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The collection of proton decays observed via invariant-mass spectroscopy in this work

have been applied to an array of topics in nuclear physics including the continuum effects

on near-threshold resonances, the branching ratio for a quasi-bound system, and evidence

for the evolution of shell structure. In the first experiment, the 6He(d,n)7Li∗ reaction was

employed in an attempt to populate a resonance predicted by an ab initio calculation. No

evidence of this resonance was found leading to a discussion on how the model needs to be

improved in order to treat nuclear states above multiple thresholds. In a separate experiment,

the p/γ branching ratio for the first 2+ state of 36Ca was studied and measured to be Bp =

0.087(8). This branching ratio enabled the measurement of a B(E2, 0+
1 → 2+

1 ) strength of
36Ca [B(E2 ↑) = 131(20) e2fm4]. The B(E2) and branching-ratio values can be reproduced

in the shell-model with the ZMB2 interaction, an interaction that predicts the Z = 20 sd-

shell closure is incomplete with large proton pf -shell occupancies in the ground state. This

experiment also resulted in a set of reactions populating proton-rich nuclei including 35Ca and

the first observations of 37,38Sc and 34K. Proton decays for these nuclei were reconstructed,

yielding three new ground-state masses and information on their low-lying structures. The

newly-measured mass excesses are: ∆M(37Sc) = 3500(410) keV, ∆M(38Sc) = -4656(14) keV,

and ∆M(34K) = -1487(17) keV. These masses enable us to look at trends in separation

energies, which help elucidate how nuclear structure evolves, showing a fading of the Z=20

shell gap for N ≤18 and indications of a N=16 subshell gap.
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Chapter 1

Introduction

In this dissertation, the exotic decay mode of proton emission has been experimentally

studied. The forthcoming chapters include three different examples of proton emission: (1)

excited states above multiple decay thresholds, (2) an excited state that has competing

proton-decay and gamma-decay modes, and (3) ground states of nuclei beyond the proton

drip line. The measurements contained in this work provide important tests of models

that calculate the interactions between protons and neutrons in nuclei, where the loosely

bound systems couple strongly to the continuum. This work has also added evidence on the

evolution of shell structure for nuclei far from stability by observing three new ground-state

masses for isotopes beyond the proton drip-line. In the big picture, the study of proton

emission helps to answer the question on how protons and neutrons interact through the

strong force. Answering this, helps us extrapolate to systems inaccessible in the laboratory

such as stellar systems, and in so doing helps explain where the elements and isotopes we

are made of are formed.
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1.1 Stability and nuclear decay

Atoms have a negatively-charged cloud of electrons which surround a dense, positively-

charged core called the nucleus. The nucleus is comprised of two different nucleon types,

positively-charged protons and neutrons with no charge. The proton number (Z) determines

what element the atom is and the neutron number (N) determines the specific isotope for a

given element (with mass number A = N + Z). Figure 1.1 shows the chart of nuclides, plotting

proton number versus neutron number to visualize the landscape of possible nuclei, where

the black boxes indicate stable nuclei and the colors indicate unstable nuclei with different

decay modes. Here, the word “stable” indicates the nucleus has a lifetime commensurate

with the age of the universe while unstable nuclei are defined by their half-life (t1/2), i.e. the

time it takes for half a sample to decay away.

To understand how a nucleus will decay, you must first look at the mass of a nucleus.

You can think of the chart of nuclides with a suppressed third axis of mass. The mass clearly

goes up as you increase A, but for a given isobar (constant A), stable nuclei lie at the bottom

of a mass parabola. Across the chart, stable nuclei form a valley which the unstable nuclei

decay towards and the difference between masses is one of the principal factors determining

how fast or what decay modes are available. If the mass of a neutron-rich parent nucleus

(N,Z) is larger than the daughter nucleus (N-1,Z+1), then β−-decay will change a neutron

to a proton. If the mass of a proton-rich parent nucleus (N,Z) is larger than the daughter

nucleus (N+1,Z-1), then two potential decay branches are available, electron capture (εc)

and β+, to change a proton to a neutron. Again, the difference in mass becomes important

because β+-decay is only possible when the mass difference is greater than 2me, where me

= 0.511 MeV/c2 is the mass of the electron.

This same principle is true for other spontaneous decay modes such as α-emission, p-
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Fig. 1.1: The chart of nuclides (also known as a Segrè chart) Taken from NuDat [1]. Moving
vertically increases the number of protons while moving horizontally changes the
number of neutrons. Decay type is color coded. Isotopes have constant Z, isotones
have constant N, and isobars have constant A.

emission, n-emission, or spontaneous fission. A decay or spontaneous conversion, requires

the Q value, defined as the difference in mass between the reactants and products,

Q =
∑

reactants

Mi −
∑

products

Mj, (1.1)

to be greater than zero. For proton, neutron, and alpha decays, instead of a Q value, the

separation energy is often used where Sn/p/α = −Q so that negative separation energies

indicates an energetically allowed, or thermodynamically spontaneous, decay.
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Just because a reaction is spontaneous thermodynamically, it does not imply that the

decay rate is fast. Kinetically, the rate of decay can be held back by potential-energy barriers.

Around a third of the chart has Qα>0 and more than half could spontaneously fission if not

for the presence of barriers. For example, 208Pb has a positive Qα value of 517 keV [2] and

should spontaneously decay but is stable with a lifetime too long to measure. If a 208Pb

nucleus was to fission perfectly in half, creating two 104Nb nuclei, it would result in a release

of about 122 MeV of energy, but the spontaneous fission of 208Pb is not observed. In quantum

mechanics, it is possible for a particles to tunnel through a barrier, and this is discussed later

in Section 1.4 for proton decays, but the probability of it occurring dies off exponentially

in proportion to the size of the potential barrier. This results in potential energy barriers

trapping nucleons in states that meet the energetic requirements for a decay but will never

be observed doing so.

1.2 Semi-empirical mass formula

Nuclear mass is a bulk property of all the protons and neutrons interacting together in the

nucleus. Bare nucleons have a mass (in energy units) on the order of mp ≈ mn ≈1 GeV while

the binding energy between nucleons is BEnuc ∼8 MeV/A. The atomic mass is slightly heavier

than the bare nucleus, adding on the mass of electrons me = 0.511 MeV then decremented

by the binding energy of all electrons BEelec ∼200 keV-1 eV. Together the mass of an atom

can be written as follows,

M(N, Z) = Z ∗ (mp + me) + N ∗ mn − BEnuc − BEelec. (1.2)

The simplest picture of nuclear binding energy, suggested in the 1930s by G. Gamow, is
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the liquid-drop model (LDM) [3]. This was later refined and quantified by Weizäcker and

Bethe and called the semi-empirical mass formula (SEMF) [4]. In the LDM and SEMF, the

nucleus is a dense, incompressible charged fluid comprised of nucleons held together by the

attractive strong nuclear force but kept separate due to a strong repulsive core. Nuclear

binding in the SEMF is estimated based on just proton and neutron numbers with just five

empirical constants fit to reproduce the masses of atoms. The form is as follows,

BEnuc(N, Z) = aV A − aSA2/3 − aC
Z(Z − 1)

A1/3 − aA
(N − Z)2

A
+ δ(N, Z), (1.3)

where aV , aS, aC , aA, and δ0 are the fitted constants. The origins of these terms can be

visualized in Fig. 1.2 and are discussed below.

Fig. 1.2: Visual representation of the terms in the SEMF. [5]

The first term, positive and linear in A, is the volume term. This comes from the

saturation of the strong force, i.e. the range of the strong force is smaller than the size of

the nucleus and extends only to a nucleon’s nearest neighbors before the attractive strength

falls off. In an infinite system, each nucleon would bind with a set of neighbors and provide

a fixed amount of binding energy. This amounts to about 15.5 MeV of binding energy per

nucleon.

The second term is the surface term, which is subtractive and lowers the binding energy.
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In a finite system, there must be nucleons at the surface of the drop that don’t have as many

neighboring nucleons to bind with. The surface area of a sphere is 4πr2 and the radius of

a nucleus is approximately 1.2A1/3 leading to the surface term being proportional to A2/3.

The reduction of binding from the surface term relative to the volume term is greatest for

light nuclei where the surface-to-volume ratio is large. This amounts to a decrease in binding

energy and an increase in mass of about 1 MeV/fm2.

The third term is the Coulomb term. The Coulomb potential between two charges, q1

and q2, can be written as,

VC(r) = 1
4πε0

q1q2

r
, (1.4)

where ε0 is the permittivity of free space. The Coulomb potential is long range, meaning

that every proton in the nucleus will repel every other proton within the nucleus, decreasing

the amount the nucleus is bound by. The total electrostatic energy, U , within the nucleus is

the sum of the energy between all possible pairs of protons in the nucleus. For an uniform

distribution of charge, the energy is the work done in gathering the charges together from

infinity. If Qr is the charge of the sphere with radius r, then the work to add on a charge

dQ is,

dU = QrdQ

4πε0r
, (1.5)

The charge Qr is,

Qr = ρe
4
3πr3, (1.6)

where ρe is the charge density. This makes the charge added to the sphere to be,

dQr = ρe4πr2dr, (1.7)
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and thus the work bringing the charge together is,

dU = 4πρ2
er

4dr

3ε0
. (1.8)

Integrating Eq. (1.8) from r=0 to r=R, the radius of a sharp sphere approximately the size

of a nucleus, and replacing the charge density by the total charge over the total volume,

ρe = Q/(4/3πR3), gives,

U = 3
5

Q2

4πε0R
. (1.9)

Here, we get the proportionality from Eq. (1.3) if Q2 = Z(Z-1) and the radius R ∝ A1/3.

The fourth term in Eq. (1.3) is the asymmetry energy. This term indicates there is an

energy cost to creating an asymmetry in the neutron-to-proton ratio. When following the

Pauli exclusion principle, only two nucleons of opposite spin can occupy a level, filling energy

levels from lowest to highest according to independent Aufbau principles. With N=Z, the

pairs of nucleons fill up the same levels with some spacing ∆ between levels. Converting one

pair of nucleons to the other, costs a total energy of (2∆). Doing this again, you have to move

the next pair up 3(2∆) for a total cost of 4(2∆). To move up n pairs, creating an asymmetry

of (N − Z) = 2n, the total energy cost is n2(2∆), leading to the (N-Z)2 proportionality in

the SEMF. For a three dimensional well, the spacing between energy levels, ∆, is inversely

proportional to the volume, giving the 1/A proportionality in the asymmetry term.

The fifth and final term in Eq. (1.3) is the pairing energy. Experimentally, masses of

nuclei depend on their even or oddness of each type of nucleon, suggesting a pairing term.

Paired nucleons bind more than unpaired nucleons, leading to an increased binding energy

if all protons and neutrons are paired and, conversely, a decreased binding energy if the last
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proton and neutron aren’t paired. This is quantified by the pairing term δ(N, Z) as,

δ(N, Z) =


+δ0/A1/2 even − even

0 even − odd

−δ0/A1/2 odd − odd ,

(1.10)

where even-even pairing occurs when both protons and neutrons are paired up, even-odd

when only one of the two are paired, and odd-odd when neither are paired.

Data for the binding energy per nucleon for stable isotopes is shown in Fig. 1.3 along

with the contributions from the SEMF. The figure shows the sharp increase in BE/A as the

surface term is quickly reduced in relative importance, a peak of stability around 56Fe, and

then a slow decrease in binding as A increases due to the Coulomb and asymmetry terms

suppressing the binding. This figure provides major insight into the question of whether

a reaction (with fixed total A) has a positive Q value, i.e. a spontaneous decay will move

towards higher binding energy per nucleon. As an example, fission occurs in heavy isotopes

like 235U because the fission fragments it produces are to the left in Fig. 1.3 and have larger

binding energies per nucleon.
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Fig. 1.3: Plot of binding energy per nucleon for stable isotopes adapted from Ref. [6].
Data is shown for specific isotopes in red dots and a blue line while the rough
contributions from the SEMF are overlaid in black.

1.3 Nuclear structure

When the SEMF from Section 1.2 is fit to data, it does a good job at describing overall

trends, but it becomes clear there are systematic deviations. For example, deviations from

this model are shown in Fig. 1.4 where the largest differences occur at set numbers of N.

This comes as a result of nuclear structure and shell effects. We see an increase in stability,

i.e. more binding, for nuclei that have the number of protons or neutrons equal to 2, 8, 20,

28, 50, 82, and 126. These “magic” numbers arise as a result of nucleons occupying shells

with non-uniform gaps between levels, i.e. the ∆ used in the analysis of the asymmetry term
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in the SEMF is not a constant. This stability can show up many ways and helps explain the

natural abundances of isotopes in nature, the large number of stable isotopes or isotones at

magic numbers, trends in nuclear masses, and the double-humped mass distribution observed

in fission.

Fig. 1.4: Difference between the SEMF (or LDM) and measured binding energies for iso-
topic chains of each element. Shell effects can be seen as peaks at the magic
numbers N = 8, 20, 28, 50, 82, and 126. [7]

1.3.1 Independent-particle model

The combined effect of nucleons interacting within a nucleus results in an attractive potential

that traps protons and neutrons. To understand the structure of the nucleus, a reasonable

starting point is a model where a nucleon does not interact with each other nucleon inde-

pendently but instead interacts with a central potential produced by the combined effect of
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all nucleons. This description of nuclei is called the independent-particle model.

The exact form of the nuclear potential is unknown but the simplest picture for this

central potential is that of the harmonic oscillator, i.e. parabolic in shape. The harmonic

oscillator potential has the unique property that solutions to Schrödinger’s equation results

in equally-spaced energy levels. The levels are defined by their principle quantum number, N,

with energy Nℏω, where ω is the oscillation frequency. Issues quickly arise for the harmonic

oscillator potential. First, the harmonic oscillator potential has a rounded bottom while

heavier nuclei with large volumes need a potential that saturates. Second, the harmonic

oscillator infinitely increases with no limit to how many levels can be bound while we know

there is a limit to the chart of nuclides. The finite square well, having a flat, uniform bottom

and sharp edges, offers a direct improvement to these issues. It also removes the angular

momentum degeneracy creating a split between levels with the same principle quantum

number but different orbital angular momentum numbers ℓ = 0, 1, 2, 3, 4, and 5 (labeled as

s, p, d, f, h, and i, respectively). This reproduces the magic numbers 2, 8, and 20 but fails

to reproduce the higher magic numbers.

The central potential can be improved if the edges of the well are rounded to give a

diffuse edge to the nucleus. The Woods-Saxon potential is a commonly used form given by,

V (r) = −V0

1 + exp( r−R
a

)
, (1.11)

where V0 is the well depth, a is the diffuseness of the surface, and R is the radius of the

nucleus. The final addition to the potential is the spin-orbit coupling, introduced in 1949 by

Goeppert-Mayer [8] and at the same time by Haxel, Jensen, and Suess [9]. The spin-orbit

coupling is an interaction between the orbital angular momentum, ℓ, and the spin angular

momentum, s, to give a potential VLS ∝ ℓ·s. This interaction breaks the degeneracy between
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levels with different values of J = ℓ + s, lowering J> that has s = 1/2 (i.e. parallel to ℓ),

and raising J< that has s = −1/2. This is the opposite of what one finds in the strictly

relativistic orbital electron spin-orbit splitting.

This sequence of improvements in potential, from a harmonic oscillator to a square well,

to a Woods-Saxon, to including the spin-orbit, is shown in Fig. 1.5. The observed magic

numbers are recreated when the spin-orbit coupling is included and are shown in boxed

numbers on the right-hand side.

Fig. 1.5: Calculated single-particle levels for different central potentials starting with the
harmonic oscillator, then the infinite and finite square wells, then the square well
with rounded edges (Woods-Saxon shape), and finally when the spin orbit coupling
is added. The final potential results in levels that have gaps at the observed magic
numbers shown on the right in boxes at 2, 8, 20, 28, 50, 82, and 126.
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1.3.2 Configuration Interactions

In the independent-particle model, we looked at single-particle interactions with a central

potential to form single well-defined orbitals. This works well to recreate the magic numbers

and can explain structure that is dominated by just one or two unpaired particles or holes.

For example, moving from a doubly closed shell like 40Ca with a 0+ ground state to 41Ca, puts

a single neutron in the f7/2 orbital, so the ground state will have a spin-parity Jπ = 7/2−.

For most of the chart of nuclides, the picture is more complicated and a many-body physics

approach is required.

Configuration interaction (CI) calculations, also commonly called shell-model calcula-

tions, is an approach to solve the many-body quantum problem that incorporates valence

nucleons defined by occupancies of partially filled single-particle quantum states. The first

step in CI is choosing the active model space. From the independent-particle model, you

choose an inert core nucleus and a valence space where excitations will take place. The

valence space orbits are typically chosen such that a calculation occurs within one or two

harmonic oscillator shells from Fig. 1.5 such as the s, p, sd, or pf shells in light nuclei. This

reduces the model space and therefore the calculation time. The second part of a CI cal-

culation is determining the effective two-body interaction between nucleons. Removing the

inert core nucleons forces the calculation to use an effective interaction to account for those

missing nucleons in the calculation. In a phenomenological approach, the interaction is pa-

rameterized and then fit to data. Research over time has produced many of these codes and

interactions with examples of codes including Oxbash [10], nushell [11], KSHELL [12], and

ANTOINE [13] and examples of interactions including USD(A,B,C) [14, 15] or the ZBM2

[16].

The CI or shell-model calculations are a versatile tool for studying light-to-medium mass
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nuclei. They have been used to calculate a wide range of observables including: energy levels,

radii, matrix elements, spectroscopic factors, magnetic moments, electron scattering, and

beta decay. These interactions work reasonably well at reproducing selected experimental

data but some consideration is required when attempting to calculate nuclei with large

degrees of collectivity and when looking at an open quantum system with excitations in the

continuum. Shell model calculations were employed throughout the work presented in this

thesis serving as valuable benchmarks.

1.3.3 Electromagnetic transitions

The energy of an electromagnetic radiation field can be described mathematically in terms

of a multipole expansion in spherical harmonics, Y m
ℓ , with orbital angular momentum ℓ and

magnetic substates m. The terms in the expansion correspond to the increasing angular

momentum quantum numbers that have 2ℓ-poles in the field. These are named: ℓ=0 for

a monopole, ℓ=1 for a dipole, ℓ=2 for a quadrupole, ℓ=3 for a octupole, and so on for

higher multipolarities. The strength of each multipole field is proportional to the radius as

r−(ℓ+1), resulting in a rapid convergence, with the lowest order multipolarity being the most

important.

These multipolarities are used to classify transitions between states in a nucleus that

couple to the electromagnetic field, such as γ-ray emission or Coulomb excitation. For the

emission of a γ-ray with intrinsic spin s = 1 and spin projection ms = ±1, the photon which

couples the transition has angular momentum,

λ = ℓ + s, (1.12)
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with new magnetic substates, µ, given by,

−µ < λ < µ. (1.13)

The change in parity, ∆π, depends on on the parity of the photon coupled to the change in

orbital angular momentum as ∆π = (−1)ℓ+1. If the photon changes the charge distribution,

it is an electric transition with ℓ = λ ± 1 and if the photon changes the current distribution,

it is an magnetic transition with ℓ = λ. For a given transition from Jπi
i → J

πf

f , angular

momentum gives the selection rules,

Jπi
i → J

πf

f + λ, (1.14)

and

|Jπi
i − J

πf

f | ≤ λ ≤ Jπi
i + J

πf

f . (1.15)

The monopole, Jπi
i = 0+ → J

πf

f = 0+ transition is forbidden because the photon has non-

zero angular momentum. If the nucleus starts with zero angular momentum and a photon

must carry away some in the transition, the final nuclear state cannot also have zero angular

momentum. The lowest allowed multipolarity, λ = |Jπi
i − J

πf

f |, will dominate the transition

rate due to the rapid convergence of the multipole expansion.

For a transition, the decay rate can be calculated using Fermi’s golden rule,

Λ = 2π

ℏ
|⟨f |H ′|i⟩|2 dN(Ef )

dE
, (1.16)

where ⟨f |H ′|i⟩ is matrix element determined by the overlap of the final and initial wave

function with the interaction Hamiltonian, H ′, treated as a perturbation to the free particle
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Hamiltonian. The quantity dN(Ef )/dE, is the density of states at the final energy of the

transition. For an electromagnetic transition, the Hamiltonian is replaced by the electric or

magnetic transition operators. The electric operator is given by,

Q̂λµ =
∑

i

ei rλ
i Y µ∗

λ (θi, ϕi), (1.17)

where ei is the charge of particle i. The magnetic operator is given by,

M̂λµ = µN

∑
i

(
gs,i si + 2

λ + 1 gℓ,i ℓi

)
· ∇

[
rλ

i Y µ∗
λ (θi, ϕi)

]
, (1.18)

where µN is the nuclear magneton, gs and gℓ are spin and orbital angular momentum gyro-

magnetic ratios. For an electromagnetic transition, the perturbation Hamiltonian is propor-

tional to the electric or magnetic transition operators. With this replacement, the matrix

element in Eq. (1.16) is now ⟨f |Ôλµ|i⟩, where Ôλµ is either Eq. (1.17) or (1.18), while ⟨f |

and |i⟩ are short-hand for the relevant final and initial state quantum numbers. Through the

Wigner-Eckart theorem, the matrix element can be averaged over the magnetic substates

(µ), which are not typically observed individually in experiments, resulting in,

⟨f |Ôλµ|i⟩ = (2Ji + 1)−1/2⟨f ||Ôλ||i⟩, (1.19)

where the double-bar notation of |⟨f ||Oλ||i⟩| is the reduced matrix element. Squaring the

matrix element, we define the B(πλ) as the reduced transition probability (often also called

the reduced matrix element), given by,

B(πλ, Ji → Jf ) = (2Ji + 1)−1
∣∣∣⟨f ||Ôλ||i⟩

∣∣∣2 . (1.20)
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The B(πλ, Ji → Jf ) can be related to the inverse transition rate B(πλ, Jf → Ji) as,

B(πλ, Ji → Jf ) = 2Jf + 1
2Ji + 1 B(πλ, Jf → Ji). (1.21)

With the reduced transition probability defined, the decay rate from Fermi’s golden rule

in Eq. (1.16) can be solved. For an electric transition, the rate is given by,

Λ(Eλ) = e28π (λ + 1)
ℏλ [(λ + 1)!!]2

B(Eλ)
(

Eγ

ℏc

)2λ+1
, (1.22)

and for a magnetic transition, by,

Λ(Mλ) = µ2
N8π (λ + 1)

c2ℏλ [(λ + 1)!!]2
B(Mλ)

(
Eγ

ℏc

)2λ+1
. (1.23)

With the transition rate, the mean life-time, τ = 1/Λ, and the decay width, Γ = ℏΛ, are also

known. Typically the mean life-time (τ = t1/2/ ln(2))is measured in an experiment, and the

reduced transition probability can be extracted from that. Common methods of measuring

these extremely short lifetimes (in the range of 10−15 to 10−9 seconds) include the recoil

distance method and the Doppler-shift attenuation method [17], while Chapter 5 discusses

the intermediate energy Coulomb excitation method.

