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Samandrag

Struktur og dynamikk i atomkjernar som vert eksiterte til høg energi, kan
skildrast ved hjelp av konsepta nivåtettleik og gamma-styrkefunksjon. Desse
storleikane finn bruksområde i mange ulike fagfelt, frå nukleærmedisin til astro-
fysikk. I denne avhandlinga studerer eg nivåtettleikar og gamma-styrkefunksjonar
ved bruk av både teoretiske og eksperimentelle metodar. Nivåtettleiken og
styrkefunksjonen til den eksotiske, nøytronrike atomkjernen 70Ni har vorte målt
ved hjelp av β-Oslometoden. Eksperimentet syner at kjerna har eit forsterka
sannsyn for utsending av gammastråling med låg energi. Ved bruk av stor-
skala skalmodelrekningar finn eg prov på at denne lågenergi-forsterkinga truleg
kjem av magnetisk dipolstråling. Vidare gjer eg ei kartlegging der skalmodellen
vert nytta i berekning av gamma-styrkefunksjonar i fleire hundre atomkjernar.
Lågenergi-forsterkinga finst nesten over alt, og eg trekk ut systematiske tilhøve
i utviklinga av forsterkinga som funksjon av proton- og nøytrontal. Skalm-
odellen vert òg nytta til å rekne ut den totale dipol-styrkefunksjonen til 51Ti,
i nydeleg samsvar med dei eksperimentelle målingane, og til å finne spinnfor-
delingar i 59,60Ni. På den eksperimentelle sida angrip eg problemet med talfest-
ing av usikkerheiter i Oslometoden. Eg presenterer ein full reimplementasjon av
Oslometode-programvara som legg til rette for å køyre usikkerheitene gjennom
metoden ved bruk av Monte Carlo-teknikkar.

Abstract

Structural and dynamical properties of nuclei at high excitation energies can be
described by the concepts of nuclear level density and γ-ray strength function.
These, in turn, find applications in a wide range of fields, from nuclear medi-
cine to astrophysics. In this thesis, I study level densities and γ-ray strength
functions by both experimental and theoretical methods. The level density and
strength function of the exotic, neutron-rich nucleus 70Ni has been measured
by means of the β-Oslo method. The experiment reveals the presence of an
enhanced γ-ray strength at low energies. Through use of large-scale shell-model
calculations, I find evidence that this low-energy enhancement is likely to consist
of magnetic dipole radiation. Furthermore, I perform a survey where the shell
model is applied to calculations of γ-ray strength functions in several hundred
nuclei. The low-energy enhancement is found to be near-universally present, and
systematic trends in its evolution as function of proton and neutron number are
inferred. The shell model is also used to calculate the total dipole strength func-
tion of 51Ti, obtaining excellent agreement with experiments, and to infer spin
distributions in 59,60Ni. On the experimental side, the problem of uncertainty
quantification in the Oslo method is tackled, and I present a full reimplementa-
tion of the Oslo method software that enables complete uncertainty propagation
through the method by means of Monte Carlo techniques.
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Chapter 1

Introduction
The atomic nucleus is arguably among the most difficult microscopic physical
systems in the world to model. It is a many-body system that interacts with
itself and the environment through all the four forces of nature.1 On the en-
ergy scale at which atomic nuclei exist as bound entities, the parameters that
govern their interactions are difficult to derive from fundamental theories of
physics. Matters are worsened further when we want to study the behaviour
of highly excited nuclear states. They are characterised by a high density of
energy levels, which makes it experimentally difficult to resolve them individu-
ally through techniques like γ-ray spectroscopy. The high excitation energy
and density of levels also makes theoretical modelling difficult, owing to the
enormous complexity of the quantum-mechanical wave functions involved.

On the other hand, the complexity of the problem is also what makes studies
of atomic nuclei so interesting. Nuclei are highly diverse, ranging from the
single proton at the core of the hydrogen atom, via few-particle systems such
as α particles, that can be solved with impressive precision by microscopic ab
initio-methods, to heavy nuclei, such as uranium, consisting of hundreds of
strongly interacting protons and neutrons, where the most successful models are
inspired by fluid and statistical mechanics more than by particle physics. When
traversing the nuclear chart, the breadth of nuclear physics becomes apparent:
Some nuclei are spherical, others are shaped like rugby balls or even pears.
Some nuclei are stable, others are radioactive and decay, by charge-changing
processes or nuclear fission. Some nuclei have simple, ordered excitation-energy
levels, others exhibit complicated level structures with levels of differing nuclear
shapes. However, common to all nuclei is that the density of levels increases
with excitation energy, bringing with it quantum-mechanical wave functions
and transition probabilities of increasing chaoticity. In order to describe these
nuclear states in a microscopic theory, quantum-mechanical many-body wave
functions with millions or even billions of components are required. This can
be achieved, for example, by use of large-scale shell-model calculations.

Knowledge of nuclear behaviour at high excitation energy is a vital com-
ponent in several other fields of science, from production of medical isotopes,
via nuclear power and nuclear forensics, to astrophysics. Most central to this
thesis is heavy-element nucleosynthesis, which concerns the formation of ele-
ments heavier than iron in our universe. Heavy-element nucleosynthesis occurs
through two main processes, known as the slow (s) and rapid (r) neutron-

1Although they are not all equally strong. Notably, the interaction of gravity is many
orders of magnitude weaker than the strong, weak and electromagnetic interactions, and can
safely be neglected for nuclear-physics applications. Still, as atomic nuclei make up the vast
majority of the mass of matter around us, the gravitational pull on each and every nucleus
sums up to the highly non-negligible effects of gravity on macroscopic length scales.

1



1. Introduction

capture processes. The s process, taking place in late stages of stellar burning
in asymptotic giant-branch stars, proceeds by alternating neutron capture and
β decay on stable seed nuclei to produce elements as heavy as lead [1]. Much
less is known of the r process, although a giant leap forward was taken in 2017
with the discovery of a neutron-star merger with confirmed of r-process nucle-
osynthesis [2]. The r process consists of rapid, successive neutron captures by
bombardment of neutrons on unstable, very neutron-rich nuclei. Much inform-
ation is lacking on the neutron-rich nuclei in question, concerning everything
from lifetimes and binding energies to neutron-capture cross sections – to the
degree that even the exact ‘path’ of the r process in the nuclear chart is un-
known [3]. Studies of statistical nuclear properties help mitigate this, providing
theoretical and experimental insights that constrain the models of both s- and
r-process nucleosynthesis.

When writing this thesis, I have tried to follow a principle of thoroughness.
I want the text to be as self-sufficient as possible, by writing out arguments and
explanations in detail. Particularly so for the chapter on the Oslo method, where
few comprehensive reviews exist, and many of the crucial details are scattered
throughout various published articles. I have done this mostly to force myself
to understand the details properly, but also in an effort make it accessible to
readers who are in the process of learning the subject, such as master students.

The thesis is structured as follows. In Chapter 2, I begin with a discussion
of nuclei through the lens of theoretical models. The main focus of the chapter
is on the nuclear shell model and configuration-interaction theory, which forms
a cornerstone of the research presented in this thesis. Chapter 3 proceeds by
going into the subject of statistical nuclear behaviour – nuclear state and decay
properties at high excitation energies, with concepts such as level densities and
γ-ray strength functions. I put particular emphasis on the low-energy enhance-
ment of the γ-ray strength function, discussing the theoretical and experimental
evidence for this phenomenon, including my own research contributions. I then
make a leap over to the experimental side, devoting Chapter 4 to the Oslo
method, a technique for studying nuclear behaviour in the statistical regime.
Here, I also present the work I have done on a reimplementation of the Oslo
method software tools, that provides novel capabilities for quantification of un-
certainties in the Oslo method. In Chapter 5, I give my summary and outlook,
before presenting the scientific articles that make up this thesis, with a short
introduction to and a full reprinting of each of them, in Chapter 6.

2



Chapter 2

Nuclear models
In this chapter, I discuss theoretical modelling of the atomic nucleus. I will
briefly discuss the vastly different models that exist to describe the same sys-
tem, and why there isn’t a single unified model to describe nuclear physics. The
main focus of the chapter is on one particular model, the nuclear shell model.
Since large-scale shell-model calculations constitute a large part of the research
that comprises this thesis, I go into details about the mathematical framework
of configuration-interaction shell-model calculations, as well as some of the tech-
nical aspects of performing large-scale shell-model calculations. At the end of
the chapter, I discuss the different effective interactions that I have used in my
work.

2.1 The nuclear problem

The atomic nucleus is by definition a subatomic system. The realm of subatomic
physics is described at the fundamental level by one of the most elegant, and
also well-tested, theories of modern physics, namely the Standard Model of
particle physics [4]. According to the Standard Model, the nucleus consists of
elementary particles called quarks. The quarks are spin-1/2 fermions, and they
are present in the nucleus in two distinct species, called up (u) and down (d).
They have fractions of the elementary charge of +2/3e and −1/3e, respectively.
The quarks tend to bind together in threes and form stable, compound particles
called nucleons. The nucleons are of two varieties: protons (uud) and neutrons
(udd). The protons have charge +e, while the neutrons have charge zero. The
quarks are bound together by the strong force of quantum chromodynamics
(QCD), mediated by force-carrying bosons called gluons. The residual fields
of the strong force on the surface of nucleons is also what makes them bind
together with other nucleons – however, the interaction has very short range.

Due to a peculiarity of quantum field theory known as renormalisation [4],
the strength of the interaction between quarks depends on the energy scale at
which they interact, and the interaction is stronger the less energy is involved.
For quarks bound inside atomic nuclei, the force is very strong and does not
allow a perturbative expansion. This is a major problem for theoretical nuclear
physics. At higher energies, such as those involved when protons collide at the
Large Hadron Collider at CERN [5], the interaction is much weaker and QCD
can be calculated perturbatively.

In addition to the strong force, the quarks are subject to the electroweak in-
teraction, mediated by theW± and Z0 bosons and the photon. The electroweak
interaction gives rise to Coulomb repulsion between the positively-charged pro-
tons within the nucleus. Furthermore, through exchange of the charged W±

3



2. Nuclear models

Figure 2.1: The chart of atomic nuclei. Magic numbers of Z and N are indicated
by solid lines. The nuclei in black squares are stable. Unstable nuclei are
coloured according to their primary mode of decay: β+ (red); β− (blue); fission
(green); proton emission (orange); and neutron emission (light blue). Secondary
modes of decay are indicated by insets of a different colour. The figure is made
using the code in Ref. [6] with experimental data from Ref. [7].

bosons, an up quark can change into a down quark and vice versa, which means
that protons and neutrons can transform into each other. The process requires
the emission of an electron or positron, e± to conserve the electromagnetic
charge, as well as a very light particle known as an electron neutrino (or an-
tineutrino), νe (ν̄e). Spontaneous conversion between protons and neutrons,
with emission of an electron (positron) together with an electron antineutrino
(neutrino), is known as β± decay.

Since the quarks are strongly confined inside nucleons, it means that for low-
energy nuclear physics, the nucleons are the relevant degrees of freedom. This
is both a blessing and a curse: On the one hand, one does not have to worry
about the quarks, but on the other, the force between the nucleons, which is
the residual of the forces between the quarks, cannot be calculated easily from
QCD. This problem has led particle physics and nuclear physics, although they
are closely related, into very different paradigms.

The playground of nuclear physics is the chart of nuclides, shown in Fig. 2.1.
The black ‘line’ traced out by the stable nuclei is known as the valley of β sta-
bility. Many more nuclei than those shown in Fig. 2.1 are expected to be bound,
but have not yet been discovered experimentally. Figure 2.2 shows a theoretical
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Figure 2.2: Theoretical prediction of the edges of the landscape of bound nuclei.
The figure is reprinted with permission from Ref. [8].

prediction of the limits of the nuclear landscape, adapted from Ref. [8]. The
ridges of the nuclear valley are bordered to the left by the proton drip line,
where the addition of more protons makes the nucleus fragment, and to the
right by the neutron drip line, where the addition of more neutrons does the
same. Notice that the distance is much larger from the β-stable valley to the
neutron drip line than to the proton drip line, due to the strong Coulomb repul-
sion between protons. As the rapid neutron capture (r) process of astrophysical
nucleosynthesis is expected to take place at, or close to, the neutron drip line,
Fig. 2.2 illustrates the vast amount of work remaining in order to obtain a good
understanding of the nuclear-physics conditions for the r process [3].

2.2 Nuclear models

Many models exist to describe nuclei that are both quantitatively and qualitat-
ively very different. One conceptually simple, yet powerful, model is the liquid
drop model [9], which includes the Bethe-Weizäcker formula (also known as the
semi-empirical mass formula) [10]. The Bethe-Weizäcker formula is based on
modelling the nuclear binding energy (from which one can derive the nuclear
mass) by a sum of terms describing different aspects of the nucleus: volume, sur-
face area, electrical Coulomb repulsion between protons, quantum-mechanical
pairing effects and the asymmetry between protons and neutrons. The name
liquid drop model is due to the similarity with the physics of a drop of liquid:
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Figure 2.3: Difference between the liquid drop model prediction and experi-
mental measurements, as function of neutron number. The figure is reprinted
with permission from Ref. [13].

The stability of the drop depends on the ratio between volume and surface. The
surface tension holds the drop together against the repulsive pressure between
the molecules within the volume, but only if the drop is small enough. The
liquid drop model is very successful at describing the gross properties of nuclei.
For instance, it correctly predicts that the binding energy per nucleon has a
maximum in the middle of the nuclear chart, at about 56Fe. It also explains
why some isotopes are more tightly bound, and thus more stable, than others,
i.e. the valley of β stability in Fig 2.1. The liquid drop model has also been
successfully applied to explain numerous other facets of nuclear behaviour and
dynamics, such as collective motion giving rise to rotational and vibrational
spectra [11] and fission [12].

2.2.1 Magic numbers
It is well known that there are systematic differences between the liquid drop
prediction and experimental values, as shown in Fig. 2.3. This discrepancy is
due to a quantum mechanical effect similar to that which makes atomic elec-
trons structure themselves in electron shells. For that reason, it is known as
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nuclear shell structure. Evidence for nuclear shell structure was discovered in-
dependently by Goeppert Mayer [14, 15] and Haxel, Jensen and Suess [16] in
1949, earning Goeppert Mayer and Jensen the Nobel Prize in Physics for 1963
[17].

The shell model was a fantastic innovation because it naturally explains
the magic numbers, the tendency for nuclei with a certain number of protons
and/or neutrons to exhibit an additional degree of stability relative to their
neighbours. The magic numbers are the reason for the discrepancies in Fig. 2.3.
The experimentally verified magic numbers are 2, 8, 20, 28, 50, 82 and 126.
Protons and neutrons are independent subjects to the magic numbers. A nucleus
with a magic number of both protons and neutrons is called a doubly-magic
nucleus, and such nuclei are very stable compared to their neighbours. The
maxima of the peaks in Fig. 2.3 are located at the magic numbers.

2.3 Constructing the shell model

The shell model is based on a mean-field model for the nucleus, where each
nucleon moves in an average, spherically symmetric potential set up by all the
other nucleons. However, the crucial insight that Goeppert Mayer and the other
inventors had, was the inclusion of a strong spin-orbit term which makes the
nucleon energy sensitive to the coupling between its orbital angular momentum
and spin. I will now go through the mathematical construction of the shell
model.

Assume that each nucleon is a non-interacting spin-1/2 fermion moving in
a spherical three-dimensional harmonic oscillator potential set up by the other
nucleons. Hence, the time-independent Schrödinger equation is

Ĥψ(~r) =
(
− h̄2

2m∇
2 + V (~r)

)
ψ(~r) = Eψ(~r), (2.1)

where Ĥ is the Hamiltonian operator, ψ(~r) is the wave function, h̄ = 197.3 eV nm/c
is Planck’s reduced constant, m ≈ 0.94 GeV/c2 is the mass of the nucleon and
E is its energy. The harmonic oscillator potential is

V = 1
2ω

2(x2 + y2 + z2), (2.2)

where ω parametrises the strength of the oscillator. This gives rise to stationary
states with energy levels Enxnynz = h̄ω(nx + ny + nz + 3/2). By transforming
to spherical coordinates, (x, y, z) → (r, θ, φ), the solutions may equivalently be
described by the quantum numbers (n, l,m), where

nx + ny + nz = 2(n− 1) + l. (2.3)

Here, n is called the radial quantum number, l the orbital quantum number and
m the magnetic quantum number. The energy levels are degenerate in m. In
these coordinates, the eigenstate wave functions are

ψnlm(~r) = Rnl(r)Ylm(θ, φ). (2.4)
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N n, l orbital parity
0 1, 0 1s +
1 1, 1 1p −
2 2, 0 2s +

1, 2 1d +
3 2, 1 2p −

1, 3 1f −
4 3, 0 3s +

2, 2 2d +
1, 4 1g +

Table 2.1: Table of quantum numbers for the first four major shells of the
three-dimensional harmonic oscillator.

Under the operation of parity change, P̂ , which turns right-handed coordinate
systems into left-handed ones, the spherical harmonics Ylm transform as

P̂ Ylm(θ, φ) = (−1)lYlm(θ, φ), (2.5)

while the radial wave function Rnl(r) is invariant under parity transformations.
In other words, the solutions ψnlm are eigenstates of parity with eigenvalue ±1.
By introducing the major shell number N = 2(n− 1) + l, the solutions can be
categorised as shown in Table 2.1. Spectroscopic notation is adopted, labelling
the orbitals as nl with n = 1, 2, 3, ..., l = s, p, d, f, g, h, i, ... corresponding to
l = 0, 1, 2, 3, 4, 5, 6, .... By adding a spin-orbit term to the potential, so that (in
spherical coordinates)

V = 1
2ω

2r2 + Cl̂ · ŝ, (2.6)

the energy eigenvalues are modified to

Enlj = h̄ω [2(n− 1) + l + 3/2] + C
h̄2

2

{
−l
l + 1

}
for j =

{
l + 1/2
l − 1/2

}
. (2.7)

The solutions ψnljjz (~r) to the new Hamiltonian remain eigenstates of parity.
The spectroscopic notation is extended as nlj , so that e.g. 1f5/2 encodes n = 1,
l = 3, j = 5/2 = l − 1/2. A level with a given nlj is called an orbital. The
nucleons, being fermions, are subject to the Pauli exclusion principle, whereby
no two particles can occupy the same quantum state. However, for a given
total angular momentum j there exist 2j + 1 physically separable sub-states of
different z projection jz ∈ {−j,−j + 1, ..., j − 1, j}. Hence, each orbital has
room for 2j + 1 nucleons. A schematic representation of the resulting energy
level scheme is shown in Fig. 2.4. The left hand side of the figure shows the
energy levels without the spin-orbit term. Moving towards the right hand side,
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Constructing the shell model

Figure 2.4: The orbital structure of the shell model. The figure is from Ref. [18].

the spin-orbit coupling is turned on and the spin degeneracy is lifted.1 The
numbers marked by squares indicate the running sum of the number of available
states below, and they are identical to the magic numbers. The magic numbers
appear where there are large gaps between neighbouring orbitals – meaning that
the energy required to excite a nucleon between the orbitals is high, so that the
nucleonic configuration becomes strongly bound. The effects of the spin-orbit
coupling are evident, where for example the 1g level is split into 1g7/2-1g9/2,
forming the shell gap at N/Z = 50. This also changes the simple picture where
all the orbitals in each major shell N have the same parity. Orbitals of opposing
parity being lowered by the spin-orbit interaction into the major shell below
are called intruder orbitals. In the case of 1g9/2, it is a positive-parity orbital
intruding in the intrinsically negative-parity major shell N = 3.

The configuration of a nucleus is the product of the configurations of each
of its individual nucleons. The total angular momentum, or total spin, J of a
nucleus is the vector sum of the angular momenta of all its constituent nucleons,
and the total parity π is the product of the parities of each individual nucleon.
Hence, to go from the one-particle shell model to a model for many interacting
nucleons seems complicated. However, fortunately, nucleons prefer to couple in
pairs to cancel out their angular momenta. This leads to the astounding fact
that all even-even nuclei, that is nuclei with an even number of both protons
and neutrons, have Jπ = 0+ in their ground states. Furthermore, in many

1The energy of different members of the same major shell in Fig. 2.4 is not completely
degenerate even without spin-orbit splitting. This is because the potential used for this figure
also includes an orbit-orbit splitting term [18].
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cases it leads nuclei with an odd number of protons or neutrons to have their
spin dictated by the last, unpaired nucleon. Thus, for example, 41Ca, with one
unpaired neutron added on top of the doubly-magic 40Ca, has Jπ = 7/2− in
its ground state, which can be understood as the last neutron occupying 1f7/2,
which is in the negative-parity fp shell.

2.3.1 Nuclear deformation

For nuclei in regions away from magic numbers, the assumptions underpinning
the simple shell-model picture break down, notably the assumption of a spherical
mean field. In fact, most nuclei are deformed. Nuclear deformation can be
described by a modification of the shell model where spherical symmetry is
broken by decoupling the harmonic oscillator strengths of the axes (Eq. (2.2)).
This gives rise to the Nilsson model [19]. Figure 2.5 shows how the single-
particle energies of the orbitals, and hence the shell gaps and magic numbers,
change as function of deformation. Notice how the deformation lifts the energy
degeneracy of the magnetic sub-states. The gradient of the orbitals depends on
the angular momentum, with the largest momenta getting the steepest ascent
and descent. Hence, orbitals that are far from the Fermi surface in the spherical
shell model can be key components of the wave functions for deformed nuclei.
For this reason, orbitals of comparatively high l in a given mass region (such as
the g9/2 orbital in the fpg9/2 shell) are sometimes referred to as deformation-
driving orbitals.

2.4 Electromagnetic transitions

Nuclei can transition between their different quantum states by emission or
absorption of electromagnetic radiation, i.e. photons. Electromagnetic radiation
has a multipole expansion whereby it is decomposed in electric and magnetic
components of increasing multipolarity:

XL = E1,M1, E2,M2, etc. (2.8)

For nuclear transitions, there is a strong suppression of higher-order multipole
radiation. The lowest-order, L = 1, is preferred, and for a given L, E is preferred
over M . This means that a transition between two quantum levels will proceed
by as low multipole order as possible. However, the transitions are also subject
to selection rules. They dictate that a transition between levels with angular
momenta J1, J2 can only proceed via transitions with L ≥ |J1−J2|. Transitions
between levels both having J = 0 are not allowed. The parities of the intial and
final levels must be equal for M1, E2,M3, ..., and opposite for E1,M2, E3, ....
Since low L are favoured, this leads nuclei to prefer to transition between levels
with small angular momentum differences.
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Figure 2.5: Single-particle orbitals in the Nilsson model of deformed nuclei.
The figure shows how the energies of the orbitals are modified as function of the
deformation parameter. The figure is reprinted with permission from Ref. [20].

2.4.1 Transition matrix elements
The nucleus is tightly bound together, with a binding energy per nucleon of
about 8 MeV for most nuclei [21]. Thus, the total energy of an eigenstate of
the many-body nuclear Hamiltonian is negative and of the order of hundreds of
MeV. The energy difference between excited states in a nucleus, on the other
hand, is of the order of a few MeV. This large energy separation means that
when calculating transition probabilities between excited states, first-order per-
turbation theory is usually sufficient. The transition rate, i.e. the transition
probability per second, for a transition between states |i〉 and |f〉 (carrying
some given total angular momenta and magnetic sub-states Ji,mi and Jf ,mf )
via multipolarity XL, is given to first order in perturbation theory by [22]

Ti→f (XLµ) = 8π(L+ 1)
Lh̄[(2L+ 1)!!]2

(
Eγ
h̄c

)2L+1
|〈f |ÔLµ|i〉|2, (2.9)

where ÔLµ is the multipole operator for electromagnetic transitions involving
a photon with angular momentum L and z-projection µ, and (2L + 1)!! =
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2. Nuclear models

1 · 3 · · · (2L+ 1). The dependence on z projection can be removed by averaging
over initial and summing over final m states:∑
µ,mf

|〈Jfmf |ÔLµ|Jimi〉|2 ≡
1

2Ji + 1 |〈Jf ||ÔLµ||Ji〉|
2 ≡ B(XL; Ji → Jf ), (2.10)

where we have defined the reduced transition matrix element |〈a||Ô||b〉|2 and the
reduced transition strength B(XL; Ji → Jf ).

For the case of M1 radiation, which is central to this thesis, the transition
matrix elements of transitions between shell model orbital states are composed
of an orbital and a spin term, and for a transition between orbitals a = nalaja ,
b = nblbjb , it is given by [23]

〈a|Ô(M1)|b〉 =
√

9
8π (−1)la+ja+3/2

√
(2ja + 1)(2jb + 1)

{
1/2 1/2 1
jb ja la

}
× δla,lbδna,nbgsqµN (2.11)

+
√

3
4π (−1)lb+jb+3/2

√
(2ja + 1)(2jb + 1)

{
la lb 1
jb ja la

}
× δla,lbδna,nb

√
la(la + 1)(2la + 1)glqµN

Here, the curly braces are Wigner 6j symbols, which are coupling coefficients
for the combination of the angular momentum vectors involved in the decay,
and gsq and glq are gyromagnetic ratios, factors that decide the strength of the
magnetic coupling. Their free-nucleon values are gl,free

p = 1, gs,free
p = 5.586 for

protons and gl,free
n = 0, gs,free

n = −3.826 for neutrons. The nuclear magneton
µN is µN = eh̄/2mp = 0.10515ce fm, where mp = 938.27 MeV/c2 is the proton
mass [24].

2.5 The shell model as a configuration-interaction basis

The shell model is a powerful conceptual model, enabling us to understand
many of the gross properties of the nuclear chart, such as the magic numbers.
However, real nuclei are much more complicated than what the simple shell
model picture of non-interacting nucleons allows. In reality, all the nucleons
interact with each other, and to obtain a good microscopic description of nuclear
properties, these interactions should be modelled. A model where interactions
between all nucleons (or all constituents of other many-body quantum systems)
are modelled is called a full configuration interaction theory [25].

Since the nucleus is so complex, it is imperative for both model complex-
ity and computational costs to find a way to reduce the number of degrees of
freedom as much as possible without losing the relevant physics. From this
viewpoint, the shell model is convenient since it naturally separates out certain
degrees of freedom as more relevant than others. Specifically, one can exploit
the magicity of certain nuclei by assuming that they form an inert, or closed,
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core, and approximate the nucleus as being described by the extra nucleons
outside the core, the valence nucleons.

This opens up the possibility to perform configuration-interaction calcula-
tions on systems that are way too complex to handle in full configuration. Some
much-used closed cores are 16O, 40Ca, 48Ca, 56Ni, 100Sn and 132Sn. Typically, a
given core is used for studies of nuclei within the major shell above the closure.
For example, 40Ca is much used as a core for calculating nuclei in the fp shell,
such as isotopes of Sc, Ti and Fe. It is also possible to exploit a closed core
to study systems with fewer nucleons than the core, by treating the holes in
the core as valence particles. In this thesis, I refer to configuration-interaction
calculations with a closed core as shell-model calculations.

