETERS( P, Y )
(o]
CCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCececee
(o]

CCCCCCC == Input:

(o} None

o]

CCCCCCC -- Qutput:

P --- 2d matrix of dimensions (NPARAMS+l,NPARAMS) which will
contain the initial guesses for the parameters. The NPARAMS+1
rows of this matrix contain a set of NPARAMS parameter guesses.

Y --- 1d vector of dimension (NPARAMS+1l) which will contain the values
of the probability function ZLNPROB at each of the sets of parameters.

NeYeXsXeXeXeXeXs!

INTEGER NPARAMS
CBMYNPARAMS ,
PARAMETER( NPARAMS = 7 ) ‘
REAL P( (NPARAMS+1), NPARAMS ), Y( NPARAMS+1 )

INTEGER*4 I

INTEGER DUM, GUESSNUM, PARAMNUM

REAL FIRSTGUESS( NPARAMS ), PERCENTRANGE( NPARAMS ), FG, PR
REAL GUESS

PRINT *,’Okay, there are ’ NPARAMS,’ parameters in this fit.’

PRINT *,’I need ’,NPARAMS+l,’ guesses for these parameters.’
5 PRINT *,’ *

PRINT * ’ :
PRINT *,’You have 2 choices. 1) Enter all guesses yourself.’
PRINT * 2) Enter a guess and a percent range’
PRINT * and let me make random guesses.’
PRINT * :

PRINT *
PRINT *
READ *,DUM

PRINT *,’ '

PRINT *,’ / ’

IF (DUM .EQ. 1) THEN

DO GUESSNUM = 1, NPARAMS+1

14
Choose!!! ’

’
’
’
4
’
,
r

’
I
’
’
[
’
’
’
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DO PARAMNUM = 1, NPARAMS

PRINT *,’ Guess #: ‘,GUESSNUM
PRINT =*,’ Param #: ', PARAMNUM
PRINT *, 'Enter guess. '
PRINT *,’ '
READ *,P( GUESSNUM, PARAMNUM )
PRINT *,’ '
PRINT *,’
ENDDO
ENDDO

ELSE IF (DUM .EQ. 2) THEN
DO PARAMNUM = 1, NPARAMS
PRINT *,’Enter first guess and percent range for param # ’, PARAMNUM
PRINT *,’
READ *,FG,PR
FIRSTGUESS( PARAMNUM ) = FG
PERCENTRANGE ( PARAMNUM ) = FG * PR / 2.0
PRINT *,’ '’
PRINT *,’ '
ENDDO
PRINT *,’Enter seed for randum number generator.’
READ +,1I
PRINT *,’ '/
PRINT *,’ ’
DO PARAMNUM = 1, NPARAMS
P( 1, PARAMNUM ) = FIRSTGUESS( PARAMNUM )
ENDDO
DO GUESSNUM = 2, NPARAMS+1
DO PARAMNUM = 1, NPARAMS
GUESS=FIRSTGUESS (PARAMNUM) + (2.0*RAN(I)-1.0)*
+ PERCENTRANGE (PARAMNUM)
P ( GUESSNUM, PARAMNUM ) = GUESS
ENDDO
ENDDO
ELSE
PRINT *,’INVALID CHOICE'
GOTO 5
ENDIF
PRINT *,’
PRINT *,‘Values of prob func.’
DO GUESSNUM = 1, NPARAMS+1
DO PARAMNUM = 1, NPARAMS
FIRSTGUESS( PARAMNUM ) = P( GUESSNUM, PARAMNUM )
ENDDO .
Y( GUESSNUM ) = ZLNPROB( FIRSTGUESS )
PRINT *,Y( GUESSNUM )

ENDDO

PRINT *,’ ’

END
Cc
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeee
CCCCCCCCCCCCCCTCCCCCCCCCCCCCCCCCCCLCCCCCCCLLLCLeeeeeeeeeeeeeeeeeeceeceee

SUBROUTINE GET_ERRORS( P, ERR )
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeee
C
CCCCCCC -- Input:

C
C P --- 2d array of dimension (NPARAMS+1,NPARAMS) containing the
o] final values for the fit parameters.

c
CCCCCCC == Output:
o]

C ERR - 1d array of dimension (NPARAMS) containing errors on each parameter
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o None
[
INTEGER NPARAMS, PARAMNUM, DUM, GUESSNUM
CBMYNPARAMS
PARAMETER( NPARAMS = 7 )
REAL P( (NPARAMS+l), NPARAMS ), AVG{( NPARAMS ), ERR( NPARAMS )
REAL PARAMSUM,PARAMVAL,DELTA.YO,Y_PLUS_pEL,Y_MINS_DEL
REAL TOP, BOTTOM