The B(E2, 0+ → 2+), measured for 36Ca in Chapter 5, is a reduced electric-quadrupole

transition rate. Measurements of B(E2) strength are common because of the availability

of even-even nuclei which have a 0+ ground state and a low lying excited 2+ state. These

can be compared to a single-particle transition rate given by the Weisskopf estimates [18].

Large B(E2) values compared to the Weisskopf estimates indicate a more collective motion

of protons and neutrons in the excitation. B(E2) strengths are smallest near closed shells

and largest between shells where large deformation can occur. In the Hill-Wheeler param-
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eterization [19], the deformation can be modeled as the radius R being deformed, from R0

as,

R(θ, ϕ) = R0
(
1 − β2Y

0
2 (θ)

)
, (1.24)

where the deformation parameter, β2, is given by,

β2 = 4π

3ZR2
0

√
B(E2 ↑)/e2. (1.25)

By convention, if β2 is given as a positive value, the nucleus has a prolate deformation, and

if β2 is negative, the nucleus has an oblate deformation.

1.4 Proton emission to study open quantum systems

As discussed earlier, proton emission can occur in the ground state when the separation

energy becomes negative. On the chart of nuclides, negative proton separation energies

define the proton drip line. For light isotopes beyond the proton drip line, lifetimes are

extremely short and the life-time is measured by the width of the resonance. For a state

that has a width of 100 keV, the half-live is only 4.6×10−21 s (related through Eq. (1.28)

discussed later). For heavy isotopes, the partial proton lifetimes have been observed as large

as 100 s for 105Sb where the proton decay branch is competing against the β+ decay branch

[20, 21]. Proton decay can also occur in excited states if the state is above a decay threshold

set by the proton separation energy. The work presented in this thesis will handle both cases,

with Chap. 3 discussing an excited state in 7Li above the proton decay threshold, Chap. 4

discussing an excited state with a branching ratio between proton and gamma decay, and

finally in Chap. 6 discussing 34K, 37Sc, and 38Sc which are isotopes beyond the proton drip

line.
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The nuclear chemistry group at Washington University in St. Louis has studied a large

collection of proton emitting nuclei including 9 first observed by our group and collaborators.

The first observations of light proton emitters beyond the proton drip line associated with

the WashU efforts are highlighted in green in Fig. 1.6. Among these cases are the two-proton-

emitter 11O [22], the four-proton-emitter 18Mg [23], and the recent five-proton-emitter 9N

[24]. The work in Chap. 6 discusses 34K, 37Sc, and 38Sc, the heaviest nuclei yet studied by

the WashU effort.
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Fig. 1.6: Chart of the nuclides zoomed in on light nuclei. Proton emitters beyond the drip
line that have been discovered by the WashU group are highlighted in bright green.

Weakly bound and unbound states can couple strongly to the scattering continuum and

therefore are often required to be treated as open quantum systems. The quasi-bound nature

of one or more protons leads to extended wave functions that have significant overlap with
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continuum wave functions. An example of such an effect is the Thomas-Erhman shift, which

lowers the energy of continuum states with large s-wave character compared to the same

states in the mirror nucleus which are bound [25, 26]. For weakly-bound systems, or systems

with separation energies just above zero, nuclei have been observed to have an extended

low-density skin region, resulting in what are called halo nuclei. In order to calculate the

properties of halo nuclei, such as the two-neutron halo in 11Li[27] or the proton halo expected

for 8B [28], an open quantum system treatment is required. Proton emission provides a test

for quantum calculations which include coupling to the continuum as a facet of the many-

body problem.

1.4.1 Barriers to proton emission

If a nucleus is unbound to particle emission, it may be quasi-bound if there exists a potential

barrier that traps the particle from escaping the nucleus. A proton must tunnel through

the Coulomb barrier and perhaps an angular momentum barrier to escape the nucleus.

An example of a quasi-bound proton probability distribution trapped by the presence of a

presence of a barrier is shown in Fig. 1.7.

Imagine a proton approaching a nucleus. As the positively-charged proton approaches the

positively-charged nucleus, the Coulomb potential from Eq. (1.4) is inversely proportional to

the radius, r, increasing as 1/r. This rapidly approaches infinity for a perfect point source

but the nucleus has a definite size with radius R ≈ 1.2A1/3. If the approaching proton has a

high enough energy to touch the nucleus, then the strong force overwhelms the Coulomb force

and the overall potential becomes attractive. The same barrier that repels the approaching

proton also inhibits a proton from leaving the nucleus.

In the classical picture, a nucleon has angular momentum because it is orbiting a core.
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Fig. 1.7: The probability distributions for bound and quasi-bound protons trapped by the
presence of the Coulomb and angular momentum barrier Vbar.

The angular momentum must be conserved as the nucleon’s radius of orbit increases or

decreases. For a nucleon with a quantized angular momentum, the barrier is as follows,

V (r) = ℓ(ℓ + 1)ℏ2

2µr2 , (1.26)

where µ is now the reduced mass between the nucleon and the core. If the particle moves

radially inwards, the potential shoots up, requiring more and more energy to conserve angular

momentum. The opposite is also true, that as the particle moves outwards, less energy is

required creating a repulsive potential. This creates the angular-momentum barrier (or

centrifugal barrier) that a particle decay must tunnel through to escape the nucleus. For

proton emission, the angular momentum barrier is less significant compared to the Coulomb
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barrier as it dies off with a 1/r2 form versus the 1/r form in the Coulomb potential but it

can play a large role in light nuclei, with small Coulomb barriers, and in neutron emission,

for which there is no Coulomb barrier.

1.4.2 Quantum tunneling

Emission rates for a quasi-bound proton follows a theory similar to that used to treat alpha

decay. When the energy of the proton is positive but less than the barrier, the proton must

tunnel through the classically forbidden region to escape. The partial proton width, Γp, can

be written as

Γp = (C2S)F ℏ2

4µ
T (1.27)

where (C2S) is the spectroscopic factor for finding the proton in the correct orbital, F is a

normalization factor discussed in further detail in [29], and T is the transmission coefficient.

The partial decay width is related to the decay rate, Λ, and the half-life by,

Γp = ℏΛ, and t1/2 = ℏ ln(2)
Γp

. (1.28)

To calculate the transmission coefficient from a theoretical approach, there are four

main methods: Distorted wave born approximation (DWBA), two-potential approach, the

Wentzel-Kramers-Brillouin (WKB) approximation, and R-matrix method [30]. The last two

of which will be briefly discussed.

In Fig. 1.7, there are three main regions: inside the nucleus with r < R, inside the

classically forbidden region R < r < Rb where Rb is the radius at which the barrier drops to

Q (shown as dotted line for the wave function), and outside the nucleus where the proton is
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a free particle with r > Rb. The wave vector, κ, is given by,

κ =
√

2µ

ℏ2 (Q − Vbar(r)), (1.29)

with Q being the Q-value and Vbar being the potential barrier. If the barrier is large and the

inverse of the wave vector is small and slowly varying compared to the size of the system,

then the WKB approximation is valid and the transmission coefficient is,

TW KB = exp

−2
∫ Rb

R

√
2µ

ℏ2 (Q − Vbar(r))dr

 . (1.30)

1.4.3 R-matrix

At its core, R-matrix theory is a formulation developed to treat resonances as a result of

nuclear scattering. For a complete review of R-matrix theory, I will point to a detailed review

article by Lane and Thomas [31], but here I will show enough to demonstrate its usefulness

for proton emission. Guidance and arguments are taken from Refs. [32] and [33]. The

phenomenological R-matrix method parameterizes various physical processes to determine

collision matrices and cross sections. Central to this formulation, the wave function for a

scattering channel, c, between two particles is divided into an “internal” region corresponding

to the formation of a compound nucleus, and an “external” region corresponding to channels

that cause or result from the formation of a compound nucleus. For each scattering partial

wave and channel, the division occurs at a sharp surface at radius, a, called the channel

radius.

External to the channel radius, incoming and outgoing channels are in the presence of a

Coulomb and angular momentum potential. The wave-function solutions for positive-energy

incoming and outgoing waves can be expressed in terms of regular (F ) and irregular (G)
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Coulomb functions. At large r, their asymptotic forms are:

Fl(r) −−−→
r→∞

sin (kr − η log(2kr) − (1/2)ℓπ + σℓ) (1.31)

Gl(r) −−−→
r→∞

cos (kr − η log(2kr) − (1/2)ℓπ + σℓ) , (1.32)

where k is the wave vector of a free particle (defined the same as Eq. (1.29) except Vbar = 0

and Q = E is energy of the free particle), η is the Summerfeld parameter, and σℓ is the

Coulomb phase shift. The Summerfeld parameter and Coulomb phase shift are given by,

η = Z1Z2e
2µ/(ℏk), (1.33)

and

σℓ = arg Γ (1 + ℓ + iη) . (1.34)

where Γ in this one instance is the Euler function, and µ is the reduced mass between the

two particles in the scattering channel. The wave-function solutions can now be expressed

for the positive-energy incoming, I+
l , and outgoing, O+

l , waves as,

I+
l (r) = (Gℓ − iFℓ) exp(iωℓ) (1.35)

O+
l (r) = (Gℓ + iFℓ) exp(−iωℓ), (1.36)

where

ωℓ =
ℓ∑

n=1
arctan η/n. (1.37)

Outside, we can define the penetrability P and the shift function S as a function of the

energy, E, related to k via Eq. (1.29), which will be useful later. The penetrability is related
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to the Coulomb wave functions at the channel radius by,

Pℓ(E) = ka

Fℓ(ka)2 + Gℓ(ka)2 (1.38)

and the shift function is,

Sℓ(E) = ka
Fℓ(ka)′Fℓ(ka) + Gℓ(ka)′Gℓ(ka)

Fℓ(ka)2 + Gℓ(ka)2 , (1.39)

where F ′
ℓ and G′

ℓ are the derivatives with respect to kr.

Internal to the channel radius, the full wave function for a channel, Ψc, can be expanded

in terms of mutually orthogonal eigenfunctions,

Ψc =
∑

λ

AλXλ (1.40)

where each Xλ is a resonant state belonging to an eigenenergy of Eλ. The matching boundary

condition between internal and external waves is imposed at the channel radius given by,

a

(
dXλ

dr

)
|r=a = b Xλ(a), (1.41)

where b is the boundary condition. Both a and b are specified by the user. The value of

a is typically chosen just beyond the extent of the nuclear potential for that channel. The

final results should be insensitive to small changes in a and independent of the boundary

condition.

The expansion coefficients of Eq. (1.40) must satisfy,

Aλ =
∫

Xλ ∗ Ψc dV, (1.42)
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integrating over the full internal volume of the configuraton space. Through an application

of Green’s theorem [32], the coefficients Aλ are solved for to give,

Aλ =
∑

c

√
ℏ2

2µc a

γλc

Eλ − E
[Ψ′

c(a) − b Ψc(a)] . (1.43)

In the equation above, γλc is the reduced width amplitude given by,

γλc =
√

ℏ2

2µcac

∫
Ψ∗

cXλdS, (1.44)

where the integral is over the surface between internal and external wave function. Using

Eq. (1.40), and looking at a transfer between channels, we now have the internal wave

function, √
ℏ2

2µc ac

Ψc(r) =
∑
c′

ℏ2

2µc′ a
Rcc′ [Ψ′

c′(r) − b Ψc′(r)] , (1.45)

where we define the R matrix for multiple channels as,

Rcc′ =
∑

λ

γλcγλc′

Eλ − E
(1.46)

The S matrix, or scattering matrix, can be used to relate the initial and final state in a

scattering process. For a single isolated channel, the S matrix is related to a phase shift, δ,

as,

S = exp(2iδ). (1.47)

To relate the R matrix to the the S matrix, generally,

S =
√

ℏ2

2µc a

H−
ℓ − aR

(
H−′

ℓ − b
a
H−

ℓ

)
H+

ℓ − aR
(
H+′

ℓ − b
a
H+

ℓ

) , (1.48)
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where H±
ℓ are the Hankel functions. To simplify this, we look at s-wave neutron scattering

on a target so there is no Coulomb or angular momentum potentials. This simplifies the

Hankel functions so they are simply H±
0 = e±ika. Choosing the boundary condition to be

b = 0 gives,

S = e−2ika 1 + ikaR

1 − ikaR
. (1.49)

From comparing this to Eq. (1.47), we can see a split in the phase shift. There is a hard-

sphere contribution, e−2ika, and a resonance contribution (1 + ikaR)/(1 − ikaR), i.e. the

phase shift is now,

δ = ϕ + δR, (1.50)

with a hard-sphere phase shift ϕ = −ka and δR representing the resonance phase shift. In

the more general case of a isolated resonance, Eq. (1.48) can be written in terms of the shift

function and penetrability of a hard sphere to give,

S = 1 − R (S − b) + iRP

1 − R (S − b) − iRP
e2iϕ, (1.51)

with resonance phase shift,

δR = tan−1
(

RP

1 − R(S − b)

)
. (1.52)

To relate Eq. (1.51) to experimental quantities, we choose b=0 and re-write the S matrix

using the definition of R such that it is now,

S = E − (Eλ − γ2
λS + iγ2

λP )
E − (Eλ − γ2

λS − iγ2
λP )e2iϕ. (1.53)

If the shift and penetrability are approximately constant across a resonance, then we can
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substitute in the formal definitions of the resonance position and width,

Ef
r = Eλ − γ2

λS (1.54)

Γf = 2γ2
λP. (1.55)

Substituting for the formal definitions, the S matrix can now be written as,

S = E − Ef
r − iΓf/2

E − Ef
r + iΓf/2

e2iϕ. (1.56)

One of the benefits of transferring to the S matrix formalism, is that the cross section of

elastic scattering can be easily determined. The cross section for a single resonance elastic

scattering is given by,

σℓ = π

k2 (2ℓ + 1) |1 − Sℓ|2 , (1.57)

for one partial wave. If the isolated resonance is sufficiently above the channel threshold in

a region where the shift and penetrability are constant, we can substitute in the resonance

part of Eq. (1.56) to get a cross section for the resonance elastic scattering,

σℓ ∝ |1 − Sℓ|2 = 4 Γ2/4
(E − Er)2 + Γ2/4 , (1.58)

which is the Breit-Wigner line shape used in fitting peaks in IMS. When the energy depen-

dence does matter, such as in the case of dealing with a very wide resonance or a resonance

very close to a threshold, the Thomas approximation is used, which assumes the shift func-

tion is locally linear [34]. In general the observed resonance energy and width are given

by,

Eobs
r = Eλ − γ2

λ[S(Eobs) − b] (1.59)

28



Γobs = 2γ2
λP (Eobs

r )
1 + γ2

λS ′(Eobs
r ) , (1.60)

where S ′ is the derivative of the shift function in terms of energy. Another popular choice

of the boundary condition is b = S(Eobs) (natural boundary condition) which makes the

resonant energies the same as the eigenenergies of the internal eigenfunctions. The fits in

Chapter 3 using R-matrix lineshapes used the energy dependence of Ef
r and Γf in Eqs. (1.54)

and (1.55) to produce an asymmetric line shape. This was essential for the case of a wide

state just above threshold.

1.5 Nucleosynthesis

Nucleosynthesis is the name for a collection of processes that create elements heavier than

hydrogen through fusion and other reactions that occur in the Big Bang and in stellar envi-

ronments. There are many sites in which nucleosynthesis can occur but the first happened

at the birth of our universe. Light elements were created during the Big Bang as the hot

dense quark-gluon plasma rapidly expanded and cooled, freezing out protons and neutrons.

The protons and neutrons reacted to form mostly hydrogen and helium, but also initially

created very small percentages of deuterium, tritium (which decays to 3He), 3He, 7Li, and
7Be (which decays to 7Li) through the reaction network shown in Fig. 1.8.
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Fig. 1.8: Reaction network modeling the Big Bang nucleosynthesis. Afterwords, roughly
3/4 of all matter was 1H and 1/4 was 4He with very small fractions of the other
isotopes shown in red. [35]

The next place to look for the creation of elements is in stars, forming from the hydrogen

and helium created in the Big Bang which coalesce as gravity slowly pulls large amounts of

matter together. It is in the core of stars that the pressure and temperatures are high enough

that fusion reactions can occur. The proton-proton chain (pp-chain) is a fusion process that

converts four protons into a helium nucleus. The main branch of the proton-proton process

is seen in Fig. 1.9(a). The initial step in hydrogen burning, p+p → d+e++ν, is slow and

is the rate limiting step, requiring the weak force to convert a proton into a neutron. In

older, more massive stars, temperatures can get high enough that instead of waiting for the

pp-chain, the Carbon-Nitrogen-Oxygen cycle (CNO cycle) accelerates hydrogen burning in

stars. The CNO cycle follows the chain of reactions in Fig. 1.9(c), in essence, 12C acts as a

nuclear reaction catalyst which outcompetes the slow initial step in the pp-chain.

30



Fig. 1.9: (a)Proton-proton chain Branch-I makes up the majority of proton fusion in stars
to make 4He. (b) Triple-alpha process fuses three 4He nuclei together to form 12C.
(c) The CNO cycle accelerates the fusion of protons to create 4He nuclei at high
temperatures [36].

An important quirk of the chart of nuclides is that there are no stable A=5 or A=8

systems. This makes proton capture infeasible for explaining the abundances of heavier

nuclei as they produce the A=5 and A=8 systems which immediately fall apart instead of

β+-decaying. To get to carbon, specifically 12C that makes up 99% of the carbon in the

universe, the triple-alpha process is needed. After a star has a large enough concentration

of 4He nuclei, the star will start the triple-alpha process, as seen in Fig. 1.9(b). Further

discussion on the triple-alpha process and the Hoyle state can be found in Section 3.1.

The next process of Nucleosynthesis that occurs in stellar burning is the slow neutron-

capture process, or s-process. In the core of thermally pulsing asymptotic giant branch stars,

two key reactions,

1. 13C + 4He → 16O + n and
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2. 22Ne + 4He → 25Mg + n,

produce a weak neutron flux which fuels the s-process [37]. These neutrons capture on

other seed nuclei in the star, resulting in an isotope with one higher atomic mass. This

can create unstable nuclei with β−-decay lifetimes smaller than the time it would take for

another neutron capture to occur. This process slowly steps up stable nuclei, like in Fig. 1.10

showing a section of the chart of nuclides, producing heavy elements all the way up to lead.

Fig. 1.10: Illustration of the path s-process neutron capture takes, ranging from Ag to Sb.
The yellowness of the isotope block represents relative abundance on the earth
[38]. Not every isotope observed can be produced in the s-process.

The s-process is insufficient to explain the abundances of many observed isotopes. Exam-

ples of this are the neutron-rich 136Xe which is observed at 8.9% abundance or the neutron-

poor 124Xe observed at 0.1% abundance. The 112,114,115Sn and 122,124Sn isotopes shown in

Fig. 1.10 also are not a result of s-process nucleosynthesis. To understand the observed

abundances, we must also look to violent astrophysical events such as Type-II supernovae

and neutron star mergers. A Type-II supernova is the explosion at the end of a massive star’s
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life. The core of this old star quickly burns through fuel as heavier and heavier elements are

formed, resulting in a collapse of the core. As the outer shell also collapses inwards, it re-

bounds off the dense core, exploding and spewing matter outwards. The core can sometimes

result in a dense, neutron-rich star called a neutron star, which is another site of interest.

Neutron stars can accrete matter onto their surface which is a site of nucleosynthesis but

they also can merge with other neutron stars. The merging process again results in spewing

matter outwards.

These violent events are thought to be the location of the rapid neutron-capture process,

or r-process. In such events, an extremely dense neutron flux is created leading to rapid

neutron capture out to isotopes with short β-decay half-lives. This process pushes out to

the extremely neutron-rich isotopes on the chart of nuclides which afterwards decay back

to stability. The r-process helps explain the abundances of heavier nuclei and neutron-rich

isotopes like 136Xe mentioned above. Observationally, a single neutron-star-neutron-star

merger has been observed, and the presence of nucleosynthesis was confirmed in that event

[39].

A similar process called the rapid proton-capture process, or rp-process, can occur at

the surface of neutron stars as their gravitational well accretes matter from a companion

star onto the neutron star surface [40]. The matter is accelerated towards the surface such

that reactions occur and a large flux of protons is created. This flux of protons fills out the

neutron-poor side of the chart of nuclides, helping to explain the small abundances of light

proton-rich isotopes. These are observed from earth as X-ray bursts with data from this

dissertation in Chapters 4 and 5 being useful in calculating their light curves.

The goal of studying nucleosynthesis is to better understand the origin of matter and

predict the natural abundances of elements and their isotopes. One part we don’t currently

understand is the relative significance of supernovae versus neutron-star mergers as sites
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for r-process [41]. To answer the question where nucleosynthesis occurs, large scale nuclear

reaction simulations have been performed that take into account a massive amount of nuclear

data and make predictions for observables such as the natural abundances [42]. Through

the study of nuclear properties, such as resonances and reactions, nuclear data can be used

to improve the simulations of stellar environments, resulting in more accurate models of

nucleosynthesis.
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Chapter 2

Experimental Methods

This chapter presents the experimental techniques, setups, and detectors employed for the

measurements in this dissertation. First, invariant-mass spectroscopy is discussed as it is the

technique used to measure short-lived particle-unbound states and connects all of the main

work on proton emission. Next, two different experimental setups, the Gobbi array and the

NSCL setup, are described. Finally, the main types of detectors used are broken down and

explained in greater detail including the theory behind how they work.

2.1 Invariant-mass spectroscopy

Invariant mass is the mass independent of the overall motion of the system or the collection

of objects that define the parent system. The definition for the invariant mass, M (in energy

units), is an extension of the energy-momentum relation for a group of particles given by,

(
Mc2

)2
=
(∑

i

Ei

)2

−
(∑

i

−→pi c

)2

, (2.1)

where Ei and −→pi are the total energy and momentum of each fragment and c is the speed

of light. The usefulness of this definition comes from that fact this quantity is invariant for
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a system in all frames of reference, meaning if you can measure the state for a system of

particles in the laboratory frame, the invariant mass is the same for the center-of-mass frame

(or any other frame of interest).

