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ABSTRACT

THEORY AND MODELING OF INTENSE ION BEAMS AND DIAGNOSTIC
MEASUREMENTS IN ACCELERATOR FRONT ENDS

By

Chun Yan Jonathan Wong

Beam dynamics in front ends of ion accelerators is often subject to strong space charge and

significant transverse coupling due to magnetic fields in the source and the use of focusing solenoids

in the beam line. This thesis starts with an overview and a brief primer on beam dynamics to frame

two research themes: simulation and analytic studies on beam dynamics, and improvements on

transverse beam diagnostics. Each theme is first developed in a general treatment, followed by

applications to the front end of the Facility for Rare Isotope Beams (FRIB).

The first research theme includes: (1) numerical modelling of accelerator front ends, and (2)

analytic studies of coupled transverse beam dynamics. In (1), a set of readily adaptable simulation

tools based on the PIC code Warp is constructed to model the transport and manipulation of

intense multi-species beams with high levels of detail. The tools are applied to investigate beam

evolution in the FRIB front end including the species separation process. In (2), general analytic

results on beams with rotational symmetry and the formalism of eigen-emittances are derived to

elucidate non-axisymmetric initial conditions at the ion source and beam states advantageous for

solenoid transport. The results are employed to construct LEBT/MEBT (low/medium energy beam

transport) tuning schemes currently adopted at FRIB for transversematching of stronglymagnetized

beams into the RFQ and cryomodules respectively.

The second research theme presents improvements on transverse beam diagnostics including:

(1) corrections in the conventional data analysismodel of high-resolution phase spacemeasurements

with Allison scanners, and (2) error minimization in beam matrix measurements and enhanced

tomography capabilities using beam profile monitors. All techniques and algorithms under this

theme have been verified using measurements at FRIB.
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CHAPTER 1

INTRODUCTION

This chapter overviews high intensity ion accelerators and introduces the Facility for Rare Isotope

Beams (FRIB). Electron cyclotron resonance (ECR) ion sources and beam dynamics challenges at

front ends of high intensity ion accelerators are discussed.

1.1 High Intensity Ion Accelerators

A summary of high intensity ion accelerators operating or being planned around the globe is

shown in Fig. 1.1. They serve a variety of purposes including:

1. The intensity frontier in high energy physics, which uses secondary or tertiary beams of

neutrinos, muons and kaons (e.g. PIP-II, USA; J-PARC, Japan).

2. Nuclear physics (e.g. FRIB, USA; RIKEN, Japan; RISP, Korea).

3. Spallation neutron production (e.g. SNS, USA; ISIS, UK; ESS, Sweden).

4. Accelerator driven system (ADS) for nuclear waste transmutation and subcritical power

generation (e.g. CADS, China; MYRRHA, Belgium).

5. Plasma physics with beam-driven warm dense matter or high-energy-density physics (e.g.

FAIR, Germany; HIAF, China).

A comprehensive overview as of 2014 can be found in Ref. [1]. A common metric of high intensity

ion accelerators is the average beam power on target defined by (maximum beam energy × average

beam current). Proton accelerators have already achieved beam power above 1 MW, and multiple

MW to >10MW facilities are presently under construction. For heavy ion accelerators, FRIB is set

to advance the continuous-wave (CW) power frontier by two orders of magnitude when it reaches

full operating specifications at 400 kW. The FRIB accelerator is described in the next section.
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Figure 1.1: High intensity ion accelerators (Image courtesy of Prof. Jie Wei at FRIB) [1]

1.2 Facility for Rare Isotope Beams (FRIB)

The Facility for Rare Isotope Beams (FRIB) [2] is currently being constructed at Michigan State

University. FRIB consists of a CW superconducting radiofrequency (SRF) linear accelerator that

aims to accelerate all stable isotopes to energies >200 MeV/u and attain up to 400 kW CW beam

power on target. Secondary rare isotope beams generated at the target will be separated in-flight

and transferred to experimental halls as fast, stopped or re-accelerated beams. Re-acceleration

capabilities are enabled by a SRF ReAccelerator (ReA).

A schematic of the FRIB driver linac is shown in Fig. 1.2. It is approximately 470 m in

length and consists of over 300 superconducting quarter-wave and half-wave coaxial resonators

distinguishable into four types that are suited to different beam velocities [3]. The linac has a folded

“paper-clip” layout which facilitates beam collimation after stripping at the end of linac segment 1

to enhance acceleration efficiency. A novel liquid lithium stripper will be employed [4].

The warm front end section of FRIB is illustrated in Fig. 1.3. There will be two electron

cyclotron resonance ion sources (ECRIS, see section below) at the front end: ECRIS-1, ARTEMIS
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Figure 1.2: Schematic of FRIB superconducting driver linac. Note that part of the front end is
located on ground level, a complete illustration of the front end is shown in Fig. 1.3

[5], is a normal conducting source that was commissioned in September 2016; ECRIS-2, VENUS-

like [6], is a superconducting source that can operate at higher frequency to produce higher currents

and higher charge states in heavy ions like uranium. ECRIS-2 will be commissioned in two years’

time. The beam undergoes three stages of acceleration in the front end (see Fig. 1.3):

1. Accelerated by a 20 kV to 30kV potential upon extraction from the ECR.

2. Accelerated to 12 keV/u by an electrostatic gap prior to charge selection.

3. Accelerated to 500 keV/u by the RFQ.

Species selection is achieved by a charge selection system that consists of two 90-degree bends for

generating sizable charge separation. The lattice includes six electrostatic quadrupoles and the two

dipoles include a linear field gradient to enhance dispersion for species separation. After charge

selection, the beam line has transverse focusing (magnetic solenoids and electrostatic quadrupoles)

and bending elements (electrostatic) for transporting the beam to the RFQ with design parameters,

as well as choppers and bunchers for longitudinal prebunching of the beam before it enters the

RFQ.

A variety of diagnostic devices are installed along the beam line for monitoring beam transport

[7]. Wire profile monitors are the most abundant, and play a key role in trajectory corrections

throughout the LEBT. There are also scintillator view screens and phase space measurement

devices in the form of Allison-type scanners (operational) and pepper-pot emittance meters (not
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Figure 1.3: Schematic of the FRIB front end with emphasis on the location of diagnostics
devices. Abbreviations are listed below: BCM - beam current monitor; BPM - beam position
monitor; FC - Faraday cup; MHB - multi-harmonic buncher; PM - profile monitor.

yet operational). We will discuss improved diagnostic measurements with Allison scanners in

Chapter 5, and with profile monitors in Chapter 6.

1.3 Electron Cyclotron Resonance (ECR) Ion Sources

Electron cyclotron resonance (ECR) ion sources [8] are widely used in high intensity heavy

ion accelerators because they can stably produce high currents of multiply charged ions with high

phase space density from a large variety of stable elements. A schematic of an ECR ion source

is shown in Fig. 1.4. The plasma is confined axially by two solenoids that constitute a magnetic

bottle, and radially by the sextupole field. Microwaves heat the electrons in the plasma, which in

turn collide with ions to produce a high density of high charge state ions that are continuous (DC

beam) extracted.

The beam extracted from an ECR ion source contains ions of many different charge states. An
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Figure 1.4: Schematic of an electron cyclotron resonance (ECR) ion source (Image courtesy of
Dr. Daniele Leitner at LBNL).

example beam from a VENUS-like ECR tuned for producing maximum current of U33+ has charge

states ranging from 22+ to 40+ as shown in Fig. 1.5.

The magnetic fields of the ECR ion source also induce complication for the dynamics of the

extracted beam. Firstly, there exists a strong axial magnetic field where the ions are extracted, which

gives ions a large canonical angular momentum. Secondly, due to the sextupole in the source, the

extracted density profile of the beam is markedly non-axisymmetric.

1.4 Beam Dynamics Challenges in Accelerator Front Ends

Accelerator front ends must preserve beam quality from the source while eliminating unwanted

ions. This is necessary to achieve maximum beam power while avoiding machine damage down-

stream due to loss of ions in the distribution tail. This section overviews challenges in understanding

beam dynamics in accelerator front ends.

Ion beams in accelerator front ends have low energies and high intensities. Both factors

enhance space-charge effects in the beam evolution. This is further complicated by electron

neutralization caused by ionization of residue gas in the beam pipe. Beams are typically extracted

at a high magnetic field, which imparts large canonical angular momenta onto beam ions when the
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Figure 1.5: Measured charge state distribution of a uranium beam from the VENUS ion source
[9].

downstream transport is axisymmetric. Thus the transverse phase space of the beam is correlated.

There are also many types of lattice elements, which have nonlinear fields with overlapping fringes.

Transverse-longitudinal coupling also occurs as a result of beam acceleration and bunching.

For heavy ion accelerators which employ ECR-type ion sources, there are further complications

due to characteristics of ECR beams. The multi-species beam has strong space-charge forces with

intricate inter-species interactions that are partially electron neutralized. Next, beam manipulations

are required for species selection. Furthermore, the initial phase space distribution of the beam is

non-axisymmetric. Optimal tuning of the front end in the presence of these complexities is essential

to preserving beam brightness (current / emittance2) from the source and suppressing downstream

beam losses in delicate and expensive SRF cavities. This is critical in high power CW machines

like FRIB.
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CHAPTER 2

A PRIMER ON BEAM PHYSICS

This chapter overviews key beam physics results relevant to subsequent chapters in this dissertation.

2.1 Particle Motion and Phase Space

The relativistic Hamiltonian of a charged particle in an electromagnetic field is given by [10]:

H = eφ + c

√
m2c2 +

(
−→
P − q

−→
A
)2

(2.1)

where m is the mass, q is the charge, φ is the scalar potential and −→P is the canonical momentum

which is related to the kinetic momentum −→p and vector potential −→A by:

−→
P = −→p + q

−→
A (2.2)

In an accelerator, particles evolve about a reference orbit (also called the design trajectory)

that is often a plane curve. Therefore, it is convenient to employ the Frenet-Serret coordinate

system with vanishing torsion to describe particle motion. The notation commonly employed in

the accelerator community is illustrated in Fig. 2.1. s is the path length along the curve from some

initial point whereas the local radius of curvature is denoted by ρ(s).

After adopting the Frenet-Serret coordinate system, the description of particle motion can be

further simplified by noting that the location of beam line elements are defined in s, not t, so it is

desirable to use s as the independent variable. Moreover, particles typically only deviate slightly

from the reference orbit. Normalizing by the longitudinal momentum and expressing phase space

coordinates as differences from those of a reference particle that follows the reference orbit with the

design energy, the coordinates become small quantities that enable simplifying approximations.

The sequence of coordinate changes outlined above can be achieved via a series of canonical

transformations [12]. The resulting Hamiltonian in the absence of applied electric fields and self
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Figure 2.1: Frenet-Serret coordinate system. Image adapted from Ref. [11]

fields is:

H = −
(
1 +

x
ρ

) [(
1 + δ2

)
+

(
px −

qAx
p0

)2
+

(
py −

qAy

p0

)2
]1/2

−

(
1 +

x
ρ

)
qAs
p0
+ (1 + δ) (2.3)

where phase space variables are (x, px, y, py,∆z, δ). px and py are conjugate momenta to x and y,

which are coordinates in the Frenet-Serret coordinate system after the transformations. Longitudinal

phase space coordinates∆z and δ express position and energy deviations from the reference particle

as follows:

∆z = −v0(t − t0) (2.4)

δ =
p − p0

p0
(2.5)

where p0 and v0 are the momentum and velocity of the reference particle respectively, and t0 is

the time at which the reference particle arrives at position s. Transverse magnetic fields can be

expressed solely with As, so Ax and Ay are taken to be zero. Then px and py are related to the
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mechanical momentum and thus the slope via:

px =
−→p · x̂

p0
≈ x′(1 + δ) ≡

dx
ds
(1 + δ) (2.6)

py =
−→p · ŷ

p0
≈ y′(1 + δ) ≡

dy
ds
(1 + δ) (2.7)

Given a beam line element, its vector potential −→A = As ŝ can be inserted into the Eq. (2.3) to

deriveHamilton’s equations that govern the single-particle dynamics. It is a common approximation

to assume linear motion, whereupon all terms higher than 2nd order in the Hamiltonian are

discarded. Discarding terms in the Hamiltonian guarantees that the resulting linear dynamics is

symplectic, which implies nice properties including the preservation of phase space volume that

we exploit in Sec. 2.2.

With the assumption of small momenta in the linearization of the equations of motion, the

difference between x′, y′ and px , py is a higher order term that can be neglected. Therefore, it is

customary to describe linear dynamics using the following formalism:

x̂(s = s f ) =M(s f |si)x̂(s = si) (2.8)

where the x̂ is the phase space vector (x, px, y, py,∆z, δ) and the its initial (s = si) and final (s = s f )

values are related by a transfer matrix M.

This dissertation mainly studies transverse motion. If the 2nd-order Hamiltonian does not

couple transverse and longitudinal phase space coordinates, it can be separated into a transverse

part and a longitudinal part. The transverse part will evolve independently as follows:

©­­­­­­­­«

x

x′

y

y′

ª®®®®®®®®¬s=s f

=M⊥

©­­­­­­­­«

x

x′

y

y′

ª®®®®®®®®¬s=si

(2.9)

where M⊥ is the 4 × 4 transfer matrix. Furthermore, if the x-x′ and y-y′ phase space are not

9



coupled, M⊥ becomes block diagonal, whereupon the dynamics can be further simplified into:

©­­«
x

x′

ª®®¬s=s f

=Mx
©­­«

x

x′

ª®®¬s=si

(2.10)

©­­«
y

y′

ª®®¬s=s f

=My

©­­«
y

y′

ª®®¬s=si

(2.11)

where Mx and My are 2 × 2 matrices.

Analytic forms of transfer maps for standard beam line elements such as dipoles, quadrupoles

and solenoids are readily available in the literature [13].

2.2 Symplectic Dynamics, Beam Matrices and Emittance Conservation

2.2.1 Symplectic Condition

Transfer matrices obey the symplectic condition [14]:

MTSM = S (2.12)

where S is the block diagnonal symplectic matrix given by:

S =

©­­­­­­­­«

s 0 · · · 0

0 s 0 0
... 0 . . .

...

0 · · · 0 s

ª®®®®®®®®¬
(2.13)

with s =
©­­«

0 1

−1 0

ª®®¬ and 0 =
©­­«
0 0

0 0

ª®®¬ (2.14)

2.2.2 Beam Matrices

The second order moments of the distribution of a beam can be naturally represented as the elements

of a matrix. Such a matrix is called the beam matrix or sigma matrix, and is commonly denoted
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by σ. The dimension of σ depends on the dimension of the phase space under question. In this

dissertation, we often use the 4 × 4 sigma matrix which comprises the 2 × 2 sigma matrices as its

blocks. For a beam with n particles indexed with subscript i that runs from 1 to n, define

σ =
1
n

n∑
i=1

©­­­­­­­­«

x

x′

y

y′

ª®®®®®®®®¬i

(
x x′ y y′

)
i

(2.15)

=
©­­«
σxx σxy

σT
xy σyy

ª®®¬ (2.16)

where:

σxx =
©­­«
〈xx〉 〈xx′〉

〈xx′〉 〈x′x′〉

ª®®¬ σyy =
©­­«
〈yy〉 〈yy′〉

〈yy′〉 〈y′y′〉

ª®®¬ σxy =
©­­«
〈xy〉 〈xy′〉

〈x′y〉 〈x′y′〉

ª®®¬ (2.17)

and

〈xx〉 =
1
n

n∑
i=1

xi xi etc.

2.2.3 Emittance Conservation

Following the treatment of Ref. [15], invariants composed of 2nd-order moments of a beam can be

extracted by invoking the symplecticity of the linear transfer map. Consider 4D phase space vector:

x =
(
x x′ y y′

)T
(2.18)

Denote x(s = s2) as x2, x(s = s1) as x1. For x2 =M⊥x1,

σ2S = x2xT
2 S

=M⊥x1xT
1 MT
⊥S

=M⊥σ1SM−1
⊥

11



which shows that σ1S and σ2S are similar matrices and have the same eigenvalues. Therefore, the

eigenvalues of σS are invariants of the motion.

When the transverse motion is decoupled, the proof above also applies individually to 2D phase

spaces x-x′ and y-y′ where M⊥ should be replaced by Mx or My, and σ by σxx or σyy. The

resulting conserved eigenvalues can be expressed as the familiar 2D emittances:

εx =

√
〈xx〉 〈x′x′〉 − 〈xx′〉2 (2.19)

εy =

√
〈yy〉 〈y′y′〉 − 〈yy′〉2 (2.20)

2.3 2D Linear Phase Space Motion

This section briefly discusses the special status of 2D phase space ellipse in linear motion and

its connection to the Twiss parameters. The treatment is inspired by Ref. [16] and omits discussion

of periodic motion because accelerator front ends are single-pass systems.

Consider an ellipse in x-x′ phase space (see Fig. 2.2) defined by:

γx2 + 2αxx′ + βx′2 = ε (2.21)

The equation has redundancy in the sense that the ellipse remains unchanged if one rescales both

sides by the same factor. To remove the redundancy, the normalization βγ−α2 = 1 is conventionally

chosen because it renders the ellipse area πε. Hence, given ε, two out of the three parameters α, β

and γ completely determines the orientation of the ellipse including its extent and critical points.

In practice, α and β are normally the two parameters used because they naturally connects to an

envelope description of a beam.

The phase space ellipse at s = s1 can be written in matrix form as:(
x x′

) ©­­«
γ1 α1

α1 β1

ª®®¬
©­­«

x

x′

ª®®¬ = ε (2.22)

where

det
©­­«
γ1 α1

α1 β1

ª®®¬ = 1 (2.23)
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Figure 2.2: Ellipse in x-x′ phase space [17].

from the normalization constraint. It can be shown that, under uncoupled linear dynamics, an ellipse

in x-x′ phase space transforms into another ellipse with the same area but different orientation.

Take the transfer map from s1 to s2 to be Mx , the ellipse at s = s2 becomes:(
x x′

)
MT

x
©­­«
γ1 α1

α1 β1

ª®®¬ Mx
©­­«

x

x′

ª®®¬ = ε (2.24)

where: ©­­«
γ2 α2

α2 β2

ª®®¬ =MT
x
©­­«
γ1 α1

α1 β1

ª®®¬ Mx

is represents an ellipse with a different orientation but the same area because

det
©­­«
γ2 α2

α2 β2

ª®®¬ = det

M
T
x
©­­«
γ1 α1

α1 β1

ª®®¬ Mx


= det

(
MT

x

)
det

©­­«
γ1 α1

α1 β1

ª®®¬ det (Mx)

= 1

Since a phase space ellipse only changes orientation under uncoupled linear optics, it is the

ideal geometric object in phase space for describing a beam. For a beam that is elliptical in phase
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space, α and β are sufficient to describe the orientation and determine how it evolves under linear

optics. α, β and γ, are called the Twiss parameters of a beam. For a beam that is not elliptical in

phase space, there is no unique way to define its Twiss parameters. The commonly adopted strategy

is to calculate its second order moments and use them to define an ellipse by asking: if a uniformly

filled ellipse were to have these second order moments, what would its Twiss parameters be? The

correspondence to beam moments under this perspective is summarized by:

βx =
〈xx〉
εx

(2.25)

γx =
〈x′x′〉
εx

(2.26)

αx =
− 〈xx′〉
εx

(2.27)

where εx is the rms emittance defined in Eq. (2.19). The beam is then represented by such an rms

phase space ellipse, with area εx ,or 4εx depending on the convention. The rms phase space ellipse

should behave just as another other ellipse in phase space, provided the optics is uncoupled and

linear.

2.4 Axisymmetry and Conservation of Canonical Angular Momentum

We know from Noether’s Theorem [14] that every continuous symmetry of the Lagrangian of

a system gives rise to a conserved quantity. For a charged particle in an axisymmetric beam line,

the conserved quantity is the canonical angular momentum which can be derived as follows.

The Lagrangian for a relativistic charged particle in an electromagnetic field is given by:

L = −
mc2

γ
− eφ + e−→v ·

−→
A (2.28)

where−→v ≡ d−→x
dt is the velocity and γ is the Lorentz factor. In cylindrical coordinates, the Lagrangian

reads:

L(r, Ûr, θ, Ûθ, z, Ûz) = −
mc2√

1 − (Ûr2 + r2 Ûθ2 + Ûz2)/c2
− qφ + q

(
Ûr Ar + r ÛθAθ + ÛzAz

)
(2.29)

where r is the radial coordinate and θ is the azimuthal angle. For an axisymmetric system, neither

φ(r, z) nor −→A(r, z) depends on θ. Therefore, θ becomes a cyclic coordinate of L, and the canonical
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angular momentum:

∂L

∂ Ûθ
≡ Pθ = γmr2 Ûθ + qr Aθ (2.30)

is a conserved quantity. Since the conservation of Pθ holds for every particle, for a single species

mononenergetic beam:

〈Pθ〉 = γm
〈
r2 Ûθ

〉
+ q 〈r Aθ〉 = const (2.31)

This relation places a strong constraint on transverse single-particle dynamics in axisymmetric

focusing systems. In practice, asymmetries due to misalignments and field errors will induce some

degree of violation to this constraint.
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CHAPTER 3

SELF-CONSISTENT SIMULATIONS

This chapter describes the development of a set of self-consistent simulation tools that are readily

adaptable to simulations of accelerator front ends with high levels of detail. Simulations are crucial

to understanding the beam dynamics because the effects of non-ideal applied fields, intricate lattice

geometries and intense non-uniform space-charge cannot be described purely analytically. We

applied these simulation tools to analysis the VENUS-like beam line at the FRIB front end at full

power. Many effects were discovered with causes including beam magnetization, space charge,

field nonlinearities and their interplay.

3.1 Warp Code

Warp [18, 19] is a open source particle-in-cell (PIC) code well-suited for self-consistent mod-

eling of high intensity ion beams. In additional to an extensive list of standard beam line elements

such as dipoles, quadrupoles and solenoids; the code enables time-dependent fields and detailed

specifications of conductor surfaces and applied fields from imported field maps. This capability,

discussed in more detail in the section below, is particularly useful for modeling accelerator front

ends given the variety of beam elements involved. Warp also allows simulations with an arbitrary

number of particle species including multiple ions with multiple charge states, which is necessary

in the modeling of beams extracted from an ECR ion source.

Warp simulations can be run in various modes including: 1) full 3D; 2) axisymmetric (r − z);

and 3) transverse slice (x − y). The code has a variety of electrostatic and electromagnetic field

solvers (including capabilities like adaptive and static mesh refinement) and is built around an

adaptable python interface. Assuming there is no axisymmetry, the user can choose between full

3Dmode and slicemode depending onwhether longtudinal self-field is important. The beam can be

initialized with pseudoequilibrium distributions adapted for space-charge[20], or with distributions

obtained from other simulations or experimental data.
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We have written a set of wrapper modules in Python that allows one to conveniently:

1. Set up beam lines by specifying the locations of focusing elements, conductors and beam

collimators at several levels of detail.

2. Generate initial beam conditions given the current and phase space parameters of each ion

species.

3. Assign diagnostics and record simulation results.

4. Control global properties and parameters of the simulation.

Transverse x-y slice simulations are employed that adjust timesteps of individual particles advanced

to advance slice-to-slice for a specified lattice advance step. Self-fields are generated by solving

Poisson’s equation on a discretized spatial mesh with the correct transverse conducting aperture

of the accelerator lattice. Applied electric and magnetic fields (including longitudinal electric) are

imported via gridded potential and field elements. This model neglects relatively weak longitudinal

self-fields. However, it retains correct longitudinal applied forces from lattice elements. The field

solutions are consistent with local bend radii ρ of the tight dipoles used for charge selection in the

front end (see overview in Chapter 1).

These modules constitute a versatile code framework for simulations of ion accelerator front

ends using Warp. The framework is highly adaptable to different accelerator facilities and different

operating points, which helps expand its utility within the community. While we have not employed

this functionality in the studies below, Warp also supports parallelization to allow high-detail runs

and parametric studies.

3.2 Beam Line Element Models

The transverse spatial extent of low energy beams in accelerator front ends can be similar to

the extent of the beam pipe and apertures of focusing elements. In fact, it is not uncommon to have

∼ 1% beam loss in front ends, which indicate scraping during beam transport. Therefore, the outer

particles in the beam distribution can evolve beyond the good field radius of beam line elements and
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experience substantial field nonlinearities. Furthermore, large transverse-to-longitudinal aspect

ratios in focusing elements increase nonlinearities and cause fringe fields to leak out far beyond the

longitudinal extent of the element, sometimes overlapping with those from adjacent elements. The

Warp simulations properly model these effects.

Fig. 3.1 shows the CST Studio[21] model of S4 solenoids employed in the front end at FRIB.

One can observe that field nonlinearties grow significantly as one goes to larger radii. Fringe fields

also extend up to 15 cm outside the solenoid on both sides, which is half as long as the coil length.

The CST Studio model of Q7 electrostatic qaudrupoles are shown Fig. 3.2 and Fig. 3.3. While the

field is relativelymore uniform, the Q7 in the triplet assembly contains collimators that can intercept

beam particles that might be lost on electrode structures. The Warp simulations employ particle

scraping on the detailed aperture structures like the electrostatic quadrupoles. Both examples show

that it is necessary to implement detailed field models to perform realistic simulations of accelerator

front ends.