DO PARAMNUM = 1, NPARAMS
PARAMSUM = 0.0
DO GUESSNUM = 1, (NPARAMS+1)
PARAMSUM = PARAMSUM + P (GUESSNUM, PARAMNUM)
ENDDQ :
AVG( PARAMNUM ) = PARAMSUM/FLOAT (NPARAMS + 1)
ENDDO

DO PARAMNUM = 1, NPARAMS
PARAMVAL = AVG(PARAMNUM)
DELTA = PARAMVAL*0.01

AVG (PARAMNUM) = PARAMVAL-DELTA
Y _MINS DEL = ZLNPROB( AVG )

AVG (PARAMNUM) = PARAMVAL+DELTA
Y_PLUS_DEL = ZLNPROB( AVG )

. AVG (PARAMNUM) = PARAMVAL
Y0 = ZLNPROB( AVG )

BOTTOM = Y _PLUS_DEL- 2.0*Y0+Y_MINS_DEL
IF (BOTTOM.LT.0-.0001) THEN
ERR (PARAMNUM) = 999999.0
ELSE
ERR (PARAMNUM) = SQRT( ABS( 2.0*DELTA / BOTTOM ) )
ENDIF '
ENDDO
RETURN
END
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCCeceeeeeecece
CCCCCCCCCCCCCCCCCCCCLCCCCCCCCCCLCCCCCeeCeeeeeeeceeececeeceeeceececetceeeeccccecee
c

SUBROUTINE WRITE_IT_OUT( P, NCHAN, ITER, ERR )
C
Cccecccecceececeeccccccecccceccccececceccecececccccecccececceeceeeceecceecccecccecece

C
CCCCCCC -~ Input:

P --- 2d array of dimension (NPARAMS+1,NPARAMS) containing the
final values for the fit parameters.

NCHAN -- Number of channels in input spectrum. This is used to
write out a file containing (x,y) values for the fit function.

ITER -- number of iterations needed for AMOEBA to converge.

ERR --- 1d array of dimension (NPARAMS) containing sigma for each
parameter.

CCCCCC --~ Output:

None

AN OONO00O00000

INTEGER NPARAMS, NCHAN, ITER, GUESSNUM, PARAMNUM, DUM
CBMYNPARAMS

o
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PARAMETER ( NPARAMS = 7 )

REAL P( (NPARAMS+1), NPARAMS ), X( NPARAMS ), ERR( NPARAMS )
CHARACTER * 80 FILENAME, COMMENT

REAL PARAMSUM, Y

REAL XMIN, XMAX, XX, DX, NUMSTEPS

PRINT *,’ '

PRINT *,’ '

PRINT *,'Enter filename where I should write the results.’
PRINT =, '/

READ(*,’ (A80)’) FILENAME

PRINT *,’ '/

PRINT *,’ '

PRINT *
PRINT *
READ (*,’ (A80)’) COMMENT

PRINT *,’ '

PRINT *,’ '
OPEN(UNIT-I.FILE-FILENAME,STATUS-’NEW')
WRITE(1,*) COMMENT

WRITE(1,*) ' *

WRITE(l,*) ’'Iterations = ',ITER

PRINT *,’Iterations = ’,ITER
WRITE(1,*) '

’Enter some comment about the fit.’

r 0

. % % os

WRITE(l,*) ‘Parameter ', PARAMNUM,’  :'
PARAMSUM = 0.0
DO GUESSNUM = 1, (NPARAMS+1)