For a particle-decaying state, invariant-mass spectroscopy (IMS) is a method that mea-

sures the final state energy and momentum of all the decay-products. When working at a

radioactive beam facility, this works well for states with short lifetimes, <1 ps, so the state

decays in the target and the outgoing parent has a decay vertex to reconstruct back to. For

a one-proton decay, Eq. (2.1) is particularised to be,

(mresiduec
2 +mpc2 +ET )2 = m2

residuec
4 +m2

pc4 +2 (EresidueEp − |presiduec| |ppc| cos(θ)) , (2.2)

where the decay residue and proton each have a known mass, mp/residue, a measured energy,

Ep/residue, and a measured momentum vector, pp/residue. The decay energy, ET , is the energy

released in the decay that is put into kinetic energy separating the particles. The decay

energy ET is related to the Q-value and excitation energy of the parent, E∗, as ET = E∗ −Q.

Finally, θ is the lab angle between the residue and proton. In practice, the position of the

residue and proton are measured by the detectors and the angle between them comes from

assuming the vertex of the decay is at the center of the target.

IMS is in essence a relative mass measuring technique, requiring as a reference, the masses

of the decay products. To measure the particle type, which is required to know the mass

and momentum, the standard ∆E-E technique is used. A detector-telescope, comprised

of a stack of detectors, gives both a measured ∆E as the particle passes through a thin

detector and a total kinetic energy E as the particle deposits the remaining energy in the

following thicker detector. This method relies on the fact that charged particles deposit

energy in absorbing materials at a rate with respect to the path length, x, according to the
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Bethe-Block formula, which to leading order is

dE

dx
∝ Z2A

E
. (2.3)

The rate of energy loss is thus roughly proportional to the square of the charge of the travers-

ing ion, which is equal to its atomic number Z if fully stripped (giving element separation),

and proportional to its mass number A (giving isotopic separation). When plotted, ∆E-E

produces bands for each particle type detected as shown in Fig. 2.1.

Fig. 2.1: ∆E-E from the Gobbi array with gates showing particle identification for the light
charged particles. The ∆E signal is from the thinner transmission detector and
the E signal from the downstream stopping detector.
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2.2 Exerimental setups

Two different experimental setups were employed for the work presented in this dissertation.

Chapter 3 uses the setup in Section 2.2.1 while Chapters 4 and 6 use the setup in Section 2.2.2.

2.2.1 “Gobbi” array

The first experiment, performed at the Texas A&M University Cyclotron institute, detected

charged particles using an array of four ∆E-E [Si-Si] telescopes arranged around a square

central beam hole, see Fig. 2.2, and locally nicknamed the “Gobbi” array. 1 This setup

was previously designed and used to study the 2p+2α decay of 10C [43] but was used here

for detecting the p+6He decay of 7Li at low energies. Each quadrant had two layers of the

Micron Semiconductor BB7 design [44] Si previously employed by the HIRA array [45]: a

65-µm-thick ∆E single-sided Si detector with 32 strips, backed by a 1.5-mm-thick Si double-

sided E detector with 32×32 strips. Both layers were 64 × 64 mm in area with the quadrants

arranged with an offset from the center to produce a 1.6-cm-square hole for the unreacted

beam to pass through. A circular beam blocker with �inner=1.6 cm and �outer=3.8 cm was

used to protect the inner portions of the Si detectors from the high rate of elastic scattering.

The detector array was located 23.5 cm downstream from the the target, a distance that

optimized the detection of decay fragments with a low decay energy or little relative energy

between them. The angular range spanned lab angles from θ=5◦ to 20◦. Readout of the Si-

strip information was performed with HINP16C chips [46], requiring a coincidence between

a ∆E and E detector to record data.
1 This array name was chosen by my advisors to recognize a senior GSI scientist who started to use this

geometery effectively in the 1970’s (and is not a reference to the Gobi desert).
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Fig. 2.2: CAD drawing of the Gobbi array in the experimental setup with the beam direc-
tion from right to left. Included on the left is an expanded view of a telescope
and on the right is a picture of the target. The entire detector setup was housed
in a high-vacuum chamber coupled to the accelerator.

2.2.2 NSCL setup

The second experiment, performed at the National Superconducting Cyclotron Laboratory

(NSCL), was set up to be sensitive to both γ- and proton-decay branches using the combi-

nation of detectors diagrammed in Fig. 2.3. The photon detector was the CAESium-iodide

scintillator ARray (CAESAR) [47] which was centered around the Be target. CAESAR was

arranged in 8 rings with a total of 163 working scintillators spanning 55◦ to 163◦. The two

most upstream rings, labeled A and B, consisted of 3"x3"x3" CsI(Na) crystals while the other

six rings, labeled C-H, were 2"x2"x4" crystals. Protons were detected using a ∆E − E [Si-

CsI(Tl)] telescope ring array covering from 1◦ to 9◦. This array consisted of a 1-mm-thick S4

annular double-sided silicon strip detector (DSSD), manufactured by Micron Semiconductor

[44], backed by an annular array of CsI(Tl) detectors. The S4, as used, was wired into 128
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concentric annular rings and 128 pie-shaped wedged sectors. The CsI(Tl) crystals, were

arranged directly behind the S4 detector in two concentric rings of 4 (inner) and 16 (outer)

crystals.

Fig. 2.3: Schematic of the experimental apparatus in the NSCL setup. The beam direction
is from left to right. CAESAR was used to measure the γ rays, the ∆E − E [Si-
CsI(Tl)] telescope ring array measured light charged particles (such as protons),
the SFA and S800 spectrograph measured the heavy residue.

The heavy residue passed through the center of the ring array, hitting the scintillating-

fiber array (SFA) made of an orthogonal pair of scintillating fiber ribbons. Each ribbon

consists of 64 fibers of square (250 µm x 250 µm) cross section. This array records precise

angular information for the heavy residue, increasing the decay-energy resolution. After

passing through the SFA, the residues then entered the S800 spectrograph where the particle
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type and momentum were identified. Two magnetic rigidity settings were used, one tuned

for the best acceptance of 36Ca while blocking some 37Ca beam particles (Bρ = 1.9696 Tm)

and the second tuned for the best acceptance of 35K (Bρ = 2.0468 Tm).

2.3 Silicon detectors

Semiconductor crystals, notably Si and Ge, make useful detectors. Most electrons in the

crystal, are bound to specific lattice sites, while excited electrons are free to migrate from

site to site. The band of electronic states that are the least-bound is called the valence

band and the lowest-energy delocalized states form a band called the conduction band. The

energy difference between these bands is the band gap. Insulators have a very large band gap,

requiring a large amount of energy to excite an electron into the conduction band. Metals

have a overlapping valence and conduction band, meaning ground state electrons are free to

jump from site to site, making them excellent conductors. Silicon as a semi-conductor, has a

band gap larger than kBT (Boltzmann’s constant × temperature) but small enough to make

particle-hole excitations easy. When charged particles move through a crystalline material,

they deposit energy per unit length in proportion to their stopping power, Eq. (2.3), creating

electron-hole pairs in proportion to the energy they deposit. For silicon, it takes an average

of about 3.6 eV, at 300 K, to generate one electron-hole pair, meaning a charged particle at

3.6 MeV would create around one million excitations [48].

Pure silicon crystals are typically doped with different elements and sandwiched together

to form a p-n diode junction. P-doped silicon is created when an electron acceptor is added to

the lattice using elements from group III of the periodic table and n-doped silicon is created

when an electron donator is added to the lattice using elements from group V. In a p-n

junction where the two types are combined, the n-doped donates electrons to the p-doped,
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forming a region that is neutral and charge depleted. When reversed biased, i.e. applying

a negative charge to the p-doped side and a positive charge to the n-doped side, the charge

depleted region grows. This depleted region becomes the active volume of the detector where

electron-hole pairs form and, subjected to the reverse bias, the charge carriers drift to the

contacts, creating a signal that can be read out by electronics. In a practical device, all but

the very thin surface regions are depleted and therefore part of the active detector volume.

The DSSD are named so because they have surface contacts on both sides separated by

thin inactive SiO2 regions. The strips can be read out individually and are used in both

setups to provide position information for the charge deposited as a front and back strip

overlap in only one Cartesian position. For the BB7 design Si used in Gobbi, the strips form

an x-y grid to give a position within a 2 × 2 mm Cartesian pixel. For the S4 design used

in the NSCL setup, the front is divided into pie-shaped sectors and the back is divided into

concentric rings, essentially providing the polar coordinates of the impinging particle.

2.3.1 Calibration

The silicon detectors were calibrated with a 226Ra alpha source using the five main peaks

found in Table 2.1 which lists the decay chain. A high-energy calibration point was also

included in the fit and was obtained using elastic scattering of 7Li on a Au target at 38.6

MeV. The result of the calibration for one front strip of the 1.5 mm thick silicon used in

Section 2.2.1 is shown in Fig. 2.4.
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Tab. 2.1: Decay chain of the 226Ra with decay branches above 1% included. The five highest
intensity alpha decays were used in calibrating the silicon strip detectors. 226Ra
is isolated from uranium samples and is the great grand daughter of 233U.

Parent t1/2 decays Eα (MeV) Int.
226Ra 1600 yr α 4.784 94%

4.601 6%
222Rn 3.82 d α 5.489 100%
218Po 3.10 m α 6.002 99.98%
214Pb 27.1 m β- - -
214Bi 19.7 m β- - -
214Po 163 µs α 7.687 99.98%
210Pb 22.2 yr β- - -
210Bi 5.01 d β- - -
210Po 138.4 d α 5.304 100%
206Pb stable - - -
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Fig. 2.4: Typical 5-peak energy spectrum for a calibrated front strip of a Si detector. The
peaks seen here are the decays listed in Table 2.1.
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2.4 Scintillators

2.4.1 CsI(Tl)

In the NSCL setup, the CsI(Tl) detectors sit directly behind the S4 detector in two concentric

rings of 4 (inner) and 16 (outer) crystals. These are the 50-mm-thick stopping detectors

for the light charged particles such as protons that have been emitted. Each detector is

comprised of an inorganic crystal of CsI that has been doped with Tl at the part per thousand

level with a photodiode attached to the back. These inorganic scintillators are modestly

priced and it is possible to grow them in large volumes. Similar to semiconductors, particle

hole excitations are formed when energy is deposited in the material, exiting the electron

into the conduction band of the crystal. Here however, the crystals are insulators with band

gaps exceeding the visible part of the electromagnetic spectrum. Excited electrons moves

freely within the crystal until they are trapped by impurities such as the Tl dopant. The

dopant introduces levels within the band gap and the deexcitation proceeds via the emission

of a visible photon. The photons are collected in the photodiode and the amount of light

detected is roughly proportional to the energy of the radiation.2

The CsI(Tl) detectors were calibrated using a 76 MeV/u proton beam with a 0.5% ∆p/p

acceptance which was degraded with two different absorbers, a 1-mm-thick Be and a 9.65-

mm-thick Al absorber. After passing through the absorber, a 3.175 mm Al plate in front of

the telescope, and the 1.5 mm Si, the proton beam produced calibration points at 66.3 MeV

and 44.9 MeV for the CsI(Tl). The small angles for the inner ring θ = 2.75◦ and outer ring θ

= 5.49◦ as well as the slight deviation in angle across a CsI(Tl) due to light collection were

corrected for in the calibration procedure.
2 It is the lack of proportionality that allows some crystals to have the ability to identify particles. This

capability, called pulse-shape discrimination or PSD, is not used in this work.
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2.4.2 CAESAR

The CAESAR array was used for gamma-ray detection in the NSCL setup, using a slightly

different inorganic scintillator CsI(Na). The CsI(Na) crystals are similar to CsI(Tl) except

the crystal dopant is switched to Na, resulting in about twice the light output. This also

results in the crystal being very hygroscopic, requiring the crystal to be hermetically sealed

in a can.3 The extra material isn’t an issue for CAESAR, as it is designed for detecting

gamma rays, which interact differently than charged particles.

The intensity, I, of gamma rays in a material drops exponential through a material

according to,

I(x) = I0 exp(−µx), (2.4)

where µ is the linear absorption coefficient specific to the material and x is the distance

traversed through the material. The Al can containing the CsI(Na) crystals only slightly

reduced the total efficiency as most photons pass through this low Z material without inter-

acting. A photon interacts with the detector or medium in three main ways:

1. Through the photoelectric effect, the photon transfers all of its energy to an electron

and produces a single “photopeak” in the spectrum.

2. Through Compton scattering, the photon scatters off an electron transferring only a

fraction of the initial photon energy (dependent on the scattering angle), creating a

continuum below the photopeak in the spectrum. The spectrum of deposited energy

always corresponds to the energy transferred to electrons.

3. Through pair production, if the photon has sufficient energy, it interacts with another

body, either a nucleus or an electron, and an electron-positron pair is simultaneously
3 For the CsI(Tl), the crystal is only slightly hygroscopic, requiring no material to seal the crystal which

would degrade the energy of the charged particles.
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created. In this case the initial photon energy is transformed into the rest mass of the

e+ and e− and the kinetic energies of these particles. Typically, the positron finds an

electron and annihilates, releasing two photons which can escape the detector volume.

This results in absorbed energy peaks, one and two electron rest-mass equivalents less

than the energy of the initial photon, called escape peaks.

Combined, these three processes lead to spectroscopy features in gamma-ray spectra schemat-

ically diagrammed in Fig. 2.5.

Fig. 2.5: (left) Schematic of the detector response to gamma rays with an energy less than
1022 keV and (right) to an energy much greater than 1022 keV. Adapted from
Ref. [48].

CAESAR has a full-energy-peak efficiency for a 3-MeV γ ray of ∼ 15%. This rather

high efficiency comes with the trade off of only modest energy resolution, ∼ 8% FWHM at

this energy. Every crystal in CAESAR was energy calibrated using several standard γ-ray

sources with the energies given in Table 2.2.

For gamma decays from excited nuclei in-flight, the energy of the observed gamma is

Doppler shifted relative to the energy emitted in the rest frame. A γ-ray emitted forward
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Tab. 2.2: Gamma-ray sources used to calibrate CAESAR. γ-rays from the AmBe source
are the result of 9Be(α,γ)12C reactions which populates the first excited 2+ state
in 12C at 4440 keV.

Source t1/2 Eγ (keV) Int.
60Co 5.27 yr 1332.5 100%

1173 99.9%
88Y 106.6 d 1836 99.2%

898 93.7%
137Cs 30.08 yr 662 85.1%
Am-Be 432.6 yr 4440 85.1%

relative to the emitter’s velocity is blue shifted towards higher energies while a γ-ray emitted

backward is red shifted towards lower energies. In the NSCL setup, the radioactive ion beam

used was about 1/3rd of the speed of light (β = v/c = 0.33) or v ≈10 cm/ns. For a γ-ray

observed with lab energy Elab, originating from a parent nucleus with a relativistic velocity,

the Doppler shift can be largely accounted for using the first-order relation,

Erest = Elab
1 − β cos(θ)√

1 − β2 , (2.5)

where θ is the observed lab angle with respect to the beam direction.4 The gamma-decay

spectrum for CAESAR is reconstructed using angles from the target to the center of the crys-

tal hit. This assumes a short lifetime, which is a good assumption the for low multipolarity

transitions and high energies studied in Chapter 4.
4 This expression does not account for the finite solid angle of the detector.
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2.4.3 Fibers

The SFA is comprised of two fiber ribbons each with 64 plastic scintillating fibers with

square cross section. As the heavy residue passes through the SFA, a fiber from each ribbon

lights up, giving an x-y position with 250 µm accuracy. Each strand of the fiber ribbon

was coupled to a Hamamatsu H8500C multianode photomultiplier tube (PMT), where all

64 pins were connected through a resistive network, similar to that seen in the discretized

positioning circuit of [49]. Each of the four corners, labeled A, B, C, and D, were read out

with a charge to digital converter (QDC). The voltage readouts were combined in analysis

to give a position on the face of the PMT as,

Xpos = (VA + VB) − (VC + VD)
VA + VB + VC + VD

(2.6)

and,

Ypos = (VA + VC) − (VB + VD)
VA + VB + VC + VD

. (2.7)

Events for the vertical strand of fibers PMT are shown in Fig. 2.6 with the grid showing the

gates used to determine fiber number. The fiber number starts in the bottom left corner

for y = -7.875 mm and follows a boustrian pattern, snaking back and forth as you move up

rows. The second row from the bottom starts on the right side and the third row starts back

on the left side, ending at the top left corner for y = +7.875 mm.
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Fig. 2.6: Plot showing gates applied to the vertical ribbon of the SFA to assign the y-
value of the heavy residue. The axis labels give the voltage algebra required to
determine position.

2.5 Magnetics

The S800 is a superconducting spectrograph designed to measure the momentum and scat-

tering angle of reaction products to high precision [50]. The S800 is comprised of two parts

diagrammed in Fig. 2.7(a), the analysis line before the target and the spectrograph after the

target. The analysis line starts after the A1900 spanning from the object position to the

target with a total length of 22 m. The time-of-flight (ToF) between a fast plastic scintillator

at the A1900 focal plane relative to the S800 focal plane and the ToF between a fast plas-

tic scintillator at the S800 object plane relative to the S800 focal plane provides the beam
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identification used to discriminate between different projectiles. The gates used for different

projectiles in the beam are shown in Fig. 2.8.

Fig. 2.7: (a) Engineering drawing of the S800 spectrograph with labeled stations and (b)
detectors in focal plane at the end of the S800. [51]
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Fig. 2.8: The ToF between the S800 focal plane (Fp) and A1900 Fp versus the ToF between
the S800 Fp and S800 object plane gives the projectile type in the secondary beam.

The spectrograph section starts with two quadrupole and a sextupole magnet used to

focus the transmitted particles and correct for aberrations. The two massive superconducting

dipoles bend the charged particles, separating them in the dispersive plane by their magnetic

rigidity before they reach the focal plane of the spectrograph. At the focal plane, there is

a collection of detectors, shown in Fig. 2.7, including two cathode-readout drift chambers

(CRDC), an ionization chamber, and a plastic scintillator [52].5 The CRDCs are used to

track the trajectory of the transmitted particle, giving the momentum when the particle type

is known with the help of an inverse map. To get the particle type, the ionization chamber

and plastic scintillator are required. The ionization chamber is comprised of 16 independent
5 This work does not use the hodoscope indicated in Fig. 2.7.
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gas-filled parallel-plate chambers. This device separates out different charges based on the

energy loss using Eq. (2.3). The focal plane plastic scintillator provides a time giving the

ToF between the object location, in the analysis line (see Fig. 2.7(a)), and the spectrometer

focal plane (see Fig. 2.7(b)). This information separates particles based on their mass if their

momentum is known. Plots of the energy lost in the ion chamber vs the ToF are given in

Figs. 2.9 and 2.10 for the two different magnetic rigidity settings used.
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Fig. 2.9: Particle identification plot from the S800 with Bρ = 1.9696 Tm, tuned for the
best 36Ca acceptance. The extra (unlabled) lobe to the left of 37Ca was likely due
to the presence of a beam blocking slit.
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Fig. 2.10: Particle identification plot from the S800 with Bρ = 2.0468 Tm, tuned for the
best 35K acceptance.
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Chapter 3

Null Result for a Near-threshold

s-wave Resonance in 7Li

Light nuclei are an important testing ground for nuclear ab initio calculations as their proper-

ties can be calculated with few approximations. In this chapter, we will examine a prediction

from the No Core Shell Model with Continuum (NCSMC) which recently predicted an s-

wave resonance just above the proton-decay threshold of 7Li at an excitation energy of 10.2

MeV [53]. This prediction motivated a search for the resonance as a test of the calculation’s

predictive capabilities for states in the continuum. This case was also the perfect case for

IMS as the resonance was above three open decay channels where two could be observed

with charged-particle detectors.

3.1 Near-threshold resonances

A near-threshold resonance is an excited state or resonance of the nucleus that is close in

energy to a particle-decay threshold. Many-nucleon correlations in this quasi-bound system

result in the formation of clusters via narrow resonances that match the structure of the decay

threshold. The properties of near-threshold resonances can be dominated by the clustering of
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nucleons composite subsystems. These resonances play an important role in nucleosynthesis

such as the triple-alpha process or the 13C(α,n)16O reaction.

A famous example of a near-threshold state is the Hoyle state in 12C. As discussed

earlier in Section 1.5, the triple-alpha process in stellar nucleosynthesis fuses three 4He nuclei

together to create 12C, skipping the particle-unstable A=5 or A=8 systems. In the 1950s,

Fred Hoyle identified that the observed elemental abundances of Carbon cannot be explained

with the direct capture or resonant capture of three 4He nuclei through the states known

at the time [54]. He predicted the presence of an unobserved state just above the threshold

energy of α + α + α, such that the fusion rate is increased through resonant capture to the

excited state. This prediction lead to finding the near-threshold 0+
2 state of 12C just 285 keV

above the α+8Be threshold and 378 keV above the α + α + α threshold [55], see Fig. 3.1. In

ab initio calculations, both the structure of 8Beg.s. and 12C(0+
2 ) can be accurately described

by α clustering [56, 57].
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Fig. 3.1: Level diagram of 12C including the level thresholds for α + α + α and α+8Be. In
the triple-alpha process, α + α + α resonant capture is enhanced through the 0+

2
state, having a small chance to de-excite through gamma decays down to ground
state 12C.

A second example of an important near-threshold resonance occurs in 17O at the α+13C

particle-decay threshold. Stars that are hot enough to utilize the CNO fusion cycle and that

have been seeded with 12C from previous stars, have some 13C, enabling the 13C(α,n)16O

reaction. This is one of the two major reactions that produce a neutron flux in stars which

fuels the s-process. The properties of the wide 1/2+ resonance just below the threshold at

6.36 MeV relative to the 17O ground state, dictate the 13C(α,n)16O reaction rate within the

Gamow window [58]. The Gamow window represents the sweet spot where stellar fusion is

most likely to occur, resulting from the overlap between the kinetic energy distribution in

stars, which is a Maxwellian distribution, and the Coulomb barrier tunneling probability,
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which exponentially grows as the kinetic energy of the interacting particles increases. The

astrophysical S-factor, a quantity which takes the exponential tunneling probability into

account, for the α+13C reaction is plotted in Fig. 3.2(a) with the Gamow window highlighted

in blue exactly where the s-factor depends most on structure of the 1/2+ state in 17O.