3.3 Simulations of FRIB Front End

3.3.1 Initial Conditions & Loading

Table 3.1 lists beam parameters used in the Warp simulations. An initial axisymmetric waterbag

distribution adapted for space-charge [20] is injected with no centroid offset at the extraction point

of the ECR. Each species’ envelope extent fills the puller electrode aperture (i.e. Rpuller = 2σx

where σ2
x =

〈
x2〉). The 35 kV extraction potential sets the kinetic energy of each species, and

the longitudinal velocity spread and radial (thermal component) emittance arise from a 3 eV ion

temperature. Since the beam aperture radius at extraction is relatively small in the sextupole field

of the ECR ion source, we assume nearly constant beam canonical angular momentum 〈Pθ〉 in the

initial transport from the ECR. The average canonical angular momentum of each species is set

by assuming all ions are born at the same magnetic field, i.e. 〈Pθ〉 = q
〈
r2〉

birth Bbirth/2, where

Bbirth =
∫ z(peak 2)

z(peak 1) Bz(r = 0)dz is the average axial B-field between the peaks of the solenoidal

field of the ECR. Since the B-field at launch differs from Bbirth, for 〈Pθ〉 = const as specified, an
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Figure 3.1: CST Studio model of S4 solenoids at FRIB and the calculated fields at different radii
within the clear bore aperture radius R = 164.2/2 mm.

angular velocity is injected upon each ion of the species with:

θ′0 =

[ 〈
r2〉

birth〈
r2〉

launch
Bbirth − Blaunch

]
/(2[Bρ]). (3.1)

Here, [Bρ] is the particle rigidity, and we assume
〈
r2〉

birth =
〈
r2〉

launch. Simulated beam species

and currents for U operation are given in Ref. [9].

3.3.2 Lattice Design & Matching Methodology

The initial beam line from the ECR ion source can be divided into two distinct sections: the

axisymmetric transfer line from the ECR to the charge selection system (CSS), and the CSS which

produces large dispersion for species selection.
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Figure 3.2: CST Studio model of a Q7 electrostatic quadrupole triplet at FRIB with dimensions
and potential plots.

For species selection with no loss in target species and preservation of beam quality, the CSS

should:

1) Be linearly achromatic.

2) Generate large dispersion with small βx (x-betatron lattice function) at collimation point to

maximize selection resolution with vertical slits.

3) Output the beam with well-controlled envelopes for downstream transport.

Requirements (1) and (3) can be met in an idealized linear optic limit with a symmetric beam

envelope in the CSS by exploiting mirror symmetry about the axial mid-point of the CSS (strength

of each element equals that of its mirror counterpart) and setting D′ = αx = αy = 0 (D = bend-

plane dispersion function and α j = −β
′
j/2, j = x, y) at the axial mid-point. The axisymmetric
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Figure 3.3: CST Studio model of a Q7 electrostatic quadrupole triplet at FRIB. Dimensions and
potential contours at various axial locations are shown.

Table 3.1: Beam Parameters of U34+ based on the VENUS-like source. For definitions, see also
Sec. 3.3.3 and ??. Temperatures and envelope parameters are the same for all ion species (indices
suppressed). Canonical angular momentum, radial normalized emittance, and kinetic
energy/rigidity vary with ion species.

Quantity Symbol Value at Launch
Transverse Temperature T 3 eV
Canonical Angular Momentum 〈Pθ〉 /(mc) 0.305 mm-mrad
Radial Normalized Emittance εrms

nr 0.015 mm-mrad
Radial Envelope σr =

√
2σx 2.82 mm

Radial Envelope Angle σ′r = dσr/dz 0
Kinetic Energy Ek (before/after ES Gap) 5.00 / 12.00 keV/u
Rigidity [Bρ] (before/after ES Gap) 7.13×10−2 / 1.10 ×10−1 Tm
Longitudinal Temperature T‖ 3 eV

initial beam envelope conditions are adjusted to satisfy requirement (2) and achieve an “attractive”

beam envelope devoid of large excursions.

The CSS design procedure was carried out with the code MADX [22] using a hard-edge lattice

and single-particle dynamics. Results are shown in Fig. 3.4. The lattice is achromatic with zero
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initial (Din = D′in = 0) and final dispersion (Dout = D′out = 0), and the envelopes are symmetric

about mid-plane with lattice functions satisfying βin = βout and αin = −αout to ideally recover

axisymmetry on exit. The 1 m-long 90-degree bend dipoles have slanted poles that generate a

focusing strength equivalent to a superimposed quadrupole with κ0 = 0.365 m−2. The three

electrostatic quadrupoles (ESQs) in the triplet have axial length 20.7 cm with κ1 = 6.62 m−2, κ2 =

-14.8 m−2 and κ3 = 7.80 m−2. The initial envelope has βin = 4.383 m and αin = 0.306, which (see

below) are consistent with upstream matching from the ECR.
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Figure 3.4: CSS lattice design used in Warp simulations.

The transport line from the ECR must be tuned to deliver the required lattice functions entering

the CSS. We assume no initial centroid offset (Din = D′in = 0). Applying εx = εeff/2 (see

Sec. 3.3.3), βx = σ
2
x /εx and αx = −σxσ

′
x/εx to convert between lattice functions and envelope

size, the excitation of the two upstream solenoids are tuned to match the required lattice functions.
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3.3.3 Envelope Model for Multi-Species Beam Transport

Beam evolution in the axisymmetric transport line from the ECR to the 1st dipole of the CSS can

be described by a multi-species envelope equation:

σ′′r j =
q jV′

2Ek j
σ′r j +

q jV′′

4Ek j
σr j −

( q j Bz0
2m j β jc

)2
σr j

+
∑

s,species
Q js fs

σr j

σ2
r j + σ

2
rs
+
εrms

r j
2 + 〈Pθ〉2j /

(
m j β jc

)2

σ3
r j

.

(3.2)

Details of this model can be found in Ref. [23]. In brief: j indexes the jth species; q j and m j

are the charge and mass of the species; β j and Ek j are the relativistic factor and kinetic energy

of the species; σr j =
√

2σx j =
√

2〈x2〉 j is the radial sigma of the species charge profile; V and

B0z are the on-axis applied potential (of accelerating gaps) and the axial magnetic field which both

can vary in s; 〈Pθ〉 j = const is the canonical angular momentum of the species; and f j is the

fractional electron neutralization factor ( f j = 0 corresponds to neutralized). The canonical angular

momentum measured by 〈Pθ〉 j /(m j β jc) contributes to the beam’s expansion in the same manner

as the thermal geometric emittance

εrms
r j =

√√
Tj

m j β
2
j c2

R (3.3)

at injection with εrms
nr j = β jεr j = const (conserved normalized emittance) set by the initial value

emerging from the source. In Eq. (3.3), R = 4 mm is the ECR extraction aperture and the value of

εrms
r j corresponds to a uniform density beam species filling the aperture. In this model

ε2
eff,j = ε

rms
r j

2
+
〈Pθ〉2j
(m j β jc)2

(3.4)

constitutes an effective phase-space volume of the beam. The envelope model also assumes

Gaussian density profile species are maintained in the evolution. The species kinetic energy Ek is

set consistently with the applied on-axis potential V of electrostatic gaps. The envelope equations

and energy equations of all species constitute a system of ordinary differential equations (ODEs)

that can be numerically integrated along with an equation for the species energy using the linear
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field components extracted from the 3D element models [B0z(s) = Bz(r = 0, s) for solenoids and

V(s) for electrostatic gaps]. The integration begins at the ECR extraction point and ends at the

entrance of the first dipole. Figure 3.5 shows that the envelope equation achieves good agreement

with self-consistent Warp simulations both with and without space charge.

A python based envelope package was constructed within the Warp interface to integrate the

coupled nonlinear envelope equations 3.2 and the energy gain equation. This allowed the same

lattice setup to be used as the full simulations. Evenwith little numerical optimization, this envelope

model is more than 100 times faster than relatively efficient Warp transverse slice simulations of the

same section. This efficiency allows parametric exploration of improved matching. Successively

finer scans of the two solenoid fields (minimum increments being 0.002 Tesla) are carried out

until target envelope conditions are matched by hitting target envelope parameters entering the

achromatic CSS.

ECR

CSS

sol solgrated gap

On-Axis Peak Field

35kV

50kV

Figure 3.5: Comparisons between numerical solutions of the envelope equation and Warp
simulation results in the transport line upstream of the CSS. These correspond to simulation cases
3 and 4 described in Sec. 3.3.4.

A caveat is appropriate for thematching procedure above: the lattice design is not solely dictated

by the CSS, because the design incoming lattice functions may be unattainable within the range of

possible solenoid ex citations. Fig 3.6 summarizes accessible lattice functions at the entrance of

the first dipole for different space charge neutralization values. Colored dots indicate points where
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Figure 3.6: Accessible lattice functions β and α at the entrance of the first dipole when the Bpeak
in both solenoids varied independently between 0 T and 1.5 T. Results are shown for different
space charge neutralization factors. Observe that there are regions of initial Twiss parameters that
are inaccessible, and the region of accessible Twiss parameters decreases with decreasing
neutralization factor

accessible solenoid excitations can be found for the two solenoids connecting the ECR to the CSS

to achieve the indicated lattice function values βx = βy ≡ β and αx = αy ≡ α = β
′/2. If the CSS

operating point is incompatible with the matching capabilities of the solenoids, an alternative CSS

operating point with attainable initial lattice functions must be selected.

3.3.4 Simulation Cases

Fields from lattice elements in the axisymmetric transport line are imported from r-z electrostatic

and magnetostatic simulations with Poisson [24] and CST Studio [21]. Warp also allows hard edge

elements, and for present purposes, all elements in the CSS are modeled as hard-edge equivalent

here to simplify comparisons to the MADX design lattice. Simulations with space charge include a

uniform neutralization factor of 75% ( f = 0.75) except inside the grated gap (protected by a guard

electrode included in V) and the CSS lattice downstream of the 1st electrostatic quadrupole.

To illustrate effects of space charge and canonical angular momentum in the CSS, we launch

25



beams with the same effective phase-space area (εeff) as calculated from Eq. (3.4), but with different

relative compositions from thermal emittance and canonical angular momentum. A “magnetized”

beam has phase space contributions consistent with Table 3.1. A “thermal” beam has the same

phase-space area (emittance) but with zero canonical angular momentum (〈Pθ〉 j = 0). That is, for

the thermal beam is unmagnetized with increased thermal temperature Tj for the same effective

phase-space area measured by εeff,j . The following cases were run:

1) Thermal beam, no space charge.

2) Thermal beam, with space charge.

3) Magnetized beam, no space charge.

4) Magnetized beam, with space charge.

Note that case 4 is close to what is expected in the laboratory since canonical angular momentum

dominates the effective phase space volume.

3.3.5 Warp Simulation Results: Case Comparisons

Before presenting how the case comparisons of Sec. 3.3.4 illuminate different effects in the beam

dynamics, it is helpful to observe the phenomena of species separation and collimation in the

charge selection section as illustrated in Fig. 3.7. The Warp simulation results correspond to the

realistic case 4 with charge neutralization factor f = 0.75. For the two-species transport (U33+

and U34+) planned for the full power operation at FRIB, the optics is tuned with a hypothetical

U33.5+ ion as the reference. As seen in the upper panel of Fig. 3.7 showing beam species extents

in the x-plane, only U33+ and U34+ (purple and dark green) species make it past the final 4-jaw

collimator aperture. Numerous species, including high space-charge intensity oxygen, are lost in the

dipole and on the slits incorporated within the following electrostatic quadrupole triplet structure.

Numerous species are also lost on the gate valve structure. Neutralization ends at the start of the first

electrostatic quadrupole which has strong electric sweeping fields. This is also the axial location
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of a gate valve. Corresponding line-charge measures of space-charge intensity are given in the

middle panel of Fig. 3.7. This shows that most cumulative space-charge intensity emerging from

the ECR is scraped. Simple analytic estimates of the depression in local particle phase advance due

to beam space-charge are included in the lower panel of the figure. Only the region downstream

of the four jaw collimator is show since the estimates are based on single species beam models.

The depression measure shown is σ/σ0 the ratio of space-charge depressed phase advance to the

single particle phase advance (σ/σ0 = 1 for single particle dynamics with zero beam intensity and

σ/σ0 → 0 at the transport limit with full space-charge depression). Results are consistent with a

roughly 10% space-charge depression (σ/σ0 = 0.9). We note that this operating point would be

representative of a highest intensity facility operation. While space-charge is not negligible post

species separation, it is not large and will further drop post acceleration in the RFQ. Lower current

beams presently being used in facility commissioning have lower space-charge intensity and single

particle dynamics downstream of species separation will be a good approximation in these cases.

Warp PIC simulations of the 4 cases in the CSS are contrasted to understand deviations from

the MADX optical design due to space charge, non-constant emittance, beam canonical angular

momentum, and nonlinear optical effects. In this case the four simulations are run through the 2nd

dipole of the CSS. Identifying the source of deviations from the ideal design with reference to the

four test cases outlined in Sec. 3.3.4 will help guide future optimization of the CSS. Figure 3.8

shows the rms beam envelope (a) and emittance (b) evolution of the reference species U34+, and

the centroid offset of U33+ along with mid-plane xy phase space projections (c). Contrasting the

simulation cases, we observe the following behavior:

• Beam rotation due to canonical angular momentum.

• In cases with space charge, non-reference species have centroid offset upon exiting the CSS.

• RMS emittance growth in the CSS which is mostly reversed on exiting the CSS.

• RMS emittance exchange between the x- and y-planes for magnetized beams.
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Figure 3.7: Warp simulation results of Uranium species separation and collimation in the beam
evolution from the ECR source extraction through the midpoint of the charge selection system
showing collimation to two target species for high intensity FRIB operation.

Distribution xy projections in Fig. 3.8c illustrate how a magnetized beam becomes tilted in

real space at the CSS midplane due to canonical angular momentum (〈Pθ〉 , 0; dropping species

subscripts henceforth) whereas a thermal beam (〈Pθ〉) does not. Large initial 〈xy′〉 and 〈x′y〉

moments at the start of the dipole in the case of a magnetized beam causes 〈xy〉 to evolve in the

non-axisymmetric lattice which manifests as a significant distribution tilt in the middle of the CSS.

This tilt suggest that more elaborate shaped electrodes for final beam collimation may be beneficial.

However, effective tuning of such a system would require improved understanding of the initial

state of the beam emerging from the ECR including the degree of magnetization (value of 〈Pθ〉).
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Figure 3.8: Rms envelops σx,y a) and normalized rms-emittance εx,y b) of the reference species
U34+ in the CSS. c) shows the centroid of U33+ and xy-particle projections of both target species
at the CSS mid-point for two cases. Solid curves are x-plane and dashed curves are y-plane.
Colors flag Warp simulation cases. Black solid lines denote MADX design values in a) and c). The
axial midplane of the CSS is indicated in c) (z in FRIB coordinates with origin outside machine).
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While space charge of the multi-species beam has little impact on the envelope evolution in x

and y, insofar as the matching is carried out equivalently, the cases with and without space charge

in Fig. 3.8c show that space charge creates a ∼mm shift in the 〈x〉 centroid of U33+. However, the

canonical angular momentum has little impact on either the envelope extent or the dispersive shift of

the centroid. The space charge induced centroid shift at mid CSS suggests that optimal adjustment

of the four jaw collimator will vary with ECR current extracted. This further complicates the

impact of magnetization induced tilt on the beam xy profile.

Figure 3.8b shows significant emittance growth inside the 1st bending dipole that is largely

removed on exiting the 2nd dipole of the achromatic CSS beamline for simulation cases 1) – 3).

Slight asymmetries for case 2) (thermal beam with space-charge) are likely induced by nonlinear

space-charge fields that vary within the CSS evolution upstream and downstream of the midplane.

Effects from nonlinear terms in the dipole arising from large x/ρbend may also contribute to

asymmetries. The emittance increase is stronger for thermal beams than for magnetized beams –

regardless of space charge. For case 4) (magnetized beam with space-charge) there is significant

emittance exchange between the x- and y-planes that results in significantly different final emittance

values. For single particle dynamics beams in quadrupoles and dipoles, there is no coupling between

planes regardless of beam rotation. For beams aligned with the x-y symmetry axes with charge

density nearly constant on elliptical symmetry surfaces, space-charge only induces weak coupling.

However, for a rotated xy beam profile, space-charge coupling between the planes is enhanced.

More analysis is necessary to probe if this exchange comes with net growth due to nonlinearities

but the effect appears largely exhange. Understanding effects like these and predicting the xy tilt

angle of the beam will help guide more effective choices of apertures and slit positions for optimal

species collimation at higher intensities anticipated for high-power FRIB operating modes.

3.4 Further Work

Simulation studies of the FRIB front end can be improved by including the physics of ion

extraction at the ECR. We have completed the first step by including the extraction electrodes
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into the lattice as conductors. A schematic of the electrodes of the VENUS-like ECR is shown

in Fig. 3.9. We have yet to study the beam dynamics with the extraction electrodes included,

and we expect to see interesting effects because experiments have shown substantial changes in

beam conditions downstream when the extraction electrode positions are adjusted. Nonlinearities

in extraction also have maximal effect near the emitting plasma meniscus of the source. Proper

resolution of these effects will likely require r-z or full 3D (to include sextupole distortions) of the

beam in the extraction region.

A further improvement will be the use of realistic initial beam conditions derived from ECR

simulations. A group at JINR, Dubna, Russia has developed sophisticated simulations of ECR ion

sources [25, 26]. We briefly interacted with Dr. Vladimir Mironov on a visit to FRIB. If such

steady-state simulations were carried out for the ECRs at FRIB, they could be run to accumulate

a population of extracted ions. Then, Warp simulations can be set up to birth randomly chosen

extracted ions and model their extraction in 3D mode until steady state is reached. Results of such

simulations (perhaps also needing proper plasma meniscus modeling) could reveal much of the ion

beam extraction physics that is presently omitted.

Another important piece of physics that is currently missing from the Warp simulations is self-

consistency in the electron neutralization model. Fig. 3.10 shows that the beam evolution heavily

depends on the degree of neutralization, so a clear understanding is essential to front end design and

tuning. Not only do we lack a detailed model electron neutralization effects, even in the primitive

model of a homogeneous neutralization factor, we are not certain what it should be. Tentative steps

towards developing a simulation neutralization model were presented in the Ph.D thesis of Daniel

Winklener [27]. Extensions of such complicated models may be necessary for more fully realistic

modeling. A critical detail may be transitions between neutralized and unneutralized (swept by

electrostatic fields) regions. Lack of uniformity in neutralization factors there may enhance the

nonlinear component of space-charge forces.

A final problem concerns the generation of 4D coupled phase space distributions. The ini-

tialization of uncoupled distributions with high space charge intensity is treated comprehensively
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Figure 3.9: Extraction geometry of the VENUS-like ECR ion source. The electrode in red has
negative voltage to prevent backflow of electrons. (Image courtesy of Dr. Daniel Winklener.)

Figure 3.10: Beam sizes in the post-extraction beam line downstream of the VENUS-like ECR at
FRIB, obtained from Warp simulations with different homogeneous neutralization factors.
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in Ref. [20]. In Sec. 3.3.1, coupling is inserted into an uncoupled distribution by the addition

of an angular velocity as described by Eq. (3.1). Alternatively, we have derived in Appendix C

a method of generating a 4D coupled distribution with any set of 2nd-order moments via linear

transformation. It should be beneficial to study how these treatments connect with each other and

whether they produce simulation artifacts.
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CHAPTER 4

THEORY OF TRANSVERSE COUPLED BEAM DYNAMICS, WITH APPLICATIONS
TO THE FRIB FRONT END

At the time of this writing, the analysis in this chapter pertaining to beams with rotational symmetry

is under preparation for submission for publication [28].

4.1 Beams with Rotational Symmetry

This section develops analytic tools to describe moments of beam distributions with discrete or

continuous rotational symmetry. Their implications and possible applications are also discussed.

4.1.1 Effect of Symmetry on Beam Moments

Define transverse beam moments〈
xb1 x′b2 yb3 y′b4

〉
≡

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F(x, x′, y, y′)xb1 x′b2 yb3 y′b4dxdx′dydy′∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

F(x, x′, y, y′)dxdx′dydy′

where F(x, x′, y, y′) is the distribution function in transverse phase space and b1, b2, b3, b4 ∈ Z≥0.

The moment is said to be of k-th order with k = b1 + b2 + b3 + b4. Note that the moments are

calculated assuming each variable has zero mean, i.e. all four first order moments vanish. This

corresponds physically to the beam centroid following the design (reference) orbit and must be true

for beams with rotational symmetry, as will be proved in subsequent arguments.

For a beam with n-fold rotational symmetry (i.e. Cn), the distribution function F(x, x′, y, y′)

is invariant under a rotation by θ = 2π/n. This implies all transverse beam moments remain

unchanged under the transformation:

©­­­­­­­­«

x

x′

y

y′

ª®®®®®®®®¬
7→

©­­­­­­­­«

cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

ª®®®®®®®®¬

©­­­­­­­­«

x

x′

y

y′

ª®®®®®®®®¬
(4.1)
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For an axisymmetric beam (i.e. beam with continuous rotational symmetry), the invariance of F

and beam moments holds for any rotation angle θ. This is the only piece of information that we

need to extract from the rotational symmetry of the beam. No assumption on space-charge intensity

is made or implied. The rest of this section explores its consequences and applications.

Given a beam distribution F with rotational symmetry, its beam moments must satisfy certain

constraints in order for them to be invariant under the corresponding rotational transformations.

Since rotations amount to linear transformations among phase space coordinates, one expects the

constraints to arise from systems of linear equations among beam moments of the same order.

Formally, denote (x, x′, y, y′) as (x1, x2, x3, x4) and given the rotation matrix:

R =

©­­­­­­­­«

cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ

ª®®®®®®®®¬
(4.2)

where θ is a rotation angle of the symmetry, the relation:

〈
x

b1
1 x

b2
2 x

b3
3 x

b4
4

〉
=

〈©­«
4∑

j=1
R1 j x j

ª®¬
b1 ©­«

4∑
j=1

R2 j x j
ª®¬

b2 ©­«
4∑

j=1
R3 j x j

ª®¬
b3 ©­«

4∑
j=1

R4 j x j
ª®¬

b4〉
(4.3)

holds for every b1, b2, b3, b4 ∈ Z≥0. Eq. (4.3) can be rewritten in the form:〈
x

b1
1 x

b2
2 x

b3
3 x

b4
4

〉
=

∑
a1

∑
a2

∑
a3

∑
a4

C(a1,a2,a3,a4)
〈
x

a1
1 x

a2
2 x

a3
3 x

a4
4

〉
(4.4)

where a1,a2,a3,a4 ∈ Z≥0 and a1+a2+a3+a4 = b1+b2+b3+b4. Each coefficientC(a1,a2,a3,a4)

is a polynomial of matrix elements of R, which means it is either zero or a polynomial of degree k

in sin θ and cos θ.

Thus, the set of all k-th order beam moments in Eq. (4.4) for non-negative integers b j form a
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linear system:

©­­­­­­­­­­­­­­­«

〈
xk
1 x0

2, x
0
3, x

0
4

〉〈
xk−1
1 x1

2, x
0
3, x

0
4

〉〈
xk−1
1 x0

2, x
1
3, x

0
4

〉
...〈

x0
1 x0

2, x
1
3, x

k−1
4

〉〈
x0
1 x0

2, x
0
3, x

k
4

〉

ª®®®®®®®®®®®®®®®¬

= A(θ)

©­­­­­­­­­­­­­­­«

〈
xk
1 x0

2, x
0
3, x

0
4

〉〈
xk−1
1 x1

2, x
0
3, x

0
4

〉〈
xk−1
1 x0

2, x
1
3, x

0
4

〉
...〈

x0
1 x0

2, x
1
3, x

k−1
4

〉〈
x0
1 x0

2, x
0
3, x

k
4

〉

ª®®®®®®®®®®®®®®®¬

(4.5)

that describes relations among beam moments resulting from invariance under rotation by angle θ.

A(θ) is a function of θ because the coefficients C(a1,a2,a3,a4) in Eq. (4.4) depend on θ, and so the

relations change with the order of rotational symmetry.

While Eq. (4.5) is a general result that already contains the properties of beam moments under

rotational symmetry, the expressions are complicated because most elements in A(θ) are non-zero.

It is difficult to know whether or how the equations in Eq. (4.5) can be manipulated to obtain simple

equality relations that are practically useful. One trick to achieving some simplification uses the

fact that Eq. (4.5) holds for all θ = 2mπ
n with 0 ≤ m < n. Therefore, for a beam with Cn symmetry,

a sum over the set of θ that preserves symmetry can be taken to obtain:

©­­­­­­­­­­­­­­­«

〈
xk
1 x0

2, x
0
3, x

0
4

〉〈
xk−1
1 x1

2, x
0
3, x

0
4

〉〈
xk−1
1 x0

2, x
1
3, x

0
4

〉
...〈

x0
1 x0

2, x
1
3, x

k−1
4

〉〈
x0
1 x0

2, x
0
3, x

k
4

〉

ª®®®®®®®®®®®®®®®¬

=
1
n

n−1∑
m=0

A
(
2mπ

n

)
©­­­­­­­­­­­­­­­«

〈
xk
1 x0

2, x
0
3, x

0
4

〉〈
xk−1
1 x1

2, x
0
3, x

0
4

〉〈
xk−1
1 x0

2, x
1
3, x

0
4

〉
...〈

x0
1 x0

2, x
1
3, x

k−1
4

〉〈
x0
1 x0

2, x
0
3, x

k
4

〉

ª®®®®®®®®®®®®®®®¬

(4.6)

Each coefficient contains summations of polynomials P with two trigonometric variables:

n−1∑
m=0

P
(
sin

(
2mπ

n

)
,cos

(
2mπ

n

))
(4.7)

which may be reducible. For k = 2, this method invokes the same identities as the alternative

proof presented in Appendix B, and enables the derivation of simple relations among 2nd order
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beam moments. The k = 2 results suggest that simple equality relations exist for k > 2, but the

method of Eq. (4.6) is difficult to generalize to k > 2 because the elements of A [i.e. coefficients

C(a1,a2,a3,a4) of Eq. (4.4)] grow exceedingly complicated as the moment order k increases. We

employ a more efficient, yet less intuitive, method to derive moment relations from symmetry in

Sec. 4.1.2.

4.1.2 Derivation of Moment Relations from Symmetry

Having developed the intuition on the relationship between rotational symmetry and beammoments

in Sec. 4.1.1, we devised a more abstract and efficient method to derive clean expressions of the

equality relations. The method was inspired by Ref. [16], and is readily applicable to moments of

arbitrary order in beams with any rotational symmetry.