WRITE(1l,*) * ’ , P (GUESSNUM, PARAMNUM)
PARAMSUM = PARAMSUM + P (GUESSNUM, PARAMNUM)
ENDDO

X( PARAMNUM ) = PARAMSUM/FLOAT (NPARAMS + 1)
PRINT ',PARAMNUH,PARAHSUH/FLOAT(NPARAMS+1),ERR(PARAMNUM)
WRITE(1,*) ‘Avg. sigma = ', PARAMSUM/FLOAT (NPARAMS+1),
+ ERR (PARAMNUM)
WRITE(1,*) * '
ENDDO
Y = ZLNPROB( X )
PRINT *,’-1n(Prob) = ',Y
PRINT *,’ '
WRITE(1l,*) ’'~-ln(Prob) = ',Y¥
CLOSE (UNIT=1)
PRINT *,’ '/
PRINT *,’Do you want me to make a file with the fit function in '
PRINT *,’xy format? '
PRINT *,’1l)Yes Any other integer)No’
PRINT *,’ '
PRINT *,’Choose!!! ’
PRINT *,’ '/
READ *,DUM
PRINT *,’ '/
PRINT *,’ '/
IF (DUM .EQ. 1) THEN
PRINT *,’Enter filename where I should write the results.’
PRINT *,’ '
READ (*,’ (A80) ') FILENAME
PRINT *,’ '
PRINT *,’ '
OPEN (UNIT=1, FILE=FILENAME, STATUS='NEW’')
PRINT *,’Enter XMIN,XMAX,and number of steps.’
PRINT *,’ '
READ *,XMIN, XMAX, NUMSTEPS
PRINT »,’ ' .
PRINT *,’ '
DX = (XMAX-XMIN)/NUMSTEPS
DO XX=XMIN, XMAX,DX
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Y = FITFONC( X, XX )
WRITE(1l,*) XX,Y
ENDDO
CLOSE (UNIT=1)
ENDIF

RETURN

END
Cc
CCCCceeeeceeceeecceceececceeeecceccececcececeeceececceccecccecccceccccccccecce
CCCCCCCCCCCCCCCCCeeeecececececceeececeecececececeeccccceeccccececccccceccece
o}

REAL FUNCTION ZLNPROB( X )

(o]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCecceccececcececeecececccceeecceee
[of

CCCCCCC -- Input:

Cc
C X -- A 1d array of dimension NPARAMS containing the parameters for
(o] the fit.

C

CCCCCCC -= OQutput:

c .

C The returned funciton value is the value of the probability function
o] with the input parameters.
C

REAL X (*)

INTEGER MAXDATCHAN, NCHAN, MINCHAN, MAXCHAN, STATMODE
CBMYMAXDATCHAN

PARAMETER( MAXDATCHAN = 4096 )

COMMON /DATA_STUFF/ XDATA,DATA, DDATA, NCHAN, MINCHAN, MAXCHAN

COMMON /STAT MODE/ STATMODE

REAL*8 DATA( 0 : MAXDATCHAN-1 )

REAL*8 DDATA( 0 : MAXDATCHAN-1 )

REAL*8 XDATA( O : MAXDATCHAN-1l )

REAL*8 F, SUM, TEMP
INTEGER CHAN
REAL*8 XX, Y, DY

SUM = 0.0
DO CHAN = MINCHAN, MAXCHAN
XX= XDATA( CHAN )
Y = DATA( CHAN )
DY= DDATA( CHAN )
F = FITFUNC( X, XX )

If statmode = 1 then we want Poisson statistics

aaon

IF (STATMODE.EQ.l1l) THEN
IF (F.GT.0.0) THEN i
SUM = SUM + F - Y * LOG(F) + FACLOG(NINT(Y))
ELSE
PRINT *,F
ENDIF
ENDIF

If statmode = 2 then we want Gaussian statistics, calculate good ol’
fashioned chi-squared with sigmael.

anoan

IF (STATMODE.EQ.2) THEN
TEMP = (Y - F)
SUM = SUM + TEMP*TEMP/2.0
ENDIF .

an

If statmode = 3 then we want Gaussian statistics, calculate good ol’
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C fashioned chi-squared with sigma=sqrt(y).

C
IF (STATMODE.EQ.3) THEN
IF (Y.LE.O0.0) THEN
DY = 1.0
ELSE
DY = SQRT(Y)
ENDIF
TEMP = (¥ - F)/DY
SUM = SUM + TEMP*TEMP/2.0
ENDIF
Cc
C If statmode = 4 then we want Gaussian statistics, calculate good ol’
C fashioned chi-squared with sigma=dy from data file
o}
IF (STATMODE.EQ.4) THEN
TEMP = (Y - F)/DY
SUM = SUM + TEMP*TEMP/2.0
ENDIF
ENDDO
ZLNPROB = SUM
RETURN
END
c .
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeccecceeecceeee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeeeeeeeeeeeeeeeececeeccececececeeeceee
c "
REAL FUNCTION FACLOG( N )
o]
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCee

C
CCCCCCC -~ Input:

c

(of N -- Integer argument
c

CCCCCCC -~ Output:

C

c The value returned is the natural log of the factorial of the argument.
C
INTEGER I,N

FACLOG = 0.0
IF (N .GT. 1 ) THEN
DO I = 2,N
FACLOG = FACLOG + LOG(FLOAT(I))
ENDDO
ENDIF

RETURN

END
c
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccee
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCccCeeececccccccceccccccceeeccceecceeeeeccee
CBMYFITFUNC
c

REAL FUNCTION FITFUNC (X,  XX)

(of
CCCCCeeeeccccccecececeeececcccceccceceecccecccecccececcecececeeeeceecceeeeccceece
C

CCCCCCC -- Input:

X ==~ 1d array of dimension NPARAMS containing the fit parameters.

anooa

XX -- X value at which to evaluate the function.
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(o
CCCCCCC -- Output:

The returned value is fit function evaluated at the input channel number
with the input parameter set.