All shell-model calculations employ some form of restriction of the Hilbert
space of available basis states, called a truncation. In principle, there are in-
finitely many possible single-particle states in the harmonic oscillator basis.
Therefore, in addition to closing off the core, one has to limit the number of
orbitals to include above the core. Calculations involving all orbitals down to
zero energy are known as no-core shell-model calculations [26]. The choice of
truncation and the resulting valence orbitals is called the model space of the
calculation. A model space may encompass anything from one or a few orbit-
als, to a full major shell or even several major shells. A calculation involving
excitations over a major shell gap is called an Xh̄ω calculation, referring to the
number X of harmonic oscillator quanta of energy required for the excitation.
It is even possible to use this as a truncation requirement, by allowing only
configurations with at most N excitations across the shell gap. In Papers II [27]
and IV in this thesis, I have employed such a 1h̄ω truncation. A calculation
within a single major shell is sometimes called a 0h̄ω calculation.

Shell model calculations have been used extensively to predict and explain
the structure of nuclei [26, 28, 29]. Since the dimensionality of the calculations
grow quickly with the number of orbitals included, most shell-model calculations
are performed within one major shell. This is often enough to capture many of
the important facets, such as orbital occupation structure and transition rates, of
the lowest-lying excited states of the nucleus. However, as the excitation energy
increases, more and more high-energy configurations become accessible to the
nuclear wave-functions, and a larger model space is required to give a realistic
description. When calculating electromagnetic transitions, the selection rules
also come into play. Because of the parity flip, calculations of E1 transitions
within the shell model require the inclusion of orbitals from two major shells.
M1 and E2 transitions can be calculated within 0h̄ω.

A myriad of approaches and approximations to configuration-interaction cal-
culations have surfaced over the years [26, 30–32]. One very successful example is
the Monte-Carlo Shell Model (MCSM) of Otsuka et al. [29].2 Based on sampling
within subsets of the Hilbert space, the method can tackle model spaces far out
of reach of full-configuration calculations. Another interesting avenue is the
symplectic shell model (e.g. [33]), where symplectic groups are used to con-

2Not to be confused with the Shell model Monte Carlo (SMMC) method [31].
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struct the Hilbert space in terms of monopole and quadrupole excitations, in a
manner very different from the single-particle orbital picture. The symplectic
shell model seems to give a promising description of deformed nuclei [34]. A
third innovation, of particular interest to applications at high excitation energy,
is the recently developed method of stochastic level density estimation in the
shell model [35]. Rather than solve the Hamiltonian exactly, the method counts
the number of eigenvalues within each excitation-energy bin. This makes it
applicable to model spaces that are too large to be exactly diagonalised.

I note in passing that it is completely possible to describe deformed nuclei
using the spherical shell model as a full-configuration basis [36]. However, to
obtain a physical description it is necessary to include the deformation-driving
orbitals, and this often requires large model spaces.

2.6 Effective interactions

When a suitable model space has been selected for the nucleus under study, there
still remains the question of what forces govern the interactions. As discussed in
the introduction, the forces between nucleons are the residual interactions from
the colour dynamics of the QCD interaction between the constituent quarks, as
well as the electroweak interactions responsible for charge-changing processes
and protonic Coulomb repulsion. In principle, then, one should be able to
calculate the effective interaction from the Standard Model of particle physics.
In practice, however, this is not possible, because the strong interaction is not
perturbative at the energy scale of low-energy nuclear physics. It means that a
perturbative expansion of the interaction strengths is not guaranteed to contain
terms of decreasing importance. There are techniques to get around this, such
as lattice QCD [37], but they are not yet sufficiently developed to be extensively
used for making effective interactions.

Another way to exploit insight from the Standard Model is through effective
field theory. Here, one derives an approximate theory based on turning off
degrees of freedom in QCD in a well-defined way [38]. Then one obtains a
systematic theory involving nucleons, as well as one or several force-mediating
bosons. The lightest charge-neutral effective boson, or meson, is the pion. This
chiral effective field theory lends itself to perturbative expansions [38]. Still, the
parameters of the meson-nucleon interactions must be fitted to data. With such
an interaction at hand, there exist methods to calculate the effective interactions
between nucleons in a given shell-model model space [39, 40].

The most brute-force way, however, of obtaining an effective shell model
interaction is to simply fit the interaction parameters to experimental values.
This is an optimisation problem: Make a guess for the interaction parameters,
perform shell-model calculations to predict the level structure of some nuc-
lei, compare to experimental values and update the parameters until reaching
sufficient agreement. It is often advantageous to use a theoretically predicted
interaction as a starting point for the optimisation search. This approach has
led to many of the most-used shell model interactions on the market [41–43].
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Some of these will be discussed in more detail below.

2.7 Performing shell-model calculations

To obtain the eigenstates of the shell model Hamiltonian, an advanced computa-
tional framework is required. I now discuss some aspects of this. The following
is inspired by Ref. [23].

2.7.1 Many-body states
The first step is to choose and construct a representation of the basis of all avail-
able many-particle wave functions. Since the nucleons are fermions, the many-
particle wave functions must be anti-symmetrised in order to obey the Pauli
exclusion principle. The easiest way to construct the set of many-particle basis
states is by taking products of the single-particle wave functions ψi ≡ ψnljjz (~r)
and anti-symmetrising them by writing them as so-called Slater determinants,

φµ(~r1, ~r2, ..., ~rn) = 1√
k!

∣∣∣∣∣∣∣∣∣
ψµ1(~r1) ψµ1(~r2) . . . ψµ1(~rn)
ψµ2(~r1) ψµ2(~r2) . . . ψµ2(~rn)

...
...

. . .
...

ψµn(~r1) ψµn(~r2) . . . ψµn(~rn)

∣∣∣∣∣∣∣∣∣ . (2.12)

where µ = nljjz and k is the number of particles. For computation efficiency in
practice, the wave functions need to be represented as compactly and easily as
possible. This is achieved with a formalism known as occupation representation
or second quantisation. The basic idea is to represent the set of all N possible
Slater determinants as a (very long) vector, where each position in the vector
corresponds to a unique Slater determinant. A many-body wave function, which
is a superposition of Slater determinants, can then be represented as a vector
in this space,

~x = (x1, x2, ..., xN ). (2.13)

The numbers xi encode the amount of weight each Slater determinant, i.e. each
orbital configuration, has in the wave function – hence the term occupation rep-
resentation. In the formalism of second quantisation, the single-particle states
ψi are represented using creation and annihilation operators â†i , âi, such that

|ψi〉 = â†i |0〉, (2.14)

|0〉 being the vacuum state or a closed, inert core. The operators are required
to obey anti-commutation relationships,

âiâj + âj âi ≡ {âi, âj} = 0, (2.15)

â†i â
†
j + â†j â

†
i ≡ {â

†
i , â
†
j} = 0. (2.16)
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This enforces the Pauli exclusion principle, since any repeated creation of the
same single-particle state destroys the wave function: â†i â

†
i |Ψ〉 = 0. We thus

ensure that each single-particle state occurs only once. Any n-particle Slater
determinant |φµ〉 can now be represented as a product of creation operators,

|φµ〉 = â†µ1
â†µ2
· · · â†µn |0〉. (2.17)

Solving the many-body problem amounts to finding the eigenvectors ~vk and
eigenvalues Ek of the many-body HamiltonianH in this basis. It is customary to
assume that the interactions between nucleons restrict themselves to two kinds:
Single-particle interactions, i.e., the interaction of a particle with the mean field
set up by the core, and two-body forces between the valence nucleons. This is
a simplification, as there will realistically be three-body and higher-order forces
between the valence nucleons. However, the lack of higher-order forces can to
some degree be accounted for by modifying the effective one- and two-body
forces [26]. Letting |i〉 denote a single-particle state and |kl; J〉 a two-particle
state coupled to spin J , the Hamiltonian can then be represented as a sum of
terms:

H =
N∑
i=1

εin̂i +
∑
i,j

∑
k,l<i,j

∑
J

VijklJ T̂ijklJ , (2.18)

where εi and n̂i are the single-particle energy (SPE) and single-particle number
operator, respectively, of orbital i, and VijklJ and T̂ijklJ are the two-body matrix
element (TBME) and two-body transition density, respectively, of each two-
body configuration combination ijklJ . Here i, j and k, l are the single-particle
orbitals of the nucleon pairs connected by the operator, and J is the total angular
momentum of the pair, given by J = |Ji− Jj |, ...|Ji + Jj |, with the requirement
that J is even. There is no need to discriminate between the J of the i, j and
k, l pair because T̂ can only connect nucleon pairs coupled to the same J . It is
customary to write the single-particle energies and two-body matrix elements
as3

εi = 〈i|H|i〉, VijklJ = 〈ij; J |H|kl; J〉. (2.19)

The equivalences can be shown exploiting the orthonormality and completness
of the single- and two-particle bases {|i〉} and {|ij; J〉}. Note that there exist
different conventions for normalisation factors on the TBMEs between shell
model codes.

2.7.2 Angular momentum coupling
When designing a shell-model code, a choice has to be made on how the angular
momentum coupling between the single-particle states is handled. Quantum-
mechanical angular momentum algebra dictates that when coupling together

3The notation emphasises that H is represented in a discrete basis, hence the term matrix
element.
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two angular momentum eigenstates

Ĵ2
1 |j1m1〉 = j1(j1 + 1)|j1m1〉, Ĵ2

2 |j2m2〉 = j2(j2 + 1)|j2m2〉 (2.20)

to make a total angular momentum state |jm〉 satisfying

Ĵ2|jm〉 = (Ĵ1 + Ĵ2)2|jm〉 = j(j + 1)|jm〉, (2.21)

the coupled eigenstate |jm〉 is related to the uncoupled basis states |j1m1j2m2〉 =
|j1m1〉 ⊗ |j2m2〉 by

|jm〉 =
j1∑

m1=−j1

j2∑
m2=−j2

|j1m1j2m2〉〈j1m1j2m2|jm〉, (2.22)

where the coefficients 〈j1m1j2m2|jm〉 are the Clebsch-Gordan coefficients [44].
The fact that the total angular momentum is not an additive quantum number
(because the associated group is non-Abelian) makes it cumbersome to construct
many-body states with total J as a good quantum number. An alternative way
to construct and represent coupling states of angular momentum is by using the
magnetic sub-states m, defined by

Ĵz|jm〉 = m|jm〉. (2.23)

The group associated with Ĵz = Ĵz,1 + Ĵz,2 coupling is Abelian, that is,

Ĵz|jm〉 = (Ĵz,1 + Ĵz,2)|jm〉 = (m1 +m2)|jm〉. (2.24)

This means that when constructing a many-body Slater determinant from single-
particle states having Ĵz,i eigenvalues m1,m2, ...,mN , the Slater determinant
will be an eigenstate of the total Ĵz = Ĵz,1 + · · · + Ĵz,N with eigenvalue M =
m1 + · · · + mN . The Slater determinants will not, in general, be eigenstates
of total angular momentum. However, because the Hamiltonian is rotationally
invariant, so that it commutes with both the total and the z-projection an-
gular momentum operators, its eigenstates – linear combinations of the Slater
determinants – will also be eigenstates of total angular momentum. The use of
Ĵz to construct many-body states of good total M is known as an M scheme.
In contrast, the use of many-body states with good total J is known as a J
scheme.

2.7.3 KSHELL
For the work presented in this thesis, I have used the shell-model code KSHELL
[45], written by Professor Noritaka Shimizu of the Center for Nuclear Study
at the University of Tokyo. It uses the M scheme to perform calculations.
It is constructed in a way that makes it very efficient and scaleable, enabling
calculations in model spaces of up to M -scheme dimension d = 1010.

KSHELL represents coordinate xi in the wave function ~x as a double-precision
floating-point number, which takes eight bytes of memory. For a moderately
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2. Nuclear models

large model space of d = 108, then, one wave function vector takes 8× 108 B =
0.76 GB. To solve the eigenvalue problem it is necessary to store hundreds of
full wave functions in memory simultaneously. This very quickly exceeds the
available memory on most computers. The solution is to use a supercomputer.
I have mainly used the Norwegian high-performance computer Fram4, located
at the University of Tromsø. It consists of 1004 computer nodes, each with 32
CPU cores and 64 GB memory [47]. KSHELL utilises a hybrid OpenMP +
MPI parallelisation scheme to take maximal advantage of the computing power.
OpenMP parallelisation is used to distribute the calculation over the CPU cores
within a node. The OpenMP calculations have access to the same memory re-
sources, meaning that the calculations can be closely coupled. In contrast, MPI
parallelisation is used to distribute calculations over several compute nodes. The
passage of information between compute nodes is much slower than communic-
ation within a single node, so it is crucial to distribute the computation in a
smart way to limit the need for inter-nodal information exchange. KSHELL
exploits symmetry groups in the Hamiltonian, such as spherical symmetry and
invariance under parity, to split the calculation into as many disjunct sectors as
possible [48]. Disjunct means that different parts of the vectors are not connec-
ted by an action of the Hamiltonian, i.e., that the Hamiltonian is block-diagonal.
An illustration of this is given in Fig. 2.6, taken from Ref. [48].

Diagonalisation of H to obtain the eigenvectors and eigenvalues involves
acting repeatedly with H on vectors in the space (more on this below). When
H is block-diagonal, it means that the vectors themselves can be distributed in
sectors over the different MPI nodes, with little need for communication between
the nodes. KSHELL automatically discovers the optimal distribution of sectors
for load balancing. Because of the huge dimension of the space, the matrix
elements of H would take up a very large amount of memory. Since memory
is a bottleneck in shell-model calculations, KSHELL does not store the matrix
elements, but instead generates them on-the-fly in the calculations.

The Hamiltonian, being Hermitian, has as many eigenvalues and eigenstates
as its dimension. From a physics viewpoint, only the lowest tens or hundreds of
states are of interest. Instead of diagonalising the entire matrix (which would
be practically impossible), KSHELL uses the Lanczos algorithm to iteratively
obtain the lowest-energy eigenstates [49]. The Lanczos algorithm is based on
constructing a subspace, the Krylov space of H, given by

span
{
~x,H~x,H2~x, ...,Hp~x

}
, (2.25)

where ~x is a starting vector, often referred to as the pivot vector, that is usually
taken as a random vector. By this process, the eigenvectors with the largest
(negative) eigenvalues will be filtered out. This can be seen by considering that
any vector ~xk can be written as a linear combination of the eigenvectors ~vi

4Fram (‘Forward’) is the name of the polar expedition ship used by Norwegian explorers
Fridtjof Nansen, Otto Sverdrup, Oscar Wisting and Roald Amundsen between 1893 and 1912
[46].
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Performing shell-model calculations

Figure 2.6: Illustration of the block-diagonal form of the Hamiltonian that
can be obtained from exploitation of symmetries. The figure is reprinted with
permission from Ref. [48].

(because H is Hermitian, so the eigenspace spans the whole Hilbert space):

~xk =
∑
i

ci,k~vi (2.26)

for suitable coefficients ci,k. If ~x0 is acted upon by H to produce ~x1, we see that

~x1 = H~x0 =
∑
i

ci,0H~vi =
∑
i

ci,0Ei~vi. (2.27)

After p repeated applications of H, the different eigenvector components ~vi will
be weighted by their eigenvalue to the power p,

~xp =
∑
i

Epi ci,0~vi. (2.28)

The eigenvectors with the largest eigenvalues will thus dominate more and more
in the vectors ~xk, causing the filtering. KSHELL recursively expands the Krylov
subspace until a set convergence criterion is reached, based on a user-defined
number of desired eigenstates. However, the required memory for the calculation
increases with each additional Krylov expansion. To avoid an arbitrarily large
memory need for slowly converging problems, KSHELL uses a modification to
the Lanczos algorithm known as the Thick-Restart Lanczos Method [50]. It
performs a restart by projecting down into a smaller subspace every time the
set maximum number of Lanczos vectors is reached.
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2. Nuclear models

In addition to the largest-eigenvalue selection, it is possible to apply even
more filtering by running KSHELL in J-projection mode. In this case, the user
selects a specific total J for the eigenstates, and only wave function compon-
ents of that J are filtered out. This is a convenient way to split a calculation
involving many states into pieces, and I have used this approach for most of the
calculations presented in this thesis. The J projection also solves another prob-
lem: Transition strengths in the M scheme with M = 0 cannot be calculated
between states of the same J , because the Clebsch-Gordan coefficient vanishes.
When J-projection mode is used, the wave functions for each J are represented
using M = J Slater determinants.

After having obtained the eigenvalues and corresponding eigenvectors, KSHELL
allows calculation of transition strengths between the states. Operators forM1,
E1 and E2 are implemented, subject to the selection rules described above.
It is also possible to calculate Gamow-Teller β-decay strengths by combining
calculations for neighbouring nuclei.

A major obstacle for shell-model calculations is the dimension of the wave
functions, i.e. the size of the basis, which determines (i) whether the calcula-
tion can be done at all and (ii) how expensive it will be in terms of CPU time.
The dimension of the calculation in a given model space is a function of the
number of valence protons and neutrons in the space. In the very simplest case,
the valence space consists of a single proton or neutron. Then, the dimension
is simply the number of single-particle orbitals that the particle can occupy
(and the energy levels are just the single-particle energies). However, as soon
as more particles are introduced, the calculation of all possible many-particle
configurations becomes a combinatorial problem. Figure 2.7 shows the number
ofM -scheme basis states in the sd shell as function of proton and neutron num-
ber. Notice that the dimension is symmetric between the lower and upper shell
closures, and largest in the middle of the shell. This illustrates the mathemat-
ical similarities between particles and holes: In the bottom of the shell, there
are few valence particles available to make the many-body configurations, and
at the top of the shell there are few holes to do the same. It also illustrates why
mid-shell nuclei are more difficult to describe microscopically.

2.8 An overview of shell-model interactions

For the work presented in this thesis, I have utilised several different effective
interactions. Some are well-known and well-tested, others are custom.

2.8.1 Universal sd interaction
Among the most widely-used interactions on the market is the universal sd
interaction (USD) for the sd shell, using 16O as the inert core. It was origin-
ally made by Wildenthal in 1984 [51] by a fit to 380 distinct energy states in
the sd shell nuclei. In 2006, Brown and Richter published two revised interac-
tions, called USDA and USDB, which included 608 states in the fit [41]. The
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Figure 2.7: The number of M -scheme basis states in the sd shell (16O core) as
function of proton and neutron number.

fits are based on a theoretically calculated effective interaction from Ref. [39].
The interactions assume isospin symmetry, i.e. equivalence between proton and
neutron interactions, and consist of three single-particle energies and 63 two-
body matrix elements. The fits do not take into account the full 66 degrees of
freedom, but instead consider a subspace spanned by linear combinations of the
interaction parameters. The linear combinations are chosen so that they are
uncorrelated and explain as much as possible of the data. Thus, it is a form of
a principal components regression [52]. The interaction parameters that are not
determined from the fit are kept to their theoretical values. For USDA, 30 linear
parameter combinations are used, while for USDB the number is increased to
56. The USDA fit has an rms deviation between calculated and experimental
energies of 170 keV, while the deviation is decreased to 130 keV with USDB. To
borrow terminology from the field of machine learning, they represent two dif-
ferent trade-offs between bias and variance – USDA having slightly larger bias,
while USDB potentially has a larger variance and could be somewhat overfitted
[52]. In Paper II [27], I calculated levels and M1 transition strengths of all the
sd shell nuclei with the USDA interaction.
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2. Nuclear models

2.8.2 GXPF

Another standard in the shell model literature is the GXPF1 interaction for the
fp shell by Honma et al. [42]. It is obtained in the same way as the USD inter-
action, by starting with a theoretical prediction and varying a subset of linear
combinations of the interaction parameters. The fp shell has (assuming isospin
symmetry) four single-particle energies and 195 two-body matrix elements. The
fit was done by varying 70 linear combinations of the TBMEs, and they obtain
an rms deviation of 168 keV between the fitted and experimental levels.5 The
GXPF1 interaction was revised in Ref. [53] to give a better description of new
experimental data on neutron-rich fp nuclei. The modified interaction is called
GXPF1A, and this is the interaction that I have used for calculations in the fp
shell, e.g. for the calculations on 59,60Ni in Paper III [54].

2.8.3 SDPF-MU

For calculations involving more than one major shell, it is infeasible to obtain
interaction parameters by a fit to experimental data, as the computational de-
mands to find the eigenstates are very high in most cases. Utsuno et al. got
around this by combining the existing USD and GXPF1 interactions into the
SDPF-MU interaction [55]. However, the existing fits provide no information
on the TBMEs for the cross-shell interactions. For this, they use a phenomen-
ological model known as the monopole-based universal interaction, VMU, based
on a central mean-field potential plus a tensor component consisting of meson-
exchange terms [56]. The interaction is able to explain nuclear deformations and
their evolution as function of neutron and proton number. I used SDPF-MU to
calculate levels and E1 and M1 transition strengths of 29Si and 44Sc in Paper
II [27], as well as 51Ti in Paper IV.

2.8.4 JUN45

Another much-used interaction is JUN45, which consists of the f5/2, p and
g9/2 orbitals built on a 56Ni core [57]. It is based on fits to 400 experimental
energies, concentrated on isotope chains with Z = 30 − 32 and isotone chains
with N = 46−50. 45 linear combinations are varied in the fit, and the resulting
interaction obtains an rms deviation of 185 keV. The model space is different
from the sd and fp shells in that it splits the f and g orbitals, with f7/2 and g7/2
outside the valence space. This requires a larger quenching factor to be applied
on the gyromagnetic ratios gsq of Eq. (2.11) than for other interactions [57]. The
authors show that the best agreement with experimental data is obtained with
gsq = 0.7gs,free

q , while the recommended value for GXPF is gsq = 0.9gs,free
q [42]. I

have used JUN45 extensively in Paper II [27].

5This number is subject to some uncertainty, because parts of the levels in the fit were
calculated with the MCSM and modified by an empirical correction called FDA* [42].
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Figure 2.8: The low-energy level scheme of 70Ni compared to shell-model calcu-
lations with different interactions. The figure is reprinted with permission from
Ref. [59], included in this thesis as Paper I.

2.8.5 CA48MH

As the mass number increases beyond A ∼ 40, the valley of β stability begins to
deviate significantly from the Z = N line. Nuclei with slightly more neutrons
than protons are favoured due to the Coulomb repulsion between the latter. For
shell-model calculations, it is thus useful to employ closed cores with N > Z,
such as 48

20Ca. For this core, we have not been able to find any experimentally
fitted interactions. Instead, we have used a purely theoretical interaction cal-
culated by Professor Morten Hjorth-Jensen [39]. This interaction is included in
the NuShellX@MSU interaction library [58] and called CA48MH1. The library
also includes another version of the interaction, called CA48MH2, where the
neutron-neutron TBMEs have been replaced with the interaction parameters
from Ref. [43], and the proton-proton f7/2 TBMEs have been modified.

I have mainly used CA48MH in Paper I [59], where we study 70Ni by shell-
model calculations. The 56Ni core is not a reliable choice for calculations of Ni
isotopes because the Z = 28 shell gap is rather ‘soft’ – meaning that config-
urations involving proton excitations from the f7/2 orbital play a role in their
structure. Because we wanted to calculate many energy levels, we were not able
to include the full model space of CA48MH in our calculations due to com-
putational limitations. We applied a truncation where we limited the number
of proton excitations from the f7/2 orbital to two. We used the CA48MH1
interaction, but increased the single-particle energy of the g9/2 orbital signific-
antly, from −1.795 MeV to +1.7 MeV. We refer to the resulting interaction as
CA48MH1g. The resulting level scheme, compared with experimental data as
well as other calculations is shown in Fig. 2.8. With CA48MH1g, we obtained
satisfactory agreement with the experimental level structure of 70Ni, including
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the excited 0+ state at around 1.5 MeV and the onset of negative-parity states
at ∼ 3 MeV. Note how the JUN45 interaction does not reproduce the experi-
mental spectrum well, pushing the excited states to very high energies – likely
due to the lack of proton excitations from f7/2.
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Chapter 3

Statistical nuclear properties
Above a certain excitation energy, it is impractical or even infeasible to resolve
individual nuclear states experimentally using spectroscopy, because the level
spacings are small compared to the experimental resolution. Exactly where this
region starts is a matter of debate, since naturally it varies from experiment to
experiment and from nucleus to nucleus, but to talk about statistical nuclear
properties the excitation energy should at least be above the pairing gap, which
is the energy required to break a pair of nucleons. This region is known as
the quasi-continuum. It is different from the continuum found at even higher
Ex, where the level spacing is so small that the resonance widths of the levels
actually overlap.1 Nevertheless, the quasi-continuum is in the realm of statistical
nuclear properties [61]. Since individual levels and transitions cannot be resolved
experimentally, it is instead fruitful to describe the nucleus by averages, using
concepts that encompass the gross properties of many states at once. In this
chapter I will introduce the level density, which describes the number of levels
per unit of energy, and the γ-ray strength function, which gives the probability
of radiative decay between levels. The γ-ray strength function is given an in-
depth treatment, as studies of its features, especially at low γ-ray energy, forms
the core of this thesis. I put particular emphasis on the low-energy enhancement
of the strength function, discussing its historical and current experimental and
theoretical status. As part of this discussion, I present and discuss my own work
on the low-energy enhancement, notably through use of large-scale shell model
calculations.

3.1 Level density

It is an experimental fact that nuclei exhibit discrete energy levels. As the ex-
citation energy increases, the energy spacing between adjacent levels tends to
decrease. This is a feature common to many quantum systems. For instance,
the energy levels of the electron in the hydrogen atom are (under certain ap-

1Any unstable quantum state has a resonance width, Γ, which is proportional to the
probability of decay, and hence inversely proportional to the lifetime of the state. It is a
physical width with units of energy, and a measurement of the energy of the state yields
values randomly distributed according to ∼ E ± Γ/2. This can be understood qualitatively
by the quantum-mechanical time evolution of an unstable state. A stable (stationary) state
ψn(~r) has a time evolution given by Ψn(~r, t) = ψn(~r)e−iEnt/h̄, while for an unstable state of
decay width Γ it is Ψ̃n = e−Γt/h̄ψn(~r)e−iEnt/h̄ = e−it(En−iΓ)/h̄ψn(~r). Informally speaking,
the unstable state acquires a ‘complex energy’ En − iΓ. It can be shown that this gives rise
to an energy-dependent cross-section for the state of the form σ(E) ∝ Γ2

(E−En)2+Γ2 – the
Lorentzian function, a bell-shaped curve of half-width Γ, known as a resonance [60].
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proximations) given by [44]

En = E0

n2 , (3.1)

where E0 ≈ −13.6 eV is the ground state energy and n = 1, 2, 3, ... labels the
levels of increasing energy. Evidently, the spacing between levels decreases rap-
idly with energy. When the spacing becomes small enough, it becomes meaning-
ful to speak of a density of levels per energy. Because the evolution of the level
energies in many quantum systems is similar to Eq. (3.1), broadly speaking, the
density of levels tends to grow exponentially with energy.