Define two complex conjugate pairs composed of transverse phase space coordinates:

©­­­­­­­­«

w

w

w′

w′

ª®®®®®®®®¬
≡

©­­­­­­­­«

x + iy

x − iy

x′ + iy′

x′ − iy′

ª®®®®®®®®¬
(4.8)

Upon a coordinate rotation by θ,

©­­­­­­­­«

w

w

w′

w′

ª®®®®®®®®¬
7→

©­­­­­­­­«

eiθ 0 0 0

0 e−iθ 0 0

0 0 eiθ 0

0 0 0 e−iθ

ª®®®®®®®®¬

©­­­­­­­­«

w

w

w′

w′

ª®®®®®®®®¬
(4.9)

In analogy to Sec. 4.1.1, we construct complexmoments
〈
wa1wa2w′a3w′

a4
〉
where a1,a2,a3,a4 ∈

Z≥0 and a1+a2+a3+a4 = k. The real and imaginary parts of
〈
wa1wa2w′a3w′

a4
〉
each comprises

sums of physical k-th order beam moments. Upon a rotation by θ, the complex moment undergoes

the following transformation in accordance with Eq. (4.9):〈
wa1wa2w′a3w′

a4
〉
7→ ei(a1−a2+a3−a4)θ

〈
wa1wa2w′a3w′

a4
〉

(4.10)
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If rotation by θ is a symmetry of the beam,
〈
wa1wa2w′a3w′

a4
〉
remains unchanged upon the

transformation which gives:〈
wa1wa2w′a3w′

a4
〉
= ei(a1−a2+a3−a4)θ

〈
wa1wa2w′a3w′

a4
〉

(4.11)

Eq. (4.11) is the key equation that efficiently generates equality relations among beam moments

due to symmetry. For every 4-tuple (a1,a2,a3,a4)where ei(a1−a2+a3−a4)θ , 1,
〈
wa1wa2w′a3w′

a4
〉
=

0 must follow; this gives:

Re
(〈
wa1wa2w′a3w′

a4
〉)
= 0 (4.12)

Im
(〈
wa1wa2w′a3w′

a4
〉)
= 0 (4.13)

For a beamwith n-fold rotational symmetry, each 4-tuple (a1,a2,a3,a4) satisfying the following

conditions:

Condition 4.1.1. a1 + a2 + a3 + a4 = k.

Condition 4.1.2. (a1 + a3) − (a2 + a4) > 0.

Condition 4.1.3. (a1 + a3) − (a2 + a4) , 0 (mod n).

gives two unique relations on the k-th order transverse moments of the beam, in the form of

Eq. (4.12) and Eq. (4.13).

Condition 4.1.1 is merely a restatement of the moment being k-th order, while condition 4.1.3

asserts ei(a1−a2+a3−a4)θ , 1. Condition 4.1.2 removes redundant relations for the following reason.

Suppose a 4-tuple (a1,a2,a3,a4) fulfills conditions 4.1.1 and 4.1.3 but not 4.1.2:〈
wa1wa2w′a3w′

a4
〉
= 0 (a1 + a3) − (a2 + a4) < 0 (4.14)

Its complex conjugate:〈
wa2wa1w′a4w′

a3
〉
= 0 (a2 + a4) − (a1 + a3) > 0 (4.15)
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is equivalent to and contains the same information as:〈
wb1wb2w′b3w′

b4
〉
= 0 (b1 + b3) − (b2 + b4) > 0 (4.16)

Therefore, the relations generated by (a1,a2,a3,a4), which violates condition 4.1.2, are already

covered by another 4-tuple (b1, b2, b3, b4) that satisfies condition 4.1.2.

For an axisymmetric beam (i.e. beam with continuous rotational symmetry), rotation by any

angle θ keeps
〈
wa1wa2w′a3w′

a4
〉
unchanged. Therefore, ei(a1−a2+a3−a4)θ , 1 can always be

satisfied for some θ. In this case, conditions 4.1.1 and 4.1.2 suffice for a 4-tuple (a1,a2,a3,a4) to

impose unique relations upon k-th order transverse moments.

An immediate corollary of these analytic arguments is the fact that any beam with rotational

symmetry must have zero means (i.e. first order centroid moments) in all transverse phase

space coordinates. For moments of order k = 1, when n , 1, (a1,a2,a3,a4) = (1,0,0,0) and

(a1,a2,a3,a4) = (0,0,1,0) always satisfy conditions 4.1.1, 4.1.2 and 4.1.3. Therefore, 〈w〉 = 0 and

〈w′〉 = 0 must hold, which imply 〈x〉 = 〈y〉 = 0 and 〈x′〉 = 〈y′〉 = 0 respectively.

4.1.3 Correspondence between Discrete and Continuous Rotational Symmetry

Armed with a general method for deriving relations imposed upon beam moments due to the

rotational symmetry possessed by the beam, it is illuminating to ask: how do continuous and

discrete rotational symmetries manifest themselves differently in beam moment relations? This

question was part of the motivation for developing the analytic tools in Sec. 4.1.2, and will lead to

arguments that enable simple proofs of certain useful results.

We begin by counting the number of equality relations governing k-th order transverse moments

of an axisymmetric beam. We define:

• ξ(k) as the number of 4-tuples (a1,a2,a3,a4) that satisfy conditions 4.1.1;

• χ(k) as the number of 4-tuples (a1,a2,a3,a4) that satisfy conditions 4.1.1 and 4.1.2; and

• χ̂(k) as the number of 4-tuples (a1,a2,a3,a4) that satisfy conditions 4.1.1 and (a1 + a3) −

(a2 + a4) = 0.
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ξ(k) is the number of distinct k-th order moments, which applies equally to real moments

〈xa1 x′a2 ya3 y′a4〉 and complex moments
〈
wa1wa2w′a3w′

a4
〉
. It is equivalent to the total number

of ways to distribute k indistinguishable balls into 4 distinguishable boxes, which gives

ξ(k) =
©­­«
k + 3

k

ª®®¬ =
(k + 3)!

3!k!
=
(k + 3)(k + 2)(k + 1)

3 × 2 × 1
(4.17)

To find χ(k), we use the fact that the number of 4-tuples satisfying (a1 + a3) − (a2 + a4) > 0

and (a1 + a3) − (a2 + a4) < 0 are equal. Therefore,

χ(k) =
1
2
[ξ(k) − χ̂(k)] (4.18)

For odd k, χ̂(k) = 0 because (a1+a3)−(a2+a4) = 0 cannot occur. For even k, (a1+a3)−(a2+a4) = 0

occurs whenever a1 + a3 = a2 + a4 = k/2. The number of 2-tuples (a1,a3) such that a1 + a3 =
k
2

equals k
2 + 1, likewise for (a2,a4). Since (a1,a3) and (a2,a4) are independent, χ̂(k) = 0 equals(

k
2 + 1

)2
. Summarizing these results with Eq. (4.17) and Eq. (4.18), we obtain

χ(k) =


1
2
(k+3)(k+2)(k+1)

3×2×1 if k is odd,

1
2

[
(k+3)(k+2)(k+1)

3×2×1 −

(
k
2 + 1

)2
]
=

k(k+2)(2k+5)
24 if k is even.

(4.19)

Since each vanishing complexmoment generates two relations, the total number of equality relations

governing k-th order transverse moments of an axisymmetric beam is 2χ(k).

2χ(k) is the maximum number of moment relations that can be imposed upon k-th order

moments of a beam due to rotational symmetry. For beams with discrete rotational symmetry Cn,

the number of relations ≤ 2χ(k) because some 4-tuples (a1,a2,a3,a4)which satisfy condition 4.1.1

and condition 4.1.2 may violate condition 4.1.3.

Let m(n, k) be the number of 4-tuples (a1,a2,a3,a4) that satisfy conditions 4.1.1 and 4.1.2,

but not condition 4.1.3, for the given n. Thus the number of moment relations governing a beam

with Cn symmetry is given by 2 [χ(k) − m(n, k)]. We discuss the implications of m(n, k) = 0 and

m(n, k) , 0 below.

We introduce the term “k-th order axisymmetry” to denote the set of 2χ(k) relations obeyed

by k-th order moments of an axisymmetric beam. A beam is said to be “k-th order axisymmetric”
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if it obeys k-th order axisymmetry. Note that k-th order axisymmetry merely concerns properties

of k-th order moments, so a beam can be k-th order axisymmetric but not l-th order axisymmetric

for any l , k. k-th order axisymmetry is a much weaker notion than axisymmetry, i.e. continuous

rotational symmetry, which implies k-th order axisymmetry for all k.

When m(n, k) = 0, a Cn beam is k-th order axisymmetric, i.e. its k-th order moments obey

the same set of relations as those of an axisymmetric beam. This is true despite the fact that Cn

and axisymmetry are different rotational symmetries. This equivalence indicates that k-th order

axisymmetry renders the Cn beam indistinguishable from an axisymmetric beam in terms of k-th

order beam moments. As a result, the Cn beam will share all properties of an axisymmetric beam

that only depend on k-th order moments. For example,
〈
xk

〉
of an axisymmetric beam remains the

same regardless of the orientation of the transverse coordinate system, so the same must hold for

the Cn beam as well.

m(n, k) = 0 is quite common and occurs in more than half of all (n, k) pairs. Referring again to

conditions 4.1.2 and 4.1.3, to ensure that both of them are always satisfied, (a1+a3)− (a2+a4) = 0

(mod n) cannot occur unless (a1 + a3) − (a2 + a4) = 0. It is easy to show that this condition always

holds if k < n, or if k is even and n is odd, or vice versa.

A corollary of the above statement is that, given n, k = n is the smallest k at which m(n, k) , 0

occurs. This agrees with the heuristic picture where, the higher the degree of discrete rotational

symmetry, the closer the beam is to being axisymmetric and the higher the order of moments it takes

for deviations to start. Let S(Cn) and S(axisymmetry) be the sets of unsimplified relations derived

fromEq. (4.11) governing n-th ordermoments of aCn beam and an axisymmetric beam respectively.

When k = n, m(n,n) = n + 1, so S(axisymmetry) contains 2(n + 1) more elements (i.e. moment

relations) than S(Cn). With n being the lowest moment order at which Cn and axisymmetry

are distinguishable, the difference between S(Cn) and S(axisymmetry) can be interpreted as a

manifestation of the difference between Cn and axisymmetry in terms of beam moments. Such

a perspective can allow one to employ beam moments to quantify how close a Cn beam is from

being axisymmetric. The quantification may be useful if one would like to gauge the impact of
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elements with Cn symmetry on the beam distribution, or if one would like to generate a Cn beam

via maximum entropy methods with prior knowledge on beam moments.

The general arguments developed in this subsection will be applied to analyze the 2nd and 3rd

order moments of a beam with C3 symmetry in Sec. 4.1.4.

4.1.4 Example: Beams with C3 Symmetry

To demonstrate the utility of the analytic tools developed in Sec. 4.1.1 and 4.1.2, we derive equality

relations governing the moments of a beam with C3 symmetry, and compare them against those of

an axisymmetric beam. Beams with C3 symmetry are directly relevant to ECR ion sources which

contain a sextupole (C3) in additional to solenoids (axisymmetric). Simulation results of an ECR

beam at the extraction plane is shown in Fig. 4.1 where the spatial distribution of ions extracted is

visibly triangulated due to the sextupole field of the ECR. Note that the dominant triangulation is

shown over the plasma chamber extent but is still manifest within the extraction aperture.

4.1.4.1 2nd Order Moments

For k = 2, the complex moments satisfying conditions 4.1.1 to 4.1.3 can easily be found to be

〈ww〉, 〈ww′〉 and 〈w′w′〉. The equality relations they impose on transverse beam moments are

given as follows:

〈ww〉 = 0 ⇒ 〈xx〉 = 〈yy〉 〈xy〉 = 0〈
ww′

〉
= 0 ⇒ 〈xx′〉 = 〈yy′〉 〈xy′〉 = −〈x′y〉〈

w′w′
〉
= 0 ⇒ 〈x′x′〉 = 〈y′y′〉 〈x′y′〉 = 0
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Figure 4.1: Simulated spatial distribution of Ar9+ ions at the extraction plane of the Artemis [5]
ECR ion source at FRIB. The inner circle indicates the extraction aperture. x-y and u-v denote
two possible transverse coordinate systems. Subsequent analysis will show that, despite severe
triangulation, the rms envelope and emittance of the beam is the same along any transverse
direction. Simulation results courtesy of the code developed by Dr. Vladirmir Mironov at
JINR-Dubna [25, 26].

Together these constraints give:

〈xx〉 = 〈yy〉 (4.20)

〈xx′〉 = 〈yy′〉 (4.21)

〈x′x′〉 = 〈y′y′〉 (4.22)

〈xy〉 = 0 (4.23)

〈x′y′〉 = 0 (4.24)

〈xy′〉 = −〈x′y〉 (4.25)

An alternative proof of the fact that Eq. (4.20) to (4.25) holds for a beam with 3-fold rotational

symmetry is provided in Appendix ??. That proof utilizes trigonometric identities and is applicable

to any n-fold rotational symmetry where n > 2.

Eq. (4.20) to (4.25) are the same set of relations that are obeyed by a beam with continuous
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rotation symmetry. Therefore, following the argument in Sec. ??, we can immediately conclude

that, not only are the 2nd-order beam moments in x-x′ and y-y′ identical, they must be identical in

any transverse direction. This can also be proved by writing out moments in an arbitrary direction

with u = x cos θ + y sin θ, but the approach is much more tedious than the indistinguishability

argument and is not easily extendable to higher order moments. The results also imply that the

azimuthal orientation of the ECR sextupole (see Fig. 4.1) has no effect on 2nd-order moments.

Small errors (e.g. mechanical misalignment) may introduce a limited degree of violation to this

useful idealization.

4.1.4.2 3rd Order Moments

For k = 3, we use Eq. (4.19) to obtain χ(3) = 10, which means 10 complex moments satisfy

conditions 4.1.1 and 4.1.2. We also know that, since the moment order k = 3 is the same as n, 4

complex moments must violate condition 4.1.3, namely:

〈www〉〈
www′

〉
〈
ww′w′

〉
〈
w′w′w′

〉
They provide no information because e3iθ = 1 for θ = 2π/3.

The 6 complex moments which also satisfy condition 4.1.3 give:

〈www〉 = 0 ⇒ 〈xxx〉 = −〈xyy〉 〈yyy〉 = −〈xxy〉〈
www′

〉
= 0 ⇒ 2〈xyy′〉 = 〈x′yy〉 − 〈xxx′〉 2〈xx′y〉 = 〈xxy′〉 − 〈yyy′〉〈

www′
〉
= 0 ⇒ 〈xxx′〉 = −〈x′yy〉 〈xxy′〉 = −〈yyy′〉〈

ww′w′
〉
= 0 ⇒ 〈xx′x′〉 = −〈xy′y′〉 〈x′x′y〉 = −〈yy′y′〉〈

ww′w′
〉
= 0 ⇒ 2〈x′yy′〉 = 〈xy′y′〉 − 〈xx′x′〉 2〈x′xy′〉 = 〈x′x′y〉 − 〈yy′y′〉〈

w′w′w′
〉
= 0 ⇒ 〈x′x′x′〉 = −〈x′y′y′〉 〈y′y′y′〉 = −〈x′x′y′〉
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Further combination of these relations show that they impose the following independent conditions

on third order moments:

〈xxx〉 = −〈xyy〉

〈yyy〉 = −〈xxy〉

〈xyy′〉 = 〈x′yy〉 = −〈xxx′〉

〈xx′y〉 = 〈xxy′〉 = −〈yyy′〉

〈x′yy′〉 = 〈xy′y′〉 = −〈xx′x′〉

〈xx′y′〉 = 〈x′x′y〉 = −〈yy′y′〉

〈x′x′x′〉 = −〈x′y′y′〉

〈y′y′y′〉 = −〈x′x′y′〉

Conversely, all third ordermoments of an axisymmetric beammust vanish. The same conclusion

applies to all odd-order moments of an axisymmetric beam as well. This can be seen immediately

if one applies a rotation by θ = π. This difference in moment relations between a C3 beam and an

axisymmetric beam yields interesting implications for beam transport.

Whereas the approximation of linear optics is often made, beam transport inevitably involve

nonlinear terms in the transfer map. Consider a beam with some specific rotational symmetry

entering a beam line with the nonlinear map:

xl =
4∑

i=1
Rli xi +

4∑
i=1

4∑
j=1

Tli j xi x j + O(x
3
i ) (4.26)

where subscripts can all attain integer values from 1 to 4 with l, m denoting final phase space

coordinates and i, j, k denoting initial phase space coordinates. Second order moments of the

beam exiting the beam line are given by:

〈xl xm〉 =
4∑

i=1

4∑
j=1

Rli Rmj
〈
xi x j

〉
+

4∑
i=1

4∑
j=1

4∑
k=1

(
RliTmjk + RmiTl j k

) 〈
xi x j xk

〉
+ O

(〈
x4

i

〉)
(4.27)
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which have a dependence on initial moments higher than second order due to nonlinear terms in

the map. For an axisymmetric beam, all of its 3rd order moments vanish, so the leading correction

to linear optics arises from 4th order moments. For a C3 beam, however, 3rd order moments are

probably nonzero and can affect the final second order moments. Hence, linear optics is a better

approximation in the sense that residual terms neglected are high order when the incoming beam

is axisymmetric than when it has C3 symmetry.

Last but not least, we note that all 3rd order moments of a C2 beam also vanish. Thus

the discussion in the paragraph above also holds if we substitute axisymmetry by C2, the most

commonly occurring rotational symmetry in beam lines due to the ubiquity of quadrupoles. This

fact may render linear optics a surprisingly poor assumption when it is applied to C3 beams. The

assumption may be poor because second order terms in the transfer map act more strongly on

the rms evolution of C3 beams than on that of axisymmetric or C2 beams, and the poorness may

be surprising because most of our experience is built upon the less error-prone cases of C2 and

axisymmetry.

4.2 Coupled Beam Dynamics

This section presents several results on linear coupled beam dynamics in single particle dynam-

ics (i.e. self fields are neglected).

4.2.1 Axisymmetric Beams and Eigen-emittances

This subsection derives the relation between εx , 〈xy′〉 and the eigen-emittances for an axisymmetric

beam. An axisymmetric beam has sigma matrix with the following (generally non-zero) 2nd-order

moment elements:

σ =

©­­­­­­­­«

〈xx〉 〈xx′〉 0 〈xy′〉

〈xx′〉 〈x′x′〉 − 〈xy′〉 0

0 − 〈xy′〉 〈xx〉 〈xx′〉

〈xy′〉 0 〈xx′〉 〈x′x′〉

ª®®®®®®®®¬
(4.28)
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From the eigenvalues of σS, one obtains the two eigen-emittances:

ε1 = εx +
〈
xy′

〉
(4.29)

ε2 = εx −
〈
xy′

〉
(4.30)

where εx is the usual rms emittance defined by Eq. (2.19). It follows that:

εx =
ε1 + ε2

2
(4.31)〈

xy′
〉
=

(ε1 − ε2
2

)
(4.32)

4.2.2 Magnetized Beam

Consider an axisymmetric beam in an axisymmetric beam line going from si to s f where Bz0(si) , 0

and Bz0(s f ) = 0

At s = si, due to the presence of axial magnetic field, canonical coordinates x̃ and laboratory

coordinates x are related by

x̃ = Kx

K =

©­­­­­­­­«

1 0 0 0

0 1 −ks/2 0

0 0 1 0

ks/2 0 0 1

ª®®®®®®®®¬
where ks =

qB
mv

The sigma matrix written in terms of canonical coordinates is given by

σi = x̃ix̃T
i = KxixT

i KT

σi =

©­­­­­­­­«

1 0 0 0

0 1 −ks/2 0

0 0 1 0

ks/2 0 0 1

ª®®®®®®®®¬

©­­­­­­­­«

〈xx〉i 〈xx′〉i 0 〈xy′〉i

〈xx′〉i 〈x′x′〉i − 〈xy′〉i 0

0 − 〈xy′〉i 〈xx〉i 〈xx′〉i

〈xy′〉i 0 〈xx′〉i 〈x′x′〉i

ª®®®®®®®®¬

©­­­­­­­­«

1 0 0 ks/2

0 1 0 0

0 −ks/2 1 0

0 0 0 1

ª®®®®®®®®¬
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At s = s f ,

σ f =

©­­­­­­­­«

〈xx〉 f 〈xx′〉 f 0 〈xy′〉 f

〈xx′〉 f 〈x′x′〉 f − 〈xy′〉 f 0

0 − 〈xy′〉 f 〈xx〉 f 〈xx′〉 f

〈xy′〉 f 0 〈xx′〉 f 〈x′x′〉 f

ª®®®®®®®®¬
From conservation of canonical angular momentum:

〈
xy′

〉
f =

〈
xy′

〉
i +

ks
2
〈xx〉i

σ f =

©­­­­­­­­«

〈xx〉 f 〈xx′〉 f 0 〈xy′〉i +
ks
2 〈xx〉i

〈xx′〉 f 〈x′x′〉 f − 〈xy′〉i −
ks
2 〈xx〉i 0

0 − 〈xy′〉i −
ks
2 〈xx〉i 〈xx〉 f 〈xx′〉 f

〈xy′〉i +
ks
2 〈xx〉i 0 〈xx′〉 f 〈x′x′〉 f

ª®®®®®®®®¬
We can solve for eigenvalues of σiS and σ f S to get eigen-emittances:

ε2
i; I,II =ε

2
i,x +

k2
s
2
〈xx〉2i + 2ks 〈xx〉i

〈
xy′

〉
i +

〈
xy′

〉2
i

±

(
ks 〈xx〉i + 2

〈
xy′

〉
i

) √
ε2
i,x + k2

s 〈xx〉i /4 + ks 〈xx〉i 〈xy′〉i

ε2
f ; I,II = ε

2
f ,x +

k2
s
4
〈xx〉2i + ks 〈xx〉i

〈
xy′

〉
i +

〈
xy′

〉2
i ± ε f ,x

(
ks 〈xx〉i + 2

〈
xy′

〉
i

)
Eigen-emittances are invariants, i.e.

εi; I,II = ε f ; I,II

Therefore, the final x-emittance is given by:

ε2
f ,x = ε

2
i,x +

k2
s
4
〈xx〉2i + ks 〈xx〉i

〈
xy′

〉
i
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4.2.3 Mirror-Symmetric Beam Line Does Not Preserve Axial-symmetry

In a beam line consisting of quads and dipoles only, equations of motion in x and y are decoupled.

Thus the transfer matrix is block diagonal, with the general form:

M =

©­­­­­­­­«

m11 m12 0 0

m21 m22 0 0

0 0 m33 m34

0 0 m43 m44

ª®®®®®®®®¬
Suppose there is a symmetric beam line, i.e.

M(s f |si) =M1M2 . . .Mn−1MnMnMn−1 . . .M2M1

where

M(sm |si) =MnMn−1 . . .M2M1

M(s f |sm) =M1M2 . . .Mn−1Mn

Where si, sm and s f stand for the start, mid- and end point respectively.

Lemma: if Mx(sm |si) =
©­­«
m11 m12

m21 m22

ª®®¬ then Mx(s f |sm) =
©­­«
m22 m12

m21 m11

ª®®¬
Proof:

©­­«
x

x′

ª®®¬m

=Mx(sm |si)
©­­«

x

x′

ª®®¬i

By time-reversal:

Mx(s f |sm)
©­­«

x

−x′

ª®®¬m

=
©­­«

x

−x′

ª®®¬i
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Mx(s f |sm)
©­­«
1 0

0 −1

ª®®¬
©­­«

x

x′

ª®®¬m

=
©­­«
1 0

0 −1

ª®®¬
©­­«

x

x′

ª®®¬i

Mx(s f |sm) =
©­­«
1 0

0 −1

ª®®¬ M−1
x (sm |si)

©­­«
1 0

0 −1

ª®®¬
where

T =
©­­«
1 0

0 −1

ª®®¬
Mx =

©­­«
m11 m12

m21 m22

ª®®¬ =⇒ M̃x =
©­­«
m22 m12

m21 m11

ª®®¬
My =

©­­«
m33 m34

m43 m44

ª®®¬ =⇒ M̃y =
©­­«
m44 m34

m43 m33

ª®®¬
©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬m

=Mx ⊗My

©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬i

M̃ =

©­­­­­­­­«

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

ª®®®®®®®®¬
M−1

©­­­­­­­­«

1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

ª®®®®®®®®¬
©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬ f

=
(
M̃xMx

)
⊗

(
M̃yMy

) ©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬i
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For 〈xy〉i = 0, 〈x′y′〉i = 0 and 〈xy′〉i = −〈x′y〉i:

©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬ f

=

©­­­­­­­­«

2(m11m22 + m12m21)m34m44 − 2(m33m44 + m34m43)m12m22

−4m12m22m33m43 + (m11m22 + m12m21)(m33m44 + m34m43)

4m11m21m34m44 − (m11m22 + m12m21)(m33m44 + m34m43)

−2(m11m22 + m12m21)m33m43 + 2(m33m44 − m34m43)m11m21

ª®®®®®®®®¬
〈xy′〉i

which do not obey any of 〈xy〉 f = 0, 〈x′y′〉 f = 0 or 〈xy′〉 f = −〈x′y〉 f in general. In fact,

©­­­­­­­­«

〈xy〉

〈xy′〉

〈x′y〉

〈x′y′〉

ª®®®®®®®®¬ f

=

©­­­­­­­­«

0

L/2

−L/2

0

ª®®®®®®®®¬
only if Mx = My

4.2.4 Linear Solenoid Transport

Section 4.1 proves that the 2nd-order moments of an axisymmetric beam must obey the following

relations:

〈xx〉 = 〈yy〉

〈xx′〉 = 〈yy′〉

〈x′x′〉 = 〈y′y′〉

〈xy〉 = 0

〈x′y′〉 = 0

〈xy′〉 = −〈x′y〉

We call a beam that fulfills these relations 2nd-order axisymmetric, which is a much weaker notion

than axisymmetric because it does not impose any requirements on higher order moments. This
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subsection shows that 2nd-order axisymmetry is preserved by linear solenoid transport, i.e. if a

2nd-order axisymmetric beam enters a linear solenoid, it will retain its 2nd-order axisymmetry

upon exit. Note that in this context we are neglecting space charge forces which, depending on the

distribution, may exert non-axixymmetric self-fields.