Fig. 3.2: (a) Data from various experiments measuring the astrophysical S-factor of α+13C
with the Gamow window highlighted in blue. The solid red curve (with dotted-
line error bars) shows an extrapolation including the near-threshold resonance.
The green curve shows an extrapolation with no near-threshold resonance [59].
(b) Level diagram of 17O showing the compound-nucleus intermediate states for
the 13C(α,n)16O reaction.

What is the origin of these near-threshold resonances? For the states mentioned in 12C

and 17O, an anthropic argument can be offered to rationalize their existence [60]. If they

didn’t exist or their properties were different, we might not be here to observe them. If one

wishes to know about the true quantum-mechanical origin of a state, one must turn to a first-

principle or ab initio calculation. Ab initio methods are important in calculating properties

of light nuclei as they retain the the complexity arising from many-nucleon correlations
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and currents. The No Core Shell Model and its extension the No Core Shell Model with

Continuum (NCSMC) [61] belongs to this class of methods which are detailed in the next

section.

3.2 No Core Shell Model with Continuum

The No Core Shell Model (NCSM) [62] belongs to a class of nuclear theory calculations called

ab initio methods. The Latin term ab initio translates to “from the beginning”, indicating

that a method attempts to calculate the properties of nuclei from first principles, i.e. starting

with protons and neutrons as the degrees of freedom and using effective interactions between

nucleons to build up a multi-nucleon system. This is a much more fundamental approach

compared to the common CI-based or shell-model calculations with an inactive core discussed

in Section 1.3.2. The goal of most ab initio methods is to solve the Schrödinger equation

using nucleons as the degrees of freedom in “a systematically improvable approach for quan-

titatively describing nuclei using the finest resolution scale possible while maximizing its

predictive capabilities” [63]. There are many ab initio approaches to solving the Schrödinger

equation including Green’s function Monte Carlo (GFMC) [64], Coupled cluster (CC) [65],

Self-consistent Green’s function (SCGF) [66, 67], and In-medium similarity renormalization

group (IM-SRG) [68] to name a few, but here the NCSM and NCSMC will be discussed.

The NCSM solves the Schrödinger equation for a system of A point-like nucleons,

Ĥ |ΨA⟩ = E |ΨA⟩ , (3.1)

where all nucleons are active and there is no inert core. The Hamiltonian is comprised of

either two- or two-plus-three nucleon interactions that correlate nucleons in pairs and triplets
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and can be written as,

Ĥ = 1
A

∑
i<j

(pi − pj)2

2µ
+
∑
i<j

Vij +
∑

i<j<k

Vijk, (3.2)

where the first summation is over the relative kinetic energy between all nucleons using pi

as the momentum of particle i and µ as the reduced mass between nucleons. The second

and third summations are over the effective interactions Vij which represents the two-nucleon

interaction potential, and Vijk which represents the added three-nucleon interaction potential.

These interactions, representing the strong nuclear force, could in theory be derived by

quantum chromodynamics (QCD), except that at low energies where nuclear physics occurs,

QCD is non-perturbative, making it currently intractable to solve even on the scale of a few

nucleons. Thus, Ab initio methods must rely on effective two- and three-nucleon interactions

constrained to fit a large collection of nucleon-nucleon scattering data, as well as the binding

energies and other properties of light nuclei [69].

Recently, first principle approaches have incorporated many-nucleon interactions derived

from χEFT. Introduced in the 1990’s by Weinberg [70, 71, 72], chiral effective field theory

(χEFT) is a low-energy approximation of QCD that preserves the symmetries of QCD within

the low-energy nuclear physics domain. It provides Lagrangians that describe interactions

among bound states of QCD - such as pions, nucleons, and deltas - which are then used

to construct many-nucleon interactions. χEFTs are systematically improvable. They are

formulated in terms of a small perturbative parameter Q/Λb, where Q represents the low-

momentum characteristic of nuclear physics, and Λb denotes the high-energy scale at which

the chiral-expansion breaks down.

To actually compute the eigenvector problem in the NCSM, the wave-function is expanded

59



in harmonic Oscillator (HO) basis states, |Φi⟩’s,

|ΨA⟩ =
Nmax∑

i

ci |Φi⟩ , (3.3)

up to a truncated maximum energy NmaxℏΩ where Ω is the HO frequency. Increasing

Nmax will result in better and better approximations of the wave-function until the solution

converges. The width of a HO potential is related to ℏΩ and is an important choice to get the

rapid convergence behavior of a HO wave-function. Poor choice in width results in a much

larger Nmax required to converge. The constants, ci, from Eq. (3.3) are unknown but solving

for the constants turns this problem into an eigenvector problem with a large matrix. The

matrix dimensions scale rapidly with total nucleons, A, and Nmax, requiring supercomputers

to calculate eigenvalues and wave functions for even light nuclei.

The NCSM has become a commonly used method and has achieved good agreement

between its calculated levels and experimental measurements. It has reached isotopes as

heavy as 160 [73] and even up to 20C [74]. Matrix elements[75] and quadrupole moments,

such as those for 6Li [62], have also been calculated by this method.

The No Core Shell Model with continuum (NCSMC) combines the NCSM with the

addition of eigenstates from specific scattering mass partitions. The inclusion of scattering

mass partitions makes the NCSMC well-suited to describe unbound resonances and clustering

structure. The NCSMC from Vorabbi et al. [53] starts with the NNChiral interaction

developed by Entem and Machleidt [76]. To build the wave-function for 7Li, the 7-body

harmonic oscillator states from the NCSM are mixed with the cluster expansion of scattering

states, ∣∣∣ΨJπT
A=7, 1

2

〉
=
∑

λ

cJπT
λ

∣∣∣7LiλJπT
〉

+
∑

ν

∫
dr r2 γJπT

ν (r)
r

Aν

∣∣∣ΦJπT
νr,− 1

2

〉
. (3.4)

In the right term of Eq. (3.4), γJπT
ν (r) represents the continuous relative-motion ampli-
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tudes, while Aν represents the antisymmetrizer. The antisymmetrized channel state can be

expanded to represent scattering between mass partitions, in this case the p+6He antisym-

metrized channel state reads

∣∣∣ΦJπT
νr,− 1

2

〉
=
[(∣∣∣6Heλ6J

π6
6 T6

〉 ∣∣∣p1
2

+ 1
2

〉)sT
Yℓ(r̂6, 1)

]JπT

1
2

, (3.5)

where you can see the use of the NCSM results for 6He included (|6Heλ6J
π6
6 T6⟩). Similar

formulations are used for α+t and n+6Li scattering channels, relevant for different excited
7Li states.

Recently, the NCSMC method was used to predict a resonance in 7Li just above the

p+6He threshold. The predicted resonance, discussed in Vorabbi et al. [53] Sec. III.B and

throughout the rest of this chapter, is s-wave in nature (Jπ=1/2+), isospin T= 1/2, with a

predicted excitation energy of E∗=10.2 MeV and width of Γ=130 keV. Such a state would

be the lowest-energy positive-parity state in 7Li. This prediction motivates the experiment

presented in this chapter as a test of the predictive capabilities of the NCSMC method for

near-threshold resonances.

3.3 Experimental methods

This experiment was performed at the Texas A&M University Cyclotron Institute with a

primary 7Li beam produced using the K150 cyclotron. The 7Li(d,3He)6He reaction along

with the Momentum Achromat Recoil Spectrometer (MARS), described in Appendix A.2,

were used to produce a 6He secondary beam at 6.4 MeV/nucleon with 75% purity (25% 3H

contaminant). The beam intensity, monitored by a 1-inch-diameter plastic scintillator at zero

degrees, varied through the experiment between 1-8×104 pps. The momentum acceptance
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of MARS was ±1.2% with a beam spot approximately 10 mm in diameter at the target.

The 6He beam impinged on a secondary 2.65 mg/cm2 CD2 target, and the 6He(d,n) reaction

produced excited states of 7Li.

The Gobbi setup, described in Section 2.2.1, was employed at a distance of 23.5 cm

downstream from the the target. In the analysis, “Punch-through” protons with an energy

higher than 15.5 MeV were gated out of the data because the range approaches the 1.5 mm

thickness of the E detector. A gate on the relative time between the ∆E and E pairs was

applied to each particle identification as well as a requirement that strips spatially match

between layers.

The particle-unbound excited states of light nuclei around 7Li were studied using the

invariant-mass method, where correlations between decay fragments are reconstructed to

give the parent excitation energy [77]. Selected, well known, states in 6,7Li and 8Be were

used to confirm the calibration as well as constrain simulations. These calibration resonances

are shown in Fig. 3.3 with fit values summarized in Table 3.1. The intense 6Li (Jπ=3+)

resonance, shown in Fig. 3.3(a), was checked to be consistent across all decay angles to

ensure the transverse decays perpendicular to the beam axis (primarily dependent on position

information) and longitudinal decays parallel to the beam axis (primarily dependent on

the energy calibration) reconstructed to the same excitation energy. The 7Li (Jπ=7/2+)

resonance, shown in Fig. 3.3(b) decaying to the t+4He channel, was measured to be 9 keV

lower than the evaluated energy but a width 23 keV wider. Three states of 8Be, shown in

Fig. 3.3(c)(d), were found to agree with their evaluated parameters except for the extremely

narrow ground-state width that was outside of our sensitivity range and the energy of the

1+
2 level which was only slightly out of agreement and likely due to the choice of background.

Comparing the evaluated and measured energies in Table 3.1, a systematic uncertainty of

10 keV is deduced.
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Tab. 3.1: Comparison between the TUNL evaluations [78, 79] and the current measure-
ments for states in 6,7Li and 8Be. Uncertainties on the measured values represent
the statistical uncertainty of the fit.

Evaluated [78, 79] Measured
Nuclei state E∗ (MeV) Γ (keV) E∗ (MeV)a Γ (keV)
6Li 3+ 2.186(2) 24(2) 2.187 -b

7Li 7/2+ 4.652 69 4.643(1) 92(4)
8Be 0+, g.s. 0 5.5×10−3 0.0017(3) 0.004(1)

1+
1 17.640(1) 10.7(5) 17.646(2) 15(4)

1+
2 18.150(4) 138(6) 18.170(10) 158(27)

a Decay energies are measured and then shifted by the reaction Q-value
determined from the ground state energies of the AME2020 mass evalu-
ations [2].

b Fixed.
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Fig. 3.3: Efficiency-corrected invariant-mass reconstructions along with simulations fitted
to determine the energy and width for: (a) 6Li (3+) from charge exchange of the
6He beam, (b) inelastically excited 7Li (7/2−) from a primary 7Li beam on the
CD2 target, and (c), (d) near-threshold states 8Be (g.s.), 8Be (1+

1 ), and 8Be from
proton pickup on a primary 7Li beam. In each fit, the red solid line indicates the
total fit with the background component indicated by a blue dashed line.

3.4 Results

The efficiency-corrected excitation-energy spectrum of 7Li from detected p+6He fragments is

shown in Fig. 3.4. This figure shows the total fit (red solid line) with two resonances (green

dotted lines) and a linear background (blue dashed line). The first and most prominent

resonance observed is at E∗
1 = 11.295±0.010(syst.) MeV, Γ1 = 184±13(stat.) keV which is the

Isobaric Analog state (IAS) with (Jπ,T) = (3/2−, 3/2) [80]. This high-resolution experiment

also revealed a high-energy shoulder to the IAS indicating a previously unreported state at

E∗
2 = 11.66 ± 0.04(stat.) MeV, Γ2 = 320 ± 90(stat.) keV.
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dotted lines represent the simulated resonances where the blue dashed line is
a linear background. The magenta finely-dotted peak (not included in the fit)
represents the predicted 1/2+ state with Breit-Wigner line shape and a small
spectroscopic factor (C2S = 0.02). The sharply rising and slowly decaying cyan
and orange finely-dotted lines are two-channel R-matrix line shapes (including n
and p decay channels). The cyan (orange) line corresponds to a resonance energy
at E∗=10.2 (10.04) MeV. The detector efficiency is overlaid in a grey dashed line
with a separate axis on the right. The thresholds for the p+6He and n+6Li (0+,1)
channels are at E∗=9.975 MeV (edge of axis) and E∗=10.813 MeV (arrow on axis),
respectively.

Peaks were assumed to have Breit-Wigner intrinsic line shapes with the experimental

resolution and efficiency included via a Monte Carlo simulation taking into account the

geometry, energy deposition, and energy thresholds [77]. Realistic beam properties such as
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momentum distribution and beam size were also included in the sampling. The simulation

used energy deposition determined per particle based on energy losses calculated from the

SRIM software package [81] while the thresholds were taken from the experiment. Simulation

parameters for scattering angle and energy resolution were tuned to fit the energy and width

of the 6Li (3+) state for both longitudinal and transverse decays relative to the beam line.

The plots of the heavy fragment angle, θH , vs. decay energy from the simulation are seen

in Fig. 3.5. The background distribution in Fig. 3.5(a) matches the simulation of a uniform

decay energy distribution in Fig. 3.5(b), effectively showing the efficiency as a function of

decay angle and decay energy. The telescope geometry was located at a large distance

from the target to optimize the detection efficiency for low p+6He relative energies while

sacrificing the efficiency at high energies. The 7Li→ p+6He efficiency shown (gray dashed

line) in Fig. 3.4, is a projection of the uniform decay energy simulation seen in Fig. 3.5(b).
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Fig. 3.5: (a) Data for the cosine of the heavy fragment’s angle relative to the beam direction
vs the decay energy. The IAS is clearly visible at ≈1.3 MeV but the background
distribution is what should be compared. (b) Simulation of a uniform decay
distribution to give the efficiency as a function of decay energy and decay angle.

The fitted parameters for the IAS of E∗
1 = 11.295±0.010(syst.) MeV, Γ1 = 184±13(stat.)
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keV are an update to the evaluated energy and width of E∗
IAS = 11.24 ± 0.30 MeV, ΓIAS =

260±35 keV [78]. This is also higher in energy than Ref. [82], which measured E∗
1 = 11.262±

0.015(syst.) MeV, but does agree with the measured width from that work [82] of Γ1 =

191±41(stat.) keV. With low statistical uncertainty compared to the systematic uncertainty,

the presumed systematic uncertainty was assigned for the IAS. For the previously unobserved

state at E∗
2 = 11.66±0.04(stat.) MeV, with Γ2 = 320±90(stat.) keV, the uncertainties result

from the correlated statistical uncertainties which dominate. The broader evaluated width

for the IAS may have been a result of this broad unresolved second state at E∗
2.

Using the NCSMC method, the near-threshold resonance in 7Li at E∗=10.2 MeV was

predicted as a positive-parity proton s-wave resonance with (Jπ,T) = (1/2+, 1/2) [53]. A

sharp increase in phase shift in the p+6He scattering with an intrinsic width of Γ=130 keV was

a robust prediction from this implementation of the NCSMC with a note that this state could

have implications to the astrophysical S-factor in the 6He(p,γ)7Li radiative-capture reaction

[53]. An estimate of the cross section for such a state was calculated using FRESCO [83], a

general purpose reaction code. For both observed states, optical-model parameters for the

d+6He entrance channel and p+6He exit channel were taken from d+6Li scattering [84] and

p+6Li scattering respectively [85]. The differential cross sections resulting from FRESCO

were used in the simulation of the efficiency.

To check for consistency, the yield of the IAS was studied. The cross section for the

IAS was calculated using a spectroscopic factor of 0.199 obtained in the p-shell model space

with the CKPOT Hamiltonian [86] using the code Oxbash [10]. As most IAS decays are to

the open n+6Li (0+,1) channel, the predicted cross section of the IAS peak was reduced by

the proton branching ratio of 0.35 calculated in a two-channel R-matrix approximation with

resonance parameters constrained to the measured values. The deduced cross section of the

IAS peak, using the number of incident beam particles measured with the plastic scintillator
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at zero degrees and adjusted for the spectroscopic factor and branching ratio, was found to

be consistent with the FRESCO cross section.

Simulation of the proposed 1/2+ state (magenta finely-dotted line in Fig. 3.4), with no

neutron branch but with a tiny spectroscopic strength of only C2S = 0.02, is shown in

Fig. 3.4. The observed yield is far less than even this and in fact no evidence of a narrow

state at 10.2 MeV is seen at all.

Line shapes obtained from two-channel R-matrix calculations [31] were also considered

to see the affect of some n+6Li strength in the wave function. The neutron reduced width

was set to be 10% of the proton value with the latter set equal to the Wigner limit [87].

The inclusion of the small strength for the n+6Li channel makes the width of the state quite

wide and the p+6He line shape has a very long tail. The final p+6He line shape was further

modified by scaling with the excitation-energy dependence of the FRESCO predictions for

the resonance yield. Predictions with a spectroscopic factor of 0.9 in FRESCO and for R-

matrix resonant energies of 10.2 MeV and 10.04 MeV, are also shown in Fig. 3.4 by the

finely-dotted cyan and orange lines respectively. Adding the n+6Li channel allows proton

penetration through the high-energy tail of a wider resonance and, as a consequence, the

proton branching ratio is only weakly affected by decreasing resonance energy. In both of

the two-channel cases considered, one expects to observe a sharp increase in the p+6He yield

near the threshold followed by a long decreasing tail. As these features are not observed,

these data also exclude a resonance with energy from just above the proton threshold to that

of the IAS (11.3 MeV), unless the neutron reduced width exceeds the proton reduced width.
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3.5 Conclusion

This experiment shows no evidence for a s-wave resonance in 7Li just above the p+6He

decay threshold. As our experiment was sensitive to both narrow and sharply rising but

broad proton resonances, the latter expectation from two-channel R-matrix calculations, we

can exclude any state with energy between the proton threshold and the IAS with large

proton spectroscopic strength. While a state could exist in this energy region that primarily

decays through the n+6Li or 4He+d+n channels, it is not clear how such a state is related

to the predicted narrow proton resonance just above the proton threshold.

The theory work that predicted this state mentions three issues in the calculations which

could explain why this state might not exist [53]. First, the calculation only includes two-

body interactions while the structure of this state is in the three-body 4He+d+n continuum.

Perhaps there is an analogy to the structure of 6He, which is thought of as a halo nucleus

consisting of a 4He core and two valance neutrons. This suggests a three-body treatment

[27]. Another potential problem is that the mass partitions are not coupled. A calculation

including the coupling of the open two-body mass partitions might provide an explanation

of why we did not observe this resonance, should it exist. The final potential issue is that

the calculations only use a two-nucleon chiral interaction where a chiral three-nucleon inter-

action might yield different results. However, the omission of the three-nucleon interaction is

unlikely to erase a resonance that is so conspicuous, being seen in both the n+6Li and p+6He

mass partitions, with only the two-nucleon interaction. Unfortunately the likely explanation,

the first mentioned above, is also the hardest to test. The resonance might disappear in a

calculation that considers the three-body 4He+d+n continuum, an approach the NCSMC is

currently unequipped to perform.

The newly observed wide state at E∗
2=11.66(4) MeV might match a different prediction
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from the NCSMC results, namely a (Jπ,T) = (3/2−, 1/2) resonance which is only seen in the

p+6He mass partition. This prediction suggests a p3/2 resonance at E∗=11.92 MeV with a

width of Γ = 410 keV, an overprediction of approximately 260 keV in energy. The IAS was

similarly calculated higher in energy by about 420 keV but over-shot the width by a large

margin. With a (3/2−, 1/2) spin-parity assignment and an energy near the IAS, this could

indicate the observed resonance is a part of the collectivized anti-analog strength, having

the same spin and parity as the isobaric analog but with T=1/2 [88].
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Chapter 4

Measurement of the p/γ Branching

Ratio for the 2+ State of 36Ca

4.1 Motivation

While the ground state of 36Ca is bound, with a β− decay half-life of 100.1 ms [89], the first

2+ state at E* = 3.049 MeV is unbound to proton emission. This quasi-bound excited state

has a large Coulomb barrier relative to its available one proton decay energy of 0.449 MeV,

making gamma emission and one proton emission competitive. Figure 4.1 shows a simplified

energy level diagram indicating this Jπ = 2+ state with its decay paths. The simultaneous

emission of two protons to 34Ar is also energetically allowed for the 2+ state but is kineti-

cally suppressed because the Coulomb barrier is about twice as large as that for one-proton

emission.

In the next chapter, Chapter 5, the measurement of the B(E2; 0+
1 → 2+

1 ) for 36Ca is pre-

sented, a result that relies on measuring the Coulomb-excitation cross section for producing

the 2+ state. In that work, only the gamma decay was measured, making the experiment

blind to an excitation which decayed through proton emission. To account for excitations

which proton decayed, the p/γ branching ratio is measured and reported in this chapter.
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Fig. 4.1: Level schemes for 36Ca showing levels relevant to this paper. The one- and two-
proton separation energies for 36Ca are adapted from Ref. [90] with levels in 36Ca
taken from this work.

The branching ratio measurement, paired with the B(E2; 0+
1 → 2+

1 ) value, also gives the

partial proton decay width Γp.

4.2 Experimental methods

This experiment used the NSCL setup, described in detail in Section 2.2.2, and was sensitive

to both γ- and proton-decay branches. A primary 140-MeV/nucleon 40Ca beam impinged on

a Be target to remove three neutrons and the A1900 fragment separator was used to produce

a 37Ca secondary beam with a purity of 40%. This secondary beam at 72 MeV/nucleon

impinged on a 0.5-mm-thick Be target. The subsequent knock out of one more neutron

populated states of 36Ca, including the ground and 2+ states of interest [91].
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Gamma rays detected by CAESAR gated on a 36Ca residue recorded in the S800 provide

the number of 36Ca + γ events. Protons detected in the ∆E−E ring telescope in coincidence

with 35K residues are used for the invariant-mass reconstruction. These two quantities

constitute the branching ratio measurement as,

Bp = #(35K + p)
#(36Ca + γ) + #(35K + p) . (4.1)

To relate the quantities in this equation to experimental observables, we define Np and

Nγ as the number of detected proton and γ-ray decays, and εγ as CAESAR’s γ-ray efficiency,

εp for the ∆E − E ring-telescope efficiency for protons, and ε35K/ε36Ca for a relative S800 &

SFA efficiency for the two residues. A beam intensity Ip or Iγ is required to normalize the

counts from the different S800 settings required for the two decay paths. Employing these

quantities and efficiencies, the branching ratio measurement is,

Bp = Np/εp

(Nγ

εγ
)( ε35K

ε36Ca
)( Ip

Iγ
) + Np

εp

. (4.2)

4.3 Gamma-decay branch

The CAESAR γ-ray energy spectrum recorded in coincidence with 36Ca in the S800 is plotted

in Fig. 4.2. Each event was Doppler corrected according to Eq. (2.5) using the measured

velocity of the 36Ca residue in the S800 and an angle between the target center and the

center of the CAESAR crystal that registered the highest energy deposition. No add-back

between neighboring detectors was applied.