There exist several phenomenological models for nuclear level density. One
popular choice is the constant-temperature formula, where the level density is
given by [62–64]

ρCT(Ex) = 1
TCT

exp
(
Ex − E0

TCT

)
. (3.2)

Here, TCT is the nuclear temperature, which is assumed to be constant. In
an analogy to classical physics, this can be thought of as the nucleus melting
with increasing Ex, with the added heat going into breaking nucleon pairs,
causing a phase transition – without increasing the temperature of the nucleus
[62]. Another much-used model is the Fermi gas model, where the nucleons are
modelled as a gas of non-interacting fermions [65]. A popular variety is known
as the back-shifted Fermi gas, where the level density is given a translational
degree of freedom by a parameter known as the back-shift energy. The back-
shifted Fermi gas level density is given by the formula [64, 66]

ρBSFG(Ex) = 1
12
√

2σ(Ex)a1/4(E − E1)5/4
exp

(
2
√
a(E − E1)

)
, (3.3)

where a is called the level density parameter, E1 is the back-shift parameter,
and σ(Ex) is the spin-cutoff parameter (see below).

Since many aspects of nuclear dynamics are dependent on the spin and parity
of the states involved, it is often necessary to decompose the level density into
partial level densities for different spins and parities. The two quantities are
simply related by

ρ(Ex) =
∑
J,π

ρ(Ex, J, π). (3.4)

It is somewhat confusing, but customary, to use the same symbol ρ for both
types of level density. The γ-ray strength function, which is the topic of the
next section, involves the partial level density. A separate quantity to the level
density is the state density, which is the density found from counting all phys-
ically distinct quantum states available – distinguishing even between energy-
degenerate quantum numbers such as magnetic sub-states Jz of the same energy
level.
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For many applications, it is necessary to know the distribution g(Ex, J) of
spins J at a given Ex. The spin distribution is defined such that

ρ(Ex, J) = g(Ex, J)ρ(Ex). (3.5)

Here, ρ(Ex, J) =
∑
π ρ(Ex, J, π) is the level density for both parities combined.

It is usually assumed that, at high enough Ex, the distribution of parities is
equilibrated, such that

ρ(Ex, J, π) ≈ 1
2ρ(Ex, J). (3.6)

It is customary to assume the Ericson spin distribution [62, 66],

g(Ex, J) = exp
(
−J2

2σ2(Ex)

)
− exp

(
−(J + 1)2

2σ2(Ex)

)
(3.7)

≈ 2J + 1
2σ2(Ex) exp

(
−(J + 1/2)2

2σ2(Ex)

)
, (3.8)

where σ(Ex) is the spin-cutoff parameter. The distribution is derived for the
statistical nuclear regime, and cannot be expected to hold at the lowest excita-
tion energies or for very large values of J . It depends on Ex only through σ(Ex).
The Ericson distribution is a probability distribution in J , so it is normalised,∑

J

g(Ex, J) = 1. (3.9)

Its expectation value is 〈J〉g ≈ σ. Figure 3.1 shows a plot of g for σ = 6.
Even though the Ericson formula is widely accepted, the resulting distri-

bution is highly dependent on the spin-cutoff parameter σ. There exist many
models for σ, such as the rigid-body moment of inertia (RMI) estimate proposed
by von Egidy and Bucurescu in 2005 [67, 68], given by

σ2(Ex) = 0.0146A2/3 1 +
√

4a(Ex − E1)
2a , (3.10)

where A is the mass number of the nucleus, and a and E1 are the level dens-
ity and back-shift parameters of the back-shifted Fermi Gas model, Eq. (3.3).
Another spin-cutoff parametrisation, based on the constant-temperature model
for level density (Eq.(3.2)), is due to Guttormsen et al. [69], and models σ2 as
a linear function in Ex,

σ2(E) = σ2
d + E − Ed

Sn − Ed
[
σ2(Sn)− σ2

d

]
. (3.11)

The discrete-spin-cutoff parameter σd is determined by fitting to the spin dis-
tribution of known discrete levels at Ex = Ed, while σ(Sn) is estimated using
Eq. (3.10) evaluated at Ex = Sn.

27



3. Statistical nuclear properties

0 5 10 15 20 25

0.00

0.02

0.04

0.06

0.08

0.10

Spin distribution, σ = 6

Exact

Approx.

Figure 3.1: Ericson spin distribution for σ = 6. Shown are both the exact and
the approximate formula in Eq. (3.8), demonstrating that the approximation is
excellent.

Both the value and the Ex dependence of σ(Ex) are important. The experi-
mental Oslo method, which will be discussed in detail in the next chapter, relies
on normalisation to auxiliary data, and this normalisation procedure involves
the spin distribution. In Paper III in this thesis, the spin distribution was a
major source of uncertainty in the analysis, because the nuclei studied, 59,60Ni,
are quite light. To model their spin distribution microscopically, I performed
large-scale shell-model calculations, calculating up to 300 levels of each spin for
each nucleus and fitting Eq. (3.8) for separate bins of Ex to obtain σ(Ex). As
can be seen in Fig. 3.2 (i), the microscopic calculations give a spin distribu-
tion that is excellently described by the Ericson formula. Figure 3.2 (ii) shows
the evolution of σ(Ex) as function of excitation energy. Shown are also three
analytical formulas for σ(Ex), namely (i) the von Egidy and Bucurescu paramet-
risation from 2009 [70], labelled ‘E&B2009’; (ii) their 2005 estimate (Eq. (3.10)
[67, 68]), labelled ‘RMI’; and the spin-cutoff parametrisation of Guttormsen et
al. (Eq. (3.11) [69]), labelled ‘Recommended’. It is interesting to see that our
microscopic calculations closely follow the Guttormsen parametrisation.

It is very difficult to measure spin distributions directly, although they can
be inferred from certain types of experiments [71]. Hence, for most applica-
tions one must rely on model-based formulas or microscopic calculations such
as shell-model calculations or the Hartree-Fock-Bogoliubov combinatorial model
of Goriely et al. [72].
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Figure 3.2: Calculated spin distributions of 59,60Ni. The top figure (i) shows
the distribution of spins for Ex = 8.5− 9.0 MeV together with fits determining
σ(Ex) using Eq. (3.8), while the bottom figure (ii) shows the fitted σ(Ex) as
function of excitation energy up to the neutron separation energy, together with
different analytical spin-cutoff models. The figures are from Ref. [54], included
in this thesis as Paper III.
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3.2 The γ-ray strength function

The overarching topic of this thesis is the γ-ray strength function, often shortened
as γSF. Other names are used interchangeably, such as radiative strength func-
tion or photon strength function. I will sometimes just refer to it as the strength
function. It has been the topic of many experimental and theoretical studies,
and is an important tool in several branches of nuclear physics. Notably, it
finds widespread use in nuclear astrophysics as an ingredient in models of heavy-
element nucleosynthesis networks, which is the study of how heavy elements are
formed in the Universe [3]. The strength function is defined separately for each
multipolarity XL of γ radiation as [73]

fXL(Eγ , Ei, Ji, πi) =
〈ΓXLγ 〉(Eγ , Ei, Ji, πi)

E2L+1
γ

ρ(Ei, Ji, πi) (3.12)

= 16π
9h̄3c3

〈B(XL)〉(Eγ , Ei, Ji, πi)ρ(Ei, Ji, πi). (3.13)

Here ΓXLγ denotes the partial decay width of a level at excitation energy Ei, car-
rying spin Ji and parity πi, decaying with a γ ray of energy Eγ and multipolarity
XL, and B(XL) is the corresponding reduced transition strength as defined in
Eq. (2.10).2 The quantity 〈ΓXLγ 〉(Eγ , Ei, Ji, πi) (〈B(XL)〉(Eγ , Ei, Ji, πi)) de-
notes the average ΓXLγ (B(XL)) value in the vicinity of the initial excitation
energy Ei, for decays with γ-ray energies in the vicinity of Eγ . In practice, the
vicinity is defined by some energy binning, typically 200 keV. For most of what
follows, L will be 1, i.e. considering only dipole radiation, since it dominates
at the relevant Ex. In Appendix A, I give a detailed derivation of the γ-ray
strength function in terms of the underlying fundamental quantities.

The γ-ray strength function is an average quantity that describes the prob-
ability for a nucleus to emit γ radiation of a certain energy Eγ . By turning
Eq. (3.12) around,

〈ΓXLγ 〉(Eγ , Ei, Ji, πi) =
E2L+1
γ fXL(Eγ , Ei, Ji, πi)

ρ(Ei, Ji, πi)
, (3.14)

we see how f can be thought of as an ingredient in a probability model for the
nucleus, providing the mean value of the probability distribution of partial decay
widths Γγ at the given Ei, Ji and πi,

Γγ = ε〈Γγ〉, (3.15)

where ε is the relative variation between individual partial decay widths. This
variation is usually assumed to be given by the Porter-Thomas distribution
[74]. The Porter-Thomas model says that the individual partial decay widths,

2The partial decay width Γγ must not be confused with the total decay width of a level,
Γγ,tot =

∑
Eγ

Γγ .
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normalised to the average partial width, has a χ2 distribution with one degree
of freedom,

Γγ
〈Γγ〉

∼ χ2
ν=1. (3.16)

It arises naturally in a model where the wave functions of individual states are
completely chaotic, as if governed by a Gaussian orthogonal ensemble (GOE)
[61]. In statistical decay simulation codes such as RAINIER [75], an input γ-ray
strength function and level density are combined with random draws from the
Porter-Thomas distribution (as well as a model for the level spacing distribution,
e.g. the Wigner distribution [76]) to generate an artificial level scheme and decay
widths of the levels.

It is interesting to investigate whether Porter-Thomas fluctuations can be
found within configuration-interaction shell-model calculations – i.e., whether
the configuration-interaction shell model includes enough complexity to ap-
proach the behaviour of a GOE. Figure 3.3 shows the distribution of

y = B(M1)
〈B(M1)〉 (3.17)

for 60Ni calculated with the GXPF1A interaction for Paper III [54]. Figure 3.3a
shows the distribution of y values for three selected individual initial levels with
Ei = 7.29, 9.24 and 12.81 MeV, including 580, 1284 and 340 individual B(M1)
values, respectively. The average 〈B(M1)〉 is calculated separately for each Ei.
Also shown is a χ2 distribution with one degree of freedom, ν = 1, i.e., the
Porter-Thomas distribution. The y distributions do appear to fluctuate around
the Porter-Thomas distribution. In Fig. 3.3b, I have plotted the distribution
of y values for different ranges of initial excitation energies. Each range con-
sists of 50 initial levels, having a mixture of all available spins, and for each
level I have calculated the relative B(M1) values by normalising to the aver-
age B(M1) for transitions from that level. The resulting distributions include
all normalised y = B(M1)/〈B(M1)〉 transitions from all 50 levels. With the
increased statistics, it is clear that the distributions closely match the Porter-
Thomas distribution. In Fig. 3.3c, I have plotted the relative error, i.e., each y
distribution divided by the χ2

ν=1 curve. The relative error is close to 1 for low y
values. It increases with increasing y, as should be expected since the number
of transitions, as well as the χ2

ν=1 value, becomes very small. These results are
consistent with other studies [77, 78].

3.3 The generalised Brink–Axel hypothesis

The strength function as it stands in Eq. (3.12) depends on four quantities:
The γ-ray energy of the transition, and the excitation energy, spin and par-
ity of the initial state. Furthermore, we should separate between upward and
downward strength functions, f↑ and f↓, describing photo-absorption and decay,
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Figure 3.3: Distribution of B(M1)/〈B(M1)〉 values from a shell-model calcu-
lation of 60Ni, compared to the Porter-Thomas distribution, χ2

ν=1. The cal-
culation was done for Paper III, using the GXPF1A interaction, and contains
only positive-parity levels. Panel (a) shows the distribution for selected specific
initial levels, while panel (b) shows the distribution for an ensemble of initial
levels. Panel (c) shows the relative difference between the distributions in (b)
and the χ2

ν=1 distribution. See the text for details.
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respectively. It is however customary to assume that the strength function is
approximately independent of excitation energy, spin, parity and direction, i.e.,

f↑/↓(Eγ , Ei, Ji, πi) ≈ f(Eγ). (3.18)

This assumption, a requirement of the Oslo method as well as in many applic-
ations, is known as the generalised Brink–Axel hypothesis. A topic of much
debate over the last decades, as well as numerous experimental and theoretical
studies, the Brink–Axel hypothesis continues to be a contentious issue. The hy-
pothesis was originally formulated by David Brink in his doctoral thesis [79]. It
was posed there in the context of E1 excitations on the ground state of even-even
nuclei, and states that the cross-section to excite the nucleus is independent of
whether the excitation happens from the ground state or from an excited state,
or in Brink’s own words [79],

... if it were possible to perform the photoeffect on an excited state,
the cross section for absorption would have the same energy depend-
ence as for the ground state.

Isolated, the Brink hypothesis is an assumption of Ex independence of the up-
wards E1 strength function. However, by invoking the principle of detailed bal-
ance [22], Brink applied the hypothesis to the calculation of neutron-resonance
decay widths [79], thereby connecting the upward and downward strength func-
tions. Peter Axel in 1962 published an article where he pointed to the usefulness
of Brink’s idea, which had so far not been widely applied [80]. The hypothesis
has subsequently been generalised by others to assume independence also from
spin and parity, and that the independence holds not only for E1 but for the
dipole strength function in general [81–85].

In the Oslo method, the generalised Brink–Axel (gBA) hypothesis is implicit
since the method relies on a global fit of f to decay spectra from a large range of
excitation energies, the spectra being a mix of spins and parities. A study was
done where the spectra of 238Np were split into different regions of Ex, and the
Oslo method was used to extract the strength function separately for different
initial and final excitation energies [85]. They found the gBA hypothesis to be
upheld as a function of excitation energy. Similar results have been found also
for other nuclei [86, 87].

When the γ-ray strength function is studied by means of photo-excitations
on the ground state, the low-energy part of the strength function cannot be
resolved because there are no γ-ray transitions with energy smaller than the ex-
citation energy of the first excited state. Also, where the strength function can
be resolved at low Eγ , it is based on few states and subject to the low-energy
structure of the nucleus as well as Porter-Thomas fluctuations. In contrast,
studies of the downward strength function based on decays between highly ex-
cited states allow extraction of the strength function down to near Eγ = 0. The
latter type of experiments have revealed a non-zero value of the strength func-
tion in the limit of vanishing Eγ (which will be discussed in detail in Section 3.4
below). It can be argued that this apparent difference between the upwards and
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downwards strength functions constitutes a violation of the gBA hypothesis. On
the other hand, one could argue that the absence of states renders the strength
function unavailable, and that there simply is no low-energy upwards strength
function built on the ground state.

3.3.1 Strength functions from shell-model calculations
A full-configuration shell-model calculation provides detailed information about
single nuclear levels and their decay probabilities. Even though the detailed
structure of states at high Ex are unlikely to be correctly represented by cal-
culations, due to their sensitivity to model space and interaction parameter
details, the average properties of the calculated states can still provide valuable
insight. For the purpose of statistical nuclear properties, it is desirable to turn
these detailed predictions into level densities and γ-ray strength functions.

From a set of nuclear levels characterised by excitation energy, spin and
parity, {(E′x, J ′, π′)i}Ni=1, the level density can be extracted by choosing an en-
ergy bin size ∆E and counting how many levels there are in each bin, i.e., a
histogram, and dividing by the bin size:

ρ(Ex, J, π) = (number of levels with E′x ∈ Ex ±∆E/2, J ′ = J and π′ = π)
∆E .

(3.19)

Figure 3.4 shows the positive-parity level density of 60Ni calculated within the
shell model. In the upper panel I have plotted the partial level density for each
spin, ρ(Ex, J, π = +), and in the lower panel they are summed together. The
calculation includes up to 300 levels of each spin and illustrates how the spin
distribution affects the density of levels. For the most frequently occurring spins,
J ∼ 3− 4, the 300 levels are used up much more rapidly, reaching an excitation
energy of only ∼ 9 MeV for the highest-energy level, while the highest-spin
levels are all covered up to 15 MeV. The calculated total level density is thus
only complete up to 9 MeV.

Extracting the γ-ray strength function is a little more involved. The starting
point is Eq. (3.13), which reveals that the necessary ingredients are the level
density at the initial excitation energy, ρ(Ei, Ji, πi), and the average reduced
transition strength 〈B(Eγ , Ei, Ji, πi)〉. The latter involves not only the initial
energy Ei, but also the final energy Ef = Ei − Eγ . The average is taken
within energy bins ∆E of both Ei and Ef . This gives the strength function
fXL(Eγ , Ex, J, π).

We typically want to compare calculated strength functions with experi-
mental ones, extracted by e.g. the Oslo method. The experiments usually invoke
the gBA hypothesis and present a strength function that only depends on Eγ .
The simplest way to remove the dependence on the gBA-invariant parameters
is to average over them, i.e.,

fXL(Eγ) ≡ 1
NEiNJiNπi

∑
Ei,Ji,πi

fXL(Eγ , Ei, Ji, πi). (3.20)
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Figure 3.4: Extracted level density per spin (upper panel) and summed over
all spins (lower panel) for 60Ni, calculated in the shell model. The calculation
was done for Paper III, using the GXPF1A interaction, and includes up to 300
levels of each spin. Only positive-parity states are included.

The average is taken only over bins where f is non-zero, i.e., that contain at
least one transition. Figure 3.5 shows calculatedM1 strength functions for 60Ni.
The upper panels show the ‘raw’ strength function fM1(Eγ , Ei, Ji, πi) for two
different spins. Above a certain Ex threshold, the strength functions vary very
little between Ex bins, in agreement with the gBA hypothesis. The lower panel
shows strength functions averaged over Ex for different spins. The curves are
practically identical except for small variations that can be attributed to Porter-
Thomas fluctuations between the individual transition strengths that went into
the strength functions, again confirming the gBA hypothesis. The shape of the
strength functions will be discussed next.

3.3.2 Resonances in the strength function
The overall shape of the γ-ray strength function is similar for most nuclei. It
is dominated by the E1 giant dipole resonance (GDR), which is a large peak
structure, or resonance, with maximum at around 15-20 MeV depending on the
nucleus [88]. The GDR can be understood as a collective mode of excitation
where the protons and neutrons oscillate against each other [89]. There exist a
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Figure 3.5: Calculated M1 γ-ray strength functions for 60Ni. The upper panels
show fM1(Eγ , Ei, Ji, πi) for two select spins, while the lower panel shows aver-
ages taken over Ex for different spins. The calculation was done for Paper III,
using the GXPF1A interaction, and includes up to 300 levels of each spin. Only
positive-parity states are included.

number of models to describe the GDR, the simplest of which is the standard
Lorentzian (SLO) as suggested by Brink [79] and reiterated by Axel [80],

fE1,SLO(Eγ) = 1
3π2h̄2c2

σrΓr
EγΓr

(E2
γ − E2

r )2 + E2
γΓ2

r

, (3.21)

where σr and Er are the peak cross section and the centroid energy, respectively,
of the resonance [79, 90]. Although the dipole strength function is dominated
by the GDR, it also exhibits other features for many nuclei. The so-called
E1 pygmy dipole resonance is found at γ-ray energies near neutron threshold
in some nuclei near closed shells (Ref. [91] and references therein). The M1
strength function also has a giant magnetic dipole resonance (GMDR), which is
interpreted in the shell model as originating from spin-flip transitions between
orbital pairs of j = l±1/2 [92].3 Some nuclei also have anM1 scissors resonance
at Eγ ∼ 3 MeV [82, 92, 93]. It can be interpreted as a scissors-like motion of

3In the lower panel of Fig. 3.5, it is probably the GMDR that appears in the blue curve
at the highest γ-ray energies.
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protons against neutrons, hence the name, and it is correlated with nuclear
deformation.

3.4 The low-energy enhancement

In 2004, Voinov, Algin et al. published an Oslo-method experiment on 56,57Fe
that contained a novel and controversial finding: Contrary to all theoretical
models available at the time, the γ-ray strength function was found to increase,
rather than decrease, as Eγ approached zero [94]. Figure 3.6 shows the meas-
ured strength functions in the original publication. This became the topic of
much debate in the years to come, concerning whether this was an experimental
fluke, an error in the Oslo method, or in fact a physical truth. Notably, Krtička
et al. investigated the low-energy strength function of 96Mo by two-step cas-
cade spectra using a 95Mo(n, γγ)96Mo reaction, and did not find evidence of the
low-energy enhancement [95]. All the while, more and more Oslo analyses kept
showing the same low-energy enhancement for other nuclei, including 93−98Mo.
The matter was largely settled in 2012, when Wiedeking et al. confirmed its
existence in 95Mo using a different experimental technique [96]. A measurement
using that same technique was recently performed on 56Fe, again confirming
Oslo-method measurements [97]. Over the years, it has been referred to by
various names, such as soft pole [98], low-energy enhancement (LEE) [27], up-
bend [99], zero limit [100] and low-energy magnetic radiation (LEMAR) [101].
It was shown by Larsen et al. in 2013, via measurements of angular distribu-
tions for the case of 56Fe, that the enhancement is of dipole type [102], but its
electromagnetic character (E1 or M1) has remained elusive.

The status of the low-energy enhancement is summarised in Fig. 3.7, which
shows all nuclei that have been measured and analysed with the Oslo method so
far. For each nucleus, we have considered whether the γ-ray strength function
in the original publication shows a low-energy enhancement or not. Yellow stars
are cases where there is a clear enhancement, red circles are cases without any
visible enhancement, and blue diamonds are cases that are unclear.

In parallel with the experiments, a large amount of theoretical work has
been done to interpret the LEE. Litvinova and Belov were able to explain the
LEE observed in 94,96,98Mo, as well as the absence of any LEE in the meas-
urements of 116,122Sn, by a finite-temperature version of quasiparticle random
phase approximation (QRPA) theory [135]. In their model, it is the E1 strength
function that changes its low-energy behaviour at non-zero nuclear temperature,
causing a low-energy enhancement, as shown in Fig. 3.8a. Their model predicts
that the low-energy enhancement drops to zero as Eγ → 0. The cyan band
in Fig. 3.8a represents the spread between different nuclear temperatures, and
while the band encapsulates the experimental measurement, their model does
not reproduce the rapid onset of the LEE below Eγ = 2 MeV with a single
temperature value.

Simultaneously, in 2013, Schwengner, Frauendorf and Larsen published an
article where they studied the LEE within the configuration-interaction shell
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Figure 3.6: The first measurement of the low-energy enhancement of the γ-ray
strength function, in 56,57Fe. The panels show, in clockwise order from the
top left: (i) the extracted strength functions for 56,57Fe (open and solid circles,
respectively); (ii) a fit of the 57Fe strength function and a decomposition into
models for E1, M1 and E2 components plus the unknown low-energy enhance-
ment; (iii) the 57Fe strength function extracted for different excitation-energy
regions, with the upper and lower curves offset by a factor to allow visual sep-
aration; and (iv) the same as (iii) but for 56Fe. The figure is reprinted with
permission from Ref. [94].

38



The low-energy enhancement

Figure 3.7: A chart of nuclides indicating all nuclei that have been studied with
the Oslo method. Yellow stars are cases where the low-energy enhancement
has been seen, red circles are cases where no low-energy enhancement was seen,
and blue diamonds are cases that are unclear with respect to the enhancement.
The publications of Oslo-method analyses that form the basis for the figure are
found in Refs. [54, 59, 69, 87, 94, 96, 98, 99, 102–134]. The figure is reprinted
with permission from Ref. [27], included in this thesis as Paper II.

model [136]. They also considered Mo isotopes, and were able to explain the
LEE as strongM1 transitions between closely-spaced energy levels. Their result
for 96Mo is shown in Fig. 3.8b. While the two explanations are seemingly at
odds, the picture may not be so black and white. While working on Paper II in
this thesis, we discovered that the way the γ-ray strength function was extracted
in Ref. [136] leads to an overestimation of the absolute strength4. In principle,
it is thus possible that both the E1 and M1 mechanisms are needed to explain
the LEE.

Subsequently, more work has been done on the low-energy enhancement
within the framework of the shell model. Brown and Larsen studied 56,57Fe,
and were again able to explain the LEE as an M1 feature [137].5 They looked

4The problem has to do with the level density. The definition of the strength function
includes the partial level density for a given spin and parity, but in some cases, the total
density of several spins has been used instead. See the Appendix of Ref. [27] for more details.

5However, also in this work there is an issue with the absolute value of the calculated M1
strength function, so the agreement could be less good than it appears from the paper. In
fact, the M1 strength presented is unreasonably high, as the addition of an E1 component
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at the contribution to the strength function from transition components between
different shell-model orbitals, and found that transitions within high-l orbitals
are driving the enhancement. Karampagia et al. studied the strength function
of 49,50Cr and 48V using a toy model where only the f7/2 orbital was included
[138]. They found that the slope of the LEE depended on the coupling strength
of the T = 1 matrix elements of the two-body interaction.6 In 2017, Schwengner,
Frauendorf and Brown published another shell-model study where they calcu-
lated the M1 γ-ray strength functions of 60,64,68Fe [101]. They found evidence
for a bi-modality in the low-energy strength, where the low-energy enhancement
is diminished as the neutron number increases towards the middle of the fpg9/2
shell, while a scissors resonance simultaneously grows in. They predict that the
two phenomena are coupled together and may be related to nuclear deformation.
Sieja presented the first shell-model calculation of a γ-ray strength function, for
44Sc, that included bothM1 and E1 strength in the same framework [139]. She
found a large M1 enhancement and a flat behaviour of the E1 strength at low
γ-ray energy.

A question of profound importance for r-process nucleosynthesis research is
whether or not the LEE persists for nuclei approaching the neutron drip line.
It has been shown by Larsen and Goriely that the low-energy enhancement
influences (n, γ) capture cross sections calculated with Hauser-Feschbach theory
– and that it influences neutron-rich nuclei the most [140]. This is because the
neutron separation energy gets lower close to the neutron drip line, increasing
the importance of low-energy γ-ray transitions as modes of de-excitation of the
compound nucleus after neutron capture. In Ref. [59], included as Paper I in this
thesis, we present a measurement of the level density and strength function of the
neutron-rich nucleus 70Ni using the β-Oslo method. At the time of publication,
it was the most neutron-rich nucleus that has been found to have an LEE.7
We were able to perform shell-model calculations to extract a level density and
M1 γ-ray strength function for 70Ni, and show that the shell model indeed
agrees that there should be a low-energy enhancement also for this neutron-rich
nucleus. We also found that the enhancement is robust against the particulars of
the chosen model space, orbital truncation and interaction parameters – whether
we used a 48Ca or a 56Ni core, the slope of the enhancement is quite similar.
We even investigated the consequence of the β-decay-selective spin population in
the β-Oslo experiment (see the next chapter), and found that the γ-ray strength
function is largely insensitive to spin selections. This is a theoretical validation
of the generalised Brink–Axel hypothesis for M1 radiation as function of spin
and parity.