An axisymmetric beam will still be axisymmetric after passing through a solenoid, which

means that it obeys 2nd-order axisymmetry both upstream and downstream. Furthermore, when

the solenoid is linear, the final beammoments are only functions of initial beammoments of the same

order. Therefore, a linear solenoid has a transfer map that preserves 2nd-order axisymmetry. This is

a general property of the transfer maps of linear solenoids that is agnostic to beam information other

than 2nd-order moments. So as long as a beam has 2nd-order axisymmetry, it will be preserved by

a linear solenoid.

Lastly, we note that, for a linear solenoid, not only does 2nd-order axisymmetric upstream

imply 2nd-order axisymmetric downstream, considerations from time reversal also dictates 2nd-

order axisymmetric downstream implies 2nd-order axisymmetric upstream.

4.2.5 Quasi-axisymmetric Conditions

As shown in Sec. 4.2.4, linear solenoid optics preserves 2nd-order axisymmetry, so it would be ideal

for a beam to obey the corresponding relations when it enters solenoid transport. In this subsection,

we define a weaker set of conditions which we call quasi-axisymmetry. A non-axisymmetric

beam satisfying its conditions have properties similar to that of an axisymmetric beam in solenoid

transport. The conditions are weaker because it does not require εx = εy, which is a necessary

condition for an axisymmetric beam. This has practical importance when a beam with εx , εy has

to be matched into a solenoid transport line using only normal quadrupoles.
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The quasi-axisymmetry conditions read:

αx = αy (4.33)

βx = βy (4.34)

〈xy〉 = 0 (4.35)〈
x′y′

〉
= 0 (4.36)〈

xy′
〉
= −

〈
x′y

〉
(4.37)

In terms of 2D phase space projections, the first two conditions describe rms ellipses in x-x′ and

y-y′ phase spaces which have the same orientation and sizes of the ratio εx : εy. Therefore,

〈xx〉 =
εy

εx
〈yy〉 (4.38)〈

xx′
〉
=
εy

εx

〈
yy′

〉
(4.39)〈

x′x′
〉
=
εy

εx

〈
y′y′

〉
(4.40)

If we express moments of a quasi-axisymmetric beam in an arbitrary transverse direction in

terms of the moments in x, x′ and y, y′, we obtain, for u = x cos θ + y sin θ:

〈uu〉 = 〈xx〉 cos2 θ + 2 〈xy〉 sin θ cos θ + 〈yy〉 sin2 θ

= 〈xx〉 cos2 θ + 〈yy〉 sin2 θ

= 〈xx〉 cos2 θ + 〈xx〉
εy

εx
sin2 θ

= 〈xx〉
[
1 +

(
εy

εx
− 1

)
sin2 θ

]
(4.41)

Applying Eq. (4.38), one can check that Eq. (4.41) correctly recovers 〈uu〉 = 〈xx〉 and 〈uu〉 = 〈yy〉

at θ = 0 and θ = π/2 respectively. Similarly,〈
uu′

〉
=

〈
xx′

〉 [
1 +

(
εy

εx
− 1

)
sin2 θ

]
(4.42)〈

u′u′
〉
=

〈
x′x′

〉 [
1 +

(
εy

εx
− 1

)
sin2 θ

]
(4.43)
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The Twiss parameters and emittance along u are given by:

εu =

√
〈uu〉 〈u′u′〉 − 〈uu′〉2 (4.44)

αu =
− 〈uu′〉
εu

(4.45)

βu =
〈uu〉
εu

(4.46)

Applying Eq. (4.41) to Eq. (4.43), it can be shown that:

εu = εx

[
1 +

(
εy

εx
− 1

)
sin2 θ

]
= εx +

(
εy − εx

)
sin2 θ (4.47)

αu =
− 〈uu′〉
εu

=
− 〈xx′〉
εx

= αx (4.48)

βu =
〈uu〉
εu
=
〈xx〉
εx
= βx (4.49)

Eq. (4.48) and Eq. (4.49) states that αu and βu has no dependence on θ and always equal their

counterparts in x. This means that, for a quasi-axisymmetric beam, despite εx , εy, the Twiss

parameters are the same in all transverse directions. On the other hand, Eq. (4.47) shows that εu

changes with θ. εu attains its maximum and minimum value along x and y respectively if εx > εy,

and vice versa.

4.3 Applications to FRIB Front End

This section shows how the results developed in this chapter can be applied to the FRIB front

end. Fig. 4.2 shows a schematic of the FRIB front end where only elements relevant to transverse

dynamics are displayed. The beam line is also divided into segments (1) through (7) which will

play different roles in beam tuning. Section 4.3.1 discusses how results from Sec. 4.1 clarify the

beam dynamics in segments 1 and 2 and motivate investigation on an unresolved phenomenon.

Section 4.3.2 employs arguments in Sec. 4.2 to elucidate attainable beam states in segments 3 to

6 and presents a tuning scheme that can be readily implemented in the laboratory for achieving

optimal matching into the RFQ. Section 4.3.3 analyzes the intertwined problems of how the optics
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Figure 4.2: A schematic of transverse focusing and bending elements in the FRIB front end.
Note that Segment 2 and 5 are mirror-symmetric about the axial mid-plane. Lengths are not
drawn to scale and all quadrupoles are normal quadrupoles (i.e. upright orientation).

in Linac Segment 1 (following segment 7) should be designed and how the MEBT (segment 7)

should match a non-axisymmetric beam into Linac Segment 1. Space charge is relatively weak

after the mid-plane of the CSS (segment 2), hence it is neglected in the discussion on tuning in

segments 3 to 7.

4.3.1 LEBT: Before Species Selection

Using the analytic tools developed Sec. 4.1, we proved in Sec. 4.1.4 that a beam with C3 symmetry

has the same emittance in any transverse direction. This result should hold in the presence of

multi-species space charge, chromatic aberrations and radial field nonlinearities because none of

these effects break the discrete rotational symmetry of the system.

This conclusion quickly revealed a conundrum at FRIB because diagnostic measurements often

show >10% difference between εx and εy at the mid-point and end-point of the charge selection

system (i.e. segment 2). Prior to this analysis, the difference used to be attributed to the sextupole
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of the ECR ion source that possibly results in a triangulated beam, symmetry arguments from

Sec. 4.1 invalidated such an explanation and gave impetus to a more thorough inquiry.

We have identified two possible reasons for εx , εy to occur in the charge selection system,

neither of which we understand fully: (A) the beam has εx , εy entering segment 2; and (B)

emittance evolution in the dipole or prior to charge separation. Further investigation is underway

on both fronts to explain this phenomenon.

If the possibility A is true, the results in Sec. 4.1 compels us to argue by transposition that

axisymmetry is broken in segment 1. Thus we searched for plausible causes and concluded that

an old solenoid with poorly designed current leads may create strong multipole moments in the

downstream fringe fields.

Possibility B may also be true because εx , εy was observed in Warp simulation results in

Sec. 3.3 due to an interplay between space charge and beam magnetization, albeit with a smaller

percentage difference. Furthermore, the discussion at the end of Sec. 4.1 shows that the evolution of

second order moments of a beamwithC3 symmetry is likely more susceptible to higher order terms

in the transfer map than that of an axisymmetric beam. Since the transfer map of the 90-degree

combined function dipole may contain significant nonlinearities, the use of axisymmetric beams in

previous simulations could induce large errors in modeling the dipole transport. This suggests that

further simulation studies should include non-axisymmetric initial conditions with C3 symmetry

to probe how this changes the beam dynamics in segment 2.

4.3.2 LEBT: After Species Selection

After charge selection, the LEBT has to match the beam into the RFQ while avoiding beam loss.

The design of the optics can be done in two steps: (A) obtain complete information on transverse

coupled beam moments after segment 2 via diagnostic measurements; and (B) tune quadrupoles

and solenoids via optimization to accomplish design goals. There are a total of 17 knobs available

for tuning the beam, they comprises the focusing strengths of 10 quadrupoles and 7 solenoids. The

vertical drop only has six knobs rather than twelve because only two of the four quadrupole triplets
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are independent in its design as a mirror-symmetric achromat.

Design goals include small beam sizes at locations with small apertures (e.g. within the buncher

and chopper), as well as:

αx = αy = αin (4.50)

βx = βy = βin (4.51)

εx = εy (4.52)

at the RFQ entrance where αin and βin denote the design Twiss parameters entering the RFQ.

The most direct scheme is to employ all 17 knobs as optimization parameters and construct a

penalty function that incorporates all design goals as constraints. This approach was adopted by the

Accelerator Physics Department at FRIB. An example of optics design 1 based on the direct scheme

is plotted in Fig. 4.3. Note that there is strong emittance exchange in the lower LEBT solenoid

transport (segment 6) which causes the beam to enter the RFQ with large emittance differences in

x and y. Such emittance exchange is a common problem that occurs because the beam does not

fulfill 2nd order axisymmetry in the solenoid transport line.

We designed an easily implementable tuning scheme based on results in coupled beam dynamics

developed in Sec. 4.2. This treatment delineates attainable and preservable beam states in each

beam line segment, which allow us to split the optimization into separate stages with well-defined

goals.

In the ensuing analysis, it is important to distinguish between beam line segments that: (A) con-

tain solenoids, which couple the dynamics in x and y; and (B) contain dipoles and/or quadrupoles,

which does not couple the couple the dynamics in x and y. It is proved in Sec. 4.2.4 that linear

1provided by Dr. Tomofumi Maruta
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"Catchall" Optimization

Figure 4.3: An example of FRIB LEBT tuning results where the focusing strengths of 17
elements (10 quadrupoles and 7 solenoids) were optimized to achieve desired beam conditions at
the RFQ entrance. (Image courtesy of Dr. Tomofumi Maruta at FRIB Accelerator Physics
Department)

solenoids preserve the set of 2nd-order axisymmetric conditions:

〈xx〉 = 〈yy〉

〈xx′〉 = 〈yy′〉

〈x′x′〉 = 〈y′y′〉

〈xy〉 = 0

〈x′y′〉 = 0

〈xy′〉 = −〈x′y〉

For dipoles and quadrupoles, εx and εy are conserved quantities under linear optics (see Chapter 2).

We extract from these results three conditional statements on beam states and beam transport:

Corollary 4.3.1. (2nd-order axisymmetry)→ (εx = εy)
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Corollary 4.3.2. In linear optics, for a beam line consisting of solenoids and drifts, (incoming

beam is 2nd-order axisymmetric)↔ (outgoing beam is 2nd-order axisymmetric)

Corollary 4.3.3. In linear optics, for a beam line consisting of normal dipoles, quadrupoles and

drifts, (incoming beam has εx = εy)↔ (outgoing beam has εx = εy)

We start at the end (RFQ entrance) and work backwards. To achieve Eq. (4.50) to (4.52) at the

RFQ entrance, it is highly desirable for the beam to be 2nd-order axisymmetric in the lower LEBT.

2nd-order axisymmetry guarantees:

αx = αy

βx = βy

εx = εy

throughout the solenoid transport, which means the beam optics in identical in any transverse

direction and reduces to an effective 1D (radial) design. Hence, matching into the RFQ entrance

with Twiss parameters αin and βin becomes a problem of tuning 4 solenoids to meet 2 constraints.

Not only it the goal easily attainable, the problem also affords additional freedom to accommodate

other constraints, such as small beam size at the multi-harmonic buncher.

The next step concerns how 2nd-order axisymmetry can be achieved in the lower LEBT. A

summary of the problem can be found in Table 4.1. To have 2nd-order axisymmetry after segments

5 and 6 implies having εx = εy as well (see Corollary 4.3.1), and Corollary 4.3.3 in turn implies

εx = εy before the vertical drop. Concerning the conditions after the charge selection system,

the results in Sec. 4.2.3 show that it takes Mx = My for an uncoupled mirror symmetry beam

line to preserve 2nd-order axisymmetry. With only 3 quadrupoles on each half, segment 2 cannot

fulfill this condition even if the beam is 2nd-order axisymmetric before segment 2. Therefore,

the beam generally lacks 2nd-order axisymmetry after segment 2. In practice, as we noted in

Sec. 4.3.1, measurements show that the beam almost always fail to even fulfill εx = εy after the

charge selection system. Remaining uncertainties in the design are denoted by question marks and

will be resolved below.
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εx = εy 2nd-order axisymmetric
After segment 2 (charge selection system) X X
After segment 3 (upper LEBT quad.) ? ?
After segment 4 (upper LEBT sol.) X ?
After segment 5 (vertical drop) X X
After segment 6 (lower LEBT) X X

Table 4.1: Beam states entailed by the requirement of 2nd-order axisymmetry in the lower LEBT.
X and X denote true and false respectively.

Two possible schemes to tune the LEBT are shown in Table 4.2. We proposed Scheme 2 which

tunes for εx = εy in the upper LEBT and uses the vertical drop to achieve 2nd-order axisymmetry.

Scheme 1, which tunes for 2nd-order axisymmetry in the upper LEBT, is also discussed because it

was an adaptation of the FRIB baseline design. Arguments below will illustrate why Scheme 2 is

preferable.

Scheme 1 is unlikely to work for the following reasons. Firstly, a prerequisite of the scheme

is εx = εy after the charge selection system, otherwise εx = εy cannot hold after segment 3

either (by corollary 4.3.3). However, measurement results have shown that this prerequisite almost

always fails to hold. Furthermore, even if εx = εy is true after segment 2, tuning for 2nd-order

axisymmetry after segment 3 is difficult to succeed. In general, after εx = εy removes one condition,

the beam must satisfy five more conditions to attain 2nd-order axisymmetry. However, segment

3 only contains four quadrupoles, so the task employs a four-parameter optimization to meet five

conditions, which is unlikely to produce favorable operating points even if we disregard aperture

limits and other secondary considerations.

Before explaining how Scheme 2 works, we can show by deduction that it is the only possible

arrangement. Since εx , εy after segment 2, it entails (by Corollary 4.3.3) εx , εy after segment 3

, which in turn implies that 2nd-order axisymmetry cannot hold after segment 3 (by Corollary 4.3.1)

and, consequently, after segment 4 (by Corollary 4.3.2).

The tuning in Scheme 2 is performed in three stages:

1. Stage 1 (segment 3 and 4): attain εx = εy at the entrance of segment 5. Seven knobs to tune

for one condition.
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Scheme 1 Scheme 2
2nd-order 2nd-order

εx = εy axisymmetric εx = εy axisymmetric
After segment 2 (charge selection system) X X X X
After segment 3 (upper LEBT quad.) X X X X
After segment 4 (upper LEBT sol.) X X X X
After segment 5 (vertical drop) X X X X
After segment 6 (lower LEBT) X X X X

Table 4.2: First set of quadrupole scan parameters

2. Stage 2 (segment 5): attain 2nd-order axisymmetry at the entrance of segment 6. Six knobs

to tune for five conditions.

3. Stage 3 (segment 6): match beam into RFQ design parameters. Four knobs to tune for two

conditions.

Each optimization contains more parameters than constraints, so it is likely that a favorable solution

will be found even with secondary constraints such as a small beam size at the multi-harmonic

buncher upstream of the RFQ.

Fig. 4.4 shows an example optics design based on Scheme 2 of Table 4.2. The optimization

was implemented by Dr. Tomofumi Maruta using a linear optics envelope code FLAME[29].

While emittance exchange occurs in the solenoids of segment 3, as a result of the optimization,

the solenoid strengths are arranged such that εx = εy when the exchange ends. There exists small

emittance exchange in the lower LEBT because the optimization does not attain perfect 2nd-order

axisymmetry after the vertical drop, but the exchange is much smaller than the direct optimization

design in Fig. 4.3, and εx is very close to εy at the RFQ entrance. This scheme is presently

employed for front end tuning in FRIB and has superseded previous methods.

4.3.3 MEBT and LS1

Despite tuning efforts in the LEBT, the beam often has different emittances in x and y (εx , εy)

downstream of the RFQ. With only normal quadrupoles in the MEBT, it is impossible to achieve
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Figure 4.4: An example of FRIB LEBT tuning results where the tuning scheme introduced in
Sec. 4.3.2 was applied to optimize elements strengths in three stages. (Image courtesy of Dr.
Tomofumi Maruta at FRIB Accelerator Physics Department)

εx = εy and hence axisymmetry at the LS1 entrance. This subsection addresses three intertwined

problems under these circumstances: 1) how to design the optics for the solenoid transport line

LS1; 2) how to define the acceptance condition; and 3) how to match a non-axisymmetric beam

into the design optics.

In the following treatment, we first propose a design and matching recipe, and then discuss the

underlying beam dynamics and why it will work.

4.3.3.1 Optics Design and Matching Recipe

Firstly, the transverse optics of the LS1 solenoid transport line should be designed assuming the

incoming beam is axisymmetric. This reduces the design to a 1D problem (optics and beam

parameters identical along any transverse direction due to axisymmetry) which is easy to handle

and is how it was done in the conceptual and engineering design of FRIB. The 1D design defines

αin and βin, the incoming beam parameters required for matching, and εA, the maximum acceptable

incoming emittance (i.e. acceptance).
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Next, we use the quasi-axisymmetric conditions defined in Sec. 4.2.5 to match a beam with

εx , εy into an axisymmetric optics by requiring:

αx =αy = αin

βx =βy = βin

〈xy〉 = 0〈
x′y′

〉
= 0〈

xy′
〉
= −

〈
x′y

〉
This is achieved by tuning the MEBT quadrupoles. The acceptance condition is fulfilled if εx ≤ εA

and εy ≤ εA.

To explain why the recipe works, we first note the transfer matrix of a linear solenoid can be

decomposed as [30]:

Msol =MRMF (4.53)

where MR is a rotation matrix and MF is focusing in both transverse directions:

MR =

©­­­­­­­­«

cos ks` 0 sin ks` 0

0 cos ks` 0 sin ks`

− sin ks` 0 cos ks` 0

0 − sin ks` 0 cos ks`

ª®®®®®®®®¬
(4.54)

MF =

©­­­­­­­­«

cos ks`
1
ks

sin ks` 0 0

−ks sin ks` cos ks` 0 0

0 0 cos ks`
1
ks

sin ks`

0 0 −ks sin ks` cos ks`

ª®®®®®®®®¬
(4.55)

ks = Bz0/2[Bρ], ` is the effective length of the solenoid and Bz0 is the effective field.

When a quasi-axisymmetric beam enters a linear solenoid, since the incoming beam has the

same Twiss parameters in every transverse direction, and the focusing force is axisymmetric, the

beam should retain quasi-axisymmetry upon exiting the solenoid. We arrive at this conclusion just

63



by invoking symmetry, but Eq. (4.53) tells us more. In addition to focusing, the linear solenoid

also azimuthally rotates the beam by the Larmor angle ks` [13]. This is relevant to the dynamics

because Eq. (4.47) shows that εu, the emittance measured along û where u = cos θ + sin θ, is

dependent on θ. This means the transverse directions along which the beam size is maximum and

minimum rotate by angle ks` after passage through the solenoid.

The beam evolution can be described using the following picture. The axisymmetric optics

design and acceptance together defines a cylindrical envelope that varies in size along the solenoid

transport line. For a quasi-asymmetric beam that is matched to the optics design with εx = εA > εy,

the beam is spatially an ellipse as it enters the solenoid transport. The ellipse rotates in each solenoid

and its two points of maximum extent always touches the cylindrical envelope. Thus a matched

quasi-axisymmetric beam within acceptance guarantees that the beam is spatially bounded by the

design cylindrical envelope throughout the solenoid transport.

4.3.4 Further Work

In practice, the LS1 is not purely a solenoid transport because there exists quadrupole kicks from

the quarter-wave SRF cavities. While the quadrupole kicks can be treated as small perturbations, it

will be interesting to study how the solenoid optics can be designed such that the effect from such

perturbations can be minimized.

Additionally, construction and alignment errors can introduce further (hopefully small) symme-

try breaking terms. Likewise, space charge nonlinearities of a nonuniform and non-axisymmetric

beam can muddle the overall picture. Nevertheless, considerations presented in this chapter pro-

vide a clear ideal basis for optimal tuning whose robustness against reasonable error sources can

be evaluated with detailed simulations.
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CHAPTER 5

TRANSVERSE PHASE-SPACE MEASUREMENTS WITH ALLISON-TYPE
EMITTANCE SCANNERS

The content of this chapter and Appendix A is an extended version of the work published in

Ref. [31].

5.1 Introduction

Allison-type emittance scanners [32], or Allison scanners for short, are widely used to efficiently

measure projected 2D phase space distributions of low-energy beams. An Allison scanner (see

Fig. 5.1) consists of an entrance slit-plate (slit width s), an aligned exit slit-plate (slit width s)

with an integrated Faraday cup, and a bipolar-biased electric dipole (voltage ±V0) placed between

the two slits. The scanner assembly is translated mechanically (typically in discrete steps with

a stepper motor) to change the slit position, and the dipole voltage V0 is swept at each step to

select transmittable angles by varying the bending strength. The scanner samples one grid point

in phase space for each coordinate and “E-dipole” voltage setting, with the beam density taken to

be proportional to the current collected by the Faraday cup. The entire projected distribution is

measured by recording currents collected over a range of position and voltage values that samples

the full phase-space projection.

Analysis of Allison scanner data requires a voltage-to-angle conversion and the angular resolu-

tion of the device. Idealized relations were derived in Ref. [32] and summarized in Ref. [33]. They

constitute the conventional analysis model which assumes the scanner has an idealized geometry

with uniform hard-edge dipole fields, thin slit-plates and longitudinally symmetric placement of

the E-dipole.

Extending upon the work in [34], Sec. 5.2 augments the conventional analysis model to account

for two commonly occurring geometric features that can lead to significant corrections due to:

1) the effective longitudinal asymmetry in E-dipole placement between the slits, and 2) the finite
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slit-plate thickness. Their effects on particle transmission are studied using both simulations and

analytic expressions which show excellent agreement. Asymmetry in E-dipole placement alters the

slope of the linear relation between dipole voltage and particle angle. Finite slit thickness causes

the weight of data points to vary as a decreasing function of their voltage values. The reduction

becomes significant at large voltages and when the slits’ thickness-to-width ratio & 1.

When the interval between data points is smaller than the device resolution, the currentmeasured

at each data point is a weighted sum of the actual current densities at the data point and its neighbors.

Sec. 5.3 shows that a detailed accounting of the phase space region contributing to each data point

allows one to deconvolve the effective blur induced by overlapping data points and resolve the

beam distribution more accurately. Reconstruction procedures are illustrated and verified using

numerically generated phase-space distributions so that improvements are clearly characterized.

Section 5.4 applies the improved model to experimental data from the Allison scanner used in

the front-end of the Facility for Rare Isotope Beams (FRIB) at Michigan State University. Raw

measurement data first undergo a noise removal scheme, then the processed data are analyzed with

both the conventional model and the improved model. Comparisons reveal that the improved model

produces more consistent results among a series of scans with changing focusing upstream. Beam

moments are modified significantly relative to conventional treatments, with differences growing

with the angular divergence of the beam distribution.

The Python code tools used to perform the data analysis and noise removal are described and

made available [35]. The modular programs are readily adaptable to other Allison scanners via a

change of geometric input parameters.

Section 5.5 concludes this study with an outline of directions for future improvements.

5.2 Additional Geometric Features

This section first describes how asymmetric E-dipole placement and finite slit thickness can be

modeled in Allison scanners. Effects induced are investigated using simulations that probe particle

transmission given the device geometry and E-dipole voltage. The simulation results are accurately
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modeled by analytic expressions for typical choices of scanner parameters. The implications for

data analysis are demonstrated through simulated measurements of ideal particle distributions

chosen to highlight those effects.

5.2.1 Geometric Model

With reference to a realistic Allison scanner (see Fig. 5.1), the geometric information relevant

to particle transmission and measurement data analysis can be captured using a model with six

parameters. A schematic of the model for measuring the x-x′ phase space is illustrated in Case IV

of Fig. 5.2 where

• L is the E-dipole plate length;

• l1 is the distance between the entrance-slit and the E-dipole plate;

• l2 is the distance between the exit-slit and the E-dipole plate;

• g is the gap between the E-dipole plates;

• s is the slit width; and

• d is the slit thickness.

The model assumes that particle transmission has no y-dependence, which is a good approximation

if no particle approaches the vertical extent of the device. This requires the vertical extent of the

scanner to be much larger than 2 (|ycen | + yrms)where ycen and yrms are the beam centroid position

and rms width in the vertical direction.

The geometric model hinges upon a correct definition of l1, l2 and d, so it is important to

identify what performs the function of a slit. Figure 5.1 shows the design for the FRIB Allison

scanner [lidia2016overview]. On each side of the E-dipole there is a thick plate with an opening

(see zoom insert) that has large-angled relief cuts and a straight channel of minimum width. The

relief cuts allow using thicker plates that enable cooling and have higher mechanical stability. The
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relief cuts do not intercept any ions that would have otherwise passed through the slits, since the

opening angle (30◦ in Fig. 5.1) far exceeds the transverse angles of beam ions. Hence the slit, i.e.

the structure that limits particle transmission, is only taken to be the minimum-width channel, with

width s = 60 µm and thickness d = 254 µm in Fig. 5.1.

The relief cut is immaterial to the slit-to-E-dipole distance l1 in Fig. 5.1, hence l1 = 2.01 mm.

In contrast, l2, the distance between the dipole plate and the exit slit, must take into account

the longitudinal extent of the relief cut because it opens towards the E-dipole. Therefore, l2 =

(2.06 + 3.18 − 0.254)mm = 4.986 mm. Note that the relief cuts as illustrated in a real system in

Fig. 5.1 induce significant asymmetry in E-dipole placement with l2 = 4.986 mm > l1 = 2.01 mm.