For an estimate of the background, the 35K + γ channel was employed as only 35K(g.s.)

is particle-bound with no excited states that decay through γ-ray emission. All detected

γ rays in coincidence with 35K must be from background processes. This background was
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Fig. 4.2: Fit of the γ-ray-energy spectrum in coincidence with an identified 36Ca residue.
The shape of the background component (blue curve) taken as a double exponen-
tial fit to the blue data points from 35K+γ events. The full-energy peak (green
curve) and Compton-scattering and pair-production components (magenta curve)
were obtained from GEANT4/UCCAESAR simulations. The magnitudes of all
three components were varied in the fit with the scaling of the FEP giving Nγ/εγ.

incorporated into the fit shown in Fig. 4.2 in three ways: by fitting a double exponential

to this background data, by applying a smoothing function to this background data, or by

scaling the contribution based on the ratio of 35K to 36Ca residues detected in the S800. The

last of which yielded an efficiency that was consistently between the other two and within

the systematic error reported.

UCCAESAR [92, 93], a simulation code built on the GEANT4 [94] toolkit, was used to

handle the detector efficiency and response. The efficiency was used to convert the number
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of detected γ-ray events into the number of 36Ca(2+) events that decayed through γ-ray

emission, Nγ/εγ. The detector response was split into the full-energy-peak (FEP) detection

and Compton-scattered or escape peaks (comp).

Through multiple fits, it was determined that Nγ/εγ = 7800 ± 356(stat.) ± 470(syst.).

The origin of the systematic uncertainty comes from the different methods used to fit the

simulation of the 3.049-MeV γ ray. First, the plot was fitted with a double exponential

describing the background where the detector resolution was varied as well as the range of the

fit. Varying the resolution and range of the fit both gave values within the average statistical

uncertainty and resulted in a value of Nγ/εγ = 8063 ± 309(stat.). This process was repeated

with the same background, except a smoothing function was applied before fitting, resulting

in a lower value Nγ/εγ = 7539 ± 355(stat.). This larger statistical uncertainty was chosen

for the overall statistical uncertainty. For the systematic uncertainty, the highest and lowest

value from all of these fits gives the range of Nγ, where the range/2 is used for a systematic

uncertainty. The systematic uncertainty was calculated to be δ(Nγ/εγ)(syst.) = 470.

4.3.1 Efficiency Test Case, 8B ⇒ 6Li(IAS) + 2p

In order to gain some confidence in our procedure for determining Nγ/εγ, a test case was

used from a different experiment that used CAESAR combined with IMS. Here we examined

the 6Li + 2p decay of 8B fragments produced from the proton knockout of an E/A = 68 MeV
9C beam [95]. The 6Li + 2p invariant-mass spectra of Fig. 4.3(a) shows the 0+ excited state

of 8B as a prominent peak sitting on a background free region [95]. This state is the IAS of
8Cg.s. with an isospin of T=2. The only isospin-allowed decay available is the 2p decay to

the (0+, T=1) IAS state at E*=3.563 MeV in 6Li which is known to γ-decay. This decay

path is shown in the insert of Fig. 4.3(a).
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Gating on the (0+, T=2) state in the two-proton decay, the coincidence γ-decay spec-

trum is examined in Fig. 4.3(b). Each of the 4125 two-proton decays in the red gate feeds

the IAS of 6Li resulting in a gamma emission. Fitting the γ-decay spectrum with the

GEANT4/UCCAESAR simulations gives the total number of gamma decays, Nγ/εγ, to be

4086 ± 108(stat.) a number only 0.94% different than expected from the number of 8B(0+,

T=1) parents counted which always feed the 6Li(IAS). The background for this fit was taken

from gamma decays in coincidence with 3He+4He fragments from the decay of 7Be which

should not produce any gamma decaying excited states. Qualitatively, the fit in the 6Li(IAS)

case isn’t as good as the 36Ca + γ case because the energy of the emitted gamma decay was

fixed in simulation. In addition, the FEP statistics are lower than the 36Ca + γ case, but

since the value of Nγ/εγ reproduces the number of events determined by the invariant-mass

gate, we are confident in our efficiency and determination of Nγ/εγ in the 36Ca + γ case.
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Fig. 4.3: (a) Invariant-mass spectrum of 8B decaying to 2p + 6Li. The peak centered at
7.06 MeV results from populating the IAS in 6Li, each of which can only decay via
emitting a 3.563 MeV γ ray. (b) Gamma events in coincidence with the above gate,
fitted to extract Nγ/εγ = 4086 ± 108 which is within tolerance of the expected
value of 4125.

4.4 Proton-decay branch

The 36Ca excitation spectrum obtained with the invariant-mass method is shown in Fig. 4.4

where the gate used to select the events from the decay of the 2+ state is shown in magenta.

The 2+ peak in 36Ca lies in a region of the experimental spectrum with virtually no back-
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ground and thus the peak can be directly integrated to find the number of detected proton

decays, Np = 292 ± 17(stat.).
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Fig. 4.4: Excitation-energy spectrum of 36Ca fitted (red line) with four peaks (green dotted
curves) and with arrows indicating the spin-parity. No background was required
in fitting the 36Ca data. The magenta-dotted gate indicates the upper and lower
limits of the 2+ state which were integrated to determine Np.

There is a question on possible contributions from the decay of the 0+
2 state which is

expected to have a similar excitation energy as the 2+
1 state. The recent measurement of

Lalanne et al. [96] found the 0+
2 state lies 230(13) keV below the 2+

1 state [96] and was

isolated by gating on a 36Ca fragment in their zero-degree detector. The 0+
2 state is included

in the fit of Fig. 4.4 at a fixed energy primarily to show there was little to no detected
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events. This suggests that if the 0+
2 state proton decays, it would have a long lifetime. The

excited residue would travel a substantial distance before decay and miss our charged-particle

telescope. Indeed with its lower excitation energy, the d-wave partial proton decay width

of this state is heavily retarded. Single-particle estimates with the quoted level energy are

≈10−9 eV suggesting that we should not have observed any contributions from this state in

our invariant-mass spectrum. Additionally, we do not expect the 0+
2 state to be significantly

populated as the spectroscopic factors for neutron knockout from 37Ca to the 2+
1 and 0+

2

states are 0.42 and 0.02, respectively (calculated using the ZBM2 interaction [16]).

The proton detection efficiency was simulated with the S800 acceptance, using Monte

Carlo simulations taking into account the geometry as well as other constraints [77]. The

simulation resulted in a detection efficiency of εp = 0.764(5). One important contribution to

the detection efficiency was the effect of a gap in the ring telescope between the inner and

outer rings of CsI(Tl) crystals. In the gap, protons can pass through the inner ring and either

stop in the wrapping material of the crystals or cross into the outer ring of crystals, resulting

in a loss of proton identification efficiency. The magnitude of this loss was determined using

singly-detected protons with kinetic energy in the same range as those associated with the

decay of the 2+ state. The yield of these identified protons, shown in Fig. 4.5, varies smoothly

as a function of the ring number of the S4 silicon detector except for ring numbers from 45 to

55 where a dip in the yield from this effect is observed. A correction to the proton detection

efficiency for these rings is determined from the reduction relative to a linear interpolation

based on the neighboring strips (shown by the red line in Fig. 4.5). In addition to this, an

efficiency loss of ∼ 5% due to protons undergoing nuclear reactions in the CsI(Tl) crystals

was also taken into account [97].

Included in the uncertainty evaluation of the simulated proton efficiency is the reported

uncertainty of the proton decay energy of the 2+ state Er = 449(6) keV [98]. Starting from a
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spin 2+ state and decaying by either a s1/2 or d3/2-wave proton to the J=3
2 residue produces

an isotropic emission pattern. We assumed isotropic emission in the simulation. Mixing of

the s1/2 and d3/2 components could lead to some deviation from isotropy but such a deviation

could not be discerned.
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Fig. 4.5: Distribution of identified protons as a function of S4 ring number. The dip in the
distribution from ring numbers 45 to 55 occurs near the location where the inner
and outer CsI(Tl) crystals meet. This region also includes the two rings of the S4
which acquired no usable data. The inset shows the contribution to the efficiency
as a function of silicon ring number used in the simulation to incorporate these
effects.

4.5 Relative efficiency and beam current

To get the relative detection efficiency for 35K vs 36Ca residues, simulations with relativistic

kinematics and the geometry of the setup were performed. The results of the efficiency

simulations gave ε35K/ε36Ca = 1.03(3).
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The simulations were set up with a beam-momentum width of ±1% and a radial beam

profile that was either Gaussian or uniform in shape. The difference between these simu-

lations is included in the uncertainty estimates. The beam radius was adjusted such that

70% of the beam was transmitted through the ∆E − E ring telescope to the S800, a value

matching what was measured. Variation in beam profile and radius only result in a ±1%

effect on the value of ε35K/ε36Ca.

Energy-loss calculations were performed for the target and SFA. Efficiency losses through

the SFA were assumed to be the same for 36Ca and 35K fragments and thus do not modify

the ratio. Transverse and longitudinal momentum distributions after one-neutron knockout

of 37Ca to 36Ca(2+) were calculated with the code MOMDIS [99], assuming 80 : 20 mixing

of the ℓ = 0 : 2 momentum transfers [91]. The longitudinal momentum distributions from

MOMDIS, which does not conserve energy, were terminated at the maximum possible value

consistent with energy and momentum conservation removing the predicted high-energy tail

of this distribution. Variations in the momentum distribution were considered by increas-

ing or decreasing the momentum scale by ±20%. Overall, the details of the momentum

distributions have a minor effect on ε35K/ε36Ca resulting in a ±3% effect on the ratio.

Different rigidity settings of the S800 were used, one optimized for the detection of 36Ca

that was used for the γ-ray spectrum and the other optimized for 35K that was used for

the p-decay spectrum. The S800 nominally has ±3% momentum acceptance in focus mode,

but for the detection of 36Ca fragments a blocking slit was used to reduce the rate of 37Ca

at the focal plane in order to increase acquisition live-time. This blocker restricted the

S800 high-momentum acceptance further. The high-rigidity cutoff from this blocker was

determined from the S800 rigidity spectrum for 37Ca. The location of this cut-off was varied

in the simulation to fit the measured distribution. The uncertainty from this fit gives the

largest contribution to the uncertainty for ε36Ca. The final simulated 35K rigidity distribution
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associated with the 2+ state matches the experiment quite well and can be seen in Fig. 4.6

where the 36Ca gated on the 2+ gamma peak (blue) has the ≈ 25% background removed

based on the rigidity of all 36Ca in the S800.

Fig. 4.6: Data (points) vs simulation (dotted lines) of the resulting rigidity for 36Ca (blue)
gated on the 2+ gamma peak and 35K (red) gated on the 2+ invariant-mass peak.
Simulation results were scaled to the experimental results based on the total num-
ber of events.

The number of projectiles was determined by integrating the gates for beam identification

in Fig. 2.8 that plots the ToF between the A1900 focal plane scintillator and S800 object

plane scintillator. The total integrated beam was Ip = 2.02 × 109 particles during the S800

setting sensitive to 35K and Iγ = 4.05 × 109 particles during the S800 setting sensitive to
36Ca. A random pulser was used to determine the different acquisition dead times for the

two settings. Beam purity was constant throughout the experiment.
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4.6 Branching-ratio measurement

For the 2+ state in 36Ca, the observed gamma-decay branch corrected for efficiency was

determined to be Nγ/εγ = 7800 ± 356(stat.) ± 470(syst.). Assuming the statistical and

systematic errors are uncorrelated, the uncertainties are added in quadrature, resulting in

a total uncertainty of 590 counts or a 7.5% fractional uncertainty, resulting in the largest

contribution to the final measured branching ratio uncertainty. The observed proton-decay

branch corrected for efficiency was determined to be Np/εp = 382 ± 22(stat.). The relative

residue detection efficiency was simulated to be ε35K/ε36Ca = 1.03(3) and the ratio of beam

intensity was determined to be Ip/Iγ = 0.499. Using these measured values in Eq. (4.2)

gives a proton branching ratio of Bp = 0.087(8). This value is a small correction to the

observed Coulomb-excitation cross section leading to γ-ray emission, a measurement repoted

in Chapter 5.

Our measured Bp is not in agreement with the value deduced using the 37Ca(p,d)36Ca

transfer reaction (0.165(10)) [98] but agrees well with the value measured using 36Ca scat-

tering on natPb (0.091 +0.034
−0.019) [100]. With three independent measurements, it is clear there

is a discrepancy in measured values. Looking at the origin of these numbers the higher mea-

sured Bp value from Ref. [98] was measured using data from a transfer reaction in two ways,

one through integrating the angular correlation function and the other through the observed

counts in the feeding of the 2+ state from different gates. There was a strong agreement

between the two methods within the same report, but the proton decay branch was observed

and fit using only 2-3 data points. In this report, no mention of efficiency corrections were

discussed. In the result from Ref. [100], which was in agreement with the branching ratio

measured here, the result was highly limited by statistics of both decay branches and the

resolution of the proton decay branch. Their measurement was very similar to the one pre-
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sented in this chapter where the γ- and p-decay branch were measured except a Coulomb

excitation reaction was employeed to populate the state. The work in this chapter was at a

much higher resolution and the determination of the efficiency contributed the most to the

uncertainty.
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Chapter 5

Analysis of the B(E2 ↑) Strengths of
36Ca and 38Ca

5.1 Introduction

The reduced electric quadrupole transition probability or B(E2) strength between the 0+

ground state and the first 2+ excited state in even-even nuclei is an important quantity that

provides information on nuclear structure. Background on electromagnetic transitions is

found in Section 1.3.3. The B(E2) is a probe of collectivity which has been observed for a

wide range of even-even nuclei with 0+ ground states and low lying 2+ excited states. Pushing

this probe towards the drip lines can be interesting as trends in the B(E2) values across an

isotopic or isotonic chain have been used to probe the breakdown of magic numbers. As

one removes protons from 40Ca, the N = 20 magic number is known to disappear at 32Mg,

the center of a so-called “island of inversion”. Here, neutron intruder pf -shell orbitals are

strongly occupied in the ground state (see Ref. [101] and references within). The mirror of
32Mg is 32Ca, a nuclide well beyond the proton drip line and difficult (perhaps impossible)

to study. Currently, 36,38Ca are the lightest even-even Ca isotopes that can provide crucial

evidence for the evolution of the Z = 20 shell towards the proton drip line through measured
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B(E2) strengths.

In explaining the nuclear charge radii of calcium isotopes within the shell model, Caurier

et al. [16] argued that even near 40Ca, the Z = 20 and N = 20 shell closures were weakened

with substantial occupancy of both neutron and proton pf shells in the ground state. The

interaction obtained, now referred to as ZBM2, has been used to calculate charge radii, for

both ground and isomeric states, and to compare to the available data in this mass region

[102, 103]. Other recent studies have employed shell-model interactions which predict very

little proton pf occupancy in the ground state. One example is the work of Lalanne et

al. [98] in which an estimated B(E2) value is used for 36Ca to evaluate the 35K(p, γ)36Ca

reaction rate, a rate of significance for type I X-ray burst calculations.

The recent measurement of the charge radii of 36,38Ca were interpreted with nuclear

density functional theory by Miller et al. [104]. They indicate that the charge radius is

strongly impacted by nuclear superfluidity and the weakly-bound nature of the protons.

For 36Ca, the proton f7/2 level was predicted to be located above the Coulomb barrier,

indicating properties of the nuclei would be strongly affected by the proton continuum. In

these calculations the proton pf -shell occupancy for 36Cag.s. is about 13%.

To the extent that the Z = 20 shell closure is complete, the B(E2) strengths for 36,38Ca

should be very small as the 2+ states would be neutron excitations. Any ground-state proton

pf occupancy would greatly inflate the B(E2) value and thus this quantity is very sensitive

to the extent of the Z = 20 shell closure. This chapter analyzes the B(E2, 0+
1 → 2+

1 )

strength for 36Ca. The measurement of the de-excitation γ rays following intermediate-

energy Coulomb excitation was performed and discussed in [105], but to account for the

competing proton decay branch, and thus deduce the total Coulomb-excitation cross section,

the p/γ branching ratio from Chapter 4 is used.

An additional motivation in this analysis of the B(E2) strength of 36Ca comes from the
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proposal of Brown to use the difference in a mirror pair’s rms charge radii to determine L, the

density dependence of the symmetry energy [106, 107]. In order to deduce L, it is essential to

correct for any difference in the deformations of the mirror pair due to the calculations being

based on a spherical model space [108]. The B(E2) strength is a metric linked to collectivity

and deformation of the nucleus. The inferred deformation can be used to correct the rms

charge radii of mirror pairs for any collectivity difference. To perform this correction, the

rms charge radii and the B(E2) values for both members of the pair must be known. With

the recent hyperfine spectrum measurements by Miller et al. [104] that deduced the rms

charge radius of 36Ca, only the B(E2) for 36Ca remained undetermined to employ this logic

for the 36Ca - 36S pair.

The B(E2) strength is also intrinsically linked to the γ-ray partial width that, when

combined with the proton partial width, can be used to look at astrophysical (p,γ) capture

rates. The γ-ray and proton partial widths impact the rp-process through the 35K(p,γ)36Ca

reaction rate. The proton branch returns flux to 35K, and to the 34Ar(p,γ)35K - 35K(γ,

p)34Ar equilibrium. The (p,γ)-(γ,p) equilibrium creates a waiting point in the rp-process

which is escaped through resonance capture to the 2+ state in 36Ca and, via the γ branch

and subsequent β decay, populating 36K.

Simulations of the rp-process determined that the 35K(p,γ)36Ca reaction was an impor-

tant component to the shape of X-ray-burst light curves [109]. This reaction is dominated by

resonant capture through the 2+ state in 36Ca and the predicted light curves were found to

be sensitive to large changes in this resonance capture rate. This is a case where reducing the

nuclear data uncertainties impacts the interpretation of expected astrophysical observations.
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5.2 Coulomb excitation of 36,38Ca with γ-ray

spectroscopy

Intermediate-energy Coulomb excitation has been shown to successfully assess the low-lying

states with quadrupole or octupole collectivity in rare isotopes that are available as beams

of fast ions [110]. Within this experimental scheme, rare isotopes at velocities exceeding 30%

of the speed of light are scattered off stable high-Z targets and are detected in coincidence

with the de-excitation γ rays that tag and quantify the inelastic process [111, 112]. While

beam energies in classical Coulomb excitation reactions are below the Coulomb barrier to

prevent nuclear contributions to the excitation process, peripheral collisions corresponding

to large minimum impact parameters must be selected in the regime of intermediate-energy

Coulomb scattering to exclude nuclear contributions. Coulomb excitation cross sections

for a given multipole transition, σπλ, are integrated out to a maximum scatting angle and

then translated into B(E2) values using the Alder-Winther model of intermediate-energy

Coulomb excitation [113]. The relationship between cross section and the B(πλ, 0 → λ) is

given by,

σπλ ≈
(

Zproe
2

ℏc

)2
π

e2b2λ−2
min

B(πλ, 0 → λ)


(λ − 1)−1 for λ ≥ 2

2 ln (ba/bmin) for λ = 1 ,

(5.1)

where bmin is the minimum impact parameter in the experiment and ba is the impact pa-

rameter found in Ref. [111].

In a companion experiment to the one presented in this dissertation, 36Ca was impinged

on a Au target and through the technique of Intermediate-energy Coulomb excitation, γ

decays for the 2+ state in 36Ca were measured [105]. This experiment was blind to the
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proton decay branch, so to get a cross section for excitation, the branching ratio measured

in Chapter 4 was applied as a correction to the observed number of gamma decays. This

cross section was used in Eq. (5.1) to determine the resulting B(E2, 0+ → 2+
1 ) for 36Ca which

was found to be 131(20) e2 fm4. The table, from Ref. [105], is reproduced in Table 5.1 to

summarize the results for the measured B(E2) values.

Tab. 5.1: Cross sections and B(E2 ↑) values for the projectile (p) and target (Au) excita-
tions. The cross sections are integrated from 0 to a maximum scattering angle
of θlab

max = 55 mrad for the 38Ca, 36Ca, 34Ar, and 37K projectiles at 62.6, 70.5,
64.3, and 59.8 MeV/nucleon mid-target beam energies, respectively. The cross
section for the excitation of the proton-unbound 2+

1 state in 36Ca was corrected
for the proton branch reported in this work. The B(E2 ↑) for the beam contam-
inant 34Ar was determined as well and found to agree with the literature value of
220(30) e2fm4 [114] within two sigma.

proj E(2+
1 ) σp

I B(E2 ↑; proj) σAu
I B(E2 ↑; Au)

(keV) (mb) (e2fm4) (mb) (e2fm4)
38Ca 2213(2) 17.5(19) 101(11) 49.5(18) 4570(170)
36Ca 3049(3) 22.4(34) 131(20) 52.8(30) 4820(280)
34Ar 2091(2) 52.1(29) 293(16) 44.2(16) 4960(180)
37K - - - 45.2(32) 4620(330)

5.3 Shell-model calculations of B(E2 ↑) and Γp

The following analysis considers the B(E2) values for 36,38Ca and the corresponding mirror

nuclei’s transition probabilities from Ref. [115]. The experimental and theoretical B(E2)

values are given in Table 5.2 and are compared in Fig. 5.1. The calculated values are from

the ZBM2 Hamiltonian in the (0d3/2, 1s1/2, 0f7/2, 1p3/2) shell-model space [16], the USDB

Hamiltonian in the sd model space [14], and based on the sdpfu-mix plus Coulomb interaction
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in the sd − pf model space where zero or two protons are allowed to be excited from sd to

pf orbitals [116].

Tab. 5.2: Comparison of B(E2; 0+ → 2+
1 ) values between experiment and theory. The

ZBM2 and USDB results use effective charges of ep=1.36 and en=0.45. The
sdpfu-mix result [116] uses ep=1.31 and en=0.46.