In Paper I, we also performed a scan over the isotopes of nickel, calculating
M1 strength functions for 56−70,72,74,76Ni, and found an LEE for all isotopes.
This naturally begs the question: How does it look for other elements? In
Ref. [27], included in this thesis as Paper II, we answer this question with

would overshoot the data points.
6The notation T = 1 refers to isospin formalism, where the protons and neutrons are

represented as the up and down states of a two-component isospin doublet [24].
7It was recently superseded by 74Zn [141].
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a systematic study across 283 different nuclei. We considered nuclei in two
different mass regions, the sd shell atop an 16O core and the f5/2pg9/2 shell atop
a 56Ni core. The large span in mass, combined with the fine-grained resolution
obtained by considering all neighbouring nuclei within one mass region, allowed
us to reach novel insights. We defined the ‘amount’ of low-energy enhancement
by the quantity

u(fM1) =
∫ 2 MeV

0 fM1(Eγ) dEγ∫ 6 MeV
2 MeV fM1(Eγ) dEγ

. (3.22)

In effect, u measures the steepness of the LEE. A very steep LEE has a large
u value, while a completely flat one has u = 1/2. In Fig. 3.9c is the result in
the form of a nuclear chart. The plot reveals several interesting trends. In each
mass region, the u value takes the form of a ‘bowl’, meaning that it is larger near
proton and neutron shell closures. This reaffirms the findings in Ref. [101] that
the LEE is diminished in mid-shell, but we also see how it increases again as we
approach the N = 50 shell closure, and even grows steeper across the shell. The
same effect is seen, albeit less pronounced, in the sd shell. We interpret this
with Ref. [136] as a shears bands-like effect. Nuclei that have proton excess and
neutron deficiency relative to a doubly magic core, such as the lower-right parts
of the sd and f5/2pg9/2 shells, has a tendency to produce strong M1 transitions
due to rotations of a large, transverse magnetic moment. The apparent tendency
for the LEE to vary as function of proximity to shell closures has led others to
suggest deformation-dependent phenomenological parametrisations of the low-
energy M1 strength function [142, 143].

Returning to Fig. 3.9, u is generally larger in the fpg than in the sd shell.
We interpret this as an indication that the LEE steepens with mass number,
which is consistent with the fact that few LEE cases have been seen exper-
imentally above A = 100 (more on this in Section 3.4.1 below). The mass
dependence can be explained by considering that the mass of a nucleus is pro-
portional to the average l of the orbitals available around the Fermi surface –
compare Fig. 2.4. Hence it is consistent with the findings in Ref. [137] that the
LEE is driven by high-l orbitals. Finally, we note that the lowest u value in
Fig. 3.9 is ∼ 1/2, corresponding to a flat low-energy M1 strength. This is in
itself important, because most phenomenological models of γ-ray strength func-
tions used in e.g. nucleosynthesis network calculations assume that the strength
function drops as Eγ → 0 [90]. Simultaneously with the publication of Paper II,
another shell model study was published by Sieja, considering A > 100 nuclei
[144]. She finds strikingly similar results. Figure 3.10 shows her calculations for
Z = 52 isotopes and N = 80 isotones. They all have an LEE, and its steepness
increases with proximity to the shell closure as function of both Z and N . She
also calculates the strength of a deformed, proton-rich nucleus, 108Xe. There,
she finds no LEE, but a flat strength function, just as we did for mid-shell nuclei
in our calculations.

We also applied the shell model to investigate whether the LEE is of magnetic
or electric character. As discussed in the previous chapter, E1 calculations
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nucleus. Panel (a) gives the integrated strength from 0 to 2 MeV, panel (b)
from 2 to 6 MeV, and panel (c) takes the ratio of the two. See text for details.
The figure is reprinted with permission from Ref. [27], included in this thesis as
Paper II.
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Figure 3.10: M1 strength functions calculated for nuclei close to the 132Sn shell
closure. The N = 80 isotones (upper panel) and Z = 52 isotopes (lower panel)
exhibit systematic consistent with our findings in other mass regions. The figure
is reprinted with permission from Ref. [144].

require large model spaces to allow cross-shell excitations, and this limits the
scope of such studies. An ideal case was the neutron-rich nucleus 51Ti, which has
been measured using the Oslo and β-Oslo methods (Paper IV in this thesis).
Using the SDPF-MU interaction in a 1h̄ω truncation scheme, we calculated
both M1 and E1 strength functions based on transitions between hundreds of
levels of many spins and both parities. Figure 3.11 shows the measurement and
the calculation. The agreement is excellent, and the calculated LEE is clearly
dominated completely by theM1 component, while the E1 component trails off
as Eγ → 0. The same behaviour was found in Paper II, where we also calculated
total dipole strengths for two nuclei, 28Si and 44Sc. The low-energy part of the
strength function is dominated by the M1 component, even in the case of 28Si,
where theM1 strength is approximately flat. Jones et al. recently performed an
experiment with the aim of settling the E1/M1 question for the case of 56Fe,
but the result was inconclusive due to insufficient statistics, although they find
a slight preference for M1 [97].
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Figure 3.11: 51Ti γ-ray strength function measured with the β-Oslo method
and compared to theoretical calculations. The figure is from Paper IV in this
thesis.

3.4.1 Is the low-energy enhancement present everywhere?
The Oslo method has technical difficulties that prevent extraction of the strength
function below a certain Eγ threshold. With the old detector system at the Oslo
Cyclotron Laboratory, CACTUS, this threshold is usually around Eγ = 1.5
MeV. The problem is to obtain a reliable γ-ray spectrum that is corrected for
detector response effects and free of γ rays of higher generations – only primary
γ rays must be present. I will discuss this in more detail in the next chapter.
The result is that most of the measured strength functions that make up Fig. 3.7
do not extend below ∼ 1.5 MeV. One exception is the measurement of 151,153Sm
by Simon et al. [99], which was performed with a detector set-up including
Compton suppression, significantly reducing Compton background. The meas-
urement is shown in Fig. 3.12.

A striking feature of Fig. 3.7 is how nearly every single nucleus below mass
A = 100 has a low-energy enhancement, while almost no nuclei above A = 100
have it. Inspecting Fig. 3.12, we see that the enhancement in this case does not
really kick in until Eγ approaches 1 MeV. It is therefore very tempting to spec-
ulate that the low-energy enhancement is present throughout the nuclear chart,
as suggested in Ref. [137], but that it has been ‘hiding’ below experimental
thresholds in A > 100 nuclei. Figure 3.13 illustrates this by comparing para-
metrisations of strength functions for 51Ti and 151Sm based on measurements.
The LEE is parametrised by an exponential function

fLEE(Eγ) = Ce−ηEγ (3.23)

with parameters tuned to match the experimental data. The parameter values
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Figure 3.12: Measured γ-ray strength functions for 151,153Sm (top and bottom
panel, respectively). The figure is reprinted with permission from Ref. [99].

are very different in the two cases. For 51Ti, the best-fit values are roughly
C = 2 · 10−8 MeV−3, η = 1 MeV−1, while for 151Sm they are C = 2 · 10−6

MeV−3, η = 5 MeV−1. An interesting future project would be to attempt to
find a mass-dependent parametrisation of C and η, in addition to the deform-
ation dependence suggested by Refs. [142, 143], and see how it compares to
experimental data in different mass regions.
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Figure 3.13: Plots of strength functions for 51Ti (a) and 151Sm (b), paramet-
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per IV in this thesis and Ref. [99], respectively. The figure illustrates how the
LEE could evolve with mass and ‘hide’ below experimental thresholds in most
A > 100 nuclei measured so far.
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Chapter 4

The Oslo method

Having discussed the theoretical underpinnings of nuclear physics, with partic-
ular emphasis on statistical nuclear properties, I now step over to the experi-
mental side. In this chapter, I give an in-depth discussion of the Oslo method,
the technique used for all the experimental work presented in this thesis. The
Oslo method is an analysis technique that can be used to extract two average
quantities from an experimental dataset: The level density ρ(Ex) and the γ-ray
strength function f(Eγ). It requires a two-dimensional spectrum, or matrix,
sorted by excitation energy and γ-ray energy. An example of such a spectrum
is shown in panel a of Fig. 4.1.

The Oslo method relies on the concept of compound nuclear decay. I thus
begin this chapter with a discussion of the assumptions behind the compound
nucleus picture. I then present the experimental set-up of the classic Oslo
method as it is performed at the Oslo Cyclotron Laboratory. Following that, I
go into the details of the Oslo method ingredients: detector response unfolding,
extraction of first-generation spectra, decomposition into level density and γ-ray
strength function and the subsequent normalisation of the decomposed quant-
ities. I also present the work I have done on reimplementing and enhancing the
Oslo method software by developing the code OMpy, which is the topic of Paper
V [145]. I end the chapter with a discussion about the β-Oslo variety of the
method, which carries with it some special challenges.
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Figure 4.1: Raw (a), unfolded (b) and primary (c) excitation-energy-γ-ray-
energy matrices for 70Ni. The white trapezoid shows the extraction region used
in the Oslo method analysis – see Section 4.5.2. The figure is reprinted with
permission from Ref. [59], included in this thesis as Paper I.
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4. The Oslo method

4.1 The compound nucleus picture

Consider a reaction involving a light ion a and a heavy nucleus A. Assume that
they form a compound nucleus B which subsequently emits another light ion c
to form the nucleus C∗, which is in an excited state Ex below the threshold for
particle emission. Finally C∗ decays to its ground state C by emission of one
or several γ rays. Schematically:

aA→ B → cC∗ → cγC. (4.1)

Following Bohr’s concept of compound nuclear reactions, we assume that our
reaction can be decomposed in two distinct parts (see Ref. [146], also Ref. [11,
Vol. I, pp. 184-185]): The formation of the compound nucleus and its subsequent
decay. Under this assumption, we may factor the cross section for the reaction
aA→ cγC as

σ(aA→ cγC) = σB(aA)p(B → cγC). (4.2)

Here, σB(aA) denotes the cross section for forming the compound nucleus B
from the constituents aA, and p(B → cγC) is the probability for B to decay to
the specific final state cγC. This may again be factorised as

p(B → cγC) = p(B → cC∗)Γγ
Γ , (4.3)

where p(B → cC∗) is the probability for the compound nucleus to decay to the
state cγC∗ and Γγ/Γ is the branching ratio for the subsequent γ decay C∗ → γC.
Conceptually, the idea is that the time scale for formation of B is much shorter
than the time scale for decay, so that the compound nucleus has time to ‘forget’
how it was made before it decays. This factorisation is crucial to the Oslo
method because it enables a separation between formation and decay. The cross-
section σB will generally be a function of the excitation energy, spin and parity of
the populated state in the compound nucleus, σB = σB(Ex, J, π), but, crucially,
independent of the subsequent kinematics of the decay. Experimentally, only
final states cγC are selected, so that the influence of p(B → cC∗) is removed.
The dependence on σB(aA) must be corrected for when comparing spectra of
differing Ex, and is important for the first-generation method which I discuss
below, but for a given Ex it factors out.

On the other hand, for a given Ex, J and π, the decay branching ratio
depends only on the energy of the emitted photon, Γγ = Γγ(Eγ), and since all
the nucleus can do to decay is to emit a gamma ray with energy 0 < Eγ ≤ Ex
(since we keep to Ex < Sn),

∑
Eγ

Γγ = Γ.

4.2 The experimental set-up

The Oslo method was developed at the Oslo Cyclotron Laboratory (OCL) over
the last 30 years with the detector system available there at the time, and
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(a) (b)

Figure 4.2: The Scanditronix MC-35 cyclotron at the Oslo Cyclotron Labor-
atory. Panel (a) shows the cyclotron from the outside, while panel (b) shows
the inside of the radiofrequency cavity where the ions are accelerated. Pictures
courtesy of Dr. A. C. Larsen.

it is instructive to explain the method by relating it to the original type of
experiments. The experimental data on 59,60Ni presented in Paper III [54], as
well as the data on 164Dy and 56Fe that have been used in Paper V [145], are
taken at the OCL using this set-up. However, the Oslo method is not limited
to this specific experimental set-up – for instance, the β-Oslo technique used
in Paper 1 in this thesis applies the Oslo method to a very different type of
experiment.

In an Oslo-method experiment at the OCL, a beam of light ions (p, d, 3He
or α) are accelerated by the Scanditronix MC-35 cyclotron to an energy of the
order tens of MeV. Figure 4.2 shows pictures of the cyclotron. The beam is
then directed to the experimental hall where it impinges on a target foil in the
centre of the detector station. The objective is to detect events where a beam
particle interacts inelastically with a nucleus in the target X. It can either
be an inelastic scattering, e.g. X(p, p′γ)X, or a pick-up or stripping reaction
such as AZXN (d, pγ)A+1

Z YN+1. In either case, the impinging projectile deposits
energy into the nucleus, either leaving it in an excited state or forming a residual
nucleus of differing proton or neutron number, also excited.

The target station in the OCL has a detector set-up consisting of a ring of
segmented Si telescopes and an array of γ detectors arranged as a ball. The Si
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4. The Oslo method

(a) (b)

Figure 4.3: A picture of the particle telescope array SiRi (a) and an illustra-
tion of the segmentation of the front detectors (b). The picture is courtesy
of Dr. A. C. Larsen, while the illustration is reprinted with permission from
Ref. [147].

telescope ring, SiRi, consists of eight trapezoidal-shaped detectors as shown in
Fig. 4.3. Each of these consist of a thin, 130 µm front detector and a thick, 1550
µm back detector. Light ions from the reaction pass through the front detector
depositing some of their energy, before being stopped in the back detector. This
enables separation between particles of different mass and charge, as well as de-
tection of the total particle energy. The front detectors are segmented into eight
separate areas with individual connectors, giving 64 separate detection areas in
total. This allows determination of the two-dimensional angular position. The
angular resolution relative to the beam (i.e. the polar angle) is about 2 degrees.
Until recently the γ-detector array was CACTUS, consisting of 28 collimated
5′′× 5′′ NaI(Tl) detectors in its full configuration, covering a solid angle of 18%
of 4π, with a total efficiency at Eγ = 1332 keV of 15.2(1)%, as measured with
a 60Co source [148]. Very recently, CACTUS has been replaced by OSCAR1,
a vastly superior array consisting of 30 large-volume 3.5′′ × 8′′ LaBr3(Ce) de-
tectors. All the OCL data included in this thesis is taken with CACTUS. In
Fig. 4.4 I show pictures of the CACTUS (a) and OSCAR (b) arrays.

If the formed nucleus has an excitation energy lower than the particle sep-
aration energy (the neutron separation energy Sn is usually the lowest), then
it has to release its excess energy by electromagnetic radiation, i.e., γ rays2.
The γ rays can be detected by CACTUS, and the outgoing light particle by
SiRi. Because SiRi is separated into a front and a back detector (a telescope),
it is possible to discriminate between light ions of different mass and charge.
As long as the particles are not too energetic, i.e. they are stopped completely

1Oslo SCintillator ARray
2With the exception of internal conversion, where the electromagnetic interaction instead

kicks out one of the orbital electrons surrounding the nucleus – but this is usually negligible
for the cases of interest in this thesis.
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(a) (b)

Figure 4.4: The γ-detector arrays at the Oslo Cyclotron Laboratory. Panel (a)
shows the old array, CACTUS, while panel (b) shows its successor, OSCAR.
Pictures courtesy of Prof. M. Guttormsen and Dr. A. C. Larsen.

inside SiRi, their full energy is known. Then, the angular resolution makes it
possible to calculate the excitation energy Ex of the residual nucleus when the
light ion was emitted, by using the reaction kinematics. Because of the high
dependence of the reaction kinematics on angle, SiRi is often placed backwards,
i.e. upstream in the beam relative to the target. The polar angular coverage
is then 126-140 degrees. This increases the relative detection rate of inelastic
events with larger angular momentum transfer as compared to forward angles,
and decreases the detection rate of elastically scattered beam particles. By re-
cording thousands of such coincidence events, we build a set of γ spectra tagged
with excitation energy – an Ex-Eγ matrix. Ideally, the excitation energy range
goes from Ex = 0 MeV all the way up to particle threshold (e.g. the neutron
threshold, Sn). Due to experimental conditions, mainly the limited thickness
to stop the particles in SiRi, this is not always possible. The only requirement
to use the Oslo method is a complete set of Ex-tagged γ spectra up to some
Ex,max.

The steps in the Oslo method can be summarised as follows. First, the
matrix of Ex-Eγ spectra, hereafter dubbed the raw matrix, is unfolded to correct
for detector response effects of the CACTUS array. Then, the first-generation
method is applied to extract the spectrum of primary γ rays at each Ex. Finally,
two one-dimensional functions, the level density ρ(Ex) and the γ-ray strength
function f(Eγ), are obtained by fitting their product to the primary γ-ray matrix
and normalising to auxiliary data.
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4.3 γ-ray energy unfolding

The first step of the Oslo method is to unfold, i.e., deconvolute the γ-ray spectra
for each excitation energy to compensate for the distortions to the spectral shape
caused by the response of the detector to γ radiation. For example, a γ ray may
produce an electron-positron pair by interacting with the detector crystal, and
one or both of these may escape detection. This is known as single and double
escape, respectively, and the effect in the spectrum is the appearance of artificial
peaks at E′γ = Eγ −Nmec

2 = Eγ −N × 511 keV for N = 1 (single escape) or
2 (double escape). Other effects also influence the response, such as Compton
scattering and backscatter, which produces a continuous ‘ridge’, as well as a peak
at Eγ = 511 keV from positron-electron pairs annihilating in the surroundings
of the detector. A more in-depth discussion of response effects can be found in
Ref. [149].

In the Oslo method, the effects of detector response are corrected by a tech-
nique known as unfolding. Let the detector response be modelled as a condi-
tional probability distribution

p(Eγ |E′γ), (4.4)

encoding the probability that a γ ray with true energy E′γ is detected with
energy Eγ . In Fig. 4.5, I show some response functions p(Eγ |E′γ) for the CAC-
TUS detectors. The response functions are used in the Oslo software package
[150]. Given a true γ-ray spectrum U(Eγ), the folded spectrum F (Eγ), i.e., the
spectrum seen by the detector, is then given by

F (Eγ) =
∫
p(Eγ |E′γ)U(E′γ) dE′γ . (4.5)

By discretising into energy bins of width ∆Eγ , it becomes a matrix equation

~F = P ~U, (4.6)

where P is the response matrix of discrete probabilities Pij = p(Eγ,i|E′γ,j)∆Eγ .
In principle, the unfolding procedure amounts to inverting this equation, to
obtain ~U from ~F . However, a straightforward matrix inversion is ill-advised, as
it will produce large, artificial fluctuations in ~U [149, 151]. Instead, the approach
taken in the Oslo method is to use an iterative technique which successively
approximates U . Letting ~R denote the measured spectrum, the algorithm is

1. Start with a trial function ~U0 = ~R at iteration i = 0

2. Calculate the folded spectrum ~Fi = P ~Ui

3. Update the trial function to ~Ui+1 = ~Ui + (~R− ~Fi)

4. Iterate from 2 until ~Fi ≈ R. The criterion for terminating the iterations is
taken as a weighted sum of the root-mean-square error of ~Fi − ~R and the
level of fluctuations in ~Ui. The fluctuations are estimated as

∑
l |Ui,l− ~Si|,

where ~Si is a smoothed version of the spectrum ~Ui.
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Figure 4.5: Response functions for the NaI(Tl) detectors of CACTUS for some
selected incident γ-ray energies, taken from the Oslo-method software package
[150]. The curves show the probability that a γ-ray with true energy E′γ is
detected with energy Eγ . Note that the full-energy peaks exceed the limit on
the y axis. The response functions have not been folded with the detector
resolution – hence, a realistic experimental response spectrum would exhibit
peaks that are less sharp.

In addition to this, Ref. [149] presents a further refinement to the unfolding
method known as Compton subtraction. It is used to further control the fluc-
tuations in the unfolded spectrum. The basic concept behind it is to use the
previously unfolded spectrum to decompose ~R into parts corresponding to the
full-energy, single and double escape and annihilation peaks, and the ‘rest’
which comes from Compton scattering and backscattering from the surround-
ings. Each of these parts, save for the full-energy peak, are then smoothed with
the detector resolution before they are subtracted from ~R. The resulting spec-
trum is then multiplied up to maintain the number of counts. The idea is that
this gives an unfolded spectrum with the same statistical fluctuations as in the
original spectrum ~R. An example of an unfolded γ-ray spectrum is shown in
panel b of Fig. 4.1.

4.4 Extraction of the primary γ-ray matrix

The second step of the Oslo method is the determination of the first-generation,
or primary, γ-ray spectrum for each excitation-energy bin. Here, an iterative
algorithm is applied as described in Ref. [152]. Let FG(Eγ)Ex denote the first-
generation γ-ray spectrum, i.e., the intensity distribution of γ-ray decay from
a given excitation energy Ex, as function of γ-ray energy Eγ . Generally, the
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nucleus will decay from Ex down to the ground state by a path involving one
or several states E′x of 0 < E′x < Ex, emitting a cascade of γ rays in the
process. These form the total γ-ray spectrum. The total, or all-generations
γ-ray spectrum, denoted AG(Eγ)Ex , can be viewed as a superposition of the
first-generation spectrum and a weighted sum of the all-generations spectra of
excitation energies below,

AG(Eγ)Ex = FG(Eγ)Ex +
∑

E′x<Ex

n(E′x)Exw(E′x)ExAG(Eγ)E′x . (4.7)

Here, n(E′x)Ex is a normalisation factor that corrects for the varying cross sec-
tion to populate the E′x bins, and w(E′x)Ex is a weighting factor. The normal-
isation factor can be estimated from the total γ-ray spectrum by the relation

n(E′x)Ex = M(E′x)N(Ex)
M(Ex)N(E′x) , (4.8)

where M(Ex) and N(Ex) denote the average γ-ray multiplicity and the total
number of counts, respectively, at excitation energy Ex. The average multipli-
city can again be estimated from the spectrum by the relation

M(Ex) = Ex
〈Eγ〉

, (4.9)

where 〈Eγ〉 is the weighted-average γ-ray energy at excitation energy Ex. The
weight function w(E′x) encodes the probability for the nucleus to decay from Ex
to E′x, and is in fact nothing but the normalised first-generation spectrum for
Ex,

w(E′x)Ex = FG(Ex − E′x)Ex∑
E′γ
FG(E′γ)Ex

(4.10)

By rewriting Eq. (4.7), we obtain

FG(Eγ)Ex = AG(Eγ)Ex −
∑

E′x<Ex

n(E′x)Ex
FG(Ex − E′x)Ex∑

E′γ
FG(E′γ)Ex

AG(Eγ)E′x . (4.11)

This is a self-consistent set of equations for the FG spectra, which we solve
by an iterative procedure, starting with a set of trial functions FG(Eγ)Ex and
iterating until convergence is reached. The trial functions are chosen as constant
functions, i.e. with the same value for all Eγ . The resulting first-generation γ-
ray matrix is shown in panel c of Fig. 4.1.

4.5 Decomposition into two functions

With the primary matrix at hand, the next step of the Oslo method consists of
a decomposition by fitting the normalised first-generation P (Ex, Eγ) spectra to
a product of two one-dimensional functions, namely the nuclear level density,
ρ(Ex), and the γ-ray strength function, f(Eγ). This decomposition and the
assumptions behind it will now be discussed in detail.
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4.5.1 Derivation of the decomposition equation
We want to relate the distribution of primary γ rays to the strength function
and level density. This is done by considering Fermi’s golden rule3 [153, 154],
which says that the probability of decay from a specific initial state i into a
quasi-continuum of final states f is given to first order in perturbation theory
as

ωi→f = 2
ε0h̄

λ+ 1
λ[(2λ+ 1)!!]2

(
Eγ
h̄c

)2λ+1
B(XL; i→ f)ρavail(f), (4.12)

where ρavail(f) is the density of available final states f and B(σλ; i → f) is
the reduced transition probability.4 The γ-ray strength function for a given
multipolarity XL and for nuclear states with a given excitation energy Ex, spin
J and parity π, as given in Eq. (3.12), is [73]

fXL(Eγ , Ex, J, π) =
〈ΓXLγ (Eγ , Ex, J, π)〉ρ(Ex, J, π)

E2L+1
γ

(4.13)

= aXL〈B(XL;ExJπ → (Ex − Eγ)Jfπf )〉ρ(Ex, J, π), (4.14)

where 〈· · · 〉 denotes an average over individual transitions in the vicinity of
Eγ , Ex (in practice defined by the energy binning resolution), ρJ,π(Ex) is the
density of spin-J , parity-π levels at energy Ex and aXL is a constant. Taking
the average over Eq. (4.12) in a vicinity around Ex, Eγ and substituting, we
obtain

〈ωi→f 〉 = 2
ε0h̄aXL

λ+ 1
λ[(2λ+ 1)!!]2

(
Eγ
h̄c

)2λ+1
fXL(Eγ , Ex, Ji, πi)

ρJi,πi(Ex) ρavail(Ef ),

(4.15)

where Ef = Ex − Eγ . In the Oslo method, since the decays happen at high
Ex, we assume that dipole radiation dominates. This is well supported exper-
imentally [97, 99, 102, 125]. The selection rules dictate that dipole radiation
changes the angular momentum J by at most one unit. For M1, the parity is
unchanged, while for E1 it flips. This determines the density of available final
states for the decay,5

ρavail(Ef ) =
Ji+1∑

Jf=Ji−1
3ρ(Ef , Jf , πf ). (4.16)

3Fermi’s golden rule should really be called Dirac’s golden rule. It was Paul Dirac who
first derived it, while Enrico Fermi later coined the name ‘golden rule’.

4This follows from the golden rule as shown in e.g. appendix B of Ref. [155], but the
final state density has been modified to take into account the fact that the decay goes into a
quasi-continuum of nuclear levels.

5In the case of Ji = 1/2 the sum runs over Jf = {1/2, 3/2}, and in the case of Ji = 0, the
sum only runs over Jf = 1, since J = 0→ J = 0 transitions are forbidden.
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The factor 3 comes from the distinction between levels and states.6 For a nuclear
level with a given Jf , there are 2Jf +1 distinct magnetic substates. However, in
an electromagnetic dipole decay, the total M quantum number cannot change
by more than one unit, which means that only three of the magnetic substates
are available, independent of Jf . We may then write the average total dipole
transition rate 〈ω〉 ≡ 〈ωE1〉+ 〈ωM1〉 as

〈ωJi,πi(Ex, Eγ)〉 =
CE3

γ

ρJi,πi(Ex)

fE1(Eγ , Ex, Ji, πi)
Ji+1∑

Jf=Ji−1
ρ(Ef , Jf ,−πi)

(4.17)

+ fM1(Eγ , Ex, Ji, πi)
Ji+1∑

Jf=Ji−1
ρ(Ef , Jf ,+πi)

 ,

where all constants have been grouped together and named C for brevity. Let
us next define the total dipole strength function f1 by

f1 = fE1 + fM1. (4.18)

To factor the expression, we need to assume parity equilibration of the level
density, i.e. ρ(Ex, J,+) ≈ ρ(Ex, J,−). Then we can write

〈ωJi,πi(Ex, Eγ)〉 =
CE3

γ

ρJi,πi(Ex)f1(Eγ , Ex, Ji, πi)
Ji+1∑

Jf=Ji−1
ρ(Ef , Jf , eq), (4.19)

where ρ(Ex, Jf , eq) denotes the level density of one parity, the notation emphas-
ising the assumption of parity equilibration.

Assuming that Ex is below the threshold energy for particle emission, and
that dipole radiation dominates, Eq. (4.19) represents all possible decay modes.
We may thus exploit probability conservation and write

PJi,πi(Ex, Eγ) = 〈ωJi,πi(Ex, Eγ)〉∑
Eγ
〈ωJi,πi(Ex, Eγ)〉 (4.20)

= DE3
γf1(Eγ , Ex, Ji, πi)ρJf ,eq(Ex − Eγ) (4.21)

where D is another normalisation constant. Note that the density of initial
states cancels out.