Conventional treatments model an Allison scanner with thin slits and symmetry in E-dipole

placement, which corresponds to d = 0 and l1 = l2. However, real devices often deviate from these

assumptions as discussed below.

5.2.1.1 Longitudinal Asymmetry in E-dipole Placement (l1 , l2)

Effective longitudinal asymmetry in E-dipole placement commonly arises in Allison scanners,

probably unintentionally, because relief cuts on thick entrance- and exit-plates have been made in

the same direction[36, 37]. This asymmetry was also present in the early implementation of the

FRIB Allison scanner where relief cuts on both plates face the incoming beam as shown in Fig. 5.1.

Since the relief cuts have no effect on particle transmission, it effectively displaces the end slit but

not the entrance slit to make l2 > l1 in the FRIB design. We find that such asymmetries affect the

transmitted angles for a given V0.

5.2.1.2 Finite Slit Thickness d & Slit Width s

The slit thickness d can be neglected when it is much smaller than the slit width s. This idealization

starts to break down as Allison scanner designs employ decreasing slit widths to improve resolution.

Recent examples include slit widths of s ≤ 100 µm in plans presented for GSI FAIR[38] and

s = 38 µm implemented at TRIUMF[39]. Fig. 5.1 details the slit plate presently employed in the
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Figure 5.1: Side-view of the FRIB Allison scanner.

Table 5.1: Geometric parameters applied in examples corresponding to the four geometric
models in Fig. 5.2

Case L [mm] l1 [mm] l2 [mm] g [mm] s [µm] d [µm] E-dipole Placement Slits
I 71.85 3.498 3.498 7.91 60 0 Symmetric Thin
II 71.85 2.01 4.986 7.91 60 0 Asymmetric Thin
III 71.85 3.498 3.498 7.91 60 254 Symmetric Thick
IV 71.85 2.01 4.986 7.91 60 254 Asymmetric Thick

FRIB scanner where s = 60 µm and the slit thickness (not including irrelevant longitudinal extent

of the 30◦ relief cut) is 254 µm. This approximately 4 : 1 aspect ratio effectively produces a narrow

channel, which can scrape particles that would have otherwise passed through a slit-plate with no

thickness.

5.2.2 Four Cases

To investigate the effects of asymmetry in dipole placement and finite slit thickness, four Allison

scanner models (see Fig. 5.2) are specified using the parameters listed in Table 5.1. The parameters

in Case IV correspond to the geometric model of the FRIB Allison scanner in Fig. 5.1, which

has asymmetric E-dipole placement (l1 , l2) and thick slits (d , 0). To mimic how the analysis

would have been done if one or both geometric features are omitted, the FRIB design is modified

into examples of Cases I to III (see Table 5.1) with thin slits (d = 0) and/or symmetric E-dipole
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placement (l1 = l2). Note that Case I corresponds to the conventional analysis model. All four cases

have identical E-dipole length L, gap g and total inter-slit distance L + l1 + l2; thus all differences

in analysis results arise from the geometric features.

Characteristic trajectories in Fig. 5.2 illustrate the range of angles that can be transmitted at

each voltage setting due to the finite slit width. We define:

• x′ref: angle at which an ion would enter and exit the slits at the same x-position 1,

• x′max / min: maximum/minimum transmittable angle,

• ∆x′ = x′max − x′min: angular resolution,

where x′ ≡ dx/dz and x = 0 corresponds to the device center-line. The x′max-trajectory touches

the lower edge of the entrance slit and the upper edge of the exit slit, and vice versa for the

x′min-trajectory. When the slits have finite thickness, one has to determine whether the extreme

trajectory should touch the corner on the upstream or downstream side of each slit by selecting the

combination that is not scraped. This complicates analytic modeling and results in a longitudinal

shift of the extreme trajectories as visualized in Case III and IV of Fig. 5.2.

5.2.2.1 Particle Simulations

Transmission properties of an Allison scanner design can be investigated using particle simulations.

Two types of simulations are employed, namely “ballistic” and “realistic”, depending on the model

of the dipole field. Realistic simulations employ a numerically calculated fringe field model for the

dipole and include non-paraxial effects due to energy change. Ballistic simulations take the Allison

scanner as an ideal dipole with uniform hard-edge fields over the axial extent L, with free drifts

and collimating apertures on either side. Energy change from crossing E-dipole potential lines is

neglected. Given V0, the particle trajectory consists of two straight lines outside the dipole and a

parabola inside, and is scraped if it hits either of the slit plates. Space charge and scattering effects

1see Appendix A.3.2 for a subtle distinction in Case IV
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Figure 5.2: Four geometric cases and their respective characteristic trajectories. Case I:
l1 = l2 = l and d = 0; Case II: l1 , l2 and d = 0; Case III: l1 = l2 = l and d , 0; Case IV: l1 , l2
and d , 0. zi is the longitudinal position where the beam particles enter the device and where the
x-x′ phase space is measured.

are neglected in this study. A condition is derived in Appendix A.1 to show that non-paraxial

effects are typically tiny. Details of the realistic model are given in Appendix A.2.

Most simulation results shown are obtained using ballistic simulations because they are much

faster than realistic simulations and can be summarized using analytic formulae. Results in

Sec. 5.2.3 show that the differences between ballistic and realistic simulations are small for typical

scanner geometries.

The device center-line is chosen as the x-axis of the coordinate system for simplicity of de-

scription. To analyze particle transmission at a given V0 value, the incoming angle which sends a
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particle to the same position at both slits, i.e. x′ref, is first obtained numerically via root-finding.

Then, assuming that the phase space distribution is uniform over the acceptance region, an ensem-

ble of incident particles are generated under the following conditions. Transversely, the particles

have a uniform distribution about x′ = x′ref and x = 0 with sufficient widths to fully populate the

acceptance. Longitudinally, all particles have the same initial position zi and lie on the plane where

the particles enter the device (see Fig. 5.2). For slits with finite thickness, the particles are aligned

with the outer plane of the entrance slit. Every particle is advanced with ballistic simulations and

all that can pass through the exit slit are recorded.

Using 40Ar9+ ions with kinetic energy E = 12 keV/u as test particles, the phase space region that

can be transmitted atV0 = 500V andV0 = 1000V for the four geometric cases in Table 5.1 are plotted

in Fig. 5.3 for ballistic simulations. The red rectangle represents the position resolution ∆xideal and

angle resolution ∆x′ideal predicted by the conventional treatment ([32, 33], also reproduced under

Case I in Table 5.2), where
∆xideal = s,

∆x′ideal =
2s

L + 2l
.

(5.1)

A comparison of Cases I and III (l1 = l2) against Cases II and IV (l1 , l2) reveals that x′ref

changes as a result of longitudinal asymmetry, even though the parameters are chosen such that all

cases have the same inter-slit distance.

The effects of finite slit thickness are manifested in Cases III and IV where the phase space area

transmitted shrinks in both dimensions because d ≈ 4s , 0. Furthermore, the shrinkage is larger

in Fig. 5.3a than in Fig. 5.3b - this indicates that this effect increases with V0, which corresponds to

a larger selected reference angle x′ref. An illustration of the details of how the shrunk phase space

area attains its shape is given by Fig. 5.4.

5.2.2.2 Particle Transmission Quantified

To quantify the transmission properties at a specified value of V0, assuming the phase space

distribution is uniform about x = 0 and x′ = x′ref, the density of transmitted particles in phase space

72



41.0

41.5

42.0

42.5

43.0

43.5

44.0

An
gl

e 
x′  [

m
ra

d]

Case I d= 0
l1 = l2

Case III d≠ 0
l1 = l2

−0.05 0.00 0.05
Position x [mm]

42.5

43.0

43.5

44.0

44.5

45.0

45.5

An
gl

e 
x′  [

m
ra

d]

Case II d= 0
l1 ≠ l2

−0.05 0.00 0.05
Position x [mm]

Case IV d≠ 0
l1 ≠ l2

(a) V0 = 500V

83.5

84.0

84.5

85.0

85.5

86.0

86.5

An
gl
e 
x′  [
m
ra
d]

Case I d=0
l1= l2

Case III d≠0
l1= l2

 0.05 0.00 0.05
Position x [mm]

87.0

87.5

88.0

88.5

89.0

89.5

90.0

An
gl
e 
x′  [
m
ra
d]

Case II d=0
l1≠ l2

 0.05 0.00 0.05
Position x [mm]

Case IV d≠0
l1≠ l2

(b) V0 = 1000V

Figure 5.3: Blue dots denote particles that are transmitted in the simulations described in
Sec. 5.2.2.1. They map x-x′ phase space regions at the device entrance z = zi that contribute to
the data point at x = 0 mm. Results are shown for all four geometric cases in Fig. 5.2 for (a)
V0 = 500V and (b) V0 = 1000V respectively. Geometric parameters for each case are listed in
Table 5.1. Black lines define the phase space grid with increments determined by the scanning
step sizes. Dashed blue lines indicate the nominal position x = 0 and angle x′ = x′ref
corresponding to the data point. The red rectangles denote the device resolution predicted by the
conventional treatment (i.e. Case I).

can be defined as

f (x, x′) =


1 if (x, x′) ∈ A

0 if (x, x′) < A
, (5.2)

where A = {(x, x′)| particle at (x, x′) is transmittable}. Graphically, in Fig. 5.3, f (x, x′) = 1 inside

the blue area flagging the simulated phase space particles that are transmittable and f (x, x′) = 0

outside.

Two quantities that distill useful information concerning the transmitted phase space area are

the angular transmission factor:

T(x′) =
1

∆xideal

∫ ∆xideal/2

−∆xideal/2
f (x̃, x′)dx̃, (5.3)
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Figure 5.4: Illustrates how the shrunk phase space area attains its shape in Case III of Fig. 5.3b.

and total transmission factor

W =
1

∆x′ideal

∫ x′ref+∆x′ideal/2

x′ref−∆x′ideal/2
T(x̃′)dx̃′. (5.4)

Here, ∆x′ and ∆x′ideal are the ideal position and angular resolution of the device described by

Eq. (5.1), and x̃ and x̃′ are dummy variables used to denote integration over position and angle

respectively.

The angular transmission factor T(x′) represents the fraction of particles entering the slit with

angle x′ that is transmitted, assuming a uniform distribution in initial x over the slit width. T(x′)

can be interpreted as a normalized projection of the blue areas in Fig. 5.3 onto the coordinate x′

by integrating over x. T(x′) corresponding to the four cases in Fig. 5.3b is plotted in Fig. 5.5. For

Cases I and II with thin slits, T(x′) = 1 when x′ = x′ref and decreases linearly until T(x′) = 0 at

x′ = x′ref ± ∆x′ideal. Thick slits in Cases III and IV diminish both the range of transmittable x′ and

the fraction of particles transmitted at a given x′.
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Figure 5.5: Angular transmission factor T(x′) for Cases I to IV in Fig. 5.3b.

The total transmission factor W represents the area ratio between the transmittable phase space

region and ∆xideal × ∆x′ideal defined by the device resolution. It can be thought of as the ratio

between the blue area and area of the red rectangle in any individual plot in Fig. 5.3. Alternatively,

it is the ratio between the area under T(x′) and the area enclosed by the two vertical dotted lines in

Fig. 5.5. W always satisfies W ≤ 0.5 with W = 0.5 corresponding to the ideal geometry (Case I).

This result means that within the rectangular phase space region defined by the resolution obtained

conventionally, no more than half of the area is actually transmittable. The fact that W decreases

with V0 in Cases III and IV leads to significant corrections in the data analysis.

5.2.2.3 Analytic Results

Exploiting the simple geometry of particle trajectories in free drifts and ideal dipole fields, all

quantities relevant to particle transmission defined in this section can be derived analytically

following the steps outlined in Appendix A.3. Table 5.2 summarizes the formulae derived for all

four cases. The formulae presented have been numerically verified.

The linear coefficient in the voltage-to-angle relation giving x′ref as a function of V0 is shown

to change with asymmetry in dipole placement. Expressions for T(x′) in Cases I to III agree with
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Fig. 5.5 where T(x) is maximum at x′ = x′ref and declines linearly to 0 at x′ = x′max/min. Factors of[
1 − (x′refd/s)

]
in Case III arise from effects resulting from the finite slit thickness. The factor is

≤ 1 and decreases linearly with increasing V0 since x′ref ∝ V0. This effect causes the shrinkage of

the blue areas in Fig. 5.3 when d , 0.

T(x′) and W in Case IV are more complicated due to the coupling between asymmetric dipole

placement and finite slit thickness. Details of the derivation can be found in Appendix A.3.2.

However, in most relevant cases, T(x′) and W of Case III and Case IV are very close except at large

angles. This can be observed in Fig. 5.5 where the two plots almost overlap even at V0 = 1000 V

(Fig. A.4 in Appendix A.3.2 highlights the differences when they are discernible). Therefore, the

discussion concerning Case III typically applies to Case IV with only small modifications.

The agreement between analytic formulae and simulation results, both ballistic and realistic, is

demonstrated in the next section where we discuss how the additional geometric features lead to

two corrections.
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Table 5.2: Analytic formulae corresponding to the geometric models in Fig. 5.2 for V0 ≥ 0. Results for V0 < 0 obey the same formulae
with V0 → |V0 | and the x-axis reversed.

Case I II III IV
Dipole placement symmetric (l1 = l2) asymmetric (l1 , l2) symmetric (l1 = l2) asymmetric (l1 , l2)
Slit thickness thin (d = 0) thin (d = 0) thick (d , 0) thick (d , 0)
x′ref

1
2

qV0L
gE

1
2

qV0L
gE

(
1 + l2−l1

L+l1+l2

)
1
2

qV0L
gE

1
2

qV0L
gE

(
1 + l2−l1

L+l1+l2

)
x′max − x′ref

s
L+2l

s
L+l1+l2

s−x′refd
L+2l+d

s−x′refd
L+l1+l2+d

x′ref − x′min
s

L+2l
s

L+l1+l2

s−x′refd
L+2l+d

1
L+l1+l2+d

(
s −

L+2l1
L+2l2

x′refd
)

∆x′ 2s
L+2l

2s
L+l1+l2

2s
L+2l+d

(
1 −

x′refd
s

)
2s

L+l1+l2+d

(
1 − L+l1+l2

L+2l2

x′refd
s

)
T(x′) for x′ ≥ x′ref

x′max−x′

x′max−x′ref

x′max−x′

x′max−x′ref

x′max−x′

x′max−x′ref

(
1 −

x′refd
s

)
see Appendix A.3.2

T(x′) for x′ < x′ref
x′−x′min

x′ref−x′min

x′−x′min
x′ref−x′min

x′−x′min
x′ref−x′min

(
1 −

x′refd
s

)
see Appendix A.3.2

W 1
2

1
2

1
2

(
1 −

x′refd
s

)2
see Appendix A.3.2
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5.2.3 Two Corrections in Data Analysis

Analytic and simulation results above reveal two significant corrections on the data analysis of

Allison scanners relative to the conventional treatment that assumes symmetric dipole placement

and thin slits [32, 33]. One correction arises from asymmetry in dipole placement and alters

the proportionality constant in the linear relation between dipole voltage (V0) and selected angle

(x′ref). The other correction adjusts the weights of data points as a function of x′ref to compensate

for scraping due to the finite slit thickness. Both corrections can be applied using the quantities

analytically expressed in Table 5.2. We illustrate these effects for the FRIB Allison scanner

geometry shown in Fig. 5.1 for an 40Ar9+ ion with kinetic energy E = 12 keV/u.

5.2.3.1 Voltage-to-Angle Relation

As shown in Cases II and IV of Table 5.2, when the dipole placement is asymmetric, the reference

angle x′ref has an additional factor [1 + (l2 − l1)/(L + l1 + l2)] relative to the symmetrical model

results (Case I and III). For the FRIB Allison scanner, l2− l1 = 2.976 mm, so the relief cuts generate

substantial effective asymmetry. In Fig. 5.6, x′ref versus V0 is plotted for the symmetrical treatment

(Table 5.2, Case I or III), improved analytic results (Table 5.2, Case II or IV), and both ballistic

and realistic numerical simulations. Both types of simulations agree almost perfectly with analytic

results to show a slope of 88.4 mrad/kV, which deviates from the symmetrical result 85.2 mrad/kV

by roughly 4% as a consequence of the effective asymmetry. The close correspondence between

realistic simulations and analytic results shows that fringe-fields and non-paraxial effects impose

minimal changes on particle trajectories for typical device geometries and beam parameters, thus

validating the analytic calculations as an accurate and efficient way to obtain x′ref.

5.2.3.2 Voltage-Dependent Weight Compensation

As mentioned in Sec. 5.2.2, thick slits cause W to decrease as a function of x′ref. To understand

implications of this effect, it is important to delineate what the blue area, red rectangle and black
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Figure 5.6: Voltage-to-angle relation for the selected beam. The red curve (analytic) overlays the
blue curve (ballistic simulation).

rectangle represent in Fig. 5.3.

Phase-space scans are typically performed by measuring the current at regular discrete steps in

slit position (x) and voltage (V0). After voltage-to-angle conversion, the data are represented by a

grid in phase-space where each grid represents a rectangle of size (position step) × (angle step). In

general, grid dimensions will not coincide with the spatial and angular resolution of the device. In

Fig. 5.3, the black rectangle denotes the phase space grid while the conventional device resolution

defines the red rectangle. In this study, scanning steps exceed the respective device resolution in

both position and angle, as is typical of scans taken in FRIB (see Sec. 5.4).

Assuming a uniform distribution of particles within each grid, the actual beam current falling

within each phase space grid cell should be calculated by

Igrid = Ifc ×
Black Rectangle Area
Red Rectangle Area

×
1
W
, (5.5)

where Ifc is the Faraday cup current collected at the data point, and W is the ratio between blue

area and red rectangular area defined in Sec. 5.2.2.

With thin slits, Eq. (5.5)merely rescales all data points uniformly becauseW = 1/2 is a constant.

Thus one does not need to distinguish between Igrid and Ifc when one calculates moments of the
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beam distribution in phase space with measured data, unless one also wants to compute the total

beam current accurately to verify normalizations.

With thick slits, W is not constant and decreases quadratically in (x′ref × d/s) (see Table 5.2).

Therefore, Ifc has to be rescaled differently depending on the angle x′ref. The larger the slit

thickness-to-width ratio d/s, the more important this effect becomes. This effect must be taken

into account for accurate moment calculations.

In Fig. 5.7, the angular resolution ∆x′ and 1/W are plotted as a function of x′ref for the FRIB

Allison scanner. Curves for conventional treatment (Table 5.2, Case I), improved analytic results

(Table 5.2, Case II or IV), and numerical simulations are shown. Note again the minimal difference

between ballistic and realistic simulation results.

The correction introduced by the effect of finite slit thickness can be substantial. For example,

in Fig. 5.7b, when x′ref = 70mrad,W−1 ≈ 4 as opposed toW−1 = 2 when x′ref = 0mrad. Therefore,

if we apply the conventional model where all data points have equal weights, 0-mrad data points

would wrongly weigh twice as much as ±70-mrad data points. Failure to correct the weights will

distort beam measurements and moment evaluations with increasing amplitude as beam angular

extent increases.

In the laboratory, increasing the angular extent of the beam phase space distribution at the

Allison scanner by adjusting the applied focusing lattice is often needed to obtain sufficient angular

information. An order-of-magnitude inspection based on ideal device resolution in Eq. (5.1) reveals

the reason. (L + 2l) typically ∼ 0.1 m, therefore

∆xideal
∆x′ideal

'
L + 2l

2
'

1
20

mm
mrad

. (5.6)

Since measurements usually take scanning steps exceeding the device resolution, Eq. (5.6) says

that if a similar level of detail is desired in both dimensions, the distribution’s angular extent in

mrad should be around 20 times its position counterpart in mm. This often forces one to employ

relatively narrow scanner slit width s at the expense of reduced Faraday cup currents that lead to

greater noise issues, particularly for heavy-ion beams whose currents are typically lower than that

of proton beams.
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Figure 5.7: Plots of a) angular resolution ∆x′, and b) angular correction factor as a function of
x′ref. The red curve (analytic) overlays the blue curve (ballistic simulation).
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5.2.4 Analysis of Synthetic Data

The effects of the two corrections on data analysis can be tested using synthetic measurement data

as follows.

After generating an idealized distribution of particles in phase spacewith givenTwiss parameters

and emittance, the transmission of each particle at each (x,V0) pair of the scan can be tested using

ballistic simulations. The particle number transmitted at each (x,V0) setting is recorded to emulate

the measurements that would have been taken by an Allison scanner. It is unnecessary to test every

(x,V0) pair for a given particle as many pairs are ruled out based on the device resolution. The

artificial data set thus synthesized is processed using both the conventional and improved analysis

to analyze errors in beam moments and phase space distortions in comparison with the idealized

distribution.

Beam moments can be defined in terms of a continuous particle distribution function represent-

ing the beam as:

〈
g(u,u′)

〉
≡

∫ ∞
−∞

∫ ∞
−∞

f (u,u′)g(u,u′)dudu′∫ ∞
−∞

∫ ∞
−∞

f (u,u′)dudu′
(5.7)

where f (u,u′) is the distribution function in u-u′ phase space, and g(u,u′) = ua1u′a2 with a1 + a2

being the order of the moment. Here, u represents either x or y. Beammoments can be equivalently

calculated from the particle perspective as:

〈
g(u,u′)

〉
=

1
N

N∑
i=1

g(ui,u
′
i) (5.8)

for a distribution with N discrete particles, and within a gridded phase space as:

〈
g(u,u′)

〉
=

∑m
i=1

∑n
j=1 Ji jg(u j,u′i)∑m

i=1
∑n

j=1 Ji j
(5.9)

where Ji j is the current density in u-u′ phase space in the i, j cell. Equation (5.9) is equivalent to

discretizing Eq. (5.7).

A data set for the Allison scanner geometry in Case IV of Table 5.1 is generated using a 12

keV/u 40Ar9+ beam with KV distribution [20, 40]. The KV distribution has uniform projected
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Figure 5.8: Uniform phase space projection of the KV distribution, compared against results of
synthesized measurement data analyzed using conventional and improved analysis methods. The
left plot shows a sampling (1 out of 1000 particles) used to represent the distribution. The middle
and right plots are fine mesh density plots with the same color scale.

density with an x-x′ phase space ellipse. This simple uniform projection makes it easy to visualize

distribution distortions. The KV distribution and results from conventional and improved analysis

methods are plotted in Fig. 5.8. Although the KV distribution has a uniform x-x′ projection

within an elliptical boundary by construction, in the synthesized measurement, the beam density

artificially diminishes strongly at larger angles under the conventional analysis, whereas the correct

uniformity is accurately preserved under the improved analysis.

Beam moments and the associated Twiss parameters αx , βx with rms emittance εrms are listed

in Table 5.3. The results of the improved analysis match the simulated distribution very closely,

whereas there is > 10% deviation in the Twiss parameters if the conventional analysis is used. The

conventional analysis also underestimates the total beam current by 25%. These deviations in the

conventional analysis will amplify if the angular extent of the KV distribution increases.

5.3 Corrections for Degenerate Phase Space Measurements

In the previous section, all analysis was made assuming that the measurement step size of the

scan always exceeds the device resolution. This assumption is illustrated in Fig. 5.3, where the red

rectangle denoting the device resolution is completely encompassed by the black grid defined by

the interval between data points. In this section, we discuss how to correct measurement results
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Table 5.3: Beam parameters of the three distributions in Fig. 5.8.

KV Conventional Improved
Parameters Distribution Analysis Analysis
〈xx〉 [mm2] 25.0 20.9 25.0
〈xx′〉 [mm mrad] 192.0 156.5 192.3
〈x′x′〉 [mrad2] 1600 1304 1603
αx -3.43 -3.00 -3.43
βx [m] 0.446 0.400 0.447
εrms [mm mrad] 56.0 52.1 56.0
Itotal [mA] 2.00 1.49 2.00
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Figure 5.9: Phase space region contributing to the data point at x = 0 mm and V0 = 200 V
(presentation format as detailed in Fig.5.3), where the Allison scanner geometry corresponds to
Case IV of Table 5.1 except for increased slit width to s = 300 µm. Scanning step sizes in x and
V0 are 0.5 mm and 20 V respectively.

when this assumption is no longer valid.

Intuitively, when the device resolution exceeds the grid size, the current measured has contri-

butions from multiple grid cells. Assuming this occurs only in the angle coordinate but not in the

position coordinate, Fig. 5.9 shows an example where the phase space region extends over five grid

cells vertically. The current measured at a data point is thus a weighted sum of the current densities

from contributing grid cells. Assuming uniform current density in each grid cell, the weighting

factor equals the overlapping area between the blue quadrilateral and the grid cell. Therefore, for

each column in the phase space plot, if the array of angular values are numbered from 1 to n, a
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system of linear equations can be written down

©­­­­­«
A1,1 · · · A1,n
...

. . .
...

An,1 · · · An,n

ª®®®®®¬
©­­­­­«

j1
...

jn

ª®®®®®¬
=

©­­­­­«
I1
...

In

ª®®®®®¬
, (5.10)

where In is the current measured at the n-th angle value, An,m is the area in m-th grid occupied by

the phase space region contributing to In, and jn is the current density at the n-th grid. Fig. 5.9

shows several elements of the matrix A, where In corresponds to the current measured at V0 = 200

V in this case.

Utilizing detailed information from Sec. 5.2 on the phase space region contributing to a data

point, the matrix A can be obtained via transmission simulations or numerical integration of

T(x′ − x′ref) (see Table 5.2). The current densities j can thus be solved for as unknowns to

deconvolve the information intermixed in current measurements.

Corrections for degenerate measurements are tested using a synthesized data set generated with

the methods described in Sec. 5.2.4 using a waterbag distribution. The waterbag distribution [20,

40] is applied corresponding to uniform transverse energy in phase space up to a sharp cutoff value,

with self-field energy neglected. The Allison scanner geometry is the same as Case IV of Table 5.1

except s = 300 µm (i.e. wider slits), while the scanning step size in V0 is 10V. The uncorrected

and corrected phase space distributions are plotted in Fig. 5.10. Beam parameters are listed in

Table 5.4.