Functional form has 5 components:
===} constant background K

===A 3 body phase space background
ZETA = ( CHAN - X0 ) / ( ENDCHAN - X0 )
BACK = A * SQRT( 1 - ZETA*ZETA )

wm=? p-waves
PWAVE = N * EXP( - (E-XR)*(E-XR)/ (2*GLOW*GLOW) )
if chan > xr

PWAVE = N * [ R + (1-R) * GHI * GHI / (FUDGEHI* (E-XR)**2 + GHI*GHI) ]
if chan < xr

R = -0.06874 + 0.38989*EN - (0.18571*EN*EN
GHI = 2.31417 - 6.22500*EN + 3.83333*EN*EN
GLOW = -0.09409 + 0.53771*EN - 0.21429*EN*EN
FUDGEBI = 61.96055 - 231.11300*EN + 216.0000*EN*EN

GRI**2 = GHI**2 + FUDGEHI*DEVHWHM*DEVHWHM
GLOW**2 = GLOW**2 + DEVHWHM*DEVHWHM/2LN2

===l Narrow s-wave at zero energ
SWAVE = B * 9.923 / ( (CHAN-ZEROCHAN)**2 + 9.923 )

AQOQAOOOO0O0ONANOaaAAaOOONOOOO0NO0000O0000Q00

X(1) = XR1 \
X(2) = N1 > p-wave parameters
X(3) = XrR2 /
X(4) = N2 /
X(5) = B > s-wave parameter
X(6) = A > 3body background amplitude
X(7) = K > constant background
REAL X (*)
REAL*8 XX
REAL EN
REAL DEVHWHM
REAL RE, GLOWE, GHIE, FUDGEHIE
REAL R, GLOW, GHI, FUDGEHI
REAL 22Z,PWAVEl,6 PWAVE2
REAL SWAVE, ZEROCHAN
REAL ENDCHAN, X0, ZETA, BACKGROUND
REAL K

First P-WAVE

anoaon

C OK first convert X(1) to neutron rescnance energy
c

C Use the calibration at the bottom of pllé in log, converted to a lk
C scale. This is only good for 0.1 < EN < 1.25.
(o4

EN = 18.3621 - 0.03412*X(1)
c .
C Now calculate RE,GLOWE,GHIE, FUDGEHIE
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NOTE: In real life DEVHWHM = 0.115MeV. Using the above calibration
for a lk scale, this corresponds to HWHM = 3.370 chan/lk
FWHM =~ 6.741 chan/lk

DEVHWHM = 0.115

RE = -0.06874 + 0.383989*EN - 0.18571*EN*EN
FUDGEHIE = 61.96055 - 231.11300*EN + 216.0000*EN*EN
GHIE = 2.31417-6.22500*EN+3.83333*EN*EN

GLOWE = -0.09409 + 0.53771*EN - 0.21429*EN*EN

Now add the device HWHM

GHIE = SQRT( GHIE**2 + FUDGEHIE*DEVHWHM*DEVHWHM )
GLOWE = SQRT{ GLOWE**2 + DEVHWHM*DEVHWHM/1.3863 )

Now we need to convert from energies back to channels

FUDGEHIE and RE dont need to be changed
GHIE and GLOWE do ==> G = GE / (dE/dx)

FUDGEHI = FUDGEHIE

R = RE .
GHI = GHIE / 0.03412
GLOW = GLOWE / 0.03412

Calculate the resonance shape

2Z = XX-X(1)
IF (22.1LT.0.0) THEN
PWAVEl = X(2) * (R + (1.0-R)*GHI*GHI/(FUDGEHI*ZZ*ZZ+GHI*GHI))
ELSE
PWAVEL = X(2)*EXP (- (22Z*2Z)/(2.0*GLOW*GLOW))
ENDIF

Second P-WAVE

OK first convert X(3) to neutron resonance energy

Use the calibration at the bottom of pl00 in log, converted to a lk
scale. This is only good for 0.1 < EN < 1.25.