The final step is to remove the dependence on J and π, since we cannot
discriminate between them experimentally. By the generalised Brink–Axel hy-
pothesis, as discussed in the previous chapter, the strength function is approx-
imately independent of Ex, J and π, so we may write

f1(Eγ , Ex, Ji, πi) ≈ f1(Eγ). (4.22)

6Strictly speaking, the factor is less than 3 when Jf is less than 1. We assume that this
is a small correction and can be neglected.
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Decomposition into two functions

The normalised, experimental first-generations matrix P (Ex, Eγ) is a superposi-
tion of the individual PJi,πi(Ex, Eγ), weighted by the probability gpop(Ex, Ji, πi)
to populate different spins and parities at each Ex:

P (Ex, Eγ) =
∑
Ji,πi

gpop(Ex, Ji, πi)PJi,πi(Ex, Eγ). (4.23)

Inserting, this gives

P (Ex, Eγ) = DE3
γf1(Eγ)

∑
Ji,πi

gpop(Ex, Ji, πi)
Ji+1∑

Jf=Ji−1
ρ(Ex − Eγ , Jf , eq).

(4.24)

Lastly, we may write the partial level density ρ(Ex − Eγ , Jf , eq) as

ρ(Ex − Eγ , Jf , eq) = gint(Ex − Eγ , Jf , eq)ρ(Ex − Eγ), (4.25)

where gint denotes the intrinsic spin distribution of the nucleus and ρ(Ex) is the
total nuclear level density. Factoring out, we obtain

P (Ex, Eγ) = DE3
γf1(Eγ)ρ(Ex − Eγ)z(Ex, Eγ), (4.26)

where we have defined

z(Ex, Eγ) =
∑
Ji,πi

gpop(Ex, Ji, πi)
Ji+1∑

Jf=Ji−1
gint(Ex − Eγ , Jf , eq). (4.27)

In the Oslo method, it is assumed that z(Ex, Eγ) ≈ constant. This is not
completely correct, but the correction is believed to be small. The factor z
could, however, potentially have a systematic impact on the end results of the
method. The extracted quantities ρ(Ex) and f(Eγ) are coupled through the nor-
malisation parameter α (see Section 4.6 below). The presence of another Ex-
and Eγ-dependent factor in the decomposition equation influences this coup-
ling. It could thus be that when α is determined by normalising ρ(Ex) to
auxiliary data at low and high Ex, the resulting, coupled slope of f(Eγ) is not
completely right – because the quantity being coupled is in fact not f(Eγ), but
rather f(Eγ)z(Ex, Eγ). Since z is sensitive to the distribution of populated spins
gpop(Ex, Ji), which in many cases is narrower than gint but never broader, there
could be a systematic correction that is missing. This would presumably be
most important for experiments where the populated spin range is particularly
small, such as with heavy actinide targets [156–158] or in the β-Oslo method
(see Section 4.8 below). Figure 4.6 shows plots of z(Ex, Eγ) for two different
spin selection criteria. In both cases, the Ericson spin distribution (Eq. (3.8))
with the Guttormsen spin-cutoff parametrisation (Eq. (3.11)) has been used
for both gpop and gint, with the same parameters as those used for 163Dy in
Ref. [133]. However, in Fig. 4.6a, the sum over Ji in Eq. (4.27) runs over all
available values, while in Figs. 4.6b and 4.6c, it is restricted to Ji = 5, 6, 7 and
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Figure 4.6: Plot of the correction factor z(Ex, Eγ) for (a) a broad spin pop-
ulation range corresponding to the intrinsic spin distribution, (b) the range
Jpop = 5, 6, 7 and (c) the range Jpop = 0, 1, 2.

Ji = 0, 1, 2, respectively. The case Ji = 5, 6, 7 is chosen because it mimics the
case of the β-Oslo experiment on 70Ni in Paper I [59] (see Section 4.8 below),
albeit for a very different nucleus. The case Ji = 0, 1, 2 resembles the situation
with a heavy actinide target [157].

However, it is not apparent from Fig. 4.6 what impact z(Ex, Eγ) has on the
level density and γ-ray strength function. Together with Fabio Zeiser, I have
done a preliminary test where we included the z factor in the fitting module in
OMpy (see below) to see what effect it has on the final result. Figure 4.7 shows a
comparison of fits made to the 163Dy data set from Ref. [133], which is also used
in Paper V [145]. We have done four separate fits, one where we neglect the cor-
rection factor, and three fits corresponding to the three z(Ex, Eγ) distributions
shown in Fig. 4.6. Figure 4.7 shows the result of the four different fits. Panels
(a) and (c) show level densities, while panel (b) and (d) show strength functions.
The same fits are used in the top and bottom panels, but with different trans-
formation parameters: In the top panels, the functions have been transformed
so that their γ-ray strength functions align, while the bottom panels align the
level densities instead. There is not much change in the individual fits – the
relative positions of neighbouring function values appears unaltered. The slope-
coupling between the level density and strength function, however, is modified.
The no-correction-factor fit (blue solid line) and gpop = gint (red dash-dotted
curve) look identical, which indicates that neglecting the z factor is justified in
cases of broad spin population. This is also consistent with Fig. 4.6a, which
shows that z(Ex, Eγ) is constant for Ex in the extraction region, 3 MeV to 6.5
MeV. The fit with Ji = 0, 1, 2 (green dotted line) gets a slightly modified slope
coupling, giving rise to a somewhat smaller (larger) level density (γ-ray strength
function) at low energies. The opposite happens, and is more pronounced, in
the fit with Ji = 5, 6, 7 (orange dashed line).

Since the level density is the quantity that is easiest to constrain by auxiliary
data at low and high Ex (see Section 4.6 below), the lower panels in Fig. 4.7
are perhaps the most interesting. If there is a systematic correction in the Oslo
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Figure 4.7: Comparison of fitted ρ(Ex) (left) and f(Eγ) (right) for 163Dy [113,
133] with and without the z(Ex, Eγ) factor included in the fit. The top (a
and b) and bottom (b and c) panels show the same fits of the level density
(a, c) and strength function (b, d), respectively, but with different choices of
normalisation parameters. The functions in the upper panel are transformed
to have matching γ-ray strength functions, while those in the lower panel are
matched on level density instead. The blue, solid curves show the fit without
the z factor, while the orange dashed, green dotted and red dash-dotted lines
show fits corresponding to the z(Ex, Eγ) distributions shown in panels a–c of
Fig. 4.6, respectively.
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method that has not been taken into account, and it affects the slope coupling,
then it is likely to have resulted in an altered slope on the γ-ray strength rather
than the level density.

In light of Fig. 4.7, the different z(Ex, Eγ) in Fig. 4.6 are easier to interpret:
The all-spins case in Fig. 4.6a is flat and does not alter the fit. The high-spin
selection in Fig 4.6b gives rise to a z(Ex, Eγ) that has a downward slope as
function of Eγ , giving rise to an Eγ-dependent correction that tilts the γ-ray
strength function counter-clockwise. The opposite happens in Fig. 4.6c, where
z(Ex, Eγ) slopes upward as function of Eγ and makes the strength function tilt
clockwise. I stress that these are very preliminary results, and must be viewed
with scepticism. However, if they are true, and this is a general trend, it is
interesting because it could have implications for the shape and magnitude of
the low-energy enhancement and for the M1 scissors mode. An effort is under
way to further investigate the importance of the correction factor, and to see if
it is worth properly including in the Oslo method analysis [159].

For the following discussion, I will assume that z(Ex, Eγ) ≈ constant, so
that the Oslo method equation (4.26) is given by

P (Ex, Eγ) = DE3
γf1(Eγ)ρ(Ex − Eγ) (4.28)

for a suitable normalisation constant D. This concludes the derivation of the
Oslo method equation, and shows that the first-generation spectrum is propor-
tional to the product of two functions where one depends only on Eγ and the
other depends only on Ef = Ex − Eγ , enabling us to make a global fit.

4.5.2 Fitting the functions
For the discussion concerning the fitting procedure, it is convenient to exchange
the γ-ray strength function f(Eγ) by the γ-ray transmission coefficient T (Eγ).
The two are related as [160]

T (Eγ) = 2πE3
γf(Eγ), (4.29)

which gives the rewritten equation [161]

Pfit(Ex, Eγ) ∝ T (Eγ)ρ(Ex − Eγ). (4.30)

The fit of ρ(Ex−Eγ) and T (Eγ) to data is carried out as follows. First, we select
a suitable bin size ∆E, typically 100− 300 keV depending on the experimental
Ex resolution and to obtain sufficient statistics in each bin. The first-generation
matrix is rebinned along both the Ex and Eγ axes to this bin size. We then
obtain the matrix of experimental decay probabilities, Pexp(Ex, Eγ), by norm-
alising the spectrum in each Ex bin to unity. Only a region of the P (Ex, Eγ)
matrix defined by Ex,min < Ex < Ex,max, Eγ,min < Eγ < Eγ,max is used in
the fit. Here, Ex,min is set to a high enough value to ensure that the decays
happen in the statistical regime, Ex,max is limited by the experimental reach or
the neutron threshold, Eγ,min is limited by detector thresholds and uncertainties
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in the unfolding procedure, and Eγ,max is given by Ex,max plus the resolution
of the γ detectors ∆Eγ(Ex,max). In panel c of Fig. 4.1, the first-generation
spectrum of 70Ni from Paper I [59] is shown with the extraction region drawn
as a white trapezoid. The energy ranges for ρ(Ex) and T (Eγ) are determined
by this extraction region: ρ(Ex) is extracted for Ex ∈ [0, Ex,max − Eγ,min] and
T (Eγ) for Eγ ∈ [Eγ,min, Eγ,max].

For the fit of ρ and T , we take the function value in each bin as a free
parameter. For an energy span of 10 MeV, with ∆E = 200 keV, this gives about
100 free parameters for ρ and T combined. However, each bin of Pexp(Ex, Eγ)
contributes one constraint, giving O(502/2 = 1250) constraints. Hence, the fit
is highly over-constrained.

For a given pair of trial functions (ρ, T ), we construct the corresponding
matrix Pfit(Ex, Eγ) by

Pfit(Ex, Eγ) = NExρ(Ex − Eγ)T (Eγ), (4.31)

where NEx is a normalisation coefficient so that
∑
Eγ
Pfit(Ex, Eγ) = 1 for each

Ex bin. We fit Pfit by a minimal-χ2 approach, minimising the weighted sum-of-
squared errors

χ2 =
∑
Ex,Eγ

(
Pexp(Ex, Eγ)− Pfit(Ex, Eγ)

σPexp(Ex, Eγ)

)2
, (4.32)

where σPexp(Ex, Eγ) is the matrix of standard deviations on the experimental
primary spectra. The use of a χ2 minimisation is only strictly justified if the
data being fit have Gaussian errors. In our case, the counting experiments
are governed by Poisson statistics, and the Gaussian distribution is a good
approximation. See Appendix B for a more thorough discussion about statistics
and χ2 fitting.

4.5.3 Numerical minimisation
With the probability-theoretical considerations out of the way, it remains to
obtain the best-fit estimate for ρ and T . This is achieved by numerical minim-
isation. All Oslo method analyses up to now have been carried out using the
Oslo software package [150], written by Prof. Magne Guttormsen, Dr. Andreas
Schiller and others. In the package, a program called rhosigchi handles the
decomposition and fit. It uses the iterative gradient descent method derived in
Ref. [161] to obtain the χ2 minimum.

A shortcoming of the original Oslo method implementation has been the
estimation of the uncertainty matrix σPexp(Ex, Eγ) for the χ2 fit. Due to the
lack of a complete statistical uncertainty propagation, one has had to resort to
an approximate uncertainty estimation. This is discussed in detail in Ref. [161].
A major part of my PhD work is dedicated to addressing this. As a result, I
have written a complete reimplementation of the Oslo method in the Python
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4. The Oslo method

programming language, named OMpy.7 It is the topic of Paper V [145], and the
code is available from Ref. [162]. The OMpy code uses a different minimisation
approach, employing the numerical minimisation algorithm Powell [163] from
the Scipy library [164]. Because of the new uncertainty propagation in OMpy,
we have access to a proper uncertainty matrix σPexp for the fit. The details of
the uncertainty propagation is discussed below – but first, we must cover the
topic of normalisation.

4.6 Normalisation

In Ref. [161], it is shown that the minimal-χ2 fit of ρ(Ex) and T (Eγ) has a degree
of degeneracy in its minimum. The χ2 value is invariant under a transformation
by a continuous three-parameter Lie group G(A,α,B) given by

ρ(Ex), T (Eγ) G→ AeαExρ(Ex), BeαEγT (Eγ). (4.33)

Note that f(Eγ) transforms in the same way as T (Eγ) (Eq. (4.29)). Because the
normalised values of the level density and strength function span many decades,
it is customary to look at them in logarithmic plots. In terms of logarithmic
function values, the A and B parameters correspond to a constant shift in all
values of ρ and T , respectively, and the α parameter rotates the linear slope
of both functions. Hence, α couples the normalisations together. As far as we
know, there is no way to discriminate between different solutions (i.e. parameter
values for G) using only the primary matrix. In Fig. 4.8, I show the ‘raw’,
unnormalised fit with OMpy to the 164Dy data set from Paper V [145]. Only one
of the solutions gives the true shape of the functions. Obtaining this solution is
called normalisation, and must be done using auxiliary data. Usually, knowledge
of the discrete level structure at low Ex is used together with an estimate for
ρ(Sn), based on D0 resonance spacings from (n, γ) experiments together with a
spin distribution function. This is enough to determine both A and α. The B
parameter can be determined from data on the average total radiative width at
Sn from (n, γ) experiments, 〈Γγ(Sn, Jt ± 1/2, πt)〉, where Jt, πt denote the spin
and parity, respectively, of the target nucleus undergoing neutron capture. The
average total radiative width is related to T (Eγ) through the relation

〈Γγ(Sn, Jt ± 1/2, πt)〉

= 1
2 (〈Γγ(Sn, Jt − 1/2, πt)〉+ 〈Γγ(Sn, Jt + 1/2, πt)〉) , (4.34)

7OMpy is a collaborative effort. Most of the code, as well as the program structure, is
designed and written by me. Fabio Zeiser has contributed the routine for χ2 minimisation.
Also, Erlend Lima is, at the time of writing, working on refining the code structure and
implementing automatic code tests. My coding has also benefited immensely from discussions
with both of them.
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Figure 4.8: Unnormalised best-fit ρ(Ex) (left) and f(Eγ) (right) for 164Dy [113,
133]. The figure is from Ref. [145], included as Paper V in this thesis.
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where 〈Γγ(Ex, J, π)〉 is given by the integral

〈Γγ(Ex, J, π)〉 (4.35)

= D0

2π

∫ Ex

0
dEγ BT (Eγ)ρ(Ex − Eγ)

∑
π=±

1∑
I=−1

gint(Ex − Eγ , J + I, π).

Here, gint is the intrinsic spin distribution of the nucleus. See Appendix A for
a derivation of the γ-ray strength function based on this integral.

The auxiliary normalisation is a major source of uncertainty for the final
results of the Oslo method [165], not least because of the spin distribution,
which is experimentally unknown and has to be estimated from a model, as
discussed in the previous chapter.

In principle, all the three parameters of G should be combined in a probab-
ility model and fitted simultaneously. In practice, this has proven technically
challenging, and usually the level density ρ(Ex) is therefore normalised first to
determine A and α, before using T (Eγ) with the chosen α to determine B. We
have recently begun investigating methods to fit all parameters simultaneously.
Statistically, it amounts to constructing a joint likelihood for the parameters A,
α and B given the constraints from all auxiliary data (see Appendix B for an
introduction to likelihoods):

L(A,α,B) = Ldiscrete(A,α)× Lρ(Sn)(A,α)× L〈Γγ〉(α,B). (4.36)

Assuming Gaussian errors, the likelihoods can be constructed from χ2’s, e.g.,

lnLdiscrete(A,α) = −1
2

∑
discr.region

(ρdiscrete(Ex)− ρfit(Ex;A,α))2

σ2
discrete + σ2

fit
. (4.37)

To carry out the fit and obtain a proper uncertainty quantification, it is neces-
sary to adopt a Bayesian framework with prior assumptions on the parameters
[166]. Figure 4.9 shows a preliminary test I have done with this approach, using
a data set from an experiment with the 184W(α, p)187Re reaction. For this, I
used a slightly different set of auxiliary data, namely the experimental levels
at low Ex together with data on f(Eγ) above neutron threshold from an (n, γ)
experiment [167]. The absence of experimental ρ(Sn) information mimicks cases
where the β-Oslo method (see below) is applied to unstable, neutron-rich nuc-
lei, where auxiliary normalisation data other than low-energy level structure is
scarce. I discuss some more details of the fit in Appendix B. The benefit of per-
forming a simultaneous, global fit is that correlations between the parameters
is taken into account. As can be seen in the figure, the correlation can be quite
strong and highly non-linear. By taking proper account of the correlations, the
final, quoted uncertainties on the parameter values could be reduced.

4.7 Propagation of statistical uncertainties

As already mentioned, proper quantification of uncertainties has been lacking
in the Oslo method. The problem is that the unfolding and first generation
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α and B to auxiliary data. The data set used is from an OCL experiment with
the reaction 184W(α, p)187Re. See text for details.
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Figure 4.10: Normalised level density and γ-ray strength function of 164Dy, in a
comparison between the original analysis of Ref. [133] (red triangles) and a new
fit using OMpy (teal circles). The figure is from Ref. [145], included as Paper
V in this thesis.

methods involve complex transformations of the starting spectra. Therefore,
it is difficult to keep track of the analytical uncertainty in the input spectra
all the way to the final result. With the new implementation OMpy, this is
amended. We use a Monte Carlo technique to propagate uncertainties by making
many copies of the input Ex-Eγ matrix, and perturbing each copy with random
noise distributed according to the experimental uncertainty. We assume that
the number of counts in each bin of the matrix has a Poisson distribution.
By running each member of this ensemble of perturbed matrices through the
unfolding and first-generation method, we can estimate the standard error in
each bin of the first-generation matrix, σPexp(Ex, Eγ), and use that for the χ2 fit.
This is all discussed in detail in Paper V [145]. Figure 4.10 shows a comparison
for a data set on 164Dy [113, 133] between the original analysis using the Oslo-
method software package [150] and a re-evaluation using OMpy.

The modularity of OMpy also opens up for other possibilities, which will be
pursued in the future. For instance, the ensemble propagation technique can
be applied to study the systematic uncertainties associated with the unfolding
procedure. The response functions used in the unfolding are not perfect, and
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there are systematic uncertainties in how well they model the actual response of
the detectors. The ensemble propagation technique can be extended to gauge
this uncertainty by constructing an ensemble of different response functions.
Another refinement which will be considered is to separate the raw Ex-Eγ matrix
into signal and background and perturb the two individually. This is required
to make the assumption of Poisson distributed counts completely valid.

4.8 The β-Oslo method

I end the chapter with some words on the β-Oslo method. It is a new technique,
invented in 2014 in connection with experiments at Michigan State University
(MSU). The β-Oslo method is a variation of the Oslo method based on total
absorption spectrometry (TAS) [123]. The idea is to obtain the excitation energy
by summing all the γ rays emitted by the daughter nucleus following β decay
of the parent nucleus. This eliminates the need for an auxiliary detection of the
Ex value, and thus opens the possibility for applying the Oslo method to nuclei
that cannot be produced via stable targets. Instead, one can produce the nuclei
of interest by β decay inside the detector, and observe the β-delayed γ emission.
The β-Oslo method has been applied to a number of cases so far using the SuN
detector at MSU [168]: 76Ge [123], 69Ni [132] and 74Zn [141], as well as two
cases where I have been involved: 70Ni [59] and 51Ti, included in this thesis as
Paper I and IV, respectively. A large number of β-Oslo experiments on other
nuclei are planned for the near future.

In the β-Oslo method experiments that are part of this thesis, a β−-unstable
nucleus is produced, separated and implanted on a double-sided silicon strip
detector (DSSD) inside SuN. When it decays by converting a neutron to a
proton, it emits an electron that can be detected by the DSSD (along with a
neutrino that escapes detection). This provides a tag for the event. The residual
nucleus (generally) ends up in an excited state and decays to its ground state
by emitting a β-delayed cascade of γ rays, which are detected by SuN. The
summing efficiency of SuN varies with γ-ray multiplicity and initial excitation
energy, and is on average 25-30 % [59].

While allowing studies outside the reach of the standard Oslo method, the β-
Oslo method also poses some new challenges. The first concerns spin population.
When excited states in a nucleus are populated mainly via Gamow-Teller β
decay, the range of available states are governed by the associated selection
rules, which dictate that the available final states for a decay differ from the
decaying state by at most one unit of angular momentum, ∆Ji,j = 0,±1 [24].
The parity does not change. This means that the available spin range of the
initial excitation energy levels in the nucleus under study, gpop(Ex, Ji, πi), has
a width of only three spin units, and only one parity. This is, at least at high
excitation energy, significantly different from the intrinsic spin distribution of
the nucleus. Assuming that the subsequent γ decays are dominantly dipole, the
electromagnetic selection rules allow one further unit of spin change, as well
as a parity flip, bringing the available spin range after one dipole transition
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Figure 4.11: Experimental level density (a) and γ-ray strength function (b) of
70Ni. The blue circles and white squares show the level density extracted with
and without Ex unfolding, respectively. The figure is reprinted with permission
from Ref. [59], included in this thesis as Paper I.

to {Ji − 2, Ji − 1, Ji, Ji + 1, Ji + 2} including both parities. Hence, the spin
distribution of β-populated levels has a width of three spin units in one parity,
while the distribution after the primary γ decay is five units wide and includes
both parities. In principle, this is a violation of the assumptions in the first-
generation method, where there should be no difference between a level being
populated by the nuclear reaction or by γ decay from a level above. This can lead
to artificial holes in the primary γ-ray matrix at high Ex due to oversubtraction
of intensity from Ex bins below. This is a problem in the 70Ni analysis presented
in Paper I [59], and impairs the quality of the extracted level density at high
Ex. In that case, the 70Co parent decays from a 6− level, populating 5−, 6−
and 7− levels in the 70Ni daughter. The subsequent dipole γ decay can then
reach final levels with J ∈ [4, 8] in both parities – a significantly higher available
level density.

Futhermore, the restricted spin range even after one dipole decay must be
taken into account when normalising to auxiliary data. For 70Ni, a correction
factor of 0.47 was used to compensate the difference between the total auxiliary
level density at Sn and the selective population in the β-Oslo experiment [169].

4.8.1 The unfolding problem in β-Oslo events
Another important difference from the regular Oslo method is in the unfolding.
Since the Ex tag for each event is given by the sum of all the Eγ measure-
ments in the event, the dependence of the Ex-Eγ matrix on detector response
effects is much more complicated. In the first analyses performed with the β-
Oslo technique, no unfolding was applied to the Ex axis. Then, a separate
unfolding along the Ex axis was developed. Figure 4.11a demonstrates how this
affected the level density and γ-ray strength function for the case of 70Ni. The
most striking difference is in the level density for Ex < 2 MeV, where the Ex-
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unfolded level density exhibits a much sharper drop below Ex ∼ 2 MeV. This
constitutes an improved agreement with the experimental level structure (red
solid curve), because the 0+ ground state and the first excited 2+ state should
not be populated by the β decay.8

However, the problem of β-Oslo unfolding is complicated, interesting and
worth a closer inspection. I will now briefly describe work I have done together
with Fabio Zeiser to try to develop an improved method for unfolding β-Oslo
events. We have written a code to simulate the effect of detector response
folding on Ex-Eγ matrices constructed according to the β-Oslo technique, i.e.,
by calculating Ex for each event as

Ex =
N∑
k=1

Eγ,k (4.38)

for an event with N γ rays. In the Oslo method, we assume that the detector
response folding can be modelled according to Eq. (4.5). In the β-Oslo method,
in terms of (Ex, Eγ), the response of the detector is a four-variable probability
distribution: Given an event with energies E′x, E′γ , the probability that it is
detected with energies Ex, Eγ is P (Ex, Eγ |E′x, E′γ). In matrix language, this is
a rank-4 response tensor, and the operation of folding becomes

F (Ex, Eγ) =
∑
E′x,E

′
γ

P (Ex, Eγ |E′x, E′γ)U(E′x, E′γ). (4.39)

Furthermore, since Ex =
∑
Eγ , the Ex response is multiplicity dependent: An

event consisting of two γ-rays will not have the same Ex response as an event
of four. Also, there is mixture of the different multiplicities – for example, an
event with high multiplicity will often get several γ rays in the same detector
segment, so that the observed multiplicity is lower than the true multiplicity.
Alternatively, some γs may escape detection altogether, giving both a too-low
multiplicity and too-low Ex. The observed multiplicity may also be larger than
the true multiplicity, if one registers a Compton scattered photon in a different
detector segment. All this is to say, the response tensor should probably have
at least two additional variables, the multiplicities M ′ and M , which further
increases the dimensionality. This system of equations is too demanding to
solve exactly, and approximations or alternative approaches must be pursued
instead.

As already mentioned, the approximation that has been used in the 70Ni case
of Paper I [59] is to unfold the Ex-Eγ matrix separately along the Eγ and Ex
axes. This amounts to assuming that the folding probability P (E′x, E′γ |Ex, Eγ)
can be factorised as P (Ex|E′x)P (Eγ |E′γ). In the other analyses that have been
published so far, no unfolding has been applied to the Ex axis at all.

8There is a small component of decays from an isomer of tentative spin assignment 3+

in 70Co that offers a decay path to populate the 2+ level. The 0+ ground state should be
completely unreachable.

71



4. The Oslo method

To test the impact of neglecting Ex unfolding altogether, we have simulated
the folding response in a simple case with two coincident, monochromatic γ
rays of energy Eγ,1 = 1300 keV, Eγ,2 = 1700 keV. We draw 5 × 105 events
with Gaussian noise added, and sort them into an Ex-Eγ matrix as shown in
Fig. 4.12. The top left panel shows the events without any detector response,
and the bottom left panel shows the events after folding them with SuN response
functions, as they would appear in the detector. For simplicity, we neglect the
possibility of detecting the sum of both γ rays in the same detector segment. We
then apply the original Oslo method γ-energy unfolding to the latter, assuming
that the Ex bins are independent. The result of this is shown in Fig. 4.12c. It
is apparent how the spectra are distorted by the lack of Ex unfolding.

We instead suggest a different tactic to get around the problem of factor-
ising Eq. (4.39). Instead of sorting the events into an Ex-Eγ matrix, we keep
the separate Eγ,i information for each event and sort the events into a multi-
dimensional hypercube Eγ,1-Eγ,2-· · · -Eγ,N . In our simulation, we used N = 2,
but the problem generalises straightforwardly. The folding equation then be-
comes

F (Eγ,1, Eγ,2) =
∑

E′γ,1,E
′
γ,2

P (Eγ,1|E′γ,1)P (Eγ,2|E′γ,2)U(Eγ,1, Eγ,2), (4.40)

i.e. the factorisation is built in. The SuN detector has four segments in the
centre, giving N ≤ 4. This means that the unfolding can be carried out as a
successive series of one-dimensional unfolding operations. In Fig. 4.13, we show
the same simulated data as above, plotted against the Eγ values. The panels
show how the successive unfolding puts most of the counts back in their original
position. With this method, we are able to reconstruct about 80% of the events
into within ±200 keV of their simultaneous full-energy peak, delineated by the
white dotted rectangle in Fig. 4.13d. After unfolding, the hypercube can be
transformed into an Ex-Eγ matrix, as shown in Fig. 4.12d.