B(E2 ↑) (e2fm4)
exp ZBM2 [16] USDB [14] sdpfu-mix [116]

36Ca 131(20) 179 11.8 23.5
36S 89(9) 116 108 98
38Ca 101(11) 110 14.0 -
38Ar 125(4) 179 128 -

The wavefunctions in the ZBM2 model space can be decomposed into components la-

beled by Fq(Nq) where Fq is the fraction of the q=proton/neutron part of the wavefunction

that contains Nq protons/neutrons excited from (0d3/2, 1s1/2) to (0f7/2, 1p3/2). For the sd

model space Fn(0) = Fp(0) = 1 is always true as there is no pf shell included. For the

ZBM2 Hamiltonian, the 36Ca ground-state has Fn(0)(36Ca)= 0.91, with the largest proton

components at Fp(0)(36Ca)= 0.55 and Fp(2)(36Ca)= 0.32. For the sd − pf wavefunction of

[116], the 36Ca ground state has Fn(0)(36Ca)= 1 and Fp(0)(36Ca)= 0.92 [96]. As a result of

the ZBM2 model assuming isospin symmetry, the 36S ground state occupations are the same

as 36Ca with the protons and neutrons interchanged.

Figure 5.1(a) and (b) shows the B(E2) vs Fp(0) correlation for 36Ca and Fn(0) for 36S

respectively. Figure 5.1(c) and (d) shows the same plots for the 38Ca, 38Ar pair. The red

circles represent the sd model space in which Fn(0) = Fp(0) = 1 is fixed. The red crosses,

present only for 36Ca and 36S, are based on the sd − pf calculations from the sdpfu-mix

interaction where there is a small increase in the pf shell population in the ground state.
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The black point shows the results from the ZBM2 interaction where the line shows the

ZBM2 interaction calculated with different (0d3/2, 1s1/2) − (0f7/2, 1p3/2) energy gaps. The

green crosses indicate an 250 keV increase in the gap for the ZBM2gap interaction [117]. This

ad hoc modification on the shell gap is useful to show the relationship between population

in pf shell and the resulting B(E2) value.
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Fig. 5.1: B(E2) values plotted vs Fp(0) percent for (a) 36Ca and its mirror (b)36S as well as
for (c) 38Ca and its mirror (d) 38Ar. As Fq(0) decreases, you increase occupation
into the pf -shell. The red circles are based on the sd shell calculations with the
USDB Hamiltonian [14]. The red crosses are based on the sd − pf calculations
from the sdpfu-mix interaction [116] with the the B(E2) and F values given in
[96]. The black point is from the ZBM2 model space calculations with the lines
using different sd-pf shell gaps. The green crosses indicates the ZBM2 with a
250 keV increase in the gap.
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The B(E2) values for 36S are not very sensitive to the decreasing fractional occupa-

tion of neutrons in the sd-shell because Fp(0)(36S)≥ 0.88. In contrast, the B(E2) for 36Ca

are very sensitive to Fp(0)(36Ca). Modifications to the ZBM2 interaction where the energy

gap between the sd and pf shell were artificially increased or decreased gave different frac-

tional occupations. For a small energy gap, the B(E2) shoots up (about 500 e2 fm4) while

Fp(0)(36Ca)= 0 and Fp(2)(36Ca) dominates the occupation. The opposite is also true where

a large energy gap gives a smaller B(E2) (11 e2 fm4) while Fp(0)(36Ca)= 1.

For 36Ca, the experimental B(E2) is a factor of 10 larger than that obtained in the sd

model space. With the results shown in Fig. 5.1(a), we deduce that the ZBM2 interaction

better reproduces the experimental B(E2) values with Fp(0)(36Ca) = 0.55(5) than the sd

model-space result (Fp(0)(36Ca) = 1), and the sd − pf calculations (Fp(0)(36Ca) = 0.92)

obtained from Ref. [116, 96]. This points to 36Ca having increased proton pf -shell occupancy

compared to the expected Z = 20 closed shell. The results for 38Ca are similar to those for
36Ca. For 38Ca, the experimental B(E2) value is a factor of 7 larger than that obtained in

the sd model space. This similarly indicates a large pf -shell occupancy in the ground state.

We note that independent of the effective charges assumed, the B(E2) values for the sets
36Ca and 38Ar and for 38Ca and 36S are similar with the ZBM2 interaction as the calculated

E2 transition amplitudes for protons and neutrons are similar within these pairs. This

similarity of B(E2) values within these pairs is confirmed experimentally (Table 5.2).

From the experimental partial-γ-decay width, Γγ (a value directly related to the B(E2)

calculated using Eq. (5.5) discussed later), and the measured branching ratio, the partial-

proton-decay width, Γp, can be calculated as these quantities are related through the ex-

pression,

Bp = 1
1 + Γγ/Γp

. (5.2)
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The resulting partial-proton-decay width of 36Ca is Γp=0.53(9) meV. Theoretically this decay

width is calculated from the shell-model spectroscopic factor times the single-particle decay

width. For the latter we use the same value as in Ref. [98]. Spectroscopic factors for the

three shell-model calculations are listed in Table 5.3 and resultant partial widths are also

given. Of the three shell-model calculations, only the ZBM2 result is consistent with the

experimental Γp value. Thus the ZBM2 calculation is clearly superior in that it is the only

one that reproduces both Γγ and Γp.

Tab. 5.3: Predicted spectroscopic factors C2S1/2 for the emission of an s1/2 proton from the
2+ state in 36Ca and the corresponding proton partial decay widths calculated
with various interactions.

exp ZBM2 [16] sd [14] sd − pf [116]
C2S1/2 0.0057(10) 0.0056 0.009 0.009

Γp (meV) 0.53(9) 0.52 0.87 0.84

Figure 5.2 shows trends in both the excitation energies of 2+
1 states and the B(E2 ↑)

values across the Ca isotopes. The mid-neutron shell around 44Ca shows a sharp increase in

B(E2) values relative to the value for 40Ca while the measured B(E2) values of 36,38Ca are

larger than predicted by the sd calculations where the trend was expected to dip towards low

B(E2) values. Predictions with the ZBM2 interaction give a good overall agreement with

both E(2+) and the B(E2) isotopic trends but consistently overpredicts the B(E2) values.

Other shell model interactions, including the GXPF1A (using ep=1.5 and en=0.5) [118],

included for A = 42 − 50, have agreement with the E(2+), but are unable to reconstruct the

trend in B(E2) values. The GXPF1A interaction only models neutron occupancy into the pf

shell and thus results in small B(E2) values. This shows that B(E2) values between neutron

closed shells N = 20, 28 are sensitive to the degree of Z = 20 shell closure and supports
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the argument for an incomplete Z = 20 shell closure. Similarly, the USDB Hamiltonian

models neutron occupancy in the sd shell and excludes proton excitations resulting in under

predicted B(E2) values in 36,38Ca.
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Fig. 5.2: Comparison of experimental and predicted trends in (a) 2+
1 excitation energy and

(b) B(E2 ↑) values across the Ca isotopes.

The strong occupancy of the pf -shell is at odds with the recent nuclear density functional

calculations of the charge radius of 36Ca [104]. The occupation probability of this shell
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for the ground state is approximately 13% and as we expect this occupancy is from (pf)2

configurations, then Fp(0) ≈ 0.94. This value is much closer to the results of the USDB

and sdpfu-mix shell-model calculations and thus it seems this model would not explain the

observed B(E2) value.

The ZBM2 model has also found success in Ref. [117] calculating the 2-neutron knockout

cross section of 38Ca . This knockout reaction from 38Ca to 36Ca was found to be sensitive

to the single-particle configurations of the removed neutrons. The measured inclusive cross

section populating any state in 36Ca and the ratio of measured exclusive cross sections

between the 2+
1 and both 0+ states (the 0+

g.s. and 0+
2 ) were reproduced only with the two-

nucleon amplitudes from the ZBM2 effective interaction. Here, increasing the shell gap in

the ZBM2 model by 250 keV (dubbed the ZBM2gap interaction) better reproduced the ratio

between the 2+
1 and 0+ cross sections. The results of ZBM2gap for B(E2) values are marked

as green crosses in Fig. 5.1. These calculations do a better job reproducing the measured

B(E2) values for all nuclei except 38Ca. This agrees with the conclusion in Ref. [117] that

the increased shell gap between the sd and pf shells would be important for a shell-model

effective interaction local to neutron-deficient Ca isotopes.

It is conceivable that evidence for the high occupancy of the proton pf -shell could be

obtained from proton removal reactions. For 40Ca, spectroscopic factors for the removal of

ℓ = 0, 1, 2, 3 protons have been extracted from measurements of the (d,3He) and the (e,e′p)

reactions [119, 120]. The extracted spectroscopic factors are compared to the ZBM2 results

in Table 5.4. This comparison shows the ZBM2 over-predicts protons occupying the f7/2 shell

and to a lesser extent the the p3/2 shell. The spectroscopic factors from the (e,e′p) data have

been reanalyzed within the dispersive optical model to give spectroscopic factors of 2.84(16)

and 1.20(6) for the d3/2 and s1/2 states respectively which do more closely match the ZBM2

predictions [121]. The cross section for proton removal from the 36Cag.s. to the 3/2− and 7/2−
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states in 35K would be of interest. Presently only proton and neutron knockout reactions

from 36Cag.s. to 35Kg.s. and 35Cag.s., respectively, have been studied experimentally [122]

but the predicted spectroscopic factors for these cases only decrease by 10-20% with the

ZBM2 interaction compared to the sd calculations and thus these cross sections are rather

insensitive to the extent of pf occupancy.

Tab. 5.4: Evaluated proton removal spectroscopic factors from the 40Ca(d,3He)39K reaction
[119] and the 40Ca(e,e′p)39K reaction to different levels in 39K compared with
predicted spectroscopic factors from the ZBM2 for 40Ca.

C2S

Ex (keV) Jπ ℓ (d,3He) [119] (e,e’p) [120] ZBM2
0 d3/2 2 2.20 2.58(26) 2.92

2520 s1/2 0 1.66 1.02(10) 1.48
2815 f7/2 3 0.32 0.38(4) 0.77
3020 p3/2 1 0.05 0.010(2) 0.08

It is interesting to consider the consequences of the incomplete Z = 20 shell closure for

the neighboring even-even nucleus 34Ca which has yet to be observed. This nuclide is of

interest as it potentially has a bubble structure [123], is possibly a double-magic nucleus

[124, 125], and is a candidate for a two-proton ground-state emitter [126, 127, 128]. Most

calculations of the nuclear structure and 2p decay of 34Ca consider only valence protons in the

sd shell. With the possibility of both negative and positive parity orbits contributing, then

interference effects could lead to a strong diproton configuration for the unbound protons

[129, 130, 131]. From the ZBM2 Hamiltonian, the two-nucleon amplitudes for removal of

two protons from 34Cag.s. to 32Arg.s. are 0.912 for (d3/2)2, 0.313 for (s1/2)2, -0.713 for (f7/2)2,

and -0.224 for (p3/2)2.
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5.4 Difference in mirror charge Radii update for

36Ca-36S

In Ref. [107], the charge radius of 36Ca was used to calculate ∆Rch = Rch(36Ca) - Rch(36S) =

0.150(4) fm and deduce a value of of L = 5−70 MeV for the symmetry energy in the nuclear

equation of state. The energy-density functional (EDF) and covariant-density functional

(CODF) theory calculations that were used for the connection between ∆Rch and L were

based on spherical calculations in the sd model space. Deformation corrections to this type

of calculation are outlined in [108] and Section 1.3.3 where the β2 parameter of the Bohr

shape parameterization is deduced from the experimental B(E2) value. In [108], the ∆Rch

for A = 54 was corrected for the changed radii (implied by the β2’s) and applied to deduce

a value for L.

Using the present results for 36Ca of B(E2 ↑) = 131(20) e2 fm4, the deformation correction

gives β2(36Ca) = 0.139 and δRch(36Ca) = 0.012(2) fm. For 36S with the experimental B(E2)

= 89(9) e2 fm4 [115], we obtain β2(36S) = 0.143 and δRch(36S) = 0.013(2) fm. Thus one

should add δRch(36Ca) - δRch(36S) = -0.001(3) fm to the results of the spherical calculations.

We conclude that the deformation correction to the A = 36 mirror radius difference is small

and inconsequential compared to the large uncertainty in deducing L.

The single-particle energies for the pf protons for 36Ca are in the continuum (unbound),

but the pf separation energies in the correlated ground-state wavefunction of 36Ca are pos-

itive (e.g., effectively bound). The DFT and CODF calculations used in Ref. [107] assumed

a Z = 20 closed shell for 36Ca. An extension of the calculations used in Ref. [107] to include

the pf orbitals needs to be developed. In Ref. [132], β2 corrections to the rms radii are not

included. Rather, the odd-even oscillations in the rms charge radii are obtained from the

addition of a pairing term in the Fayans EDF functional [133]. This difference leads to a
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decrease in the correlation between ∆Rch and L observed in Ref. [132] which casts doubt

oon the logic for extracting L from mirror charge radii.

5.5 35K(p,γ)36Ca reaction rate update

The astrophysical capture reaction rate through a narrow resonance can be evaluated at the

resonance energy Er to give [134],

⟨σv⟩ =
(

2π

µkBT

)3/2

ℏ2 (ωγ) e−Er/kBT , (5.3)

where µ is the reduced mass, kBT is the Boltzmann constant times the temperature in

Kelvin, and (ωγ) is the resonance strength. The resonance strength for the 35K(p, γ)36Ca

reaction can be expressed in terms of the spins and partial widths Γi to give,

(ωγ) = 2Ji + 1
(2Jp + 1)(2J35K + 1)

Γγ,iΓp,i

Γγ,i + Γp,i

. (5.4)

With the 2+ state being the resonance of interest, we have Ji = 2, Jp = 1/2, and J35K =

3/2. The energy of this resonance is determined, to high accuracy, to be Er = 0.449(6)

MeV [98]. Only the partial widths make significant contributions to the uncertainty on the

reaction rate. The 1+ and 2+
2 states in 36Ca, first measured at GANIL [98] and also observed

here, can also contribute to the reaction rate but are not significantly populated within the

0.5-2 GK temperature range of an X-ray burst.

The reduced electric transition probability for a transition can be related to the gamma-

decay partial width using Eq. (1.22) and the relation between decay rates and decay widths
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to give,

Γγ(Eλ) = 8π(λ + 1)
λ[(2λ + 1)!!]2

(
Eγ

ℏc

)2λ+1
B(Eλ). (5.5)

A B(E2, 0+
1 → 2+

1 ) = 131(20) e2fm4 or B(E2, 2+
1 → 0+

1 ) = 26.2(40) e2fm4 in combination

with Eγ = 3.049(3) MeV results in Γγ = 5.6(8) meV.

These values are used here in an update to the results by Lalanne [98]. The latter used

the sd − pf configuration space to calculate the B(E2) strength, with an assumed 50%

uncertainty, and the branching ratio they measured. The parameters relevant for the 2+

state from the present work and those from the GANIL study are given in Table 5.5. In

the present study we measured both the proton decay branch and the B(E2). Our rate is a

factor of 3 larger than that of [98] in the astrophysical region (0.5-2 GK) and has a smaller

uncertainty based entirely on experiment. The details of the input for the new reaction rate

are given in Table 5.6.

The reaction rate is plotted in Fig. 5.3 along with the ratio of the present rate to the

GANIL results. The recommended results of the GANIL study were ≈10% smaller than

those of Iliadis et al. [135] in the 0.5 to 2 GK range. The latter were used as the default in

the sensitivity study of Cyburt et al. [109]. In this sensitivity study, increases in the rate by

a factor of 100 caused significant modifications in the predicted X-ray burst light curve. As

our results imply an increased rate by only a factor of three, the conclusion of the GANIL

study, that the 35K(p, γ)36Ca reaction does not affect the shape of the X-ray bust light curve,

stands.

5.6 Conclusion

The measurement for the B(E2, 0+
1 → 2+

1 ) value of 36Ca required a correction due to the 2+

state being unbound to proton decay, requiring the proton branching ratio. This resulted
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Fig. 5.3: (a) Present result for the 35K(p,γ)36Ca reaction rate. (b) Ratio of the present rate
divided by the rate obtained in [98].

in a B(E2) value of 131(20) e2 fm4. Here, the improved B(E2) measurement for 38Ca,

determined to be 101(11) e2 fm4, was also used in the analysis. The B(E2) value for 36Ca

was found to be a factor of 10 larger than predicted by the sd shell model and a factor of 5

larger than the sd − pf shell model which is an indication of a collective excitation.

The present analysis shows that the 36Ca ground-state wavefunction contains a significant

amount of proton excitation from the sd to the pf shell. The single-particle energies for the

pf protons for 36Ca are in the continuum (unbound), but the pf separation energies in the

correlated ground-state wavefunction of 36Ca are positive (e.g., effectively bound). Hence,

energy density and covariant density functionals containing correlations involving the pf

orbitals need to be developed.

The measured B(E2) value was used to account for deformation of the nucleus. Because

the B(E2) values in the 36Ca/36S mirror pair are similar in value, the correction almost
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Tab. 5.5: Results for the contribution of the first 2+ state of 36Ca to the 35K(p,γ)36Ca
reaction rate. Results from [98] and the present work are compared.

GANIL [98] Present work
Bp 0.165(10) 0.087(8)
B(E2 ↓) (e2 fm4) 4.7(2.3) 26.2(40)
Γγ (meV) 0.99(45) 5.6(8)
Γp (meV) 0.20 0.53(9)
Γ (meV) 1.19(60) 6.1(8)
(ωγ) (meV) 0.10(5) 0.30(7)

cancels out, leaving the difference in charge radii unaffected. This means that the previously

reported result for the determination of L from the A=36 stands [107]. Our values for the

B(E2) and proton branching ratio have been used to update the 35K(p, γ)36Ca reaction rate.

The rate is increased by a factor of 3 compared to the previous study [98] within the Gamow

window of an X-ray burst. While the uncertainties are greatly reduced, the updated rates

will not significantly modify the predicted X-ray burst light curves [109].

102



T
ab

.
5.

6:
Pr

op
er

tie
sf

or
th

e
re

le
va

nt
rp

-p
ro

ce
ss

re
so

na
nc

e
st

at
es

of
36

C
a.

O
nl

y
th

e
re

so
na

nc
e

st
re

ng
th

fo
rJ

π
=

2+

is
re

st
ra

in
ed

fro
m

ex
pe

rim
en

t
w

hi
le

th
e

hi
gh

er
en

er
gy

re
so

na
nc

es
re

ly
on

sh
el

l-m
od

el
ca

lc
ul

at
io

ns
w

ith
th

e
ZB

M
2

m
od

el
[1

6]
fo

r
th

e
sp

ec
tr

os
co

pi
c

fa
ct

or
s.

n
J

π
k

E
∗ (

th
)

E
∗ (

ex
p)

E
r
es

C
2 S

C
2 S

Γ γ
Γ p

ω
γ

(M
eV

)
(M

eV
)

(M
eV

)
ℓ

=
0(

1)
ℓ

=
2(

3)
(e

V
)

(e
V

)
(e

V
)

2
2+

1
3.

25
2

3.
04

9
0.

44
9

5.
8×

10
−

3
2.

3×
10

−
6

5.
6×

10
−

3
5.

3×
10

−
4

3.
0×

10
−

4

3
1+

1
5.

09
8

4.
27

0
a

1.
67

0
2.

4×
10

−
3

1.
4×

10
−

4
9.

5×
10

−
2

7.
3×

10
1

3.
5×

10
−

2

4
2+

2
4.

63
9

4.
73

0
b

2.
13

0
6.

8×
10

−
4

7.
4×

10
−

3
3.

3×
10

−
2

1.
1×

10
2

2.
1×

10
−

2

5
0+

3
4.

92
4

2.
32

4
6.

6×
10

−
2

3.
3×

10
−

4
5.

4×
10

2
4.

1×
10

−
5

6
4+

1
5.

00
5

2.
40

5
1.

1×
10

−
3

7
2+

3
5.

37
8

2.
77

8
5.

9×
10

−
4

6.
9×

10
−

3
5.

9×
10

−
3

3.
9×

10
2

3.
7×

10
−

3

a
T

hi
s

va
lu

e
ha

s
be

en
up

da
te

d
in

th
is

w
or

k
af

te
r

th
e

or
ig

in
al

pu
bl

ic
at

io
n

to
be

E*
=

4.
19

9
M

eV
.

b
T

hi
s

va
lu

e
ha

s
be

en
up

da
te

d
in

th
is

w
or

k
af

te
r

th
e

or
ig

in
al

pu
bl

ic
at

io
n

to
be

E*
=

4.
51

M
eV

.

103



Chapter 6

Evolution of Shell Gaps in the

Neutron-Poor Calcium Region from

Invariant-Mass Spectroscopy of
37,38Sc, 35Ca, and 34K

6.1 Introduction

As was discussed in Section 1.3.1, the magic numbers (2, 8, 20, 28, 50, 82, and 126) arise as

a result of the shape of the attractive nuclear interaction and spin-orbit coupling creating

energy gaps between shells for protons and neutrons [8]. Away from stability, the picture of

shell closures changes as the classic shell gaps known at stability weaken and new subshell

closures appear. The disappearance of the N = 20 closed shell is manifested in 32
12Mg20 by

occupation of the ν0f7/2 intruder orbit in the ground state. This effect leads to a region

of the chart of nuclides called the island of inversion [112, 136]. At Z = 14 and N = 20,
34
14Si20 was shown to be doubly magic and potentially a proton bubble nucleus [137]. In the
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oxygen isotopes, the N = 16 subshell closure is observed at 24
8 O16 [138] with a gap between

the ν1s1/2 and ν0d3/2 orbits while the traditional N = 20 shell closure is not observed in
28
8 O20 [139]. These effects are driven by the monopole component of the nuclear interaction,

which has central, tensor, two-body spin-orbit, and three-nucleon components [140, 141].

Mass measurements for neutron-rich calcium isotopes have provided evidence for shell

closures at both N = 32 and N = 34 [142, 143]. For neutron-poor calcium isotopes, a

subshell closure at N = 16 has also been suggested [144]. These claims arise from a large

value for the change in neutron separation energy, ∆Sn. Also occurring in this region, the

measurements from Chapter 5 are evidence for a weakening Z = 20 shell. This conclusion

comes from the apparent need for cross-shell proton excitations to explain the measured

B(E2↑) value and two-neutron removal cross sections for neutron-deficient 36Ca and 38Ca

[105, 117]. The present work further illuminates the shell gaps in this region through mass

measurements of proton unbound isotopes.