EN = 18.3621 - 0.03412#*X(3)
Now calculate RE,GLOWE,GHIE, FUDGEHIE
NOTE: In real life DEVHWEM = 0.115MeV. Using the above calibration
for a 1k scalo, this corresponds to HWHM = 3.370 chan/lk
FWHM = 6.741 chan/lk
DEVHEWHM = 0.115
RE = -0.06874 + 0.38989*EN - 0.18S71*EN*EN
FUDGEEIE = 61.96055 - 231.11300*EN + 216.0000*EN*EN
GHIE = 2.31417-6.22500*EN+3.83333*EN*EN
GLOWE = -0.09409 + 0.53771*EN - 0.21429*EN*EN
Now add the device HWHM

GHIE = SQRT( GHIE**2 + FUDGEHIE*DEVHWHM*DEVHWHM )
GLOWE = SQRT( GLOWE**2 + DEVHWHM*DEVHWHM/1.3863 )

Now we need to convert from snergies back to channels

FUDGEHIE and RE dont need to be changed
GHIE and GLOWE do ==> G = GE / (dE/dx)
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(o}
FUDGEHI = FUDGEHIE
R = RE
GHI = GHIE / 0.03412
GLOW = GLOWE / 0.03412
[
C Calculate the resonance shape
c

22 = XX-X(3)
IF (22.LT.0.0) THEN
PWAVE2 = X(4) * (R + (1.0-R)*GHI*GHI/(FUDGEHI*2ZZ*2Z+GHI*GHI))

ELSE
PWAVE2 = X (4)*EXP (= (Z2Z*2ZZ)/(2.0*GLOW*GLOW) )
ENDIF
(o]
C S-WAVE
[+
[o] Note -- 11.360 is 3.370 squared -- the s-wave is the width of
[o] the resolution
C
c ZEROCHAN = 538.1624 <mma (0 keV
(od ZEROCHAN = 536.6970 <wm= 50 keV
c ZEROCHAN = 535.231§ <mma 100 keV
o]
ZEROCHAN = 536.6970
2ETA = XX -~ ZEROCHAN
IF ( X(5) .LT. 0.0 ) X(S) = 0.0
SWAVE = X(5) * 11.360 / ( ZETA*ZETA + 11.360 )
c
C BACXGROUND
c .
[o] Note ~- ENDCHAN is the kinematic limit for the reaction
ol X0 is a parameter determined from 3body phase space calculations
(o] Both are in a 1024 spectrum
(o
ENDCHAN = 538.1624
X0 = 237.9954
ZETA = ( XX - X0 ) / ( ENDCHAN - X0 )
IF ( XX .LT. ENDCHAN ) THEN
IF ( X(6) .LT. 0.0 ) X(6) = 0.0
BACKGROUND = X(6) * SQRT( 1.0 - ZETA*ZETA )
ELSE
BACKGROUND = 0.0
ENDIF
c
C CONSTANT BACKGROUND
c
IF(X(7).LT.0.0) X(7)=0.0
Cc
C NOW ADD IT UP
c
FITPUNC = RACKGROUND + SWAVE + PWAVELl + PWAVE2 + X(7)
RETURN
END
c
(lllxllllll((l(lllll(((ll[l[(l((((((l((ll((l((ll([((_((l(ll(l(l(lll(l(l
((I‘l'll(l(ll((l[lllll(l((l(((ll((((((l(l((l(((ll(((ll([(l((ll((ll(lll((
SUBROUTINE AMOEBA (P,Y,MP,NP,NDIM, PTOL, FUNK, ITER)
c