Our new method is currently undergoing testing and further development.
The inclusion of many γ rays introduces issues of sparsity when the events
are sorted as a hypercube, which makes the unfolding more challenging. Also,
the issue of multiplicity correction needs to be addressed. Still, the tests show
promise, and we hope that the method can help improve the β-Oslo technique.
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Figure 4.12: Ex-Eγ coincidence matrices of 5× 105 events with two coincident,
monochromatic γ rays of energy Eγ,1 = 1300 keV, Eγ,2 = 1700 keV being folded
by the detector response. The panels show (a) the simulated γ rays before they
are folded, (b) the events after detector response folding, (c) the events unfol-
ded along the Eγ axis without taking into account the Ex folding dependence,
and (d) the events unfolded with our new suggested method, transformed from
(Eγ,1, Eγ,2) to (Ex, Eγ). See the text for details.
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Figure 4.13: Eγ,1-Eγ,2 coincidence matrices of 5×105 events with two coincident,
monochromatic γ rays of energy Eγ,1 = 1300 keV, Eγ,2 = 1700 keV. The panels
show (a) the simulated γ rays before folding, (b) after folding with detector
response, (c) after being unfolded along Eγ,1 and (d) after being subsequently
unfolded along Eγ,2. The white dotted lines in panel (d) define a rectangle of
±200 keV around the simultaneous full-energy peak. About 80 % of the counts
are reconstructed inside this rectangle after unfolding both axes.
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Chapter 5

Summary and outlook
I have approached the topic of nuclear level densities and γ-ray strength func-
tions from both the theoretical and experimental side. In Paper I, the low-
energy enhancement is discovered in the neutron-rich nucleus 70Ni. This, as
well as the 51Ti experiment of Paper IV, demonstrates the capabilities of the β-
Oslo method to reach nuclei outside the scope of the conventional Oslo method.
I have performed shell model calculations that agree well with the experimental
level densities and γ-ray strength functions, and indicate that the low-energy
enhancement in the γ-ray strength function is a robust phenomenon of M1
character.

In fact, it is becoming increasingly clear that the low-energy enhancement
is a feature general to atomic nuclei at high excitation energy, and that it is
likely to be dominated by M1 transitions. Through large-scale shell-model
calculations on hundreds of nuclei in several mass regions, I have mapped out
predictions of the shape of the low-energy enhancement in the γ-ray strength
as function of neutron and proton number. The calculations consolidate the
concept of the low-energy enhancement from several previous studies into a
consistent picture. The shape of the enhancement varies between nuclei, and
seems to depend on several factors, notably nuclear mass (or availability of high-
l shell-model orbitals near the Fermi surface), and proximity to shell closures (or
deformation). Additionally, there seems to be an amplified preference for steep
low-energy enhancement in the shears bands regions, where protons couple to
neutron holes to generate large, transverse magnetic moments [170].

I have also performed calculations on selected nuclei (29Si and 44Sc in Paper
II, 51Ti in Paper IV) that include both E1 and M1 strength functions in the
same shell-model framework, using two major shells. These calculations further
strengthen the indication that the low-energy enhancement is of M1 origin,
with an E1 component that trails off as Eγ approaches zero. For 29Si, the
calculations do not predict a low-energy enhancement, but they still give a flat
M1 component that dominates at low Eγ .

The distribution of spins remains one of the largest sources of uncertainty
in the normalisation procedure of the Oslo method. By decomposing my shell-
model calculations of 59,60Ni in Paper III into levels of different spins, we have
developed a novel way to constrain the spin distributions for Oslo-method ana-
lyses. Here, new innovations that further increase the capabilities of the shell
model to tackle large model spaces will be very useful. Notably, reliable spin
distributions that discriminate between parities will be vital in low-mass nuclei
that can have large parity asymmetry reaching up to high excitation energies.
The stochastic level density method of Ref. [35] is a very interesting technique
for this purpose.
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5. Summary and outlook

Experimental results and claims (as, for that matter, theoretical ones) are
crucially dependent on proper estimation of uncertainties. Our new implement-
ation of the Oslo method with the uncertainty propagation technique in Paper
V is important in this regard, enabling us to present new results with greater
confidence. The new code is published open-source, and written to be transpar-
ent. Hopefully, this helps other researchers study, adapt, scrutinise and enhance
the Oslo method. New developments regarding detector response unfolding,
quantification of systematic uncertainties and normalisation will be especially
important as the β-Oslo method gains popularity and is applied to even more
exotic isotopes.

I think there is good reason to expect that the low-energy enhancement is
present, at energies below current experimental thresholds, in A > 100 nuclei.
However, to discover it will require use of detectors with Compton suppression
capabilities, or other methods that give better control of the detector response
unfolding. Hopefully, the experimental techniques will become sufficiently re-
fined in the years to come to enable a more detailed discrimination of the shape
and magnitude of the low-energy enhancement between nuclei of differing pro-
ton and neutron numbers. Then, we can hope to settle the precise dependence
of the enhancement on mass, deformation and magnetic moments.

Studies of γ-ray strength functions and their low-energy enhancements is a
topic that continues to gain interest. New results, exciting experimental and
theoretical advances and novel ideas should be expected in the years to come.
It is a big puzzle, and I hope that my small contribution has helped to lay a few
pieces in place.
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Chapter 6

Papers
I begin this chapter with a brief introduction to each paper, before reprinting
them all in full.

Paper 1: Enhanced low-energy γ-decay strength of 70Ni and its
robustness within the shell model
The paper presents a β-Oslo analysis of the low-energy γ-ray strength function of
70Ni. This was, at the time of publication, the most neutron-rich nucleus where
the low-energy enhancement had been seen. (It was recently succeeded by 74Zn
[141]). We present large-scale shell model calculations that demonstrate that
the low-energy enhancement can be robustly described as an M1 phenomenon.
We also present calculations spanning the isotopic chain of nickels, predicting a
low-energy enhancement in all of them.

I am the second author of this paper, and corresponding author together
with Dr. Larsen. We collaborated closely on writing the paper. My main re-
sponsibility was Section IV. I performed all the shell model work, including
tuning the CA48MH1g interaction, running all calculations on the supercom-
puter and converting the results to level densities and γ-ray strength functions.
I was also involved in discussions regarding the β-Oslo analysis. Some of the
other authors also contributed theoretical calculations, while others helped with
the experiment. All authors reviewed the manuscript. The article is published
as Ref. [59].

Paper 2: Consolidating the concept of low-energy magnetic dipole
decay radiation
The paper presents a theoretical survey of the low-energy enhancement in two
different regions of the nuclear chart: The sd and f5/2pg9/2 shells. We suggest a
measure for the LEE and study its evolution as function of neutron and proton
number. We find a systematic dependence on proximity to shell closures, as well
as a preference for regions favouring proton-particle-neutron-hole coupling lead-
ing to magnetic rotation. These findings consolidate previous theoretical works
into a consistent picture. Furthermore, we compile γ-ray strength functions
based on discrete, experimental data and demonstrate that they are consistent
with shell model calculations and with a low-energy enhancement.

I am first author and the sole corresponding author of this paper. I planned
and performed the research presented, and wrote the manuscript. The other
authors contributed discussions about the results and interpretations, and they
reviewed the manuscript. The article is published as Ref. [27].

77



6. Papers

Paper 3: Experimental γ-decay strength in 59,60Ni compared with
microscopic calculations

The paper presents measurements of γ-ray strength functions and level densities
for 59,60Ni. Oslo-method analyses are used to obtain the γSF below the neut-
ron separation energy, complemented by (γ, n) measurements above neutron
threshold. The analysis reveals the presence of a strong low-energy enhance-
ment. A special challenge in this paper was the fact that the nuclei are quite
light. This makes the usual models for spin distribution parameters more uncer-
tain than is the case for heavier nuclei. To amend this, we wanted to estimate
spin distributions based on the shell model calculations. By making histograms
of the spin distributions in different excitation energy regions, we were able to
make a series of fits to the spin distribution function parametrized by the spin-
cutoff parameter σ (Fig. 3), and hence give a prediction for the evolution of σ
based on microscopic calculations. To obtain complete spin distributions up to
Sn, shown in Fig. 4 it was necessary to calculate as many as 300 levels of each
spin. Based on the calculations, we also extracted the total level density and
the M1 γ-ray strength function, shown in Figs. 9, 10 and 11.

I am third author and one of the main authors on this paper. I was mainly
responsible for the shell model calculations and the extraction of spin distribu-
tions, level densities and γ-ray strength functions. In addition to the calcula-
tions, I was involved in the development of the unfolding technique for (γ, n)
cross sections described in Section IV B. I also contributed to the writing of
the manuscript. The paper has been submitted to Physical Review C and is
currently in review. A preprint is available from Ref. [54].

Paper 4: Benchmarking the extraction of statistical neutron capture
cross sections on short-lived nuclei for applications using the β-Oslo
method

The paper presents measurements of the level density and γ-ray strength func-
tion of 51Ti using both the Oslo and β-Oslo methods, using a 50Ti(d, p)51Ti and
51Sc(β−)51Ti reaction, respectively. The main aim of the paper is to compare
a direct measurement of neutron capture cross sections – in this case for 50Ti –
to that inferred indirectly by the Oslo- or β-Oslo methods. It is shown that the
agreement is good. The paper also demonstrates the close agreement between
the level density and γSF between the Oslo and β-Oslo methods.

I am seventh author and one of the main authors on this paper. I was mainly
responsible for the shell-model calculations of the level density and M1+E1 γ-
ray strength function. I also contributed to the writing of the manuscript. The
paper has been submitted to Physical Review C and is currently in review. The
version presented here is in preparation to be resubmitted to the journal after
taking the referee’s comments into account.
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Paper 5

Paper 5: A new software implementation of the Oslo method with
complete uncertainty propagation
The paper presents a complete re-implementation and extension of the Oslo
method analysis codes, in a Python package that we have called OMpy. It
enables propagation of uncertainties from the raw spectra all the way through
to the extracted level density and γ-ray strength function, using a Monte Carlo
technique. We apply OMpy to several data sets that have previously been
published, and compare to the results of the original analyses. We thus verify
that the new implementation works as intended, and demonstrate its capabilities
for giving a more reliable uncertainty quantification.

I am first author and the sole corresponding author on this paper. I had the
idea to do uncertainty propagation on the Oslo method by a reimplementation
in Python, and developed the code. Fabio Zeiser contributed the module to
fit level density and transmission coefficient to the primary matrix. Erlend
Lima has worked on code structure and quality assurance, e.g. by implementing
unit testing to root out errors. I performed the re-analyses of the data sets
presented and wrote the manuscript. The other authors provided input to the
code development and/or re-analyses. All authors reviewed the manuscript.
The paper will be submitted to Nuclear Instruments and Methods in Physics
Research Section A. A preprint is available from Ref. [145].
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Paper I: Enhanced low-energy γ-decay strength of 70Ni and its
robustness within the shell model
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Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through
the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei,
radiative neutron capture is extremely sensitive to their γ -emission probability at very low γ energies. In this work,
we present measurements of the γ -decay strength of 70Ni over the wide range 1.3 � Eγ � 8 MeV. A significant
enhancement is found in the γ -decay strength for transitions with Eγ < 3 MeV. At present, this is the most
neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We
have performed E1-strength calculations within the quasiparticle time-blocking approximation, which describe
our data above Eγ � 5 MeV very well. Moreover, large-scale shell-model calculations indicate an M1 nature
of the low-energy γ strength. This turns out to be remarkably robust with respect to the choice of interaction,
truncation, and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich
72,74,76Ni.

DOI: 10.1103/PhysRevC.97.054329

I. INTRODUCTION

One of the most intriguing and longstanding scientific
quests is the understanding of the fundamental building blocks
in nature. Indeed, new paradigms have been established as
new and improved measurements have been made available. A
striking example is the standard model of particle physics [1],
proven to be extremely robust and predictive. On the nuclear
scale, significant progress has been made as well, but a unified
theory describing all facets of nuclear structure and dynamics
for all nuclei is still lacking (see, e.g., Ref. [2]).

A particularly challenging task is to properly describe
nuclear properties in the energy regime where the average
spacing, D, between the available quantum states is still larger
than the width � of the state, but so small that conventional
spectroscopy is impractical or nearly impossible. This region,
generally known as the quasicontinuum, is of particular interest
for studying nuclear dynamics such as breaking of nucleon-
Cooper pairs [3], as well as γ -decay resonances (see, e.g.,
Refs. [4–7] and references therein).

*a.c.larsen@fys.uio.no
†j.e.midtbo@fys.uio.no

In addition to the pure nuclear-structure motivation, the
quasicontinuum is of vital importance to properly describe
and understand the creation of elements heavier than iron
[8,9], which has been identified as one of the “eleven science
questions for the new century” [10]. A clear signature of
the rapid neutron-capture process (r-process) has finally been
observed: gravitational waves from a neutron-star merger event
were observed with the Advanced LIGO and Advanced Virgo
detectors [11], and electromagnetic counterparts show that
the r-process has indeed taken place in this event [12]. Our
detailed understanding of the r-process is, however, still largely
hampered by the lack of crucial nuclear-physics input, such as
masses, β-decay probabilities, and radiative neutron-capture,
(n,γ ), rates [9].

Two of the needed nuclear properties for understanding
nuclear dynamics in the quasicontinuum as well as calculating
astrophysical (n,γ ) reaction rates are the nuclear level density
(NLD) and theγ -strength function (γ SF). The former is simply
the average number of quantum levels per energy bin as a
function of excitation energy, while the latter is a measure of the
average, reduced γ -decay probability. The γ SF is dominated
by the E1 giant dipole resonance (GDR) (e.g„ Refs. [13,14]).

In recent years, an unexpected enhancement in the γ SF at
low γ energies (Eγ < 3–4 MeV) has been observed in many

2469-9985/2018/97(5)/054329(9) 054329-1 ©2018 American Physical Society
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FIG. 1. (a) 70Ni raw γ spectra versus Ex ; (b) unfolded γ spectra corrected for the SuN response functions for both Eγ and Ex ; (c) distribution
of primary γ rays for each Ex bin. The dashed lines show the region used for the analysis. The pixels are 200 keV wide.

fp-shell and medium-mass nuclei (e.g., Refs. [15–19]), with
138−140La [20,21] and 151,153Sm [22] being the heaviest so far.
The multipolarity of this low-energy enhancement, referred
to as the upbend in the following, has been experimentally
verified to be of dipole type [16,22,23]. However, theoretical
attempts to describe the upbend differ on the underlying mech-
anism and electromagnetic character. The authors of Ref. [24]
find an enhancement in the theoretical E1 strength, while shell-
model approaches [25–27] demonstrate a large low-energy
M1 enhancement at high excitation energies. Shell-model
calculations including both E1 and M1 components confirm
the M1 upbend, but also predict the E1 γ SF to be constant
for low energies [28]. A recent experiment on 56Fe, although
hampered by limited statistics, indicates that the low-energy
enhancement could be a mix of both components, with a small
magnetic bias between 1.5 and 2 MeV [29].

Turning to the r-process, the presence of an upbend could
increase the astrophysical (n,γ ) reaction rates up to ∼2
orders of magnitude for very neutron-rich nuclei [30]. Prompt
neutron-star merger ejecta correspond to a cold and neutron-
rich r-process where an (n,γ )-(γ,n) equilibrium will never be
established [9,31]. Hence, (n,γ ) rates will have a significant
impact on the r-process reaction flow and final abundance
distribution. It is therefore crucial to understand the nature
of this upbend and search for its presence in nuclei far from
stability.

In this paper, we present NLD and γ SF measurements of the
neutron-rich nucleus 70Ni, using the newly developed β-Oslo
method [32,33]. Furthermore, we have calculated the E1
strength within the quasiparticle time-blocking approximation
(QTBA), and performed large-scale shell-model (SM) calcu-
lations for a wide range of effective interactions and model
spaces, exploring the M1 strength within this framework. We
find that the upbend is indeed explained by the shell-model
calculations, and we predict its presence in the whole isotopic
chain, in particular the neutron-rich 72,74,76Ni.

II. EXPERIMENTAL DETAILS AND DATA ANALYSIS

The experiment has already been described in
Refs. [33–35]; a brief summary is given in the following. The

experiment was conducted at the National Superconducting
Cyclotron Laboratory, Michigan State University, where 70Co
fragments were produced from a primary beam of 86Kr with
energy 140 MeV/A impinging on a ≈400 mg/cm2 Be target
and selected with the A1900 fragment separator [36]. The
fragments were implanted in a double-sided silicon strip
detector (DSSD) of 1-mm thickness mounted in the center of
the Summing NaI (SuN) total absorption spectrometer [37].
SuN is a large-volume barrel consisting of eight optically
isolated segments, providing information on the individual
γ rays, while the sum of all detected γ rays gives the initial
excitation energy of the daughter nucleus. Coincidences
between β− particles and the fragment were determined by
the DSSD using the implantation and β-decay pixel positions
in the DSSD and absolute times of the signals. The γ rays
measured with SuN were gated on the implantation-β-decay
events to obtain the γ -ray spectra of the daughter nuclei. The
summing efficiency of SuN varies with γ multiplicity and
initial excitation energy, and is, on average, ≈25–30 %.

The individual γ -ray spectra versus the summed γ -ray
energies (i.e., initial excitation energy Ex) of 70Ni are shown
in Fig. 1(a); the total number of counts are about 72000.
The γ spectra were unfolded along the Eγ axis with the
technique described in Ref. [38] using SuN response functions
generated with GEANT4 [39,40] simulations of the full setup.
Furthermore, due to the possibility of incomplete summing
and a high-energy tail induced by electrons from the β decay
(Qβ = 12.3 MeV), we have also developed an unfolding
technique for the summed γ rays. This technique is based
on the one in Ref. [38] and will be presented thoroughly in
a forthcoming article [41]. The resulting unfolded matrix is
shown in Fig. 1(b).

After unfolding, the distribution of primary γ rays for each
200-keV Ex bin was extracted by an iterative subtraction tech-
nique described in detail in Refs. [42,43]. The basic principle
behind this technique is that, for a given excitation-energy bin
Ej , the distribution of the first-emitted γ rays (i.e., branchings)
is determined by subtracting the γ -ray spectra from the lower
excitation-energy bins Ei<j . This is true if, for a given Ex bin,
approximately the same spin distribution is populated directly
from the β decay and by the γ decay into this bin from above.
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FIG. 2. Matrix of primary γ rays as a function of excitation
energy. The dashed lines show the direct decay to the low-energy
levels marked with their spin/parity assignment (see text). The bin
width is 100 keV both on the γ -ray and Ex axis.

Previous experiments have shown that the ground-state
spin/parity of 70Co is (6−,7−) [44,45]. Assuming a spin/parity
of 6−, the β decay will mainly populate levels with spin/parity
5−,6−,7− in the initial Ex bins through Gamow-Teller tran-
sitions. With one dipole γ transition either of electric or
magnetic type, the spins populated in the underlying bins are
J = 4–8 (both parities). On the other hand, if the 70Co ground
state has spin/parity 7−, the initial levels of 70Ni will have
spin/parity 6−,7−,8−, and the final levels following one dipole
transition will be J = 5 − 9. Further, although the timing
requirements in the data analysis strongly favors population
in 70Ni from the short-lived ≈100-ms (6−,7−) level in 70Co, a
small contribution from the longer-lived ≈500-ms (3+) level
could be present. We also note that in a recent study of the
decay chain 70Fe → 70Co → 70Ni by Morales et al. [46], it is
suggested that the spin/parity of the longer-lived level could
be (1+,2+).

In Fig. 2, we display the matrix of primary γ rays for
each excitation-energy bin, where the decay to some of the
low-energy levels is indicated with the dashed lines. It is
obvious that there is no direct decay to the ground state or to
the (0+) state at 1567 keV [50], as can be expected from an
initial spin population of J > 1. Thus, it is doubtful that the
long-lived level in 70Co is (1+) as indicated as a possibility in
Ref. [46]. However, our data are fully consistent with both the
suggested (2+) [46] and the (3+) [44,50] assignments. We will
in the following use (2+,3+) for the spin/parity assignment
of this level. Further, we observe some direct γ decay to the
second 2+ level at 1866 keV, as well as a much weaker direct
γ decay to the first 2+ level at 1259 keV. This indicates that
even though the β decay from the 70Co (6−,7−) level is the
dominant component, there is also a weaker contribution from
the (2+,3+) long-lived state in our data. By inspection of the
decay curve, we find that the (2+,3+) contribution is indeed
small, of the order of 5–10 %.
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FIG. 3. Projections of the unfolded Ex-Eγ matrix onto (a) the Ex

axis, and (b) the Eγ axis for a gate on Ex = 3.4–3.8 MeV (dashed
lines in the top panel). Transitions are labeled with their γ -ray energies
in keV.

Moreover, we observe direct γ decay to the 4+ level at Ex =
2229 keV, which could be reached through E1 transitions from
5− levels, or by M1 transitions from 3+ and 4+ levels populated
from the long-lived (2+,3+) state in 70Co. As the strongest
decay to the 4+ level is seen at Ex ≈ 5.4 and 6.0 MeV, one
would expect E1 dominance at such high excitation energies,
which is further supported by our calculations presented in
Sec. IV. Hence, we find that 70Co most likely has spin/parity
6− in its ground state, although the 7− assignment cannot be
completely ruled out.

In Fig. 3(a) we show the projection of the unfolded γ -
ray matrix onto the excitation-energy axis. This spectrum
represents the distribution of level population in 70Ni through
β decay of 70Co, and effectively demonstrates that there is no
direct population of levels below Ex ≈ 2.5 MeV. This proves
that there is no direct feeding from the (2+,3+) level to the
low-lying levels. Further, in Fig. 3(b), we have projected the
unfolded γ -ray matrix onto the γ -energy axis, showing all
transitions in the γ -decay cascades for an excitation-energy
gate of Ex = 3.4–3.8 MeV. This gate includes the cascades
from the strongly populated (6−) level at 3592 keV stemming
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FIG. 4. (a) Extracted NLD for 70Ni from the analysis in Ref. [33] (open squares) and the present Ex-unfolded SuN data (blue points) with
upper/lower limits (blue shaded area) and the HFB+c calculations used for normalization (dashed line). (b) Extracted γ SF for 70Ni. The data
of Rossi et al. [52] on 68Ni (red points) are used for normalization.

from the (6−,7−) 70Co ground state, as well as a contribution
from the 3510-keV level populated via the (2+,3+) long-lived
state. We clearly see strong lines that can be identified (within
their uncertainties) to known decay cascades of the (6−) level
[50], but in addition we see weaker transitions of higher
γ -ray energies, which are likely originating from the level at
3510 keV populated from the (2+,3+) level.

For the following analysis and comparison with the theo-
retical calculations, we would like to stress that there is no
major change in the conclusions drawn if the (7−) spin/parity
assignment turns out to be the correct one. Further, the contri-
bution from the (2+,3+) level in 70Co is quite small compared
to the (6−,7−) one, as demonstrated by the dominance of
decay to higher-spin levels in Figs. 2 and 3(b). However,
the very strong direct population of the (6−) level at 3592
keV and the nonpopulation of lower-lying levels could cause
problems in the subtraction technique to obtain the primary
γ -ray spectra. Further, considering that the initial levels are
dominantly populated from the (6−,7−) level we will expect,
on average, to subtract somewhat too much of γ rays below
≈3 MeV, as the underlying Ex bins will contain γ rays from
a broader spin range than what is populated directly through
the β decay. Indeed, this is also what we observe in Figs. 1(c)
and 2: the higher-energy primary γ rays are not much affected
as they are dominantly primary transitions, but we clearly see
that there is a region for Ex ≈ 7–9 MeV where there are few
low-energy γ rays. This will lead to a poor estimate of the NLD
at high excitation energies, but will not hamper the extraction
of the γ SF.

III. RESULTS

Having the distributions of primary γ spectra on hand
for each excitation-energy bin, we extracted the NLD and
γ -transmission coefficient for 70Ni using the least χ2 method
described in Ref. [47]. The main principle of this method is to
fit all data points in the selected region of the two-dimensional
landscape of primary γ rays with two functions; i.e., the
matrix of primary γ rays P (Eγ ,Ex), normalized for each
Ex so that

∑Ex

Eγ =0 P (Eγ ,Ex) = 1, can be described with the

product ρ(Ef ) · T (Eγ ) for the final excitation energy Ef =
Ex − Eγ . Here, ρ(Ef ) is the NLD and T is the γ transmission
coefficient; the γ SF for dipole strength, f (Eγ ), is derived from
T through f (Eγ ) = T (Eγ )/2πE3

γ . Note that there are many
more data points in the selected region than fit parameters;
the simultaneous fit is thus providing a unique solution of the
functional form of the NLD and γ SF.

The extracted NLD and γ SF functions are normalized
as described in Ref. [33]; for the NLD, we make use of
known, discrete levels of 70Ni taken from Refs. [48–50].
and Hartree-Fock-Bogoliubov plus combinatorial (HFB-c)
calculations taken from Ref. [51] using an Ex shift
δ = −0.6, − 0.8, − 1.0 MeV. With these shifts we reproduce
the appearance of the first negative-parity level within ≈300
keV. The normalized NLD is displayed in the left panel of
Fig. 4. The γ SF is normalized to the recently measured E1
strength above the neutron threshold of 68Ni by Rossi et al.
[52] and shown in the right panel of Fig. 4.

We observe that the present NLD displays a steeper slope at
Ex ≈ 1.5–2 MeV than previously due to the unfolding of the
Ex axis, thus achieving an excellent agreement with the dis-
crete levels for Ex ≈ 2–3 MeV. Also, the γ SF clearly displays
an upbend consistent with the findings in iron isotopes [15,16]
and 60,64,65,69Ni [35,53–55]. This gives support to the hypoth-
esis that the upbend is a general feature, and is not restricted to
(near-)stable nuclei. Moreover, although rather scarce statistics
at the very highest γ energies, our data indicate an increase in
strength in the Eγ ≈ 8–9 MeV region. This feature is con-
sistent with the pygmy dipole strength found in 68Ni [52,56].
Hence, our data prove the existence of the upbend in 70Ni, and
give a hint to the presence of a pygmy dipole resonance.

IV. THEORETICAL CALCULATIONS AND COMPARISON
WITH DATA

The high-energy part of the γ SF (Eγ > 4 MeV) is expected
to be dominated by the E1 tail of the GDR. To describe
the GDR part, we have performed E1-strength calculations
based on the self-consistent extended version of the theory of
finite Fermi systems (ETFFS) within the quasiparticle time-
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blocking approximation (QTBA) [57–60] using the BSk17
Skyrme force [61]. The advantage of this approach is that it
includes self-consistently the quasiparticle random phase ap-
proximation (one-particle-one-hole excitations on the ground
state), phonon-coupling effects, and a discretized form of
the single-particle continuum spectrum. The Skyrme force is
used to calculate the mean-field, effective nucleon-nucleon
interaction and phonon properties [59]. We emphasize that
phonon-coupling effects are crucial to obtain good agreement
with data.[59,60]

The resulting E1 strength is shown in Fig. 7. The agreement
with the present data for Eγ ≈ 5–9 MeV is excellent, within
the experimental error bars. As the QTBA calculation is built
on the ground state, this indicates that the average E1 strength
between excited levels of Jinitial = 5−,6−,7− and Jfinal = 4+ −
8+ is very similar to that of the 1− levels decaying to the 0+
ground state, in accordance with the Brink-Axel hypothesis
[62–64].