6.2 Methods

This was the same experiment discussed in Chapter 4 with further detail on the experimental

set-up found in Section 2.2.2. At the NSCL, a primary beam of 40Ca at 140-MeV/nucleon

impinged on a Be target. With the A1900 fragment separator, a secondary beam of 37Ca was

produced at 72 MeVA with a purity of 40%. By gating on the ToF between the A1900 focal

plane scintillator and S800 object scintillator, this work only considers reactions from 37Ca

projectiles. This beam impinged on a 0.5-mm-thick Be target resulting in the reactions shown

in Fig. 6.1 including inelastic excitation of 37Ca, knockout reactions to populate 35,36Ca and
34K, proton pickup to populate 38Sc, and charge exchange to populate 37Sc. The reaction

products were detected with a setup including the CAESAR array [47], a Si-CsI(Tl) ∆E-E
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Ring Telescope, a Scintillating-Fiber Array (SFA), and the S800 Spectrograph [52].
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Fig. 6.1: Neutron-poor calcium region of the chart of nuclides with labels on unstable iso-
topes that are relevant to this work. Knockout reactions from the 37Ca beam are
shown in orange arrows, the charge exchange reaction to populate 37Sc is shown
by a red arrow, and the 1p pickup is shown by a pink arrow.

6.3 Invariant mass fits

Total decay-energy (ET ) spectra were measured using the invariant-mass method. The ET

spectra were typically fit with multiple peaks sitting upon a background. The peaks were

assumed to have zero intrinsic decay width as most states were predicted with shell-model

calculations (see later) to have intrinsic widths less than 1 keV while the experimental resolu-

tion is roughly two orders of magnitude larger. The lineshape due to the detector resolution

and acceptance is calculated from Monte Carlo simulations and binned to match that of

the experiment [77]. Figure 6.2(b) shows the results for the simulation with a uniform
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decay energy, effectively showing the relative detection efficiency as a function of decay

energy and decay angle of the heavy fragment relative to the beam axis (θH). The simu-

lation matches the observed experimental efficiency compared in the distributions shown in

Fig. 6.2(a) and (b). At ET larger than 2 MeV, the simulated peak shape flattens as the

efficiency drops for transverse decays (decay axis perpendicular to the beam axis) as such

events miss the ring telescope and only longitudinal decays remain. This can be seen in

Fig. 6.3 for the simulated resonance decays for two different decay energies of 38Sc. The line-

shape observed in Fig. 6.3(a) has good decay-energy resolution for transverse decays that

have −0.3 < cos(θH) < 0.3 because the invariant mass reconstruction depends mostly on the

angle between the detected fragments. Conversely, longitudinal decays outside of that range

have increasingly worse decay-energy resolution as the invariant mass depends primarily on

the energy difference of the detected fragments [77, 145]. The lineshape that results from

the higher energy state shown in Fig. 6.3(b) has a flat top because transverse decays are

missing, leaving only the poor resolution longitudinal decays. Backgrounds for the 35Ca,
37Ca, and 34K data were included via event mixing with the procedure developed previously

for knockout reactions [146]. Backgrounds in the data for 37,38Sc are discussed individually

in the results section.
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Fig. 6.2: (a) Decay angle of the heavy fragment relative to the beam axis vs the decay
energy for the detected p+35K fragments. (b) Simulation of a uniform decay
energy to show which fragments hit the ring telescope, resulting in a plot of the
relative efficiency. The simulation roughly matches the background distribution
of detected fragments.
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Fig. 6.3: Simulated decay distributions for (a) the ET = 1.191 MeV resonance and (b)
the ET = 2.40 MeV resonance in 38Sc. It is clear that at higher decay energies,
transverse decays miss the ring telescope, resulting in poor energy resolution and
an abnormal lineshape.
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Our invariant-mass resolution for low decay energies was exemplified by two states studied

previously, see Figs. 4.4 and 6.4 for 36Ca and 37Ca respectively. The 2+ state in 36Ca has been

measured multiple times through in-beam gamma spectroscopy and the resulting weighted

average excitation energy is E* = 3.0459(18) MeV [89, 147, 91, 105].6 The value from the

present study, see Fig. 4.4(a), is E* = 3.031 MeV with a 8 keV statistical uncertainty from

the fit and a 5.6 keV uncertainty in the employed mass of 36Ca [148]. The excitation of

the 3/2+ state in 37Ca has E* = 3.842(4) MeV determined by in-beam gamma spectroscopy

[147]. We find this state at E* = 3.833 MeV with a 4 keV statistical uncertainty. Using

these two states, we estimate the systematic uncertainty to be approximately 10 keV. For

the overall uncertainties reported in this work we add this estimate in quadrature with the

fitted statistical uncertainties.

6.4 Results for 35Ca and 34K

The ground state of 35Ca is particle bound with a mass excess ∆M = 4777(105) keV [144].

The first excited state, predicted to be Jπ = 3/2+, is unbound to both 1p decay to 34K and

2p decay to 33Ar. Because 34K is also unbound to proton emission, the first excited state of
35Ca will only appear in the 2p+33Ar exit channel. The 2p+33Ar decay-energy spectrum is

shown in Fig. 6.5 along with a fit to a single peak at ET = 1.667(20) MeV. The region above

2 MeV is fit with an event mixing background but has a hint of a peak around 2.8 MeV

which was not significant in the overall fit.

Data for the first observation of 34K is presented in Fig. 6.6 showing the decay-energy

spectrum for p+33Ar events. The spectrum has two sharp resonances at ET = 0.608(17) and
6 Previously in Chapters 4 and 5, the energy of this state was assumed to be E*=3.049 MeV to stay

consistent with the work in Ref. [105], where the energy was measured directly. Here, in an analysis
separated from the direct energy measurement, I choose not to assume one measurement is correct and use
the weighted average from a collection of similar measurements.
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The blue-dashed line indicates the background for the 37Ca fit. Arrows indicate
states included in the fit where the two states below the 3/2+ level are fixed to
the energies of states found in the gamma-decay study in [147], and the states
above the 3/2+ state have not been previously observed.

1.009(18) MeV. The latter corresponds to an excitation energy of E* = 0.401(25), presuming

the lower-energy peak is the ground state. At low relative energies, there is possible contam-

ination from 35Ca decays where the first emitted proton is detected but the second is missed.

Assuming sequential 2p-decay, the observed population of 35Ca(3/2+) was used along with

the simulated efficiencies for detecting the first but not the second proton, resulting in a very

small contribution shown by the magenta dashed curve under the second peak.

Above a decay energy of 1.5 MeV, the spectrum could be fit with multiple levels, but

a two peak fit offered the fewest number of states that could reasonably reproduce the
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data. The peaks at ET = 1.85 MeV and 2.42 MeV sit on the large background determined

though event mixing. For the background, the correlation function used to weight the mixed

events in the procedure of [146] could not be uniquely determined in this experiment so

the 3He+8B correlation from Ref. [146] was used instead. We decide to use this correlation

function as compared to the proton emission correlations because the increased Coulomb

potential between the 3He and 8B fragments better matches the large Coulomb potential

between the p and 33Ar decay fragments (with the other proton emissions discussed having

approximately the same potential). This gives a better match for the end state correlations

between fragments. A gate requiring ET > 1.36 MeV was applied to look for gamma decays
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in coincidence with p+33Ar events. The result, shown as an insert in Fig. 6.6, indicates that

the gamma-decaying Jπ=3/2+ and Jπ=5/2+ states in 33Ar are populated after proton decay.

This suggests, but does not prove due to the significant background, that the ET region above

1.36 MeV contains some highly excited states in 34K that proton decay to gamma-decaying

excited states in 33Ar.
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Fig. 6.6: Total decay-energy spectrum for 34K fitted with 4 peaks (line colors same as
Fig. 6.4). A small contribution from 35Ca→2p+33Ar events missing a proton is
included (magenta dashed line). Red arrows indicate the predicted ground and
first excited states from USDC shell-model calculations. The insert shows the
gamma-ray energy spectrum in coincidence with p+33Ar events having ET >1.36
MeV.

Shell-model calculations using the USDC Hamiltonian [15] were used to assign spins and

parities of the states observed in 35Ca and 34K. The USDC Hamiltonian is the latest iteration

of universal sd shell Hamiltonians that incorporate Coulomb and other isospin-breaking
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interactions which can become important at and beyond the drip-line. A summary of the

predicted transition energies and decay widths for 35Ca and 34K can be found in Table 6.1.

Starting with 35Ca, the magenta arrow in Fig. 6.5 indicates the predicted decay energy

of ET = 1.880 MeV coming from the combined Q values of the 35Ca(3/2+) → p+34K(1+)

and 34K(1+) → p+33Ar(1/2+) transitions. This is 213 keV higher than observed, but this

predicted value depends on the mass of 33Ar, which is over-bound in the calculation by

277 keV compared to AME2020 [2]. This calculation predicts that the 35Ca(3/2+) state

proton decays primarily through the 34K(1+) ground state, a prediction that we do not have

sufficient statistics to confirm.

The USDC calculations for 34K again predict decay energies slightly higher than mea-

sured, ET = 0.708 MeV (versus 0.608 MeV measured) for the 1+ ground state and ET =

1.123 MeV (versus 1.009 MeV measured) for the 2+ first excited state, see red arrows in

Fig. 6.6. The USDC calculations do accurately predict the excitation energy of the first

excited state at E* = 0.415 MeV compared to the measured value of 0.401(25) MeV. The

spacing and order of the 1+ and 2+ states agree with what is observed in the mirror nucleus
34P. The calculations also predict many states between 1.36 MeV and 3 MeV. Some states,

like the 1+
2 and 0+, decay to the ground state of 33Ar while others, like the 2+

2 , 3+, and

1+
3 , have decay branches to excited states of 33Ar. These predicted states and their decays

are included as gray dotted lines and arrows in the decay scheme of Fig. 6.5 with energies

included in Table 6.1. In addition to the predicted shell-model states, there are negative

parity states starting at 2.3 MeV in 34P which should also occur in 34K but are not part of

the USDC calculations. The present data cannot resolve these possible states.
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Tab. 6.1: Transition energies and strengths in 35Ca and 34K predicted by shell-model cal-
culations using the USD Hamiltonian [15].

Initial final
Iso(Jπ) E* (MeV) Iso(Jπ) E* (MeV) Qval Γp (keV)

35Ca(3/2+) 2.414 34K(1+) 0 1.172 0.015
35Ca(3/2+) 2.414 34K(2+) 0.415 0.757 0.0003
35Ca(5/2+) 4.917 34K(1+) 0 3.675 2.20
35Ca(5/2+) 4.917 34K(2+) 0.415 3.260 12.8

34K(1+) 0 33Ar(1/2+) 0 0.708 0.0006
34K(2+) 0.415 33Ar(1/2+) 0 1.123 0.019
34K(1+

2 ) 1.607 33Ar(1/2+) 0 2.315 17.7
34K(1+

2 ) 1.607 33Ar(3/2+) 1.404 0.911 0.008
34K(0+) 1.767 33Ar(1/2+) 0 2.475 28.0
34K(0+) 1.767 33Ar(3/2+) 1.404 1.071 0.010
34K(2+

2 ) 2.083 33Ar(1/2+) 0 2.791 0.082
34K(2+

2 ) 2.083 33Ar(3/2+) 1.404 1.387 0.096
34K(2+

2 ) 2.083 33Ar(5/2+) 1.992 0.799 0.0016
34K(3+) 2.684 33Ar(1/2+) 0 3.392 0.22
34K(3+) 2.684 33Ar(3/2+) 1.404 1.988 0.81
34K(3+) 2.684 33Ar(5/2+) 1.992 1.400 0.055
34K(1+

3 ) 2.944 33Ar(1/2+) 0 3.652 1.79
34K(1+

3 ) 2.944 33Ar(3/2+) 1.404 2.248 13.6
34K(1+

3 ) 2.944 33Ar(5/2+) 1.992 1.660 0.033
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6.5 Results for 37Sc and 38Sc

Charge exchange reactions produced a small number of 37Sc events observed to proton decay

to 36Ca. These data, shown in Fig. 6.7, were fit with either one or two peaks plus an extra

wide peak at ET = 5 MeV acting as a background. This is done because it cannot be assumed

the background in data resulting from knockout will be the same for charge exchange and

this allows the background to be constrained by fewer variables. The single peak fit, shown

in Fig. 6.7(a), suggests ET = 3.00(5) MeV, but this fit misses the data points to either side

of the peak. The fit is potentially remedied if the ground state has a large intrinsic width of

∼600 keV, but this is not supported by the shell-model predictions. The two peak fit, shown

in Fig. 6.7(b), finds states at ET = 2.37(13) MeV and ET = 3.24(8) MeV.

The mirror nucleus, 37S has a 7/2− ground state with a 3/2− state at 0.646 MeV [149].

In 37Sc the Thomas-Ehrman shift of the Jπ = 3/2− state (with a proton occupying the

π1p3/2 orbital in a single-particle picture) will lower its energy. The Thomas-Ehrman shift

observed for the 3/2− excited states in 41Sc and 41Ca is 0.23 MeV. So a fit with two low-lying

states in 37Sc is expected. In addition there is a 3/2+ state at 1.398 MeV in 37S which could

account for a third peak around ET =4.5 MeV in 37Sc. The amount of data and the resolution

are insufficient to make definitive statements. Nevertheless, this nuclide is observed and a

ground-state mass estimate is obtained where the uncertainty encompasses the results from

both fits (see Table 6.2).

115



0 1 2 3 4 5 6 7
 (MeV)TE

0

5

10

15

20

C
o
u
n
ts

 /
 3

0
0
 k

e
V

(b)

0

5

10

15

20

C
o
u
n
ts

 /
 3

0
0
 k

e
V

Ca36+p→Sc
37(a)

Fig. 6.7: Total decay-energy spectrum for 37Sc. (a) Shows a one-peak fit while (b) shows a
two-peak fit (line colors same as Fig. 6.4). The high-energy structure near 5 MeV
is fit with a peak but is considered to be the background contribution.

Proton pickup reactions from the beam produced data which provided the first evidence

for 38Sc. Figure 6.8 shows the decay-energy spectrum for p+37Ca events. The spectrum

shows a resolved state (ground state) at ET = 1.191(14) MeV. A second peak at ET =

1.823(16) MeV (E* = 0.632(22) MeV) is well constrained from the sharp rise but at higher

energy, blends into a region where the resolution declines. A third peak, at ET = 2.40 MeV,

is required for an acceptable fit, but is not well constrained. The background contribution

is fit with an inverse Fermi function multiplied by a decreasing linear function to give the

required smooth increase in background as the phase space increases and a long tail which

is typically observed in IMS. It is also possible that the data has contributions from more
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states such as those seen in the mirror 38Cl. These states come from the 3/2+ ground state

of 37Ca (37Cl) coupling with the 0f7/2 proton (neutron) to make Jπ = (2, 3, 4, 5)−. The

0.63 MeV spacing of the first two peaks in Fig. 6.8 is consistent with the spacing of 0.67 MeV

between the 2− ground state and the 5− first excited state of 38Cl. A fit with an extra state

fixed in energy at the spacing between the 2− and 3− states in 38Cl is also consistent with

these data.
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Fig. 6.8: Total decay-energy spectrum for 38Sc is shown with a three-peak fit (line colors
same as Fig. 6.4).

6.6 Analysis

A summary of the states measured is provided in Table 6.2. The mass measurements prompt

a reexamination of the trends in neutron and proton separation energies as the former can

be extended for potassium isotopes down to N = 16 and the latter extended for N=16 and
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N=17 isotones up to scandium.

Tab. 6.2: Parameters of states identified in this work. Excitation energies and mass excesses
are relative to masses from the AME2020 [2] except for 35Ca [144] and 36Ca[148].
States reported without uncertainties were not well constrained by their fits.

Nuclide Jπ ET (MeV) E* (MeV) ∆M (keV)
34K 1+ 0.608(17) g.s. -1487(17)

2+ 1.009(18) 0.401(25)
∼1.85 ∼1.24
∼2.42 ∼1.81

35Ca 3/2+ 1.667(20) 2.08(10)
36Ca 2+ 0.464(13) 3.031(14)

1+ 1.632(15) 4.199(18)
2+

2 ∼1.94 ∼4.51
37Ca 3/2+ 0.825(11) 3.833(11)

1.271(15) 4.279(15)
∼1.60 ∼4.60

37Sc 7/2− 2.69(41) g.s. 3500(410)
38Sc 2− 1.191(14) g.s. -4656(14)

(3− or 5−) 1.823(16) 0.632(22)
∼2.40 ∼1.21

The trends in neutron separation energy are shown in Fig. 6.9(a), while Fig. 6.9(b) plots

the change in neutron separation energy between isotopes given by

∆Sn(N, Z) = Sn(N, Z)−Sn(N+1, Z) = ∆M(N+1, Z)−2∆M(N, Z)+∆M(N−1, Z). (6.1)
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The change in proton separation energy, ∆Sp(N, Z), is similarly defined to be,

∆Sp(N, Z) = Sp(N, Z)−Sp(N, Z+1) = ∆M(N, Z+1)−2∆M(N, Z)+∆M(N, Z−1), (6.2)

and is plotted along with proton separation energies in Fig. 6.10(a) and (b). Figures 6.9 and

6.10 show the new data enabled by the present work as stars. The jumps in ∆Sn at N = 20

and N = 28 illustrate the classic shell closures. The increase in ∆Sn at N = 32 indicates an

increased stability at this subshell closure.
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Fig. 6.9: (a) Experimental neutron separation energies for Sc, Ca, and K isotopes. (b)
Changes in neutron separation energies for even N isotopes. Data are represented
by points (or stars for new values) connected by dashed lines and are shifted up
as indicated. Removing the Wigner energy results in the solid lines which show
an increase in neutron separation energy at N = 16 for Z = 19 resembling that
seen for Z = 20.

At N = 16, the raw data (points connected with dotted lines) might suggest a neutron

shell closure for 36Ca as was argued in Ref. [144] where the increase in ∆Sn from N=18

to N=16 was noted for Z=20 (blue data). However, for Z=19 (orange data), this increase
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has largely diminished. For experimental data in this region, shell effects are conflated with

the Wigner energy, where isotopes near N = Z have large T = 0 neutron-proton pairing

correlations that increase the binding energy [150]. Removing the Wigner energy from the

separation energies using the form suggested by Goriely et al. [151], results in the solid

lines in Figs. 6.9 and 6.10. The shading between the solid and dashed lines highlights the

Wigner energy contribution. The Wigner-corrected separation energies show the effect of

the N = 16 subshell closure is also present for potassium isotopes with an increase from

N = 18 to N = 16 similar to that seen for calcium isotopes.

Using a similar logic, the Z = 20 shell gap was investigated following proton separation

energies across an isotone chain. The proton separation energy differences for isotones be-

tween N = 20 and N = 16 are shown in Fig. 6.10(b). The Z = 14 subshell closure is most

clearly seen as a peak in ∆Sp between N = 17 and N = 20. At N = 16, there is no evidence

for this feature. With 16 neutrons, the ν0d5/2 and ν1s1/2 orbitals are nominally filled, so

adding another neutron starts filling the ν0d3/2 orbital. Through the tensor interaction [140],

neutrons occupying the ν0d3/2 will stabilize the π0d5/2, increasing the energy gap between it

and the π1s1/2. This effect explains the observed low proton occupation of the π1s1/2 orbit

in 34Si, leading to the conclusion that this nucleus is doubly magic [137].
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The nucleus 40Ca is doubly magic with N = Z = 20. Here, the Z = 20 shell closure

appears as a sharp drop in Sp when adding a proton to get 41Sc. Looking at the Wigner-

corrected separation energies, the N = 19 isotones show a similar increase in stability but
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the mass of 43V has not been measured, so a point at ∆Sp(N = 19, Z = 22) can not be

determined. For the neutron deficient calcium isotopes, the Z = 20 shell closure weakens

markedly at N = 18. The Wigner-corrected energies show no jump at N = 18 and the data

from the present work, see stars for 38Sc and 37Sc, verify that there is little to no increased

stability at Z = 20 for N = 17 and N = 16.

6.7 Conclusion

Using invariant-mass spectroscopy, previously unknown proton decays near or beyond the

proton drip-line were observed. The 3/2+ first excited state of 35Ca was observed and

provides an update to the excitation energy for this state. This work presents the first

observations of 37,38Sc and 34K all of which are odd-Z ground-state single-proton emitters.

The data for 34K was fit to determine the ground-state mass as well as the energy of the first

excited state. Higher-lying states in 34K were not resolved, but there is evidence that they

decay to excited states of 33Ar. The data for 37Sc was sparse but provides a ground-state-

mass measurement with a relatively large uncertainty. In addition, the ground-state mass

and energy of the first excited state of 38Sc were measured.

Comparisons of the resolved states with predictions from the USDC shell-model Hamilto-

nian show agreement with the data for 35Ca and 34K but the model space lacks the pf -shell

and cannot calculate the properties of 37,38Sc. The ZBM2 Hamiltonian model was noticeably

left out from the analysis of the nuclei presented in this chapter. This is because the ZBM2

interaction does not provide absolute binding energies needed to compare decay-energies. It

can only be used to compare excited states which are limited compared to the ground state

mass measurements highlighted in this work. It also does not implement isospin-breaking

terms such as the Thomas-Ehrman shift, meaning predictions for energy levels would likely
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need to be changed by estimates of their effect.

The ground-state masses measured in this work were used to examine trends in proton and

neutron separation energies. The N = 16 subshell closure was investigated through neutron

separation energies in the potassium isotopic chain, showing signs of increased stability in
35K when the Wigner energy is removed. Removing this neutron-proton T = 1 (but not

necessarily J = 1) congruence stabilization energy is crucial to understanding how shells

evolve close to N = Z [152]. The proton separation energies show a weakening of the Z = 20

shell closure in this neutron deficient region. This is in agreement with the analysis of the
36Ca B(E2↑) strength [105] and the two-nucleon removal cross section for 38Ca [117]. This

has also been mentioned in a recent global examination of the trends in shell gaps over the

whole chart of nuclides [152]. The three masses measured in this work help understand the

evolution of shells in nuclei far from stability.
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Chapter 7

Summary and Outlook

7.1 Conclusion

In this work, a collection of proton decaying resonances were observed through invariant mass

spectroscopy. The properties of these states were applied to studies of nuclear structure,

specifically the effects of the continuum on near-threshold resonances and the evolution of

shell structure in the neutron-poor calcium region. When relevant, these studies have also

been connected to topics of astrophysical importance such as (p,γ) reaction rates in the

rp-process, the importance of near-threshold resonances, or the equation-of-state physics

looking at the density dependence of the symmetry energy.