Note that the uncorrected phase space distribution appears smoother than the corrected distribu-

tion because the uncorrected current measured at each grid point takes contributions from multiple

neighboring grid cells, thereby causing a blurring effect. In other words, while the grid size is

determined by the scanning step size and can be made arbitrarily small, details finer than the device

resolution are misleading unless corrections are applied to deconvolve overlapping measurements.

Figure 5.10 shows that the uncorrected distribution also has ghost tails that leak out of the 100%

beam ellipse on both sides of the angular extent of the distribution. The effect is illustrated clearly

when all non-zero points are colored equally (second row in Fig. 5.10). This arises because currents
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Figure 5.10: Waterbag distribution (left column), compared against synthesized measurement
data analyzed without (middle column) and with (right column) corrections for degenerate
measurements. The upper row corresponds to intensity, whereas the lower row shows all non-zero
intensity points in the same color to highlight extent errors. Black and white ellipses denote the
ideal boundary of the waterbag distribution analyzed. In the left column sampled particles (1 out
of 1000) are plotted. Measurement data are synthesized with s = 300 µm, and scanning step sizes
of 0.5 mm and 10 V.

measured at points outside the ellipse also take contribution from interior grid points, so the extent

of the leakage is determined by the device resolution. Fig. 5.11 shows that such ghost tails can

cause significant overestimation of particles with large angles. Therefore, a correct characterization

of degenerate measurements and device resolution is potentially important for studies of beam halo

where particles outside the core can extend to large angles.

The treatment above assumes the device resolution only exceeds the step size in x′ but not in

x. This is quite common because the angular resolution limit is much more likely to be reached

by the angular step size, rather than the same occurring in the position dimension, due to the ease

of electronically sweeping and recording voltage steps relative to mechanical translation of the
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Figure 5.11: Fraction of particles that fall outside the ellipse (orientation defined by Twiss
parameters) with area πε in each of the three distributions in Fig. 5.10. The vertical dashed line
corresponds to the sharp phase space edge of the waterbag distribution at ε/εrms = 6. The blue
curve approaches ε/εrms = 6 if the lower range of the ordinate is extended.

Table 5.4: Beam parameters of the two distribution in Fig. 5.10 compared against those of the
waterbag distribution

Waterbag Conventional Phase Space
Parameters Distribution Analysis Correction
〈xx〉 [mm2] 9.00 9.03 9.03
〈xx′〉 [mm mrad] 12.00 11.91 11.91
〈x′x′〉 [mrad2] 25.00 27.48 25.01
αx -1.33 -1.16 -1.30
βx [m] 1.00 0.88 0.99
εrms [mm mrad] 9.00 10.31 9.17
Itotal [mA] 2.00 2.00 2.00
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scanner (see also last paragraph of Sec. 5.2.3). If the step size in x is smaller than s, the method

above can be extended to 2D whereby all points in the plot have to be solved at once. This can

result in a very large matrix inversion problem unless contributions are limited to some level of

nearest-neighbor zones.

5.4 Example: FRIB Allison Scanner

This section applies the improved analysis model on measurements at the front end of the

Facility for Rare Isotope Beams (FRIB). Sec. 5.4.1 describes the FRIB front end. Section 5.4.2

highlights the discrepancies between conventional and improved analysis results, and validates the

improved treatment by demonstrating that it delivers more consistent results among a series of

measurements performed in a quadrupole scan.

The underlying Python code tools we employ for data analysis of Allison scanner measurements

have been made publicly available in a git [41] software repository [35]. Tools include an adaptable

code to implement the ideal and improved analysis methods described in Sec. 5.2, and algorithms

to process measurement data for noise thresholding. These tools are self-contained, documented,

and readily adaptable to a whole variety of applications. They are made available as a community

resource. The version used in this study corresponds toNovember, 2018. Future algorithm advances

will also be posted and documented in the repository. The algorithms have also been incorporated

into a graphical user interface (GUI) developed by Tong Zhang that runs as an application in the

FRIB control system. Information on this GUI is given in Appendix A.5.

5.4.1 FRIB Front End

The front end of the Facility for Rare Isotope Beams (FRIB) [2] began commissioning in June

2017. A schematic of the upstream end of the low energy beam transport (LEBT) line is shown

in Fig. 5.12. Beam ions are produced in an Artemis-type ECR source [5] with a 15 kV extraction

voltage. The beam then traverses a short transport sectionwith solenoid focusing and an electrostatic

gap biased to accelerate the target ion species to 12 keV/u. Species are separated horizontally (in

88



ARTEMIS ECR

Quadrupole Triplet

4-Jaw Collimator

Allison Scanner

Faraday Cup

Solenoids

90o Dipole
Electrostatic Gap

Figure 5.12: Upstream end of the low energy beam transport (LEBT) line of the FRIB front end.

x) via a large dispersion generated in a 90◦ magnetic dipole. This is followed by an electrostatic

quadrupole triplet and a four-jaw collimator to scrape unwanted ion species in a high dispersion

region. Two Allison scanners, one for each transverse direction, are located downstream of the

four-jaw collimator. The collimator jaws are adjusted such that only the target species and possibly

traces of contaminant ions whose mass-to-charge ratios M/Q differ from the target ion species by

< 1% remain.

The initial implementation of the Allison scanner had geometries corresponding to Case IV in

Table 5.1. Motivated by this work, the direction of the relief cuts on the entrance slit plate was

flipped in February 2018, thus greatly reducing the longitudinal asymmetry in E-dipole placement.

Table 5.5 compares the geometries before and after the modification. All measurements in this

section were obtained under the new device geometry, hence the corrections have negligible
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Table 5.5: Allison scanner geometries at FRIB front end, before and after modification in Feb
2018.

Design L [mm] l1 [mm] l2 [mm] g [mm] s [µm] d [µm]
Before Symmetrization 71.85 2.01 4.986 7.91 60 254
After Symmetrization 71.85 4.938 4.986 7.91 60 254

contribution from asymmetry and mainly arise from thick slit effects.

5.4.2 Quadrupole Scan Measurements

A set of six measurements were made on a 50 µA (measured separately by Faraday cup) Ar9+ ion

beam using the y-plane Allison scanner, where VQ3, the voltage at the last quadrupole in the triplet

upstream, varied from 0V to 5000V at 1000V intervals.

Each scan was performed with y-spatial steps of 1 mm and voltage steps of 20 V. Raw data

were processed using the noise removal procedures outlined in Appendix A.4. The resulting data

set was analyzed using both the conventional and improved methods as outlined in Sec. 5.2. Three

y-y′ phase-space projections (with corrections) at different VQ3 are shown in Fig. 5.13.

To illustrate the differences between the conventional and improved analysis methods, we

compute moments of the beam measured at VQ3 = 1000 V both with and without geometric

corrections. The calculations with geometric corrections use the post-Feb 2018 geometry in

Table 5.5, while the geometry’s symmetric (l = [l1 + l2]/2 = 4.962 mm on both ends) and thin-slit

(d = 0 µm) counterpart gives results with both geometric features ignored.

Results are listed in Table 5.6. All second-order moments have centroids subtracted, i.e.,〈
y2〉 ≡ 〈

(y − 〈y〉)2
〉
. We observe differences up to ∼10% in beam moments, thus confirming the

importance of corrections for accurate measurements.

While the example above shows the magnitude of the corrections, it does not provide evidence

on which result is more valid. If the corrections introduced in the analysis constitute an “improved”

treatment over the conventional one, a set of quadrupole scan measurements analyzed with the

former should exhibit better consistency than those analyzed with the conventional methods. This

check is performed below.
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Figure 5.13: y-y′ phase-space projections measured at the FRIB front end during a quadrupole
scan. VQ3 denotes the voltage at the last quadrupole upstream of the Allison scanner.
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Table 5.6: Beam parameters of corresponding to the phase space distribution at VQ3 = 1000 V in
Fig. 5.13, computed with and without correction terms.

Conventional Phase Space Percentage
Parameters Analysis Correction Difference
〈y〉 [mm] 7.02 7.09 1.0%
〈y′〉 [mrad] 4.36 4.64 6.0%
〈yy〉 [mm2] 8.84 9.76 9.4%
〈yy′〉 [mm mrad] 17.8 19.6 9.2%
〈y′y′〉 [mrad2] 76.9 80.8 4.8%
εrms [mm mrad] 19.0 20.1 5.5%
Itotal [µA] 36.8 39.6 7.1%

Conclusive evidence of improvement arises fromfirst ordermoments of the beam. Measurement

results of a quadrupole scan and the linear transfer map at each setting can be used to form a system

of linear equations: ©­­­­­«
M(VQ3 = V1) I2

...
...

M(VQ3 = Vn) I2

ª®®®®®¬
©­­«
xi

x0

ª®®¬ =
©­­­­­«
xf(VQ3 = V1)

...

xf(VQ3 = Vn)

ª®®®®®¬
. (5.11)

Here, VQ3 is the voltage of the last quad, I2 is the 2× 2 identity matrix, M(VQ3) is the 2× 2 transfer

matrix consisting of the quadrupole at VQ3 and the quadrupole-to-scanner drift, and x =
(
x x′

)T

is the state vector with xi being the initial centroid position and angle entering the quad, x0 being

the position offset and tilting angle of the Allison scanner with respect to the centerline of the quad,

and xf(VQ3) being the measured centroid position and angle corresponding to the measurement at

VQ3.

Equation (5.11) solves for the initial centroid position and angle of the beam, as well as the

position offset and tilting angle of the Allison scanner. xf(VQ3) is computed differently depending

on whether the conventional or improved analysis is applied. Results listed in Table 5.7 show that

solutions from the improved analysis are muchmore realistic. Tilting angles of 33.6 mrad would not

go undetected in mechanical alignment, nor would a beam with centroid angles 〈x′〉 = 37.7 mrad

transport through the downstream beam line without significant loss. Therefore, the experimental

data support the validity of the improved analysis over the conventional treatment.
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Table 5.7: Solution of Eq. (5.11) for the quadrupole scan in Sec. 5.4.2, with measurement results
x f calculated using conventional and improved analysis method respectively.

Beam Scanner
Analysis xi [mm] x′i [mrad] x0 [mm] x′0 [mrad]
Conventional -5.9 37.7 -18.0 -33.6
Improved -0.7 5.7 3.0 -1.2

The large differences between the two sets of solutions in Table 5.7 can be explained as follows.

xf(VQ3) from the conventional analysis can be viewed as a perturbation to xf(VQ3) from the

improved analysis. The sensitivity of the solutions xi and x0 to the perturbation can be quantified

by the condition number [42] of the coefficient matrix in Eq. (5.11). Quadrupole scan parameters

corresponding to larger condition numbers will be more sensitive to the perturbation. For the case

presented in Table 5.7, the condition number is large. Choosing scan parameters corresponding to

a well-conditioned coefficient matrix with a smaller condition number will be conducive to error

minimization. Such issues have been explored in Sec. 6.3

5.4.3 Total Current Normalization Anomaly

Despite the successful experimental verification described in Sec. 5.4.2, the quadrupole scan

measurements also present a conundrum. Using Eq. (5.5) and detailed knowledge of the phase

space area contributing to each data point summarized in Table 5.1, it is possible to calculate

the current within each grid cell in an Allison scanner measurement. The summation of all grid

cell current contributions should be consistent with the total beam current that can be accurately

measured by the full-beam Faraday cup (see Fig. 5.12) located at approximately the same beamline

location as the Allison scanner.

Results for the quadrupole scan in Sec. 5.4.2 are shown in Fig. 5.14. The beam current is 50 µA

according to direct Faraday cup measurements. However, the projected total currents from Allison

scanner measurements are consistently ≈ 40 µA, which are 20% smaller than expected. Note that

the improved analysis does make a small small correction, and the agreement is even worse if the

conventional analysis is applied. But the discrepancies are still large.
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Figure 5.14: Projected beam currents from Allison scanner measurements in a quadrupole scan,
compared against the beam current measured at the Faraday Cup slightly upstream (see Fig. 5.12).

Causes of the discrepancy are unknown and remain a subject of investigation. The bias voltage

on the Allison scanner Faraday Cup, which has a great impact on the current reading, has been

eliminated as a possible cause by the measurement results in Fig. 5.15. When ions hit the Faraday

cup, secondary electrons may escape and amplify the measured current. Therefore, a bias voltage

has to be applied to a Faraday cup to suppress such “ghost” currents. Fig. 5.15 shows that the

measured current on the Faraday cup converges at bias voltages below -100 V, and FRIB usually

employs a bias voltage of - 150 V. To amplify the current by 20%, the bias voltage has to be adjusted

to roughly -25 V, which is clearly wrong because the curve has a large slope at that point which

indicates that there exist strong ghost currents.

Upcoming studies will compare the current discrepancy at beam currents ranging from 50 µA

to 200 µA. If the discrepancy factor is not the same, the results will suggest there are effects at play

other than an unknown scaling factor in the data processing.

To the author’s knowledge, the literature contains no comparison between the projected total

current from Allison scanner measurements and direct measurements with a Faraday cup. Under-

standing reasons for this anomaly would help establish the underlying efficacy of precision Allison
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Figure 5.15: Screenshot of measured currents on the x-direction Allison scanner on the Artemis
beam line of FRIB, plotted against the bias voltage of the Faraday cup on the scanner. The scanner
position and voltage were fixed at a phase space coordinate with high density throughout the
measurements.

scanner measurements. Current is in some sense the lowest order beam moment - the fact that it

is not reproduced accurately by Allison scanner measurements is worrisome and unavoidably casts

doubt on results on higher-order phase space moments. The author invites the community to collect

data on this issue on other machines to potentially gain insight into the anomaly.

5.5 Conclusion

We incorporated two important geometric features for Allison scanners into an improved model

that extends the conventional analysis. Both effects were modeled with analytic formulae that have

been verified by particle simulations. Asymmetric E-dipole placement alters the voltage-to-angle
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relation for the selected beam, whereas slit thickness & slit width introduces additional scraping

and requires a data point weight correction that is quadratic in voltage. These effects increase with

the angular extent of the beam distribution, and can significantly change results of phase space

measurements relative to conventional analysis methods. Applying these corrections to Allison

scanner data at the FRIB front end led to (∼10%) changes in beammoments; these corrections were

crucial for obtaining consistent results in a quadrupole scan, which in turn provided experimental

verification for the improved analysis methods. Detailed knowledge of the phase space area

contributing to each data point also allows one to deconvolve overlapping measurements when the

device resolution exceeds the spacing between data points. This was demonstrated using synthetic

data sets.

Python programs incorporating the improved analysis and noise removal for measurement data

aremade available [35]. They are readily applicable to anyAllison scanner given its device geometry

to implement accurate analytic models. Tools will be updated as continued improvements are made.

An easy-to-use GUI was developed as an FRIB application and is described in Appendix A.5.
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CHAPTER 6

OPTIMIZED TRANSVERSE PHASE-SPACE MEASUREMENTS WITH BEAM
PROFILE MONITORS

This chapter discusses how measurements from beam profile monitors can be utilized to obtain

information on the transverse phase space of the beam consistent with linear particle dynamics.

Linear dynamics over a limited transport length is a reasonable assumption in FRIB downstream

of the charge selection system. Examples shown here primarily relate to wire-scanner profile

monitors and tomography as employed in the FRIB front end (see Chapter 3 and 4). However,

methods presented can be broadly applicable.

Section 6.1 reviews results from linear algebra that are relevant to improving measurements

from phase space diagnostics. Section 6.2 describes how quadrupole and solenoid scans can be

used to measure the beam phase space moments. Statistical methods to quantify the errors in such

measurements and an efficient scheme to minimize the errors are given in Sec. 6.3. In addition to

obtaining the first and second order moments of the beam distribution, methods of tomography can

be employed to reconstruct the phase space in detail. Techniques for tomographic reconstruction

of the spatial density profile and 2D phase space are discussed in Sec. 6.4.

At the timing of this writing, the analysis in this chapter is under preparation for submission for

publication [43].

6.1 Review of Linear Algebra

This section reviews concepts and tools in linear algebra that are relevant to beam diagnostics

using profile monitors. The treatment is based upon Ref. [42, 44, 45] which emphasize numerical

aspects of the subject.

We restrict our discussion to systems of linear equations Ax = b with full column rank, i.e.

A ∈ Rm×n where m ≥ n and rank(A) = n. This corresponds to the case where there are at least

as many equations as unknowns. In our applications, b consists of measurement data, x consists
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of the unknowns (e.g. initial conditions upstream or spatial density in a grid) and A describes the

linear relationship between measurement data and unknowns. In practice, a sufficient number of

measurements is often made in beam diagnostics to over-constrain the system (i.e. make m > n) to

allow better accounting for measurement uncertainties.

6.1.1 Least Squares Approximation

Generally, an over-determined system of linear equations Ax = b has no exact solution. In that

case, it is useful to find the least squares solution that minimizes a quadratic measure of deviation

rᵀr for r = Ax − b.

The least squares solution x can be found as follows. Require r to be an extremum with

∇x rᵀr = 0

Then:

∇x
(
xᵀAᵀAx − 2xᵀAᵀb + bᵀb

)
= 0

2AᵀAx − 2Aᵀb = 0

AᵀAx = Aᵀb

Hence, the least squares solution can be solved by inverting AᵀAx = Aᵀb, giving

x =
(
AᵀA

)−1 Aᵀb, (6.1)

which is called the normal equation, and

A† ≡
(
AᵀA

)−1 Aᵀ, (6.2)

is defined as the pseudo-inverse of A. Here, B−1 denotes the inverse of a square matrix B and A†

denotes the transpose of a (generally non-square) matrix A. For a square matrix B with full rank,

the pseudo-inverse becomes the normal inverse, i.e. B† = B−1.
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6.1.2 Singular Value Decomposition

Given a matrix A ∈ Rm×n where m ≥ n, it can always be factorized by the singular value

decomposition (SVD) which decomposes A as follows:

A = UΣVT (6.3)

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices (i.e. UUT = UTU = I), and

Σ =

©­­­­­­­­­­­­­­­«

σ1 0 . . . 0

0 σ2 . . . 0
...

...
. . .

...

0 0 . . . σn
...

...
...

...

0 0 0 0

ª®®®®®®®®®®®®®®®¬

∈ Rm×n (6.4)

is a rectangular diagonal matrix. σi’s are called the singular values of A and they are typically

arranged such that σ1 ≥ σ2 ≥ · · · ≥ σn.

From AT AV = VΣTΣ, we observe that V consists of the eigenvectors of AT A. Similarly, U

consists of the eigenvectors of AAT. Since rank(AAT) = n, the last m − n columns of U has to be

filled in to complete an orthonormal basis.

Note that for square matrices, the set of singular valuesσi(A) and eigenvalues λi(A) are different

in general and should not be confused.

6.1.3 Vector Norms and Matrix Norms

A vector norm is a function ‖.‖ : Rn → R with the three properties:

1. ‖x‖ = 0 =⇒ x = 0 (positive definite)

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (satisfies triangle inequality)

3. ‖αx‖ = α ‖x‖ (absolutely homogeneous)
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In colloquial terms, a vector norm measures the size of a vector.

The family of vector p-norms of an n-dimensional vector x are defined as:

‖x‖p =

( n∑
i=1
|xi |

p

)1/p

. (6.5)

They include the most commonly used vector norms:

‖x‖1 = |x1 | + |x2 | + · · · + |xn | L1-norm (Manhattan norm) (6.6)

‖x‖2 =
√
|x1 |

2 + |x2 |
2 + · · · + |xn |

2 L2-norm (Euclidean norm) (6.7)

‖x‖∞ = max (|x1 | , |x2 | , . . . , |xn |) L∞-norm (infinity norm) (6.8)

Unless otherwise specified, the length or magnitude of a vector in physics is usually synonymous

with its Euclidean L2-norm.

A matrix norm is a function ‖.‖ : Rm×n → R that measures the size of a matrix. It has similar

properties to a vector norm:

1. ‖A‖ = 0 =⇒ A = 0 (positive definite)

2. ‖A + B‖ ≤ ‖A‖ + ‖B‖ (satisfies triangle inequality)

3. ‖αA‖ = α ‖A‖ (absolutely homogeneous)

A common family of matrix norms are called induced norms, whereby the matrix norm is defined

in terms of vector norms as follows:

‖A‖ ≡ max
‖x‖,0

‖Ax‖
‖x‖

(6.9)

Note that both norms on the R.H.S. are vector norms. The induced norm essentially finds, for a

given vector norm, the maximum factor by which a matrix can increase such a vector norm. Two

corollaries of the definition are:

‖A‖ = max
‖x‖=1

‖Ax‖ (6.10)

‖Ax‖ ≤ ‖A‖ ‖x‖ ∀ ‖x‖ , 0 (6.11)
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We will use ‖A‖2 to denote the induced norm of A corresponding to the L2 vector norm. This

is the only matrix norm we will use in the rest of the chapter.

As an example of the definition of induced norms, we prove two results below that will be useful

in the discussion on condition number in Sec. 6.1.4. Firstly we prove

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = σ1(A), (6.12)

where σ1(A) denotes the largest singular value of A.

Proof:

‖Ax‖2 =
√

xᵀAᵀAx

=
√

xᵀVΣᵀUᵀUΣVᵀx

=
√

xᵀVΣᵀΣVᵀx

max
‖x‖2=1

‖Ax‖2 = max
‖x‖2=1

√
xᵀVΣᵀΣVᵀx

= max
‖Vᵀx‖2=1

√
xᵀVΣᵀΣVᵀx (∵ VVᵀ = I)

= max
‖y‖2=1

√
yᵀΣᵀΣy (y = Vᵀx)

= max (σi)

Next, for the pseudo-inverse A† ≡ (AᵀA)−1 Aᵀ defined in Sec. 6.1.1,


A†




2
=

1
σn(A)

(6.13)

where σn(A) denotes the smallest singular value of A.
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Proof:

AᵀA = VΣᵀΣVᵀ(
AᵀA

)−1
= Vᵀ (

Σ
ᵀ
Σ
)−1 V(

AᵀA
)−1 Aᵀ = V

(
Σ
ᵀ
Σ
)−1
Σ
ᵀUᵀ


A†





2
=




V (
Σ
ᵀ
Σ
)−1
Σ
ᵀUᵀ





2

= σ1
( (
Σ
ᵀ
Σ
)−1
Σ
ᵀ
)

=
1

σn(A)

6.1.4 Condition Number

When we solve Ax = b, the solution x will be changed by perturbations both in A and in b, which

we denote as δA and δb respectively. The condition number of A, commonly denoted by κ(A),

is a number that quantifies the sensitivity of the solution to such perturbations. In our context, b

typically represents beam measurements with error δb, and A is constructed from linear transfer

maps with uncertainties δA. We first show the results for a special case and follow with the general

case.

To illustrate the framework, we first consider the special case where δA = 0, A ∈ Rn×n and

rank(A) = n. Let x and x̃ be the solutions to:

Ax = b (6.14)

Ax̃ = b + δb (6.15)

Using:

Ax = b

‖b‖ = ‖Ax‖

‖b‖ ≤ ‖x‖ ‖A‖
1
‖x‖
≤
‖A‖
‖b‖

(6.16)
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δx = x̃ − x

δx = A−1δb

‖δx‖ =



A−1δb





‖δx‖ ≤




A−1



 ‖δb‖ (6.17)

we obtain

‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

(6.18)

where κ(A) is the condition number of A defined as:

κ(A) ≡ ‖A‖2



A†





2
=
σ1(A)
σn(A)

≥ 1 (6.19)

The relative change in the solution measured by ‖δx‖ /‖x‖ is bounded by the relative change

in the measurement data ‖δb‖ /‖b‖ multiplied by κ(A). Therefore, in the context of diagnos-

tic measurements, the smaller κ(A) is, the less sensitive the results are to relative errors in the

measurements.

The treatment can be extended to the general case where A ∈ Rm×n and there are perturbations

to both A and b.

From Sec. 6.1.1, finding the least squares solution to Ax = b is equivalent to solving the normal

equation

AᵀAx = Aᵀb. (6.20)

Applying perturbations to both A and b and leaving only linear terms, the normal equation becomes

δAᵀAx + AᵀδAx + AᵀAδx = δAᵀb + Aᵀδb. (6.21)

It can be shown, analogously to Eq. (6.18), that the relative change in x is bounded by the

relative changes in A and b multiplied by powers of κ(A):

‖δx‖2
‖x‖2

≤ κ(A)2
‖r‖2
‖Ax‖2

‖δA‖2
‖A‖2

+ κ(A)
(
‖b‖2
‖Ax‖2

‖δb‖2
‖b‖2

+
‖δA‖2
‖A‖2

)
(6.22)
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Proof:

δx =
(
AᵀA

)−1
δAᵀ (b − Ax) + A† (δb − δAx)

‖δx‖2 =



(AᵀA

)−1
δAᵀ (b − Ax)





2
+




A† (δb − δAx)




2

≤




(AᵀA
)−1





2



δAᵀ


2 ‖(b − Ax)‖2 +




A†




2
‖(δb − δAx)‖2

=
‖A‖2 ‖A‖2
‖A‖2 ‖A‖2




(AᵀA
)−1





2



δAᵀ


2 ‖(b − Ax)‖2 +

‖A‖2
‖A‖2




A†




2
‖(δb − δAx)‖2

≤ κ(A)2
‖δAᵀ‖2
‖A‖2

‖r‖2
‖A‖2

+ κ(A)
(
‖δb‖2
‖A‖2

+
‖δAx‖2
‖A‖2

)
where




(AᵀA
)−1





2
‖A‖22 = κ(A)

2 and ‖A‖2



A†





2
= κ(A) are used

‖δx‖2
‖x‖2

≤ κ(A)2
‖δAᵀ‖2
‖A‖2 ‖x‖2

‖r‖2
‖A‖2

+ κ(A)
(
‖δb‖2
‖A‖2 ‖x‖2

+
‖δAx‖2
‖A‖2 ‖x‖2

)
≤ κ(A)2

‖δA‖2
‖Ax‖2

‖r‖2
‖A‖2

+ κ(A)
(
‖δb‖2
‖Ax‖2

+
‖δA‖2 ‖x‖2
‖A‖2 ‖x‖2

)
= κ(A)2

‖r‖2
‖Ax‖2

‖δA‖2
‖A‖2

+ κ(A)
(
‖b‖2
‖Ax‖2

‖δb‖2
‖b‖2

+
‖δA‖2
‖A‖2

)
6.2 Quadrupole Scan and Solenoid Scan: Working Principles

This section describes a formulation to extract 1st and 2nd order moments of a beam at a location

upstream of quadrupoles or solenoids via beam profile measurements with less information at a

common downstream location taken under varying focusing strengths. This method is typically

called a “quadrupole scan” for quadrupole optics, and “solenoid scan” for solenoid optics. One

or more quadrupoles or solenoids may be varied. The method is routinely used to support beam

trajectory correction and envelopematching under linear single particle dynamics. It is applicable to

any measurements that can measure beam profiles including view screens, wire scanners and beam

position monitors. Space charge forces, both linear and nonlinear, are neglected in this formulation

because it relies on transfer maps which cannot include dependence on the beam distribution.
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6.2.1 Notation

The notation used in this section are defined as follows. Greek letters α, β, µ, ν denote 4D-phase

space indices 1, 2, 3, 4 with x1 = x, x2 = x′, x3 = y, x4 = y′. M is the 4 × 4 transverse

transfer matrix and 〈. . . 〉 denotes beammoments, i.e. statistical average over the beam distribution.