To investigate the M1 radiation of 70Ni theoretically, we
employ shell-model calculations using the codes KSHELL [65]
and NUSHELLX@MSU [66]. To probe the robustness of the
results, we use several different effective interactions. For
the KSHELL calculations we use JUN45 [67], which contains
the orbitals π (p3/2p1/2f5/2g9/2), ν(p3/2p1/2f5/2g9/2); and two
interactions called CA48MH1 and CA48MH2, which include the
πf7/2 but exclude πg9/2. The CA48MH1 interaction is solely
based on many-body perturbation theory (MBPT), i.e., the two-
body matrix elements (TBMEs) are not tuned to experimental
data [68]. This is the same interaction that was used in a recent
study of Fe isotopes [27]. Further, CA48MH2 is derived from
CA48MH1 by replacing the neutron-neutron TBMEs with those
of JJ44PNA [69], and modifying the diagonal πf7/2 matrix
elements based on the experimental spectrum of 54Fe.

For the NUSHELLX@MSU calculations we use an interaction
based on the GXPF1A pf shell interaction [70], extended by

TABLE I. Comparisons of yrast B(E2) strengths (in units of
e2 fm4) between experiment [72] and SM calculations.

Exp. CA48MH1G CA48MH2 JUN45 CA40FPG

B(E2; 2+
1 → 0+

1 ) 172(28) 154.8 161.4 15.6 35.2
B(E2; 6+

1 → 4+
1 ) 43(1) 120.0 230.7 5.7 24.5

B(E2; 8+
1 → 6+

1 ) 19(4) 21.7 139.7 2.2 9.5

MBPT-generated TBMEs to encompass the full fpg model
space for both protons and neutrons. This interaction was also
used to predict 70Co β-decay intensities for the present exper-
iment [34]. In the following we will refer to this interaction as
CA40FPG.

With the CA48MH model space, the full M-scheme basis
size of 70Ni is 1.2 × 109 for each parity, and for CA40FPG it
is even larger. For calculations in the CA48MH model space,
we therefore restrict the maximum number of excited protons
from the f7/2 orbital to 2, as has been done in previous studies
[25–27], but with no truncations on neutrons. This reduces the
basis size to 2 × 107. In the CA40FPG calculations we restrict
the model space to the configurations π (f

8−tp
7/2 (f5/2pg)tp ),

ν((fp)20−tng
2+tn
9/2 g0

7/2) for tp,tn = 0,1. For JUN45, no truncation
is applied.

70Ni exhibits a complex low-energy structure. The second
excited state is Jπ = 0+ at E(0+

2 ) = 1567 keV [50], and
calculations indicate it has a very different structure from the
ground state [49]. For the CA48MH1 interaction we find good
agreement with experiment by increasing the single-particle
energy of the νg9/2 orbital to 1.7 MeV. We will refer to
the interaction with this modification as CA48MH1G. This
interaction reproduces the low-lying spectrum to within a few
hundred keV, including features such as the excited 0+

2 state
and the onset of negative-parity states at Ex ∼ 3 MeV. As
shown in Table I, B(E2) transitions strengths of the yrast

FIG. 5. Comparison of the experimental low-energy structure of 70Ni to calculations with CA48MH1G and JUN45. The experimental data is
from [49] except the 0+

2 state, which is revised according to [50].
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FIG. 6. Calculated shell-model level densities compared to the
70Ni data. The gray band indicates the total experimental uncertainty,
systematic, and statistical.

band are also excellently reproduced, with the exception of the
B(E2; 6+

1 → 4+
1 ), which is a factor of 3 too high. The drastic

reduction in the experimental B(E2) strength of the yrast band
from (2+ → 0+) to (8+ → 6+) is discussed in Ref. [72], and
is attributed there to core polarization by the tensor interaction
that come into play for the lowest-lying states. The fact that
we reproduce this transitional behavior of the B(E2) value
supports the applicability of the CA48MH1G interaction to
this nucleus, at least for the low-lying levels. Predicted level
schemes of the various interactions are shown in Fig. 5.

The CA48MH2 interaction is complementary to CA48MH1G

in that it overestimates the 0+
2 energy. It correctly predicts

the B(E2; 2+
1 → 0+

1 ) value, but fails to catch the transitional
behavior along the yrast line. The JUN45 calculation system-
atically overestimates level energies, and underestimates the
B(E2) strengths by an order of magnitude. Both calculations
correctly reproduce the onset of negative parity states. The
CA40FPG calculation does not reproduce the 0+

2 band, but this
is to be expected due to the significant truncations applied to
the model space.

The fact that we have such a diverse ensemble of interactions
that capture different features of 70Ni enables us to study the ro-
bustness of shell-model calculations up to the quasicontinuum.
We also probe the effects of model space truncations, using 0,
1, and 2 proton excitations from f7/2 as well as varying neutron
truncations.

For each of the interactions, we calculate all states with J ∈
[0,8] (J ∈ [0,14]), in the case of NUSHELLX (KSHELL) for both
parities up to Sn = 7.3 MeV or above, and B(M1) strengths
of all allowed transitions between states. For the calculation
of B(M1) values, effective gs factors of gs = 0.9gfree

s have
been used. We note that the recommended quenching factor for
JUN45 is gs = 0.9gfree

s , because the core closure goes between
spin-orbit partners (f7/2–f5/2). One could therefore argue that
a somewhat larger quenching should be applied also for the
48Ca core interactions. This would serve to reduce the M1
strength function somewhat.

We extract the γ SF using the relation

fM1(Eγ ,Ei,Ji,πi) = a〈B(M1)〉(Eγ ,Ei,Ji,πi)ρ(Ei,Ji,πi),

where a = 11.5473 × 10−9 μ−2
N MeV−2, and ρ(Ei,Ji,πi) and

〈B(M1)〉 is the partial level density and the average reduced
transition strength, respectively, of states with the given exci-
tation energy, spin, and parity [71]. By the generalized Brink-
Axel hypothesis, fXL(Eγ ,Ei,Ji,πi) ≈ fXL(Eγ ). Hence we
obtain fM1(Eγ ) by averaging over Ei,J , and π . Only Ei,J,π
pixels where fM1 is nonzero are included in the average. We
find that all SM calculations excellently match the experimen-
tal NLD up to Ex ∼ 6 MeV, where they start to fall off because
of the limited number of calculated states; see Fig. 6.

Considering transitions from initial states in the region
4.0 � Ex � 6.5 MeV, we obtain the results shown in Fig. 7(a).
In Fig. 7(b) we show the M1 γ SF for transitions originating
from 5−, 6−, or 7− levels only, corresponding to the 70Co β
decay. The trend of the data for 1.5 � Eγ � 4.0 MeV is well
reproduced by all calculations, which all display an upbend
peaking at Eγ = 0 MeV. The absolute value of the M1 strength
is lower than the experimental total strength, although for
CA40FPG and CA48MH1G it is within the error band. The QTBA
calculations predict a drop of E1 strength towards Eγ = 0.
However, the QTBA is not a realistic model for the low-energy

FIG. 7. Calculated γ SFs within the shell model (for 4.0 � Ex � 6.5 MeV) and the QTBA (for all Ex) compared with data. The blue shaded
band indicates the total experimental uncertainty. In panel (a) all SM M1 transitions in the extraction region are included, while in (b) only
transitions originating from levels with J π = 5−,6−, or 7− are shown (see text).
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FIG. 8. Sketch of a summed γ SF, ftot(Eγ ) = f
QTBA(mod)
E1 (Eγ ) + f SM

M1 (Eγ ) for the different shell-model calculations. The QTBA calculation
has been replaced by a flat E1 strength for Eγ < 3.5 MeV, as suggested by recent shell-model E1 calculations [28].

E1 strength because it is built on the ground state, so there are
no low-Eγ transitions available. A recent E1 shell-model study
for 44Sc predicts a flat behavior of the γ SF for low Eγ [28].
If we assume a similar behavior for 70Ni, this brings the total
strength into agreement with experiment, as sketched in Fig. 8.

There is also a discrepancy in the absolute strength between
the different calculations, with CA40FPG and CA48MH1G hav-
ing higher strength than CA48MH2 and JUN45. The highest
strength functions seem to be in best agreement with the
experimental total strength. The slope is however remarkably
similar between all interactions, and consistent with an expo-
nential functionAe−Eγ /T . For CA48MH1G and CA40FPG we find
T ∼ 1 MeV, while T is somewhat lower (higher) for CA48MH2
(JUN45), respectively.

Considering the β-decay selected M1 strength functions,
the shape of the γ SFs do not change much, indicating that the
selectivity of the β decay does not introduce any significant
bias in the experimental results. The reason for the abrupt drop
in strength at ∼4 MeV is the absence of direct transitions to
low-lying states because of the M1 selection rules.

We do see an upbend of equal slope even with the JUN45
interaction, i.e., without any excited protons, in contrast to
previous findings [25]. To investigate this further, we ran the
CA48MH1G calculations with a different truncation, locking all
neutrons and allowing all protons to excite (labeled 8π0ν in
Fig. 7). The upbend is present here as well, with approximately

the same slope, but disappears when applying the β-decay spin
selection, because the protons-only truncation does not allow
for any negative-parity states below Sn. We find that the upbend
is a remarkably robust feature for 70Ni within the shell model.
During this work, we have explored a large parameter space
of shell-model interactions, of which only a subset is shown
here. Try as we might, we did not find a single case where the
upbend was not present.

Finally, we expanded our theoretical scope and applied
the CA48MH1G interaction, with the same proton truncation,
to the whole isotopic chain, calculating γ -strength functions
for 56−69,72,74,76Ni. We find an almost identical low-energy
behavior of the γ strength across all isotopes, as shown in
Fig. 9. The calculations agree with the low-energy behavior
of the experimental γ strength for 64,65Ni [54,55], as well
as 69Ni [35], the other neutron-rich isotope measured so far
with the β-Oslo method. This is an intriguing indication that
high intensities for low-energy M1 transitions could be a
general feature of nuclei at high excitation energy, and could
be expected all over the nuclear chart.

V. SUMMARY AND OUTLOOK

In this paper, we have presented level-density and γ SF data
on 70Ni extracted with the β-Oslo method. The experimental
level density is found to be fully compatible with shell-

FIG. 9. Calculated M1 γ strengths for
a wide range of Ni isotopes with the shell
model, using the CA48MH1G interaction.
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model calculations including both positive and negative parity
levels.

Our γ SF data are well reproduced by QTBA calculations
for transition energies above ≈5 MeV. On the other hand, at low
transition energies, we find that the γ SF displays an upbend;
thus 70Ni is the most neutron-rich isotope measured so far
showing this feature. The upbend is described within the SM
framework as an M1 component in the γ SF. SM calculations
of the M1 γ SF are also performed for 56−69,70,72,74,76Ni. The
results indicate that the upbend is a general trend for nucleon
excitations in the quasicontinuum. Theoretical calculations for
an even broader range of model spaces and heavier nuclei are
ongoing and new computational methods are in development to
investigate this further. The experimental data will be available
at http://www.ocl.uio.no/compilation.
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We have made a thorough study of the low-energy behavior of the γ -ray strength function within the
framework of the shell model. We have performed large-scale calculations spanning isotopic and isotonic chains
over several mass regions, considering 283 nuclei in total, with the purpose of studying the systematic behavior
of the low-energy enhancement (LEE) for M1 transitions. There are clear trends in the calculations: From being
nearly absent in the lowest mass region, the LEE becomes steeper and more pronounced as the mass number
increases, and for a given mass region it further increases toward shell closures. Moreover, the LEE is found to be
steeper in regions near doubly magic nuclei where proton particles couple to neutron holes. These trends enable
us to consolidate several previous works on the LEE into a single, consistent concept. We compare the inferred
trends to the available experimental data from the Oslo method and find support for the systematic behavior.
Lastly, we have compared the calculations to strength functions compiled from discrete, experimental lifetimes
and find excellent agreement; the discrete data are consistent with an LEE and indicate that the slope varies as
function of mass number.

DOI: 10.1103/PhysRevC.98.064321

I. INTRODUCTION

The atomic nucleus is an extremely complicated many-
body quantum system [1]. Despite intense scrutiny over many
decades, many of its facets are still poorly understood. This is
especially true when a significant amount of energy is put into
the nuclear system, placing it in a highly excited state. Since
the number of accessible quantum levels grows approximately
exponentially with energy [2,3], a region of high excitation
energy is one where many quantum levels are packed closely
together. Questions of fundamental scientific interest include
how the quantum-mechanical wave function of such levels is
composed and what degree of correlations exist between the
levels [4].

Two basic experimental quantities revealing information
on the structure of the nuclear wave functions are excitation-
energy levels and their corresponding transition strengths.
However, when the excitation energy becomes large, it is
experimentally difficult to separate individual levels and tran-
sitions, and one instead works with average quantities, such as
the energy level density and γ -ray strength function. Our focus
in this article is on the strength function, more specifically
on the M1 component. Evidence for an increasing number
of nuclei shows that the γ -ray strength function exhibits an
enhancement toward zero γ -ray energy (e.g., Refs. [5,6]).
This low-energy enhancement (LEE) has been shown to be of
dipole order [7–10]. However, its electromagnetic character
is, so far, experimentally undetermined, although recent mea-
surements indicate a small bias toward M1 transitions [10].

The level density and γ -ray strength function have an
important application in calculations of (n, γ ) capture cross

*j.e.midtbo@fys.uio.no

sections (e.g., Ref. [11]). Radiative neutron capture is respon-
sible for the synthesis of most elements heavier than iron,
mainly through the slow (s) and rapid (r) neutron-capture
processes. The latter process involves neutron-rich nuclei far
from stability, close to the neutron drip line. While we are still
far from a complete understanding of the r process, which has
been singled out as one of the eleven most important science
questions for the 21st century [12], huge strides were made re-
cently with the discovery of a neutron-star merger event which
seemingly produced r-process elements [13–15]. In such a
neutron-rich, low-entropy environment, an (n, γ )-(γ, n) equi-
librium cannot be maintained at all times [11,16,17]. Thus,
(n, γ ) reaction rates become important not only at freeze-out
but also for the nucleosynthesis at earlier stages. It has been
shown that the presence of an LEE in the γ -ray strength
function can impact the (n, γ ) cross sections by orders of
magnitude, especially for neutron-rich nuclei [18]. Hence, it
is important to obtain an understanding of the prevalence and
properties of the LEE.

II. THE HISTORY OF THE LOW-ENERGY
ENHANCEMENT

In Fig. 1, we have charted the nuclei that have been studied
using the Oslo or β-Oslo methods and indicated whether
the experiment saw a low-energy enhancement. It must be
stressed that experimental limitations make it difficult to
extract the very low-Eγ strength function using the (β-)Oslo
method. This is mainly due to the uncertainties introduced
by unfolding of the Compton-scattering events, which induce
large uncertainties the low-γ energy spectrum at high ex-
citation energies. Typically, the lower limit on Eγ is set at
about 1.5 MeV. An exception is 151,153Sm [8], where Compton
suppression allowed extraction all the way down to Eγ =

2469-9985/2018/98(6)/064321(12) 064321-1 ©2018 American Physical Society
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FIG. 1. Map detailing where an LEE has been seen using the Oslo method. Yellow stars indicate yes; red circles no. Blue diamonds denote
cases where it is difficult to say whether there is an LEE or not. Note that a negative result cannot rule out the presence of an LEE at lower Eγ

energies than was experimentally accessible (see text for more details). The nuclear chart is made using Ref. [19], while the experimental data
used are from Refs. [5–9,20–55].

700 keV. In these experiments, they did see a sizable LEE.
It could thus be that the LEE is present in some or all of the
nuclei marked off with circles and diamonds in the figure.

Over the past several years, different theoretical interpreta-
tions have been put forward to explain the LEE. In fact, the
terminology varies, and the phenomenon has been variously
referred to as LEE, upbend [6], low-energy magnetic dipole
radiation (LEMAR) [56], and zero limit [57]. If a phenomenon
with more than three names can be considered a hot topic, then
this clearly qualifies. In the following, we make an attempt to
summarize the theoretical work that has been done to explain
the LEE.

Perhaps the first line of demarcation should be drawn
between those works explaining the LEE as M1 or E1 radia-
tion. Litvinova et al. used the thermal-continuum quasiparticle
random-phase approximation to demonstrate a low-energy
enhancement in the E1 strength function [58], introducing
a (free) temperature parameter to reproduce the data of
94,96,98Mo and 116,122Sn at low transition energies. On the
other hand, a number of authors have explained the LEE as
M1 radiation by means of shell-model calculations but with
varying interpretations of the underlying mechanism.

It is difficult to calculate E1 strength functions in the
shell model, because it requires transitions between wave-
function components from different major shells, so-called
1h̄ω transitions, due to the parity change in the E1 selection
rule. Inclusion of 1h̄ω excitations requires a large model
space; hence, the dimensions of the calculation quickly blow
up. It can, however, be done in some cases, for example by
Schwengner et al. [59] and Sieja [60]. Still, most shell-model
work related to the quasicontinuum strength function to date
has been done for M1 within 0h̄ω.

The first shell-model study was done by Schwengner
et al. [61], who studied Zr and Mo isotopes and compared
calculations to strength function data from the Oslo group.
They obtained good agreement with the low-energy (Eγ �
2 MeV) γ -ray strength, and were able to explain almost the
complete strength for Eγ < 2 MeV as being of M1 type.
They showed that both the distribution of B(M1) values as
a function of Eγ and the strength function fM1(Eγ ) can be
well fitted by an exponential function, B0 exp(−Eγ /TB ), with
TB ∼ 0.3 − 0.5 MeV and TB ∼ 0.5 MeV for B(M1) and
fM1, respectively. Further, the mechanism behind the LEE
was explained as being due to a recoupling of the spins of
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FIG. 2. Calculated M1 γ -ray strength functions of Ga isotopes
using the JUN45 interaction.

high-j protons and neutrons, analogous to the shears-band
phenomenon.

Brown and Larsen [62] investigated the strength function
of 56,57Fe and were also able to explain it as an M1 fea-
ture. They further showed that the main contribution to the
enhancement is from transition components within orbitals of
high j , in this case from the f7/2 orbital.

In a subsequent work, Schwengner et al. studied the LEE in
a series of Fe isotopes extending into the middle of the neutron
shell [56]. They found evidence for a bimodality in the M1
strength function, where the total strength is approximately
preserved, but the LEE is diminished in the midshell isotopes
to allow for the emergence of a scissors resonance at Eγ ∼
3 MeV. As in the previous work in Ref. [61], they stated that
the mechanism generating the enhancement is analogous to
that of shears bands, i.e., M1 transitions generated by a large
magnetic dipole moment vector rotating orthogonally to the
nuclear spin [63].

Karampagia et al. [64] presented an interesting study using
a “toy model” where only the f7/2 orbital was included,
for both protons and neutrons. With this model space, they
studied 49,50Cr and 48V. They again found evidence for a
low-energy enhancement, and they showed that its slope is
dependent upon the strength of the (in isospin formalism)
T = 1 matrix elements of the nucleon-nucleon interaction.
Like Schwengner [61], they also fitted the B(M1) distribution
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FIG. 3. The amount of strength between 0 and 2 MeV relative
to the strength between 2 and 6 MeV, plotted as function of neutron
number for isotopic chains calculated with the JUN45 and CA48MH1G

interactions. See text for details.

to an exponential function, but found a much larger TB of
1.33 MeV, i.e., a significantly gentler incline.

Sieja [60] considered the nuclei 43,44Sc and 44,45Ti and
obtained both E1 and M1 strengths by considering a model
space comprising three major shells. She found a nonzero low-
energy limit of the E1 strength function, albeit no enhance-
ment, as the LEE is still explained by the M1 component. The
E1 strength function, although flat, was found to be an order
of magnitude weaker than the M1 in the low-energy region,
thus making no difference to the total strength.

III. SYSTEMATIC SHELL-MODEL CALCULATIONS

The present work follows the tradition of using the
shell model. We employ KSHELL [65], a very efficient M-
scheme shell-model code able to calculate levels and transi-
tion strengths within very large model spaces. All the cal-
culations presented here have been made publicly available
through Zenodo [66]. As interaction and model space is taken
JUN45 [67], which comprises the orbitals (f5/2pg9/2) atop a
56Ni core. The valence space allows up to 22 protons and
neutrons. To facilitate computation, the model space is trun-
cated by turning off proton excitations to the g9/2 orbital. We
have checked that this does not have an effect on Cu isotopes
but cannot rule out that it could impact nuclei with higher Z.
Calculations are performed for the entire isotopic chains of
Ni, Cu, Zn, Ga, Ge, and As that are within the model space,
as well as some neutron-rich Se isotopes. For each nucleus,
we calculate 100 levels of each parity and each spin between
J = 0 (J = 1/2) and J = 14 (J = 29/2) for even (odd) A,
respectively. We then calculate B(M1) transition strengths
for all allowed transitions and compile the γ -ray strength
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FIG. 4. γ -ray strength functions of isotopic chains of Ni calcu-
lated with 56Ni (a) and 48Ca (b) closed cores, respectively. See text
for details.

function using Eq. (A1). A bin size of �E = 0.2 MeV is
used throughout the article unless otherwise stated. For the
transition strength calculations in JUN45, we use the recom-
mended effective gs values of gs,eff = 0.7gs,free [67]. The
dependence of the strength function on Ex , J , and π is
removed by averaging. The average includes all calculated
states and transitions. We observe that the strength function is
remarkably similar for different choices of these parameters,
except for statistical fluctuations—hence, averaging them out
is justified, in accordance with the Brink hypothesis [68]. As
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FIG. 5. Calculated M1 γ -ray strength functions of Al isotopes
using the USDA interaction.

an example, we show the calculated M1 strength function of
the chain of Ga isotopes in Fig. 2.

It is evident from Fig. 2 that the slope changes as function
of neutron number. It starts off near N = 28, being very steep,
flattening out toward mid-shell, and increasing back again
when approaching the N = 50 closure. The same effect is
present in the other isotopic chains that we have studied.
To see this clearly, we have taken the ratio of the integrated
strength in the intervals Eγ ∈ [0, 2] MeV to Eγ ∈ [2, 6] MeV,
respectively. This is shown in Fig. 3 for all the isotopic chains.
The overall trend of increasing low-energy strength toward the
shell closures is present for all isotopes.

One could worry that some or all of these effects are due to
the particulars of the model space, such as the choice of 56Ni
as closed core. In Fig. 4, we show the chain of Ni isotopes
calculated both in the 56Ni model space and in a different
model space, namely using a 48Ca core with the CA48MH1G

interaction [6,69], truncated so that two protons can excite
from the f7/2 orbital. Details of the 48Ca calculations are given
in Ref. [6]. The trend of the strength functions is clearly the
same, with more low-energy strength and steeper slope at the
shell edges. The inclusion of the proton f7/2 orbital does,
however, change the strength function, notably by inducing
what could be a spin-flip resonance at higher Eγ for some of
the isotopes. The absolute values are also affected, becoming
less variable and generally larger than with the 56Ni core. It is
not so surprising that the calculation with only neutrons in the
model space gives lower B(M1) values when we consider the
structure of the M1 operator, M̂1 ∝ gl

�l + gs�s. Since g
p
l = 1,

gn
l = 0, the absence of transitions between proton components
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FIG. 6. Correlation between relative sum of low-energy strength
and neutron number in the sd region. Note the logarithmic scale.

can lower the strengths. In Fig. 3, we have also included the
ratio of LEE for the CA48MH1G-calculated Ni isotopes. In
this case, the increases at low and high neutron numbers are
complemented by an additional, large bump in the middle,
peaking at 67Ni. The Ni isotopes in the middle of the neutron
shell are known to exhibit shape coexistence including spher-
ical components [70]. This shape coexistence would involve
proton excitations from the f7/2 orbital, which means that
it should not appear when using the 56Ni closed core. The
CA48MH1G interaction reproduces features attributed to shape
coexistence in 70Ni [6]. Hence, this midshell LEE bump can
be interpreted to be consistent with the systematic trends.

Among the JUN45-calculated isotopic chains plotted in
Fig. 3, Cu stands out, being linear rather than parabolic as
function of N . Since Cu has only one proton on top of the
56Ni core, it is possible that the linear trend is an artifact of
the restricted model space. To check this, we again used the
CA48MH1G interaction and calculated 60,62,64,66,72,74Cu, allow-
ing up to two proton excitations from the f7/2 as was done for
the Ni isotopes. Interestingly, the linearity remains, as shown
by the dashed line in Fig. 3. This seems to indicate that the
LEE variation with neutron number is hindered in nuclei with
one proton atop magicity. We also note that the same linear
trend is present in the fluorine isotopes shown below.

We have made similar calculations as the ones described
above in a different mass region, namely the sd shell on top
of a 16O closed core, using the USDA interaction [71]. For
this model space, we are able to calculate all isotopes with-
out any truncation. With this interaction, B(M1) strengths
are calculated using gs,eff = 0.9gs,free [71]. In Fig. 5, we
show the results for the isotopic chain of Al. These strength
functions are generally much more flat but reveal the same
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FIG. 7. Integrated γ -ray strength from (a) 0 to 2 MeV and (b) 2
to 6 MeV, respectively, and (c) the fraction of the integrated γ -ray
strength from 0 to 2 MeV relative to the 2 to 6 MeV range, i.e., panel
(a) divided by panel (b).

trend of increase toward magicity. Figure 6 displays the rel-
ative amount of low-energy strength for all isotopic chains.
There is less change in the LEE as function of N in the middle
of the neutron shell compared to the JUN45 calculations, but
a larger jump at the edges. To make the midshell variations
more visible, we have used a logarithmic scale.

In Fig. 7, we have plotted the integrated strength as
a nuclear chart. Figures 7(a) and 7(b) show the strength
integrated from 0 to 2 MeV and from 2 to 6 MeV, respectively,
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FIG. 8. Calculated total dipole strength functions for 29Si (a) and
44Sc (b).

and Fig. 7(c) shows the ratio between the previous two. This
presentation reveals several interesting features. First of all,
the calculations indicate that the low-energy enhancement is
more pronounced near shell closures. Furthermore, the overall
steepness of the strength is much higher in the f5/2pg9/2

region than the sd region. Lastly, in both model spaces, the
southeastern corner is enhanced relative to the southwestern
one. This is interesting, because it is consistent with the shears
band picture advocated in Ref. [56], as discussed in Sec. II.
We note that the same feature is apparent also in the northern
corners of the sd shell, where the northwestern corner has the
constructive alignment of proton holes with neutron particles.
Looking at Fig. 1, this is consistent with the experimental
evidence for nuclei with A � 100, where an enhancement has
been seen in all cases. It is also consistent with the absence
of an LEE in the midshell regions above 132Sn and 208Pb.
However, it is seemingly at odds with the data for 105–108Pd,
111,112Cd, and 116–119,121,122Sn, where no LEE is seen, despite
their proximity to the Z = 50 shell closure. There could be
several explanations for this. It could be that the LEE is
very steep, and thus pushed to lower Eγ than experimentally
accessible. It could also be that the proton shell closure is not
a major driving factor for the LEE by itself, or there could be
some other mechanism suppressing LEE in this region.
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FIG. 9. Low-energy M1 strength function of 56Fe compiled from
discrete experimental data. The bin width is �E = 0.5 MeV. See text
for details.