In Chapter 3, the experiment was a search for a predicted near-threshold s-wave res-

onance in 7Li. The state was predicted by Vorrabi et al.[53] with the NCSMC, and was

expected to be just above the p+6He decay threshold. The data showed no evidence for a

state with energy between the proton decay threshold and the IAS with large proton spec-

troscopic strength, excluding the possibility of a narrow resonance or a sharply rising but

broad proton resonance. This experiment helps provide useful feedback to the NCSMC for

other near-threshold resonances that could be important for astrophysics. Improvements

in these calculations increase their accuracy in evaluating astrophysical S-factors requiring
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accurate resonances properties [153].

In an experiment at the NSCL, isotopes were studied in the neutron-poor calcium region

resulting from reactions on the 37Ca beam. From this experiment, the p/γ branching ratio

for the 2+ state of 36Ca was studied and determined to be Bp = 0.087(8). This enabled

the measurement of the reduced electric quadrupole strength from a separate experiment,

resulting in a measured B(E2, 0+
1 → 2+

1 ) = 131(20) e2fm4. This experiment also resulted

in the first observations of 37,38Sc, and 34K. Results from this work were used to look at an

evolving shell structure in the region. The B(E2) and branching-ratio values could not be

reproduced with a closed Z=20 shell. The ZMB2 interaction, which predicts a larger than

expected proton pf -shell occupancy in the ground state was able to reproduce the B(E2) and

branching-ratio values. For the three newly-observed isotopes, their ground state energies

enabled a look at trends in proton and neutron separation energies. These trends showed

indications of a N=16 subshell gap and a fading of the Z=20 shell gap for N ≤18. Together,

these results would support the need for a local shell-model interaction for this neutron-poor

calcium region. This would help enable experiments looking beyond 36Ca towards the proton

drip line.

7.2 Ideas for continuation of work

The findings from this research have set the stage for several future experiments and advance-

ments. There are open questions which remain that require deeper investigation, particularly

within the FRIB experimental program, which promises improved secondary beam rates. To

conclude this dissertation, the status of these open questions is discussed.

From my work on the s-wave resonance in 7Li, there are other decay branches that the

predicted s-wave could show up in if coupling of the mass partitions in the NCSMC shifts
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the energy of the state around. If it goes sub-threshold, it is worth-while to search for a state

in the n+6Li decay channel. If the energy of the resonance increases, it could have a very

strong n+6Li(0+,T=1) decay branch. My experiment was insensitive to both of these decay

channels as it could only detect charged particles. These decay channels would require both

a neutron and gamma detector in coincidence with charged particle detection that when

combined, has sufficient resolution such that it is capable of invariant-mass spectroscopy.

The paper by Vorrabi et al.[53] also makes a prediction for an positive parity s-wave state in
7Be decaying through the p+6Li channel. Similarly, this state needs to be calculated with

coupled mass partitions but experimentally only charged particle decay branches are open

in the predicted region of excitation energy. A search for positive parity states in 7Be is of

interest to the field and as a comparison to ab initio calculations.

In the neutron-poor calcium region, there is a strong motivation for an experiment mea-

suring the 1p-knockout reaction on a 36Ca beam. Such a reaction could measure the proton-

removal spectroscopic strengths based on the states populated in the resulting 35K. Presently

only proton knockout to 35Kg.s. has been studied [122]. The p-wave or f-wave knockout would

populate the 3/2− or 7/2− states in 35K which would be above the proton decay threshold.

This would require an experimental setup similar to the one used at the NSCL in this work

such that the excited proton-emitting states can be observed through invariant-mass spec-

troscopy.

With a 36Ca beam and setup for IMS, there are many exciting prospects. It is possible a
36Ca beam would excite the 0+

2 state in 36Ca with higher statistics than the work presented

here. This state should have a competitive proton emission decay which could be observed

resulting in a more accurate determination of the energy. The lifetime of this state is also

of interest as the quasi-bound proton is only a few hundred keV of energy above the decay

threshold.
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Moreover, this setup provides a highly interesting opportunity for the first observation of

the even-even nucleus 34Ca. This nuclide would be the lightest calcium isotope observed and

is of interest as it potentially has a neutron bubble structure [123], is possibly a double-magic

nucleus [124, 125], and is a candidate for a two-proton ground state emitter [126, 127, 128].

Similar to the work in [117], the two neutron knockout cross section to 34Ca should be

compared to the two-nucleon amplitudes calculated in a shell-model. An experiment looking

for 34Ca, will also study the properties of 33K, which could be directly populated by knockout

reactions or result as an intermediate of the 2p decay of 34Ca. Because the masses of 33K

and 34Ca are both unknown, it is uncertain whether the ground state of 34Ca will decay by

sequential 1p emission or if it will only decay through direct 2p emission. This uncertainty

in mass and decay mode also results in an uncertain lifetime of 34Ca. If the state is too long

lived, it may not decay quick enough to be detected in a setup designed for IMS.
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APPENDICES



Appendix A

Principles of Cyclotrons and

Secondary Beams

Both experiments presented in this dissertation used the secondary beam capabilities at

either the National Superconducting Cyclotron Laboratory (NSCL) or the Texas A&M Cy-

clotron Institute. Presented here is a brief overview on how these facilities produce secondary

beams of radioactive isotopes through the use of cyclotrons and magnetic separators.

A.1 Cyclotrons

The cyclotron was first conceptualized around 1929 by Ernest Lawrence. Then with the

help of his graduate student, Stanley Livingston, the first cyclotron was constructed and

operating by 1932 [154]. This work, along with his research regarding artificial radioactive

elements made possible by the cyclotron, won Lawrence the 1939 Nobel prize in physics

[155]. Since then, cyclotrons have been a workhorse for basic nuclear science research (such

as all of the work presented in this dissertation) but have also found major use cases in fields

such as medicine, where they are used for radioisotope production and proton therapy, or

the aerospace industry which test electronics susceptibility to radiation damage.
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The principle of operation for a cyclotron is simple but effective, taking advantage of the

Lorentz force law,

F = qE + qv ×B, (A.1)

describing the force acting on a charge particle, q, in an electric field E and magnetic field

B, moving with velocity v. The process starts with an ion source which injects positively

charged particles at the center of the cyclotron at point (a) in Fig. A.1 where we can follow

the path of a single ion. The oscillating frequency between the “D”-shaped sections called

dees, produces an electric field across their gap which applies a force on the ion, accelerating

it into the dee. Now that the ion has a velocity, the uniform magnetic field (pointing out of

the page for Fig. A.1) applies a force that accelerates the ion in a circular path with constant

radius. The radius the charged particle with mass m takes is defined as the gryoradius, rg,

which is given by,

rg = mv

qB
, (A.2)

bending the charged particle back around to the dee gap at point (b). Once back at the gap,

the alternating electric field has switched such that the field is reversed, accelerating the

particle towards the other dee section of the cyclotron. The cycle is repeated, moving the

ion in a circular path until point (c) where it accelerates again and takes a larger radius. The

electric field between the dees must oscillate at a set frequency which matches the charged

particle’s orbital frequency given by,

f = qB

2πm
, (A.3)

also known as the cyclotron frequency.



Fig. A.1: Diagram of a cyclotron taken from the first scientific report from Lawrence and
Livingston [154]. The dotted line follows the trajectory for a positively charged
ion between two dee sections within a magnetic field pointing out of the page.

A charged particle in a modern cyclotron will take hundreds of trips around, accelerating

each time the gap is passed. The gryoradius increasing as the velocity increases. Eventually,

the particle reaches a maximum energy,

E = 1
2mv2 = q2B2r2

2m
, (A.4)

achieved at the maximum radius, r, of the cyclotron for a given charge to mass radio. From

this, it is clear the maximum energy of a cyclotron for a given magnetic field — typically

fixed at a constant value — is entirely dependent on the radius.

For ions at their maximum radius, the beam must be extracted from the cyclotron. Two

main methods are employed depending on the charge of the ions accelerated. For positively

charged ions, the beam is extracted with a slight pull from a electrostatic deflector which

pulls the ions out of the magnetic field to be sent down the beamline for the experiment. A

cyclotron can also accelerate negative ions as well except they rotate the opposite direction



through the cyclotron. This is commonly used when accelerating H− ions for high intensity

proton or deuteron beams. For a negative ion beam, it is extracted by passing the high

energy ions through a stripper foil, removing the electrons and changing the polarity of the

beam. This causes them to arc in the opposite direction in the magnetic field and out of the

cyclotron as a beam.

At the Texas A&M Cyclotron Institute, the experiment from Chapter 3 used the K150

cyclotron. The K150 cyclotron, which has an active diameter of 88 inches, is named using

the K-factor,
E

A
= K

(
q

A

)2
, (A.5)

which is used to classify the cyclotron by the maximum kinetic energy per atomic mass for

a given charged particle [156]. For the 7Li beam from the K150, the maximum beam kinetic

energy would be 27.5 MeV/A for fully stripped 7Li3+ ions. The Texas A&M Cyclotron

Institute also has a machine capable of reaching higher energies, a K500 cyclotron that runs

independently of the K150 but shares experimental halls. While the K500 has a higher

maximum energy, which opens up more experimental possibilities, the K150 can provide

higher intensity beams because of its more efficient injection [157].

When you push cyclotrons towards higher energies, relativistic effects must be taken into

account. As the energy of the particle increases, so does its mass. The lorentz factor, γ, can

be applied to determine the relativistic mass of a particle from its restmass, m0, as

m = m0√
1 −

(
v
c

)2
= γm0. (A.6)



This new relativistic mass can be directly applied to both the gyro radius as,

rg = γmv

qB
, (A.7)

and the cyclotron frequency as,

f = qB

2πγm0
. (A.8)

It is clear that as energy increases and therefore γ increases, we must take into account the

relativistic effects as (1) the gryoradius gets larger requiring massive (and more expensive)

cyclotron magnets and (2) the frequency decreases and is no longer constant for a specific

ion. To overcome these issues, there are two separate strategies and types of cyclotrons, the

synchrocyclotron and the isochronous cyclotron.

The synchrocyclotron modulates the frequency to account for relativistic effects as the

particles are accelerated. The frequency of the oscillating electric field decreases to match

the changing orbital frequency as particles effectively get heavier at high energies. The

issue with this type of cyclotron is that the frequency modulation results in only packets

of ions being captured in stable acceleration orbits. This results in a large loss of injected

ions from the source that are out of phase from the changing frequency. This typically

results in lower beam intensities compared to fixed-frequency cyclotrons. One advantage of

the synchrocyclotron is that you can reach relativistic energies with simple magnet design

compared to the next type of cyclotron, the isochronus cyclotron.

To return back to a fixed-frequency, and therefore more intense beams, you can use an

isochronous cyclotron instead. An isochronous cyclotron modulates the magnetic field to

overcome the relativistic effects and keep the fixed-frequency. To first approximation, you

could do this by increasing the magnetic field as the radius increases but this results in an

axially unstable orbit where ions above or below the mid-plane of the magnet poles are pushed



further from the mid-plane, defocusing the beam, and again losing intensity [158]. A better

way to design an isochronous cyclotron is to have azimuthally varying fields with magnetic

hills and valleys. The magnitude of a vertical B-field is roughly inversely proportional to

the distance between the magnet poles, so the hills seen in Fig. A.2(a) are areas of high

magnetic field and the valleys have a much weaker magnetic field. In Fig. A.2(b), the effect

of the higher magnetic field on the trajectory of the ions can be observed where the bending

takes place primarily in the hills. In the hill and valley geometry, it is possible to build

the accelerating structure or dees into the valleys between the hills so each ion would pass

through three acceleration regions in one rotation.

Fig. A.2: (a) Side view of one magnetic pole that has hills and valleys. The hills will be
closer to the upper magnetic pole resulting in a strong magnetic field while the
valleys will be further from the upper magnetic pole resulting in a weak field
strength. (b) orbit of a positively charge particle in an azimuthally varying field
cyclotron. [158]

As the particle reaches higher energies in the hill and valley cyclotron, and therefore larger

radius orbits, the shape of the magnetic sectors can be changed to account for relativistic

effects. It is no longer the strength of the magnetic field which changes, it is the magnetic field

integrated over the path length (
∫

Bdl) that must increase. An example is seen in Fig. A.3



for TRIUMF’s cyclotron magnetic sectors that create the hills. At small radii, the particles

have short path lengths through the magnet, increasing linearly in radius similar to Fig. A.2.

At large radii, the shape of the magnetic sections begin to spiral and are shaped such that

the path length of a particle moving over the hill region increases, resulting in orbits that

match the change in mass due to relativistic effects. This is a delicate balance that requires

precise matching of the field strength in the design process and careful manufacturing to

allow the frequency to remain constant.

Fig. A.3: Magnets sectors for Canada’s particle accelerator center TRIUMF spiral and
increase in width in the outermost regions to account for relativistic effects. [159]

The National Superconducting Cyclotron Laboratory (NSCL) has two isochronous cy-

clotrons that are coupled together, the K500 and the K1200. They both take advantage

of superconducting magnets to create stronger magnetic fields, allowing the cyclotron to

take up less space because of the smaller gryoradius. The principle of the K500⊗K1200

accelerator operates as follows [160]:



1. The Electron Cyclotron Resonance (ECR) source feeds nuclei in charge state Q1 axially

into the K500.

2. The K500 does the primary acceleration to energies of tens of MeV/u.

3. The K500 beam is transported and injected horizontally into the K1200 cyclotron.

4. The ions in the beam are stripped to a higher charge state Q2, increasing the charge

to mass ratio and allowing heavier isotopes to reach higher energies.

5. The beam is accelerated to its final energy ≤ 200 MeV/u, extracted, and sent to the

fragment separator.

Overall, this scheme allows for higher intensity and higher energy beams which are needed

in the production of secondary beams.

A.2 In-flight separators

A single cyclotron, or more generally a single accelerator, is limited in that it requires an

ion source to do the initial injection of charged ions. This restricts the portion of the chart

of nuclides available to only stable elements or to those with long half-lives such that it is

possible to feed into the ion source. In order to study unstable or exotic nuclei, it is required

that they are created just before they are needed. There are currently two main methods

for creating beams of radioactive nuclei, the ISOL technique and the in-flight technique.

One method of creating a radioactive beam is through the Isotope Separation On-Line

or the ISOL technique [161]. Here a primary accelerator bombards a thick heavy-element

target with a high-energy light-ion beam to create a large variety of different nuclei through

spallation, fragmentation, or fission reactions. At the same time, the target is heated up



so the recently produced isotopes emanate out of the target and into an ion source. The

fragments are magnetically separated at low energies and then fed into a second accelerator.

This type of radioactive beam facility can be found for example at CERN’s ISOLDE facility

[162] and TRIUMF, providing high intensity low energy radioactive beams. One issue with

this design is that it depends on the chemistry of the element you wish to accelerate. Refrac-

tory elements are particularly hard to create radioactive beams from as they don’t migrate

out of the initial target and they tend to stick to the walls of the ion source, limiting the

variety of isotopes they are able to study.

The other major method of creating a radioactive beam, and the one that is primarily

used in the work of this dissertation, is in-flight separation techniques. From the main

accelerator, a high-energy and high-intensity primary beam bombards a target and reaction

products from the beam continue through to magnetic separators to create the secondary

beam. This technique can be used to create a wide range of exotic nuclei but a device that

separates out and selects the isotopes of interest is required. This is the job of the fragment

separator, to create a secondary beam of exotic nuclei that can be used in experiments. Many

major facilities in nuclear physics pair their accelerator with a fragment separator such as the

ARIS/A1900 at FRIB (formerly NSCL) [163, 164], the LISE3 at GANIL [165], the FRS at

GSI [166], and bigRIPS at RIKEN [167]. These fragment separators aim to have three main

features: (1) a large acceptance with high transmission of isotopes of interest, (2) a high

resolving power that results in secondary beams as pure as possible, and (3) an achromatic

beam that has a tuneable beam momentum. Here, achromatic, a term from optical physics,

implies that after the separator, the momentum does not depend on the position, which is

important for keeping a small beam profile.

The A1900 coupled to the NSCL was used in Chapters 4 through 6 of this dissertation

and is diagrammed in Fig. A.4. The A1900 is composed of eight quadrupole triplet sections



and four 45◦ superconducting dipole magnets. The quadrupole tripet sections also include

a coaxial set of hexapole and octupole coils for abberration corrections. The overall design

is symmetrical which reduces high order geometrical aberrations. After the primary beam

hits the production target, the A1900 separates knockout-reaction fragments based on their

magnetic rigidity using a Bρ - ∆E - Bρ design. The first two dipoles start with a rough

selection of charge to mass ratio based on magnetic rigidity. Then at image 2, the beam

passes though a wedge shaped degrader where ions with different Z lose different amounts

of momentum and no longer have the same Bρ as the desired ions. The second set of two

dipoles then separates based on rigidity again resulting in improved purity of the secondary

beam.

Fig. A.4: The A1900 fragment separator coupled to the NSCL. The coupled cyclotrons
produce the primary beam starting from the K500 and then the K1200. The
primary beam hits the production target at the start of the A1900 producing
knockout reactions. The quadrupole triplets along with other smaller magnets
are shown in purple while the four superconducting dipole magnets are shown
in green. The first section centered around image 1 produces a Bρ section, a
degrader located at image 2 changes the energy, then the second section around
image 3 produces a second Bρ section. The secondary beam is selected at the
focal plane of the A1900 to be used in an experiment. [168]

At Texas A&M, they have the Momentum Achromat Recoil Spectrometer (MARS) [169]

that can create secondary beams. Instead of separating after a knockout reaction, they use



transfer reactions to populate nuclei just off of stability. The transfer reaction occurs in

inverse kinematics when the primary beam hits the cryogenic gas target, filled with a light

gas such as H2 or D2, and sends the recoil products around 0◦ into the separator. This

technique can leverage the higher resonance production cross sections compared to knockout

reactions and transfer reactions can be preformed at lower energies, but it requires tuning

for each specific reaction and it can’t add or remove more than a few nucleons.

MARS has two dispersive planes and is diagrammed in Fig. A.5. The momentum disper-

sive plane occurs directly after the gas target. Quadrupole magnets (Q1 and Q2) focus the

beam into the dipole (D1) which bends and separates the beam based on magnetic rigidity.

Momentum slits in the coffin section block nuclei which have the wrong charge to mass ratio

such as other reaction products and the primary beam. Finally, Q3 refocuses the beam and

D2 keeps the beam achromatic heading to the velocity dispersive plane. The velocity disper-

sive plane uses a vertical static electric field and a horizontal magnetic field to create a Wien

filter. A Wien filter takes advantage of the Lorentz force law in Eq. (A.1), that for a given

E and B, only a single velocity has no net force. The last three elements after the velocity

filter are the third dipole, D3, and two more focusing quadruple magnets. The third dipole

and the beamline that follows is unique because it is adjustable in the vertical dispersive

plane which allows for the final momentum focus and m/q selection after the Wien filter.

This results in a secondary beam with major contaminates having similar charge to mass

ratios as the beam of interest in the experiment.



Fig. A.5: The Momentum Achromat Recoil Spectrometer at the Texas A&M Cyclotron
Institute. The primary beam enters from the right to hit the gas target. Then the
recoil products are separated to produce a secondary beam at the experimental
station on the left. [170]

It it through cyclotrons and separators that the experimental work in this dissertation

were possible. The experiment disscussed in Chapter 3 were preformed at the Texas A&M

Cyclotron Institute’s K150 cyclotron along with MARS. The results in Chapters 4 to 6 were a

result of the second to last experiment preformed at the National Superconducting Cyclotron

Laboratory. Secondary beam experiments have opened up the chart of nuclides for studies

in inverse kinematics and through upgrades like FRIB, promise to extend our knowledge to

thousands of new isotopes.
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Glossary

ab initio Latin for “from the beginning”. A name given to a certain class of quantum
calculations which calculate properties of systems from first-principles.

A1900 Fragment Separator at the National Superconducting Cyclotron Laboratory used to
produce secondary beams after fragmentation.

BB7 Micron Semiconductors square 64mmx64mm double sided silicon strip detector with
32 strips on each side [44].

CAESAR CAESium-iodide scintillator ARray [47].

CI Configuration Interaction.

CNO cycle Carbon-Nitrogen-Oxygen cycle in nucleosynthesis.

CRDC Cathode Readout Drift Chambers.

CsI(Na) Cesium-Iodide crystals doped with sodium.

CsI(Tl) Cesium-Iodide crystals doped with thallium.

DSSD Double-Sided Strip Detector.

FRESCO General purpose reaction code for calculating coupled channels for light and
heavy ions.

Gobbi The nickname for the detector setup with four ∆E-E telescopes with an offset
arrangement around a square beam hole.

HINP16C Heavy Ion Nulear Physics 16-Channel. These are the chips developed at WashU
and which were used for the silicon detectors in this dissertation [46].

HIRA HIgh Resolution Array using BB7’s and CsI(Tl) [45].

HO Harmonic Oscillator. A simple system with a parabolic potential and analytic wave-
function solutions to Schrödinger’s equation.
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IAS Isobaric Analog State. An excited state with higher isospin, T, and structure matching
that of a neighboring nucleus with higher isospin projection (TZ = N−Z

2 ) with the same
total A.

IMS Invariant-Mass Spectroscopy.

LDM Liquid Drop Model.

magnetic rigidity rigidity, Bρ, is the measure of a particles resistance to deflection by a
magnetic field given by Bρ = |p|/q. Here B is the magnetic field strength, ρ is the
gyroradius, p is the momentum and q is the charge. Bρ is given in units of tesla-meters
[Tm].

NCSMC No Core Shell Model with Continuum [62]. An ab inito calculation used to cal-
culate properties for light nuclei.

NSCL National Superconducting Cyclotron Laboratory. An accelerator facility at Michigan
State University which has been superseded by the Facility for Rare Isotope Beams.

PMT PhotoMultiplier Tube.

pp-chain proton-proton chain in nucleosynthesis.

QDC charge (Q) to Digital Converter.

S4 Micron Semiconductors annular form factor for silicon with 128 rings and 128 pie shaped
sectors [44].

S800 Spectrograph at the National Superconducting Cyclotron Laboratory.

SEMF Semi-Empirical Mass Formula.

SFA Scintillating-Fiber Array.

telescope A stack of detectors (typically a ∆E and E) one directly behind the other.

ToF Time of Flight.
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