CCCCCCCCCececcecceoeeceeceecececccececceeceeccecCeCCCCCCCCCCCLCCCLLCLLLLLLLLL

[of
ccccece -~ Iaput:
C

(o}
c
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CCCCCCC -~ Qutput:
C
[o
C
PARAMETER (NMAX=20,ALPHA=1.0,BETA=0.5,GAMMA=2.0, ITMAX=500)
DIMENSION P (MP,NP), Y (MP),PR(NMAX), PRR (NMAX), PBAR (NMAX)
MPTS=NDIM+1
ITER=0
1 ILO=1
IF(Y(1).GT.Y(2))THEN
IHI=1
INHI=2
ELSE
IHI=2
INHI=1
ENDIF
DO 11 I=1,MPTS
IF(Y(I).LT.¥Y(ILO)) ILO=I
IF{Y(I).GT.Y(IHI))THEN
INHI=IHI
IHI=1
ELSE IF(Y(I).GT.Y(INHI))THEN
IF(I.NE.IHI) INHI=I
ENDIF
11 CONTINUE
RTOL=2.*ABS (Y (IHI)-Y(ILO))/ (ABS (Y (IRI))+ABS(Y(ILO)))
IF (RTOL.LT.FTOL) RETURN
IF (ITER.EQ.ITMAX) PAUSE ‘Amoeba exceeding maximum iterations.’
ITER=ITER+1
DO 12 J=1,NDIM
PBAR (J)=0.
12 CONTINUE
DO 14 I=1,MPTS
IF(I.NE.IHI)THEN
DO 13 J=1,NDIM
PBAR (J) =PBAR (J) +P (I, J)
13 CONTINUE
ENDIF
14 CONTINUE
DO 15 J=1,NDIM
PBAR (J) =PBAR (J) /NDIM
PR(J)=(1.+ALPHA) *PBAR (J) ~ALPHA*P (IHI, J)
15 CONTINUE
YPR=FUNK (PR)
IF (YPR.LE.Y (1ILO) ) THEN
DO 16 J=1,NDIM
PRR (J) =GAMMA*PR (J) + (1 .~-GAMMA) *PBAR (J)
16 CONTINUE
YPRR=FUNK (PRR)
IF (YPRR.LT.Y(ILO)) THEN
DO 17 J=1,NDIM
P (IHI, J)=PRR(J)
17 CONTINUE
Y (IHI) =YPRR
ELSE
DO 18 J=1,NDIM
P (IHI, J)=PR(J)
18 CONTINUE
Y (IRI) =YEPR
ENDIF
ELSE IF(YPR.GE.Y(INHI))THEN
IF (YPR.LT.Y(IHI)) THEN
DO 19 J=1,NDIM
. P (IRI, J)=PR(J)
19 CONTINUE
Y (IHI)=YPR
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ENDIF
DO 21 J=1,NDIM
PRR (J) =BETA*P (IHI, J)+ (1.-BETA) *PBAR(J)
CONTINUE
YPRR=FUNK (PRR)
IF (YPRR.LT.Y(IRI)) THEN
DO 22 J=1,NDIM
P (IBI,J)=PRR(J)
CONTINUE
Y (IHI)=YPRR
ELSE
DO 24 I=1,MPTS
IF(I.NE.ILO)THEN
DO 23 J=1,NDIM
PR{J)=0.5*(P(I,J)+P(ILO,J))
P(I,J)=PR(J)
CONTINUE
Y (I)=FUNK(PR)
ENDIF
CONTINUE
ENDIF
ELSE
DO 25 J=1,NDIM
P (IHI, J)=PR(J)
CONTINUE
Y (IHI)=YPR
ENDIF
GO TO 1
END



Bibliography

[Abra 73]

[Amel 90]

[Anne 90]

[Bang 92]
[Bark 77]
[Barr 93]
[Bert 91]

[Bevi 69]

[Blan 91]

[Blat 52]

[Bloc 56]
[Bohl 93]

S. N. Abramovich, B. Ya. Guzhovskii, A. G. Zvenigorodskii, and
S. V. Trusillo, Bull. Acad. Sci. USSR, Phys. Ser. 37, 144 (1973).

A. I. Amelin, M. G. Gornov, Yu. B. Gurov, A. L. Il'in, P. V. Mo-
rokhov, V. A. Pechkurov, V. 1. Savel’ev, F. M. Sergeev, S. A. Smirnov,
B. A. Chernyshev, R. R. Shafigullin, and A. V. Shishkov, Sov. J. Nucl.
Phys. 52, 783 (1990).

R. Anne, S. E. Arnell, R. Bimbot, H. Emling, D. Guillemaud-Mueller,
P. G. Hansen, L. Johannsen, B. Jonson, M. Lewitowicz, S. Matts-
son, A. C. Mueller, R. Neugart, G. Nyman, F. Pougheon, A. Richter,
K. Riisager, M. G. Saint-Laurent, G. Schrieder, O. Sorlin, and K. Wil-
helmsen, Phys. Lett. B 250, 19 (1990).

J. M. Bang and 1. J. Thompson, Phys. Lett. B 279, 201 (1992). For
errata see Surrey University preprint CNP93/4.

F. C. Barker and G. T. Hickey, J. Phys. G: Nucl. Phys 3, L23 (1977).

F. Barranco, Proceedings of Third International Conference on Ra-
dioactive Nuclear Beams, East Lansing, Michigan, May 23-27, 1993,
D. J. Morrissey, Ed., Editions Frontiéres, (Gif-sur-Yvette, 1993).