Turning away from the question of relative steepness, it
seems from the present calculations like the M1 LEE turns
flat rather than disappearing completely, even for the midshell
sd nuclei. This is important, because it implies that an M1
correction term to the E1 Lorentzian-like shape typically used
in phenomenological models is needed for all nuclei—but
with variable slope. To investigate this point, we have calcu-
lated E1 strengths for 29Si. In addition, we have considered
44Sc, located in the fp shell. The calculations are shown
in Figs. 8(a) and 8(b), respectively. The nickel mass region
is unfortunately not accessible to E1 calculations. We use
the SDPF-MU interaction [72], which comprises the sd and
fp shells, allowing the cross-shell excitations essential for
E1 transitions. We have applied a 1h̄ω truncation, meaning
that the single-particle basis configurations are limited to
ones where at most one particle is excited across the sd-fp
shell gap. The Lawson method [73–75] with β = 100 MeV
is used to push the spurious center-of-mass states up to
energies outside the considered range. For the E1 transition
calculations, we used effective charges of e

p
eff = (1 + χ )e,

e
p
eff = χe, with χ = −Z/A [76]. In both cases, we obtain an

E1 strength consistent with a generalized Lorentzian (GLO)
tail from the giant dipole resonance (GDR) [77]. The need
for an M1 correction is evident in both cases. For 29Si it
only serves to change the slope of the GLO, while for 44Sc
it completely dominates the low-energy part of the strength
function, demonstrating an LEE.

Incidentally, we can compare our results with Sieja’s cal-
culations for the E1 strength in 44Sc. We find a steeper slope
on the low-energy tail of the strength function compared to
Fig. 6 in Ref. [60]. This has a large influence on the summed
dipole strength function at Eγ ≈ 5 MeV, where we observe a
minimum reminiscent of that usually present in the strength
function of LEE nuclei. The absolute values of both the E1
and M1 strength functions are found in the present work to be
an order of magnitude lower than in Ref. [60]. This is due to
differences in how the strength function is extracted from the
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FIG. 10. M1 strength function of different sd shell nuclei. The bin width is �E = 0.5 MeV.

B(E1/M1) values (see the Appendix). Both calculations are
consistent with the shape of the experimental γ -ray strength
function of 44Sc from Ref. [27], but Sieja’s provide the best
match for the absolute value.

IV. COMPARISONS WITH DISCRETE
EXPERIMENTAL DATA

Many nuclei are so well studied that we have access to
experimental information about levels, lifetimes and branch-
ing ratios up to quite high excitation energy. It is interesting

to see if this information can be used to compile a strength
function, and how it compares to shell model calculations.
To this end, we extract experimental information from the
Reference Input Parameter Library (RIPL-3) library [78]. We
choose it over other databases due to the ease with which it
allows data parsing, despite its lacking transition multipolarity
information. We thus extract a strength function of presumed
M1 transitions by selecting transitions between levels where
|Ji − Jf | � 1, πiπf = +1. This does not rule out E2 mixing,
but based on the power suppression in the multipole expan-
sion, M1 is a priori expected to dominate. As such, this gives
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FIG. 11. M1 strength function of different f5/2pg9/2 shell nuclei. The bin width is �E = 0.5 MeV.

an impression of how the low-excitation M1 energy strength
function behaves.

For each nucleus considered, we parse the entry in the
RIPL-3 library and look for all levels with Ex ∈ [0, 7] MeV
that pass the aforementioned requirement and that have a
known lifetime and measured γ -ray branching ratios. From
this information, we obtain partial decay widths, which we
average over (Ex,Eγ , J, π ) bins. The strength function is
then obtained by multiplying by the level density at the
corresponding (Ex, J, π ), which we obtain considering all
known levels, not just the ones with known lifetimes. This
is important to get the correct absolute value of the strength
function (otherwise it would be too low; see the Appendix).
By comparing the level density from the discrete levels to
that from shell-model calculations, we verify that the ex-
perimental level scheme seems to be complete up to the
excitation energies we consider,1 as shown in Fig. 12. Finally,
we average over (Ex, J, π ) to obtain the average strength
function depending only on Eγ .

1If the total level density from RIPL-3 falls below the shell model
level density before the “RIPL-3 used” density dies off, this would
indicate that we are compiling a strength function using too low level
density. This does not seem to be the case here.

We demonstrate this for the case of 56Fe in Fig. 9. The
wealth of available experimental information enables us to
construct a strength function based on 90 transitions selected
according to the criteria described above. We compare this
to shell-model calculations done using the GXPF1A [79] in-
teraction, as was used in Ref. [62]. The agreement between
experiment and calculations is excellent, both in terms of
slope and absolute value. The results for a variety of nuclei in
the sd shell and f5/2pg9/2 shell regions are shown in Figs. 10
and 11, respectively. For these regions, we compare results to
the previously discussed shell-model calculations. The dotted
line in each strength function panel shows the “quasicontin-
uum” strength function for that nucleus, by which we mean
the strength function compiled using all calculated levels, in
the same way as was done for the systematics above. We have
also extracted a strength function from the shell-model data
by selecting discrete transitions similar to the RIPL-3 ones.
Specifically, for each RIPL-3 level used in the construction of
the strength function, we have taken the lowest energy shell-
model level with the same spin and parity, and included all
transitions from this level in the discrete shell-model strength
function. (We also tried an alternative method selecting the
closest-in-energy shell model level, but this gives much poorer
results.)
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TABLE I. Fit parameters for experimental RIPL-3 strength func-
tions. See text for details.

B (10−8 MeV−3) T (MeV)

sd 1.30 5.09
f5/2pg9/2 0.77 1.73
56Fe 0.94 2.07

In an attempt to quantify the differences between the mass
regions considered, we make a fit to an exponential function
f (Eγ ) = B exp(Eγ /T ). To maximize statistics, we fit the
average strength function in each of the regions (the green
line shown in the last panel of each of the figures). We have
also fitted 56Fe separately. The results for the fit are listed
in Table I. With all the assumptions that go into this fit,
we should refrain from drawing strong conclusions, but it is
striking that the sd fit displays almost factor 3 gentler slope
than f5/2pg9/2. This is compatible with the trend from the
systematic calculations.

V. SUMMARY AND OUTLOOK

In this work, we have performed large-scale shell model
calculations of M1 γ -ray strength functions for many isotopic
chains in different major shells, focusing on the low-energy
behavior. We observe systematic trends in the calculations.
The slope of the strength functions is generally steeper in the
f5/2pg9/2 than in the sd shell. This correlates with the avail-
ability of high-j orbitals. Furthermore, the slope is steeper
near the shell closures and gentler in the midshell region for
both model spaces. This is especially pronounced in the region
northwest and southeast of a doubly magic nucleus, where,
in the shears-bands picture, proton and neutron magnetic
moments align to generate strong magnetic transitions.

The present findings consolidate several insights from pre-
vious studies—such as the dependence on high-j orbitals,
the coupling of protons and neutrons, and the relation to
shears bands—and shows that rather than being separate,
incompatible explanations of the low-energy enhancement,
they may be complementary pieces of the same puzzle. Based
on this and previous studies, we propose that large low-energy
magnetic decay strength is a feature inherent to nuclei when
they are excited to high energies. The slope of the LEE
seems to correlate with the availability of high-j orbitals,
which also correlates with nuclear mass. While the slope of
the M1 strength varies between nuclei and mass regions, it
never seems to disappear completely even for the lightest
nuclei but merely turns flat. Hence, in phenomenological
terms, an M1 correction to the strength function at the tail of
the E1 GDR is probably required for all nuclei, modifying
its low-energy shape. Indeed, for a large number of them,
the low-energy M1 strength displays an enhancement. If, as
these calculations indicate, the LEE is especially strong for
very neutron-rich nuclei, it could significantly impact (n, γ )
reaction rates relevant to the r process.

While there are experimental difficulties preventing defini-
tive exclusions of the LEE with the Oslo method, the data that
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FIG. 12. Level densities from discrete data for different nuclei,
compared with shell-model calculations. The lines labeled “RIPL-3
used” indicate the level density counting only the levels whose
lifetimes and branching ratios were used to compile the strength
function. The bin width is �E = 0.5 MeV.

exist support our present findings. It would be very interesting
to study other nuclei in midshell regions, and preferably
employing experimental techniques enabling the extraction
of the strength function to low γ -ray energy. It is equally
interesting to consider nuclei in the “shears regions,” where
we expect the LEE to be most significant. Neutron-rich Xe
isotopes are a promising case in this regard, located as they
are just northwest of the doubly magic 132Sn. An experiment
has recently been carried out on 133Xe at iThemba LABS and
analysis using the Oslo method in inverse kinematics is under
way [80]. We eagerly await these experimental results.

All calculations have been made publicly available on
Zenodo [66].
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FIG. 13. Comparison of γ -ray strength functions for 56Fe from
shell-model calculations extracted using two different methods. See
text for details.
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APPENDIX: ISSUES WITH CONVERSION OF B(M1)
VALUES TO STRENGTH FUNCTION

We recently became aware of an issue with how shell-
model calculations are converted to γ -ray strength func-
tions [81]. The conventional definition of the strength func-
tion, as found in Ref. [82], is

fM1(Eγ ,Ei, Ji, πi )

= 16π

9h̄3c3
〈B(M1)〉(Eγ ,Ei, Ji, πi )ρ(Ei, Ji, πi ), (A1)

where ρ(Ei, Ji, πi ) is the partial level density and 〈B(M1)〉
is the average transition strength of states at excitation energy
Ei , spin Ji , and parity πi . Using that μN = (eh̄)/(2mpc), the
constant in front works out to

16π

9h̄3c3
= 11.58 × 10−9 μ−2

N MeV−2. (A2)

However, in some works, the total level density has been
used in place of the partial. Since the total level density is
ρtot (Ex ) = ∑

J,π ρ(Ex, J, π ), this introduces (i) an artificial
overall enhancement of the strength function and (ii) an
arbitrary scaling depending on how many J, π combinations
were included in the calculations. In order to demonstrate the
difference, we have repeated the calculation of Ref. [62] and
extracted the strength function using both the total and the
partial level density. In each case, we average over Ex and J
(π = + only). It results in a difference of about a factor 10, as
expected since the calculation includes 11 different spins. The
effect is demonstrated in Fig. 13. In this work, we keep to the
original definition from Ref. [82].
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Appendix A

Derivation of the γ-ray strength
function
In this appendix, I give a derivation of the strength function f forM1 radiation.
The aim is to obtain an expression for f that makes clear and explicit how
it depends on the basic quantities, i.e. the individual levels and their partial
decay widths, that are available from a shell model calculation or experimental
tabulations. To avoid confusion, I will throughout this appendix denote the
total radiative decay width for a level i by Γi and a partial decay width from i
to f by γi→f . The integral formula for the total radiative width, as it is stated
in Ref. [73] but adapted to my notation, is taken as the defining equation for
the strength function:

〈Γ(Ei, J, π)〉 =
∑
XL

∫ Ei

0
〈γXL(Ei, Eγ , J, π)〉

J+L∑
Jf=J−L

ρ(Ei − Eγ , Jf , πf ) dEγ

(A.1)

=
∑
XL

∫ Ei

0

E2L+1
γ fXL(Ei, Eγ , J, π)

ρ(Ei, J, π)

J+L∑
Jf=J−L

ρ(Ei − Eγ , Jf , πf ) dEγ ,

(A.2)

where the sum runs over all possible multipolarities XL. Let us begin by consid-
ering a single level i that has a number of possible final states f = 1, 2, ..., N to
which it can decay. For simplicity I consider only a single multipolarity, namely
M1 radiation. We have that

Γi =
N∑
f=1

γi→f . (A.3)

Let us divide the final states into bins of width ∆Ef , and label the bins b =
1, 2, ...Nb. The sum can then be rewritten as

Γi =
Nb∑
b=1

∑
f∈b

γi→f . (A.4)

Because the aim is to get this over to an integral, let us define a helper function
αi(Ef ) as

αi(Ef ) = 1
∆Ef

∑
f∈b(Ef)

γi→f , (A.5)
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A. Derivation of the γ-ray strength function

where b(Ef ) is the bin covering the region (Ef −∆Ef/2, Ef + ∆Ef/2). (So Ef
only takes on discrete values at this point.) We then have the (exact) relation

Γi =
∑
Ef

αi(Ef )∆Ef . (A.6)

Now, if ∆Ef is sufficiently small, this expression approximates the integral

Γi =
∑
Ef

αi(Ef )∆Ef ≈
∫ Ei

0
αi(Ef ) dEf . (A.7)

We would like to have this integral as a function of Eγ . Considering α(Ef ), we
see that for a given Ei, the Ef bin is equivalently described by Eγ = Ei − Ef ,
with corresponding bins b′(Eγ) = b(Ef ) and bin width ∆Eγ = ∆Ef . This gives

αi(Ef ) = α̃i(Eγ) ≡ 1
∆Eγ

∑
f∈b′(Eγ)

γi→f . (A.8)

By using that dEγ = −dEf and Eγ(Ef = 0) = Ei, Eγ(Ef = Ei) = 0, we can
then rewrite the integral as

Γi =
∫ Ei

0
αi(Ef ) dEf = −

∫ 0

Ei

αi(Ef ) dEγ =
∫ Ei

0
α̃i(Eγ) dEγ . (A.9)

Let us now consider an ensemble I of initial states within some energy bin
∆EI around EI . We assume that all i ∈ I have the same quantum numbers
Jπ so that they reach the same final states f (ignoring any structural effects
that might hinder or enhance some specific transitions, i.e., assuming statistical
decay). The arithmetic mean of the total widths in I is

〈Γi〉I = 1
NI

NI∑
i=1

Γi. (A.10)

Substituting the integral gives

1
NI

NI∑
i=1

Γi ≈
1
NI

NI∑
i=1

∫ Ei

0
α̃i(Eγ) dEγ . (A.11)

By taking the arithmetic average of α̃i(Eγ) over I,

〈α̃i〉I(Eγ) = 1
NI

NI∑
i=1

α̃i(Eγ), (A.12)

The average of the integrals can be rewritten as an integral of averages:

1
NI

NI∑
i=1

∫ Ei

0
α̃i(Eγ) dEγ =

∫ Ei

0

1
NI

NI∑
i=1

α̃i(Eγ) dEγ (A.13)

=
∫ Ei

0
〈α̃i〉I(Eγ) dEγ . (A.14)
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The whole reason for doing this exercise is to get an integral expression for 〈Γi〉I
in which we know the exact contents. Now, let us compare this with Eq. A.2:

〈Γi〉I =
∫ EI

0

E3
γfM1(Eγ)

ρ(EI , JI , πi)

JI+1∑
Jf=JI−1

ρ(Ei − Eγ , Jf , πf ) dEγ (A.15)

=
∫ EI

0

E3
γfM1(Eγ)

ρ(EI , JI , πI)
ρf (Ei − Eγ) dEγ , (A.16)

where for brevity we have written
∑J+1
I=J−1 ρ(Ei − Eγ , Jf , πf ) ≡ ρf (Ei − Eγ),

the total level density of accessible final states for the decay. The two integrands
must be equal, giving

〈α̃i〉I(Eγ) =
E3
γfM1(Eγ)

ρ(Ei, Ji, πi)
ρf (Ei − Eγ). (A.17)

Solving for f(Eγ) gives

fM1(Eγ) = 〈α̃i〉I(Eγ)ρ(Ei, Ji, πi)
E3
γρf (Ei − Eγ) . (A.18)

Unwrapping the contents of 〈α̃i〉I(Eγ), this gives

fM1(Eγ) = ρ(Ei, Ji, πi)
E3
γρf (Ei − Eγ)

1
NI

NI∑
i=1

α̃i(Eγ) (A.19)

= ρ(Ei, Ji, πi)
E3
γρf (Ei − Eγ)

1
NI

NI∑
i=1

αi(Ef = Ei − Eγ) (A.20)

= ρ(Ei, Ji, πi)
E3
γρf (Ei − Eγ)

1
NI

NI∑
i=1

1
∆Ef

∑
f∈b(Ef )

γi→f . (A.21)

The level density of final states, ρf (Ef ), is given by

ρf (Ef ) = Nb
∆Ef

, (A.22)

where Nb is the number of final states accessible to the decay, i.e. the number
of states in the bin b(Ef ). This means that we can rewrite

1
∆Ef

∑
f∈b(Ef )

γi→f = ρf (Ef )
Nb

∑
f∈b(Ef )

γi→f = ρf (Ef )〈γi→f 〉b(Ef ), (A.23)

where 〈γi→f 〉b(Ef ) is the arithmetic average of γi→f within the final state bin
b(Ef ). Finally, this gives

fM1(Eγ) = ρ(Ei, Ji, πi)
E3
γρf (Ei − Eγ)

1
NI

NI∑
i=1

ρf (Ef )〈γi→f 〉b(Ef ) (A.24)

= ρ(Ei, Ji, πi)
E3
γ

〈
〈γi→f 〉b(Ef )

〉
I
, (A.25)
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where the average goes over both the initial and the final excitation energy bins,

〈
〈γi→f 〉b(Ef )

〉
I

= 1
NI

NI∑
i=1

1
Nb

∑
f∈b(Ef )

γi→f . (A.26)
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Appendix B

Statistics
In this Appendix, I discuss some concepts in probability and statistical model-
ling relevant to the thesis.

B.1 Probability distributions and data

The probability distribution is fundamental to statistical modelling. For a (pos-
sibly vector-valued) stochastic variable X and a set of parameters θ, the prob-
ability distribution

p(x = X|θ) (B.1)

encodes the probability that a measurement (or draw, if you like) of X gives the
value x, given the parameters θ. The distinction between x and X is usually
suppressed by writing simply

p(x|θ). (B.2)

The probabilities for all different outcomes of x must by definition sum to unity,
giving the normalisation requirement∫

p(x) dx = 1 (B.3)

The expectation value of a stochastic variable is defined as

〈x〉 =
∫
xp(x) dx, (B.4)

and it represents the average value of a large number of repeated trials. The
standard deviation, a measure of how much the values spread out from the mean,
is given by

σ =
√
〈(x− 〈x〉)2〉. (B.5)

The square of the standard deviation is known as the variance, Var[x] = σ2.
An example of a probability distribution that is relevant to this thesis is the

Poisson distribution. It applies to ‘counting experiments’, where the number of
measurements, n, that have an energy E falling in some given interval [Ek, Ek+
∆E] can be modelled as

p(n|λ) = λne−λ

n! . (B.6)

The expected number of occurrences n given the Poisson distribution is 〈n〉 = λ,
and the standard deviation is σ =

√
λ.
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B.2 Fitting a model to data

A situation that often arises is when we have a set of measurements {yi} that we
want to model using some probability distribution p(x|θ). This means treating
the yi as independent outcomes that have already been drawn from p(x|θ). The
reasons for doing this can be e.g. to estimate uncertainties in the data set or
to use the resulting distribution to draw new values in a Monte Carlo scheme.
The question is which set of parameter values θ0 that best describe the data set
{yi}. Determining the best values, θ0, is known as fitting the model.

When the measured values yi are inserted into p(x|θ), the result p(yi|θ) is
no longer a probability distribution. It can however be treated as a function of
θ, known as the likelihood function,

L(θ, yi) ≡ p(yi|θ). (B.7)

The likelihood function gives the probability of observing the data yi given the
parameter value θ. To estimate the value of θ0 in a model fitting procedure,
one often applies the principle of maximum likelihood, which says that the best
parameter choice θ0 is the one for which L(θ, yi) is maximised. In the case
of the Poisson distribution, the likelihood function for the expected number of
occurrences λ given a measured number of occurrences y is

L(θ, y) = λye−λ

y! , (B.8)

and the maximum likelihood estimator (MLE) for λ is λ̂ = y. This is also an
unbiased estimator for λ, since 〈n〉 = λ.

Multiple measurements {yi}Ni=1 can be combined. If we assume them to be
independently drawn from the same underlying distribution, then their joint
distribution is the product of the probability distribution evaluated at each i,

p({xi}|θ) =
N∏
i=1

p(xi|θ), (B.9)

and the joint likelihood similarly is

L (θ, {yi}) =
N∏
i=1
L(θ, y). (B.10)

It is often convenient to work with the log-likelihood, lnL, instead. Since the
logarithm is monotonic, most of the mathematical features, such as maxima and
minima, are preserved under the logarithmic transformation. It also eases the
construction of joint likelihoods, since

lnL(θ, {yi}) = ln
N∏
i=1
L(θ, yi) =

N∑
i=1

lnL(θ, yi). (B.11)
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B.2.1 χ2 fitting
The method of χ2 minimisation, also known as weighted least squares, is perhaps
the most widely used method for fitting functions. In the Oslo method, as
discussed in Chapter 4, a minimal-χ2 fit is used to determine the functional
form of the level density and γ-ray strength function by fitting them to the
matrix P (Ex, Eγ) of primary γ rays. To use a χ2 fit, the data being fit should
have Gaussian uncertainties. The Gaussian, or normal, distribution is often
encountered in statistics, because it applies to a great number of common cases.
It has a probability distribution function given by

p(x|µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 , (B.12)

where µ is the expectation value and σ the standard deviation. In the case
of the Oslo method, which comes from a counting experiment, the underlying
distribution is the Poisson distribution. However, for sufficiently large λ, i.e.,
sufficiently many events in each energy bin, the Poisson distribution closely
resembles the normal distribution, enabling us to employ a χ2 fit. Assuming
that each Ex, Eγ bin of P (Ex, Eγ) is a measurement from a normal distribution
with known standard deviation σ(Ex, Eγ), the likelihood on that bin for the
fitting parameter µ = Pfit(Ex, Eγ) is

L = 1√
2πσ2(Ex, Eγ)

exp
(
− (Pexp(Ex, Eγ)− Pfit(Ex, Eγ))2

2σ2
Ex,Eγ

)
, (B.13)

and the joint likelihood for the fit across all Ex, Eγ bins is found by taking the
product. Taking the log-likelihood, this gives

logL = K −
∑
Ex,Eγ

(
− (Pexp(Ex, Eγ)− Pfit(Ex, Eγ))2

2σ2
Ex,Eγ

)
= K − 1

2χ
2, (B.14)

where K is some constant, and where the joint χ2 distribution of all the Ex, Eγ
bins has been identified. This shows that the parameters that minimise the χ2

are the maximum-likelihood estimates for the joint normal distribution [171].

B.3 Bayesian statistics

The discussion about maximum likelihood estimation in the previous sections
falls within the category of frequentist statistics. A different statistical genre
is that of Bayesianism, where one attempts to take prior knowledge about the
problem into account [166]. Bayesian statistics springs from Bayes’ theorem,
which tells how to invert conditional probabilities:

p(a|b) = p(b|a)p(a)
p(b) . (B.15)
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Applying this to the case of fitting a set of parameters θ given data {yi}, and
renaming the functions, gives

p(θ|{yi}) = L(θ, {yi})π(θ)
Z({yi})

. (B.16)

Here, L(θ, {yi}) is again the likelihood function for θ given the data {yi}, and
π(θ) is the prior probability on θ before the data are considered. Z({yi}) is the
marginal probability distribution of the data independent of the parameters,
and for our purposes here it serves simply as a normalisation constant that can
be inferred from the other variables. The left-hand side p(θ|{yi}) is known as the
posterior probability distribution of θ given the data {yi}. The thing that sets
Bayesian statistics apart is the need for a prior probability, which constitutes an
assumption about the behaviour of the parameters θ before the data have been
considered. This leads some critics to consider Bayesian statistics to involve
too much subjectivity. And indeed, if one is not careful, it is possible to have
the prior overshadow the likelihood, leading to a posterior distribution that is
affected more by the prior assumptions than by data. However, the influence
of the prior can be controlled by making sound choices for its distribution and
monitoring the outcome of the fit.

Bayesian statistics has a number of appealing features. Fundamentally, it
boils down to the fact that it supplies a full-fledged probability distribution
for the parameter being estimated. This opens up for greater flexibility than
what the point estimate of maximum-likelihood estimation offers. Bayesian
statistics has gained popularity with the advent of modern computers, because
it naturally lends itself to Monte Carlo methods: With an explicit expression
for the posterior probability distribution p(θ|{yi}), it is possible to explore the
parameter space of θ in an efficient way by emphasising regions of high posterior
probability. This is especially important for problems with a large number of
parameters, because the volume of the parameter space grows exponentially with
the number of parameters, prohibiting more straight-forward methods such as
sampling values on a grid.

Figure 4.9 in Chapter 4 demonstrates a Bayesian approach to the problem
of normalisation in the Oslo method. The three transformation parameters A,
α and B were fitted simultaneously to constraints from auxiliary data using
the Python package PyMC3 [172]. The constraints were taken as the level
density based on known individual levels below 900 keV and the γ-ray strength
function measured in a (γ, n) experiment [167], extrapolated below the neutron
separation energy by an exponential function. The Oslo-method γ-ray strength
function was constrained by comparing with the extrapolation for Eγ between
5 and 7 MeV. The priors on A, α and B were taken to be uniform, to avoid
biasing the posterior distribution. Figure B.1 shows the result of the fit. The
left panels show the level density and γ-ray strength function before fitting,
together with the regions used to constrain the fit. The slope and absolute
values have been tuned by eye to match the data qualitatively. The panels
on the right show the same data after the Bayesian fit. The points labeled
best-fit correspond to the maximum a posteriori values of the parameters, i.e.,
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Figure B.1: Level density and γ-ray strength function normalised by a global
Bayesian fit of the transformation parameters A, α and B to auxiliary data. The
left panels show the unnormalised data, and the right panels show the results of
the Bayesian fit. The data set used is from an OCL experiment on the reaction
184W(α, p)187Re. See the text for details.
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the parameter values that maximise the posterior probability. Note that in
the case of uniform priors, the maximum a posteriori estimate is equal to the
maximum likelihood estimate. The green bands show a representative sample
from the posterior probability distribution of the parameters, and thus represent
the uncertainty in the normalisation. The distribution nicely visualises how the
data are most uncertain furthest away from the regions used in the fit.

The Bayesian approach to normalisation is flexible with regards to what
auxiliary constraints are included in the likelihood. This versatility makes it at-
tractive as a normalisation approach when the Oslo method is applied to more
and more exotic nuclei, where normalisation data is scarce. It is also conceivable
to combine the fit of ρ and T to the primary matrix and the normalisation into
a single, global fit. This would be a rigorous statistical procedure to provide
normalised functions with uncertainties, while avoiding the problems of χ2 de-
generacy with respect to the normalisation parameters A, B and α, as discussed
in Paper V [145]. Performing such a global fit may however turn out to be a
computational challenge.
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