Subscripts i and f denote the initial and final values with respect to the reference orbit. The final

values are to be distinguished from the values measured on the profile monitor, which are denoted

by the subscript m.

6.2.2 1st Order Moments

The final position and initial phase space coordinates are related by:

〈x〉 f =
4∑
β=1

M1β
〈
xβ

〉
i (6.23)

〈y〉 f =
4∑
β=1

M3β
〈
xβ

〉
i (6.24)

If the coordinate system of the profile monitor is misaligned to that of the beam line, the measured

x and y centroid positions are different from those with respect to the beam’s reference orbit:

〈x〉m = 〈x〉 f + xshift =
4∑
β=1

M1β
〈
xβ

〉
i + xshift (6.25)

〈y〉m = 〈y〉 f + yshift =
4∑
β=1

M3β
〈
xβ

〉
i + yshift (6.26)

Therefore, the transverse shifts resulting from misalignments can be treated as unknowns along

with the initial first order moments. One obtains two equations from each measurement. With n
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sets of measurement data, they can be solved from the system of equations

©­­­­­­­­­­­­­­­­­­«

Row 1 of M1 1 0

Row 3 of M1 0 1

Row 1 of M2 1 0

Row 3 of M2 0 1
...

...
...

Row 1 of Mn 1 0

Row 3 of Mn 0 1

ª®®®®®®®®®®®®®®®®®®¬

©­­­­­­­­­­­­­­­«

〈x〉i

〈x′〉i

〈y〉i

〈y′〉i

xshift

yshift

ª®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­­­­«

〈x〉1

〈y〉1

〈x〉2

〈y〉2
...

〈x〉n

〈y〉n

ª®®®®®®®®®®®®®®®®®®¬

(6.27)

In the symbolism of Ax = b, b consists of the measured data and A is the coefficient matrix. The

first 4 columns ofA depend on the linear transfer map corresponding to each measurement, whereas

the last two columns are (1,0,1,0, . . . ,1,0)ᵀ and (0,1,0,1, . . . ,0,1)ᵀ respectively. This treatment

thus incorporates any shifts induced by misalignment.

6.2.3 2nd Order Moments

Denoting:

x f ,α =
4∑
β=1

Mαβxi,β (6.28)

The second order moments at the measurement point are related to the initial second order moments

as follows: 〈
(xα − 〈xα〉)(xµ −

〈
xµ

〉
)
〉

f

=

〈 4∑
β=1

Mαβ(xβ −
〈
xβ

〉
)

4∑
ν=1

Mµν(xν − 〈xν〉)

〉
i

=

4∑
β=1

4∑
ν=1

MαβMµν
〈
(xβ −

〈
xβ

〉
)(xµ −

〈
xµ

〉
)
〉

i

Note that the equation holds regardless of whether the profile monitor is displaced, because

the shift affects both xµ and
〈
xµ

〉
whose results must cancel. The related centroid subtraction
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is omitted in the notation below for ease of presentation, in which case final values of 2nd-order

spatial moments can be written as:

〈xx〉 f =
4∑
β=1

4∑
ν=1

M1βM1ν
〈
xβxν

〉
i (6.29)

〈xy〉 f =
4∑
β=1

4∑
ν=1

M1βM3ν
〈
xβxν

〉
i (6.30)

〈yy〉 f =
4∑
β=1

4∑
ν=1

M3βM3ν
〈
xβxν

〉
i (6.31)

Each profile measurement can give some or all of the above 2nd-order spatial moments. Then,

the 10 initial 2nd-order moments can be solved via a system of linear equations Ax = b where:

x =
(
〈xx〉i, 〈xx′〉i, 〈xy〉i, 〈xy

′〉i, 〈x
′x′〉i, 〈x

′y〉i, 〈x
′y′〉i, 〈yy〉i, 〈yy

′〉i, 〈y
′y′〉i

)ᵀ
and b with n measurements reads:

b =
(
〈xx〉1 , 〈xy〉1 , 〈yy〉1 , . . . , 〈xx〉n , 〈xy〉n , 〈yy〉n

)ᵀ
A is the coefficient matrix that depends on the transfer map for each measurement.

6.2.4 A Limitation of Solenoid Scans

For an ideal, aligned solenoid, transport symmetries in linear optics mandate:

M11M14 =M12M13 (6.32)

M31M34 =M32M33 (6.33)

M11M34 +M31M14 =M12M33 +M32M13 (6.34)

The coefficient matrix A has 10 columns corresponding to the 10 initial 2nd order moments.

However, the columns corresponding to 〈xy′〉i and 〈x′y〉i are always identical. Therefore, only the

sum of two terms, 〈xy′〉i + 〈x′y〉i can be solved but not each term individually.
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6.3 Quadrupole Scan and Solenoid Scan: Error Quantification and Mini-
mization

6.3.1 Error Quantification

In quadrupole and solenoid scans, the beam matrix is solved using a linear system of equations

Ax = b. The error in the solution x can be quantified via statistical methods.

There aremany sources of errors in a quadrupole / solenoid scan including: misalignments, field

deviations and measurement errors. These errors constitute perturbations to A and b in Ax = b.

Given estimates of the magnitude of each error, one can apply random errors and solve for Ax = b

in each case.

Frequency count of the solutions give rise to a probability distribution of x. With the additional

condition that unphysical answers are discarded, this treatment is equivalent to a Bayesian analysis

with a uniform prior on the domain of physicality.

6.3.2 Error Minimization

From the discussion on condition number in Sec. 6.1.4, it is clear that the error of quadrupole and

solenoid scan results can be minimized by choosing a set of scan parameters that give a coefficient

matrix A with as small a condition number as possible. The condition number κ(A) is defined in

Eq. (6.19). This requirement also requires having transport without beam loss in eachmeasurement.

The use of condition number in error minimization of beammeasurements is inspired by the work at

the GSI Helmholtz Centre for Heavy Ion Research (GSI) [46, 47]. However, the papers by GSI did

not appear to analyze how to choose scan parameters such that the condition number is minimized.

Better choice of scan parameters can reduce the condition number and thereby decrease the relative

uncertainty of results.

A simple estimate can show that an exhaustive search over all possible sets of scan parameters

is impractical. Suppose there are two knobs (e.g. focusing strenghs in a quadrupole doublet) where

each knob can attain 10 values, thus giving 100 possible settings in total. To choose a set of scan
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parameters for four measurements, the number of possible combinations equal:

©­­«
100

4

ª®®¬ =
100!

4! × 96!
≈ 4 × 106.

For scans with more knobs and more measurements, the number can be orders of magnitude larger.

It would be very computationally inefficient to build all possible coefficient matrices, compute their

singular values, and select the one with the smallest condition number.

Therefore, one has to rely on other ideas to efficiently obtain a set of scan parameters. The Paul

Scherrer Institute (PSI) proposed choosing quadrupole parameters that correspond to discrete steps

in particle phase advance between the measurement and reconstruction point [48]. However, the

phase advance describes rotation in normal coordinates, whereas the actual rotation in phase space

depends on the orientation of the invariant ellipses, which is different for each focusing setting

and may not even exist (in a single-pass system, there is no need for a cell to satisfy the stability

condition).

Building upon PSI’s idea, we believe the viewpoint from tomography is the most direct and

beneficial. Quadrupole settings alter the linear map from zi to z f and in effect provide a different

projection of the initial phase space onto the 1D spatial measurements of the beam profile monitor.

If we choose a set of measurements which correspond to a diverse range of projection angles, the

corresponding matrix A should have a low condition number which reduces uncertainties in the

solution.

The projection angle corresponding to the linear map of a quadrupole transport line can be

found as follows. The initial and final phase space coordinates are related by:

©­­«
x f

x′f

ª®®¬ =
©­­«
m11 m12

m21 m22

ª®®¬
©­­«

xi

x′i

ª®®¬ (6.35)

Consider a line in x f -x′f phase space defined by x f = x0 where x0 in a constant. Its image in xi-x′i
is given by:

©­­«
xi

x′i

ª®®¬ =
©­­«

m22 −m12

−m21 m11

ª®®¬
©­­«

x0

x′f

ª®®¬ (6.36)
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Figure 6.1: Schematic of the beam line section containing the first profile monitor at the FRIB
Front End.

which are parametric equations of xi and x′i with x′f as the parameter. Hence the slope of the line

in xi-x′i is given by

tan θ = −
m11
m12

(6.37)

where θ corresponds to the projection angle on the initial phase space. The argument is illustrated

by Fig. 6.1. Here we employ normalized dimensionless coordinates in measuring x and x′ (e.g.

normalization by 1 mm and 1 mrad respectively).

We must add one caveat concerning the dimensionless coordinates in the aforementioned

treatment. The projection angle is actually dependant on the choice of units for the phase space

coordinates. For instance, in Fig. 6.1, if the unit of angle is changed from mrad to rad, the plot is

compressed 1000-fold in y and the angle θ will decrease drastically. Thus we must ask: what units

should we choose for the phase space coordinates? The most natural answer is a choice of units

such that the beam has roughly equal sizes in the two dimensions. Heuristically, it often suffices

to use the units adopted at a certain facility, e.g. mm for position and mrad for angles at FRIB,

because the distribution typically has similar extent in both coordinates in these units. This is likely

the reason why such units are chosen in the first place.

In a more sophisticated treatment, two measurements with projection angles close to 0 and π/2

respectively, should be made first. They give a good estimate of the beam size in the original phase

space and the associated projection angles will change minimally under a change of units. Then,
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the phase space units can be rescaled in accordance with the beam extent (measured by rms size or

maximum extent), and the projection angle corresponding to each setting can be recalculated under

the new units. Suppose mm and mrad are used as units of position and angle respectively. The new

projection angles will be given by:

α =
x[mm]

x′[mrad]
(6.38)

tan θnew = α tan θ (6.39)

The choice of settings for other measurements can now be selected as before, with a diverse spread

of projection angles (under the rescaled coordinates) being the primary criterion.

Techniques explored in this section and their connection to the condition number κ are presented

in FRIB examples in Sec. 6.5.

6.4 Spatial and Phase Space Tomography

6.4.1 Spatial Tomography

Spatial tomography harnesses information from beam profile monitors to reconstruct the beam’s

image in xy space. One approach is the algebraic reconstruction technique (ART) which solves

for densities on a grid as unknowns in a system of linear equations. A projection consists of many

steps where each individual step is called a ray. A ray can be visualized as a line of finite thickness

that samples the distribution and threads a path through the grid. For an m × n grid, the system of

equations reads:

©­­­­­­­­«

a1,1 . . . a1,m×n

a2,1 . . . a2,m×n
...

...
...

ak,1 . . . ak,m×n

ª®®®®®®®®¬

©­­­­­­­­«

ρ1

ρ2
...

ρm×n

ª®®®®®®®®¬
=

©­­­­­­­­«

I1

I2
...

Ik

ª®®®®®®®®¬
(6.40)

where ρ j is the discretized current density in the j-th grid cell, Ii is the measured current of the

i-th ray, and A is the projection matrix with ai j being the area of the j-th grid cell that falls under

the i-th ray.

111



x

y

Figure 6.2: Schematic of a wire scanner at the FRIB front end. Image courtesy of Tomofumi
Maruta at FRIB.

In FRIB and several other facilities, the wires in beam profile monitors are oriented vertically,

horizontally and diagonally. A schematic of a wire scanner device at FRIB is shown in Fig. 6.2;

it consists of two diagonal wires and one vertical wire. If we attempt to apply ART to conduct

spatial tomography with such a system, we quickly run into problems due to severe redundancy in

the system of equations.

For an m×n grid, it can be observed that horizontal and vertical wires only provide information

on the total current in each row and column, thereby giving at most m and n equations respectively.

This is true regardless of how dense the steps are in each projection.

While a diagonal wire can couple information from different rows and columns, it is not effective

and only provide no more than m + n − 1 equations. This can be seen by coloring the grid as one

would a chessboard. There are m + n − 1 diagonals of squares that alternate in color, and the wire

can only give information on the total current in each of the diagonals. The argument above is

illustrated in Fig. 6.3.

If a diagnostic station contains vertical, horizontal and two diagonal wires, for a m × n grid, the

total number of equations < 4m + 4n − 2. The number is not equal to 4m + 4n − 2 due to further

redundancies among the information provided by individual wires (e.g. the total current). In all

cases of interest, 4m + 4n − 2 is much smaller than mn which is the number of equations required

for solving the current densities in all grid cells.
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Figure 6.3: A diagonal wire only gives the total current in each diagonal because and each grid
cell along a diagonal always contributes equally to a ray. The alternating diagonals are plotted
using chessboard coloring on the right.

rescale

uneven grid (1:2) even grid (1:1)

45o 63o

Figure 6.4: A wire intersecting a 2 : 1 grid at 45o is equivalent to the case of a wire intersecting
an even grid at 63o.

The most direct solution would be to change the physical orientation of the wires. However, this

is costly to do, and, perhapsmore importantly, the existing orientation is optimal formeasuring beam

moments 〈xx〉, 〈xy〉 and 〈yy〉. Beam moments should take precedence over spatial tomography.

The other remedies are indirect ways of altering the wire angles. The first method is to use

grids with uneven horizontal and vertical sizes. This amounts to a rescaling of one of the axis, and

a diagonal that intersects an uneven grid at 45o is equivalent to the a wire intersecting a regular

grid at a different angle. An example is shown in Fig. 6.4. However, this method only removes the

redundant information from diagonal wires, not horizontal and vertical, and the tunability is low

because a grid with vastly uneven sizes in the two directions is unlikely to be desirable.

A more effective and implementable method is to rotate the grid on which the densities are

to be solved by making a judicious choice of transformed coordinaces. The coordinate system is
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Standard Grid Rotated Grid

Figure 6.5: For a rotated grid, the wires are no longer vertical, horizontal or diagonal with
respect to it.

an abstract construction anyway and does not have to be aligned with the axis of the beam line

coordinates. This allows wires that are horizontal, vertical and diagonal with respect to the beam

line to intersect the grid at angles of one’s choice. Fig. 6.5 shows a grid that is rotated by 25o with

respect to the standard one.

The ART technique for spatial tomography was tested using synthesized measurements from

several numerically generated particle distributions. Both uniform and waterbag distributions are

standard, while hollow distributions have been observed at FRIB and dual peak will be relevant

when FRIB operates dual-species transport. The tests assumed the profile monitor has three

wires: one vertical, one horizontal and one diagonal. The reconstruction results for both standard

and rotated grids are plotted in Fig. 6.6. One can observe that the rotated grid produces more

truthful reconstructions for the uniform and waterbag distributions. For hollowed and dual peak

distributions, it may be beneficial to employ a variety of rotated coordinates and to combine their

results. Optimized choices for such treatment will require further study.

6.4.2 Phase Space Tomography

Unlike spatial tomography, phase space tomography can be conducted with as many projections as

one desires. Hence, the reconstruction can be conducted using a standard grid, and the choice of

focusing parameters between the profile monitor and reconstruction point can be chosen with the
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Figure 6.6: Spatial tomography of several synthesized distributions.
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Figure 6.7: Schematic of the beam line section containing the first profile monitor at the FRIB
Front End. The profile monitor is located at the position designated by f and the beam was
reconstructed at position i. Green blocks denote identical (Q7 type) electrostatic quadrupoles.

V1 -2657 -2657 -2657 -2657 -2657 -2657
V2 4513 4513 4513 4513 4513 4513
V3 -4295 -4295 -4295 -4295 -4295 -4295
V4 300 1300 2300 3300 4300 5300

Table 6.1: Quadrupole parameters for Scan 1

same reasoning as Sec. 6.3.2. Examples of phase space tomography at FRIB are shown in Sec. 6.5.

6.5 Example: FRIB Measurements

To test the implementation of the methods developed in this chapter, two quadrupole scans were

conducted using the first profile monitor at the FRIB Front End on 2019/01/18. A schematic of

the relevant beam line section is shown in Fig. 6.7. There are two quadrupole doublets between

the measurement and reconstruction points. The voltages applied to the four quadrupoles are

listed in Table 6.1 for Scan 1 and Table 6.2 for Scan 2. The parameters in Table 6.1 is typical of

how quadrupole scans were usually performed where only the focusing strength of the quadrupole

immediately upstream of the profile monitor is varied. The parameters in Table 6.2 were chosen

using the techniques described in Sec. 6.3.2 to sample the initial distribution from a wide range of

projection angles. The projection angles on the initial phase space corresponding to each scan are

shown in Fig. 6.8. Note that Scan 2 has a much wider spread of angles than Scan 1.

The performance of Scan 1 and Scan 2 in both beam matrix measurements and phase space

tomography are compared. The phase space distribution measured at the upstream Allison scanner
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V1 -500 -1500 -4000 -4000 -4500
V2 3000 4000 4500 5500 4500
V3 -4500 -4500 -4500 -3000 -4500
V4 4000 4000 4000 500 3500

Table 6.2: Quadrupole parameters for Scan 2
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Figure 6.8: Projection angles on the initial phase space corresponding to quadrupole scan
parameters in Table 6.1 and Table 6.2.

is propagated to the reconstruction location to serve as a benchmark. Hard edge equivalent transfer

matrices are applied for the quadrupoles. As discussed in Sec. 6.2, beam moments are calculated

from a system of linear equations where the coefficient matrix A depends on the choice of scan

parameters. In the current example, the condition number κ(A) as defined in Sec. 6.1.4 equals 466

and 14.5 for Scan 1 and Scan 2 respectively. With this > 30-fold difference in the condition number,

the errors in Scan 1 are expected to be much larger than those in Scan 2. This has been verified

by applying random errors to measurement results and solving for the emittance in each case. The

histograms corresponding to 10000 perturbed solutions in each case are plotted in Fig. 6.9, where

the standard deviation of x-emittance εx is 0.029 mm-mrad and 0.005 mm-mrad for Scan 1 and

Scan 2 respectively. Despite the fact that applied errors for Scan 1 are chosen to be 10 times smaller

than those applied for Scan 2, the measurement errors in Scan 1 are still 6 times larger. This strongly

illustrates the viability of the scan methodology presented in Sec. 6.3.2 to reduce uncertainties in

quadrupole scans.
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Figure 6.9: Histograms of the normalized x-emittance with random errors applied to the
measurement results. The applied errors have a truncated Gaussian distribution where 3σ = 1%
for Scan 1 and 3σ = 10% for Scan 2.

Phase Space Tomography 

from Measurem Set 1

Phase Space Tomography 
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Propagated Distribution from 

Allison Scanner Measurements

Figure 6.10: Comparison between tomographic reconstruction of the x-x′ phase space
distribution, and the measured distribution at the Allison scanner propagated to the same location.

The fact that the initial beam conditions are better reconstructed in Scan 2 than in Scan 1

also manifest itself in tomographic reconstruction. Fig. 6.10 compares the reconstructed phase

space distribution from Scan 1 and Scan 2 against the distribution propagated from Allison scanner

measurements. The tomography results from Scan 1 are very noisy, whereas the reconstructed

phase space of Scan 2 agrees much more closely with Allison scanner measurements. The beam

moments and emittances calculated from the reconstructed phase space distribution are listed in

Table 6.3.

The algorithms for spatial tomography with rotated grids presented in Sec. 6.4.1 was also tested

as part of the experiment. Fig. 6.11 shows the reconstructed x-y spatial density distribution of

the beam on a grid that is rotated by 20o. Beam moments of the reconstructed phase space are
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Tomography Tomography Projected from
Scan 1 Scan 2 Allison Scanner

〈xx〉 [mm2] 21.4 6.49 7.09
〈xx′〉 [mm-mrad] 56.3 22.9 21.4
〈x′x′〉 [mrad2] 220.0 132.7 105.6
εx normalized [mm-mrad] 0.199 0.107 0.087

Table 6.3: Beam moments and emittances corresponding to the phase space distributions plotted
in Fig. 6.3.

Figure 6.11: Spatial tomography with a grid rotated by 20o clockwise with respect to the
standard x-y coordinate system.

Wire Scanner Measurements Rotated Grid Tomography

〈xx〉 [mm2] 44.2 46.9
〈xy〉 [mm2] 24.7 24.6
〈yy〉 [mm2] 44.6 51.3

Table 6.4: Comparison between beam moments of the reconstructed spatial distribution in
Fig. 6.11 and the values obtained from wire scanner measurements.

transformed back into x-y and compared against moments directly obtained from beam profile

measurements with the wire scanner. Table 6.4 shows the results where the agreement is quite

close, thus validating the algorithms as a potential expansion of the diagnostic capabilities of wire

scanners at FRIB.
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6.6 Further Work

We have developed error minimization techniques and phase space tomography algorithms for

quadrupole scans with profile monitors and tested them using the wire scanner data at FRIB. Further

quadrupole scan experiments should be performed which can serve multiple purposes:

1. Test the method of making projects on rescaled phase space outlined at the end of Sec. 6.3.2.

2. Develop the above method into a general automated algorithm for online selection of optimal

quad scan parameters.

3. Further testing and development of automated 2D phase space tomography as an additional

output of quad scans.

4. Use the first profilemonitor to benchmark beammoments and reconstructed phase space from

quadrupole scans against Allison scanner measurements propagated to the same location.

We would like to emphasize the significance of item 4, where the beam’s 2D phase space roughly

half way between the Allison scanner and 1st profile monitors is obtained using distinct methods

and compared. Good agreement in such a benchmark will lend confidence to the analysis methods

of both devices as well as the transfer maps employed.

Two extensions on the error minimization techniques will be highly beneficial. Firstly, the

choice of optimal quad scan parameters in Sec. 6.3.2 only applies to 2D phase spaces x-x′ and

y-y′. The four coupled moments are also measured by the quadrupole scan, and they are likely

even more susceptible to measurement errors because they have one more unknown than 2D phase

spaces. An understanding of error minimization for coupled moments should be the next step in

advancing the physical model behind quadrupole scans.

An even more difficult problem is how error minimization techniques can be applied to solenoid

scans, where nine coupled moments are solved simultaneously (not ten, see Sec. 6.2.4). One

plausible idea is to generalize the projection angle picture in 2D and apply it to 4D. For a given set

of solenoid strengths, each measured moment correspond to some projection on the initial 4D phase
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space, which can be represented by a point on a unit 3-sphere. However, with three angles instead

of one, the idea of a diverse range of projection angles becomes much more fuzzy. Even if one

associates a “spread” in projection angles by inter-point geodesic distances, it is not obvious how

an optimal set can be chosen efficiently. It may be possible to reduce dimensionality by employing

rotated frame Larmor variables or other choices of canonical variables in pure solenoid scans. That

may enable the formulation of a procedure analogous to that developed for quadrupole scans. Much

investigation remains to be done, and we hope such a pursuit may also provide a physical picture

on why 〈xy′〉 and 〈x′y〉 cannot be measured separately in a solenoid scan.
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APPENDIX A

EXTENSIONS ON ALLISON SCANNER ANALYSIS

In this appendix, we include details associated with the Allison scanner analysis (Chapter 5)

including: estimates on the range of validity of the paraxial approximation employed (A.1); a

numericalmodel used to check analytic results (A.2); key steps in the derivation of analytic formulae

(A.3); noise removal schemes for experimental measurement data (A.4); and implementation of

the algorithms in the FRIB control system (A.5).

A.1 Non-paraxial Effects: When They are Negligible

This appendix estimates themagnitude of non-paraxial effects in anAllison scanner and provides

a simple condition to determine whether they are negligible.

Consider an idealized device geometry, i.e. symmetric E-dipole placement and thin slits, which

corresponds to Case I in Fig. 5.2. Given V0, a reference particle with the corresponding angle x′ref

reaches maximum x−displacement at the axial center (z = l + L/2). The ratio between the axial

kinetic energy decrement ∆E ≡ E − Emin at this point and the original axial kinetic energy E of

the ion measures the strength of non-paraxial effects.

Taking uniform hard-edge dipole fields and the paraxial approximation,

x′′(z) =


−

qV0
gE if l ≤ z ≤ L + l

0 otherwise
.

For x(z = 0) = 0 and x′(z = 0) = x′ref =
1
2

qV0L
gE , the particle position at the center of the device is

x(z = l + L/2) =
1
2

qV0
gE

L
(
3L
8
+ l

)
≈

1
5

qV0
gE

L2.

The energy change ∆E is maximum at z = l + L/2 where the particle has its closest approach to
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the E-dipole. The fractional energy change is

∆E

E
=

1
E

x(z = l + L/2)
g/2

qV0 =
2
5

(
L
g

)2 (
qV0
E

)2
.

For non-paraxial effects to be negligible, such energy gain should be much smaller than the

kinetic energy of the beam, i.e. ∆E � E, or

2
5

(
L
g

)2 (
qV0
E

)2
� 1.