G. F. Bertsch and H. Esbensen, Ann. Phys. (N.Y.) 209, 327 (1991).

P. B. Bevington, Data Reduction and Error Analysis for the Physical
Sciences (McGraw-Hill, New York, 1969), Chap. 11.

B. Blank, J.-J. Gaimard, H. Geissel, K.-H. Schmidt, H. Stelzer,
K. Stimmerer, D. Bazin, R. Del Moral, J. P. Dufour, A. Fleury, F. Hu-
bert, H.—G. Clerc, and M. Steiner, Z. Phys. A 340, 41 (1991).

J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics (J. Wiley
& Sons, New York, 1952), Chap. 1.

M. M. Block, Phys. Rev. 101, 796 (1956).

H. G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W. von Oertzen,
A. N. Ostrowski, M. Wilpert, Th. Wilpert, H. Lenske, D. V. Alexan-
drov, A. S. Demyanova, E. Nikolskii, A. A. Korsheninnikov,
A. A. Ogloblin, R. Kalpakchieva, Y. E. Penionzhkevich, and S. Piskor,
7. Phys. A 344, 381 (1993).

124



[Boyd 93]
[Brow 92]
[Esbe 93]
[Fuku 91]

[Gold 48]
[Gold T74)
[Grei 75)

[Hans 87]
[Heck 76]
[Hiifn 81]
[leki 93]

[Joha 90]

[Klap 69]

[Koba 88]

[Koba 89]

[Koba 92]

[Koba 93]

[Koon 86]

[Kryg 93]

125

R. N. Boyd, Int. J. Mod. Phys. E, to be published.
B. A. Brown, private communication.
H. Esbensen, G. F. Bertsch, and K. Ieki, Phys. Rev. C 48, 326 (1993).

M. Fukuda, T. Ichihara, N. Inabe, T. Kubo, H. Kumagai, T. Nakagawa,
Y. Yano, I. Tanihata, M. Adachi, K. Asahi, M. Kouguchi, M. Ishihara,
H. Sagawa, and S. Shimoura, Phys. Lett. B 268, 339 (1991).

M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).
A. S. Goldhaber, Phys. Lett. B 53, 306 (1974).

D. E. Greiner, P. J. Lindstrom, H. H. Heckman, B. Cork, and
F. S, Bieser, Phys. Rev. Lett. 35, 152 (1975).

P. G. Hansen and B. Jonson, Europhys. Lett. 4, 409 (1987).
H. Heckman and P. J. Lindstrom, Phys. Rev. Lett. 37 56 (1976).
J. Hiifner and M. C. Nemes, Phys. Rev. C 23, 2538 (1981).

K. Ieki, D. Sackett, A. Galonsky, C. A. Bertulani, J. J. Kruse,
W. G. Lynch, D. J. Morrissey, N. A. Orr, H. Schulz, B. M. Sher-

rill, A. Sustich, J. A. Winger, F. Dedk, A. Horvith, A. Kiss, Z. Seres,
J. J. Kolata, R. E. Warner, and D. L. Humphrey, Phys. Rev. Lett. 70,
730 (1993).

L. Johannsen, A. S. Jensen, and P. G. Hansen, Phys. Lett. B 244, 357
(1990). '

R. Klapisch, C. Thibault-Phillipe, C. Détraz, and C. Rigaud, Phys.
Rev. Lett. 23 652 (1969).

T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto, T. Shimoda,
N. Takahashi, and I. Tanihata, Phys. Rev. Lett. 60, 2599 (1988).

T. Kobayashi, S. Shimoura, I. Tanihata, K. Katori, K. Matsuta, T. Mi-
namisono, K. Sugimoto, W. Miiller, D. L. Olson, T. J. M. Symons, and
H. Wieman, Phys. Lett. B 232, 51 (1989).

T. Kobayashi, Nucl. Phys. A538, 343c (1992).

T. Kobayashi, Proceedings of Third International Conference on Ra-
dioactive Nuclear Beams, East Lansing, Michigan, May 23-27, 1993,
D. J. Morrissey, Ed., Editions Frontiéres, (Gif-sur-Yvette, 1993).

S. E. Koonin, Computational Physics (Addison-Wesley, New York.
1986), page 50ff.

R. Kryger, A. Azhari, A. Galonsky, J. H. Kelley, R. Pfaff, E. Ramakr-
ishnan, D. Sackett, B. M. Sherrill, M. Thoennessen, J. A .Winger, and
S. Yokoyama, Phys. Rev. C 47, 2439 (1993).