Taking the approximation L/g ≈ 10 for a typical plate spacing, this condition reduces to

40
(
Q
A

)2 (
eV0

E0 [eV/u]

)2
� 1.

Here, for ions we take E0 = E/A to be the kinetic energy per atomic mass unit and q = Qe with Q

being the charge state and e the elementary charge. Non-paraxial effects are negligible at V0 values

that satisfy the above condition. For example, consider the condition applied to the E0 = 12 keV/u
40Ar9+ ion beam measured in the FRIB front end in Sec. 5.4. Even at V0 = 1000 V, the condition

reduces to ≈ 0.014 � 1, which is well satisfied. Thus it is not surprising that the realistic and

ballistic simulations agree well for typical parameters.

A.2 Realistic Model

A Python [49] code is employed to numerically integrate particle equations of motion in a

realistic x-z 2D field map of the device geometry that is generated from the electrostatic field code

POISSON [24]. Ex = −∂φ/∂x and Ez = ∂φ/∂z electric field data are exported from POISSON

onto a high-resolution, uniform x-z mesh (dx = dz = 0.2 mm), and then imported into the Python

code. Fields at the particle position are calculated using bilinear interpolation from the gridded

field data [50].

In Fig. A.1, the applied field potential φ of the FRIB Allison scanner is contoured showing

enhanced detail near the entrance slit. Only half the geometry in the zoomed figure is contoured

since φ(−x, z) = −φ(x, z).
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Figure A.1: Potential contours of the FRIB Allison scanner in Fig. 5.1, including details of the
fringe structure in the vicinity of the entrance slit (right).

Particles are advanced with non-relativistic equations of motion

d2x
dt2
=

q
m

Ex,

d2z
dt2
=

q
m

Ez .

The independent variable can be transformed exactly from time t to axial coordinate z giving

d
dz



x

t

x′

t′


=



x′

t′(
qEx

m −
qEz
m x′

)
t′2

−
qEz
m t′3


(A.1)

where ′ ≡ d/dz, and t′ = 1/vz.

This numerical model includes full fringe field effects entering and exiting the dipole field

region, as well as non-paraxial effects due to energy change as the particle crosses potential lines.

Image charges, beam space charge and scattering effects are neglected.

The state vector in Eq. (A.1) describing the particle trajectory is advanced using the ODE

package within Scientific Python (SciPy)[51] for specified initial particle coordinate x, angle x′,

and dipole voltage V0 (field data scaled). The code takes into account scraping on all boundaries.

To solve for x′max,min, note that the corresponding trajectory must touch the slits at two points (see

Fig. 5.2). We employ a numerical root-finding procedure to solve for the initial x′ that connects

the upstream point to the downstream point. x′ref is solved analogously with the condition x = 0 at

both ends.
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Figure A.2: How (a) shifting a trajectory for fixed angle and (b) changing the angle for fixed
initial position allow one to calculate quantities listed in Table 5.2.

A.3 Analytic Results

Appendix A.3.1 sketches key steps in the derivation of the expressions in Table 5.2 using

the geometric models shown in Fig. 5.2. Complications involved in Case IV are outlined in

Appendix A.3.2.

A.3.1 Sketch of Derivation Using Geometric Models

Table 5.2 is mostly derived based on two simple rules: 1) trajectories can be shifted in x-position;

and 2) changing the initial x′ = x′i at z = zi by δx′ results in a displacement δx = (z − zi)δx′

downstream. Subscripts i and f denote initial (entrance) and final (exit) locations respectively.

In Fig. A.2, these principles are applied to Case III (symmetric E-dipole placement, thick slits)

to illustrate several calculations. We observe that among a uniform spatial distribution of particles

entering the slit with x′ref, a fraction s1/s is collimated by the slit plate due to its thickness, where

s1 = x′refd. This explains the factor
(
1 −

x′refd
s

)
in the transmission coefficient T(x′ref), which

manifests itself in Fig. 5.3 as a horizontal shrinkage of the blue area in Case III in comparison with

Case I.

To calculate x′max, we note that the corresponding trajectory touches the slit plates at the

positions shown in Fig. A.2. Consider a particle with the same xi entering the slits with angle x′ref.

Applying the second rule, we obtain s2 = (x′max − x′ref)(d + 2l + L), while s1 = x′refd as calculated
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(a) (b)

Figure A.3: Reversing particle velocity allows one to check results when the E-dipole placement
is asymmetric.

above. Therefore,

s2 = s − s1,

(x′max − x′ref)(d + 2l + L) = s − x′refd,

x′max − x′ref =
s − x′refd

d + 2l + L
,

which is one of the results in Table 5.2.

Note that the derivation above assumes bending within the E-dipole, which does not hold when

V0 = 0. In that case, instead of ∆x′ = 2s/(L + 2l + d), one can draw straight trajectories between

furthest corners of the slits to see that ∆x′ = 2s/(L + 2l + 2d). Since d � L + 2l, the difference is

very small and will be neglected.

The calculations for asymmetric E-dipole placement were carried out using the same principles,

but one must note that x′i , −x′f due to the asymmetry. This makes calculations in Case IV

(asymmetric E-dipole placement, thick plate) much more complicated due to different scraping

factors on the two ends. Rather than showing the tedious calculations, it is interesting to observe a

succinct way to check the validity of the expressions in Case IV of Table 5.2 via direction reversal.

Fig. A.3a shows Case IV trajectories and Fig. A.3b their direction-reversed counterparts, where

the trajectories corresponding to maximum andminimum angles are interchanged depending on the

direction of incoming particles. For the x′ = x′max trajectory in the normal case, the final particle

angle equals x′max −
qV0L
gE , which equals −x′min for the direction-reversed case. Therefore, we can
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check whether

1
2

qV0L
gE

(
L + 2l2

L̂

)
+

s − x′refd

L̂ + d
−

qV0L
gE

= −

[
1
2

qV0L
gE

(
L + 2l∗2

L̂

)
−

1
L̂ + d

(
s −

L + 2l∗1
L + 2l∗2

x′refd

)]
where inter-slit distance L̂ = L + l1 + l2 = L + l∗1 + l∗2 remains constant and l∗1 = l2, l∗2 = l1. All

results for which the E-dipole placement is asymmetric have been verified with these procedures.

A.3.2 Results for Case IV

Procedures sketched above are applied to Case IV to obtain, for l2 > l1:

T =



x′max−x′

x′max−x′ref
c1 for x′ref ≤ x′

x′ref−x′

x′ref−x̃′
c2 +

x′−x̃
x′ref−x̃′

c1 for x̃′ ≤ x′ < x′ref

x̃′−x′
x̃′−x′min

c2 for x′ < x̃′

,

W = D1
L + l1 + l2

2s2 ,

where

x̃′ = x′ref

[
1 −

2(l2 − l1)d
(L + l1 + l2 + 2d)(L + 2l2)

]
,

c1 =

(
1 −

x′refd

s

)
,

c2 =

(
1 −

x̃′d
s

)
,

D1 =
(c1s)2 + (c2s)2

2(L + l1 + l2 + d)
+

s
2
(c1 + c2)(x

′
ref − x̃′).

Observe that x̃′ , x′ref only if l1 , l2 and d , 0, so the case x̃′ ≤ x′ < x′ref is only relevant when

the E-dipole placement is asymmetric and slits are thick.

The reason there exists a third region in T(x′) is associated with a subtlety in the definition of

x′ref. Previously, x′ref is defined as the angle at which particles enter and exit the slits at the same

x-position, with no distinction on which side of the slits we mean when the slits are thick.
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Figure A.4: Comparison between transmission ratio in Case III and IV when weight correction
effect is large.

Taking the inner facing side of the entrance slit as z = 0, x′ref is defined as the angle at which

particles attain the same position at z = 0 and z = L̂ where L̂ = L + l1 + l2 is the inter-slit distance.

Then there is another angle x̃′ with which the particles attain the same position at z = −d and

z = L̂ + d. x′ref = x̃′ in Case III because the entering and exiting angles are the same. However, in

Case IV, since the entering and exiting angles are different due to the asymmetry, x′ref , x̃′. When

the d/s ratio is large, the effects can be significant as shown in Fig. A.4 for d/s ' 4.

A.4 Noise Removal Scheme

The noise removal scheme for raw data is illustrated using an example measurement from the

FRIB Front End (see Sec. 5.4). The scheme first defines the beam region and uses the data points

outside the beam region to characterize the background. Then the background is subtracted and

unrealistic islands in the distribution are filtered. Details of the procedure are discussed below.

Such noise thresholding is crucial for heavy ion beammeasurements because the total beam current

is typically ∼50 µA; this leaves many data points with merely ∼ nA of collected currents which

may only be ∼10 times larger than noise fluctuations. Algorithms implementing the noise removal

scheme applied in this study are incorporated in the Python programs available in Ref. [35].

The noise removal scheme employed here has no capability to correct for ghost signals caused

by particles that scatter after impacting the E-dipole plates; such ghost signals have been mitigated
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Figure A.5: Beam region is defined by the red ellipse.
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Figure A.6: Histogram of current values at data points outside the defined beam region.

by using E-dipole plates whose surfaces have a staircase profile to reduce grazing incidences [33,

52].

A.4.1 Specifying the Beam Region

Figure A.5 shows an ellipse that surrounds the entire beam distribution, thereby defining a region

that contains the beam. Such a region can be designated by user input or generated automatically.

It should be self-consistent in the sense that, after background subtraction and island filter, no

non-zero data point touches the boundary specifying the beam region.
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Figure A.7: Non-zero data points after background subtraction.

A.4.2 Background subtraction

After designating the beam region, all exterior data points are used to characterize the background.

In this example, the background noise has an average µ = −0.778 nA with standard deviation

σ = 0.079 nA. Fig. A.6 shows a histogram of the measured currents in exterior data points, where

almost all values lie below µ + 2σ. Therefore, a µ + 2σ cutoff is typically applied for interior data

points, whereby any point with current < µ + 2σ is regarded as pure noise and assigned the value

0. Subsequently, all remaining non-zero data points have µ subtracted from them to correct for the

background. Note that µ < 0 in this case, which is likely due to amplifier characteristics. Fig. A.7

shows all non-zero data points after applying background subtraction to the raw data in Fig. A.5.

A.4.3 Island Filter

The beam distribution after background subtraction often contains spurious islands that probably

arise from noise that exceeds the cutoff value. Fig. A.8 zooms in on the upper right sector of the

beam distribution in Fig. A.7 to show a number of islands before and after they are filtered.

The island filter we employ is a modification of the median filter widely used in speech and

image processing [53]. For each non-zero data point, the island filter examines neighbors in an n

x n grid and counts the number of non-zero points. If the number < k, the data point in question

is assigned a zero value after the filter has processed all data points. The filter can be applied

131



5.0 7.5 10.0 12.5 15.0 17.5 20.0
Position x [mm]

20

25

30

35

40

An
gl

e 
x′

 [m
ra

d]

Unfiltered

5.0 7.5 10.0 12.5 15.0 17.5 20.0
Position x [mm]

Filtered

Figure A.8: Non-zero data points of the beam distribution, before and after applying the island
filter.

until it no longer has any effect on the distribution, which may require several iterations to enable

layer-by-layer removal of clusters of islands.

In Fig. A.8, n = 5 and k = 3, which means that if fewer than 3 data points amongst 24

neighboring points are non-zero, the data point at center is deemed part of a noise island and

assigned the value zero. The filter takes two iterations to reach convergence in this case.

A.5 Implementation in FRIB Control System

The improved analysis of Allison scanner measurements described in this dissertation and

Refs. [31, 34] have been incorporated into applications within the FRIB Control System. The

initial application was made available to members of the Accelerator Physics Department in the

formof a Jupyter notebook [54]which can be used both online and offline. The onlinemode provides

the functionality of setting up and starting a scan using the notebook. Once the measurement data

is ready, it is read from the control system, saved and analyzed with the algorithm. The data is

saved in such a way that they can be readily analyzed by running the notebook offline.

Tong Zhang from the Acceleartor Physics Department at FRIB incorporated the algorithms

into a graphical user interface (GUI) that eases usage. The interface is set up to allow enhanced

configurability while being straightforward to use with defaults for operators not familiar with
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physics issues. and prepares it for transition into a tool for the operators. The new software also

communicates better with the control system and allows real-time update of the data and scanner

status throughout a scan. Two screenshots of the software are shown in Fig. A.9 and Fig. A.10.
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Figure A.9: Beam parameters setup screen for the Allison scanner GUI. (Image courtesy of Zhang Tong from the Accelerator Physics
Department at FRIB).
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Figure A.10: Noise correction screen for the Allison scanner GUI. (Image courtesy of Zhang Tong from the Accelerator Physics
Department at FRIB).
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APPENDIX B

ALTERNATIVE PROOF OF RELATIONS GOVERNING 2ND ORDER MOMENTS OF
Cn BEAMS

This appendix presents an alternative, more direct, proof of the fact that, for all n > 2, the 2nd order

moments of a beam with n-fold rotational symmetry (i.e. Cn) obey the same relations as those of

an axisymmetric beam, i.e.:

〈xx〉 = 〈yy〉

〈xx′〉 = 〈yy′〉

〈x′x′〉 = 〈y′y′〉

〈xy〉 = 0

〈x′y′〉 = 0

〈xy′〉 = −〈x′y〉

(B.1)

This is true regardless of the orientation of the coordinate axis on the transverse plane. Methods

outlined here would become increasingly cumbersome when applied to higher-order moments.

B.1 Spatial Density and Local Velocity

Define F(r, θ, vr, vθ) as the beam distribution function in 4D transverse phase space where r

and θ are the usual cylinderical-polar spatial coordinates and vr and vθ denote the corresponding

angles in a cylindrical polar representation. The usual transverse particle angles (i.e. transverse

velocity normalized by vz, x′ = vx/vz) are related to vr and vθ by:

x′ = vr cos θ − vθ sin θ

y′ = vr sin θ + vθ cos θ
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A conveniently normalized spatial distribution function f (r, θ) with
∫ 2π
0

∫ ∞
0 f (r, θ)rdrdθ = 1 is

defined as:

f (r, θ) =

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)dvr dvθ∫ 2π
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)rdrdθdvr dvθ

The local average flow angle of particles within the distribution is denoted ®V(r, θ) = Vr (r, θ)r̂ +

Vθ(r, θ)θ̂ (components vary locally as a function of r and θ) and is obtained by averaging over

angular degrees of freedom:

®V(r, θ) =

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)(vr r̂(θ) + vθ θ̂(θ))dvr dvθ∫ 2π
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)rdrdθdvr dvθ

For a beamwith n-fold rotational symmetry, its spatial density and local flow angle of the particle

distribution must remain unchanged upon a coordinate rotation by angle φ = 2 jπ/n ∀ j ∈ Z, i.e.

f (r, θ) = f (r, θ +
2 jπ

n
) (B.2)

Vr (r, θ) = Vr (r, θ +
2 jπ

n
) (B.3)

Vθ(r, θ) = Vθ(r, θ +
2 jπ

n
) (B.4)

A sufficient, but not necessary, condition for these relations to hold is the even stronger statement

that F(r, θ, vr, vθ) satisfies

F(r, θ, vr, vθ) = F(r, θ +
2 jπ

n
, vr, vθ) ∀ j ∈ Z

In that case, Eqs. (B.2)–(B.3) can be verified from:

f (r, θ) =

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)dvr dvθ∫ 2π
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)rdrdθdvr dvθ

=

∫ ∞
−∞

∫ ∞
−∞

F(r, θ + 2 jπ
n , vr, vθ)dvr dvθ∫ 2π

0
∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ + 2 jπ
n , vr, vθ)rdrdθdvr dvθ

= f (r, θ +
2 jπ

n
)
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and

Vr (r, θ) = r̂(θ) · ®V(r, θ)

=

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)vr dvr dvθ∫ 2π
0

∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ, vr, vθ)rdrdθdvr dvθ

=

∫ ∞
−∞

∫ ∞
−∞

F(r, θ + 2nπ
3 , vr, vθ)vr dvr dvθ∫ 2π

0
∫ ∞
0

∫ ∞
−∞

∫ ∞
−∞

F(r, θ + 2nπ
3 , vr, vθ)rdrdθdvr dvθ

= Vr (r, θ +
2nπ
3
) (B.5)

Similarly, Vθ(r, θ) = Vθ(r, θ + 2nπ
3 ).

B.2 Useful Trigonometric Identities

In this section, several trigonometric identities are proved in anticipation of their utility in

subsequent arguments. The first identity is:

n∑
j=1

cos
(
θ +

4 jπ
n

)
=

n∑
j=1

sin
(
θ +

4 jπ
n

)
= 0 ∀n > 2 (B.6)

Identity 1 can be efficiently proven in a complex number representation with Euler’s theorem

eix = cos x + i sin x with i ≡
√
−1:

n∑
j=1

exp
[
i
(
θ +

4 jπ
n

)]
= exp

(
4πi
n

) n∑
j=1

exp
[
i
(
θ +

4 jπ
n

)]
For exp

(
4πi
n

)
, 1, this implies that:

n∑
j=1

exp
[
i
(
θ +

4 jπ
n

)]
= 0

The fact that both the real and imaginary parts of the L.H.S. must vanish individually gives us

Eq. (B.6). Note that when n = 2, the proof does not work because exp(4πi/2) = 1.

138



Next we define sums:

S2 ≡
n∑

j=1
cos

(
θ +

2 jπ
n

)
sin

(
θ +

2mπ
n

)
(B.7)

S3 ≡
n∑

j=1
cos2

(
θ +

2 jπ
n

)
(B.8)

S4 ≡
n∑

j=1
sin2

(
θ +

2 jπ
n

)
(B.9)

to prove two corollaries of Identity 1 as:

S2 = 0 ∀n > 2 (B.10)

S3 = S4 ∀n > 2 (B.11)

Identity 2 can be proven using the trigonometric identity sin x cos x = 1
2 sin(2x) to rewrite S2

as

S2 ≡
n∑

j=1
cos

(
θ +

2 jπ
n

)
sin

(
θ +

2 jπ
n

)
=

1
2

n∑
j=1

sin
(
2θ +

4 jπ
n

)
It then follows from Identity 1 with θ → 2θ that S2 = 0 ∀n > 2.

Similarly, Identity 3 can be proven using the trigonometric identities cos2 x = 1
2 +

1
2 cos(2x)
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and sin2 x = 1
2 −

1
2 cos(2x) and adding in zero symmetrically:

S3 ≡
n∑

j=1
cos2

(
θ +

2 jπ
n

)
=

n
2
+

1
2

n∑
j=1

cos
(
2θ +

4 jπ
n

)
=

n
2
+ 0 by Identity 1

=
n
2
−

1
2

n∑
j=1

cos
(
2θ +

4 jπ
n

)
by Identity 1

=

n∑
j=1

sin2
(
θ +

2 jπ
n

)
≡ S4

Showing that S3 = S4 ∀n > 2.

B.3 Proof of Beam Moment Relations

In this section, we prove the 2nd order axisymmetric beam moment relations in Eq. (B.1) hold

for a beamwithCn symmetry by the following trick. For such a beam, all moments remain the same

when the coordinate system rotates by 2 jπ/nwhere j is an integer. By summing over j = 1 to j = n,

the trigonometric identities derived in Sec. B.2 can be applied to simplify resulting trigonometric

functions and show that the 2nd order axisymmetric moment constraints hold. All relations are

proven for completeness, but with decreasing levels of detail in each successive sub-proof as the

underlying manipulations are analogous.

Proof of 〈xy〉 = 0:

To prove 〈xy〉 = 0, we note that

〈xy〉 =
∫ 2π

0

∫ ∞
0

r2 cos θ sin θ f (r, θ)rdrdθ

140



By symmetry, for all integer j,

〈xy〉 =
∫ 2π

0

∫ ∞
0

r2 cos
(
θ +

2 jπ
n

)
sin

(
θ +

2 jπ
n

)
f (r, θ +

2 jπ
n
)rdrdθ

=

∫ 2π

0

∫ ∞
0

r2 cos
(
θ +

2 jπ
n

)
sin

(
θ +

2 jπ
n

)
f (r, θ) rdrdθ (B.12)

Using Eq. (B.12), we can write:

n〈xy〉 =
n∑

j=1

∫ 2π

0

∫ ∞
0

r2 cos
(
θ +

2 jπ
n

)
sin

(
θ +

2 jπ
n

)
f (r, θ) rdrdθ

〈xy〉 =
1
n

∫ 2π

0

∫ ∞
0

r2S2 f (r, θ)rdrdθ

= 0 by Identity 2

Proof of 〈xx〉 = 〈yy〉:

〈xx〉 =
∫ 2π

0

∫ ∞
0

r2 cos2 θ f (r, θ)rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

r2S3 f (r, θ)rdrdθ

〈yy〉 =

∫ 2π

0

∫ ∞
0

r2 sin2 θ f (r, θ)rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

r2S4 f (r, θ)rdrdθ

from Identity 3: S3 = S4

∴ 〈xx〉 = 〈yy〉
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Proof of 〈xx′〉 = 〈yy′〉:

〈xx′〉 =
∫ 2π

0

∫ ∞
0

r cos θ [Vr (r, θ) cos θ − Vθ(r, θ) sin θ] f (r, θ)rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0
[S3Vr (r, θ) − S2Vθ(r, θ)] f (r, θ)r2drdθ

〈yy′〉 =

∫ 2π

0

∫ ∞
0

r sin θ [Vr (r, θ) sin θ + Vθ(r, θ) cos θ] f (r, θ)rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0
[S4Vr (r, θ) + S2Vθ(r, θ)] f (r, θ)r2drdθ

from Identity 3: S3 = S4

from Identity 2: S2 = 0

∴ 〈xx′〉 = 〈yy′〉

Henceforth, we will suppress angular arguments of Vr (r, θ), Vθ(r, θ), and f (r, θ) to further

abbreviate.

Proof of 〈xy′〉 = −〈x′y〉:

〈xy′〉 =
∫ 2π

0

∫ ∞
0

r cos θ [Vr sin θ + Vθ cos θ] f rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

r [S2Vr − S3Vθ] f rdrdθ

〈x′y〉 =
∫ 2π

0

∫ ∞
0

r sin θ [Vr cos θ − Vθ sin θ] f rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

r [S2Vr + S4Vθ] f rdrdθ

from Identity 3: S3 = S4

from Identity 2: S2 = 0

∴ 〈xy′〉 = −〈x′y〉
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Proof of 〈x′x′〉 = 〈y′y′〉:

〈x′x′〉 =
∫ 2π

0

∫ ∞
0
[Vr cos θ − Vθ sin θ]2 f rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

[
S3V2

r − 2S2VrVθ + S4V2
θ

]
f rdrdθ

〈y′y′〉 =

∫ 2π

0

∫ ∞
0
[Vr sin θ + Vθ cos θ]2 f rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

[
S4V2

r + 2S2VrVθ + S3V2
θ

]
f rdrdθ

from Identity 3: S3 = S4

from Identity 2: S2 = 0

∴ 〈x′x′〉 = 〈y′y′〉

Proof of 〈x′y′〉 = 0:

〈x′y′〉 =
∫ 2π

0

∫ ∞
0
[Vr cos θ − Vθ sin θ] [Vr sin θ + Vθ cos θ] f rdrdθ

=
1
n

∫ 2π

0

∫ ∞
0

{
S2

[
V2

r + V2
θ

]
+ VrVθ [S3 − S4]

}
f rdrdθ

from Identity 3: S3 = S4

from Identity 2: S2 = 0

∴ 〈x′y′〉 = 0

143



APPENDIX C

GENERATING A 4D COUPLED DISTRIBUTION

In this appendix, we present a method for generating an arbitrary 4D coupled distribution using a

similarity transformation.

Recall the 4D sigma matrix is given by:

σ =

©­­­­­­­­«

〈xx〉 〈xx′〉 〈xy〉 〈xy′〉

〈xx′〉 〈x′x′〉 〈x′y〉 〈x′y′〉

〈xy〉 〈x′y〉 〈yy〉 〈yy′〉

〈xy′〉 〈x′y′〉 〈yy′〉 〈y′y′〉

ª®®®®®®®®¬
=

〈
xxᵀ

〉
(C.1)

where xᵀ =
(
x x′ y y′

)
. Since σ is a real symmetric matrix, ∃ orthogonal matrix R (i.e.

Rᵀ = R−1) such that:

RᵀσR =

©­­­­­­­­«

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

ª®®®®®®®®¬
(C.2)

where λ j , j = 1,4 denote the four eigenvalues of σ.

The method can be described as follows. One first generates a 4D completely uncoupled

distribution in the transformed coordinates x̃ which satisties:

〈
x̃x̃ᵀ

〉
=

©­­­­­­­­«

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

ª®®®®®®®®¬
(C.3)

Then, transforming x̃ in accordance with:

x̃ 7→ x = Rx̃ (C.4)
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will result in a 4D coupled distribution with the specified moments.

Proof.

σ =
〈
xxᵀ

〉

=

©­­­­­­­­«

〈xx〉 〈xx′〉 〈xy〉 〈xy′〉

〈xx′〉 〈x′x′〉 〈x′y〉 〈x′y′〉

〈xy〉 〈x′y〉 〈yy〉 〈yy′〉

〈xy′〉 〈x′y′〉 〈yy′〉 〈y′y′〉

ª®®®®®®®®¬
= R

©­­­­­­­­«

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

ª®®®®®®®®¬
Rᵀ

= R
〈
x̃x̃ᵀ

〉
Rᵀ

=
〈
Rx̃x̃ᵀRᵀ〉

Note that no assumption is made on the form of the decoupled distribution in x̃, insofar as the

2nd-order moments satisfy Eq. (C.3). However, how distributions in x̃ should be interpreted after

the transformation may warrant careful considerations (see the discussion at the end of Sec. 3.4).

This formulation can be applied to generate a wide variety of coupled distributions with spec-

ified 2nd-order moments to simulate magnetized beams emerging from ECR sources. Additional

symmetry arguments (see Chapter 4) together with physics considerations may also be exploited to

reduce the number of free parameters.
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