[Mant 90}
[Nole 74]

[Orr 92]

[Plic 92]
[Posk 66]

[Pres 86]

[Pres 92]

[Riis 92]

[Sher 85]
[Sher 83]
[Sher 91]

[Shim 87]

[Tani 85a)

[Tani 85b]
[Tani 92]

[Thib 75]

126

S. A. Mantha and F. Z. Kitters, Phys. Rev. C 38, 587 (1988).

J. A. Nolen, Jr., G. Hamilton, E. Kashy, and I. D. Proctor, Nucl. Instr
and Meth. 115, 189 (1974).

N. A. Orr, N. Anantaraman, S. M. Austin, C. A. Bertulani, K. Hanold
J. H. Kelley, D. J. Morrissey, B. M. Sherrill, G. A. Souliotis, M. Thoen
nessen, J. S. Winfield, and J. A. Winger, Phys. Rev. Lett. 69, 205
(1992). ~

Hans van der Plicht and John Winfield, The S320 Spectrograph Manua.
unpublished NSCL document.

A. M. Poskanzer, S. W. Cosper, E. K. Hyde, and J. Cerny, Phys. Rev
Lett. 17 1271 (1966)

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling
Numerical Recipes (FORTRAN edition) (Cambridge University Press
New York, 1986), Chap. 10.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery
Numerical Recipes in C (Cambridge University Press, New York, 1992)
Chap. 15.

K. Riisager, R. Anne, S. E. Arnell, R. Bimbot, H. Emling
D. Guillemaud-Mueller, P. G. Hansen, L. Johannsen, B. Jonson, A. La
timier, M. Lewitowicz, S. Mattsson, A. C. Mueller, R. Neugart, G. Ny
man, F. Pougheon, A. Richard, A. Richter, M. G. Saint-Laurent
G. Schrieder, O. Sorlin, and K. Wilhelmsen, Nucl. Phys. A540, 36.
(1992).

R. Sherr and G. Bertsch, Phys. Rev. C 32, 1809 (1985).
B. M. Sherrill, Ph.D. thesis, Michigan State University (1983).

B. M. Sherrill, D. J. Morrissey, J. A. Nolen Jr., and J. A. Winger, Nuc.
Instr. and Meth. B56/57, 1106 (1991).

S. Shimoura et al., Abstracts of Contributions to the Eleventh Inter
national Conference on Particles and Nuclei, Kyoto, 1987.

I. Tahihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikaws
K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phy:
Rev. Lett. 55, 2676 (1985).

I. Tanihata, et al., Phys. Lett. B 160, 380 (1985).

I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, an:
H. Toki, Phys. Lett. B 289, 261 (1992).

C. Thibault, R. Klapisch, C. Rigaud, A. M. Poskanzer, R. Prieel:
L. Lessard, and W. Reisdorf, Phys. Rev. C 12 644 (1975).



[Thom 93a]

[Thom 93b]
[Tosa 90}
[Warb 92]
(Wil 75]

[Wong 90]
[Wout 88]
[Zhuk 91]

[Zhuk 93]

127

I. J. Thompson, Proceedings of Third International Conference on Ra-
dioactive Nuclear Beams, East Lansing, Michigan, May 23-27, 1993,
D. J. Morrissey, Ed., Editions Frontiéres, (Gif-sur-Yvette, 1993). .

I. J. Thompson and M. V. Zhukov, in preparation.
Y. Tosaka and Y. Suzuki, Nucl. Phys. A512, 46 (1990).
E. K. Warburton and B. A. Brown, Phys. Rev. C 46 923 (1992).

K. H. Wilcox, R. B. Weisenmiller, G. J. Wozniak, N. A. Jelley, D. Ash-
ery, and J. Cerny, Phys. Lett. B 59, 142 (1975).

S. S. M. Wong, “Introductory Nuclear Physics”, Prentice-Hall, 1990,
pp- 254-261.

J. M. Wouters, R. H. Kraus Jr., D. J. Viera, G. W. Butler, and
K. E. G. Lobner, Z. Phys. A 331, 229 (1988).

M. V. Zhukov, B. V. Danilin, D. V. Federov, J. S. Vaagen, F. A. Gareev,
and J. Bang, Phys. Lett. B 265, 19 (1991).

M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang, I. J. Thomp-
son, and V. S. Vaagen, Phys. Rep. 231, 151 (1993).



